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Revenue management (RM) is one area of research and practice that has gained

significant attention in the past decade. The practice originated in the airline in-

dustry, where the idea was to maximize revenues obtained from a fixed amount

of resources through differentiation/segmentation and strategic use of pricing and

capacity. While many of the research models take into account uncertainty, the

uncertainty is modeled using random variables and known probability distributions,

which is often difficult to estimate and prone to error for a variety of reasons. For in-

stance, demand patterns can fluctuate substantially from the past,and characterizing

demand from censored data is challenging. This dissertation focuses on the multi-

fare single resource (leg) problem in RM. We consider the “limited information” case

where the demand information available consists of lower and upper bounds rather

than a characterization of a particular probability distribution or stochastic process.

We first investigate the value of the amount and type of information used in solving

the single-leg RM problem. This is done via extensive computational experiments.



Our results indicate that new robust methods using limited information perform

comparably to other well-known procedures. These robust policies are very effective

and provide consistent results, even though they use no probabilistic information.

Further, robust policies are less prone to errors in modeling demand. Results of

our preliminary computations justify the use of robust methods in the multi-fare

single-leg problem.

We next apply this distribution-free approach to a setting where progression of

demand is available through time-dependent bounds. We do not make any further

assumptions about the demand or the arrival process beyond these bounds and

also do not impose a risk neutrality assumption. Our analytical approach relies on

competitive analysis of online algorithms, which guarantee a certain performance

level under all possible realizations within the given lower and upper bounds. We

extend the robust model from a problem using static information into a dynamic

setting, in which time-dependent information is utilized effectively. We develop

heuristic solution procedures for the dynamic problem. Extensive computational

experiments show that the proposed heuristics are very effective and provide gains

over static ones.

The models and computations described above assume a single airline, disre-

garding competition. As an extension of robust decision-making, in the third part

of this dissertation, we analyze a model with two airlines and two fare classes where

the airlines engage in competition. The model does not use any probabilistic in-

formation and only the range of demand in each fare-class is known. We develop

a game-theoretic model and use competitive analysis of online algorithms to study



the model properties. We derive the booking control policies for both centralized

and decentralized models and provide additional numerical results.
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Chapter 1

Introduction

Revenue management (RM) is viewed by many as among the most impor-

tant management science and operation research concepts. Originally known as

yield management and developed in the airline industry in the wake of deregulation

in the late 1970s, the main idea was to maximize revenues obtained from a fixed

amount of resources through differentiation/ segmentation and strategic use of pric-

ing and capacity. The fare-class allocation (or seat inventory control) practice in

RM became an industry standard after American Airlines launched Ultimate Super

Saver fares in an effort to compete with low cost carrier PeopleExpress. To prevent

severe revenue losses in competition, the sale of these highly discounted fares had to

be carefully controlled by American Airlines. Other service industries in the hospi-

tality and transportation sectors adapted similar practices quickly. Both industries

have observed significant revenue increase using such tactics (Alstrup et al.,1989

Smith et.al,1992, Geragthy and Johnson,1996, Yeoman and Ingold,1997.) In fact,

there are other well-known RM success stories from the broadcasting industry (Fox,

1992), freight/Cargo (Kasilingam, 1996), cruise ships (Hoseason, 2000), theaters and

sporting venues (Leibs, 2001, Oberwetter, 2001). More recently, business-to-business

services (Boyd and Bilegan, 2003) and manufacturing companies started applying

RM to manage their resources effectively , where effective use of forecasting, pricing,
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and inventory control resulted in dramatic improvements.

The challenge of RM is to sell the right resources to the right customer at the

right time for the right price. A RM system requires forecasts of quantities such as

demand, price sensitivity, and cancelation probabilities, and its performance depends

critically on the quality of these forecasts. Experts mention 80-90% of the time in

any RM implementation is spent on data gathering, data analysis and forecasting.

However, forecasting is challenging because the data collected is censored and not

necessarily representative of the true demand. Furthermore, historical data are

not available for new products such as new routes or fare products for an airline

and new properties for a hotel company. Improving forecasting and estimation can

significantly increase the quality of pricing and capacity control decisions, affecting

the bottom line. Indeed, some industry estimates suggest that a 20% reduction of

forecast error can translate into 1% incremental increase in revenue (Pölt,1998).

To-date, the majority of the successful RM systems rely heavily on the use

of demand information and experts advise against rushing to optimization without

first fully implementing accurate demand forecasting (Lahoti, 2002). Likewise, re-

search models require a reasonably accurate characterization of demand to optimize

revenues. In situations where demand patterns are stable and historical demand in-

formation is available, this requirement can be met. On the other hand, in the case

of new products or situations where, for a variety of reasons, demand patterns might

fluctuate substantially from past history, characterization of demand is difficult - if

not impossible. Lennon (2004) mentions lack of data and naive forecasts based on

inadequate data as two important factors limiting realistic application of RM to a

2



new industry. Even in industries such as the airlines and hospitality where RM has

been effectively used for decades, these two factors commonly cause problems for

new products (e.g., new routes flown by an airline, new properties added to a hotel

chain). On the other hand, RM of even old products in airlines and hotels is not

easy; obtaining high quality aggregate or disaggregate forecasts from censored data

remains a challenge (see for e.g., McGill and van Ryzin, 1999)

Despite the need for robust methods and approaches that do not rely heav-

ily on demand information, research in that direction has been scarce. Traditional

research models and analysis rely on several restrictive and possibly unrealistic as-

sumptions about demand such as independence and stationarity (see survey articles

of McGill and van Ryzin, 1999, Bitran and Caldentey, 2003, and book by Talluri

and van Ryzin, 2004a). This dissertation consider the classical single resource (leg)

multi-fare problem in RM and provides alternative forms of controlling the bookings

when demand information is limited. No assumptions are made about the demand

or the arrival process, and no risk neutrality assumption is enforced. The analyt-

ical approach is called “robust”, because it relies on competitive analysis of online

algorithms and can guarantee a certain performance level under all possible input

sequences. The only information available consists of the lower and upper bounds on

demand. In many practical cases, the lower and upper bounds on demand are easier

to obtain rather than the probability distribution of demand or an estimate of an

arrival process over time. In Chapter 2, using extensive computational experiments,

we show that the average revenues obtained by such robust policies in simulation

studies are comparable to other well-known procedures. The robust policies are
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very effective and provide consistent results, even though they use no probabilistic

information. Further, robust policies are not prone to errors in modeling demand.

In air travel, the arrival rate of booking requests in different fare classes vary

over time. Analysis of historical data has shown that demand for a particular class

generally follows class-specific S-shaped (cumulative) booking curves. Actual book-

ing patterns exhibit significant variations by season, time of day, day of week, and so

on. In the hospitality industry, different customer segments have different booking

curves (leisure travelers versus business travelers). In Chapter 3, we consider the

case where uncertainty is incorporated in a distribution-free manner and the pro-

gression of demand information is conveyed through time-dependent bounds. The

analysis extends robust booking control from a problem using aggregated static in-

formation into a dynamic setting, in which time-dependent information is utilized

effectively.

All of the models and methods in Chapter 1 and 2 focus on a single decision-

maker and a single flight. When we consider multiple flights belonging to competing

airlines, then the decisions that arise out of the resulting game can differ significantly

from seat allocations that would be optimal for a single decision-maker with control

over a single-flight. There is limited research that considers the RM problem in a

competitive framework, especially focusing on the robust policies. In Chapter 4, we

study the robust capacity control problem of RM in a competitive framework, using

game theory and competitive analysis. We compare decentralized versus centralized

decisions and provide numerical experiments to illustrate the effect of competition

when sellers use distribution-free methods. This is interesting both from a practical

4



and theoretical point of view.

In summary, new approaches and models for the multi-fare single resource RM

problem with limited information are studied in this dissertation. Extensive exper-

iments show the effectiveness of these new methods compared with the traditional

methods. Future research directions are discussed in Chapter 5.
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Chapter 2

Value of Information in Single-leg Revenue Management

The single-leg multi-fare booking problem seeks to optimally allocate the ca-

pacity of a resource to different classes of demand. This allocation must be done

dynamically as demand materializes and with considerable uncertainty about the

quantity or composition of future demand. Two prototypical examples are control-

ling the sale of different fare classes on a single flight leg of an airline schedule and

the sale of hotel rooms for a given date at different rate classes. In reality, many

quantity-based RM problems fall into the mere general class of network RM prob-

lems, but in practice, they are still frequently solved as a collection of single-resource

problems.

2.1 Literature Review of the Single-leg Booking Control Problem

The booking (or capacity) control problem for a single resource has long been

studied in the RM literature. Littlewood (1972) considered two fare classes and

assumed product is sold in a low-before-high (LBH) manner; i.e., demand in the

lowest fare class arrives first. He showed how the booking limit for the low-fare class

can be determined once the probability distribution of the demand for the high-fare

class and the fares are given. Belobaba (1987,1989) discussed heuristic extensions of

Littlewoods rule to multiple fare classes, again assuming (i) LBH arrivals (arrivals
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are monotonic in fare-classes) and (ii) the probability distribution of demand in

each fare class is known. Curry (1990), Wollmer (1992) and Brumelle and McGill

(1993) make similar assumptions on demand (and so do Li and Oum (2002) when

they discuss the equivalence of the results obtained in these three papers). Robinson

(1995) relaxed the LBH assumption in his analysis but assumed requests for different

fare classes arrive at non-overlapping intervals. Lee and Hersh (1993) introduced a

dynamic programming formulation for the multiple fare class problem by relaxing

the LBH assumption and assuming the demand in each fare-class is characterized

by a stochastic process. Lautenbacher and Stidham (1999) address the static (i.e.

arrivals are LBH) and dynamic (i.e. the arrival sequence is not ordered by fare-

class) problems for multiple fares by analyzing the underlying discrete time Markov

Decision Process (MDP). More recently, Talluri and van Ryzin (2004b) analyzed

the multiple fare class problem based on consumer choice. While this approach is

more sophisticated and realistic than many, it requires information not only on the

arrival process but also on the choice behavior. There are several other papers on the

single-leg problem with various assumptions on demand or arrivals (e.g. Brumelle

at al., 1990, Liang, 1999, van Slyke and Young, 2000). For further discussion please

see Brumelle and Walczak (2003) as well as the unified treatment of the single-leg

models in Talluri and van Ryzin (2004a).

The objective in all the above papers is to maximize revenues given the risk-

neutrality of the decision-maker. Recently, this risk-neutrality assumption has been

questioned (e.g., Feng and Xiao, 1999, Levin et al. 2006) and traditional assumptions

on demand models, including availability of demand information, have been relaxed
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in the context of pricing (e.g., Farias and van Roy, 2006, Rusmevichientong et al.,

2006, Lim and Shanthikumar, 2006). New perspectives have also emerged in the

analysis of the single-leg, multi-fare booking control problem in the last decade,

varying from use of customer-choice models (Talluri and van Ryzin, 2004b), to

the use of adaptive methods to compute booking limits (e.g., McGill and van Ryzin,

2000), to the use of robust optimization (Birbil et al., 2006, Perakis and Roels, 2006),

to methods that combine demand learning with optimization (Eren and Maglaras,

2006), to methods that use competitive analysis of online algorithms to determine

policies that come with worst-case performance guarantees (Ball and Queyranne,

2006, Lan 2008).

In this new stream of research, Eren and Maglaras (2006) propose using the

maximum entropy approach to update the booking limits while obtaining demand

information. Perakis and Roels (2006) assume limited demand information in a

manner similar to our work and provide a general approach to both the single-leg

and the network RM problems where the objective is to minimize the regret. They

also restrict their analysis to particular policies (e.g., nested policies for single-

leg, partitioned allocations for network). Ball and Queyranne (2006), which we

refer as BQ, were the first to adapt the notion of competitive analysis of online

algorithms to RM context. They derive static, nested booking limits for the single

leg problem and also consider bid-price controls where a booking request does not

belong to a particular fare class but comes with a proposed fare. Their policies

require no information on demand and come with performance guarantees (achieving

maximum competitive ratio, which we define in the next section). They also show
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for two fare-classes how the booking limits can be updated during the booking

period to improve the worst case performance. Their work is extended by Lan

(2008) who considers both relative and absolute regret criteria and proposes new

static and dynamic booking control policies for a multi-fare class problem when

only upper/lower bounds on demand are available. The optimal policies derived

in Lan (2008) reduce to BQ’s in special cases (when bounds become zero and/or

infinity). Lan (2008) also provides a model of overbooking to manage cancelations.

Our focus in this dissertation is on models and methods assuming no cancelations

or overbooking.

2.2 Research Questions and Problem Definition

As the literature review indicates, there are numerous models and methods

proposed for the single-leg RM problem. These methods vary in their modeling

assumptions but also on the amount of information used to derive the booking

control policies. There is also a trend in using less information to obtain robust

methods.

Clearly, more information enables better decision-making, as long as the in-

formation is correct and used in a model with correct assumptions. It is typical to

make statistical assumptions about demand in single-leg RM models (e.g., station-

arity, normally distributed). However, these assumptions may not portray reality.

In that case, policies derived from models with these incorrect assumptions can lead

to very poor performance.
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Our goal in this chapter is to quantify the “value of information” in booking

control and compare different booking policies in single-leg RM. To do this, we

use simulations and extensive computational experiments to test the performance

of existing models and methods, that vary in the amount of demand information.

Before we introduce the models included in our study in Section 2.4, we first define

the single-leg booking control problem:

A firm sells its capacity in m distinct classes that consume the same resource in

a finite selling horizon. In the airline and hotel context, these classes represent differ-

ent discount levels with differentiated sale conditions and restrictions. Throughout

this chapter, let n denote the total capacity of the resource (seats, rooms, etc.) The

fares fi of the products are ordered f1 > f2 > ... > fm ≥ 0. The challenge in

this problem is that demand in each fare class is unknown. The seller’s goal is to

maximize the total revenue obtained by selling n units to m fare classes. To increase

his revenue, the seller can stop selling to a fare class during the booking horizon

even if the capacity is not sold out. For instance, if the seller knows that business

travelers book later and prefer less restricted fares, then he can limit the sales to

classes preferred by leisure travelers, who book earlier and prefer discounted fares.

The question then becomes which of the fare classes should be open/closed at

a particular time. It is customary to refer to the same question as “which booking

requests should be accepted/rejected at a particular time?” Below is a review of

the typical booking control policies and the models used to derive these types of

policies. We classify the models and methods according to the amount of demand

information they use. The models that require probability assumptions are reviewed
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in Section 2.4.1, models that use adaptive algorithms are discussed in Section 2.4.2,

models based on competitive analysis are reviewed in Section 2.4.3.

2.3 Introduction to Booking Control Policies

There are different types of control mechanisms which are often dictated by a

reservation system.

Booking Limits are controls that limit the amount of capacity that can be

sold to any particular class at a given point in time. They are either partitioned

or nested. A partitioned booking limit divides the available capacity into separate

blocks that can be sold only to the designated class. When using nested booking

limits, the capacity available to different classes overlaps in a hierarchical manner -

with higher-ranked classes having access to all the capacity reserved for lower-ranked

classes. Most reservation systems use nested rather than partitioned limits and the

booking control we summarized earlier referred to standard nested booking limits.

We use bi to denote the ith booking limit, i.e. the capacity reserved for classes i to

m. (To read the discussion about standard nesting versus theft nesting, please refer

to the Appendix of this dissertation).

Protection Levels specifies an amount of capacity to reserve (protect) for a par-

ticular class or set of classes. Again, protection levels can be nested or partitioned.

A partitioned protection level is trivially equivalent to a partitioned booking limits.

In the nested case, protection levels are again defined for sets of classes - ordered in

a hierarchical manner according to class order. yj is used to denote the protection
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level for class j. There is a simple relationship between nested booking limits and

protection levels, namely, yk = n− bk+1, for k = 1, ...,m− 1.

Bucket Size is the difference between adjacent booking limits. We use an ad-

ditional variable xi to define it. xm = bm and xi = bi− bi+1 for i = 1, ...,m− 1. The

relationship between bucket size, protection levels and booking limits is illustrated

in Figure 2.1. The notation b, y and x are used for vectors of variables.

Figure 2.1: Relationship between the Different Control Variables

With a nested policy, a request in class j is accepted as long as the booking

limit bj has not been reached and capacity is available.

Note that nesting defines a static policy, which can be updated and used

dynamically over time. There are also other types of control policies, which can

be time-dependent, dynamic, and/or non-nested. We review the models commonly

used in practice and studied in research in the next section.
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2.4 Models Proposed in the Revenue Management Literature

In this section, we outline policies that have been proposed for booking control

in single-leg RM. These models and methods are categorized according to the level

of demand information used.

2.4.1 Static and Dynamic Models that Use Distributional Informa-

tion

The models in this section use probability information on fare class demand.

Let demand for class i be denoted as Di and its distribution denoted by Fi(·).

The earliest single-resource model is due to Littlewood (1972). The model is called

EMSR (expected marginal seat revenue). It assumes there are only two product

classes with f1 > f2 and that demand for class 2 arrives first. The optimal protection

level y∗1 is given by the expression y∗1 = F−1
1 (1 − f2/f1). This is a static solution.

Given y∗1, the booking limit for class 2 is n − y∗1. If D2 is the number of requests

in class 2 and arrivals are LBH (i.e. class 2 requests arrive before class 1), then

min(n− y∗1, D2) of class 2 requests are accepted. The remaining n−min(n− y∗1, D2)

units are available for class 1 requests.

The multi-fare booking control problem can be formulated as a dynamic pro-

gram, with remaining capacity nr being the state variable. We introduce the model

proposed by Brumelle and McGill (1993) here. Demand is independent across classes

and over time and also independent of capacity controls. Demand for the m classes

arrives in m stages, one for each class, with classes arriving in increasing order
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of their revenue values (i.e., LBH). At the start of stage i, the random demand

Di,Di−1,...,D1 has not been realized. Let V BM
i (nr) denote the value function at the

start of stage i of the Brumelle and McGill model. The Bellman equation is:

V BM
i+1 (nr) = E[ max

0≤u≤min{Di+1,nr}
{fi+1u− V BM

i (nr − u)}] (2.1)

The optimal protection levels y∗i for i, i− 1, · · · 1 by

y∗i ≡ max{nr : fi+1 < ∆V BM
i (nr)}, for i = 1, · · · , m− 1 (2.2)

y∗m ≡ n (2.3)

where ∆V BM
i (nr) is defined as V BM

i (nr) − V BM
i (nr − 1) and decision variable u is

the quantity of demand Di+1 to accept. The optimal protection levels y∗i requires

computation of ∆V BM
i (·) for any value of remaining capacity.

Although computing optimal controls for the above model is not particularly

difficult, exact optimization is not widely used in practice. Indeed, most airline RM

systems use one of several heuristics to compute booking limits. One of those is

called EMSR-b (expected marginal seat revenue-version b), proposed by Belobaba

(1987,1989), which is an approximation that aggregates demand from future classes

and treats them as one class with revenue equal to the weighted-average revenue.

Specifically, define the aggregate future demand for classes i,i − 1, ...2 by Si =∑i
k=1 Dk, which is a random variable, and let the weighted-average revenue from

classes 1, ..., i, be

f̄i =

∑i
k=1 fkE[Dk]∑i

k=1 E[Dk]
(2.4)
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Then EMSR-b protection level for class i and higher, yi, is chosen by Littlewood’s

rule so that:

P (Si > yi) =
fi+1

f̄i

. (2.5)

EMSR-b policies are shown to have good performance in laboratory and industrial

settings (See Talluri and Van Ryzin 2004a).

Lee and Hersh (1993) relaxed the LBH assumption. In their model, the de-

mand for each fare class is modeled as a time-dependent stochastic process. The

decision to accept or reject an incoming request takes into account the number of

available capacity, the time remaining in the reservation horizon, and the fare class

of the request. While the model is general, it is tractable when the arrival process

is Markovian. Here is the notation for Lee and Hersh (1993) model. There are T

periods and t is the time index (t=1 is the first period). In each period, at most one

customer arrives. This requirement can be achieved for any system by sufficiently

fine discretization of the time horizon. The probability of an arrival of class i in

period t is denoted ρi(t). Still, let nr denote the remaining capacity and let V LH
t (nr)

denote the value function in period t in the Lee and Hersh model. The Bellman

equation is therefore

V LH
t (nr) = E[ max

u∈{0,1}
{R(t)u− V LH

t+1 (nr − u)}], t = 1, · · · , T. (2.6)

where u denotes the decision to accept/reject the incoming request and R(t) = fj

if a demand for class j arrives in period t and R(t) = 0 otherwise(i.e., if there is no

arrival).
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The MDP model of Lee and Hersh can be solved by backward recursion using

V LH
t (nr) =

m∑
i=1

ρi(t)(fi −∆V LH
t+1 (nr))

+, t = 1, · · · , T. (2.7)

staring with the boundary condition V LH
T+1(nr) = 0,∀nr, where ∆V LH

t+1 (nr) = V LH
t+1 (nr)−

V LH
t+1 (nr − 1).

2.4.2 Adaptive Algorithms that Require No Demand Information

Typically, applying the models described in the previous section require three

steps. First, historical demand data are studied to determine a representative de-

mand distribution. Second, forecasting techniques are applied to estimate the pa-

rameters of the distribution. Third, demand distribution characterization is passed

to an optimization routine that solves for protection levels. However, Van Ryzin

and McGill (2000) proposed a new method for directly updating booking policy

parameters for the next resource usage based on observations of the performance

on previous instances, without recourse to the above complex forecasting and opti-

mization cycle. The method of Van Ryzin and McGill obtained the optimal solution

to the Brumelle and McGill model: for y∗ to be an optimal set of protection levels,

it must satisfy:

P (Bi(y
∗,D)) =

fi+1

f1

, for i = 1, 2 · · · , m− 1. (2.8)

where D = (D1, D2, .., Dm) is the random vector of fare requests and Bi(y
∗,D) is

the fill event. A fill event occurs when demand in stages 1 through i exceeds the

corresponding protection levels, i.e. D1 + D2 + ... + Di ≥ y∗i . Here is a description
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of the adaptive algorithm:

Step 0: Choose a nested protection level vector y(1), set k=1.

Step 1: Observe demand vector D(k).

Step 2: Determine fill events Bi(y
(k),D(k)) for i = 1, · · · , m. Compute

Hi(y
(k),D(k)) =

fi+1

f1

− 1(Bi(y
(k),D(k))) (2.9)

where 1(E) is the indicator function of event E.

Step 3: Update booking limits

y(k+1) = y(k) − γkH(y(k),D(k)) (2.10)

where γk is a step size (determined as priori).

Step 4: If y(k) and y(k+1) satisfy a convergence criteria, set y∗ = y(k+1) and stop.

Otherwise, set k ← k + 1 and go to Step 1.

