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We propose a solution to the problem of quickly and accurately predicting gravitational waveforms
within any given physical model. The method is relevant for both real-time applications and more
traditional scenarios where the generation of waveforms using standard methods can be prohibitively
expensive. Our approach is based on three offline steps resulting in an accurate reduced order model in both
parameter and physical dimensions that can be used as a surrogate for the true or fiducial waveform family.
First, a set of m parameter values is determined using a greedy algorithm from which a reduced basis
representation is constructed. Second, these m parameters induce the selection of m time values for
interpolating a waveform time series using an empirical interpolant that is built for the fiducial waveform
family. Third, a fit in the parameter dimension is performed for the waveform’s value at each of these m
times. The cost of predicting L waveform time samples for a generic parameter choice is of order
OðmLþmcfitÞ online operations, where cfit denotes the fitting function operation count and, typically,
m ≪ L. The result is a compact, computationally efficient, and accurate surrogate model that retains the
original physics of the fiducial waveform family while also being fast to evaluate. We generate accurate
surrogate models for effective-one-body waveforms of nonspinning binary black hole coalescences with
durations as long as 105M, mass ratios from 1 to 10, and for multiple spherical harmonic modes. We find
that these surrogates are more than 3 orders of magnitude faster to evaluate as compared to the cost of
generating effective-one-body waveforms in standard ways. Surrogate model building for other waveform
families and models follows the same steps and has the same low computational online scaling cost. For
expensive numerical simulations of binary black hole coalescences, we thus anticipate extremely large
speedups in generating new waveforms with a surrogate. As waveform generation is one of the dominant
costs in parameter estimation algorithms and parameter space exploration, surrogate models offer a new
and practical way to dramatically accelerate such studies without impacting accuracy. Surrogates built in
this paper, as well as others, are available from GWSurrogate, a publicly available python package.
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I. INTRODUCTION

A direct detection of gravitational waves generated by
the coalescence of a compact binary system is among the
most anticipated discoveries to be made in gravitational
wave physics. The signal from such an event will codify
perhaps the only attainable information about the existence,
dynamics, and underlying physics of the strongest gravi-
tating objects in the Universe. Currently, there are few, if

any, direct observations pertaining to gravity in the strong
field regime, but there is enough data to show agreement
with the predictions of general relativity when gravitational
fields and speeds are not too large [1,2].
In the case of binary black holes (BBHs), where the fields

and speeds can be large, one must rely on numerical
simulations of the Einstein equations to discover how these
systems evolve. The resulting solution depends on the choice
of initial data. The intrinsic parameter space of binary black
holes in quasicircular orbit is seven dimensional, consisting
of the mass ratio and the three spin angular momentum
components for each black hole. Different choices of
parameters can lead to qualitatively different outcomes, such
as the final speed of the merged black hole due to a “kick”
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from the asymmetric emission of gravitationalwaves [3–14].
In addition, potentially interesting effects due to strong
precession from highly spinning black holes have not yet
been discovered and understood. Unfortunately, each
numerical relativity (NR) simulation typically involves the
use of large-scale supercomputers, making an exploration of
the parameter space currently a computationally intractable
problem. For example, one might employ a uniform or
random sampling strategy of the parameter space that, for a
mere 4 points per dimension, requires47 ≈ 16;000 expensive
numerical solutions of binary black hole coalescences. This
number, while still being a very coarse survey of the
parameter space, is substantially greater (by more than an
order of magnitude) than all the simulations performed by all
of the numerical relativity groups to date [15–18].
To help alleviate this computational bottleneck, models

of the inspiral, merger, and ringdown phases of a binary
black hole (BBH) coalescence have been developed over
the last decade [19–29]. The purpose of these phenom-
enological models is to provide a sufficiently accurate
representation of a BBH waveform within some range of
parameters by fitting certain coefficients and functions to a
set of waveforms extracted from numerical simulations.
In doing so, the models help to reduce the amount of
information needed to representNRwaveforms.While these
models are significantly faster than solving the Einstein
field equations, they remain computational bottlenecks for
parameter estimation studies, which typically require gen-
erating millions of waveforms on the fly. Additionally, they
still rely on waveforms computed from numerical simula-
tions of binary black hole mergers and are thus unable, at
least currently, to accurately model gravitational waveforms
throughout the entire seven-dimensional parameter space,
although efforts to attack this problem are underway
[18,30,31].
Other important considerations come from precessing

inspirals of compact binaries. Generating the corresponding
waveforms requires solving a set of ordinary differential
equations (ODEs) and substituting the solutions into the
post-Newtonian expressions for the phase and amplitude
corrections. Given that around 520,000 to 860,000 wave-
forms are needed to build template banks for nonprecessing,
slowly spinning, binary neutron stars for advanced LIGO
[32], which would already be a computational challenge, it
follows that the large number of ODE solutions would be
prohibitively expensive in the general precessing case.
Waveform generation for precessing compact binary
inspirals constitutes the main computational bottleneck
for both template bank construction and parameter estima-
tion studies.
In this paper, we offer a solution to the need for cheap and

accurate generation of gravitational waveforms that may
otherwise be too expensive to compute for the application of
interest. Alternative waveform prediction methods have
recently been proposed [33–36] (see Appendix F for a brief

discussion and Ref. [36] for comparison details, especially).
These works have focused on gravitational waveform
models known through closed-form expressions, while
the focus of this paper is on those described by differential
equations. To achieve this, it is crucial to take advantage of
the rich structure underlying the waveforms of interest.
Importantly, our method builds accurate surrogate models
that do not sacrifice the underlying physics but instead
combine the efficiency and power of reduced order model-
ing techniques with high-accuracy sparse representations
and an offline-online decomposition of the problem.
Work over the last few years has shown that gravitational

waveforms exhibit redundancy in the parameter space
[37–42], suggesting that the amount of information neces-
sary to represent a fiducial waveform model is smaller than
might be anticipated. This reduction can be captured
accurately using only a remarkably few number m of
representative waveforms. These m representative wave-
forms can be found by using a greedy algorithm, and they
comprise a reduced basis (RB) [39] from which all other
waveforms within the same physical model can be repre-
sented, provided one can compute their projections onto the
basis. In practice, this is neither feasible nor worthwhile
because projecting onto the basis requires already knowing
the waveform that one is seeking to represent in the first
place. This is particularly the case for waveform families
that are expensive to generate, such as those from numerical
relativity (NR) simulations of the full Einstein equations.
Instead, we aim to use only the information provided by the
m representative waveforms of the reduced basis to predict
waveforms accurately and cheaply for any desired param-
eter values.
Toaccomplish this goal,we first build the reducedbasis, as

mentioned above and described in more detail in Sec. III A
and Appendix A. Second, we construct a temporal inter-
polant [43] whereby any fiducial waveform is fully specified
through its evaluation at m appropriately chosen times.
While this may seem surprising, it is important to recall
that there are onlym independent pieces of information in the
waveform family, as indicated by the m waveforms that
comprise the reduced basis. Indeed, wewill show that them
reduced basis uniquely specifies these m specially chosen
times. The interpolation method outlined above, which is
called empirical interpolation because it generates an inter-
polant specific to the given fiducial waveform family, takes
advantage of this nearly optimal representation strategy in
parameters to provide a corresponding representation strat-
egy in time. See Sec. III B and Appendix B for more details.
Finally, at each empirical interpolation time,we perform a fit
in the parameter dimension of thewaveform’s amplitude and
phase. Evaluating these fits yields m time samples from
which the waveform is accurately recovered through its
empirical interpolant representation. Remarkably, the out-
lined method allows for a waveform within any physical
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model to be predicted for any parameter value of interest
based solely on the knowledge of m fiducial waveforms.
Combining these pieces of information yields a surrogate

model for the fiducial waveform family. The method to
build the surrogate has several useful properties. First, the
method is entirely hierarchical; i.e., the accuracy of the
surrogate model can be improved, if necessary, by adding
fiducial waveforms without discarding any of the previous
ones. Second, the surrogate model can be evaluated using
only OðmLþmcfitÞ computational operations, where L is
the number of time samples at which the model is evaluated
and cfit is the typical fitting-function operation count. This
provides a significant speedup compared to the usual way
that fiducial waveforms are generated, as we demonstrate
below with a surrogate model for nonspinning effective-
one-body (EOB) waveforms. The speedup compared to
numerical simulations of the full Einstein equations is
expected to be significantly larger.

II. SURROGATE WAVEFORM MODELS

We denote the gravitational waveform produced from a
fiducial model by hðt; λÞ. Here, t denotes time and λ is the
waveform parametrization (e.g., mass ratio and spins). We
denote the surrogate model of the fiducial waveform family
by hSðt; λÞ and describe its construction in this section.
When numerically generating waveforms, by solving

partial or ordinary differential equations, one typically
solves an initial (or initial-boundary) value problem for a
fixed λi, thereby generating hðt; λiÞ on a densely sampled
grid in time. In this paper, we develop a procedure for
building hSðt; λÞ through judicious choices of λi and the
corresponding output hðt; λiÞ found by solving the relevant
equations defining the fiducial problem. Crucially, given
the complexity of existing numerical solvers, our approach
to surrogate modeling is intentionally nonintrusive to
legacy codes.
We seek a minimal number of λi selections for a target

accuracy such that the surrogate has a comparable or
smaller error than that associated with the underlying
waveform model. This is important both for the speed of
evaluating the surrogate model and for overcoming com-
putational challenges with building it in cases where one
cannot generate hðt; λiÞ for arbitrarily many values of λ.
Naturally, if more data are available, it should be possible to
include them and improve the surrogate’s quality. This
means that the surrogate model should be hierarchical by
construction, improving as more simulations become
available and without discarding previous ones.
The algorithm for building and evaluating a surrogate for

a given fiducial family or model of gravitational waveforms
is schematically depicted in Fig. 1 and outlined below:
(1) (Offline) Described in Sec. III A. Select the most

relevant m points in parameter space (shown as red
dots in Fig. 1). The waveforms associated with these
selections (shown as red lines) provide a nearly

optimal RB for this waveform family [39]. The
resulting points and waveforms will be referred to as
greedy data.

