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ABSTRACT

In this paper, we investigate the kinematics and dynamics of floating,
planar four-bar linkages. The geometry of configuration space is analyzed
through the classical theory of mechanisms due to Grashof. The techniques
of symplectic and Poisson reduction are used to understand the dynamics
of the system. Bifurcations of relative equilibria for linkages admitting
symmetric shapes are studied using the techniques of singularity theory. The
problem of reconstruction of the full dynamics and its relation to geometric
phases is discussed through some examples. This research reveals that a
coupled mechanical system with kinematic loops possesses richer and more
complicated dynamical aspects in comparison with systems which have the

same number of degrees of freedom, but no kinematic loops.
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1. INTRODUCTION

There has been significant progress in our understanding of the hamiltonian structure
of serial-link (or open chain) multibody systems (Baillieul [1988]; Baillieul & Levi [1987];
Grossman, Krishnaprasad & Marsden [1988]; Krishnaprasad & Marsden [1987]; Marsden,
Krishnaprasad & Simo [1988]; Oh et al. [1989]; Posbergh [1988]; Posbergh, Krishnaprasad
& Marsden [1987]; Simo, Marsden & Krishnaprasad [1988]; Simo, Posbergh & Marsden
[1989]; Sreenath [1987]; Sreenath et al. [1988]; Wang & Krishnaprasad [1989]). The
application of geometric methods, symmetry principles and reduction has led to deeper
knowledge of the dynamics of model problems. This insight has also been helpful in
developing appropriate control-theoretic tools (Bloch, Reyhanoglu & McClamroch [1991];
Krishnaprasad & Yang [1991]; Sreenath [1990]). The primary source of motivation for
such problems has been in aerospace engineering where imaginative designs of multibody
spacecraft have been proposed and on occasion realized (Bianchi & Schielen [1985]; CIME
[1972]; Wittenburg [1977]).

On the other hand, problems in aerospace engineering also suggest that multibody
systems with kinematic loops are of practical importance. An important example may
be the parallel linkage based robot manipulators which have been contemplated for space
applications. However, as we shall see, the presence of loop closure constraints implies
that the knowledge of hamiltonian structure and phase portraits for open chain multibody
systems cannot be applied directly to systems with closed loops. For instance, for
multibody systems with closed loops, the topological description of configuration space
strongly depends on the choice of kinematic parameters. This is not true for systems with
open chains.

In this paper, we study the kinematics and dynamics of the simplest mechanical
system with a kinematic loop — the planar, floating four-bar linkage. By floating we
mean that no link is fixed in space. It is simplest in that it has the fewest degrees of
freedom (after symmetry reduction) among all kinds of mechanisms with closed loops.
In the theory of machines, the four-bar linkage (with one link, the frame, fixed) plays
an extremely important role (Hunt [1978]). It may be directly used in many mechanical

systems. More complex mechanisms are often synthesized using one four-bar linkage to
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drive another. It is of further interest that a four-bar linkage can generate the wide variety
of motions which are represented by coupler curves (Hrones & Nelson [1951]). For floating
four-bar linkages, one expects similar properties to hold. As we shall show in this paper,
floating four-bar linkages do possess very interesting features from both kinematic and
dynamic points of view.

The outline of this paper is as follows. After stating the basic notations for this paper
in section 2, we give a geometric description of the configuration space in section 3. In
section 4, we give an explicit expression for the kinetic energy which is also the lagrangian
since in this paper we assume that no potential energy is involved. From this section
we see that explicit computation of constrained dynamics is difficult. Yet in the present
setting, using geometric techniques, one can infer qualitative properties without recourse
to explicit analytic representation of the constrained dynamics. This we do in section 5,
wherein we explore symmetry properties, hamiltonian structure and reduction of four bar
linkage dynamics. In section 6 we use a theorem of Smale to compute relative equilibria
for the dynamics of a four-bar linkage. Further, using techniques from singularity theory,
we study the local bifurcations of relative equilibria for linkages which admit symmetric
shapes. In section 7, the phase reconstruction problem for a four-bar linkage is investigated.
It is interesting to note that it is possible to generate either positive or negative phase shift
by the motion in shape space. This phenomenon does not arise in a planar two-body
system which also has two degrees of freedom.

Preliminary versions of this paper were presented at the IEEE Conference on Decision
and Control (Yang & IKrishnaprasad [1989]; Yang & Krishnaprasad [1990]).

We are pleased to acknowledge useful discussions on the topics of this paper with

Jerrold Marsden and Tim Healey.



2. NOTATIONS AND GEOMETRIC CONSTRAINTS

The structure of a closed floating four-bar linkage is represented in Figure 2.1. What
we mean by bar in this paper is a planar rigid body, on which the center of mass and pin
joints are located arbitrarily. The bars are labeled sequentially from 0 to 3. On each bar,
a body-fixed frame is attached such that its origin is at the center of mass of the bar and
the z-axis is parallel to the line connecting two joints on the bar. In particular, we choose
the positive direction of of z-axis of i-th bar towards the (¢ + 1)-th bar, for + = 0,1,2,3

(mod 4). We define the following quantities.

d;; the vector from the center of mass of ¢-th bar to the joint with j-th bar

in body-fixed frame;

r; the position vector of the center of mass of :-th bar relative to an inertial
observer;

r{ the vector from the system center of mass to the center of mass of :-th
bar;

r. the position of the system center of mass relative to the reference point

of the inertial observer;

0; the orientation angle of ¢-th bar relative to the inertial frame;
0;; the relative angle between ¢-th bar and j-th bar, i.e., 0;; = 6; — 6;;
l; the length of i-th bar, which is defined as the distance between the joints

on :-th bar, i.e. [; = ||d;it1 — dii-1]];

m;, I; the mass and the moment of inertia of 7-th bar about its center of mass;
m the total mass of the system, i.e.
3
m = E m;.
=0

Any pair of adjacent bodies is connected by the following relation, the hinge
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inertial
observer

Figure 2.1 The general structure of four-bar linkage

constraint,
I‘:-:_{__l = I'? -+ R(ei)d,‘,i+1 - R(9i+1)di+1’i 1= 0, 1, 2,3 (mod 4) (21)

where

re) = (Setg) on)

the rotation matrix. By eliminating r{ in (2.1) we find the loop constraint or closure

constraint,

V]
V]
—r

3
Z R(6:)(dii+1 — diji-1) =0, (2.
1==0

where the convention of modulo 4 for the subscripts is adopted.