In this algorithm,γk is a sequence of nonnegative step sizes satisfying:
∑

k γk =

+∞ and
∑

k γ2
k < +∞. As the algorithm progresses, if the ith fill event occurs and

Hi(·) = fi+1

f1
−1 < 0, the protection level y

(k)
i is increased by γk(1− fi+1

f1
). Otherwise,

if Hi(·) = fi+1

f1
> 0, then yk

i is reduced by γk
fi+1

f1
. Thus, protection levels are stepped

up when high demand is observed and stepped down when low demand is observed.

This algorithm is guaranteed to converge to the optimal solution with some mild

assumptions. See Van Ryzin and McGill (2000) for details.

Van Ryzin and McGill’s adaptive algorithm relies on no demand information

and the nested booking limits computed using their adaptive procedure converge

to the optimal. However this method requires LBH arrivals, learns the demand
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from flight to flight but not during the booking horizon of a particular flight. An

important feature of this method is that it can easily be used in a simulation-based

environment to compute y∗ when the underlying demand distribution is available.

Unfortunately, this method suffers from poor performance during the transient pe-

riod when the booking limit is converging to the optimal. Besides, the choice of

step-size and the initial vector of booking limits can affect the speed of convergence.

Instead of using a DP method, we use Van Ryzin and McGill’s algorithm in our

experiments.

2.4.3 Robust Solutions Based on Competitive Analysis

In Ball and Queyranne (2006) and Lan’s dissertation (2008), the classic single-

leg RM problem is considered from the perspective of competitive analysis of online

algorithms. (See Albers, 2003 for more information on competitive analysis of on-

line algorithm.) This perspective evaluates the performance of a booking control

policy relative to the performance of an offline algorithm that has perfect hindsight

information. An offline optimal solution is a solution obtained by an offline algo-

rithm (with hindsight) that optimizes the objective function of interest. In their

competitive analysis, the competitive ratio (CR) is used as a measure of an algo-

rithm’s effectiveness. There is another performance metric of interest: absolute

regret, which is the difference between the objective function values of the offline

and online algorithms. (Please refer to BQ’s paper and Lan’s dissertation for more

detailed discussion.)
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CR is defined as the minimum of the ratio of revenues obtained by the online

algorithm to the offline revenues. If we let ΩΥ be the set of all possible input

sequences to an online algorithm Υ and, for any I ∈ ΩΥ, let R(I; Υ) be the objective

value achieved by the online algorithm for input I and let R∗(I) be the objective

value achieved by an optimal offline algorithm, then, we can define CR as:

CR of Υ = inf
I∈ΩΥ

R(I; Υ)

R∗(I)
.

Using no information and considering a worst-case approach, BQ obtained the

following static nested policy:

b∗i+1 = n− y∗i for i = 1, · · · , m− 1, b1 = n. (2.11)

where

y∗i =
n

θ
(i−

i∑
j=1

fj+1

fj

), for i = 1, 2, · · · , m− 1 (2.12)

y∗m ≡ n (2.13)

where θ = m−
∑m

i=2
fi

fi−1
.

Lan (2008) extends this assuming demand in fare class i is no less than Li and

no more than Ui, for i = 1, 2, · · · , m. They show that a Linear Program (LP) can

be formulated to determine a nested policy that maximizes CR. We refer to this

model as the GBM model.

The nested booking limits are defined by

bCR
j =

m∑
i=j

xCR
i for j = 1, · · · , m (2.14)
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where

z̄CR =
R+

u /fu + Nu

R∗(CASTu)/fu +
∑u−1

i=1 gi

(2.15)

xCR
j =


gj z̄

CR + Lj j < u

(1/fu)(R
∗(CASTu)z̄

CR −
∑u−1

i=1 fiLi) j = u

0 j > u

(2.16)

u = max{j ≤ m : (

j−1∑
i=1

fiLi)(

j−1∑
i=1

gi) < R∗(CASTj)(n−
j−1∑
i=1

Li)}. (2.17)

The index u denotes the critical fare-class such that all classes k > u are closed, and

gi is an auxiliary parameter defined as

gi =
R∗(CASTi)−R∗(CASTi+1)

fi

, i = 1, · · · , m− 1. (2.18)

The CASTi refers to a non-dominated scenario such that any input scenarios

I satisfy

R(I : b)

R∗(I)
≥ min

R(CASTi : b)

R∗(CASTi)
, i = 1, · · · , m (2.19)

given a nested booking limit policy b. Lan(2008) characterizes these non-dominated

scenarios in his analysis and proves that there are only m scenarios of interest.

Lan (2008) also provides a dynamic policy where the booking limits can be

updated over time. Consider a dynamic scenario where a dynamic policy has been

executing to process the booking requests. Suppose hi bookings have been accepted

so far for fare class i for i=1,...,m. This accumulates revenue of
∑m

i=1 hifi from the∑m
i=1 hi sold seats. And define n̂ = n−

∑m
i=1 hi as the remaining number of available

seats. The question Lan (2008) asked is whether the booking limits can be adjusted
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to improve the CR. He shows that if demand and capacity information are updated

as follows:

L̂j = max(Lj, hj)− hj, Ûj = Uj − hj, j = 1, ...,m,

then a new set of booking limits for allocating the remaining n̂ seats can be computed

to guarantee a better performance. The new policy is easily obtained by resolving

the original model with the updated parameters

When Li = 0 and Ui ≥ n, ∀i in Lan (2008), the booking limits in equa-

tion 2.14 is the same as in equation 2.11, which is the solution suggested by BQ.

CR is a measure of relative regret. One can also consider “absolute regret” (AR).

The maximum absolute regret of the online algorithm is defined as: MAR of γ =

supI∈Ωr |R∗(I) − R(I; γ)|. Analysis and solution of AR problem is similar to CR.

Lan (2008) also discusses an optimal policy that maximize AR can be obtained in

closed form.

2.5 Numerical Experiments

We use simulation to evaluate the performance of methods introduced thus

far. These methods are listed in Tables 2.1, 2.2, and 2.3.

We compute the performance of each policy relative to an “ideal solution”. At

the end of each simulation run, we compute the ratio of policy revenues to that of

the offline optimal, which is the perfect hindsight solution for that simulation run.

At the end of an experiment, we calculate the average of this performance ratio. In

our experiments, we vary the fare values, demand parameters, arrival regimes with
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Method Underlying Policy Introduced
Model Structure in

DP DP model of Brumelle Section 2.3
and McGill (1993), nested BLs Section 2.4

(or VRM) computed by Van
Ryzin and McGill (2000)

adaptive algorithm

STAT-CR CR model of BQ static Equation 2.11
and Lan(2008) nested BLs and 2.12

STAT-AR AR model static Section 2.4.3
of Lan(2008) nested BLs

DYN-CR CR model nested BLs Section 2.4.3
of Lan(2008) with dyanmic updates

DYN-AR AR model nested BLs Section 2.4.3
of Lan(2008) with dynamic updates

FCFS First-come all accepted up -
First-serve to capacity

Table 2.1: Methods that require no information

Method Underlying Policy Introduced
Model Structure in

EMSR stochastic model of static Section 2.3
Littlewood (1972) nested BLs

EMSR-b heuristic of static Section 2.3
Belobaba (1989) nested BLs

MDP stochastic model of dynamic, time and Section 2.3
Lee and Hersh (1993) inventory dependent

Table 2.2: Probabilistic models
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Method Underlying Policy Introduced
Model Structure in

BSTAT-CR CR model static Section 2.4.3
of Lan(2008) nested BLs Equation 2.14

BSTAT-AR AR model static Section 2.4.3
of Lan(2008) nested BLs

BDYN-CR CR model nested BLs Section 2.4.3
of Lan(2008) with dynamic updates

BDYN-AR AR model nested BLs Section 2.4.3
of Lan(2008) with dynamic updates

Table 2.3: Distribution-free methods that use aggregate information

respect to fare classes (LBH vs. time-homogeneous arrivals), and the demand-mix

(mean demand of a fare class relative to the demand of other classes). When arrivals

are LBH, the sequence of arrivals is known, and the total number of arrivals in each

fare class is computed by sampling from the demand distribution in each simulation

run. When the arrivals are time-homogeneous, the total number of arrivals in each

fare class is determined by sampling from the corresponding (aggregate) demand

distribution. Then, the arrival times of requests within each fare class are randomly

generated from a Uniform(0,1) distribution so that the arrivals in each fare class are

requested during the entire booking horizon.

In all the experiments, the demands across each fare-class are independent.

We denote the mean demand of fare class i as λi. Requests arrive one-by-one in all

the experiments. The capacity is n = 100 in all the examples unless noted otherwise.
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2.5.1 Models That Require No Demand Information

Example-2.1. In this two-fare example, we compare unbounded robust meth-

ods using CR criteria with VRM. The averages over 300 runs are reported in terms

of the first 60 runs and next 240 runs for the LBH case, and for the total of 300

runs for the time-homogenous case. The fares are f1 = 200, f2 = 100. Demands

are independent, stationary and normally distributed for both fare classes. Mean

demands [λ2, λ1] (we refer to this as the demand-mix or demand factor) range from

[120,0] to [0,120].

Knowing the demand distribution and/or the arrival process, the EMSR policy

(the DP solution) in the LBH case and the MDP policy in the time-homogeneous

case are the online optimal algorithms, performing remarkably well compared to

the offline. They are benchmarks to evaluate the performance of robust and VRM

policies. When arrivals are low before high, the protection level under the VRM

policy should converge to the mean demand of the high-fare class. This is observed

in Figure 2.3 as VRM adapts to the online optimal after a certain warm-up period

(warm-up period is illustrated in Figure 2.2). When arrivals are time-homogeneous,

Figure 2.4 shows that, being a heuristic, VRM still gives relatively good performance.

The key theoretical and practical problem associated with VRM is determining con-

ditions under which such an adaptive algorithm will converge to optimal protection

levels. The sequence needed should take large steps early (to speed up the warm-up

period) and become smaller as the algorithm progress. In this experiment, we use

a sequence of the form A/(n+B), where A=200 and B=10, chosen to effect larger
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Figure 2.2: Average performance in Example 2.1 with LBH arrivals-first 60 days

early steps, which appeared to provide good performance on a range of examples.

The performance of robust policies first increases as demand shifts from class

2 to class 1 (because the protection levels are too high at first), followed with a

slight decrease (where the protection levels are not high enough) and later a slight

increase (when λ2 is negligible). When arrivals are LBH, robust policies exhibit a

similar behavior whereas FCFS does relatively poorly. While the best performance

of robust policies is above 95%, the policies reach this peak performance with a lag.

This is a direct effect of differing protection levels of the policies. For an LBH input

regime, the dynamic policy DYN and static policy STAT are identical when there

are two fares.

Example-2.2. In this experiment, we compare the robust policies with CR

and AR criteria. The fares are f1 = 500 and f2 = 100. Demand for each fare-class is
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Figure 2.3: Average performance in Example 2.1 with LBH arrivals-next 240 days

Figure 2.4: Average performance in Example-2.1 with time-homogeneous arrivals
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Figure 2.5: Average performance in Example-2.2 with LBH arrivals

independent and time-homogenous (Poisson distributed) with means ranging from

[120,0] to [0,120]. In this example, static policies protect yAR
1 = 80 and yCR

1 = 44.4

seats for class 1. The theoretical worst-case ratio of FCFS, STAT-AR and STAT-CR

revenues to offline revenues are 20%, 20% and 55.5%, respectively. However, the av-

erage performance can be significantly better as shown in Figures 2.5 and 2.6. Figure

2.6 gives the average performance gap when the arrivals are time-homogeneous. In

Figure 2.7, the average number of unsold seats is reported.

The average performance of FCFS is over 90% in this case because r is not

too low and arrivals are time-homogeneous. The unbounded robust policies do very

poorly when λ1 is low because they protect too many seats for the high-fare class, this

is also evident in Figure 2.7 where the average number of unsold seats is reported.

STAT-CR reaches the peak performance at [80,40] whereas STAT-AR reaches it at

[40,80]. AR polices are more aggressive in protecting seats for the high fare class
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Figure 2.6: Average performance in Example-2.2 with time-homogenous arrivals
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Figure 2.7: Number of Unsold Seats in Example-2.2 with time-homogeneous arrivals

28



(yAR
1 > yCR

1 ). Consequently, its revenues can be lower than STAT-CR when the

demand for class 1 is low. As r −→ 0, only 50% of the seats are protected by STAT-

CR whereas 100% are protected by STAT-AR. In contrast, the FCFS policy that

accepts all the incoming requests until capacity is reached protects 0 seats for class

1. It can easily be seen that as r −→ 1, these three policies are equivalent.

We repeated this experiment with different values of r (Please refer to Example-

A.3 and Example-A.4 in the Appendix) As expected, as r increases, the difference

between policies obtained by CR and AR gets smaller. Here is a summary of our

observations: Overall, we looked at the effect of expected demand and demand-mix,

discount ratio and the arrival regime (time-homogenous vs. LBH arrivals) to gain

insights on the behavior of online policies. We considered both practical and extreme

cases. In some instances, robust policies perform very well. Yet, there is still room

for improvement overall. For instance, when demand mix lies in the practical range

of [90,30] to [60,60], the lowest average performance gap of the CR-based and AR-

based policies are 85% and 75%, respectively. The robust policies do most poorly

when λ1 is low. One can argue that these algorithms are doing the job they were

designed to do in the sense that they are protecting against the possibility of a high

value of class-1 mean demand λ1.

In summary, in this section, models that need no demand information are

compared side by side. The protection level under the VRM policy converges to the

mean-demand of the high-fare class and its performance adapts to the online opti-

mal after a certain warm-up period. However determining conditions under which

such an adaptive algorithm will converge to the optimal remains a challenge. The
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sequence of step sizes should be carefully chosen based on experimentation in order

to speed up the warm-up period and quickly stabilize as the algorithm progresses.

While the best performance of robust policies is above 95%, they do most poorly

when there are fewer high-fare customers since they are designed to protect against

possibility of later high-fare requests. AR policies are more aggressive than CR poli-

cies in protecting seats for high fare class. However, if information were available

indicating high values of λ1 are not possible, then improved performance should

be possible in general, and in the extreme cases, in particular. These observations

motivate models using limited demand information; discussion and analysis follow

in the next section.

2.5.2 Models That Use Accurate Demand Information

In this section, we will show the performance of robust policies that use de-

mand bounds: BSTAT-CR, BSTAT-AR, BDYN-CR and BDYN-AR. We first use

the example with uniform demand to show how information improves the perfor-

mance of online policies. Then we choose the same example used in the previous

section to compare these robust methods (use limited demand information) with

other well-known policies that require more information.

Example-2.3 We continue to employ fares (f1, f2) = (500, 100), and assume

demand in each fare class follows a discrete uniform distribution between Li = 40

and Ui = 80, i = 1, 2. We use 6000 simulation runs with LBH arrivals in this ex-

ample. The protection level of class 1 for each of the policies, the theoretical CR of
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each policy computed given the demand bounds, average policy revenues, relative

performance, and the average number of seats sold are displayed in Table 2.4. Note

that the differences between the protection levels of CR and AR policies are signif-

icant when no demand information is used. As expected, the worst-case CR is not

an indication of the average performance of the policies. In this example, STAT-CR

achieves significantly lower average revenues compared to other policies because of

the protection level and the fare-ratio: STAT-CR achieves a higher load (as indicated

by the average number of seats sold) compared to other policies, but other policies

accept more of class 1 requests leading to higher average revenues. We monitored

the performance of the policies more closely by studying the distribution of revenues

(i.e., we computed estimates of percentiles). We split the 6000 simulation runs into

30 samples of size 200 each, we computed the percentiles in each sample, and we

took the averages of the percentiles of the samples to obtain the estimate. This

information is provided in Figure 2.8. Notice that the ranking of the policies with

respect to the 10th, 50th and 90th percentiles are different. In fact, the ranking of our

policies in the 10th percentile is reversed in the 90th. Hence, no policy (OFFLINE

and FCFS excluded) stochastically dominates the others. STAT-CR has the highest

10th percentile value, hence the lowest downside risk. Use of demand information

degrades the performance of CR policies in terms of the downside risk, but pro-

vides significant gains on the upside, i.e., BSTAT-CR has a significantly higher 90th

percentile value compared to STAT-CR. Likewise, STAT-AR has a higher downside

risk and a lower upside risk compared to BSTAT-AR.

This example shows the main difference between CR and AR policies and also
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Protection Theoretical Avg of ratio Avg
level CR Average of revenue no.of

Policy y1 (%) revenues to OFFLINE (%) seats sold

BSTAT-BDYN-CR 68.49 89.04 129,235 95.37 89.3

BSTAT-BDYN-AR 72 87.69 129,501 95.28 86.93

STAT-DYN-CR 44.5 66.19 114,302 85.84 98.79

STAT-DYN-AR 80 84.61 128,013 93.82 79.58

FCFS 0 42.86 101,864 76.63 98.99

OFFLINE −− 100 135,663 100 98.99

Table 2.4: Protection level,Theoretical CR, Average performance in Example-2.3.

the effect of demand information. Because AR policies are aggressive in protecting

seats for class 1, they have a lower upside risk (higher downside risk) compared to

CR policies. The use of demand information increases the average revenues of both

CR and MAR policies. The differences between CR and MAR policies are smaller

when demand information is used. Demand information also affects the upside and

downside risks: The downside risk is higher (lower) and the upside risk is lower

(higher) for BSTAT-CR (BSTAT-AR) compared to STAT-CR (STAT-AR).

We repeated Example 2.3 with different demand parameters and arrival regimes.

The results are reported in the Appendix (See Example-A.5 through Example-A.9

in the Appendix). When demand is distributed uniformly between 20 and 60 for

class 1, and between 60 and 100 for class 2, and arrivals are LBH, no policy (except

OFFLINE) is stochastically dominant. This particular demand-mix affects STAT-

AR most: It has a significantly lower revenue at the 10th percentile, and provides

the second highest revenue value at the 90th percentile, following BSTAT-AR. This

is expected because STAT-AR protects the highest number of seats for class 1, for
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Figure 2.8: Average performance in Example-2.3

which the demand is lower in this case. The observations regarding the relative

performances of the other policies remain the same. When demand is distributed

uniformly between 20 and 60 for class 2, and between 60 and 100 for class 1, STAT-

CR is stochastically dominated because its booking limit for class 2 is significantly

higher than the other policies. When the arrivals occur homogeneously over time in

both fare classes, dynamic and static policies are not equivalent. If demand-mix is

balanced as in Example-1a, then the average revenues obtained by each of the poli-

cies except DYN-AR are higher when arrivals are time-homogeneous; DYN-AR sets

a high protection level for class 1 initially and this protection level is updated with

each class 1 request leading to rejecting far too many class 2 requests and having

too many idle seats at the end of the booking horizon. However, DYN-AR is not

stochastically dominated, i.e., has a higher 90th percentile than, for e.g., BSTAT-

AR. Our previous observations regarding stochastic dominance relations among the
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Figure 2.9: Average performance in Example-2.4, Time-homogeneous arrivals

policies do not change with the arrival regime.

Example-2.4 Same parameter setting as in Example 2.2. In addition, we

choose lower and upper bounds of demand to be two standard deviations away from

the true mean. When arrivals are time-homogeneous (see Figure 2.9), MDP is the

optimal policy and it performs remarkably well compared to offline optimal. EMSR

is only a heuristic in this case. The use of demand bounds improves the performance

significantly and robust policies that use demand bounds do as well as EMSR except

in the extreme case where class 2 demand is negligible and class 1 demand exceeds

capacity (which is impractical from a RM perspective). When the arrivals follow the

LBH regime (see Figure 2.10), EMSR is the optimal policy. Note that the robust

policies with demand information are again indistinguishable from each other and

also from EMSR for practical instances.

We repeated this example for different fare values. The main observations
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Figure 2.10: Average performance in Example-2.4, LBH arrivals

remain the same: MDP (as the ideal solution) is close to offline optimal when

arrivals are time-homogeneous. Robust policies with demand information are as

good as EMSR at all discount ratios regardless of the arrival regime (except when

class 2 demand is negligible). The use of true bounds have a significant effect on the

performance of robust policies and the average performance gap is no worse than

95% in any of the experiments. In these experiments, the additional benefit of using

a dynamic robust policy is almost negligible when demand information is used. This

is because the demand is stationary.

Next, we look at an example with more than two fare-classes.

Example-2.5 Here, we have m = 4. This is adapted from the example used

in Talluri and van Ryzin (2004a), Section 2.2.3.4. The fares are f = (1050, 567,

527, 350), n = 124, the demand is Normal distributed and independent across fare-

classes. The arrivals are LBH and mean demand is 17.3,45.1,73.6 and 19.8 for classes
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Figure 2.11: Average performance in Example-2.5

1 through 4. All fare-classes have the same coefficient of variation (CoV) and we vary

the CoV in this experiment. Demand bounds are set to two standard deviations from

the mean. The average performance gap is reported in Figure 2.11. The optimal

policy in this case is given by DP and is significantly better than the other policies

especially when the CoV is high. BSTAT-AR and BDYN-AR are indistinguishable

in this experiment. They are almost as good as DP for low CoV. All robust policies

with demand bounds dominate EMSR-b; performance of EMSR-b degrades more as

the CoV increases. The benefit of demand information is significant on AR-based

robust policies: DYN-AR and STAT-AR do very poorly.

The observations from the above set of experiments can be summarized as

follows: (1) CR and static policies are better in terms of the 10th percentile of the

revenue distribution, except when class 2 demand is low: These policies are more

conservative and tend to protect fewer seats for class 1 compared to other policies.
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(2) AR and dynamic policies are better in terms of the 90th percentile of revenues,

i.e. the chance of achieving higher revenues is higher with these policies, except

when class 1 demand is low. (3) Time-homogeneous arrivals are in general better

for all the policies, but can hurt the performance of dynamic AR policies when class

1 demand is low. (4) The use of correct demand information decreases the variance

in revenues of AR and CR policies, increases the average performance, and makes

the relative performance of these policies less sensitive to changes in the fare ratio.

(5) The difference between AR and CR policies is negligible when correct demand

information is used and class 1 demand is low.

The results of the above experiments are very encouraging: When demand

information is accurate, robust methods are practically as good as EMSR and even

better than EMSR-b which is commonly used in airline RM practice. Examples 2.4

and 2.5 show the best results possible for robust policies because the bounds are

computed with the knowledge of the underlying demand distribution. However, the

main motivation for robust methods is lack of data and accurate forecasts. In real

life, not only the demand forecasts will be wrong, but also some of the assumptions

in models such as EMSR, DP or MDP may fail to hold. The next section show

how these methods perform when booking limits of the policies are computed with

incorrect demand models and/or data.
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2.5.3 Effects of Inaccurate Information

In this section we look at the effect of quality of demand information on book-

ing control policies.