(2) (Offline) Described in Sec. III B. Identify m time
samples of the full time series, which we call
empirical nodes or times, to build an interpolant that
accurately reconstructs any fiducial waveform. This
step, called the empirical interpolation method
(EIM), only requires knowing the reduced basis.
The number of empirical nodes m (shown as blue
dots on the vertical axis in Fig. 1) exactly equals the
number of basis elements m.

(3) (Offline) Described in Sec. III C. At each empirical
node, perform a fit (e.g., least squares) in the
parameter dimension for the amplitude and phase
of the waveform using the greedy data from step 1.
The fits are indicated by blue lines in Fig. 1.

FIG. 1. A schematic of the method for building and evaluating
the surrogate model. The red dots show the greedy selection of
parameter points for building the reduced basis (step 1, offline),
the blue dots (step 2, offline) show the associated empirical nodes
in time from which a waveform can be reconstructed by
interpolation with high accuracy, and the blue lines (step 3,
offline) indicate a fit for the waveform’s parametric dependence at
each empirical time. The yellow dot shows a generic parameter,
which is predicted at the yellow diamonds and filled in between
for arbitrary times using the empirical interpolant, represented as
a dotted black line (step 4, online).
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(4) (Online) Described in Sec. III D. Evaluate the
surrogate model constructed in steps 1–3 at any
parameter value λ0, shown as the yellow dot on the
horizontal axis in Fig. 1. This is accomplished by
computing the values of the amplitude and phase fits
from step 3 at each empirical node in time for λ ¼ λ0
(yellow diamonds). The full time series of the
surrogate waveform is then generated using the
empirical interpolant from step 2 (dotted black
vertical line).

We quantify the accuracy of the offline steps through the
convergence rates in Eqs. (9) and (20). The accuracy of the
fast online step for the complete surrogate is estimated
through the errors in Eqs. (31) and (32). If each offline step
is carried out with sufficiently good accuracy, then the
surrogate will satisfy

hSðt; λÞ ≈ hðt; λÞ ð1Þ
for all t and λ in the given ranges and retain the physics of
the original fiducial waveform family, whatever that might
be. As discussed in Sec. IV, the waveform predictions by
our surrogate model are indeed expected to have a small
error with respect to the fiducial one.

III. SURROGATE MODEL BUILDING

The following four subsections expand on the steps
outlined above. Each of these steps is illustrated with an
application to nonspinning EOB waveforms. For simplic-
ity, we consider the (2,2) mode of waveforms with mass
ratios in the range q ∈ ½1; 2� and about 12;000M in
duration. In Sec. VI, we build surrogate models for
astrophysical sources that include more cycles, cover larger
mass-ratio intervals, and contain higher spherical harmon-
ics. Important technical details describing how these EOB

waveforms were generated, as well as our peak alignment
scheme, are discussed in Appendix E. Figure 2 shows the
q ¼ 1 EOB waveform. Despite its complicated structure,
we shall demonstrate that waveforms such as this one can
be represented accurately by relatively little information.
A gravitational waveform hðt; λÞ is represented in terms

of its two fundamental polarizations hþðt; λÞ and h×ðt; λÞ
by hðt; λÞ ¼ hþðt; λÞ þ ih×ðt; λÞ. A natural inner product is
given by the complex scalar product

hhð·; λ1Þ; hð·; λ2Þi ¼
Z

tmax

tmin

dth�ðt; λ1Þhðt; λ2Þ; ð2Þ

with an inherited norm given by ∥hð·; λÞ∥2 ¼ hhð·; λÞ;
hð·; λÞi. Here, h�ðt; λÞ is the complex conjugate of
hðt; λÞ. Other inner products might be more natural for
different applications [44]. Throughout this paper, we
shall assume the waveforms are normalized such that
∥hð·; λÞ∥ ¼ 1.
The overlap integral of two normalized waveforms, say,

of a fiducial waveform and its surrogate model prediction,
is given by Rehhð·; λÞ; hSð·; λÞi,

Rehhð·; λÞ; hSð·; λÞi ¼ 1 − 1

2
∥hð·; λÞ − hSð·; λÞ∥2: ð3Þ

This equality is useful to translate the error in approxi-
mating a fiducial waveform by its surrogate model pre-
diction into an overlap integral that is used in some
gravitational wave applications [cf. Eq. (11)].

A. Step 1: Greedy selection of parameter samples
and reduced basis

We use a greedy algorithm (see Appendix A for more
details) to select m parameter points fΛigmi¼1 and corre-
spondingwaveformshiðtÞ ¼ hðt;ΛiÞ. The greedy algorithm
provides a nearly optimal solution to the Kolmogorov
n-width approximation problem [45,46], namely, given a
set of waveforms

fhðt; λÞ∶λ ∈ T g; ð4Þ
where T denotes a compact parameter domain, find an
m-dimensional function space that best approximates any
hðt; λÞ from this set.
More precisely, if the waveforms are known at a discrete

set of M training points T M ¼ fλigMi¼1, the greedy algo-
rithm identifies a set of parameter values

fΛ1;Λ2;…;Λmg ⊂ T M ð5Þ
and an associated set of waveforms

fh1ðtÞ; h2ðtÞ;…; hmðtÞg ð6Þ
that constitute the reduced basis. The basis is hierarchical in
the sense that if fhigm0

i¼1 is the basis for m0 < m, then

FIG. 2. Time series of a normalized (2,2) mode of an EOB
waveform for an equal-mass, nonspinning black hole binary
coalescence. This waveform, corresponding to about 70 gravi-
tational wave cycles, is representative of the structure encoun-
tered when building a surrogate model.
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fhigm0
i¼1 ⊂ fhigmi¼1: ð7Þ

One of the key features of the greedy algorithm is its ability
to select a small number of waveforms to serve as an
accurate basis. For practical purposes of conditioning, it is
useful to use an orthonormal basis feigmi¼1, which spans the
same approximation space as Eq. (6).
With the RB in hand, every waveform in the training set

is well approximated by an expansion of the form

hðt; λÞ ≈
Xm
i¼1

ciðλÞeiðtÞ; ð8Þ

whereas waveforms from T (even if not in the training set)
continue to be well approximated by the RB if the training
set is dense enough [39–42]. Since the waveform space is
numerically finite dimensional [39], one can verify suffi-
ciently dense training sets through convergence as M gets
larger or by checking how well the basis represents
randomly selected waveforms (see Appendix A). For an
underlying model that requires prohibitively expensive
numerical solutions, one may use a simpler model to
propose a training set building strategy. If there is sufficient
similarity amongst the members of the original set, then
m ≪ M. This is found to be the case for gravitational
waveforms [39,41,42].
Let ϵ be a user-specified tolerance whose role is to

guarantee that the approximation error for waveforms in the
training set, which we will call the greedy error σm, is
bounded by ϵ,

σm ≡max
λ

min
ci∈C

∥hð·; λÞ −Xm
i¼1

ciðλÞeið·Þ∥2 ≤ ϵ: ð9Þ

Then, the representation (8) is accurate to ϵ. The mini-
mization over the coefficients fcig in Eq. (9) is achieved by
orthogonal projection Pmhðt; λÞ of hðt; λÞ onto the span of
the basis (see Appendix A for details) so that

ciðλÞ ¼ hhð·; λÞ; eið·Þi: ð10Þ

In Sec. III B we find efficient approximations of the optimal
projection representation in Eq. (10) that approximately
retains the accuracy implied by Eq. (9).
The error in Eq. (9) is directly related to the overlap

between a waveform and its representation [47],

min
λ

Rehhð·; λÞ;Pmhð·; λÞi ¼ 1 − 1

2
σm; ð11Þ

which follows from Eq. (3). The quantity σm quantifies
the worst error of the best approximation by the basis. The
greedy algorithm is nearly optimal in the sense that if the
Kolmogorov n-width dm [defined as the smallest error (9)
achieved by the best m-dimensional function space] decays
exponentially, then so does the greedy error [45,46],

dm ≤ De−amb
⇒ σm ≤

ffiffiffiffiffiffiffi
2D

p
e− ~amb

; ð12Þ

where D, a, b are positive constants and ~a ¼ 2−1−2ba.
Recent work [39–42] has shown that for fixed but

arbitrary physical and parameter ranges, a small number
of basis functions is indeed sufficient to accurately re-
present any waveform of the same physical model and with
an exponentially decaying greedy error (9). Such observa-
tions are expected for functions with smooth parameter
dependence, as is the case with gravitational waveforms. To
better understand these approximation properties, one can
make an analogy to the more familiar case of spectral
methods. There, exponential decay with the number of
basis elements is expected whenever there is smoothness
with the physical dimension(s) (e.g., space or time).
Let us apply the greedy algorithm to build a reduced

basis for our nominal EOB example introduced earlier.
Figure 3 shows the exponential decay of the greedy error
(9) over 501 waveforms in the training set, with only 19 RB
waveforms needed to represent the EOB model to machine
precision for the mass ratios considered. Errors of about
10−3 are already achieved with as few as 5 RB waveforms.
Later (cf. Fig. 9), we show that any waveform not present in
the training set yields similarly small representation errors
by the basis. This feature, because of a sufficiently well-
sampled training set, is essential for parameter estimation
studies, which seek to explore the waveform continuum.
The distribution of selected points is shown in Fig. 4. In
Sec. III C, we show how the greedy data from these
parameter selections can be used to predict waveforms
for any q in the range considered, including (and espe-
cially) values not in the original training set.