3. THE CONFIGURATION SPACE
In this section we investigate the conditions under which the loop constraint (2.2)
describes a submanifold of the configuration manifold of an open four-bar chain.

For a planar floating four-bar open chain, the configuration space is
M=R?>xS'x S xS! x St
Here M is a 6-dimensional smooth manifold with local coordinates

q= ($07y0’60791792793)~

This corresponds to keeping track of a material point (say center of mass on one of the
bodies) and the four absolute orientations. See (Oh et al. [1989]; Sreenath [1987]; Sreenath
et al. [1988]) for the hamiltonian mechanics of such open chains.

For a closed four-bar mechanism considered in this paper, the configuration space

denoted by @ is a subset of M determined by (2.2), i.e.

Q = {q € M|F(q) = 0}

for

Fla) = 3 RO6:)(diisr — diir). (3.1)
=0

For @ to be a submanifold of M, we have the following condition.
Theorem 3.1: If
lo £l £l £13 #0,

@ is a submanifold of M .

Proof: Note that F : M — R?. From (Guillemin & Pollack [1974]) we know that if O is
a regular value of F, i.e. JF/0q has full rank for all q € @, then @ is a submanifold of
M.

From (3.1) we have

G_F__ 0 0 —lpsin(8y) —lhLsin(6;) —lsin(6y) —Il3sin(fs)
aq - 0 0 IOCOS(HQ) 11608(91) 12008(92) 13C05(93) )
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It is easy to check that all the nontrivial determinants of 2 x 2 submatrices are given by

the following functions,
g1(q) = lolysin(6; — 6y)
g92(q) = lol2sin(62 — bo)
93(q) = lolzsin(6s — 8) (3.2)
94(q) = lil28in(6 — 61)
gs(q) = lil3sin(0; — 61)

g6(q) = lalasin(63 — 6).

Therefore, if for each q € Q, there exists an ¢ such that g;(q) # 0 , @ is a submanifold of
M . Tt is obvious that the above condition depends on the relative angles and, consequently,
the lengths of the bars. To arrive at the condition in the statement of the theorem, we
proceed from the converse.

If gi(q) =0 for all 7, from (3.2), we have

8, -0y =0o0rm (3.3a)
and

O3 —6; =0 orw (3.30)
and

03 — 6y =0 or =. (3.3¢)

Premultiplying (2.2) by R(—6y), we get following equivalent closure constraint

equations

lo + llcos(gl — 90) -+ 12(603(93 — 92)605(93 —— 90) -+ 57:7'1,(93 —-— 92 )SZTL(93 - 9()))

+ 13605(93 - 92) =90 (34a)

-~



Cases | 610 632 630 Link Conditions Structures
i 0 0 o0 I+ h+ I+ 13=0
i 0 0 =x Lo+ - 1, 15= 0 = OU 2D —>
i 0 m o0 lot h- L+ =0 | &Sl
iv 0 = =« lo¥ L+ Ip- 13= 0 P — 13 o2,
v x 0 0 l- I1+ L+ L= 0 = 31 =
_ 1l g 2 3
vi © 0 lo- h- 1= I3= 0 a —2——
Iy~ L- L+ 1,= 0 o0
0 ‘1 2 3 < )
vii T w® O ° v '
3
.aw O
viu T T X ly- i+ Ly- 3= 0 or 0 )
00_—13,3 @)
Table 3.1

lisin(6y — 8o) + l2(cos(83 — 02)sin(83 — bp) — sin(f3 — 2)cos(03 — 6y))
+ lgsin(93 - 92) = (. (34b)

So, to make §;’s satisfy both (3.3) and (3.4), the length of the bars should satisfy
lo + (=1)*1l +(=1)*2l + (=1)*l3 =0 (3.5)

for some ki, ke, ky € {0,1}. By contradiction, if for all ky, ks, k3 € {0,1} (3.5) does not
hold, then there is an 7 such that g¢i(q) # 0, which means that @ is a submanifold of M .

(V4]



Remark 3.2: Table 3.1 summarizes the conditions on lengths of the bars which cause @
not to be a submanifold of M and the configurations with respect to the relative angles
given in (3.3). It is easy to observe that case (i) can never happen since /; are assumed to
be positive. In addition, cases (iii), (iv), (v) and (vi) are trivial since, in these cases, none
of the relative angles can vary, i.e. the configuration space loses one degree of freedom and
the linkage becomes a rigid structure. [ |

In the following we show that the condition in Theorem 3.1 can be simplified by
ignoring the labels on the bars and give a topological description of Q. We first recall
some definitions and results in the classical theory of mechanisms (Grashof [1883]; Paul
[1979a]; Paul [1979b)).

For a four-bar linkage in classical mechanics, in which one bar, the frame 1s fixed,

the following quantities are defined:
s = length of shortest bar
I = length of longest bar
p, ¢ = lengths of intermediate bars.

A bar which is free to rotate through 27 with respect to a second bar is said to revolve
relative to the second bar and is referred to as a crank. Any bar which does not revolve is
called a rocker. If it is possible for all bars to become simultaneously aligned, such a state

is called a change point and the linkage is said to be a change-point mechanism.

Theorem 3.3:(Grashof [1833])

(1) A four-bar mechanism has at least one revolving link if
s+l<p+gq

and all three will rock if

s+i>p+yq.