Example-2.6 The arrivals are LBH and the true demand in each fare class

is uniformly distributed between 40 and 80. In addition to the true range of the

demand, we use robust policies with a narrow range of demand where the upper

and lower bounds of demand are estimated to be 55 and 65, also with a wide range

where the upper and lower bounds of demand are estimated to be 20 and 100. This

setup results in three versions of each of our policies, and we denote them as T (for

true bounds), N (for narrow range) and W (for wide range). The average relative

performance of the policies are reported for different fare ratios in Figure 2.12. Note

that the results with true bounds are only a repeat of what we had in Example-3, and

AR and CR policies have almost exactly the same relative performance regardless

of the fare ratio. This is still true when the range is narrow. However, the effect

of wide range is different on AR vs. CR policies. When the range is wide and fare

ratio is low, AR policies do worst because they expect higher class 1 demand and set

higher protection levels. The effect of such aggressive protection levels on the policy

revenues is low when fare ratio is high. The differences among the policies stem from

the differences in protection levels. To highlight that, we computed the protection

levels for all the policies at three different fare ratios. The results are presented

in Table 2.5. One interesting observation in this example is the following: The

policies do not perform perfectly when r = 1 if a narrow range is used. This is very
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Figure 2.12: Performance of the policies with inaccurate demand information in

Example-2.6

surprising given the fact that all requests have the same fare, and any reasonable

policy (including FCFS) does as good as OFFLINE when r = 1. The main reason

for this is that both AR and CR policies protect at least 55 seats for class 1 when

the range is narrow, because that is the estimated lower bound on class 1 demand.

Hence they reject too many class 2 requests.

BSTAT T
CR, BSTATN

CR, BSTATW
CR, BSTAT T

AR, BSTATN
AR, BSTATW

AR,
r BDY NT

CR BDY NN
CR BDY NW

CR BDY NT
AR BDY NN

AR BDY NW
AR

0.2 68.5 62.81 67.22 72 63 84

0.5 57.5 59.85 50 60 60 60

0.9 43.85 55.99 27.42 44 56 28

Table 2.5: The protection level of class 1 for each policy in Example-2.6

We repeated this example with a different demand-mix (mean demand of
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classes 1 and 2 were 40 and 80). The main observations remained the same. Narrow

bounds make AR and CR policies almost indistinguishable. While a wide range

affects the performance of AR policy when the fare ratio is low, and a narrow range

leads to conservative solutions when the fare ratio is high, robust policies remain

very robust, i.e., with demand information achieve at least 92% of the OFFLINE

revenues on the average in all the experiments.

Note that our last experiment only studied the effect of demand information

when the demand distribution had the correct mean, but had a range that was either

too narrow or too wide. The performance of robust policies can be very poor if the

range of demand is chosen arbitrarily, e.g., when there is no overlap between the

estimated range and the true range. However, such instances are not very realistic

and/or are problematic for any method that relies on demand information.

Example-2.7 In this example, m = 2, demand is Poisson distributed, arrivals

are time-homogeneous, and parameters of all control policies are computed assuming

a demand-mix of [40,40] for the booking horizon. However, there is an unexpected

surge and the demand doubles in the second half of the booking horizon, bringing

the demand-mix to [60,60]. This would be the case on certain routes or at certain

locations, e.g., during “March Madness” when the final four teams in the NCAA

basketball championship are determined. The average relative performance of the

policies as a function of the fare ratio r are given in Figure 2.13. EMSR performs

significantly worse when r is small because the optimal protection level chosen by

Littlewood’s rule decreases with r, and EMSR is not able to benefit from the unex-

pected surge in the demand of class 1. There is not a significant difference among
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Figure 2.13: Average performance of policies in Example-2.7

our policies; they all dominate EMSR and are dominated by MDP which is able to

adjust booking limits based on remaining time and capacity. Note that the policies

that are most aggressive in protecting seats for class 1 (e.g., STAT-AR, DYN-AR)

and can dynamically update the booking limits (e.g., DYN-AR) would do well in

this experiment.(See Example-A.10 in Appendix for the performance of our policies

with no demand information)

Next, we look at what happens when the demand distribution is misspecified.

Example-2.8 Here, m = 2 and the demand is again Poisson distributed.

The true demand for each fare class is 60 for the entire booking horizon. While

the true demand distribution of class 2 is known, only an estimate of the mean

demand for class 1 is available. All policy parameters are determined based on

this estimate and demand bounds are set to two standard deviations away from

the estimated mean. The fares are f1 = 500, f2 = 100. The average performance
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Figure 2.14: Average performance in Example-2.8 with time-homogeneous arrivals

gap for time-homogeneous and LBH arrivals are presented in Figure 2.15, where

the estimate of mean demand varies from 30 to 90. Notice that robust policies

with demand bounds behave similar to EMSR. They do relatively well given an

acceptable forecast error (e.g. in the range 45 to 75). LBH arrivals amplify the effect

of underestimating high-fare demand. Robust policies with demand information

do slightly better than EMSR when class 1 demand is underestimated or highly

overestimated. This is natural because (i) these policies tend to overprotect seats so

adverse affect of underestimating the demand for class 1 is less, and (ii) the demand

information is only valuable if the upper bound is no more than the capacity (i.e.

overestimation becomes less detrimental to the performance beyond a certain point).

While robust policies are sensitive to bound information in this example, this

is because the bounds used are relatively tight. The looser the bounds, the closer

the performance of policies with bounds to the ones with no demand information.
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Figure 2.15: Average performance in Example-2.8 with LBH arrivals

The last two experiments confirm that our policies with limited demand information

perform as good as EMSR under various scenarios. While MDP is quite robust to

the error in parameter estimation in this example, the next example shows what

happens when there are other misspecified parameters in the arrival process.

Example-2.9 The demand is Poisson distributed and demand-mix varies from

[120,0] to [0,120]. Other parameter setting is similar to Example 2.3. The mean

demand for the entire booking horizon is known. In this experiment, MDP assumes

stationary arrivals for the entire booking horizon, whereas all the demand arrives in

a rush only in the first half of the booking horizon. As seen in Figure 2.16, MDP

has poor performance when λ2 is high and λ1 is low because it ends up rejecting

too many class 2 requests. In contrast, robust policies and EMSR are not affected

by modeling/estimation errors regarding inter-arrival times. While this experiment

may be an extreme one, it illustrates that a control policy obtained via MDP is

43



80%

84%

88%

92%

96%

100%

[12
0,0

]

[11
0,1

0]

[10
0,2

0]

[90
,30

]

[80
,40

]

[70
,50

]

[60
,60

]

[50
,70

]

[40
,80

]

[30
,90

]

[20
,10

0]

[10
,11

0]

[0,
12

0]

mean demand [λ2,λ1]

av
er

ag
e 

pe
rfo

rm
an

ce
 g

ap

dyn-cr stat-cr dyn-ar stat-ar
bdyn-cr bstat-cr bdyn-ar bstat-ar
fcfs emsr mdp

Figure 2.16: Average performance in Example-2.9

sensitive to specification of stationary vs. non-stationary arrivals even though it

appears to be robust with respect to the rate of arrivals in a stationary regime.

Example-A.11 in the Appendix illustrates another example when demand arrives

until the second half of the booking horizon.

2.6 Summary of Chapter 2

These experiments demonstrated that the competitive analysis of online algo-

rithms approach is very promising in RM. Our focus here was on comparing those

robust policies with other popular policies given demand bounds. The average rev-

enues obtained by such robust policies in simulation studies are comparable to other

well-known procedures. They are very effective and provide consistent results, even

though they use no probabilistic information. Further, robust policies are not prone
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to errors in modeling demand.

Our numerical results indicate that the performance of policies do depend

on the choice of demand bounds. Furthermore, any policy that assumes a static

demand distribution can perform poorly if there are significant changes in demand

characteristics over time. This observation leads to our development of policies

based on time-dependent bounds in the next section.
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Chapter 3

Robust Dynamic Decision Making in Revenue Management

A revenue management system requires forecasts of quantities such as de-

mand, price sensitivity, and cancelation probabilities, and its performance depends

critically on the quality of these forecasts. Although there’s little doubt that good

forecasting is a vital step, it is usually a high-profile task, consuming huge resources

and is error-prone.

In addition to availability of data or credible information, another important

issue in RM is the decision makers attitude towards risk. A hotel property manager

may be more concerned about breaking-even in the first year and increasing his/her

chances of attaining a certain revenue level as opposed to increasing average rev-

enues. A risk neutrality assumption is also questionable in applications of RM to

one-time events such as concerts. While recent research in RM proposes models for

robust decisions and relaxes the risk neutrality assumption as we reviewed in Chap-

ter 2, the majority of that work proposes static policies that cannot be updated

during the booking horizon. These static policies typically rely on demand informa-

tion that is aggregated over the entire booking horizon. Our work in this chapter

extends this literature (i) by proposing multi-period models that use time-variant

information and (ii) by developing dynamic booking control policies. In the airline

and hotel industries, booking curves show significant differences across fare classes
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and over time (see for example Swan, 2002, Liu and Smith, 2002), motivating multi-

period models. Furthermore, being able to change the booking limits dynamically

over time has clear advantages in a multi-period setting.

In this chapter, we study the single-leg fare-class allocation (booking control)

problem in RM. We do not characterize uncertainty using probability distributions.

The only information we use about the demand is upper and lower bounds in a

given time interval. We develop methods that come with worst-case performance

guarantees: we use competitive analysis of online algorithms to obtain new booking

control policies. Our contributions can be summarized as follows: We propose

a new formulation of the single-leg, multiple-fare booking control problem when

only time-varying bounds on demand are available. Using competitive analysis, we

first analyze a multi-period, static decision problem, and show that booking limits

can be determined by solving a mixed-integer program (MIP). We then extend

our analysis to the booking control problem in a dynamic setting when the seller

can update his/her policy based on history. This is a challenging problem where

characterization of the optimal policy is difficult due to the curse of dimensionality.

We show that the structural properties of the decision problem in the single-period

and the multi-period static models do not generalize to the multi-period dynamic

one. We design efficient heuristic methods to obtain booking limits in this setting.

Our heuristics provide closed-form solutions. Hence, the computational burden is

minimal. Through computational experiments, we reveal the benefit of these new

dynamic policies. The average revenues obtained by dynamic heuristic policies can

be significantly higher than those of static ones or ones that are commonly used in
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practice.

The chapter is organized as follows. A literature review is provided in Section

3.1. Section 3.2 introduces competitive analysis and provides a brief description

of the multi-period problem. The static, multi-period problem is analyzed in Sec-

tion 3.3. The dynamic model is analyzed and two effective heuristics to solve the

dynamic problem are proposed in Section 3.4. Section 3.5 presents results of compu-

tational experiments. Conclusions and suggestions for further research are discussed

in Section 3.7.

3.1 Literature Review

We refer the reader to Section 2.1 for a review of research in single-leg RM. In

this section, we will only discuss the work that is closet to ours:

Ball and Queyranne (2006) and Lan (2008) are closest to ours in terms of

methodology. Ball and Queyranne (2006) use no information about the fare class

demand and obtain closed-form optimal solutions (achieving the maximum compet-

itive ratio as defined in the next section) for the static problem. We show their

policies are too conservative in our simulation studies in Chapter 2. To increase

the effectiveness of these policies, Lan (2008) propose using (estimated) lower and

upper bounds on demand. Lan (2008) use static, aggregate information on fare-

class demand. Their policies are designed to provide the best performance under

the worst-case scenario, and they discuss how the policies can be updated during

the booking horizon when the worst-case scenario is not realized, as would be the
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case in practical situations. Their dynamic policies are designed to use the same,

aggregate information as the static ones. An observation on the dynamic policies of

Lan (2008) is that a fare-class that has been closed at any time during the booking

horizon is never re-opened and these policies aggressively protect seats for higher

fare-classes. In contrast to Ball and Queyranne (2006) and Lan (2008), we use time-

variant information on fare class demand and extend their work to two different

settings: (i) a static setting, where booking limits are determined once at the begin-

ning of the booking horizon given time-variant bounds on fare-class demand, and (ii)

a dynamic setting, where booking limits can be dynamically updated to improve the

performance given time-variant bounds on fare-class demand. The former shows the

benefit of using additional information and serves as a benchmark for the dynamic

policies. The latter, as we show in our computational experiments, provides flexible

policies, with the ability to re-open a fare class that has been closed, resulting in

superior performance.

Recently, robust dynamic programming (RDP) has been proposed to solve

dynamic decision problems with ambiguities in problem parameters. We refer the

reader to Iyengar (2004) and the references therein for more information. RDP

is powerful in analyzing and solving the ‘robust’ version of a recursive, dynamic

programming model. In fact, the dynamic model analyzed by Birbil et al. (2006)

falls into the RDP category. In our framework, the objective function for the decision

maker is maximizing the competitive ratio, which is defined relative to an offline

optimal solution, obtained with hindsight information. This sets our work apart

from RDP models.
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3.2 Problem Definition

Our approach is similar to that of BQ and Lan (2008). We focus on the CR

policy, which is introduced in Section 2.4.3. We use the same notation as in Chapter

2. For the sake of completeness, we repeat the notation and the CR approach in

this section, while we introduce the specifics of our multi-period problem.

We study the booking control problem in single-leg RM with m fare classes

and n seats (units of capacity). The seller has to make seat allocation decisions

across m fares where fj is the unit revenue from class j, with f1 ≥ f2 ≥ · · · ≥ fm.

The planning horizon consists of T > 1 time periods. In each period, the seller does

not know the actual number of booking requests, nor their arrival sequence. The

only information that is available to the seller is lower and upper bounds of demand

in each fare class in each period. We use the notation Lt
j and U t

j for the lower and

upper bound, respectively, of demand for fare class j in period t, j = 1, ...,m and

t = 1, .., T . We use the vectors Lt = (Lt
1, ..., L

t
m) and U t = (U t

1, ..., U
t
m) for the

demand information in period t.

In practice, and also in research, it is common to use nested booking limits as a

booking control policy, where fare classes are nested based on revenue order. These

policies are shown to be optimal for the single-leg RM problem in many settings,

including Lan (2008). In this paper, we restrict our attention to nested booking limit

policies. Nested booking limit policies are based on a booking limit vector (b1, ..., bm)

with b1 ≥ ... ≥ bm ≥ 0. Here, bj denotes the maximum number of booking requests

in classes j, j + 1, ...,m that can be accepted. In our multi-period setting, where
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demand characteristics can change by time period, we explicitly model as decision

variables a revision to the booking limits at the beginning of each time period.

The vector of nested booking limits set at the beginning of period t is denoted

bt = (bt
1, ..., b

t
m). We only use the standard implementation of nested policies;

theft-nesting is excluded from our analysis (see Appendix A for information on

standard vs. theft-nesting). We assume the booking limits take continuous values.

In this distribution-free setting, we characterize the arrival of booking requests

using input sequences. An input sequence consists of a finite stream of fare requests

during the booking horizon. We use the notation ~I = [I1, ..., IT ] to denote the entire

stream of booking requests from the beginning of period 1 to the end of period T

where I t is the specific input for period t. An input I t includes information on the

order and the amount of each request in period t. While ‘bulk’ requests are allowed,

we assume each request belongs to a single fare product (this is without loss of

generality as will become clear in our analysis of worst-case input streams). We

assume any request can be split and accepted partially, i.e., group/bulk reservations

cannot be enforced in our model.

We use the simpler notation I for a generic input, when the context does not

require time-specific information on the booking requests. Given any input I, we use

the notation I[j] to denote the total number of class j requests in input I. Similarly,

I t[j] denotes the total number of class j requests given input I t in period t. For any

input I, we call the vector (I[1], ..., I[m]) the profile of input I.
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3.2.1 Nested booking limits

We now describe the application of standard nesting in a multi-period setting

from an algorithmic point of view: The execution of the algorithm (booking control

policy) in each period is driven by the period t nested booking limits bt = (bt
1, ..., b

t
m),

which are specified at the beginning of the period. The algorithm processes the pe-

riod t input I t, where requests arrive, requesting units of only one fare class. Let

C(s) and δ(s) be the fare class of and the amount of capacity requested by the sth

request, respectively, for s = 1, ..., ||I t|| where ||I t|| denotes the total number of re-

quests in input I t. When standard nesting is applied, each request in I t is processed

using an effective booking limit initialized as b̂t = bt. The effective booking limits

are continuously updated as the algorithm executes to process the input requests in

period t. Algorithm PNEST(t) below shows the evolution of the effective booking

limits in period t.

PNEST(t)

Step 0: Let n ≥ bt
1 ≥ · · · ≥ bt

m be the period t nested booking limits, and set

b̂t = bt. Let s = 1.

Step 1: After receiving request s, min(b̂1
C(s), δ(s)) units of it is accepted.

Step 2: Update the effective booking limit starting from class 1

b̂1
1 ← b̂t

1 −min(b̂t
C(s), δ(s)), (3.1)

and iteratively computing

b̂t
j ← min(b̂t

j−1, b̂
t
j −min(b̂t

C(s), δ(s))) j = 2, ..., s. (3.2)
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b̂t
j ← min(b̂t

j−1, b̂
t
j) j = s + 1, ...,m. (3.3)

Step 3: If s < ||I||, then s← s + 1 and go to Step 1. Otherwise, stop.

Of course, this procedure would be executed iteratively for each period. The

subject matter of this chapter is the determination of the booking limits that drive

each execution. One could view each time period as an individual application of

a booking control policy so that bt is set based on the characteristics of that one

time period. Alternatively b1 could be viewed as a booking control policy for all T

periods, which might be dynamically adjusted (or not) as one moved from period

to period. A static policy that did not make any adjustments would simply set bt

to b̂t−1 at the beginning of each period t for t > 1.

3.2.2 Performance criteria: Competitive ratio

We employ competitive analysis of online algorithms to determine the nested

booking limits in this paper. In competitive analysis, we are interested in determin-

ing an algorithm that maximizes the competitive ratio (see Albers, 2003, for more

information on competitive analysis and its use in algorithm design and analysis).

Competitive ratio (CR) is defined as the minimum of the ratio of revenues obtained

by an online algorithm to the offline optimal revenues, obtained with hindsight in-

formation. For a generic problem, if we let Ω be the set of all feasible (possible)

input sequences to an online algorithm Υ and, for any I ∈ Ω, let R(I; Υ) be the

objective value achieved by the online algorithm for input I and let R∗(I) be the
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objective value achieved by an optimal offline algorithm. Then, CR is defined as:

CR of Υ = inf
I∈Ω

R(I; Υ)

R∗(I)
.

Note that the CR as defined above applies to a deterministic algorithm, i.e., algo-

rithm that applies the same decision rule and yields the same output for a given input

sequence as opposed to “randomized” algorithms that make some choices based on

the draw of a random number. Our focus is on deterministic algorithms in this

paper. Given the CR, the seller’s problem is to find an algorithm that maximizes

the CR

sup
Υ∈ΠΥ

inf
I∈Ω

R(I; Υ)

R∗(I)

where the set ΠΥ is the set of feasible/admissable algorithms.

Using the above definitions as starting points, one can view the problem of

determining CR and an associated optimal policy as solving an optimization problem

defined relative to a very large constraint set (based on all input streams in Ω). On

the other hand, it is often instructive to view the problem as a competition between

an algorithm designer and an adversary in charge of generating booking requests.

The adversary is aware of the seller’s algorithm (nested booking limits in our case)

and chooses an input sequence (the number of requests and the arrival sequence) to

minimize the algorithm performance (i.e., so that the algorithm achieves the lowest

CR). We will use this paradigm to provide intuition and motivate proofs, however,

most proofs appeal directly to the definition.

Note that our definition of CR so far does not use specifics of a multi-period

problem and does not refer to dynamic decision making. This will be done in more
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detail in Sections 3.3 and 3.4. In the static model analyzed in Section 3.3, the seller

has to commit a policy at the beginning of the booking horizon. This particular

model is more of theoretical interest: First, it extends the analysis in Lan (2008)

to a multi-period setting and shows the complications associated with multi-period

problems. Second, the analysis of the static model serves as a stepping stone for the

analysis of the dynamic model, which is introduced in Section 3.4. The dynamic

model is designed such that the seller, after observing the performance in prior

periods, can choose the booking limits at the beginning of each period. Analysis of

the dynamic model allows us to develop effective heuristic policies which are tested

computationally in Section 3.5.

3.3 Static Booking Control Policies using Time-varying Demand In-

formation

In this section, we analyze a problem where the seller is restricted to a static

booking limit policy. The seller uses multi-period demand information as outlined

in the previous section, but does not update his/her policy anytime during the

booking horizon. Specifically, for t > 1, when PNEST(t) is executed, bt is set

equal to the effective booking limit vector at the end of the prior period, b̂t−1.

Note that under this approach the execution of the policy is effectively blind to time

period boundaries, although the characteristics of demand in each time period could

certainly be taken into account in setting the initial policy. Thus, the seller’s only

decision is the vector b1 at the beginning of the booking horizon. The optimization
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problem of the seller in this case can be expressed as

max
n≥b1j≥0,j=1,..,m

z : z ≤ R(~I, b1)

R∗(~I)
,∀~I = [I1, ..., IT ], I t ∈ Ωt(Lt, U t) t = 1, .., T (3.4)

where Ωt(Lt, U t) is the set of feasible sequences for period t such that for any I ∈

Ωt(Lt, U t), we have Lt
j ≤ I[j] ≤ U t

j for all j = 1, ...,m. R(~I; b1) is the revenue

obtained by the seller when policy b1 is used to process input ~I and R∗(~I) is the

offline optimal revenue, obtained with perfect hindsight, after observing input ~I. We

sometimes refer to the policy revenue R(~I; b1) as ‘the online revenue’ or the ‘online

policy revenue’. Note that the offline optimal revenue R∗(~I) depends only on the

profile of the input, but not on the sequence in which requests arrive. Given ~I[j] for

j = 1, ..,m, the offline optimal revenue is easily determined by solving a continuous

knapsack problem.

This model differs from that of Lan (2008) as input sequences have period-by-

period feasibility requirements. The Lan (2008) model is a special case with T = 1.

Notice that the optimization problem in (3.4) has infinitely many constraints, which

correspond to the feasible input sequences. We will now develop some properties of

the static policy, which will lead to an approach to determining an optimal policy.

3.3.1 Sequence reduction in the static model

In order to make the underlying optimization problem (3.4) tractable, we will

reduce its size: specifically the number of constraints. We first focus on the order

in which fare requests arrive.

Proposition 1 Given a nested booking limit policy b1, a period-wise LBH sequence
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minimizes the CR.

Proof Consider an input ~I = [I1, ..., IT ] where I t is not LBH for some t, 1 ≤ t ≤ T .