FIG. 3. Greedy error, as defined by Eq. (9), over 501 EOB
training set waveforms with mass ratios between 1 and 2. Labels
at the dots indicate the selected mass ratios at each step in the
greedy algorithm.
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B. Step 2: Greedy selection of time samples and
empirical interpolation

Once a basis is built in step 1, we can express any
waveform evaluated at any time as a sum ofm reduced basis
elements. In step 2, which is shown to significantly reduce
the surrogate’s evaluation cost in Appendix F, we now show
how to leverage this knowledge to yield a temporal pre-
diction scheme by recasting the problem as one of inter-
polation in time. Given a reduced basis feigmi¼1 and m
evaluations of a fiducial waveform at certain times fTigmi¼1,
we wish to recover the full fiducial waveform hðt; λÞ with
high accuracy for an arbitrary λ. A proper choice of these
times fTigmi¼1 is crucial. Naively selected times, such as
those randomly or equally spaced, do not guarantee that
(i) the interpolation problem is well conditioned or even has
a solution and (ii) the interpolation error is minimized with a
nearly optimal convergence rate.
A framework for finding a “good” set of times fTigmi¼1

that achieve both criteria is provided by the empirical
interpolation method (EIM) [48,49]. These special times,
which we call empirical times or nodes, are selected as a
(sparse) subset of the waveform’s given time series (or even
the continuum). The empirical nodes are uniquely defined
by the reduced basis waveforms and only these waveforms.
Like the algorithm for building a reduced basis, the EIM is
hierarchical and uses a greedy optimization strategy to
select the most representative times. While the empirical
times Ti do not explicitly depend on parameters or their
ranges, the parameter dependence is implicit, nevertheless,
through the basis. For example, a reduced basis for
spinning or precessing waveforms will exhibit different
features, and the distribution of Ti will reflect this. For the
moment, we shall assume that the empirical nodes are
known; the precise algorithm for finding them is given in
Appendix B.
The empirical interpolant, which interpolates the wave-

form hðt; λÞ in time for a given parameter λ, is denoted by
Im½h�ðt; λÞ and takes the form

Im½h�ðt; λÞ ¼
Xm
i¼1

CiðλÞeiðtÞ: ð13Þ

The coefficients fCigmi¼1 are defined by requiring the
interpolant to equal the value of the waveform at the
empirical nodes,

Xm
i¼1

CiðλÞeiðTjÞ ¼ hðTj; λÞ; j ¼ 1;…; m; ð14Þ

which is equivalent to solving an m-by-m system

Xm
i¼1

VjiCiðλÞ ¼ hðTj; λÞ; j ¼ 1;…; m ð15Þ

for the coefficients fCigmi¼1, where the interpolation matrix

V ≡

0
BBBBBBBB@

e1ðT1Þ e2ðT1Þ � � � emðT1Þ
e1ðT2Þ e2ðT2Þ � � � emðT2Þ
e1ðT3Þ e2ðT3Þ � � � emðT3Þ

..

. ..
. . .

. ..
.

e1ðTmÞ e2ðTmÞ � � � emðTmÞ

1
CCCCCCCCA

ð16Þ

is independent of the parameters λ.
The choice of empirical nodes given by the EIM

algorithm, together with the linear independence of the
reduced basis, ensures that V in Eq. (16) is as well
conditioned as possible and invertible [50] so that

Ci ¼
Xm
j¼1

ðV−1ÞijhðTj; λÞ ð17Þ

is the unique solution to Eq. (14). It then follows upon
substituting Eq. (17) into Eq. (13) that the empirical
interpolant is

Im½h�ðt; λÞ ¼
Xm
j¼1

BjðtÞhðTj; λÞ; ð18Þ

where

BjðtÞ≡
Xm
i¼1

eiðtÞðV−1Þij ð19Þ

is independent of λ. Note that Eq. (18) is a linear
combination of the fiducial waveform itself evaluated at
the empirical times. The coefficients fBigmi¼1 are built
directly from the reduced basis and provide a clean
offline/online separation and affine parametrization.
Because of this, the fBigmi¼1 can be precomputed offline
once the reduced basis is generated, while the (fast)
interpolation is computed during the online stage from
Eq. (18) when the parameter λ is specified by the user.
Evaluations of the fiducial waveform are still needed at the
arbitrarily chosen parameter λ in order to construct the

FIG. 4. Histogram of parameters selected by the greedy
algorithm for the reduced basis of Fig. 3.
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interpolant in Eq. (18). In the next subsection, we explain
how to estimate the fiducial waveform at any λ, thus
approximating fhðTi; λÞgmi¼1 and completing the construc-
tion of the surrogate model.
The empirical interpolant satisfies [51]

max
λ

∥hð·; λÞ − Im½h�ð·; λÞ∥2 ≤ Λmσm; ð20Þ

where σm is the greedy error defined in Eq. (9) and Λm is a
computable Lebesgue-like quantity that changes slowly
with m (see Appendix B). For problems with smooth
dependence with respect to parameter variations, we can
expect an exponential decay of σm with m and of the
empirical interpolant’s error.
Before describing how to estimate the values

fhðTi; λÞgmi¼1 for arbitrary λ, let us assume these values
are known exactly and apply the EIM to build an empirical
interpolant for our fiducial EOB example introduced ear-
lier. Figure 5 shows all 19 empirical nodes set against a
q ¼ 1 waveform to compare with the structure of a typical
waveform. Evaluating any q ∈ ½1; 2� EOB waveform at
these 19 nodes and computing Eq. (18), one can reconstruct
the full time series of the waveform with high accuracy.
This is explicitly demonstrated in Fig. 6, where the solid
black line denotes the largest empirical interpolation error

∥hð·; qÞ − Im½h�ð·; qÞ∥2 ð21Þ

as a function of the number of reduced basis elements or
empirical nodes for 1,000 randomly selected EOB wave-
forms drawn from q ∈ ½1; 2�. Notice that this error is
remarkably close to the greedy error (dashed line) in
Eq. (9) when using Eq. (10) for the coefficients. The bound
in Eq. (20) (dashed-dotted line) guarantees an error better
than 10−8, which is sufficient for many gravitational wave
(GW) applications.

C. Step 3: Fitting at empirical nodes

The next step is to predict waveforms at the empirical
nodes fTigmi¼1 for arbitrary parameter values λ based only
on the knowledge of the fiducial waveforms at the greedy
points fΛigmi¼1. To accomplish this, we fit hðTi; λÞ with
respect to λ at each Ti using only the followingm values of
the reduced basis waveforms:

fhðTi;ΛjÞgmj¼1: ð22Þ

The accuracy of the fit using only these data relies, at
least partially, on the fact that the reduced basis wave-
forms are chosen to be the most dissimilar from one
another. Of equal importance is our choice of fitting
function which, in principle, is arbitrary. We will focus on
the choices most effective for our nominal EOB example,
while others could be more appropriate for different
waveform families.
The behavior of most astrophysically relevant gravita-

tional waveforms is highly oscillatory in time, but the phase
and amplitude themselves have a relatively simple struc-
ture. It is thus easier to perform high-accuracy parametric
fits of the phase and amplitude than of the complex
waveform itself. The amplitude A and phase ϕ are defined
through

hðt; λÞ ¼ Aðt; λÞe−iϕðt;λÞ: ð23Þ
This third step then consists of finding 2m functions,
fAiðλÞgmi¼1 and fϕiðλÞgmi¼1, approximating the amplitude

FIG. 5. Location of the empirical nodes for the fiducial family
of EOB waveforms with mass ratio q ∈ ½1; 2�. Knowing the
waveform in this parameter range at these specific times is
sufficient to reconstruct the former with very high accuracy at any
other time using the empirical interpolant in Eq. (18).