(2) A four-bar mechanism is a change-point mechanism iff

s+l=p+yq.



Remark 3.4: If s+ < p+ ¢, the shortest bar is the revolving bar.

It is easy to check that the cases (ii), (vii) and (viii) in Table 3.1 correspond to
s+ 1 =p+q, i.e. they correspond to change-point mechanisms. From Theorem 3.1, we
immediately have following result.

Corollary 3.5: If I < s+ ¢+ p and

s+1#p+gq,

Q is a submanifold of M. |
Remarks 3.6:

(a) If I > s+ ¢+ p, the mechanism is not constructible.

(b) In the sake of convenience, we refer to as the condition s+{ < p+q and s+ > p+q
as Grashof and non-Grashof condition, respectively. The corresponding linkages are
referred to as Grashof and non-Grashof mechanism, respectively. We will adopt
the same terminology for floating linkages also. So, Corollary 3.5 says that @ is a
submanifold of M if either Grashof or non-Grashof condition holds. |

(c) It is easy to see that, given four bars, assembling them into a closed loop and labeling
them sequentially, the linkage may have instantaneously one of three kinds of shape.

These correspond to
> 0;
.Si71(93 - 92) { < O,
=0.
In the classical theory of mechanisms, they are called lagging form, leading form and

dead point, respectively. |
With above remarks in mind, we proceed to give a topological description of the
configuration manifold ¢. We first need the following result.
Proposition 3.7: Let [; = s. Then s+ [ < p+ ¢ if and only if sin(f; — 02) 5 0 for all
configurations.
Proof: The mechanism can be assembled with s adjacent to [ or with s opposite /. And,
[ can be ly, I or I3. If 85 —~ 64 = km, the whole structure attains a triangular shape which
has the property that the sum of two sides is larger than the third one. Then it is easy to

check that all possible cases will lead to
s+1>p+q.
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Further, it is obvious that if s+ = p+¢, there exist 6, and 63 such that sin(f; ~8,) = 0.
And, if s+ 1 > p + g, by Grashof’s theorem, all bars will rock with respect to each
other. This means that dead point is reachable. Therefore, if sin(f; — 6,) # 0 for all
configurations, s + 1 < p +¢. ]
Remark 3.8: An equivalent way to state above assertion is that a four-bar linkage is a
Grashof mechanism if and only if it is constrained to be in either leading form or lagging
form. Moreover,' for non-Grashof mechanisms, the linkage can vary continuously from
leading form to lagging form. [ |

From Grashof’s theorem and the above proposition we can get a topological descrip-

tion for Q.
Theorem 3.9:

(a) For a Grashof linkage, i.e. s+! < p+¢, Q has two components. Each component
is diffeomorphic to R? x S x S1,

(b) For a non-Grashof linkage, i.e. s+1>p+¢q, @ =R*x S! x S'.

Proof. Our proof is based on explicit parameterization of the manifold ¢. Recall that
from (3.1) the dimension of @ is four. Again, we let s = 1.

(a) If s+1 < p+ q, we consider the parameters (zo, yo, 6o, 81), where (zo,y0) is the
coordinate of any point on 0-th bar in inertial frame. From the definitions of 6, and 6,
and the Grashof theorem, both 6y and 6; can vary from —7 to 7 independently. From
the remark following Proposition 3.7, one component of the manifold @ corresponds to
leading form. The other corresponds to lagging form.

(b) If s+1 > p+q, from Grashof theorem, there exists an angle «, 0 < a < 7, such
that, 819 € [~a+ 7, a+7]. At the boundaries, the system is at “dead point” (see Remark
3.6 (¢)). Now, we consider the independent parameters (xg, yo, 6o, é) , where

=2, if sin(f32) > 0 (lagging form);

R _So—rm—a
g =
{ Q‘%”—’ﬁ%, if sin(f32) < 0 (leading form).

It is easy to check that g and 6;, have a one-to-one relation in both leading form and
lagging form. Moreover, g varies from —m to w. For 8 € (—m,0), the mechanism is
in the leading form; for 6 e [0, 7], the mechanism is in lagging form. So (aco,yo,ﬁo,é)

parameterize R? x S! x S!. |
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Remarks 3.10:

(1) Gibson and Newstead in (Gibson & Newstead [1986]) proved above assertion through

the methods of algebraic geometry.

(2) This theorem says that for fixed point in R?, the configuration space is the disjoint
union of two tori for a Grashof linkage and a torus for a non-Grashof linkage. For
the latter, the torus can be split into two parts, one corresponding to leading form,

the other corresponding to lagging form.

(3) From the above remark, we note that, for both Grashof and non-Grashof linkages,
one may use (zo,Yo,0,0;) and specified form (leading or lagging) to parameterize
Q locally. For non-Grashof case, one has to worry about the parameterization in the
neighborhood of dead point. This problem can be solved by re-labeling the bars. We

will discuss it further in the next section. |

Figure 3.1 The reduced configurations, an example.
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Example 3.11: Here we illustrate the Theorems 3.1 and 3.9 by a simple example. First,
we fix one bar (position and orientation), say ly and let 8, = 0. This means a point in

R? x S! has been chosen and the dimension of the configuration is reduced to one. Now

the constraint equation (2.2) becomes
lo + licos(6y) + lacos(0;) + l3cos(f5) = 0

llsin(Gl) -+ lgSi11(92) -+ l35in(63) = 0.