There is a corresponding LBH input I ′t with exactly the same profile as I t. Define

~I ′ = [I1, ..., I ′t, ..., IT ], which replaces I ′t of ~I with I ′t. The offline optimal revenues

from sequences ~I and ~I ′ are the same. Given a static nested booking limit vector b1,

both sequences result in the same decisions/performance prior to period t. Since a

nested policy is employed, (i) the online revenues with input I t are at least as much

as the online revenues with I ′t at the end of period t while the remaining capacity,

nt, is the same, and (ii) effective booking limits of fare classes after processing inputs

I ′t and I t are equal (Proposition 1 of Lan (2008)). Therefore, the online revenues,

hence the CR, is lower when input ~I ′ is used. The proof is completed by replacing

an input I t that is not LBH with the LBH input of the same profile for t = 1, ...T . •

While the result in Proposition 1 eliminates many possible input sequences,

the constraint space in (3.4) is still huge (actually it is still unbounded). We now

introduce the notion of an extreme sequence which we show is non-dominated from

the adversary’s point of view: Inputs with arbitrary profiles result in higher CR

compared to the extreme sequences.

Definition 1 (Extreme input sequence) The jth extreme input sequence for period

t is the LBH input with the profile I t[k] = Lt
k for k < j and U t

k for k ≥ j, defined

for j = 1, ...,m.
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We denote the set of extreme input sequences for the entire booking horizon as Q

such that if ~I = [I1, ..., IT ] ∈ Q, then I t is one of the m extreme sequences defined

for period t, t = 1, ..., T . The proof of the next result is in Appendix B.1.

Proposition 2 Given a static, nested booking limit policy b1 and the set Q of ex-

treme input sequences, the lowest CR is achieved by one of the inputs in set Q. That

is, for any feasible input sequence ~I, we have

R(~I, b1)

R∗(~I)
≥ min{R(~I∗, b1)

R∗(~I∗)
, ∀~I∗ ∈ Q}. (3.5)

We provide intuition for the proof for m = 2 using the adversary paradigm:

Consider a one-period problem first. Suppose the seller chooses a booking limit that

protects too many seats for class 1. In that case, the adversary chooses to send the

minimum feasible amount of class-1 requests so that the seller ends up with idle seats

and regrets having rejected class-2 requests early on. Sending the minimum quantity

of class-1 requests also reduces the offline optimal revenue, but the difference in

offline and optimal revenues favors the adversary’s decision; minimum CR in this

case is achieved by an input that has fewer class 1 requests. If the booking limit

chosen by the seller protects too few seats for class 1, then the adversary prefers

to send as many class-1 requests as possible to maximize the offline optimal while

minimally affecting the online revenues. The adversary always sends the maximum

feasible amount of class-2 requests in this problem. Given that the effective booking

limits remain nested after processing each request and that only LBH inputs are of

concern, the argument above is easily extended to multiple fares and periods.
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There is one important observation about the multi-period problem, though.

The number of input sequences can further be reduced from mT because some of

the extreme input sequences for periods that come later in the booking horizon are

dominated. This is implicit in the proof of Proposition 2. Given a policy b1, if it

is beneficial for the adversary (increasing the difference between online and offline

revenues) to send as many class k requests as possible in period t so that the seller

rejects as many of the class k requests in that period, then clearly the adversary

prefers to send as many class k requests in the remainder of the booking horizon

to ensure the CR is minimized. Additional requests of class k in later periods

can increase the offline optimal revenue but not online revenues because they will

be rejected by the seller who is using a static nested booking limit policy where

booking limits are non-increasing over time.

Corollary 1 If the minimum CR is achieved by a period-wise LBH input sequence

~I = [I1 · · · IT ] ∈ Q with profile I t[k∗] = U t
k∗ in period t for some k∗, then ~I has

profile Is[k] = U s
k for all k ≥ k∗ and s > t.

Using this last observation, the total number of input sequences in a two-

period, m-fare problem reduces from mT to (m + 1)m/2. However, for longer book-

ing horizons, the number of constraints in problem (3.4) is still in the order of mT .

In practical problems in airline RM, m is typically no less than 3 and no more than

15. When the number of periods is chosen carefully, the number of constraints in

problem (3.4) can be kept to a manageable level. Using the properties of nested

booking limits, the optimization problem (3.4) can be expressed as a mixed inte-
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ger programming (MIP) model to determine the optimal static booking limits in

this multi-period setting. We provide the MIP model in Appendix B.2, where the

differences between the policies obtained by our multi-period static model and the

policies derived from the single-period static model of Lan (2008) are also discussed.

3.4 Dynamic Booking Control Policies with Time-varying Demand

Information

In this section, we extend the seller’s policy to change dynamically over time

based on the history of orders processed so far. The decision for the seller at the

beginning of period t is the vector of nested booking limits bt. Let Rt be the seller’s

accumulated revenue and nt be the remaining capacity at the beginning of period

t. Both Rt and nt depend on the booking limit vectors b1, .., bt−1 that were used to

process input sequences I1, ..., I t−1, respectively, in the previous periods. We call the

pair (Rt, nt) the state of the system at the beginning of period t. Introducing new

notation, we use ~b = (b1, ..., bT ) for the decisions the seller makes throughout the

booking horizon. We still use ~I for the entire input sequence consisting of I1, ..., IT .

At the beginning of period t, the seller chooses a new vector of nested booking limits,

knowing the state (Rt, nt). The goal for the seller is to determine the booking limit

policy that will maximize the CR for the entire booking horizon.

The seller’s CR with multi-period policy vector ~b on sequence ~I is Rd(~I,~b)

R∗(~I)
where

Rd(~I,~b) =
∑T

t=1 R(I t, bt). The seller makes T decisions during the booking horizon

with the end-of-horizon goals of maximizing Rd(~I,~b)

R∗(~I)
.

60



Similar to the static problem introduced in Section 3.3, one complication in

this dynamic problem is its size due to the feasible number of input sequences

in each period. Note also that the optimization problem for the seller cannot be

expressed recursively in any simple way. The offline optimal revenue is not additive

per period, but requires knowledge of the entire T -period input. In the remainder

of this section, we use input sequence reduction and linear programming to analyze

and provide solutions to this complex decision problem. Our analysis shows that

we only need to consider LBH sequences (i.e., these dominate from the adversary’s

perspective). While we show that the number of non-dominated input sequences is

m+1 in the last period, the set of non-dominating sequences in any period other than

the last cannot be reduced to a manageable level; the decisions are state-dependent.

Therefore, we resort to effective heuristic methods in solving the dynamic model.

The heuristic methods that we develop after analyzing the dynamic model

allow the seller to re-open a fare class (if needed) and update his/her booking limits

in any period based on the current performance of the policy and the state of the

system at that point in time. The heuristics rely on solutions of the problem for

the last period of the booking horizon, for which sequence reduction is successfully

applied and the optimal nested booking limits are computed in closed form.
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3.4.1 Analysis of the decisions made in period T when T > 1

Given the state (RT , nT ) and the inputs I1, ..., IT−1 at the beginning of period

t = T , the CR problem can be stated as follows:

max
nT≥bT

j ≥0,j=1,...,m
z : z ≤ RT + R(IT , bT )

R∗(I1 · · · IT−1IT )
∀IT ∈ ΩT (LT , UT ). (3.6)

Similar to our analysis of the static model, we first prove that the input sequence

that minimizes the CR in the last period is LBH.

Proposition 3 The minimum CR is achieved by a LBH input sequence in period

t=T.

Proof Proof is similar to that of Proposition 1 and is omitted. •

We next investigate the adversary’s choices for the amount of requests that

will arrive. In Lan (2008) for T = 1 and in our static model for T > 1, the lowest CR

is shown to be achieved by one of the m extreme input sequences in a given period.

Unfortunately, this set of extreme sequences does not completely characterize the

adversary’s actions in a multi-period, dynamic problem.

Definition 2 (Complete set of extreme sequences) The complete set of extreme se-

quences, denoted Q∗T , consists of m + 1 LBH sequences, where the jth sequence in

Q∗T , denoted I∗T,j has profile I∗T,j[k] = Lk for k < j and I∗T,j[k] = Uk for k ≥ j

for j = 1, ...,m, and the (m + 1)st sequence has profile I∗T,m+1[i] = LT
i for all

i = 1, ...,m.
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Proposition 4 Given the state (RT , nT ), the inputs I1, ..., IT−1, and a nested book-

ing limit policy bT , the lowest competitive ratio in the multi-period, dynamic problem

is achieved by an LBH input belonging to the complete set of extreme sequences Q∗T ,

i.e., for any feasible input sequence I ∈ ΩT (LT , UT ),

RT + R(I, bT )

R∗(I1 · · · IT−1I)
≥ min{ RT + R(IT , bT )

R∗(I1 · · · IT−1IT )
,∀IT ∈ Q∗T}. (3.7)

Proof See Appendix B.3. •

In the single-period and multi-period static formulations, the extreme se-

quences are such that the adversary always sends the maximum number of requests

of class m. Because the booking limits are nested and effective booking limits re-

main monotonically non-increasing over time (if a class is closed, it remains closed)

in the static models, the adversary can improve his offline performance and reduce

the CR by sending the highest possible amount of class m in each period. In con-

trast, the adversary can choose to send the minimum number of class m requests as

a way to minimize the CR in the dynamic model. Consider the following scenario:

If the seller reaches the last period with a high number of unsold seats and having

rejected requests in the previous periods (indicating some fare classes were closed in

those periods), then he can revise his decision and reopen some of those classes in

the last period. To guard against a situation where the seller significantly increases

his revenues by reopening fare classes, the adversary chooses to send the minimum

number of requests possible in period T . In this case, the difference between the

online revenue and offline optimal revenue is mainly due to differences in decisions
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made in periods prior to the last: the seller regrets having rejected too many re-

quests in the previous periods because the adversary causes him to have unsold seats

at the end of the booking horizon.

3.4.2 Optimal booking limits in period T for T > 1

Proposition 4 reduces the number of input sequences to be considered in period

T to only m+1. This is a significant reduction in the problem size and allows us to

develop a linear programming model (LPM) to solve the CR problem given in (3.6).

In LPM, we use the following auxiliary parameters:

NT
1 = nT , NT

k = [nT −
k−1∑
i=1

LT
i ]+ for k = 2, ...,m

Instead of the nested booking limits bT
1 , ..., bT

m, we use xT
1 , ..., xT

m as the decision

variables in LPM. We call xT
j the bucket size for class j in period T and define

xT
m = bT

m, xT
i = bT

i − bT
i+1 for i = 1, ...,m− 1.

(LPM) max z

s.t.

R∗(I1 · · · IT−1I∗T,k)z ≤ RT +
k−1∑
i=1

fiL
T
i +

m∑
i=k

fix
T
i , k = 1, ...,m,(3.8)

R∗(I1 · · · IT−1I∗T,m+1)z ≤ RT +
m∑

i=1

fi min(LT
i , NT

i ) (3.9)

m∑
j=1

xT
j ≤ nT (3.10)

0 ≤ xT
j ≤ UT

j , j = 1, ...,m (3.11)

Constraints (3.10) and (3.11) are natural for any booking limit policy: the former

assures total seats allocated to fare classes does not exceed the remaining capacity
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and the latter assures that there is no ‘slack’ allocation (i.e., the number of seats

allocated to a fare class is no more than the maximum demand for that class). LPM

has one constraint for each of the extreme sequences to represent the CR achieved

by the booking control policy, stated in inequalities (3.8) and (3.9). The closed-form

solution of LPM is stated below.

Proposition 5 Given state (RT , nT ) and inputs I1, ..., IT−1, the optimal solution

to LPM is computed as follows: If u < m or u = m and θu ≤ π, then

z∗ = θu (3.12)

x∗T
k =


gkz

∗ + LT
k 1 ≤ k < u

(R∗
kz

∗ −
∑k−1

i=1 fiL
T
i −RT )/fk k = u

0 k > u,

(3.13)

otherwise

z∗ = π (3.14)

x∗T
k =


gkz

∗ + LT
k 1 < k ≤ m

min(UT
1 , nT −

∑m
i=2(L

T
i + giπ)) k = 1

(3.15)

where the auxiliary parameters are computed as

gm = R∗
m/fm, gk = (R∗

k −R∗
k+1)/fk ≥ 0, k = 1, ...,m− 1,

u = max{j : (RT +

j−1∑
i=1

fiL
T
i )

j−1∑
i=1

gi < NT
j R∗

j},

θu =
(RT +

∑u−1
i=1 fiL

T
i )/fu + NT

u

R∗
u/fu +

∑u−1
i=1 gi

,

π =
RT +

∑m−1
i=1 fiL

T
i + fm ∗min(LT

m, NT
m)

R∗
m+1

,
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and R∗
k is the offline optimal revenue of the T -period input ~I = [I1, ..., IT−1, I∗T,k]

with extreme sequence I∗T,k for k = 1, ...,m + 1.

Proof See Appendix B.4. •

While the left hand side of the constraints (3.8) and (3.9) represent the offline

optimal revenues for the given extreme input, the right hand side provides only an

upper bound on the online revenues. Therefore, the formulation in LPM provides

an upper bound on the true objective function of the CR problem introduced in

(3.6). However, when the binding constraints are taken into consideration only, the

optimal solution to LPM yields the correct CR for the given bucket sizes.

Proposition 6 Given state (RT , nT ) and inputs I1, ..., IT−1, if z∗ is the CR achieved

by the nested booking limit policy b∗T defined as

b∗Tk =
m∑

i=k

x∗T
i , k = 1, ...,m (3.16)

where x∗T
k , k = 1, ...,m and z∗ are the optimal solution to LPM, then z∗ is the

maximum last period CR as defined in equation (3.6) and b∗T is a policy that achieves

this maximum.

Proof See Appendix B.5. •

This last result gives credibility to use of LPM, for which closed-form optimal solu-

tions exist.
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3.4.3 Analysis of decisions in periods t < T

Next, we focus on the decisions made prior to period T . Ideally, one should

be able to solve the dynamic problem using backward recursion. While the curse of

dimensionality is expected, one can hope to reduce the number of extreme sequences

in each period to a manageable level, similar to the case in the static problem. Given

the properties of the multi-period static solution, it is not surprising that CR is

minimized by period-wise LBH inputs in the dynamic problem.

Proposition 7 The minimum CR is achieved when input sequences in each period

are LBH.

Proof Proof is similar to that of Proposition 1 and is omitted. •

Unfortunately, further sequence reduction is not possible for a general, dy-

namic problem because the adversary’s non-dominated choices in period t < T

depend on (Rt, nt) and cannot be characterized by a predefined set of extreme se-

quences. This is in contrast to what is observed in single- and multi-period static

models or in the last period of the dynamic model, where the number of extreme

sequences are reduced to m or m + 1, respectively.

Proposition 8 Given that the seller restricts her choices to a nested booking limit

policy bt in period t < T , the adversary can choose an LBH input I t in period t with

the profile Lt
k < I t[k] < U t

k to minimize the CR.

Proof We provide an example to prove this. Consider T = 2, m = 2, n = 14,

f1 = 2, and f2 = 1. The demand information is U1
1 = 4,L1

1 = 2,U1
2 = L1

2 = 5,
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U2
1 = 3,L2

1 = 1,U2
2 = 5, and L2

2 = 2. By Proposition 4, there are three extreme input

sequences in the second period, denoted as I∗2,1, I∗2,2, I∗2,3, respectively. Consider

an LBH input I1 with the profile I1[2] = L1
2 = 5 and I1[1] = L1

1 = 2 for t = 1. We

call this Input-1. Consider two other alternative LBH inputs for t = 1, with profiles

I1[2] = U1
2 = 5, I1[1] = U1

1 = 4 and I1[2] = 5,I1[1] = 3, called Input-2 and Input-3,

respectively. Note that Input-1 and Input-2 represent all the inputs for t = 1 where

the demand for each fare class takes either the lowest or the highest possible value.

(If one were to define the set of extreme sequences for t = 1, these two inputs would

constitute its superset.)

In Table 1, we fix the seller’s and adversary’s decisions in period t = 1, and

compute the optimal decisions in the second period. When we start with b1
2 = 0

and Input-1 in t = 1, the resulting CR is 0.6154 after computing optimal decisions

in period t = 2. When b1
2 = 0 is used to process Input-2 and Input-3 in t = 1,

the CR is 0.7059 and 0.6666, respectively, after second period optimal decisions are

computed for the seller and the adversary. Therefore, if seller chooses b1
2 = 0 in

t = 1, the adversary would choose Input-1 over Input-2 and Input-3 to achieve the

lowest CR. However, if the seller chooses b1
2 = 5 in t = 1, the CR are 0.9474, 0.9474,

and 0.9444, for Input-1, Input-2 and Input-3, respectively. In this case, Input-3 is

clearly a better choice for the adversary: It yields a lower CR compared to Input-2

and Input-3. This shows that given a nested booking limit policy in period t = 1,

the adversary has non-dominated inputs where the number of requests in each fare

class is not equal to the minimum or the maximum feasible amount.

68



Input-1 in t = 1: Input-2 in t = 1: Input-3 in t = 1:
I1[1] = L1

1 = 2 I1[1] = U1
1 = 4 L1

1 < I1[1] = 3 < U1
1

I1[2] = U1
2 = L1

2 = 5 I1[2] = U1
2 = L1

2 = 5 I1[2] = U1
2 = L1

2 = 5

Optimal Optimal Optimal
in t = 2 in t = 2 in t = 2

b1
2 b2

2 input CR b1
2 b2

2 input CR b1
2 b2

2 input CR

0 12 I∗2,3 0.6154 0 10 I∗2,3 0.7059 0 11 I∗2,3 0.6666

1 11 I∗2,3 0.6923 1 9 I∗2,3 0.7649 1 10 I∗2,3 0.7333

2 10 I∗2,3 0.7692 2 8 I∗2,3 0.8235 2 9 I∗2,3 0.8000

3 9 I∗2,3 0.8461 3 7 I∗2,3 0.8825 3 8 I∗2,3 0.8666

4 8 I∗2,3 0.9231 4 4 I∗2,3 0.9412 4 7 I∗2,3 0.9333

≥ 5 7 I∗2,1 0.9474 ≥ 5 3 I∗2,2 0.9474 ≥ 5 4 I∗2,2 0.9444

Table 3.1: An example to characterize the solution to the two-period dynamic prob-

lem

•

This property is expected in dynamic decision making. Thus, non-dominated

sequences appear difficult to characterize for t < T . Therefore, we are unable to

reduce the general, dynamic model to a compact form that is amenable to optimiza-

tion. However, effective heuristics can be developed.

3.4.4 Heuristics methods for the dynamic model

We introduce two heuristic methods that can be used in a rolling-horizon

fashion to solve the dynamic, distribution-free, single-leg RM problem. Each of the

heuristics takes advantage of the properties of the last period solution.

Rolling Horizon Heuristic (ROH): This heuristic first aggregates bounds
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of all the periods for each fare class, solves the single-period model of Lan (2008),

and determines a static booking limit vector which is used to control the bookings

in the first period. Starting from the second period, reoptimization is done by

aggregating the bounds of each fare class for the remaining periods, and solving the

last-period problem LPM. The solution of LPM is then used to control bookings for

one period. At the end of that period new aggregate bounds are computed and the

process iterates. That is, LPM is resolved in a rolling-horizon fashion starting from

the second period.

Rolling Horizon, Lower-Bounds Adjusted Heuristic (ROL): This ap-

proach can be viewed as a slight adjustment to ROH. As in ROH, aggregate bounds

are used to obtain the static solution from Lan (2008) prior to the start of the first

period. The solution to LPM is used in periods t > 1. However, the booking limits

provided by Lan (2008) for t = 1 or by LPM for t > 1, denoted b∗t = (b∗t1 , ..., b∗tm), are

adjusted to protect more seats for higher-fare classes early in the booking horizon.

The adjustment results in new booking limits, denoted b
∗t(a)
j , and are computed

starting with class m,

b∗t(a)
m = max(0, (b∗tm −

T∑
s=t+1

Ls
m)+),

b
∗t(a)
j = max(b

∗t(a)
j+1 , (b∗tj −

T∑
s=t+1

Ls
i )

+), j = m− 1, m− 2, ..., 1. (3.17)

Equation (3.17) can be interpreted in this way: LPM suggests a booking limit of b∗tj

for class j while the guaranteed minimum number of requests in class j after period

t is
∑T

s=t+1 Ls
j . In this case, one may be able to delay selling to class j: the booking

limit of class j in period t is reduced by the quantity of class j requests guaranteed
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to arrive in later periods. This has the effect of reserving more capacity for higher

fare orders in time period t, knowing that if the seats that are protected for higher

fares are unsold at the end of period t, they can be sold to class j in the remaining

periods.

3.5 Computational Results

The models we developed in this chapter improve the worst-case performance

compared to existing methods that use competitive analysis. However, it is typical

for worst-case analysis to provide very conservative solutions to a decision problem

and the average performance of suggested policies may not be superior in practical

situations. We designed computational experiments (i) to quantify the performance

of our dynamic policies, (ii) to compare our policies to other well-known procedures

in multi-period, single-leg RM, and (iii) to show the practical value of our heuristics

under various demand scenarios and parameter settings.

We evaluate several booking control methods using simulation. Below is a

complete list. Note that some of methods require probabilistic characterization of

demand.

• OFFLINE is the policy that has hindsight information. After each simulation

run, the offline optimal revenue and offline optimal policy are determined with

perfect information.

• FCFS is the first-come-first-serve policy that accepts any booking request up

to the capacity. Effectively, all booking limits are equal to the (remaining)
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capacity in this policy.

• ROH is our rolling-horizon heuristic as described in Section 3.4.4.

• ROL is our rolling-horizon heuristic that protects more seats for higher fares

early in the booking horizon; see Section 3.4.4.

• STSE is the static, nested booking limit policy derived from our static, multi-

period model by solving the MIP provided in Appendix B.2. The booking

limits of this policy are not updated during the booking horizon.

• ASTAT is the nested booking limit policy derived from the static, single-period

model of Lan (2008). The demand information is aggregated, i.e.
∑T

t=1 Lt
i

and
∑T

t=1 U t
i are used as the lower and upper bound, respectively, of fare-class

demand in this model.

• TROH is the rolling horizon application of ASTAT, i.e. ASTAT is resolved at

the beginning of every period based on the aggregate future demand bounds

and the remaining capacity to obtain a nested booking limit policy.

• REMSR is the rolling horizon application of the nested booking limits sug-

gested by of Littlewood (1972) for m = 2, see Chapter 2.

• REMSR-b is the rolling horizon application of the EMSR-b method of Belob-

aba (1989), see Chapter 2.

• ADYN is the dynamic method suggested by Lan (2008) that uses aggregate

demand bounds at the beginning of the booking horizon to determine nested
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booking limits and updates the policy parameters after each accepted request.

• MDP is the Markov Decision Process model of Lee and Hersh (1993), see

Chapter 2. We evaluate this policy in the experiments where the demand is

Poisson distributed.

In several experiments, we report the performance of the policies relative to

OFFLINE. We call this measure performance gap. The average performance gap for

a policy is obtained by taking the ratio of the policy revenue to OFFLINE revenue

at the end of each simulation run, and then computing average of this ratio across

all simulation runs in an experiment.