FIG. 6. A comparison of errors for the example family of EOB
waveforms. The dashed line shows the greedy error σm in Eq. (9).
The solid line shows the maximum empirical interpolant error
(21) taken over 1,000 randomly selected waveforms (i.e., not
taken from the training set) for q ∈ ½1; 2�. The dash-dotted line
shows the error bound provided by the right side of Eq. (20) and
is based solely on the greedy error and Λm. All three errors
display similar decay rates.
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and phase of the waveform. Once these fitting functions
have been found, the approximation at each Ti is

hðTi; λÞ ≈ AiðλÞe−iϕiðλÞ: ð24Þ

Depending on the application, some fitting functions
might be more useful than others. Therefore, this third step
in constructing a surrogate model is flexible in the way that
the fitting is implemented and thus in how the surrogate is
ultimately generated. This is quite a useful feature of the
method that may be especially beneficial for building
surrogate waveforms for highly precessing black hole
binaries. Splines, rational polynomials, or weighted non-
oscillatory fitting approaches could help limit the impact of
numerical noise, for example.
We now return to our nominal EOB example and

perform a least squares fit for both the amplitude and
phase as a function of mass ratio at each empirical time
using polynomials,

AiðqÞ ¼
Xαi
n¼0

ai;nqn; ϕiðqÞ ¼
Xβi
n¼0

bi;nqn; ð25Þ

where αi, βi < m are the degrees of the polynomials at the
empirical time Ti for i ¼ 1; 2;…; m. Further details regard-
ing how to select an optimal degree are provided in
Appendix C.
The top plot in Fig. 7 shows the amplitude and phase,

along with the greedy data points, at the 15th empirical time
node T15, which is about 28.5M after merger. This node
corresponds to the largest pointwise error for the relative
amplitude

����AðTi; qÞ − AiðqÞ
AðTi; qÞ

���� ð26Þ

for waveforms in the training set of our EOB test problem.
T15 also happens to correspond to the second largest
difference for the phase,

jϕðTi; qÞ − ϕiðqÞj: ð27Þ

The bottom plot in Fig. 7 shows the pointwise errors (solid
lines) of Eqs. (26) and (27) as a function of mass ratio for
1,000 randomly selected waveforms. These errors are
uniformly below 3 × 10−3. The horizontal dashed lines
show the maximum errors for the empirical node for which
Eqs. (26) and (27) are smallest, which occurs for the second
empirical time T2 ¼ −2; 367M. These errors are of order
10−5. As we will discuss later (see Fig. 9), all of this

FIG. 7. Top panel: Amplitude (solid line) and phase (dashed
line) of the fiducial EOB training space waveform at the 15th
selected empirical time as a function of q along with the greedy
data (circles). The empirical time is T15 ¼ 28.5M after merger
and corresponds to the largest pointwise relative error for the least
squares fit to the amplitude as quantified by Eq. (26). Bottom
panel: The pointwise least squares errors for the amplitude (red)
and phase (blue) at T15 evaluated for 1,000 randomly selected
waveforms. The dashed lines correspond to the maximum
pointwise error for the second empirical node T2 ¼ −2;367M,
which has the smallest maximum error of all the nodes.

FIG. 8. The relative amplitude differences and phase differences
of the least squares fits, as defined by Eqs. (26) and (27),
maximized over the greedy mass ratios at each empirical time
for our EOB example. The top panel shows these errors when
using a polynomial least squares fit and the bottom panel when
using a fitting function inspired by the post-Newtonian amplitude
and phase. Both types of fits exhibit very low errors at all of the
empirical times.
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information translates into a mismatch of the surrogate
model with respect to the underlying EOB family
of < 10−7.
The quality of a fit at each empirical node, using the

greedy data, depends on the smoothness of those wave-
forms with respect to parameter variation. This is discussed
in Appendix E. Here, it suffices to mention that the fitting
errors depend sensitively on accurately aligning the wave-
forms at their peaks, which affects the fits most noticeably
through merger and ringdown. This can be seen in the top
panel of Fig. 8.
Figure 8 shows the maximum of the pointwise

differences from Eqs. (26) and (27) for the relative
amplitude (circles) and phases (crosses), respectively,
evaluated at each empirical time. We see that the ampli-
tudes are accurate to better than 10−5 for the entire inspiral
phase until the merger regime, where the error increases to
about 10−3 after which it plateaus throughout the ringdown
stage. The phase errors increase modestly during the
inspiral and likewise plateau through ringdown with errors
at the level of 10−3.
Instead of using polynomials for the fitting functions,

we next consider functions inspired by the expressions
for the amplitude and phase through leading order and next-
to-leadingorder, respectively, inthepost-Newtonianexpansion,

AiðqÞ ¼ ai;0
ðq − 1Þai;1

qai;2
þ ai;3; ð28Þ

ϕiðqÞ ¼ ai;0
ðq − 1Þai;1

qai;2
ð1þ ai;4ðqþ ai;5Þai;6Þ þ ai;3: ð29Þ

ThebottompanelofFig.8showsthemaximumofthepointwise
differencesfromEqs.(26)and(27)usingthesepost-Newtonian-
inspired fitting functions. These fitting functions have a least
squares fittingerror comparable to thepolynomial errors shown
in the toppanel. Inbothcases, the fit qualitydecreases rapidly at
themergerbut still exhibitsvery lowerrorsat all of theempirical
times.We thus see in this example that the third offline step for
buildingthesurrogateisflexibleinthechoiceoffittingfunctions.
This insight could be useful for other fiducial models such as
waveforms with precession.

D. Step 4: Completing the surrogate model

Finally, our complete surrogate model hSðt; λÞ for the
fiducial waveform family is given by substituting the fitting
approximation (24) into the empirical interpolant (18),
which yields

hSðt; λÞ≡
Xm
i¼1

BiðtÞAiðλÞe−iϕiðλÞ: ð30Þ

This is the culmination of the offline steps. Only the m
reduced basis waveforms evaluated at the m empirical
times are needed to build the surrogate model and to predict

an approximation for a fiducial waveform at any time and
parameter value. In addition, the fBiðtÞgmi¼1 are computed
offline; only the fitting functions for the amplitude and
phase need to be evaluated during the online stage once λ is
specified.

IV. ASSESSING THE SURROGATE MODEL

One of the errors of interest for the complete surrogate
model is a discrete version of the normed difference
between a fiducial waveform and its surrogate, which is,
for L equally spaced time samples,

Δt
XL
i¼1

jhðti; λÞ − hSðti; λÞj2; ð31Þ

where Δt ¼ ðtmax − tminÞ=ðL − 1Þ. We will sometimes
refer to this as the surrogate error. Recall, from Eqs. (3)
and (11), that the square of the normed difference between

FIG. 9. Top panel: Surrogate model error defined by Eq. (31),
which is related to the overlap error through Eq. (3), for 1,000
randomly selected mass ratios. The mass ratio yielding the largest
surrogate model error is q ¼ 1.068. Middle panel: The fiducial
EOB waveform and its surrogate prediction for q ¼ 1.068. There
is visual agreement throughout the entire duration of ≈12;000M.
Bottom panel: The fractional errors (32) in the amplitude and the
phase difference between the fiducial EOB waveform and its
surrogate model prediction for q ¼ 1.068. The differences are
smaller than the errors intrinsic to the EOBmodel itself, as well as
those of state-of-the-art numerical relativity simulations.
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two waveforms is directly related to their overlap. Other
errors of interest are the pointwise ones for the phase and
amplitude,����Aðt; λÞ − ASðt; λÞ

Aðt; λÞ
����; jϕðt; λÞ − ϕSðt; λÞj: ð32Þ

Figure 9 shows a variety of comparisons between the
surrogate and fiducial model for our EOB test case, using
L ¼ 16; 384 time samples [52]. The top plot shows that the
surrogate error (31) is uniformly below 10−7, where
the mass ratio q ¼ 1.068 corresponds to the largest error.
The middle panel of Fig. 9 shows the fiducial EOB and
surrogate waveforms for q ¼ 1.068. Both waveforms are
visually indistinguishable and, from the bottom panel of the
same figure, we see that both amplitude and phase point-
wise errors (32) are indeed very small. The largest errors are
≲10−3 and are smaller than (i) the differences, for the same
quantities, between the EOBmodel and the NR simulations
used to calibrate the former [26] and (ii) the numerical error
of those NR simulations (see, e.g., Ref. [53]) and of more
recent state-of-the-art simulations [18], as quantified
through self-convergence tests. As discussed in Sec. III
C and Appendix E, these maximum errors for the surrogate
take place shortly after merger and are directly related to the
accuracy with which one can determine the peak amplitude
of the fiducial waveforms used to build the surrogate.
In Appendix D, we derive the following error bound for

the discrete norm (31),

Δt
XL
i¼1

jhðti; λÞ − hSðti; λÞj2

≤ Λmσm þ ΛmΔt
Xm
i¼1

ðhðTi; λÞ − hSðTi; λÞÞ2: ð33Þ

This bound identifies contributions from two sources. The
first term in Eq. (33) describes how well the empirical
interpolant (i.e., the basis and empirical nodes) represents
hðt; λÞ. The expected exponential decay of the greedy error
σm withm, along with a slowly growing Lebesgue constant
Λm, results in this term being very small. The term Λmσm
corresponds exactly to the curve labeled “EIM bound” in
Fig. 6. The second term in Eq. (33) is related to the quality
of the fit. Incidentally, the fitting step has the dominant
source of error in the surrogate model compared to the first
two steps of generating the reduced basis and building the
empirical interpolant (see also the discussion in Sec. III C).

V. COST AND SPEEDUP FOR SURROGATE
MODEL PREDICTIONS

Next we discuss the cost (in terms of operation counts) to
evaluate a surrogate model. We also present the large
speedups that can be achieved when evaluating a surrogate
model for our nominal EOB example compared to

generating a fiducial waveform using the EOB solver as
implemented in the LIGOAnalysis Library (LAL) software
[54], which we refer to as the EOB-LAL code.
The complete surrogate model is given in Eq. (30),

where them coefficients BiðtÞ in Eq. (19) and the 2m fitting
functions fAiðλÞgmi¼1 and fϕiðλÞgmi¼1 are assembled offline
as described in Secs. III A, III B, and III C. In order to
evaluate the surrogate model for some parameter λ0, we
only need to evaluate each of those 2m fitting functions at
λ0, recover the m complex values fAiðλ0Þe−iϕiðλ0Þgmi¼1, and
finally perform the summation in Eq. (30). Each BiðtÞ is a
complex-valued time series with L samples. Therefore, the
overall operation count to evaluate the surrogate model at
each λ0 is ð2m − 1ÞL plus the cost to evaluate the fitting
functions.
Figure 10 shows timing results for the nominal EOB test

casewithm ¼ 10 and a surrogate error (31) uniformly below
10−7 for all mass ratios between 1 and 2. The top panel
confirms that the cost of evaluating the surrogate model is
linear in the number of samples L, as discussed above.
Depending on the sampling rate, the speedup in evalu-

ating the surrogate model compared to generating an EOB
waveform with the EOB-LAL code is between 2 and
almost 4 orders of magnitude. For a sampling rate of
211 ¼ 2;048 Hz, which is a typical rate used in the S5 and
S6 searches for gravitational waves by the LIGO-VIRGO-
GEO600 Collaboration [27,55], the speedup is ≈2; 300, as
shown in the bottom panel of Fig. 10. This is about 3 orders
of magnitude faster than the EOB-LAL code.
The speedups indicated here are not an artifact of studying

waveforms from binaries with nearly equal masses.