Eliminating one more angle, say s, we get
f(8y,6:) £ (Io + 11cos(81) + lacos(62))? + (lisin(6:) + lrsin(62))? — 12 = 0. (3.6)

The solutions of this equation gives a curve on a torus 72 as the configuration space.
Now we choose lg = 3, I; = 3, I3 = 4 and let [ vary. Figure 3.1 shows the
results. The rectangle with opposite edges identified is the standard way to represent a
torus (Guillemin & Pollack [1974]). We see that when I, = 1.9, s + ! < p + ¢ holds and
the solution of (3.6) on T2 is a disconnected closed curve; when I, = 2, s+ =p+g¢
holds and the solution of (3.6) on T? is a “figure 8”; when Il =3, s+ > p+ ¢ holds and
the solution of (3.6) on T? is a connected closed curve; when I, =4, s+ 1 = p+ ¢ holds
and the solution of (3.6) on T is a “figure 8”, again; when I, = 4.5, s+ > p-+ ¢ holds
and the solution of (3.6) on T is a single closed curve, again. If the linkage is allowed to

float, we get the configuration spaces described in Theorem 3.9. |
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4. KINETIC ENERGY

In this section we derive the kinetic energy, or lagrangian since we assumed that no
potential energy is involved, for the whole system. The basic idea is to write the kinetic
energy for each individual body first and then use the constraint equations to eliminate
extra variables.

The kinetic energy of the :-th bar is
1 1 .
Ti = sw; i + gmalfilf*

where w; = 6;. The total kinetic energy is

3 3
1 2 1 . 2
T = §Zwifi+52mi”ri“ : (4.1)
1=0 =0
To describe the kinetic energy relative to the center of mass, we have following useful
equations,

r; =r.+rf :1=0,1,2,3 (4.2)
3

> marf =0. (4.3)

1=0
By applying (4.2) and (4.3), (4.1) becomes,

1g lem . 1
T=; > Wi+ 5 > millEg)? + 5n»Lnran. (4.4)
1=0 1=0
Applying (2.1) and (4.2), we get
1
;= —[R(6i—1)mi—1di—1;
ri = —[R(0i-1)mi1di,

— R(6;)(mi—id; i1 + (Mig1 +migo)diier)
+ R(0i41)((mig1 + migo)dit1,i — Mmigadipy ize)
+ R(0ix2)miyadita it1]
for : =0,1,2,3 (mod 4). Note that the convention on the subscript can be used because

of the closed-loop condition. Furthermore,

e 1 ~
r, = —[mi—lwi—lR(Gi——l)di—l,i
m
— &iR(0;)(mi—1diicr + (Mig1 + mige)diigr)
4+ i1 R(Big 1 )((mipr +migo)digs i ~ migadips i)

+ Oigo R(6igo )M yodita it1) (4.5)
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for : =0,1,2,3 (mod 4), where

O — 0 —uw;
T W 0 )

By substituting the formula for £ into (4.4), we get a more compact expression for the

kinetic energy

. 1
< 0,Jo > +=m||i | (4.6)

where @ = (wq,w;,wz,ws3)T and J= (ji,j,i,j =0,1,2,3) is a 4 x 4 symmetric matrix,
with elements given as follows.

Let

1
Ml = 'rﬁ[mimi-i-l(mi + Miy1)

+ mip1(mizimi—1 + mimiyo)

+mimiya(mipr + miyo) (4.7a)
my
M = ;{5(7n?+2 — Mip1Mi—1) (4.7D)
mim;
J\/[i[II = ——n—l—Q———t—?—(mi_*_l =+ m,'_l). (476)

Then

jii =1+ J\/[{Hd”?)iﬂ + ]V[i1~1”dn?,i—1

—oMH, < dip,diiog > (4.8a)
Jijir1 = —M] < diiy1, R(0ix1,i)diz1i >

+ M < diig1, R(Oir1,i)digr,iven >

+ M,I_{l < djie1, R(Oig1,i)ditr, >

+ M < d; o1, R(Gigr ) digr,ive > (4.8b)
Jiiwa = =M < di,i+1,R(9i+§,i)di+z,i+1 >

- MHT < d; 01, R(Bi2.i)div2 o1 >

— M, < diisi, R(Bive,i)divain >

= M < diim1, R(0ig2,)dign,ie1 > (4.8¢)
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for 1 =0,1,2,3 (mod 4).

Remark 4.1: In (4.6), ; and the velocities w;, 7 = 0,1,2,3 are involved. Since the
whole linkage forms a closed loop, these variables are not independent. Let I} = s.
By the Implicit Function Theorem one can show that given a point (6y,6;1,6;,63) in
St x St x S x S such that (2.2) and sin(f; — 62) # 0 are satisfied, around this point
there exists a neighborhood in which #; and 65 can be represented as the functions of
(6o, 61) uniquely. For a Grashof linkage, from Proposition 3.7, this condition is satisfied
everywhere in ). But for non-Grashof linkages this condition is satisfied almost everywhere
in @, except at dead points. We note however that even in this case all four bars cannot
be aligned. So at such points, §; and 6; can be represented as the functions of (6, 6;3)
uniquely. This is equivalent to relabeling the four bars such that sin(8; — 6;) # 0.
Moreover, from (Paul [1979a]), locally, there exist two functions f; and fo of (6; — 6)

such that
0y =0 + f1(6 — 0y)

03 = 0y + f2(61 — bo).

We note that the expressions for functions fi; and fo depend on the sign of sin(f; — 6,),
1.e. on whether the linkage is in leading form or lagging form. Therefore, we conclude
that at every point on @, every element of the matrix J can be expressed as a function
of 6, — 6. |

Differentiating the loop constraints (2.2), one can get a relation between (wq,w;)

(Z‘;) =0 (22) (4.9a)

and (wz,ws):

where

___1031.11(93—90) _113i7l(93—91)
—_ 128i71(93—92) 128i1l(93—92)
Q=1 | oinbseto) I sin(6s—61) | (4.90)
138i71(93—62) l3sill(93—92)

Again, following the same line of reasoning as in Remark 4.1, the matrix Q is well-defined
locally in general.

We summarize the above discussion in the following theorem.
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Theorem 4.2: The kinetic energy of a floating four-bar linkage can be represented as

1
T=-<wJw> +§m|li'c||2 - (4.10)

VRN

where w = (wy,w;)? and

J=(I QT)j<é>

for J given in (4.6)-(4.8) and Q given in (4.9). The elements of J are, locally, branched
functions of (6 — 6y) (depending sgn(sin(fs — 62))). |
Before ending this section, we give a property of the matrix 2 which will be used in

Sections 6 and 7.