Each instance in each experiment involves 6000 simulation runs. The parame-

ters of our policies are computed by setting the lower and upper bounds of demand

to two standard deviations away from the mean demand of each fare class. Requests

of each fare class arrive in random order, with arrival times distributed uniformly,

in each period.

3.5.1 Experiments with only two fare classes

We use an example with m = 2 and T = 3. Demand of for each fare class is

normally distributed in this section unless noted otherwise.

Example 3.1 In this example, capacity is 200 seats and the demand factor

is 1.2. The fare ratio, defined as r = f2/f1, ranges from 0.1 to 1.0. Mean demand

for each fare class in each period is listed in Table 3.2, the coefficient of variation

(CV) of demand is 1/3 for each fare class in each period, except for class 1 in the
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second period, which has a CV of 1. This parameter setting represents the practical

situation where demand for class 1 arrives later, and is more volatile early in the

booking horizon.

Class Period-1 Period-2 Period-3 Aggregate

1 0 40.0 80.0 120.0

2 40.0 40.0 40.0 120.0

Table 3.2: Expected demand in Example 3.1

Figure 3.1 shows how the average performance gap of each policy varies with

r. Note that the use of dynamic policies and time-dependent demand information

significantly improves average performance, especially when r is in the middle range

in this experiment: The performance gap of ADYN, ROL or ROH is about 2%

higher than that of ASTAT and STSE. This improvement illustrates the value of re-

optimizing the booking limits considering revenue on-hand and remaining capacity

at the end of each period. REMSR is dominated by heuristics ROH and ROL,

even though REMSR uses a probabilistic characterization of demand and updates

the booking limits in each period. TROH continuously tries to guard against the

worst-case scenario without taking into account accumulated revenue in each period;

therefore its performance is inferior.

Example 3.2 The set up is the same as in Example 1 here, except for changes

in the demand characteristics. The expected demand values are listed in Table 3.3,

where the expected total demand for class 1 is only half of the expected demand for

class 2. Figure 2 displays the average performance gap of the policies.

In this example, our heuristics ROH and ROL are again almost indistinguish-
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Figure 3.1: Average performance of policies in Example 3.1

Class Period 1 Period 2 Period 3 Aggregate

1 0 20.0 60.0 80.0
2 56.0 52.0 52.0 160.0

Table 3.3: Expected demand in Example 3.2
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Figure 3.2: Average performance of policies in Example 3.2
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able from each other and they dominate policies that do not use time-dependent

information. Notice that their performance is also significantly better than REMSR,

which has inferior performance because the demand for class-1 varies significantly

across time periods. In our experience, REMSR typically performs well when the

mean demand is stable over time and the variance is small.

Example 3.3. In this experiment, we increase the total capacity in Example

1 to 240 seats, while keeping the demand parameters the same. This reduces the

expected demand factor to 1.0. The main observations from Figure 3 are similar to

those of Example 1, with the notable difference being in the relative performance

of ADYN, which is dominated in this case. Our heuristics ROL and ROH still

have higher performance than ASTAT, STSE, REMSR and TROH. Both ROL and

ROH policies close and then reopen class 2 in this experiment when the remaining

capacity at the beginning of period 3 is high.

The results of these experiments are very encouraging: The proposed two-

stage re-optimization heuristics ROL and ROH perform better than ASTAT and

STSE using aggregate demand information, much better than the REMSR, which

is commonly used in airline RM practice, and considerably better than a policy that

naively applies the methods of Lan (2008) in a rolling horizon framework. Besides,

ROL and ROH are more robust to changes in fare ratio, load factor, demand mix.

Finally, these dynamic policies close and reopen lowest fare class (if favorable).
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Figure 3.3: Average performance of policies in Example 3.3
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3.5.2 Experiments with m > 2

The above examples are limited to two fare classes, each with moderate de-

mand variability (CV is at most 1). This second group of experiments are im-

plemented for examples with m = 4 and T = 3. TROH is excluded from the

experiments in this section due to its inferior performance.

Example 3.4 Fare-class demand is normally distributed in this example. The

fares and mean and standard deviation of demand are listed in Table 3.4. We

experiment with three different choices of demand variability, differentiated as L

(low), M (medium), and H (high) in Table 3.4. The capacity is 250 and the average

demand factor is 1.23.

Period-1 Demand Period-2 Demand Period-3 Demand

stdev stdev stdev

class fare mean L M H mean L M H mean L M H

4 350 13.2 5 10 20 13 5 10 20 13.2 5 10 20

3 527 30 10 20 30 60 20 30 73.6 56.6 20 30 40

2 567 0 0 0 0 45.1 18 35.1 57.1 45.1 10 20 30

1 1030 0 0 0 0 10 5 20.6 37.7 24.6 8 12.7 24.7

Table 3.4: Parameters used in the experiments in Example 3.4

As observed in Figure 3.4, when the variance of demand is low, all policies,

except FCFS, perform well, achieving at least 92% of the OFFLINE. When demand

variance increases, the average performance of all methods decreases. However the

performance gap of REMSR-b degrades more than other methods, and it can only

achieve 81% of OFFLINE revenues under high variance. This is expected because

EMSR-b is not able to accurately pool the demand information. The key take-
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away from this experiment is that both ROL and ROH have the highest average

performance gap, outperforming all others by more than 1.5% when demand variance

is low, and ROL, ROH, ADYN outperform others by over 1% when variance is

medium or high. This shows the practical value of heuristics ROH and ROL. While

the differences are small, they are statistically significant: Table 3.5 reports the

standard error of the performance gap for each policy when demand variance is

high.

ROL ROH STSE ASTAT REMSR-b FCFS ADYN

0.038% 0.039% 0.040% 0.041% 0.0375% 0.047% 0.032%

Table 3.5: Standard error of the estimates of performance gap in Example 3.4

Example 3.5 In this example, the demand in each period is Poisson dis-

tributed. The problem parameters are listed in Table 6. We experiment with dif-

ferent demand factors in this example. When the capacity is 225, 250, and 275, the

average demand factor is 1.30, 1.17, and 1.07, respectively. This is one experiment

where MDP provides the optimal policy for the underlying stochastic model: MDP

uses complete information about the arrival process and achieves approximately 99%

of the OFFLINE revenues as seen in Figure 5. ROL and ROH outperform all other

heuristics based on the performance gap. In addition, ROL and ROH have more

stable performance compared to others. When the load factor is lower (capacity is

250 or 275), both ROL and ROH re-open fare classes that are closed, which explains

the difference between these heuristics and ADYN in this experiment for the case

where variance of demand is not high.
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Mean demand in

class fare period 1 period 2 period 3

4 350 23.2 23.2 23.2

3 527 20.0 40.6 40.6

2 567 0 35.1 35.1

1 1030 0 20.0 24.6

Table 3.6: Parameters used in the experiments in Example 3.5
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3.6 Conclusions

In this paper, we have analyzed the traditional single-leg, multi-fare seat inven-

tory control problem in RM from the perspective of competitive analysis of online

algorithms. Our models make use of time-varying bounds on demand in each fare

class as opposed to static, aggregate demand information. We derived a static prob-

lem formulation and proposed dynamic heuristics when the seller’s objective is to

maximize the competitive ratio. Our two-stage re-optimization heuristics have sig-

nificant practical advantages: the computational burden is minimal, the policies

provide chances for reopening fare classes (if needed) that are previously closed,

the average performance gain over other heuristic policies are significant, and poli-

cies exhibit more stable and robust performance across different problem scenarios.

Since we employ very few assumptions when modeling the time-variant demands,

our policies are less prone to problems associated with modeling errors. They are

viable and effective solutions for the single-leg RM problem when demand exhibits

variability over time and across fare classes.

We discuss possible extensions and future research directions below.

Other Relative Performance Measures: Our analysis focused on deter-

mining dynamic booking limits in a distribution-free environment where the goal

is to maximize the competitive ratio, which is computed relative to a solution that

has hindsight information. Another alternative is use absolute regret (AR) in deter-

mining the booking limit policies. The analysis of the static and dynamic problems

with the AR measure would be done in the same way as the CR measure. In that
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case, the adversary’s goal is to maximize the difference between the offline optimal

revenues and the policy revenue, while the seller tries to minimize this maximum

absolute regret. The static and dynamic problems are analyzed as we did in this

paper. The results on sequence reduction are the same for both the CR or AR crite-

rion. The solution of a MIP model provides the static solution to the AR problem,

and heuristics are used to get the dynamic solution. Details are omitted. We refer

the reader to Gao (2008) for experimental performance of policies that are derived

using the AR criterion.

Design of Dynamic Model: In our static model both the seller and the

adversary make decisions only once at the beginning of the booking horizon, while

they update their decisions periodically in the dynamic model. An alternative way

to get dynamic policies is to focus on a hybrid model that merges features of the

static and dynamic models in order to favor the seller: The adversary commits to

the entire input sequence a priori and cannot update the inputs anytime during

the booking horizon, while the seller can dynamically change his/her booking limits

after observing the state of the system at the beginning of a period. While this is

a viable approach from a modeling perspective, it should be clear from our analysis

in this chapter that such an alternative model is still technically challenging, and

would not lead to an optimization problem of manageable size.

Choice of Time Intervals and Demand Bounds: The analysis in this

paper assumed that all demand information was known a priori and that the time

period boundaries where demand characteristics could change were fixed. An inter-

esting future research direction is to model the situation where demand information
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is acquired over time, leading to changes in the demand bounds for future periods.

Other areas worth investigating are the choice of bounds to use with our models

given the existing forecasting information from RM systems. Similarly, it would be

useful to investigate how one would choose the number and length of periods for the

booking horizon, given available information on how demand changes over time.

3.7 Summary

In this chapter, we analyzed the distribution-free single-leg RM problem from

the perspective of competitive analysis of online algorithms. Our models make use

of time-varying bounds on demand in each fare class as opposed to static, aggregate

demand information. We propose both static and dynamic booking limit policies

to maximize CR or minimize the maximum AR. Our two-stage re-optimization

heuristics for the dynamic problem have significant practical advantages: the com-

putational burden is minimal, policies provide chances of reopening fare classes, the

average performances gain over policies that only use aggregate information are im-

pressive and policies are robust to demand fluctuation. Besides, since we make very

little assumptions on modeling the time-variant demands, our policies are less prone

to problems associated with demand modeling errors. Finally, these solutions per-

form significantly better than the rolling horizon methods used in current practice.

They are viable and effective solutions for the single-leg RM problem when demand

changes overtime, but cannot be characterized with as much detail or accuracy. In

this paper, however analysis was carried out assuming the demand information is
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given and static. It will be interesting to combine the heuristics we proposed with

demand bounds estimation procedures in a entirely dynamic manner, investigating

how demand bounds can be estimated, what types of optimization-estimation pro-

cedures make our policies most effective, and how distribution-free methods adapt

when there’s changes in demand information. investigating how demand bounds can

be estimated, what types of optimization-estimation procedures make our policies

most effective, and how distribution-free methods adapt when there’s changes in

demand information.
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Chapter 4

Robust Decision-Making and Competition

4.1 Introduction

In the presence of limited demand information, the effectiveness of the control

decisions can be increased by developing models and methods based on relative

regret as we have seen in Chapter 2 and 3. Although there is a recent stream

of operations research literature on robust pricing and capacity control, work on

competitive inventory management in RM is relatively rare. In reality, what we

usually see is two competing airlines offer flights on the same route, departing within

minutes of each other, and having similar fares. For example, if a traveler is looking

for a late morning flight from New York City (JFK) to San Francisco (SFO) in

August 2008, he can choose between two airlines, Virgin America and JetBlue,

which both offer non-stop flights 10:55AM and 10:45AM, respectively, for nearly

the same price (around $420 for the lowest non-refundable fare and approximately

$650 for the refundable fare). Now suppose that a customer wishes to purchase a

non-refundable ticket. If the seats in that fare class have sold out on JetBlue, it

is very likely that the customer will attempt to purchase a ticket in the same fare

class on the Virgin America flight that departs 10 minutes later. A similar situation

exists when a major carrier has back-to-back flights on the same route with identical

fares. For example, from Chicago (ORD) to Washington DC (IAD), United Airlines
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offers non-stop flights at 8:00AM and 9:00AM with exactly same fare classes. If a

customer can not be accommodated by the lowest fare class on the 8:00AM flight,

he may look for seats of the lowest fare on s the 9:00AM flight on this route. In this

latter case, there is only one carrier. However, if the airline independently manages

the bookings on these flights, with the objective of maximizing returns on each flight

(as opposed to centralized planning to maximize the total return on this route), the

RM problem is very similar to the competitive one we described above.

If we explicitly consider that there is competition and no collaboration on

seat allocation decisions of multiple flights, then the problem can be viewed as a

game and the resulting decisions that arise out of the resulting game can differ

significantly from the seat allocations that would be optimal for a single flight or

for a single decision-maker. Hence, our main focus in this chapter is to analyze the

robust capacity control problem in a competitive framework. We also compare the

effect of centralized versus decentralized decision-making

4.2 Literature Review

We reviewed the literature on single-leg RM in Section 2.1 and Section 3.1. In

this section, we provide a short discussion on research that focuses on competition

in airline RM.

Netessine and Shumsky (2005) examine the seat allocation problem of two

airlines for two fare classes, taking into account explicitly the overflow of demand

for a class of one airline to the same class of the other airline. Li et al (2006) Li and
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Zhang (2007) studied a similar problem except that they choose a homogeneous

approach: two airlines face a common market demand and demand will be split

between the two airlines. The objective in these studies, however, is still focused

on expected revenues given risk-neutrality of the decision-maker and given a proba-

bilistic demand distribution. The overflow model in Netessine and Shumsky (2005)

is similar to the newsvendor model of Lippman and McCardle (1997), who study the

classical newsboy problem in a competitive setting and show that competition can

lead to higher inventories. Note that there is considerable research on competitive

pricing decisions (e.g., Kleywegt and Cooper 2006), but our focus in this work is on

capacity control given the fares.

More recently, Jiang and Netessine (2007) analyze competition among news-

vendors when the only information competitors possess about the nature of future

demand realizations is the support of demand distributions. In their analysis, they

focus on several alternative criteria used in the robust optimization literature, such

as relative and absolute regret, as well as worst-case performance. Using these robust

criteria, they establish the unique Nash equilibrium solution for a (symmetric) game

with an arbitrary number of players. Their work motivates our study on robust

booking control problem in a decentralized competitive market.

4.3 Model with Two Fare Classes

Suppose there are two direct flights between the same origin and destination,

with departures and arrivals at similar times. We use i,j to distinguish these two
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flights. Flights have the seat capacity ni and nj and there are two fare classes

available for passengers: ‘class-1’ and ‘class-2.’ We assume the two flights offer the

same fare structure. Specifically, for the base model, we consider a two-fare setting

where f i
2 = f j

2 , and f i
1 = f j

1 , where f t
k is the unit revenue obtained by selling in class

k on flight t, k = 1, 2, t = 1, 2.

Demand follows the basic assumption of the ”independent demand” model

that is commonly used in revenue management: Each customer requests reservation

in only one fare class, but does not buy-up or down to another fare class if their first

choice is not available. However, customers whose request is not fulfilled by airline

i “overflow” to airline j (in the same fare-class) in our problem. In our model,

we also assume that class-2 requests occur before class-1. This is the case when

the seller uses advance purchase restrictions to distinguish between low-valued and

high-valued customers.(e.g., 14-day advance purchase tickets typically have a lower

fare than unrestricted tickets.) This is the LBH assumption is commonly used in

the classical literature in RM; see the review in Chapter 2.

Our approach is distribution-free and the demand is characterized by an input

for each flight. A sequence consists of a finite stream of fare requests during the

booking horizon. Notation I i and Ij are used to denote the input sequences for

flights i and j respectively. Each input has a specific number of requests for each

class. Without loss of generality, we assume each request in a sequence demands

one unit. Let I i[k], Ij[k] be the total number of class k requests in sequence I i and

Ij. Because of our LBH assumption, class-2 requests in I i are followed by class-1

requests.
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Both flights use nested booking limits to process incoming booking requests.

This means class-1 has access to all the capacity while class-2 requests are accepted

up to the booking limit, denoted bi
2 and bj

2 for flight i and j respectively. Demand

for class-k in any input sequence is assumed to lie in the range [Lk, Uk], namely,

Li
k ≤ I i[k] ≤ U i

k,L
j
k ≤ Ij[k] ≤ U j

k , k = 1, 2.

The sequence of events is as follows and occur simultaneously for both flights:

1) Set booking limits bi
2 and bj

2.

2) Flight i and j observe I i[2] and Ij[2] respectively. Class-2 requests are

accepted/denied based on standard nesting given the booking limits.

3) Any rejected class-2 request in flight i (j) overflow to alternative flight j

(i). This overflow demand is again processed according to nesting rules

and booking limits.

4) I i[1] and Ij[1] requests arrive to flights i and j respectively, and are ac-

cepted based on the remaining capacity.

5) Any rejected class-1 request in flight i (j) overflows to the alternative

flight j (i) and are accepted if there is any remaining capacity.

Figure 4.1 summarizes the notation, the demand and overflow processes.

The objective for flight i given the booking limit of the alternate flight j is:

max
bi
2

z : z ≤ Ri(I i, bi
2|Ij, bj

2)

Ri∗(I i, Ij, bj
2)

I i
k ∈ Ω(Li

k, U
i
k), I

j
k ∈ Ω(Lj

k, U
j
k) (4.1)

where Ri(·) is revenue for flight i when I i is processed by bi
2 and overflow de-
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Figure 4.1: Horizontal Competition

mand occurs, given Ij and bj
2 for flight j. We refer to this as ”conditional online

revenue”. Ri∗(I i, Ij, bj
2) is the offline revenue, obtained with perfect hindsight infor-

mation on the aggregate demand (including the overflow). Note that the seller is

interested in maximizing the competitive ratio (CR) in flight i. A similar formula-

tion can be developed for the AR criterion. Note that by solving problem in (4.1),

the decision-maker chooses a policy that has a worst-case guarantee.

4.4 Analysis of Decentralized Decision-making

Instead of a single carrier, suppose two competing airlines offer these two

flights. The unaccommodated customer, who wishes to purchase a ticket in airline

i, will attempt to request a ticket in the same fare class on competing airline j. The
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class-2 (class-1) demand for airline j can expand if airline i set a low (high) booking

limit. So in the presence of competition on the same route, an airline might set its

seat inventory control rule differently from the single carrier case.

In our problem, both airlines simultaneously solve (4.1) to determine the best

booking limits in a competitive setting with perfect information. Our goal is to

determine each airline’s strategy, whether or not equilibrium exists and how the

airline’s booking control policies under this setting can be computed.

4.4.1 Extreme Input Sequences

Note that airline i’s optimal decision based on (4.1) is determined by the

worst case scenario(s). Naturally, not all the inputs yield lowest CR given booking

limits, i.e., constraints associated with some inputs are redundant. We refer to the

inputs that result in non-redundant constraints as “extreme inputs”. We provide a

characterization of the extreme inputs in the market with two competitors below.

We refer to the vector (I[2], I[1]) as the profile of the LBH input I.

Proposition 9 Given the LBH input Ij and nested booking limits bi
2 and bj

2, the

LBH input extreme sequences ESi
1,ESi

2 with the following profile

(ESi
1[2], ESi

1[1]) = (U i
2, U

i
1) and (ESi

2[2], ESi
2[1]) = (U i

2, L
i
1) respectively

provide the lowest CR for airline i. That is,

min{R
i(ESi

k, b
i
2|Ij, bj

2)

Ri∗(ESi
k, I

j, bj
2)

k = 1, 2} ≤ Ri(I i, bi
2|Ij, bj

2)

Ri∗(I i, Ij, bj
2)

, ∀I i ∈ Ωi(L, U).

Similarly, ESj
1 and ESj

2 with profile (ESj
1[2], ESj

1[1]) = (U j
2 , U

j
1 ) and (ESj

2[2], ESj
2[1]) =

(U j
2 , L

j
1) provide the lowest CR for airline j, given an arbitrary input I i and nested
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booking limits bj
2 and bi

2.

Proof Given Ij and bj
2, the overflow amount from flight j to flight i is fixed. So

we seek the worst-case input within Ωi(L, U). The proof is immediate following the

argument in Proposition 2 of Chapter 3 and can be shown using the technique of

Lan(2008) who shows that these extreme inputs provide the lowest CR for a single

decision-maker with a single flight. •

Based on this result, we have to consider only a total of four extreme input

sequences for flights i and j. However, the best response function of an airline can

be characterized by focusing on even a smaller set of inputs:

Proposition 10 Given the booking limits bi
2 and bj

2, either input pair {ESi
1, ESj

1}

or input pair {ESi
2, ESj

2} provide the lowest CR for airline i.

min{R
i(ESi

k, b
i
2|ESj

k, b
j
2)

Ri∗(ESi
k, ESj

k, b
j
2)

, k = 1, 2} ≤ Ri(I i, bi
2|Ij, bj

2)

Ri∗(I i, Ij, bj
2)
∀I i ∈ Ωi(L, U), ∀Ij ∈ Ωj(L, U)

.

Proof Let us denote the “aggregate demand” of class-k for flight i as ADi
k(I

i, Ij, bj
2) =

I i[k] + OF i(Ij[k], bj
2), where OF i(Ij[k], bj

2) is the overflow in class-k from flight

j to flight i. Let IAD(i) be a pseudo input for airline i such that it represents

the aggregate demand observed by the airline including the overflow. That is,

IAD(i)[k] = ADi
k(I

i, Ij, bj
2). Then airline i’s problem is:
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max
bi
2≥0

z ≤ R̂i(IAD(i), bi
2)

R̂i∗(IAD(i))

∀IAD(i) ∈ ΩAD(i)(LAD(i), UAD(i)).

where R̂i(·) is the online revenue, R̂i∗(·) is the offline revenue, and ΩAD(i) is

the set of all LBH inputs with demand bounds LAD(i) and UAD(i) correspond to the

aggregate demand to be observed by flight i. Lan(2008) and Proposition 9 above

show that the two extreme inputs for this problem have the profile (U
AD(i)
2 , U

AD(i)
1 )

and (U
AD(i)
2 , L

AD(i)
1 ).

By construction, U
AD(i)
k = max{IAD(i)[k] : ∀IAD(i) ∈ ΩAD(i)(LAD(i), UAD(i))},

which is equal to: U
AD(i)
k = U i

k + OF i(U j
k , b

j
2), k = 1, 2 in our problem. Similarly,

L
AD(i)
k = min{IAD(i)[k] : ∀IAD(i) ∈ ΩAD(i)(LAD(i), UAD(i))} is equal to: L

AD(i)
k =

Li
k + OF i(Lj

k, b
j
2), k = 1, 2 in our problem.