FIG. 10. Top panel: Average time to generate a single fiducial
EOB waveform from a standard EOB code (circles) and through
evaluation of its surrogate (crosses). Here, we show results for the
nominal example when using polynomial least squares fits for the
amplitudes and phases. Bottom panel: The speedup, defined as
the ratio of waveform generation times for EOB-LAL code to the
surrogate model.
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Repeating these experiments for waveforms withmass ratios
from 9 to 10 (chosen so that the typical duration ≈11;000M
and number of waveform cycles ≈80 are comparable to
our nominal EOB example), we find that only m ¼ 15
reduced basis waveforms are needed to span the space with
σm ¼ 10−11. The resulting surrogatemodel has an error from
Eq. (31) of≲8 × 10−9, with a corresponding speedup in the
online stage of about 5,000 at a sampling rate of 2,048 Hz.
Again, the speedup is about 3 orders of magnitude.

As already mentioned in Sec. IV, the fitting step for
building the surrogate potentially introduces the largest
errors in the surrogate model. For the EOB example, these
largest errors are still small (see Fig. 9) and suggest that one
does not need to include all 19 basis waveforms or
empirical times in order to yield a sufficiently accurate
approximation. The top panel of Fig. 11 shows the
surrogate error in Eq. (31), maximized over 1,000 ran-
domly selected waveforms, as a function of the number of
selected RB waveforms m. After m ¼ 7, there is little to be
gained by including more basis waveforms because the
surrogate error is roughly constant until m ¼ 19, while
from the bottom panel of Fig. 11, its evaluation time
continues to grow with m. The dash-dotted line in the top
panel shows the expected error computed by averaging the
surrogate’s error bound (33) over q. Taking the average
(maximum) of Eq. (33) over q, we are guaranteed surrogate
errors of better than 10−5 (5 × 10−5), which is sufficient for
many GW applications. The actual errors, which might be
inaccessible for some fiducial waveform models, are better
than 10−7 (cf. Fig. 9 and the solid curve in the top panel
of Fig. 11).

VI. ASTROPHYSICAL SURROGATES

For pedagogical considerations, we have primarily
focused on the (2,2) mode of nonspinning EOB waveforms
in the range q ∈ ½1; 2� and about 12;000M in duration. In
this section, we build surrogate models for a variety of
astrophysical sources relevant for detection templates and
parameter estimation with gravitational wave detectors.
Typically six or fewer digits of accuracy suffice for these
applications. We therefore build surrogates here with these
criteria in mind by considering less ambitious error require-
ments of ≈10−6 instead of ≈10−9. The surrogate models
presented here also have more cycles, cover larger mass

FIG. 11. Top panel: The greedy error in Eq. (9) computed for
1,000 randomly selected waveforms (dashed line) and the error
(31) of the resulting surrogate model (solid line) as a function of
the number of basis waveforms m. Because of the fitting errors
(see Sec. III C), the surrogate error is roughly constant after
m ¼ 7, implying little practical gain in using more than seven
basis waveforms. The dash-dotted line shows an averaged error
bound provided by the right side of Eq. (33). Bottom panel:
Average time to evaluate a surrogate waveform (at a sampling rate
of 2,048 Hz) as a function of m. As expected, there is only mild
growth with m.

TABLE I. Errors, evaluation times, and speedups of surrogate models for various intervals of mass ratios, durations in time (i.e.,
number of cycles), and spin-weighted spherical harmonic modes.

Case q interval Duration (M) Mode m L2 error Linf error Evaluation (sec) Speedup

1 (A) [1,2] 12,240 (2,2) 19 6 × 10−8 3 × 10−3 1 × 10−4 1,900
1 (B) [1,2] 12,240 (2,2) 10 3 × 10−7 4 × 10−3 1 × 10−4 2,300
2 [9,10] 11,103 (2,2) 15 1 × 10−7 2 × 10−3 1 × 10−4 5,000
3 [1,4] 12,240 (2,2) 25 2 × 10−7 2 × 10−3 1 × 10−4 1,800
4 [1,6] 12,240 (2,2) 25 7 × 10−8 3 × 10−3 1 × 10−4 1,900
5 [1,8] 12,240 (2,2) 35 6 × 10−8 3 × 10−3 2 × 10−4 1,700
6 [1,10] 12,240 (2,2) 40 6 × 10−8 2 × 10−3 2 × 10−4 1,700
7 [1,2] 80,750 (2,2) 30 7 × 10−7 2 × 10−2 5 × 10−4 1,000
8 (A) [1,2] 191,840 (2,2) 20 1 × 10−3 3 × 10−2 7 × 10−4 1,100
8 (B) [1,2] 191,840 (2,2) 35 1 × 10−6 2 × 10−2 1 × 10−3 750
9 [1,2] 12,240 (2,1) 15 8 × 10−7 1 × 10−2 1 × 10−4 2,100
10 [1,2] 12,240 (3,3) 15 5 × 10−6 3 × 10−2 1 × 10−4 2,300
11 [1,2] 12,240 (4,4) 15 2 × 10−5 4 × 10−2 1 × 10−4 2,100
12 [1,2] 12,240 (5,5) 15 1 × 10−5 5 × 10−2 1 × 10−4 2,200
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ratio intervals, and include higher spherical harmonics.
Surrogates built for these more challenging scenarios
continue to be both accurate and fast to evaluate. Most
importantly, we can apply exactly the same method
described earlier in Sec. III. Surrogates built in this section
are available at [56].
Table I provides a summary of the surrogate models

presented here, which we discuss in more detail below.
Surrogates 1 and 2 were discussed earlier in Sec. III, where
we show that the time-domain overlap error (i.e., the
mismatch) is one-half the L2 error measure we use in
Table I. Since our goal is to directly match the output of the
EOB-LAL code, we do not minimize over intrinsic or
extrinsic parameters to compute the error. Hence, both the
faithfulness and effectualness diagnostics [18] will be even
smaller than those implied by Table I.
A surrogate model needs to be computed only once for a

given set of specifications, and so we always strive to make
surrogates with the highest possible accuracy unless other-
wise indicated. By working to high accuracies, one has
guaranteed results equivalent to using the full underlying
model (in this case, EOB waveforms) without the need for
special case-by-case studies of systematic biases. For par-
ticular applications, reduced accuracy could be acceptable,
especially to the benefit of faster model evaluations.We shall
not pursue such application-specific optimizations here.

A. Larger mass ratios (cases 1–6)
The top panel in Fig. 12 shows that the number of

reduced basis waveforms needed to approximate larger
mass ratios accurately increases only mildly. In particular,

the number of basis functions to achieve 6 × 10−8 accu-
racies grows from 19 to 40 when qmin ¼ 1 and qmax is
raised from 2 to 10. Furthermore, surrogates built for the
intervals [9,10] and [1,2] use a total of 33 basis functions,
which is nearly the amount (40) needed for the entire [1,10]
range. This feature is typical of global approximation
methods (such as reduced basis and empirical interpolation)
since they tend to promote sparseness whenever the under-
lying model is sufficiently smooth.

B. Longer durations (cases 1, 7, and 8)

The bottom panel in Fig. 12 shows that the number of
RB functions needed to accurately cover waveforms with
longer durations (i.e., more cycles) also increases mildly.
For the longest, most accurate surrogate, 8B, the evaluation
time is as large as 10−3 seconds, which is an order of
magnitude larger than the shorter, but otherwise equivalent,
case in surrogate 1. However, the EOB-LAL code also runs
slower. Thus, the overall speedup is found to be about 750.
The lower accuracies required for gravitational wave
detection templates (as opposed to the higher accuracy
standards for parameter estimation) imply that the speedup
can be improved to about 1,100 (see case 8A).