Proposition 4.3: If € i1s well defined,
1 1
(1)-2():
Proof: Premultiplying (2.2) by R(—6,) and R(—0s), we get
losin(6g — 62) + lysin(8; — 62) + lssin(; — 6,) =0

and

loSiTl(go - 93) + llsin(91 - 03) + lgsin(92 - 93) =0

respectively. The result follows immediately. |
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5. SYMMETRY, INTEGRAL AND REDUCTION
We shall show here that a floating four-bar linkage is a simple mechanical system
with symmetry in the sense of Smale (Abraham & Marsden [1978]; Smale [1970]).
A simple mechanical system with symmetry is a 4-tuple (@, K,V, G), where,
(1) (@, K) is a Riemannian configuration manifold with metric I{;
(ii) G is a Lie group acting on @ on the left,
:GxQ—Q
a
(9,9) = B4(q) = ®(9,9)
such that for each g € G, ®, is an isometry of (Q, );

(ii1) V : @ — R is a G-invariant potential function. The associated lagrangian is

defined by

L:TQ — R
1. (5.1)
vy = L(vg) = 3]& (vg,vq) =V 0 7(vg)
where 7: TQ — @ is the canonical tangent projection. The Legendre transform F'L of L

is given here by the vector bundle isomorphism
K :TQ — T*Q
satisfying
K*(vg) - wy = K(vg,w,) Vv, w, € T,Q.

The hamiltonian H : T*(Q) — R is defined to be

H(ay) = SR ((E) ™ (ay), (K*) " (ag)) + V 0 () (5.2)

g4

where 7* . T*Q — () is the canonical cotangent projection. Letting 2 denote the
canonical symplectic structure (Abraham & Marsden [1978]) on T*Q, the hamiltonian

dynamics on T*Q is given by the unique vector field Xy on T*Q such that
dH(Y) = Qo(Xg,Y)
for any vector field ¥ on T*(Q.

18



Let @7 : G x T*Q — T*Q be the cotangent lift of the action ®. Denoting
™ — &T
@, (-) =" (g,), we have
Hodl" =4, - (5.3)

1.e. the group G is a symmetry group of the hamiltonian system (T*Q,Qo, Xy).
The modern setting of Nother’s theorem relating symmetry to the existence of
integrals of motion is given by the concept of momentum mapping. Let G denote the

Lie algebra of G and G* its dual. The map
J:T°Q - G*

given by

J(ag) €=ay-€olq) Ve, €T;Q (5.4)
is Ad*-equivariant, where £ € G and €q is the infinitesimal generator of ® on @) associated
to ¢ (see (Abraham & Marsden [1978]) corollary 4.2.11). J is a momentum mapping and
the G-invariance of the hamiltonian H implies that J is an integral, i.e. it is conserved
along trajectories of Xy .

Returning to four-bar linkages, we restrict attention for the moment to linkages of
Grashof type, i.e. the condition s + [ < p + ¢ holds. For non-Grashof case we will give a
discussion in the final remark of this section. To fix the parameterization, we let [; = s. We
also restrict ourselves to a connected component of the configuration space, i.e. we assume
the linkage has been in either leading or lagging form. As we have seen in previous sections,
the lagrangian only depends on 6, — 8; and éo and 91 . Therefore, in some essential ways,
the description of the sysfem will parallel that bf a coupled two-body problem (Sreenath
[1987]). In the following, we will skip some details of the proofs.

Note that the lagrangian in (4.10) does not depend on the location of the center of
mass of the system. This means that the dynamics of the system is invariant under the
translation in inertia@ space. Without loss of generality, one can place the inertial observer
at the center of mass of the system. In (Sreenath et al. [1988]) this process is explained via

symplectic reduction by the translation group R?. With this choice of inertial observer,

the configuration space becomes -

Q=5"xSs! (5.5)
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and the kinetic energy becomes

T==-<w,Jw>.

| =

The corresponding kinetic energy metric on ) can be defined as

1
K(wl,wz) = 5 < wy,Jwy > (56)

for wy, we € T,Q. It is easy to observe that the group of rigid motions of this system
is the symmetry group G = S'. Denoting a point in @ by (6o, 6:), the action ® of this
group on () is given by

®(¢,(80,61)) = (6o + 9,01 + ¢). (5.7)

The hamiltonian is given by

H =

(VR

<u, I > (5.8)

for p = K”(w) = (o, 1). Using the abstract formula (5.4) and the action (5.7), one can

show that a momentum mapping for the action @ is represented by

J(0, 1) - &€ = po + 1 (5.9)

5:@ §>5w@

Of course, v = pg + p3 is conserved along trajectories of Xpg for the hamiltonian H 1in

where

(5.8) and it is simply the net angular momentum of the floating four bar linkage relative
to an observer at the system center of mass.

The dynamical trajectories are confined to a level set of the form J~!'(v). The
group S! viewed as the isotropy subgroup of the momentum value v, acts freely on
J™Y(v) and one gets the symplectically reduces dynamics Xpg, on the reduced phase
space P, = J~}(v)/S? ~ S' x R!.