Therefore, the extreme inputs in our problem are represented by an input pair

with profile (U i
2, U

i
1) and (U j

2 , L
j
1) or an input pair with profile (U i

2, L
i
1) and (U j

2 , L
j
1).

•

4.4.2 The Best Response Function

Based on the characterization of the extreme inputs, airline i’s best response

function can be easily expressed as a LP in the following way. We use bucket size

xi
1, x

i
2 as the decision variable, and xi

1 = bi
1−bi

2, xi
2 = bi

2. When airline j uses booking

limit bj
2, airline i’s best nested booking limit policy that maximizes CR is obtained
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by solving the problem below.

zi∗(bj
2) = max

xi
1,xi

2≥0
γ (4.2)

Ri∗(ESi
1, ESj

1, b
j
2)γ ≤ f i

1x
i
1 + f i

2x
i
2 (4.3)

Ri∗(ESi
2, ESj

2, b
∗
2)γ ≤ f i

1L
i
1 + f i

2x
i
2 (4.4)

xi
1 + xi

2 ≤ ni (4.5)

0 ≤ xi
k ≤ U i

k + OF i(U j
k , b

j
2), k = 1, 2. (4.6)

Notice that OF i(·) and OF j(·) terms can be easily computed given bj
2 and the

demand bounds.

Proposition 11 The best response of airline i given bj
2 is:

zi∗(bj
2) =

f i
1L

i
1 + f i

2(n
i − Li

1)

Ri∗
2 + f i

2/f
i
1(R

i∗
1 −Ri∗

2 )
(4.7)

xi
1(b

j
2) = (Ri∗

1 −Ri∗
2 )/f i

1 ∗ zi∗ + Li
1 (4.8)

bi∗
2 (bj

2) = xi
2(b

j
2) =

1

f i
2

[
(ni − Li

1)f
i
2 + f i

1L
i
1

1 + f i
2/f

i
1(R

i∗
1 /Ri∗

2 − 1)
− f i

1L
i
1] (4.9)

where, Ri∗
k = Ri∗(ESi

k, ESj
k, b

j
2).

Proof Follows from the solution of the single-leg problem defined in Lan(2008);

see equation 2.15 and 2.16 of Chapter 2. •

So the best response booking limit bi∗
2 as a function of bj

2 is computed with

minimal computational requirements. We identify further properties of the best

response functions:
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Proposition 12 The best response functions satisfy: bi∗
2 (bj

2) ≥ ni−Li
1 and bj∗

2 (bi
2) ≥

nj − Lj
1.

Proof

(Li
1 + nif i

2/f
i
1 − f i

2/f
i
1)R

i∗
1 ≥ (Li

1 + nif i
2/f

i
1 − f i

2/f
i
1)R

i∗
2

ni − Li
1 + ni f

i
2

f i
1

Ri∗
1

Ri∗
2

− ni f
i
2

f i
1

− f i
2

f i
1

Ri∗
1

Ri∗
2

Li
1 +

f i
2

f i
1

Li
1 ≥ ni − Li

1

Ri∗
1

Ri∗
2

ni − Li
1

Ri∗
1

Ri∗
2

1 +
f i
2

f i
1
(

Ri∗
1

Ri∗
2
− 1)

≤ ni − Li
1

bi∗
2 (bj

2) ≥ ni − Li
1

Similarly, the best response of airline j given bi
2 satisfies: bj∗

2 (bi
2) ≥ nj − Lj

1. •

This is intuitive because airline i is guaranteed to receive at least Li
1 requests of

class-1 (regardless of bj
2) and any reasonable booking limit policy should protect at

least Li
1 units for class-1.

4.4.3 Existence of Nash Equilibrium

We now investigate the properties of the seat inventory control game with two

airlines that are interested in maximizing CR using limited demand information.

The first observation on the Nash Equilibrium follows immediately from existing

results on game theory.

Proposition 13 A mixed-strategy Nash Equilibrium in this seat inventory control

game always exists.

Proof For any game with multiple players, if the strategy set of each player is a

compact set of the Euclidean space and each player’s payoff function is continuous,
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then a mixed-strategy Nash Equilibrium exists (Theorem 2.9 of Vives 1999). Evi-

dently, the strategy set of the airlines in this problem are [0, ni] and [0, nj], which

are compact (closed and bounded).

Let α(bi
2) =

Ri(Ii,bi
2|Ij ,bj

2)

R∗i(Ii,Ij ,bj
2)

, be the payoff of airline i as a function of booking limit

(strategy) bi
2. Because the inputs are LBH, the payoff can be expressed as:

α(bi
2) =

1

R∗i(I i, Ij, bj
2)
{f i

2 min(bi
2, ADi

2(I
i, Ij, bj

2))+f i
1 min(ni−min(bi

2, ADi
2(I

i, Ij, bj
2))}

for arbitrary inputs I i and Ij. Notice that, α(bi
2) is a piecewise continuous function

of bi
2. This completes the proof. •

While the result above guarantees Nash Equilibrium, it may be achieved by

mixed-strategy or it may not be unique. First, we state the following observation

and then we will investigate the pure strategy Nash Equilibrium exists and the

uniqueness.

Next, we provide the following theorem on the pure-strategy Nash Equilibrium.

Theorem 1 A pure-strategy Nash Equilibrium always exists in this seat inventory

control game.

Proof According to equation 4.8 and 4.9, we analyze how the optimal solution to

the LP in (4.2) to (4.6) changes when demand bounds change.

Case A: If Li
1 is increased by an amount θ > 0 (other bounds remains the

same), then Ri∗
2 increases and (Ri∗

1 − Ri∗
2 )/f i

1 decreases. (Ri∗
1 − Ri∗

2 )/f i
1 decreases

by less than θ because Ri∗
1 is unchanged and change in Ri∗

2 is less than f1θ. (Ri∗
1 −
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Ri∗
2 )/f i

1 ∗ zi∗ decreases by less than θ as zi∗ ≤ 1. So if Li
1 is increased by θ in the

optimal solution to the LP, xi
1(b

j
2) increases and, xi

2(b
j
2) decreases.

Case B: If U i
1 is increased by θ (other bounds remains the same), then Ri∗

1

increases and Ri∗
2 unchanged. Then xi

2(b
j
2) decreases.

Case C: If U i
2 is decreased by θ (other bounds remains the same), then Ri∗

1 and

Ri∗
2 both can decrease. If part of θ is originally counted in the Ri∗

2 but not counted

in Ri∗
1 , then

Ri∗
1 −X

Ri∗
2 −Y

≥ Ri∗
1

Ri∗
2

as long as scalars X ≤ Y . So
Ri∗

1

Ri∗
2

increases and in the

optimal solution to the LP, xi
2(b

j
2) decreases.

Next, we consider the change in the best response functions. Let ∆∗i = bi∗
2 (bj

2+

∆j)− bi∗
2 (bj

2) be the change in the best response of i given a ∆j ≥ 0 increase in the

booking limit of airline j. Below we analyze the properties of ∆∗i. Notice that

when bj
2 increases by ∆j, the overflow from j to i in class-2 can decrease or remain

unchanged, and the overflow in class-1 can increase or remain unchanged. We next

investigate the overflow and aggregate demand observed by i under extreme input

pairs {ESi
2, ESj

2} and{ESi
1, ESj

1}.

Case 1: If ADi
2(U

i
2, U

j
2 , b

j
2) = ADi

2(U
i
2, U

j
2 , b

j
2+∆j), ADi

1(U
i
1, U

j
1 , b

j
2) = ADi

1(U
i
1, U

j
1 , b

j
2+

∆j), ADi
1(L

i
1, L

j
1, b

j
2) = ADi

1(L
i
1, L

j
1, b

j
2 + ∆j), then airline i’s best response is un-

changed: ∆∗i = 0.

Case 2: If ADi
2(U

i
2, U

j
2 , b

j
2) > ADi

2(U
i
2, U

j
2 , b

j
2+∆j), ADi

1(U
i
1, U

j
1 , b

j
2) = ADi

1(U
i
1, U

j
1 , b

j
2+

∆j), ADi
1(L

i
1, L

j
1, b

j
2) = ADi

1(L
i
1, L

j
1, b

j
2 + ∆j). This corresponds to Case C above.

Therefore, ∆∗i < 0.

Case 3: If ADi
2(U

i
2, U

j
2 , b

j
2) = ADi

2(U
i
2, U

j
2 , b

j
2+∆j), ADi

1(U
i
1, U

j
1 , b

j
2) < ADi

1(U
i
1, U

j
1 , b

j
2+

∆j), ADi
1(L

i
1, L

j
1, b

j
2) = ADi

1(L
i
1, L

j
1, b

j
2 + ∆j). This corresponds to Case B above.
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Therefore, ∆∗i < 0.

Case 4: If ADi
2(U

i
2, U

j
2 , b

j
2) = ADi

2(U
i
2, U

j
2 , b

j
2+∆j), ADi

1(U
i
1, U

j
1 , b

j
2) < ADi

1(U
i
1, U

j
1 , b

j
2+

∆j), ADi
1(L

i
1, L

j
1, b

j
2) < ADi

1(L
i
1, L

j
1, b

j
2 + ∆j). This requires Cases B and A. There-

fore, ∆∗i < 0.

Case 5: If ADi
2(U

i
2, U

j
2 , b

j
2) > ADi

2(U
i
2, U

j
2 , b

j
2+∆j), ADi

1(U
i
1, U

j
1 , b

j
2) < ADi

1(U
i
1, U

j
1 , b

j
2+

∆j), ADi
1(L

i
1, L

j
1, b

j
2) = ADi

1(L
i
1, L

j
1, b

j
2 + ∆j). This requires Cases C and B. There-

fore, ∆∗i < 0.

Case 6: If ADi
2(U

i
2, U

j
2 , b

j
2) > ADi

2(U
i
2, U

j
2 , b

j
2+∆j), ADi

1(U
i
1, U

j
1 , b

j
2) < ADi

1(U
i
1, U

j
1 , b

j
2+

∆j), ADi
1(L

i
1, L

j
1, b

j
2) < ADi

1(L
i
1, L

j
1, b

j
2+∆j). This requires Cases A, B and C. There-

fore, ∆∗i < 0.

This prove the best response bi∗
2 is non-increasing in bj

2. In duopoly games,

non-increasing best response function guarantees existence of Nash Equilibrium (see

Vives,1999). This completes the proof. •

Theorem 2 A Pure-strategy Nash Equilibrium in this seat inventory control game

is unique.

Proof

We show this by contradiction. First, assume (bi∗,bj∗),(bi∗ + θi,b
j∗ − θj) are

two distinct best response pairs. Considering airline i’s problem, these two pairs

should give zi∗(bi∗, bj∗) = zi∗(bi∗ + θi, b
j∗ − θj) by definition. According to Equation

4.9 and 4.7:

bi∗ =
1

f i
2

(Ri∗
2 (bj∗)zi∗(bi∗, bj∗)− f i

1L
i
1)
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bi∗ + θi =
1

f i
2

(Ri∗
2 (bj∗ − θj) ∗ zi∗(bi∗ + θi, b

j∗ − θj)− f i
1L

i
1)

θif
i
2 = zi∗(Ri∗

2 (bj∗ − θj)−Ri∗
2 (bj∗))

Thus, θif
i
2 < Ri∗

2 (bj∗ − θj)−Ri∗
2 (bj∗).

We can show:

Ri∗
2 (bj∗ − θj)−Ri∗

2 (bj∗) ≤ θjf
i
2

which implies

θj > θi

.

Similarly, if we focus on airline j’s problem, based on the same argument, we

will get the contradictory result as θi > θj. Hence, there’s only a unique pure-

strategy Nash equilibrium in the seat allocation game.

•

And because of the existence of a unique pure-strategy Nash Equilibrium and

because of the simplicity of the best response function, a simple iterative search

process can be constructed to find this unique equilibrium very quickly.

4.5 Analysis of Centralized Decision Making

Consider the above model with the same carrier that has back-to-back flights

on the same route. There is one decision-maker who will set the booking limits for

both flights. The question is how to choose the booking limits on both flights to
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maximize the revenues on that route. Mathematically, for such centralized decision-

making, it means the following optimization problem.

(CEN) max
(bi

2,bj
2)

zCEN ≤ Ri(I i, bi
2|Ij, bj

2) + Rj(Ij, bj
2|I i, bi

2)

R∗(I i, Ij)
(4.10)

∀I i ∈ Ω(Li, U i),∀Ij ∈ Ω(Lj, U j) (4.11)

where the numerator is the sum of the conditional online revenue and the denomi-

nator is the offline revenue.

We can define a single-leg problem by aggregating capacity, ñ = ni + nj. The

input sequences for this single-leg problem is also LBH and number of requests in

each fare class should be within the range of L̃k = Li
k + Lj

k and Ũk = U i
k + U j

k ,

k = 1, 2. The objective of this single-leg problem can be expressed as:

(SIN) max
b̃

zSIN ≤ RSIN(Ĩ , b̃)

R∗SIN(Ĩ)
(4.12)

Ĩ ∈ Ω(L̃, Ũ) (4.13)

where R∗SIN is the online revenue given input sequence Ĩ and booking limit b̃ and

R∗SIN is the corresponding offline revenue.

Proposition 14 For any arbitrary feasible (bi
2,b

j
2) for model CEN, we can define

b̃ = bi
2 + bj

2 that b̃ is feasible to model SIN.

Proof We show that for any feasible solution (bi
2,b

j
2) to model CEN with ratio

R(Ii,bi
2|Ij ,bj

2)+R(Ij ,bj
2|Ii,bi

2)

R∗(Ii,Ij)
, the feasible solution b̃2 = bi

2 + bj
2 of model SIN has RSIN (·)

R∗SIN (·) =

Ri(·)+Rj(·)
R∗(·) .
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We first show R∗SIN = R∗. The offline revenue R∗(I i, Ij) is computed based

on the aggregated capacity and the number of requests of each fare class in I i,Ij.

Hence, R∗(I i, Ij) in model CEN will be equal to R∗(I i) + R∗(Ij), which equals to

R∗SIN .

Then, we will show the equivalence between Ri(I i, bi
2|Ij, bj

2) + Rj(Ij, bj
2|I i, bi

2)

and RSIN(Ĩ , b̃).

As we assumed LBH arrivals, the following relationship holds: Ĩ[2] = I i[2] +

Ij[2], Ĩ[1] = I i[1] + Ij[1]. The number of class-2 requests accepted in model SIN is

min(b̃, Ĩ[2]). In model CEN, the unaccommodated requests of one flight can overflow

to the other, and it will get accepted by the other flight as long as there’s availability.

So the number of class-2 requests accepted in model CEN is min(bi
2, I

i[2] + [Ij[2]−

bj
2]

+) on flight i and min(bj
2, I

j[2] + [I i[2]− bi
2]

+) on flight j.

We compare online revenues from class-2 requests in the following cases.

Case 1: Ĩ[2] ≤ bi
2 + bj

2. The online revenue from class-2 requests in model SIN

is the number of accepted multiply the fare, which is Ĩ[2] ∗ f2. For model CEN,

because I i[2] + Ij[2] ≤ bi
2 + bj

2, all class-2 fare requests can get their reservation on

one of the flight, which yields the total of (I i[2]+Ij[2])∗f2 as the sum of conditional

revenue.

Case 2: Ĩ[2] > bi
2 + bj

2. For model SIN, in this case, the online revenue from

class-2 request is (bi
2+bj

2)∗f2. In model CEN, given bi
2 and bj

2, the sum of conditional

online revenues is (bi
2 + bj

2) ∗ f2.

Similarly, we next compare online revenues from class-1 requests in the follow-

ing cases.
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Case 1: Ĩ[1] ≤ ñ− bi
2 − bj

2. The online revenue from class-1 requests in model

SIN is the number of accepted multiply the fare, which is Ĩ[1] ∗ f1. For model CEN,

because I i[1] + Ij[1] ≤ ñ− bi
2 − bj

2, all class-1 fare requests can get their reservation

on one of the flight, which yields the total of (I i[2] + Ij[2]) ∗ f1 as the sum of the

conditional revenue.

Case 2: Ĩ[1] > ñ − bi
2 − bj

2. For model SIN, in this case, the online revenue

from class-1 requests is (ñ− bi
2 − bj

2) ∗ f1. In model CEN, given bi
2 and bj

2, the sum

of conditional online revenues is (ñ− bi
2 − bj

2) ∗ f1.

Note also that for any input pair I i and Ij in CEN, there is a corresponding

unique Ĩ in SIN. For an arbitrary Ĩ in SIN, there could be more than on feasible I i,Ij

pair in CEN. However, if Ĩ is the worst-case input for SIN, one of the corresponding

feasible inputs in CEN is the worst- case input. If I i and Ij are worst-case for CEN,

then Ĩ = I i + Ij is the worst case input for SIN. This completes the proof.

•

Proposition 15 The optimal solution to the centralized model is as follows:

b̃ =
1

f2

[
(ñ− Li

1 − Lj
1)f2 + (Li

1 + Lj
1)f1

1 + f2/f1(R̃∗
1/R̃

∗
2 − 1)

− f1(L
i
1 + Lj

1)] (4.14)

where the offline revenues R̃∗
1 = R∗(Ũ2, Ũ1) and R̃∗

2 = R∗(Ũ2, L̃1)

Proof Same as single-leg model in Lan(2008) with parameter ñ and Ω(L̃, Ũ). See

equation 2.14 in Chapter 2. •
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4.6 Decentralized versus Centralized Solutions

We now compare the solution in the decentralized model versus the centralized

model in the following proposition.

Proposition 16 In a symmetric case when two airlines (two flights) are equivalent

in fares, capacity, and market share (i.e. demand bounds), the sum of booking limits

of class-2 in the Nash Equilibrium solution of the decentralized solution is no more

than b̃ of equation 4.14.

Proof We use n, Uk, Lk, k = 1, 2 to denote the capacity and demand bounds for

the single airline(flight). In this symmetric case, the booking limit in problem CEN

in equation 4.14 equals to:

b̃ =
1

f2

[
(2n− 2L1)f2 + 2f1L1

1 + f2/f1(R̃∗
1/R̃

∗
2 − 1)

− 2f1L1]

where R̃∗
1 = R∗(2U2, 2U1) and R̃∗

2 = R∗(2U2, 2L1).

Because of symmetry, we can denote input pair as {ES1, ES1} and {ES2, ES2}.

We use ḃ to denote the mutual best response for both airline i and j. Based on equa-

tion 4.9, we derive the decentralized solution:

ḃ = bi∗
2 = bj∗

2 =
1

f2

[
(n− L1)f2 + f1L1

1 + f2/f1(R∗
1/R

∗
2 − 1)

− f1L1] (4.15)

where R∗
1 = R∗(U2 + [U2− ḃ]+, U1 + [U1− n + ḃ]+) and R∗

2 = R∗(U2 + [U2− ḃ]+, L1).

Case 1: U2 +U1 ≤ n. In this case, ḃ = n. R∗
1 = U1f1 +U2f2. R∗

2 = L1f1 +U2f2.

R̃∗
1 = 2U1f1 + 2U2f2, R̃∗

2 = 2L1f1 + 2U2f2. R∗
1/R

∗
2 = R̃∗

1/R̃
∗
2, so 2ḃ = b̃.

Case 2: U2+U1 > n and U2+L1 ≥ n. In this case, R∗
1 = (U1+[U1−n+ ḃ]+)f1+

(n − U1 − [U1 − n + ḃ]+)f2. R∗
2 = L1f1 + (n − L1)f2. R̃∗

1 = 2U1f1 + (2n − 2U1)f2,
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R̃∗
2 = 2L1f1 + (2n− 2L1)f2. R∗

1/R
∗
2 ≥ R̃∗

1/R̃
∗
2, 2ḃ ≤ b̃

Case 3: U2 +U1 > n and U2 +L1 < n. In this case, n−L1 ≥ U2 +[U2− ḃ]+ due

to symmetry. Because otherwise for input pair {ES2, ES2}, both airlines will get

L1 of class-1 requests and (n − L1) of class-2 requests, which will be contradictory

to U2 + L1 < n. Thus, R∗
1 = (U1 + [U1− n + ḃ]+)f1 + (n−U1− [U1− n + ḃ]+)f2 and

R∗
2 = L1f1 + (U2 + [U2 − ḃ]+)f2. R̃∗

1 = 2U1f1 + (2n− 2U1)f2, R̃∗
2 = 2L1f1 + 2U1f2.

We rearrange equation 4.15 in the following way:

ḃ(R∗
1f2 −R∗

2f2 + R∗
2f1) = R∗

2nf1 −R∗
1L1f1

R∗
1

R∗
2

=
ḃf2 + (n− ḃ)f1

ḃf2 + L1f1

If [U1 − n + ḃ]+ = 0, R̃∗
1 = 2R∗

1 and R̃∗
2 = 2R∗

2. Otherwise, R̃∗
1 = R∗

1 + ḃf2 +

(n− ḃ)f1, R̃∗
2 = R∗

2 + ḃf2 + L1f1. R̃∗
1/R̃

∗
2 = R∗

1/R
∗
2. Hence, in this case,

2ḃ = b̃

. •

This result shows that competition favors class-1, i.e. the number of seats

sold at the higher fare is more. In other words, competition actually increases the

(average) price for the good/service. This is in contrast with the findings in the

economics literature, where prices go down with competition and competition is

good for the consumers. The reason for our result is as follows: In our model, both

airlines(flights) are equivalent in their price structure, and the prices are exogenous.

Airlines only compete on quantity (seat inventory) but not on price. If the airlines
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were in price and quantity competition, the price for class-1 may decrease, even

though airlines allocate more seats to class-1, leading to an overall decrease in the

average price per unit sold. Another way to think of the problem under competition

is that, the centralized problem represents a monopolist, and a monopolist can

increase the prices for the route. Since we are limiting our decision to only fare-class

allocation, the pricing effects are not captured. Therefore, the result on competition

leading to higher prices in the market should be interpreted within the realm of our

model.

In asymmetric cases, the actual difference between booking limits of decen-

tralized and centralized models is parameter-specific. For example, suppose f1 = 3,

f2 = 2. Airline i has capacity 10 with U i
2 = 8, U i

1 = 8, Li
1 = 1, and airline j has

capacity 12 with U j
2 = 10, U j

1 = 10, Lj
1 = 0. Solution to the decentralized model is

bi
2 = 6.666, bj

2 = 8.620. The centralized solution b̃ is 14.650. Therefore, in this case,

b̃ < bi
2 + bj

2. If fares are f1 = 10, f2 = 1 and Lj
1 = 1 instead of 0, the decentralized

solution is bi
2 = 3.321,bj

2 = 4.559, and the centralized model yields b̃ = 8.897. In

this case, b̃ > bi
2 + bj

2. Hence, in an asymmetric game, the total number of seats

protected for class-1 may increase or decrease with competition; the actual outcome

depends on the capacity, bounds and fares.