C. Higher harmonics (cases 1 and 9–12)
Gravitational waveforms have multiple spin-weighted

spherical harmonic modes. Surrogate models must accom-
modate these multimode functions in order to maximize
their usefulness. One direct approach is to build a surrogate
for each mode separately using exactly the same steps
described earlier in Sec. III. The resulting multimode
surrogate model is then defined by the set of single-mode
surrogates. Some q ¼ 1 modes are identically zero, and
while the reduced basis can exactly approximate zero
modes, they slightly complicate the treatment of parametric
fits (e.g., the phase is undefined): We construct fits on an
open interval q ∈ ð1; 2�. Our surrogates are thus defined on
this open interval with q ¼ 1 modes given by zero. To
assess the error of each multimode surrogate model, we
continue to draw 1,000 randomwaveform samples from the
closed interval [1,2].
As a demonstration, we have built surrogate models for

the (2,1), (2,2), (3,3), (4,4), and (5,5) modes in the same
physical and parametric ranges used for the nominal EOB
example problem (surrogate 1) considered throughout this
paper. These five modes exhaust the currently known ones
provided by the EOB model. Compared to the (2,2) mode,
surrogates built for these higher harmonics are more
sensitive to peak alignment (see Appendix E), which
translates into larger surrogate errors. These errors are still
small and, furthermore, higher harmonics typically have
less contribution to the overall gravitational wave strain
measurement.
Another way to build multimode surrogate models,

which we do not pursue in this paper, starts by integrating

FIG. 12. Top panel: The greedy error in Eq. (9) computed for
waveforms of fixed duration and mass ratios in ½1; qmax� with
qmax ¼ 2, 4, 6, 8, and 10. The curves correspond to cases 1, 3, 4,
5, and 6 from Table I. Bottom panel: Greedy error for mass ratios
in [1,2] with different durations in time and thus numbers of
cycles. The curves correspond to cases 1, 7, and 8 from Table I.
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the complex scalar product in Eq. (2) over the angles ðθ;ϕÞ
on the two-sphere. The orthonormality of the spin-weighted
spherical harmonics implies a sum over the scalar product
in Eq. (2) for each mode,

hhð·;λ1Þ;hð·;λ2Þi¼
Z
S2
dΩ

Z
tmax

tmin

dth�ðt;θ;ϕ;λ1Þhðt;θ;ϕ;λ2Þ

¼
X
l;m

Z
tmax

tmin

dth�lmðt;λ1Þhlmðt;λ2Þ; ð34Þ

which is used to define a single norm in the greedy error in
Eq. (9). When the RB-greedy algorithm is performed using
the scalar product in Eq. (34), all modes contribute to
selecting the relevant parameters in the space.
We will not cover all possible variations for multimode

waveforms here since the choices made are largely depen-
dent upon the specific application and waveform model
studied. This is typical in problems that require learning
from data, such as this one.

D. Building costs

Ignoring training set generation, the surrogates listed in
Table I typically took between 5 and 20 minutes to build.
However, we have found the main cost, both in terms of
computational and memory requirements, to be in creating
the training set. These costs are significantly greater than
what might be expected from any particular surrogate’s
properties (e.g., sampling rate and duration). As discussed
further in Appendix E, the error of an EOB surrogate is
dominated by the error in resolving and localizing the
waveform’s peak. Consequently, we must generate training
data that have well-resolved waveform peaks. For example,
the EOB-LAL code was called using a sampling rate
of 220 Hz to generate the training set data for cases 1
through 6 in Table I. Surrogate 6 was trained on 2001 EOB
waveforms, which took nearly 8 hours to generate.
Waveform generation times quoted throughout this paper,
for both the EOB-LAL code and surrogate evaluations, do
not depend on these settings in any way whatsoever.
For longer waveforms, such as cases 7 and 8, we were

unable to maintain these high sampling rates. A single
waveform cannot be produced (on a personal computer)
because of the larger memory overhead. In lieu of using
higher memory nodes, we instead decreased the sampling
rate to 218 Hz to make the problem more manageable. As a
result, the pointwise (maximum) waveform errors increase
but remain acceptably small in many cases. Given the high
cost of sampling pursued here, alternatives, such as wave-
form hybridization [18], can be used at the expense of
additional (systematic) errors.

VII. CONCLUDING REMARKS AND OUTLOOK

We introduced a solution to the problem of quickly and
accurately generating predictions for a given family of

gravitational waveforms. The solution constructs a surro-
gate for this fiducial set of waveforms in three offline steps.
In the first step, a reduced basis is generated that spans the
space of waveforms in the given range of parameters. In the
second step, an application-specific (i.e., empirical) inter-
polant is constructed using only these m reduced basis
waveforms. The empirical interpolation method selects a
corresponding set of m times that are used to build the
interpolant, but it requires knowing the fiducial waveform
at any parameter value at those times in order to evaluate
the interpolant. In the third step, we complete the offline
part by implementing a fit for the parametric dependence of
the waveform’s phase and amplitude at each empirical time.
In this way, the value of the fiducial waveform at each
empirical time can be estimated and then fed into the
empirical interpolant. The result of these three offline
stages is an accurate surrogate model (30) for the under-
lying family of waveforms that is cheap to evaluate for any
parameter value in the considered range.
Surrogate models offer a new and complementary

approach to other modeling endeavors. Indeed, our goal is
to clone the input-output functionality of an existing wave-
formgeneration code, therebypermitting fast evaluations for
any task of interest. Consequently, we have intentionally
worked in a detector-independent context, to very high
accuracies, and without regard for the systematic errors of
the underlyingwaveform family. To ensure the surrogate can
beused in place of anunderlyingmodel (without introducing
bias), it is best to be as accurate as possible. However, for
particular applications, onemaywish to sacrifice accuracy to
the benefit of even faster surrogate model evaluations.
The standard paradigm for fast online evaluation of new

solutions within reduced order modeling frameworks (see,
e.g., Ref. [57] for a review) is to numerically solve a small
problem that is essentially a projection of the original
problem onto the basis built in the offline stage. Nonlinear
terms or nonaffinely parametrized problems can be dealt
with using the EIM [58]. This approach has some advan-
tages. For example, for many problems of interest, rigorous
error bounds can be guaranteed for the resulting output,
which is often referred to as a certified approach.
In this paper, we deviated from this standard course and

sought a different and more heuristic one for two major
reasons specific to gravitational waveforms. First, the
complexity of projecting the full nonlinear Einstein equa-
tions onto a basis to obtain a certified approach is highly
nontrivial. Second, our goal has been to develop a
nonintrusive approach that does not resort to manipulating,
in any way, the original equations or codes that generate the
fiducial waveform model. Of course, such equations have
to be used to generate the fiducial waveforms in the offline
stage in order to build the reduced basis to start the
construction of the surrogate model. However, the approach
introduced in this paper does not intrude upon or require
editing of those codes.
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In order to demonstrate the basic ideas and methods in
this paper, we have focused on surrogate models for single-
mode, nonspinning black hole binary EOB waveforms
[59]. For mass ratios in [1,2], we find that evaluating the
surrogate is 3 orders of magnitude faster than generating
EOB waveforms in the standard way. However, the con-
struction of the surrogate model is not limited to such a
short range of mass ratios, to nonspinning binaries, or to
single-mode waveforms. We demonstrated this in Sec. VI
by building surrogates for astrophysically motivated prob-
lems relevant for template bank generation and parameter
estimation studies with gravitational wave detectors.
Surrogates built in Sec. VI, as well as others, are available
at [56]. Regarding the range of mass ratios (or other
parameters), depending on the application and the target
accuracy, a partitioning of the parameter space might
provide faster online queries. This issue is familiar when
solving differential equations in which one may choose to
use a single domain or utilize a domain decomposition,
as with a spectral or hp-element approach (see, e.g.,
Refs. [60,61]). Similar tools for parameter space subdomain
decomposition, known as hp-greedy algorithms, have been
employed as an adaptive sampling strategy for large prob-
lems (see Refs. [62–65] for further details).
A preliminary cost-benefit analysis of domain decom-

position is provided by Table I, which summarizes all
surrogates considered in this paper. Taking the 19 basis
functions for the [1,2] range (surrogate 1 in Table I) as
indicative of the reduced basis size needed for each
successive integer range of mass ratios up to q ¼ 10, a
naive scaling with a domain decomposition approach
would suggest ≈19 × 9 ¼ 171 basis elements. Compare
this number to the 40 elements needed for the whole range
[1,10]. While the latter gives fewer basis functions for
representing EOB waveforms across the whole [1,10]
range, the cost to evaluate surrogate models increases with
m. For example, if one were interested in only waveforms
with q from 9 to 10, then surrogate 2 in Table I would be
preferable in terms of speedup since m ¼ 15, not 40. Such
optimizations are application specific and, as such, were
not pursued in this paper.
Finally, the method presented in this paper for building a

surrogate model can be applied to other waveform
families, including precessing inspiral waveforms and
multimode inspiral-merger-ringdown waveforms such as
those from NR simulations of binary black hole coales-
cences. We anticipate extremely large speedup factors for
predicting a NR waveform with a surrogate model com-
pared to solving the Einstein equations for the same
parameters because the cost of evaluating the surrogate
is independent of the offline costs required to build it.
Given that a single production-quality simulation for a
nonspinning equal-mass binary takes around 104–105

hours and predicting a single-mode waveform with a
NR-based surrogate model takes about 10−4 seconds (as

implied by Fig. 11), it follows that one may expect
speedup factors of about 1011 or more.

ACKNOWLEDGMENTS

We thank Frank Herrmann and Evan Ochsner for help
during this project, including some software tools, as well as
Yi Pan, Alessandra Buonnano, and Collin Capano for
helpful discussions about the EOBmodel and its generation
using the LAL code.We thankMichael Pürrer for comments
on a previous version of the paper. This work was supported
in part by NSF Grants No. PHY-1208861, No. PHY-
1316424, and No. PHY-1005632 to the University of
Maryland and by NSF Grant No. PHY-1068881 and
CAREER Grant No. PHY-0956189 to the California
Institute of Technology.

APPENDIX A: THE REDUCED BASIS METHOD

We use a greedy algorithm to build a reduced basis (RB),
which accurately approximates any fiducial waveform
within the given parameter ranges (see, e.g., Ref. [39]).
The greedy algorithm, outlined in Algorithm 1, takes as
inputs a discretization of the parameter space T ≡ fλigMi¼1

(or the training space) and the associated waveforms, an
arbitrary parameterΛ1 ∈ T (or seed), and a threshold error ϵ
for a target representation accuracy (or greedy error). The
output consists of themRBwaveforms andm greedy points.