As in (Sreenath et al. [1988]) it is also possible to Poisson-reduce the dynamics. We
recall that given a symplectic manifold (M,w), and a smooth, free, proper, symplectic

action of Lie group G on M, the canonical Poisson structure on M defined by

{figty =w(Xy,Xy) VS, g€ CF(M)

20



descends to a Poisson structure on the quotient P = M/G. The latter is defined by

{(f,dYmgomr={fomgonium (5.10)

where f,§ € C°(M/G) and 7 : M — M/G is the canonical projection. If H : M — R is
a G-invariant hamiltonian, it induces H : M/G — R defined by H o 7w = H. We refer to
the dynamics (vector field) Xy, defined by

Xg(fy={F, B} VieC=(M/G) (5.11)

as the Poisson reduction of the dynamics Xp.
In the present context, with @, K, H asin (5.5)-(5.8), the space M = T*(S! x S')

with parameterization (6,01, po, 1) carries the Poisson structure,

hy=SL % 0F D, (5.12)

for all f, g € C°(T*(S! x S')). The action of G = S! on Q given by (5.7) is free and
proper. The quotient P = T*(S5' x §1)/S! ~ S! x R? carries a reduced Poisson structure.
Parameterizing P = T*(S! x S1)/S! by (610, fa, 1), the Poisson bracket on P is given
by, ) ) )
{]E7§}T*(Slx51)/5‘1 _ ;;f _ aafi 93, 95 . of Of

10 251 3#0 0610 a/ll aﬂo

) (5.13)

which is a noncanonical structure. The reduced hamiltonian H is given by

H (610, o, 1) = H(80, 61, o, 1), (5.14)

since J in (5.8) is a matrix of functions of the difference 61y = 6; — 6y only. The reduced

dynamics is then immediately given:

. 0H
Ho = B

~

. oH
M1 = D610
G, - O _of
T8 Ope

(5.15)
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Equation (5.15) involves complicated analytic expressions resulting from the substitutions
for 63 and 6, in terms of 6y and §; asin (Paul [1979a]). Certain qualitative aspects of the
reduced dynamics can still be explored such as relative equilibria which we will investigate
in the following section.
Remark 5.1: For non-Grashof mechanisms, the system still has symmetry group G = S*.
This is clear if one thinks a four-bar linkage as an open four-bar chain combined with
constraint equation which is invariant under the action of G. It is also clear that, in this
case, if 8y and 6; are just parameters of S! x S, instead of real angles of 0-th and 1-st
bars, all of results in this section are valid. However, for convenience, in next two sections
we will still use physical angles 6, and 6; for non-Grashof mechanisms. Then, 6, and 6,
will play the role of local coordinates for S* x S! and, consequently, (5.9), (5.13) and (5.15)
will be the expressions of momentum, reduced Poisson bracket and reduced dynamics in
local coordinates, respectively. [ ]
One of the advantages of applying reduction theory to mechanical systems is that
it helps to make the dynamics of the system more transparent. For our system which is
of four dimensions in phase space, the reduction process make it possible to display the
dynamics by the phase portrait on a two-dimensional surface. To illustrate this, we show

two examples here.

Example 5.2:
Consider a floating four-bar linkage whose parameters satisfy the Grashof condition

and which is of lagging form. In particular, the parameters are chosen as the following.

dos = (-1.5,1), do1 = (1.5, 1), dyo = (—0.5,1.3), dy2 = (0.5,1.3),
dgl = (—15, 1), d23 = (15, 1), d32 = (-—2, /\), d30 = (2,/\)

Following the same procedure as in (Sreenath et al. [1988]), the dynamics can be

further reduced to a symplectic leaf. The hamiltonian on a leaf is a function of 6,y and
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Figure 5.1 The phase portraits for a Grashof linkage
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v(= %(p1 — po)) and the dynamics on the leaf is given by

d910 8H dv BH

& = = e, )

Therefore, for fixed value of angular momentum, one can draw the phase portrait on a
cylinder with 6,9 versus v. Figure 5.1 shows the phase portraits for A =0 and A = =5,
respectively. On Figure 5.1(a), we see there is one center and one saddle point. However,
in Figure 5.1(b), there are two centers and two saddles. The difference is caused by an
offset in the position of center of mass of 3rd bar from the line connecting the two joints

on that bar. [ |

Example 5.3:
Consider a floating four-bar linkage whose parameters satisfy the non-Grashof

condition and the parameters are chosen as the following.

mop=1 my=1 me=1  mg=1;

d03 = (—27 /\)) dOl = (27 /\)7 d]o = (—1.5, —1)’ d12 =1 (1.57 ____1)7
d21 = (—15, _14), d23 = (15, -—14:), d32 = (—‘15, —1), d30 = (15, —1)

Instead of displaying the dynamics on position-momentum phase space, here we try to
show it on position-velocity phase space. Since the dynamics cannot be further reduced so
that it depends on one relative angle and corresponding angular velocity, one has to display
the phase portrait in three dimensional space. For a given angular momentum, the phase
portrait sits on a surface in this space. In this example, this space is parameterized by
(élo,é,égg). Figure 5.2 shows the phase portraits corresponding to A = —15 and A = 0,
respectively. From Figure 5.2, we see, again, the change of numbers of centers and saddles.
- "

In the next section, we will show how to compute the centers and saddle points and

associated bifurcations.



(b) A =0

Figure 5.2 The phase portraits for a non-Grashof linkage
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6. RELATIVE EQUILIBRIA AND BIFURCATIONS

We first give the definition of relative equilibria and recall Smale’s theorem (Smale
(1970])).

For a hamiltonian system (M,w,Xpy) where M is a 2n-dimensional smooth mani-

fold, w is a symplectic form on M, Xy is hamiltonian vector field determined by
ixpw=dH

for some smooth hamiltonian function H on M. For simple mechanical systems,
M = T*@Q, the cotangent bundle of the configuration space @, of the system. Let G

be a symmetry group acting on ) on the left,
®:GxQ—Q
(9:9) = By(0) = 2(g,9).
and hence on T*Q) by cotangent lift. The following definition of a relative equilibrium is
standard (Abraham & Marsden [1978]).

Definition 6.1: Let F“\rH be the flow of Xy on M. Then z. € M is a relative equilibrium

if F%, (z.) is a stationary motion, i.e. there exists £ € G such that

Fi, (20) = exp(tE)(=.),

where G is the Lie algebra of the group G. ]
Remarks 6.2:
(1) Let X4 be the Poisson reduced vector field as shown in (5.11). Then z. is a relative
equilibrium iff

Xy(m(ze)) =0.