4.7 Numerical Examples

In this section, we use several examples with two flights to illustrate the dif-

ferences between the centralized and decentralized problems.
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Example 4.1 In this example,ni = 80,nj = 100. Fares are f1 = 2, f2 = 1.

Demand bounds are: U i
2 = U j

2 = 80, U i
1 = U j

1 = 60, Li
2 = Lj

2 = 20, Li
1 = Lj

1 = 40.

Figure 4.2: Airlines’ Best Response Function in Example 4.1

Figure 4.2 plots the best response functions bi∗
2 (bj

2) and bj∗
2 (bi

2) accordingly.

Observe that when one airline increases her booking limit bi
2, the best response

of the other airline is to decrease his booking limit bj
2. This game has a pure-

strategy Nash Equilibrium at booking limits bi∗
2 = 27.71 and bj∗

2 = 47.39, shown

as the crossing point in the figure. Compared to this decentralized solution, the

centralized one computed for this example is b̃ = 125.21.

Example 4.2 In this example, we consider two symmetric airlines with ca-

pacity of 100 each. For both airlines, class-1 demand lies between [40,60] and class-2

demand lies between [20,80]. Both class-1 and class-2 demand are uniformly dis-

tributed and demand arrives in a LBH sequence. The demand factor is 1.0 and

there are 6000 instances for each experiment.

First, we investigate the effect of fare ratios. Figure 4.3 illustrates the difference
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of booking limits between centralized versus decentralized solutions. The x-axis

is the fare ratio f2 : f1, varying from 1 : 1 to 1 : 3. The y-axis the difference

b̃− (bi∗
2 + bj∗

2 ).

Note that the difference starts at 0 when fare ratio is 1 : 1, rapidly increases

and reaches the maximum around 1 : 1.8, and then gradually decreases. This is

because when fare ratio is 1 : 1, the booking limits equals the capacity in both

centralized and decentralized model. As f1 starts to increase, the potential overflow

in class-1 gives incentives for competing airlines to book less in class-2 requests in

the competitive situation compared to the centralized model. When f1 continues to

increases, centralized model also reduces the booking limits for class-2. Hence, the

discrepancy between centralized and decentralized solution becomes smaller when

f1 is high.

Figure 4.3: Difference of booking limits in Example 4.2

In the same example, we report the revenues and booking limits of the airlines
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f1 = 1.2, f2 = 1 f1 = 2, f2 = 1 f1 = 5, f2 = 1

cent decent cent decent cent decent

bi
2 - 54.53 - 47.48 - 42.89

bj
2 - 54.53 - 47.48 - 42.89

Total booking limits 113.53 109.06 101.55 94.96 89.95 85.78
of class-2

Avg Revenue 207.43 207.51 283.89 283.08 578.25 576.30

% Diff in Avg Rev -0.038 0.286 0.338

Table 4.1: Effect of fare ratio in Example 4.2

for a few instances. Table 4.7 summaries the results for both centralized and de-

centralized solutions. Notice that the models we investigate come with worst-case

objectives. Therefore, centralized decision-making need not improve the average

revenues over decentralized based on the results in Table 4.7. For the same in-

stances, Figures 4.4, 4.5 and 4.6 plot the distribution of revenues. The total of 6000

runs are split into 30 samples of 200 each to come up with percentile estimates. We

observe that when fare ratio is very small or relatively large, the performance of

centralized and decentralized solution are very close. When fare ratio is moderate,

they have similar performance in the worst case. But the decentralized solution has

better performance in 90th percentile. It yields much higher revenues because the

competition makes airlines more aggressive in protecting seats for class-1 and being

aggressive leads to higher chances of making higher revenues. Compared to a cen-

tralized solution, competition increases availability to class-1 and increases variance

of revenues without compromising the worst-case.

We next consider an example with two asymmetric airlines in the following
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Figure 4.4: Distribution of Revenues in Example 4.2 with fare ratio 1:1.2

Figure 4.5: Distribution of Revenues in Example 4.2 with fare ratio 1:2
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Figure 4.6: Distribution of Revenues in Example 4.2 with fare ratio 1:5

example.

Example 4.3: We still use the same parameters of Example 4.2 . But in this

example, these two airlines differ in terms of their capacity , ni = 80 and nj = 100.

Table 4.7 shows the corresponding booking limits and average performance.

f1 = 1.2, f2 = 1 f1 = 2, f2 = 1 f1 = 5, f2 = 1

cent decent cent decent cent decent

bi
2 - 34.60 - 27.71 - 23.07

bj
2 - 54.52 - 47.39 - 42.76

Total booking limits 93.55 89.12 81.43 75.10 69.92 65.83
of class-2

Avg Revenue 194.07 194.21 270.13 268.75 562.24 559.76

% Diff in Avg Rev -0.071 0.516 0.443

Table 4.2: Effect of fare ratio in Example 4.2

For this asymmetric example, the observation is similar to the symmetric case.

When fare ratio is relatively small or large, the performances of centralized and
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Figure 4.7: Distribution of Revenues in Example 4.3 with fare ratio 1:1.2

Figure 4.8: Distribution of Revenues in Example 4.3 with fare ratio 1:2
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Figure 4.9: Distribution of Revenues in Example 4.3 with fare ratio 1:5

decentralized solution are close. However, when fare ratio is moderate, centralized

performs better than decentralized solution in the 10th percentile, while there’s the

opposite relationship in the 90th percentile. Competition certainly makes airlines

more aggressive, regardless of its size and market power, in protecting seats for

class-1 requests.

4.8 Extensions

The immediate modeling extensions of our work include increasing the number

of flights (airlines) and increasing the number of fare classes.

4.8.1 Multi-fare problem

Up to now, we provide analysis for both centralized and decentralized decision-

making with m = 2. We provide both solutions and show the existence and unique-
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ness of Nash Equilibrium for two competing airlines(flights). In this section, we will

consider the possible extension to the multi-fare problem with two airlines.

Because the strategy space of the airlines [0, ni] and [0, nj] are compact and

objective function is continuous, a Nash Equilibrium in mixed strategy always exists.

Supermodularity is the sufficient condition to show the existence of a pure-strategy

Nash Equilibrium for a multi-fare problem. This means the objective function should

have increasing differences with respect to the nested booking limits. We will use

bi
3, bj

3 to denote the nested booking limits for class-3 requests and bi
2, bj

2 to represent

the nested booking limits for class-3 and class-2.

However, the next two examples show “increasing difference” assumption may

be violated when m = 3. Therefore, supermodularity does not necessarily hold when

m > 2.

Example 4.4: This is a symmetric case when two competing airlines(flights)

have the same capacity 9 and demand bounds: U1 = 4, L1 = 1, U2 = 5, L2 = 2,

U3 = 6, L3 = 3. Fares are f1 = 3, f2 = 2, f3 = 1. We can enumerate airline j’s choices

bj
3, b

j
2 to compute the objective of airline i’s best response. We use function F (·) to

denote the optimal objective function value in airline i’s optimization problem given

bj
2, b

j
3. We compute the following differences:

F (bj
3 + ε, bj

2)− F (bj
3, b

j
2) = F (1, 3)− F (0, 3) = 0.764706− 0.772277 = −0.00757

F (bj
3 + ε, bj

2 + ε)− F (bj
3, b

j
2 + ε) = F (1, 4)− F (0, 4) = 0.772277− 0.78 = −0.00772
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In this example,

F (bj
3 + ε, bj

2 + ε)− F (bj
3, b

j
2 + ε) < F (bj

3 + ε, bj
2)− F (bj

3, b
j
2)

that is, the function does not have increasing difference.

Example 4.5: We change the capacity in Example 4.3, ni = 8, nj = 10 which

gives us an asymmetric problem. We calculate the differences in F (·) for the same

booking limit parameters:

F (bj
3 + ε, bj

2)− F (bj
3, b

j
2) = F (1, 3)− F (0, 3) = 0.76364− 0.77064 = −0.00700

F (bj
3 + ε, bj

2 + ε)−F (bj
3, b

j
2 + ε) = F (1, 4)−F (0, 4) = 0.77064− 0.77777 = −0.00713

In this example :

F (bj
3 + ε, bj

2 + ε)− F (bj
3, b

j
2 + ε) < F (bj

3 + ε, bj
2)− F (bj

3, b
j
2),

again violating increasing differences.

Therefore, we know that multi-fare problem is not a supermodular game. Note

that supermodularity is the sufficient but not necessary condition for the existence

of a pure-strategy Nash Equilibrium. We leave further analysis of this problem to

future research. However, our computational experiments with m > 2 have some

interesting observations. In search of the pure-strategy equilibrium, we found that

the best response vectors usually converge to the same mutual best response point

even when our iterative procedure starts with different initial points. So we feel that

because of nesting property, the multi-fare problem might still have unique pure-

116



strategy equilibrium even though it is not supermodular. These interesting findings

are going to be addressed and further explored in the future.

4.8.2 Multi-flight problem with m=2

While our analysis in Section 4.3-4.7 was focused on two airlines, our results

can easily be extended to the case where there are more than two flights (airlines),

each offering only two fares. If we assume aij
k is the fraction of overflow in class k

from flight i to flight j; with
∑

j:j 6=i a
ij
k ≤ 1fork = 1, 2, the structure of the overflow

function is no different then the one we have in our two-flight model. Our analysis

carries through and all results are valid if the problem is extended to multiple flights

under this overflow assumption.

4.9 Summary of Chapter 4

In this chapter we examined how booking limit decisions are affected by com-

petition when sellers use distribution-free methods and focus on worst-case perfor-

mance. We have shown that there is a unique pure strategy Nash Equilibrium under

this competing game with two classes. In general, we also find that the equilibrium

decision of competing airlines for the decentralized model can be very different from

the centralized solution. These results can be useful for decision-makers who plan

expansion into new markets, who try to defend an entry by a rival, who have prob-

lem of data scarcity or inaccuracy, or who just want to remain solvent in the highly

competitive market. We also provide additional numerical experiments to show the
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effect of centralized versus decentralized solutions. Analytically, we showed class-1

(high-fare) customers have more availability of their service under competition than

under a monopoly.
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Chapter 5

Conclusions and Future Research

In this thesis, we have analyzed the traditional single-leg seat allocation prob-

lem from the perspective of competitive analysis of online algorithms. We compare

robust policies using both competitive ratio and absolute regret criterion. We also

compare robust methods with other bench-mark policies used in practice. Extensive

computational examples have shown that robust booking control have significant

practical advantages. They provide effective results in many cases; performance is

impressive while the need for information is reduced. Furthermore, they are able

to hedge against inaccuracies in information and are not prone to forecast error as

other well-known policies are. From a research perspective, the competitive analysis

of online algorithms approach is very promising in RM.

In this thesis, we provided multiple approaches to including partial demand

information within the competitive analysis framework. Included was a multi-period

model that considered demand information at a more disaggregated level that is typ-

ical in RM. We also extended the basic model with a single decision-maker into a

competitive framework with two competing airlines and/or flights. We have demon-

strated analytically and evaluated numerically the difference between centralized

versus decentralized decision-making.

We have focused on single-leg seat allocation problem from the perspective of
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competitive analysis of online algorithms so far. However, there can be significant

benefits in considering a network approach within this framework. In the airline

case, the general/typical problem involves managing the capacities of a set of con-

necting flights, where the only information available consists of demand bounds on

each flight. In the hospitality industry, the problem is managing room capacity on

consecutive days, where the arrival distribution is unknown, and a mix of customers

with different lengths of stay share the capacity on any given day. Network RM dos

creates methodological and operational challenges, but the potential improvements

should be sufficient to justify the investment in both research and practice.

Independent demand is another basic assumption in all of our models. This

would appear to e a rather simplistic assumption, but it is widely used in practice.

A natural extension would be to consider correlated demand because it would be

common that if class-1 demand is up then demand for class-2 also rise. Considering

demand correlations should provide a better representation of the real business en-

vironment. One way to model this is to define a parameter (e.g. demand intensity)

so that the demand bounds depend on the level of this parameter.

The analysis in this thesis also ignores one important feature: consumer choice.

However, consumers are becoming increasingly aware of the existence of pricing

strategies. In addition, the availability of pricing information on the Internet af-

fords consumers the opportunity to behave more strategically when making pur-

chase decisions. There are studies showing that the use of standard yield manage-

ment approaches to pricing by airlines can result in significantly reduced revenues

when buyers are using an informed and strategic approach in purchasing. Therefore,
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distribution-free models that endogenize strategic behavior will not only fill a void

in the academic literature, but would have significant practical value.
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Appendix A
Appendices for Chapter 2
A.1 Standard vs. Theft-nesting Implementation of Static Policies

As discussed in Talluri and van Ryzin (2004a), a static nested booking control
policy can be implemented in two different ways: The standard-nesting and theft-
nesting. 2 In case of m = 2, standard nesting accepts class-2 requests as long as
the booking limit b2 is not reached and there is capacity. In contrast, theft-nesting
stops accepting class-2 after the first b2 requests (regardless of their class). Clearly,
both implementations yield the same booking curve when the arrivals are LBH. In
a way, theft-nesting implementation of a static policy reduces the booking limit of
class-2 upon observing a class-1 request, hence it is aggressive in protecting seats for
class-1. This is similar to our dynamic policies except that DYN-CR and DYN-AR
need not reduce booking limit of class-2 by one unit at each update.

Although we have implemented theft-nesting and tested its performance in
our computational experiments, it is not the focus of our attention and we prefer
to exclude it from the paper. Our dynamic policies suggest the potential for theft-
nesting when demand for higher fare classes is more. On the other hand, theft-
nesting is not desirable when the demand is known to be limited: Theft-nesting
will close a low fare class early because of high-fare requests that arrive early in the
booking horizon. If the total number of high-fare requests is limited, a significant
portion of seats protected for future high-fare demand goes unsold and revenues
obtained by theft-nesting are lower.

In the Appendix, we provides numerical results on theft-nesting implemented
with the robust static policies. For theft-nesting, a booking in class j not only
reduces the allocation for class j but also ”steals” from the allocation of all lower
classes. So when we accept a request for class j, not only is the class j allocation
reduced by one but so are the allocations for classes j+1, j+2,...n. Note that we
apply similar idea in implementing theft-nesting Van Ryzin’s adaptive algorithm as
the booking limits are first determined by previous fill-event.

In practice, demand rarely arrives in low-to-high order and the choice of stan-
dard versus theft nesting matters. As we can see from the Example-A in Figure
A.1 and Example-B in Figure A.2, with mixed order of arrivals, theft nesting pro-
tects more capacity for higher classes (equivalently, allocates less capacity to lower
classes). Hence, achieve a higher revenue when there are more high-fare class re-
quests or the fare ratio is small.

Example-A.1:In this two-fare example, fares are f1=200, f2=100. Demand
are stationary and normally distributed with mean range from [120,0] to [0,120] and
time-homogeneous arrivals. Knowing the arrival process.

Example-A.2:In this two-fare example, demand are stationary and normally
distributed with mean fixed at [60,60] fare ratio range from 0.1 to 1.0. Arrivals are
time-homogeneous.
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Figure A.1: Average performance gap in Example-A

Figure A.2: Average performance gap in Example-B
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A.2 Numerical Examples

Example-A.3: In this example, fare ratio range from 0.1 to 1.0 with mean
demand fixed at (λ1, λ2) = (60, 60). Low fare class requests arrivals earlier than
high fare requests. The average performance gap for the policies are presented in
Figure A.3 .

Example-A.4: In this example, fare ratio range from 0.1 to 1.0 with mean
demand fixed at (λ1, λ2) = (40, 80). Low fare class requests arrivals earlier than
high fare requests. The average performance gap for the policies are presented in
Figure A.4 .

Example-A.5:This example is the same as Example-3 in Chapter 2 except the
demand-mix: The lower and upper bounds of demand are L1 = 20, U1 = 60, L2 = 60
and U2 = 100, i.e., the mean demand for class-1 is lower. The revenue percentiles for
the policies are presented in Figure A.5. In this case, no policy (except OFFLINE)
is stochastically dominant. This particular demand-mix affects STAT-AR most: It
has a significantly lower revenue at the 10th percentile, and provides the second
highest revenue value at the 90th percentile, following BSTAT-AR. This is expected
because STAT-AR protects the highest number of seats for class-1, for which the
demand is lower in this case. The observations regarding the relative performances
of the other policies remain the same.

Example-A.6: This example is the same as Example-3 in Chapter 2 except
the demand-mix: The lower and upper bounds of demand are L1 = 60, U1 = 100,
L2 = 20 and U2 = 60, i.e., the mean demand for class- 1 is higher. The revenue
percentiles for the policies are presented in Figure A.6. In this case, STAT-CR is
stochastically dominated because its booking limit for class-2 is significantly higher
than the other policies. When the arrivals occur homogeneously over time in both
fare classes, dynamic and static policies are not equivalent. If demand-mix is bal-
anced as in Example-3, then the average revenues obtained by each of the policies
except DYN-AR are higher when arrivals are time-homogeneous; DYN-AR sets a low
booking limit for class-2 initially, and this booking limit is updated with each class-1
request leading to rejecting far too many class-2 requests and having too many idle
seats at the end of the booking horizon. However, DYN-AR is not stochastically
dominated, i.e., has a higher 90th percentile than, for e.g., BSTAT-AR. These ex-
periments are repeated by changing the arrival regime. Our previous observations
regarding stochastic dominance relations among the policies do not change with
the arrival regime. Next three examples provide the revenue percentiles for these
experiments when arrivals are time-homogeneous.

Example-A.7: This example is the same as Example-3 in Chapter 2 except
that the requests in each fare class arrive homogeneously over time. The revenue
percentiles for the policies are presented in Figure A.7.

Example-A.8:This example is the same as Example-3b above except that the
requests in each fare class arrive homogeneously over time. The revenue percentiles
for the policies are presented in Figure A.8.

Example-A.9: This example is the same as Example-3c above except that
the requests in each fare class arrive homogeneously over time. The revenue per-
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Figure A.3: Average performance gap in Example-2b
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Figure A.4: Average performance gap in Example-2c
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centiles for the policies are presented in Figure A.9.
Example-A.10: This example is the same as Example-7 with performance

of robust policies require no demand information. The average performance gaps
are specified in Figure A.10

Example-A.11: This example is the same as Example-9 except that all
the demand arrivals later in the second half of the booking horizon. The average
performance gaps are specified in Figure A.11
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Figure A.11: Average performance gap in Example-9b
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Appendix B
Appendices for Chapter 3
B.1 Proof of Proposition 2

To simplify the notation and to suppress the time index, we refer to the seller’s
static decision vector as β, as opposed to b1, in the remainder of this section. We
first provide additional notation and state an important observation. Combining
the notion of effective booking limits (as expressed by algorithm PNEST (t) in
Section 3.2.1) with Proposition 1, one can iteratively compute the number of requests
accepted in each period and the effective booking limit at the start of each period:

Observation 1 Consider a nested booking limit policy β and input ~I = [I1, .., IT ]
where inputs arrive in LBH order in each period. Let the number of class j requests
accepted in period t after processing I t be hIt

j . Let the effective nested booking limit

vector at the beginning of period t be βIt
= (βIt

1 , ..., βIt

m). Parameters hIt

j and βIt

j are
computed iteratively as follows:

Step 0: Set t = 1. Set βI1
= β, i.e., (βI1

1 , βI1

2 , ..., βI1

m ) = (β1, ..., βm).

Step 1: Compute the number of reservations accepted in each fare class in period
t, starting with class m and working backwards from class m to class 1:

hIt

m = min(βIt

m , I t[m]), (B.1)

hIt

j = min(βIt

j −
m∑

k=j+1

hIt

k , I t[j]) for j = m− 1, m− 2, ..., 1.(B.2)

Step 2: Compute the effective booking limit of each fare class at the beginning of
period t + 1, starting with class 1 and working forwards from class 1 to
class m:

βIt+1

1 = βIt

1 −
m∑

k=1

hIt

k , (B.3)

βIt+1

j = min(βIt+1

j−1 , βIt

j −
m∑

k=j

hIt

k ) for j = 2, ...,m. (B.4)

Step 3: If t = T , STOP. Otherwise, set t← t + 1 and go to Step 1.

The vector βIT+1
provides information (in a nested fashion) on the number of unused

seats at the end of the booking horizon after processing input ~I with policy β.

We use these relations and the corresponding notation in the proof below.
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Proposition 2: Given a static, nested booking limit policy β and the set Q
of extreme input sequences, the lowest CR is achieved by one of the inputs in set Q.
That is, for any feasible input sequence ~I, we have

R(~I, β)

R∗(~I)
≥ min{R(~I∗, β)

R∗(~I∗)
, ∀~I∗ ∈ Q}.

Proof Let us consider a sequence ~I = [I1, ..., IT ] which is period-wise LBH (without

loss of generality). We compute the effective booking limits βI1
, ..., βIT+1

for input ~I
and policy β as described in Observation 1 above. For all t = 1, ..., T , let j∗(t) be the
highest-fare (lowest-index) fare class whose effective booking limit is zero at the end
of period t, i.e., βIt+1

k = 0 for all k ≥ j∗(t) and βIt+1

k > 0 for all k < j∗(t), k = 1, ...,m.
If βIt+1

k > 0 for all k = 1, ..,m, let j∗(t) = m + 1. Note that if j∗(t) = m + 1, then
all requests that arrive in period t are accepted (because no effective booking limit
is reached in that period). Note also j∗(1) ≥ j∗(2) ≥ · · · ≥ j∗(T ) by definition of
standard nesting.

Starting with t = T , we show that the adversary can get a CR lower than
R(~I, β)/R∗(~I) by sending one of the m extreme input sequences in period t instead
of sending I t. For t = T , the proof in Lan (2008) follows immediately: When
j∗(T ) < m + 1, then the adversary can not increase the CR by sending an input IT ′

such that IT ′[k] = LT
k k < j∗(T ) and IT ′[k] = UT

k for k ≥ j∗(T ), k = 1, ...,m. When
j∗(T ) = m + 1, all requests have been accepted throughout the booking horizon

and the CR is R(~I, β)/R∗(~I) = 1. In this latter case, adversary can send any of the
j-extreme input sequences for period T without increasing the CR.

Consider any period t < T .
Case 1: For all k ≥ j∗(t), the adversary can lower the CR by sending a LBH

input in period t with I t′[k] = U t
k ≥ I t[k], using the same argument in Lan (2008):

since effective booking limits of k ≥ j∗(t) are all zero, additional requests in these
classes are all rejected. Online revenues are unaffected by the change, while offline
optimal can only increase or remain the same. Therefore CR is improved by this
change.