Algorithm 1: Greedy algorithm for reduced basis

1: Input: fλi; hð·; λiÞgMi¼1, ϵ

2: Set i ¼ 0 and define σ0 ¼ 1
3: Seed choice (arbitrary): Λ1 ∈ T , e1 ¼ hð·;Λ1Þ
4: RB ¼ fe1g
5: while σi ≥ ϵ do
6: i ¼ iþ 1
7: σi ¼ maxλ∈T ∥hð·; λÞ − Pihð·; λÞ∥2
8: Λiþ1 ¼ argmaxλ∈T ∥hð·; λÞ − Pihð·; λÞ∥2
9: eiþ1 ¼ hð·;Λiþ1Þ − Pihð·;Λiþ1Þ (Gram-Schmidt)
10: eiþ1 ¼ eiþ1=∥eiþ1∥ (normalization)
11: RB ¼ RB∪eiþ1

12: end while

13: Output: RBfeigmi¼1 and greedy points fΛigmi¼1

The naive implementation of the classical Gram-Schmidt
procedure can lead to a numerically ill-conditioned algo-
rithm. This is related to the fact that the Gramian matrix,
whichwould have to be inverted, can become nearly singular
[66]. To overcome this, we use an iterated Gram-Schmidt
algorithm or a QR decomposition in step 9. See Refs. [67,68]
for discussions about the conditioning and numerical stabil-
ity of different orthonormalization procedures.
As mentioned in Sec. III A, minimization over the

coefficients fcig in Eq. (8) is satisfied by orthogonal
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projection Pmhðt; λÞ of hðt; λÞ onto the span of the basis.
For example, for an orthonormal basis

∥hð·;λÞ−Xm
i¼1

ciðλÞeið·Þ∥2¼∥hð·;λÞ∥2−Xm
i¼1

jhhð·;λÞ;eið·Þij2

þ
Xm
i¼1

jhhð·;λÞ;eið·Þi−ciðλÞj2;

ðA1Þ

which takes its global minimum when

ciðλÞ ¼ hhð·; λÞ; eið·Þi: ðA2Þ
After applying the greedy algorithm to build a reduced

basis and find the greedy points, we check that the basis
accurately approximates the continuum space of wave-
forms for the given parameter range by verifying at a
randomly chosen set of test points.

APPENDIX B: THE EMPIRICAL
INTERPOLATION METHOD

The empirical interpolation method (EIM) provides a
sparse subset of empirical time (or frequency) nodes from
which it is possible to reconstruct the waveform at any other
time with very high accuracy using an application-specific
interpolant. The selection of the empirical time nodes and
the construction of the empirical interpolant proceeds using
a greedy algorithm, which is hierarchical and is applicable
to unstructured meshes in several dimensions.
Consider a basis feigmi¼1 (e.g., a RB) whose span

approximates the functions of interest. Let ftigLi¼1 denote
a set of L time samples and define the L-vector
~t ¼ ðt1; t2;…; tLÞ†. For compactness of notation, denote
other functions evaluated at these time samples as vectors
so that, for example, ~hðλÞ ≔ hð~t; λÞ and ~ei ≔ eið~tÞ.
Given an input of m evaluated basis functions f~eigmi¼1,

the output of the EIM algorithm is a set of m empirical
nodes

fTigmi¼1 ⊂ ftigLi¼1 ðB1Þ

selected as a subset of ftigLi¼1. The empirical interpolant is
constructed in step 5 of Algorithm 2. At the jth iteration,
the empirical interpolant is built from the first j basis
functions and nodes,

I j½h�ðt; λÞ ¼
Xj

i¼1

CiðλÞeiðtÞ; ðB2Þ

where the Ci coefficients are solutions to the j-point
interpolation problem

I j½h�ðTk; λÞ ¼ hðTk; λÞ ðB3Þ
for all λ and where k ¼ 1;…; j.

Let us define a discrete norm

∥h∥d ¼ Δt
XL
i¼1

h�ðtiÞhðtiÞ; ðB4Þ

Algorithm 2: The empirical interpolation method

1: Input: f~eigmi¼1, ftigLi¼1

2: i ¼ argmaxj~e1j (argmax returns the index of its argument’s
maximum absolute value)

3: Set T1 ¼ ti
4: for j ¼ 2 → m do
5: Build I j−1½ej�ð~tÞ from (B2) and (B3)
6: ~r ¼ I j−1½ej�ð~tÞ − ~ej
7: i ¼ argmaxj~rj
8: Tj ¼ ti
9: end for

10: Output: EIM nodes fTigmi¼1 and interpolant Im

for L equally spaced time samples. The empirical
interpolant’s error is then directly related to the greedy
error (9) through [51]

∥h − Im½h�∥2d ¼ ∥ðI − ImÞðh − PmhÞ∥2d
≤ ∥ðI − ImÞ∥2d∥h − Pmh∥2d
¼ ∥Im∥2d∥h − Pmh∥2d
≤ Λmσm; ðB5Þ

where the first equality follows from Im½Pmh� ¼ Pmh, I is
the identity matrix, ∥ðI − ImÞ∥2d ¼ ∥Im∥2d holds whenever
the operator norm is induced by the vector norm (as is the
case here—see Refs. [69,70]), and

Λm ¼ ∥Im∥2d ¼ max
∥h∥d¼1

∥Im½h�∥2d ðB6Þ

is a computable Lebesgue-like quantity that generally
changes slowly with m. For problems with smooth
dependence with respect to parameter variations, we can
expect an exponential decay of σm withm and, from the left
side of Eq. (20), of the EIM’s error.
In practice, Λm is computed from the matrix representa-

tion of B from Eq. (19),

B ¼ EV−1; ðB7Þ

where each column of E ¼ ½~e1;…; ~em� is an evaluated
reduced basis function and V is the interpolation matrix
defined in Eq. (16). The matrix operator B, as written
above, acts on an m-vector hð~T; λÞ whose components are
evaluations of h at the empirical nodes.
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APPENDIX C: DETAILS OF POLYNOMIAL
LEAST SQUARES

When performing a least squares fit, we must select the
degree nLS of each of the 2m least squares polynomials,
balancing accuracy and stability of the resulting fit. For
each fit, there are m greedy data points, so nLS < m. A
small value of nLS would result in a low-accuracy fit,
while too large of a value can exhibit Runge’s phenome-
non [71]. Furthermore, a large value of nLS can fit
(numerical) noise, thereby leading to low-quality fits (this
is sometimes called overfitting [72]). Reference [73]
provides a computable expression for the largest nLS that
avoids this phenomenon and gives an error estimate for the
resulting fit.
For our nominal EOB example, we proceed in a

straightforward way. We construct m separate fits (using
only the greedy data) for all degrees 0 ≤ nLS < m, and we
select the one that minimizes the sum of the squared
residuals relative to the training set data. This additional
offline work guarantees, in a simple way, that each
polynomial fit has the optimal degree. Figure 13 shows
the results for our EOB test problem. We see that for
empirical times in the early inspiral, the optimal polynomial
degrees are relatively large and decrease until merger and
ringdown. This is a consequence of noisy data stemming
from discrete uncertainties in locating the amplitude peak
(see Appendix E for further details).

APPENDIX D: SURROGATE ERROR ESTIMATES

In this appendix we derive the error bound shown in
Eq. (33) for the surrogate model. We differentiate between
the surrogate waveform model hSðt; λÞ, whose computation
requires an estimate for the waveform at each empirical
node Ti, from the empirical interpolant Im½h�ðt; λÞ, whose
computation assumes the exact (fiducial) values ~h. For any
λ, we have

∥Im½h� − hS∥2d ¼ ∥Im½h − hS�∥2d
≤ Λm∥hð~TÞ − hSð~TÞ∥2d
¼ ΛmΔt

Xm
i¼1

½hðTiÞ − hSðTiÞ�2; ðD1Þ

with Λm being the same constant defined in Eq. (B6). The
first equality follows from Im½hS�ð~TÞ ¼ hSð~TÞ. The second
line follows from the empirical interpolant’s matrix repre-
sentation (B7). The error in approximating an underlying
model hðt; λÞ by the surrogate hSðt; λÞ is, for any λ,

∥hS − h∥2d ≤ ∥hS − Im½h�∥2d þ ∥Im½h� − h∥2d

≤ ΛmΔt
Xm
i¼1

½hðTiÞ − hSðTiÞ�2 þ Λmσm; ðD2Þ

which follows from the error bounds (D1) and (B5) [or
(20)], as well as the triangle inequality. Notice that Λm and
σm are computable quantities, as are the differences
hðTiÞ − hSðTiÞ, which are only due to least-square fitting
errors.