(2) A physical interpretation of relative equilibria is that if the dynamics of a system is
rotationally invariant, the dynamical orbit of a relative equilibrium appears to be a
fixed point for an observer in a suitable uniformly rotating coordinate system. ]
Given a simple mechanical system with symmetry, (Q, N, V, &), which is defined in

section 5, we have following theorem by Smale.
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Hence, by Theorem 6.3, (0., 1) is a relative equilibrium point on T*Q iff . is a critical

point of the function
1
Ve(60,61) = —€*(1,1)3 (1)

where 8, = ((6g)e, (61 )e) and ge = ((p20)e, (41)e)- Applying Proposition 4.3 and the 4 x 4

matrix J defined in Theorem 4.2, we have
Ve(60,61) = —¢*e" Je (6.5)

where e = (1 11 1)T. Since the elements of matrix J are, locally, functions of 8, — 6 or

constants, the above V; satisfies (6.2) for all g € S'. It follows that
Ve(610) = Ve(6o,61).

Then, the critical points 8, of V¢ will make ((6;)e —(6o)e) to be the critical points of f/g.
At relative equilibrium, the relative angles between bars keep unchanged and the whole
system rotates around the system center of mass with constant angular velocity.
Remarks 6.5:

(1) It should be noted that, in general, given the value of ((6;). — (6).) one cannot tell
what the relative equilibrium shape of the linkage looks like. The particular form
(leading or lagging) has to be indicated at the same time.

(2) VE with £ =1 1s the locked inertia. Its value at 6,y equals to the value of the moment
of inertia of the corresponding frozen system, i.e. the system with all joints locked,
about its center of mass. The above result shows that a relative equilibrium shape
corresponds to a frozen system which has maximum or minimum value of moment
of inertia within all possible frozen systems. Since at relative equilibrium € is a
constant, we will let £ = 1 later. ]
In the rest of this section, we are particularly interested in assemblies which admit

configurations with reflection symmetry, which will be called symmetric configuration.
Applying the notations in Section 2, a floating four-bar linkage is of symmetric type if,

with proper consecutive labeling of the bars,

m; = ms, ll = 13 (66(1)
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|do1| = |dosl, |d1o| = |dsel, |d12| = |d32], |d21]| = |d23| (6.6b)
and

0 0
d% (0 1> d30 > 0. (6.66)

In other words it can form symmetric shapes as shown in Figure 6.1. It is not hard to verify

that any four-bar linkage which satisfies (6.6) has two such symmetric configurations.

Figure 6.1 A Symmetric Configuration

Although it is not easy to find the critical points of ffg analytically, for a particular
example one can easily find them numerically. Unlike the planar two body problem
(Sreenath {1987]) for which the dimension of the shape space is also one, here the function
Vg has many parameters. A natural question is to determine how these parameters
affect the relative equilibria, e.g. their numbers and location on shape space, etc.. Of
course, it is difficult to answer this question for completely arbitrary choice of parameters.
However, by leaving one particular parameter free such' that the assembly preserves
its symmetric configurations and freezing all other parameters, one still can observe a

nontrivial bifurcation phenomenon. To illustrate this we consider an example.
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Example 6.6: Let us choose the parameters as follows.

d03 = (—2’)\0)’ d01 = (2’ /\0)’ le = (—157 —1)7 d12 = (15, “"‘1)7
dyp = (=1.5,-1.4), dgs =(1.5,~1.4), dgs = (=1.5,~1), dao = (1.5, —1).

Now the assembly has non-Grashof structure.

Using Vg, for any A¢ one can find relative equilibria (619). for both leading form
and lagging form, and hence, corresponding § which is defined in the proof the Theorem
3.9. As A¢ varies from —oco to +co, one can plot a diagram for § versus Ag. Figure
6.2 shows the result, in which solid dots represent stable relative equilibria, small circles

represent unstable relative equilibria. ‘ |

100

{a 0]

-100

Figure 6.2 Bifurcation diagram: an example



From this example one can make the following empirical observations:
(1) There are two unbounded symmetric branches on the diagram and and these

branches are bifurcated at some points. The bifurcations appear to be pitchfork bifurca-

tions.

(2) Almost any value of 6 can be a relative equilibrium for a particular Ag. In other
words the bifurcation diagram is connected globally.

(3) The number of relative equilibria can be two, six and ten.

The first observation, which relates to the local bifurcation problem, is what we will

concentrate on in the rest of this section. The others will be discussed later.

As we have seen, the function Vf of a four-bar linkage is a multiple parameter
function. One might expect very complicated bifurcation features with respect to these
parameters. Here, instead of considering a general structure, we study a special assembly
which has symmetric configuration. To avoid too many tedious calculations we particularly

choose the parameters of the assembly as follows.
Mo == M = My = M3 = 1;

d03 = (——do,/\o), d01 = (do,/\o), le = (——1,0)’ d12 — (110) (67)
doy = (=dz,A2),  doz = (d2,A2),  ds2=(=1,0), dso =(1,0).

where dy and d, are fixed and dy > do > 0, Mg, A2 € R. Moreover, we consider the

non-Grashof case only, i.e.

s+Il>p+gq. (6.8)

Figure 6.3 shows two symmetric configurations for the above choice of parameters.
We will see that although only two parameters A\ and X, areleft to be free, the bifurcation

features with respect to these parameters are still informative.