Case 2: For all k < j∗(t), the adversary can lower the CR by sending a LBH
input in period t with the profile (i) I t′[k] = Lt

k if bT+1
k > 0 (in this case, a class k

request in period t does not displace an equal or higher fare request in period t or
any time in the remainder of the booking horizon) or (ii) I t′[k] = U t

k if βT+1
k = 0 (in

this case, a class k request displaces equal or higher fare requests either in period t
or in the remainder of the booking horizon). The former follows from Lan (2008).
In the latter, while the effective booking limit of class k is positive at the end of
period t, it will become zero by the end of the planning horizon. This means that
the argument for Case 1 will be valid for class k some time before the end of the
booking horizon. Consequently, it is to the adversary’s advantage to send the max-
imum number of requests for classes that will be rejected either in this period or in
the future. •
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B.2 Determining the Optimal Booking Limits in the Static Problem

In this section, we show that (3.4) can be expressed as a mixed integer pro-
gramming (MIP) model to determine the optimal static booking limits. The binary
variables are used in determining the correct number of fare-class requests accepted
in processing an input sequence, which is then used in calculating the online rev-
enues. Binary variables are also used to ensure effective booking limits are calculated
correctly, preserving the nesting property. To simplify the notation in the problem
formulation, we present the model for all extreme sequences belonging to the set Q,
without referring to the property in Corollary 1.

B.2.1 The MIP Model

In MIP, the input parameters are fk for k = 1, ...,m, the capacity n, the
period-wise profile I t[j], t = 1, .., T , for each input ~I = [I1, ..., IT ] ∈ Q, and the

corresponding offline optimal revenue R∗(~I) for ~I ∈ Q. R∗(~I) is easily computed a
priori given the profile of the extreme sequences. The decision variable for the seller
is the vector β = (β1, ..., βm) and the scalar z represents the CR. All other variables
are auxiliary and ensure the effective booking limits follow the relations provided in
Observation 1 of Appendix B.1.
MIP:

max z

s.t. R∗(~I)z ≤
T∑

t=1

m∑
k=1

fkh
It

k , ∀ t = 1, ...T, ∀~I ∈ Q (B.5)

hIt

j ≤ I t[j], j = 1, ...,m, t = 1, ..., T,∀~I ∈ Q (B.6)
m∑

k=j

hIt

k ≤ βIt

j , j = 1, ...,m, t = 1, ...T, ∀~I ∈ Q (B.7)

I t[j]− hIt

j − nvIt

j ≤ 0, j = 1, ...m, t = 1, ..., T,∀~I ∈ Q (B.8)

βIt

j −
m∑

k=j

hIt

k − n(1− vIt

j ) ≤ 0, j = 1, ...,m, t = 1, ..., T,∀~I ∈ Q (B.9)

β
It+1

j ≤ β
It+1

j−1 , j = 2, ...,m, t = 1, ..., (T − 1),∀~I ∈ Q (B.10)

β
It+1

j ≤ βIt

j −
m∑

k=j

hIt

k , j = 2, ...,m, t = 1, ..., (T − 1),∀~I ∈ Q (B.11)
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β
It+1

j − β
It+1

j−1 − nw
It+1

j ≤ 0, j = 2, ...,m, t = 1, ..., (T − 1),∀~I ∈ Q (B.12)

βIt

j −
m∑

k=j

hIt

k − β
It+1

j − n(1− w
It+1

j ) ≤ 0,

j = 2, ...,m, t = 1, ..., (T − 1),∀~I ∈ Q(B.13)

β
It+1

1 = βIt

1 −
m∑

k=1

hIt

k , t = 1, ..., (T − 1),∀~I ∈ Q (B.14)

βI1

j = βj, j = 1, ...,m, ∀~I ∈ Q (B.15)

βIt

j , hIt

j ≥ 0; vIt

j , wIt

j ∈ {0, 1}, j = 1, ...,m, t = 1, ..., T,∀~I ∈ Q. (B.16)

0 ≤ βj ≤ n, j = 1, ...,m. (B.17)

The size of MIP is O(mT+1) as the number of constraints and binary variables
are proportional to mT+1, which is polynomial in m for fixed T . The optimal
objective value in MIP is at least as much as the objective value derived in the
static model of Lan (2008) when the model in Lan (2008) uses the aggregate lower
and upper bounds

∑T
t=1 Lt

j and
∑T

t=1 U t
j , respectively, for a single-period problem.

This is because there are period-wise restrictions on the input sequence. We provide
an example to show the differences in the solutions of our static model and that of
Lan (2008) below.

B.2.2 Comparison of our static model to that of Lan (2008)

Here is an example to show the differences in solutions between our static
model and that of Lan (2008). Both the theoretical CR and the average performance
of the policies, computed using simulations, are considered: Suppose n = 10,f1 = 5,
f2 = 1, T = 2, L1

1 = 0, L1
2 = 0, L2

1 = 2, L2
2 = 0, U1

1 = 8, U1
2 = 3, U2

1 = 6,
and U2

2 = 12. Demand for class 2 is assumed to be uniform distributed between
Lt

2 and U t
2 in period t = 1, 2. In two different experiments, the demand for class

1 is first uniform distributed, and then triangular distributed, each with the range
[Lt

1, U
t
1] for t = 1, 2. The theoretical CR and the average gap (computed as the

ratio of policy revenues to offline optimal revenues, averaged across all simulation
runs), as an indication of the actual CR, are computed using simulation for policies
obtained by MIP and Lan (2008). The results are presented in Table B.1. The
optimal booking limit for class 2 derived using the static CR model in Lan (2008)
provide b2 = 3.28, and the theoretical CR of this policy is 0.73. However, the static
seller’s optimal strategy from the MIP model suggests b2 = 3.68 and the theoretical
competitive ratio is 0.76. The average performance of the policies differ depending
on the demand distribution used in this experiment. When class 1 demand is uniform
distributed, the average performance gap is 0.878 for Lan (2008) and 0.84 for MIP.
If class 1 demand in the first period is triangular distributed with a mean of 2, then
the average performance gap is 0.9788 for Lan (2008) and 0.99 for MIP. Although
MIP guarantees a better worst-case performance, its actual average performance
need not always be superior compared to Lan (2008).
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Table B.1: Booking Limits, Theoretical CR and Average Performance Gap

Model Booking Limit Theoretical Average Gap Average Gap
b2 CR D1 is Uniform D1 is Triangular

Lan (2008) 3.28 0.73 0.878 0.9788

MIP 3.68 0.76 0.84 0.99

B.3 Proof of Proposition 4

Proof Through induction, we will show that for a m-fare, T -period problem, the
lowest competitive ratio is achieved by one of the m + 1 extreme input sequences.
We use the notation I ≺≺ I ′ to denote that given booking limit vector bT of the
seller and two inputs I and I ′, I results in a CR that is no-higher than I ′ (i.e., I ′ is
dominated by I). We focus only on LBH inputs.

STEP 1: We will prove that in the last period and for the lowest fare, adversary will
send in the amount of Lm

T + ∆m, ∆m ∈ {0, Um
T − Lm

T }. Consider three LBH
input sequences, S1, S2, S3 with the following profiles: ST

1 [m] = UT
m, ST

2 [m] =
Lm

T +Θm for 0 < Θm < Um
T −Lm

T , ST
3 [m] = Lm

T , and ST
1 [j] = ST

2 [j] = ST
3 [j] for

all j = 1, ..,m− 1. S2 is dominated by either S1 or S3:

Case 1.1: If 0 ≤ bT
m ≤ Lm

T + Θm, S1 ≺≺ S2 because the online revenues are equal with
inputs S1 and S2 and the offline optimal revenue R∗(S1) is the highest with
S1.

Case 1.2: Consider bm
T > Lm

T + Θm. (i) If processing S2 with bT and accepting Lm
T + Θm

requests in class m does not displace any higher fare requests, then S3 also
does not displace any higher fare requests when processed by bT . In this
situation, online revenues satisfy R(S2, b

T ) ≥ R(S3, b
T ) and offline revenues

satisfy R∗(S2) ≥ R∗(S3). Notice that R∗(S2) − R∗(S3) ≤ fm ∗ Θm and

R(S2, b
T ) = fm ∗Θm + R(S3, b

T ). This implies that RT +R(S2,bT )
R∗(S2)

≥ RT +R(S3,bT )
R∗(S3)

.

Therefore, S3 ≺≺ S2. (ii) If processing S2 with bT and accepting Lm
T + Θm

requests in class m displaces higher-fare requests, then S1 also leads to displace-
ment of higher-fare requests. In this situation, RT +R(S1, b

T ) ≤ RT +R(S2, b
T )

because S1 accepts a higher number of class m requests, and R∗(S1) ≥ R∗(S2),

which leads to RT +R(S1,bT )
R∗(S1)

≤ RT +R(S2,bT )
R∗(S2)

. Thus,S1 ≺≺ S2.

Therefore, a LBH sequence IT with profile LT
m < IT [m] < UT

m is dominated.

STEP 2: Through backward induction on fare classes, we will show that a LBH sequence
IT with profile LT

j < IT [j] < UT
j is dominated. The statement is true for class

m based on STEP 1. Suppose it is true for classes m, m−1, ..., k. We will show
this is true for class k − 1. Consider six LBH input sequences S ′

1, ..., S
′
6 with

profiles S ′
1[k] = LT

k , S ′
1[k− 1] = LT

k−1, S ′
2[k] = LT

k , S ′
2[k− 1] = LT

k−1 + θ for 0 <
θ < UT

k−1 −LT
k−1, S ′

3[k] = LT
k , S ′

3[k − 1] = UT
k−1, S ′

4[k] = UT
k , S ′

4[k − 1] = LT
k−1,
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S ′
5[k] = UT

k , S ′
5[k − 1] = LT

k−1 + θ for 0 < θ < UT
k−1 − LT

k−1, and S ′
6[k] = UT

k ,
S ′

6[k − 1] = UT
k−1.

Case 2.1: Consider S ′
1, S

′
2, S

′
3 where LT

k requests of class k arrive. (i) If all of the S ′
2[k−1]

requests are accepted by bT and none of the requests in classes k − 2 to 1 are
displaced, then all of the S ′

1[k − 1] requests are also accepted by bT without
displacing higher-fare requests. This is similar to Case 1.2(i) above. Therefore,
S ′

1 ≺≺ S ′
2. (ii) If all of the S ′

2[k − 1] requests are accepted by bT , leading to
displacement of requests in any of classes k − 2 to 1, then at least S ′

2[k − 1]
requests of class k− 1 will be accepted when S ′

3 is processed by bT , leading to
at least as many displacements of higher-fare. This is similar to Case 1.2(ii)
above. Thus, S ′

3 ≺≺ S ′
2.

Case 2.2: Consider S ′
4, S

′
5, S

′
6 where UT

k requests of class k arrive. Using the same argu-
ment as in Case 2.1 above, one can show that either S ′

4 ≺≺ S ′
5 or S ′

6 ≺≺ S ′
5.

Therefore, an input IT with LT
j < IT [j] < UT

j for any j is dominated. Next,
we show there are only m + 1 of the non-dominated sequences.

STEP 3. We know any extreme LBH input IT has profile IT [m] = LT
m or IT [m] = UT

m.
Consider LBH sequences S ′′

1 , S ′′
2 , and S ′′

3 with profiles S ′′
1 [m] = UT

m, S ′′
1 [m−1] =

UT
m−1, S ′′

2 [m] = LT
m, S ′′

2 [m− 1] = UT
m−1 and S ′′

3 [m] = LT
m, S ′′

3 [m− 1] = LT
m−1.

Case 3.1: If processing S ′′
2 with bT displaces any request in classes m − 1 to 1, then S ′′

1

leads to at least the same number of displaced requests in these classes. Then,
using the logic in Case 1.2(ii) above, we have S ′′

1 ≺≺ S ′′
2 .

Case 3.2: If processing S ′′
2 with bT does not result in displacement of any request in

classes m− 1 to 1, S ′′
3 ≺≺ S ′′

2 by Case 1.2(i) above.

Combining Cases 3.1 and 3.2, we see that S ′′
2 is dominated. Therefore a non-

dominating sequence IT has a profile such that if IT [m] = LT
m, then IT [m−1] =

LT
m−1. Note that, this observation can be extended to any two consecutive class

j and j-1.

Therefore, the total number of non-dominated input streams in period T is
only m + 1 and Q∗T is the set of all non-dominated sequences for period T . •

B.4 Proof of Proposition 5

B.4.1 Preliminaries

In this section, we present elementary observations and results that are used
in the proof of Proposition 5. First of all, we make use of duality in proving the
optimality of the suggested solution for LPM. The dual formulation of LPM, called
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DLPM, is given below.

DLPM : min nT ν +
m∑

j=1

Uj$j +
m∑

j=1

(RT +

j−1∑
i=1

fiL
T
i )λj + (RT +

m+1∑
i=1

fiL
T
i )λm+1(B.18)

s.t.

m+1∑
j=1

R∗
jλj ≥ 1, (B.19)

$j + ν − fj ∗
j∑

i=1

λi ≥ 0, j = 1, ..,m, (B.20)

ν ≥ 0, λj, $j ≥ 0, j = 1, ..,m. (B.21)

Second, the solution to LPM is closely related to the solution of the following
linear program, which disregards the (m + 1)st extreme sequence:

GBM : max z

s.t.

R∗(I1 · · · IT−1I∗T,k)z ≤ RT +
k−1∑
i=1

fiL
T
i +

m∑
i=k

fix
T
i , k = 1, ...,m,(B.22)

m∑
j=1

xT
j ≤ nT (B.23)

0 ≤ xT
j ≤ UT

j , j = 1, ...,m (B.24)

When RT = 0, this is equivalent to the formulation in Lan (2008) that determines
the static nested booking limits in a single-period problem. The closed-form solution
to GBM is given by

z∗GBM = θu (B.25)

x∗GBM
k =


gkz

∗ + LT
k 1 ≤ k < u

(R∗
kz

∗ −
∑k−1

i=1 fiL
T
i −RT )/fk k = u

0 k > u

(B.26)

where the parameters are defined as

gm = R∗
m, gk = (R∗

k −R∗
k+1)/fk ≥ 0, k = 1, ...,m− 1

u = max{j : (RT +

j−1∑
i=1

fiL
T
i )

j−1∑
i=1

gi < NT
j R∗

j}, (B.27)

θu =
(RT +

∑u−1
i=1 fiL

T
i )/fu + NT

u

R∗
u/fu +

∑u−1
i=1 gi

.

We omit the proof of optimality of the solution given in (B.25) and (B.26) for GBM
here; that result follows from the proof in Lan (2008) with the addition of the scalar
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RT > 0 to the online policy revenues for each extreme input. Notice that the solution
of GBM only partially characterizes the optimal solution of LPM.

Finally, we use one additional parameter in the solution of LPM:

π =
RT +

∑m−1
i=1 fiL

T
i + fm ∗min(LT

m, NT
m)

R∗
m+1

.

Note that π is a constant and it represents the highest competitive ratio possible
for any booking limit policy when (m + 1)st extreme sequence is processed. This is
what is represented in constraint (3.9) of LPM. We have the following observation
on parameter π.

Lemma 1 If u = m and θm ≥ π, then π =
RT +

Pm
i=1 fiL

T
i

R∗m+1
.

Proof We show this by proving that when u = m and θm ≥ π, then it is impossible
to have NT

m < LT
m. Suppose NT

m < LT
m, u = m, and θm ≥ π. Then, by definition,

θm =
RT +

∑m−1
i=1 fiL

T
i + NT

m ∗ fm

R∗
m +

∑m−1
i=1 gi ∗ fm

=
RT +

∑m−1
i=1 fiL

T
i + NT

m ∗ fm

R∗
m+1 +

∑m
i=1 gi ∗ fm

,

π =
RT +

∑m−1
i=1 fiL

T
i + NT

m ∗ fm

R∗
m+1

,

and θm < π, which is contradictory to the condition that θm ≥ π. Thus,in this case,

NT
m ≥ LT

m and the resulting π is
RT +

Pm
i=1 fiL

T
i

R∗m+1
. •

In addition to the solution to GBM, consider the alternative

z∗ALT = π (B.28)

x∗ALT
k =

{
gkz

∗ALT + LT
k 1 < k ≤ m

min(U1
T , nT −

∑m
i=2(L

T
i + giπ)) k = 1

(B.29)

which if feasible for LPM under certain conditions:

Lemma 2 When u = m and θm ≥ π, then x∗ALT of equation (B.29) and z∗ALT = π
is feasible for LPM.

Proof To prove this, we first have to prove that x∗ALT
1 ≥ L1

T + g1π: When u = m,
we have NT

m > 0, that is, nT >
∑m−1

i=1 Li
T . Let’s define R+

m =
∑m−1

i=1 fiL
i
T . In this

case, we know that θm ≥ π, so based on Lemma 1,

θm =
RT + R+

m + (nT −
∑m−1

i=1 LT
i ) ∗ fm

R∗
m +

∑m−1
i=1 gi ∗ fm

≥ RT +
∑m

i=1 fiL
T
i

R∗
m+1

= π.
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Then, we get the following series of relations by algebraic manipulations:

(nT −
m−1∑
i=1

LT
i )fmR∗

m+1 ≥ (RT + R+
m)(R∗

m −R∗
m+1) + R∗

mfmLT
m

+ fm

m−1∑
i=1

gi(R
T + R+

m) +
m−1∑
i=1

gifmLT
m

(nT −
m−1∑
i=1

LT
i )R∗

m+1 ≥ (RT + R+
m)

m∑
i=1

gi + R∗
mLT

m +
m−1∑
i=1

gifmLT
m

fmgm + R∗
m+1 = R∗

m

(nT −
m−1∑
i=1

LT
i ) ≥ (RT + R+

m)
∑m

i=1 gi

R∗
m+1

+

∑m
i=1 gifmLT

m

R∗
m+1

+ LT
m

nT ≥
m∑

i=1

LT
i +

m∑
i=1

gi ∗ π.

Then

x∗ALT
1 = nT −

m∑
i=2

LT
i +

m∑
i=2

gi ∗ π ≥ LT
1 + g1π. (B.30)

Next we prove feasibility of x∗ALT . Here are the observations:

• Constraint (3.11) is satisfied: We have gi ≤ U i
T − Li

T for i = 1, ...,m; this
follows from the proof in Lan (2008). By construction, x∗ALT

1 ≤ U1
T . We also

have z∗ = π ≤ 1 by design. This implies x∗ALT
k = π ∗ gi + Li

T ≤ U i
T for

1 < i ≤ m.

• Constraint (3.8) is satisfied: We have u = m,π ≤ θm = (RT +
∑m

i=1 fiL
T
i )/R∗

m+1.
So for any k, 2 ≤ k ≤ m, we have

R∗
kπ ≤ RT +

m∑
i=1

fiL
T
i + R∗

kπ −R∗
m+1π.

Further algebra yields

R∗
kπ ≤ RT +

m∑
i=1

fiL
T
i +

m∑
i=k

(R∗
i −R∗

i+1)π

R∗
kπ ≤ RT +

k−1∑
i=1

fiL
T
i +

m∑
i=k

fi(L
T
i + giπ)

R∗
kπ ≤ RT +

k−1∑
i=1

fiL
T
i +

m∑
i=k

fix
∗ALT
i .

For k = 1, we have L1
T +g1π ≤ x∗ALT

1 ≤ U1
T which follows from equation (B.30)

above. This yields R∗
1π ≤ RT +

∑m
i=1 fix

∗ALT
i .
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• Constraint (3.9) is satisfied: This follows from the definition of π:

R∗
m+1π ≤ RT +

m−1∑
i=1

fiL
T
i + fm min(LT

m, NT
m).

• The remaining constraint
∑m

i=1 x∗ALT
i ≤ nT is satisfied.

•

B.4.2 Proof of Proposition 5

Proof We first prove the feasibility of the solution suggested, then prove its
optimality. (a) Proof of feasibility :

Case 1: If the optimal solution of GBM has u < m, then constraint (3.8) for
k = m is not binding because only the first u out of those m constraints in the
GBM are binding. This follows from the proof in Lan (2008). Thus, in this case,
given x∗GBM , the corresponding z∗ = θu satisfies constraint (3.8) when k = m, and
also satisfies constraint (3.9) of LPM because constraint (3.9) yields the same online
revenue but lower offline optimal revenue given the (m + 1)st extreme sequence. So
z∗ = θu and x∗GBM constitute a feasible solution to LPM.

Case 2: If the optimal solution of GBM has u = m and θm < π, then constraint
(3.9) in LPM is not binding for the solution x∗GBM and z∗ = θm. Therefore the
solution x∗GBM and z∗ = θm of GBM is again feasible for LPM.

Case 3: If the optimal solution of GBM has u = m and θm ≥ π, then Lemma
2 proves x∗ALT and z∗ALT are feasible for LPM.
(b)Proof of optimality:

Cases 1 and 2: Consider the following solution for DLPM:

$∗
j = 0, j = 1, ...,m, λ∗

j = 0 j = u + 1, ...,m + 1 (B.31)

ν∗ = 1/(R∗
u/fu +

u−1∑
i=1

gi) (B.32)

λ∗
j = ν∗(1/fj − 1/fj−1) j = 1, ..., u. (B.33)

It can be showed that this solution is feasible for DLPM and its objective function
value is equal to θu. Therefore the solution x∗GBM and z∗GBM is the optimal solution
for LPM. Case 3: Consider the following feasible solution to DLPM:

λj =

{
0 j ≤ m
1/R∗

m+1 j = m + 1

ν = 0,

$j = 0 ∀j = 1, ...,m.

The objective function value of DLPM is equal to π for this trivial solution. There-
fore, the solution x∗ALT and z∗ALT is the optimal solution to LPM. •
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B.5 Proof of Proposition 6

Proof We consider the same cases introduced in the proof of Proposition 5.
Cases 1 and 2: If u < m or u = m and θm < π in the solution of GBM, then

constraint (3.9) is not binding in LPM. In these cases, GBM solution provides the
optimal booking limit and its CR is correctly calculated in GBM as shown in Lan
et al.(2007).

Case 3: If solution to GBM has u = m and θm ≥ π, then x∗ALT is the op-

timal booking limit policy. In this case, we know u = m, z∗ = π =
RT +

Pm
i=1 fiL

T
i

R∗m+1

is the optimal objective value of LPM, and constraint (3.9) is binding in LPM.
Given the kth extreme input sequence I∗T,k and a nested booking limit policy
b∗T obtained from x∗ALT of equation (B.29), the online policy revenue satisfies
RT +R(I∗T,k, b∗T ) = RT +

∑k−1
i=1 fimin(x∗ALT

i , I∗T,k[i]) by construction of x∗ALT . Note

that LT
i ≤ x∗ALT

i ≤ UT
i and RT + R(I∗T,k, b∗T ) = RT +

∑k−1
i=1 fiL

T
i +

∑m
i=k fix

∗ALT
i

for extreme sequence k. Therefore, the constraints of LPM correctly calculate the
online revenues of policy b∗T for inputs k = 1, ..,m+1. The minimum CR is achieved
by input m + 1 in this case, and the corresponding CR is equal to π. •
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