APPENDIX E: ON GENERATING THE FIDUCIAL
EOB WAVEFORM FAMILY

In this paper, we demonstrated how to build a surrogate
using an EOB model of nonspinning binary black hole
coalescence waveforms. Here, we discuss some of the
technical details regarding how these EOB waveforms were
generated.
The specific version of the model that we used is from

Ref. [26] and implemented in the routine EOBNRv2 as part
of the publicly available LIGO Analysis Library (LAL)
suite [74]. Other versions and models are equally appli-
cable (e.g., Ref. [28]). In its simplest description, the code
takes as input a starting frequency fmin and the mass
components m1 and m2. From initial conditions, deter-
mined through post-Newtonian expressions, the EOB
differential equations are solved to give the system’s orbital
evolution until merger, which is defined to be the time at
which the orbital frequency begins to decrease. From the
compact binary system’s orbit, a gravitational wave is
generated up to the time of merger, after which quasinormal
modes are attached.
Our nominal EOB example uses a training space of mass

ratios q ∈ ½1; 2�. We sampled this parameter range with 501
equally spaced points, solving the original model at each q
using the aforementioned code. We checked that this
number of training set samples was dense enough to reach
the convergent regime for building a faithful reduced basis
representation.
We generated the EOB waveforms with fmin ¼ 9 Hz and

m1 þm2 ¼ 80M⊙, which corresponds to roughly 65–70
waveform cycles before merger in the (2,2) mode. We

FIG. 13. The optimal degree of each polynomial from a least
squares fit at each empirical time. Out of a possible maximum of
nLS ¼ 19, polynomial degrees between 9 and 14 are most often
selected during the inspiral phase. The degree of the first fit for
the phase is zero because the initial phases are chosen to vanish
for all mass ratios.
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avoided generating short waveforms (where the initial
radial separation is less than 20M) because the ODE initial
data could become less accurate. The waveform’s coales-
cence phase was determined implicitly through initial data
instead of specifying a particular value [75]. The relevant
(2,2) modes h22þ ðtÞ and h22× ðtÞ, as opposed to their spin-
weighted values, comprised the training set.
Waveforms generated by EOBNRv2 are automatically

aligned at fmin and thus have lengths that depend on their
mass ratio. A typical example is shown in the top panel of
Fig. 14. We have found that, when applied to a set of
waveforms with varying lengths, the greedy error (9) has a
very slow decay rate, as indicated by the bottom panel
of Fig. 14.
To overcome this, we shift each waveform in time so that

their peak amplitudes are aligned. We first align all wave-
forms in the training set in this way and then “chop off” the
beginning portions so that all waveforms have a length
(from start to peak amplitude) equal to that of the shortest
waveform (here, q ¼ 1). Next, we adjust each waveform’s
phase (23) to initially be zero. The benefits of waveform
alignment are evident from the curve in Fig. 3, which
should be compared with the pre-alignment case shown in
the bottom panel of Fig. 14. For example, to achieve a
greedy error of 10−7, one needs ≈7 (400) with (without)
peak alignment.

Aligning the waveforms in the manner discussed above
is expected to depend smoothly on the mass ratio q since
the time of maximum amplitude, measured from the start of
an orbital evolution with a fixed fmin, is expected to depend
smoothly on q. In practice, waveforms are only known at
time intervals Δt so that each waveform’s peak time is
determined within Δt. Consequently, aligning discrete
waveforms introduces some degree of “nonsmoothness.”
We initially found the surrogate’s error to be dominated by
this effect. To overcome this difficulty, we generated each
waveform on a temporal grid of spacing Δtfine, which
allowed the time of maximum amplitude to be resolved
within Δtfine. Next, we downsampled each waveform to a
sampling rate of interest, say 2,048 Hz, such that the peak
was located on the downsampled grid. Once a down-
sampled waveform is generated, neither building nor
evaluating the surrogate carries a cost that depends on
Δtfine in any way. Such observations are not unique to
surrogate modeling. Indeed, other applications that align
waveforms, especially those that need (or expect) some
degree of smoothness with parametric dependence, will
encounter similar issues. Figure 15 shows how the surro-
gate error in Eq. (31) for our EOB example changes with
the grid spacing Δtfine. In this paper, the smooth parameter
dependence and the aligning of the waveforms at the peak
amplitude combine to give fast convergence of the surro-
gate model to the fiducial one.

APPENDIX F: OTHER APPROACHES FOR
WAVEFORM PREDICTION

In this paper, we provided a three-step solution for
quickly and accurately predicting gravitational waveforms
within any given physical model. Here, we discuss a
few other approaches that we could have used instead,
which include (i) interpolating the projection coefficients
fciðλÞgmi¼1, defined from Eq. (10), in λ, (ii) interpolating
the (complex) waveforms fhðTi; λÞgmi¼1 at each empirical

FIG. 14. Top panel: EOB waveforms for q ¼ 1, 2 starting at the
same initial frequency but not aligned at the peak amplitudes.
Bottom panel: Not aligning the waveforms results in needing
more reduced basis elements to accurately span the space of
waveforms. Here, we see that nearly all 501 points in the training
space are selected, whereas only 19 points are required if the
waveforms are aligned at the peak amplitude (compare with
Fig. 3).

FIG. 15. The dependence of the error (31) when using the
surrogate to model an EOB waveform (with q ¼ 1.068 from
Fig. 9) as a function of the resolution (i.e., time steps) of the peak
amplitude. The trend is linear in Δt=M. The resolution leads to an
uncertainty in estimating the peak amplitudes and thus in aligning
the waveforms. This is the dominant source of error in the
surrogate model that translates directly into errors in the fits of the
last offline step for building the surrogate.
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time, and (iii) fitting the amplitudes and phases at all times.
The first approach is an alternative to the empirical
interpolation in step 2 and the fitting in step 3, the second
approach is an alternative to the fitting in step 3 (Sec. III C),
and the third approach is an alternative to empirical
interpolation in step 2 (Sec. III B). We consider these
in turn.
The first alternative is to build an interpolating (e.g.,

Chebyshev) grid in λ for each ciðλÞ. This approach was
carried out in Refs. [33,35,36] for inspirals (in the sta-
tionary phase approximation in the frequency domain) and
phenomenological waveforms for large chirp masses [76].
Problems with such an approach include the following:
(i) waveforms from binaries with many GW cycles require
increasingly dense interpolation grids [36], (ii) the number
of grid points scales exponentially with the number of
parameter dimensions, (iii) standard grid-based interpola-
tion is not hierarchical and dictates sampling locations at
predetermined points that are not tailored to the waveform
family of interest, and (iv) grids that are essential to
resolving one projection coefficient may not be useful
for resolving another projection coefficient. Finally, the
projection coefficients can be poorly behaved as functions
of λ because they stem from nontrivial overlaps between
waveforms and the basis. This is confirmed using our
nominal EOB example, as shown in Fig. 16, where some of
the coefficients become noisy, and also in Ref. [36].
Furthermore, using only the m greedy points, which com-
prise an unstructured and undersampled grid for this prob-
lem, exacerbates many of the aforementioned problems.

The second alternative is to interpolate in λ the complex
waveforms at each empirical time. This approach has the
same problems as interpolating the projection coefficients
discussed above. Figure 17 shows the structure of the
waveforms as a function of mass ratio at several empirical
times in our nominal EOB example.
The third alternative is to perform fits for the waveform

amplitude and phase at all time samples instead of the ones
dictated by the EIM. It is instructive to compare the
operation counts for the online evaluation between this
all-times fitting alternative and our EIM-based method. If
cfit is the operation count of the fitting functions at each
time, taken to be constant for simplicity, then the dominant
operation count is 2cfitL for the all-times fitting and
2mðLþ cfitÞ using EIM and fitting at each empirical time.
Therefore, making the reasonable assumption that m ≪ L,
the EIM-based approach is more efficient whenever

cfit ≳m: ðF1Þ
In one parameter dimension, the standard way of evalu-

ating a polynomial fit of degree n is through Horner’s
algorithm [77], which has an optimal operation count of 2n.
It would then seem to follow from Eq. (F1) that the online
evaluation cost of the EIM-based approach is comparable to
fitting at all L times. However, operation counts can be
misleading as they do not take into consideration other
aspects of an algorithm’s implementation that are also
relevant for the total execution time. We conducted numeri-
cal experiments with our nominal EOB example and found
that, for our particular implementation, fitting at all
L ≈ 10;000 samples is between 20 and 1,000 times slower.

FIG. 16. The curves depict a variety of projection coefficients
ciðqÞ along with the greedy data as a function of mass ratio for
our EOB example case introduced in Sec. III. Only a represen-
tative few curves are shown. The top panel shows the kind of
structure that the coefficients have, thereby preventing accurate
global (polynomial) fits without additional data points. The
bottom panel shows the transition in the behavior of these
functions with mass ratio from smooth to noisy.

FIG. 17. The curves depict the values of the real parts of the
waveforms along with the greedy data as a function of the mass
ratio for our EOB example case. Only curves at a few represen-
tative empirical times are shown. While there is less structure here
than in the coefficients shown in Fig. 16, the majority of functions
still require additional sampling to be accurately resolved by
global polynomial fits.
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These timing experiments depend sensitively on both the
number of surrogate basis or nodes as well as using
“vectorized” for-loops. Therefore, the actual online evalu-
ation cost in the examples considered in this paper are
consistently an order ofmagnitude ormore faster thanwhat a
naive operation count would suggest.
The operation count for evaluating polynomials grows

with the dimensionality. While the most efficient scheme
for evaluating multivariate polynomials is not presently
known [78], it is an active area of research. In general,
Eq. (F1) is easily met by surrogate models in higher
parameter dimensions, and we expect the EIM-based
surrogate approach to be more efficient than one based
on fitting at all output times. In addition, the cost to
construct L separate fits in higher parameter dimensions
could make this offline step prohibitively expensive.
The three aforementioned cases represent a few of many

possible surrogate modeling techniques. For example,
while this paper was under publication review, surrogate
models for aligned-spin EOB waveforms were built in
Ref. [79] using a different parametric prediction scheme:
The projection coefficients defined by an amplitude and
phase basis, as opposed to a waveform basis, were
interpolated using multivariate splines. In practice, a wide
variety of surrogates may be possible using different
strategies such as Gaussian process-based prediction or
polynomial chaos models.
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