The function VE now has the following form:

~

] \
Ve = 1(2/\231‘71(932) + dacos(B32) — cos(b31) + docos(630)

+2/\23in(921) + dgCOS(egl) - dodgcos(ego) + dOCOS(91Q))
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Figure 6.3 Symmetric Configurations

A : :
+"4£(23177.(930) + /\2COS<920) e 281”(610)) + C (69)

where C is a constant determined by d;;, m; and the moments of inertia of the bodies,

Ii. For 1,7 =0, 1, 2, 3, 6;; =0; — §; and 0; satisfy the constraint equations
do + cos(81q) + dacos(b20) + cos(830) =0 (6.10a)

sin(@lg) -+ ngin(Ggo) -+ szn(Ggg) = 0. (6106)

In the following, at symmetric configuration, the variables will be denoted by
superscript “s” (say, 0jy), the formulas will be denoted by “|,” (say, f(610)ls). As
shown in the example, the bifurcation diagram of relative equilibria will be parameterized
by (8, X0). |
Theorem 6.7: For a floating four-bar linkage with parameters shown in (6.7), the

bifurcation diagram of relative equilibria has the following properties:
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(1) There are two infinite branches in the diagram, one corresponds to 6, in the
leading form, another one corresponds to 87, in the lagging form. We refer to these as the
symmetric branches.

'(2) There exists a constant A3 such that no bifurcation occurs on the symmetric
branch of leading form if Ay = AJ; and, no bifurcation occurs on the symmetric branch of
lagging form if Ay = —AJ.

(8) On the symmetric branch of leading (lagging) form, if Ay < A3 (—A3), there exists
a constant c¢; (c3) such that the relative equilibria are stable for Ay < ¢; (c3), unstable
for Ao > ¢1 (c3), bifurcated for Ao = ¢1 (c3); one the other hand, if A2 > A; (—A}), there
exists a constant cp (cq) such that the relative equilibria are unstable for A¢ < ¢z (c4),
stable for Ag > ¢2 (c4), bifurcated for \g = ¢1 (c4).

(4) Assume A # £A%. Let

+e1 A2 + €9 \pte
+ 119 2172 3
= 6.11
€ sgn ot ( )
and

6% = sgn(6; AaE6,) (6.12)

where ¢€; and §; are constants which are determined by dy and dp. Then, the bifurcation
on the symmetric branch of leading form will be supercritical pitchfork if et6% < 0. It will
be subcritical pitchfork if eté™ > 0. Similarly, the bifurcation on the symmetric branch
of lagging form will be supercritical pitchfork if €76~ < 0. It will be subecritical pitchfork
ife”é6™ >0.

Remarks 6.8:

(a) Based on the techniques of bifurcation theory shown in appendix A, the proof of
the above assertions is very elementary. However, two aspects have to be considered before
the bifurcation theory is applied. First, one has to determine the ezistence of a bifurcation
and where the braﬁches are bifurcated. Second, as one can see, it is not easy to write
down explicitly the function f/f as a function of one variable. Therefore, when applying

the techniques of bifurcation theory which involves as high as fourth order derivatives of

the function Vg, one should consider the closure constraint equation (2.2) simultaneously.
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(b) Although the proof of the above assertions is elementary, it requires a large effort
in calculations. We used MACSYMA to handle these computations. In the following, we
only give a sketch of the proof. |
Proof of Theorem 6.7 Note that the function Vg can be written as a function of relative
angies 610, 020, and 630, which are related through constraint equations (6.10). From
(6.10), we can consider (locally) 620 and 630 as the functions of 619. Again, from (6.10)
one can generate the quantities %—9;2-*1[3 and 7379;3—9|3 for any positive integer :. Moreover,

from Figure 6.3 it is easy to see that at symmetric configuration
05, =7 and 810 = —05,- (6.13)

With above considerations, one can have closed form expressions for 3@2&[ s and §£ﬂ| s

For instance,

QQZQ.l — 1603(98 )

g s = 10 /)5

{ N (6.14)

061918 T

and
8%9 _ 2c08%(6%,) s
3712200 s = dzsm(ﬂ )(d2 cos(63,)), (6.15)
2 2 9 )
S5t~ BB 2t

and so on.

To prove assertion (1) in the statement of the theorem, one needs to show that at
symmetric configuration, the equation
oV L=
9610 °

does not depend on Ag. Concentrating on the term involving Ay in 175 and applying
(6.13) and (6.14), one can show that the first derivative of that term with respect to 8y
at symmetric configuration is zero. Since the rest of the terms of |3 0 are still
functions of 6§, one can see two infinite symmetric branches in the blfurcation diagram
for two different 67,. Assertion (1) is thus proved.

Applying (6.14) and (6.15), one can show that the second derivative of the function

Vg at symmetric configuration has the form

Ve o1, dy — 2cos*(63,) cos?(65,)
s — s - Ag 35 3 6.16
063, ls = 391’0‘ Ao dysin(63,) A2 d3 ) ( )
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where II is the summation of the terms not involving A\¢ in VE- It is obvious that when

& 2dacos?(83,) — d
Ao = A\ = - , 6.17
2 2 cos?(63,)sin(63,) ( )

%%?f[s will not depend on Ag. One can also show that with (6.17), %%%f—ls # 0 under
assumptions (6.7) and (6.8). This means that bifurcation may not occur on either
symmetric branch of leading form or symmetric branch of lagging form. Note that on
these different forms cos(65;) has the same value, sin(6;,) has the same absolute value
but different sign. (See Figure 6.3) Thus, assertion (2) is proved.

As we have known earlier, the stability of relative equilibria depends on the sign of
?3_20‘;—:‘3' From (6.16) we see that %%f—ls is a linear function of Ag. Using the A} in (6.17),
the proof of (3) is straight forward.

To prove assertion (4), we apply the bifurcation theory mentioned in appendix A.
Let A§ denote ¢; in assertion (3) for some suitable 7. One can show that at (614, Af),

\ 27 3V, 27,
aaeli N ?99;/5 - geif - a(zlg/af/\ =0 (6.18)

Moreover )
64‘/5 iel/\2 + 62)\2:‘t63
60, A0) = — 6.19
09‘110 ( o 0) 64/\2:f:65 ( )
and )
Ve pe s
m(ema Ap) = 0126y (6.20)
for some constants €; and ¢;, where “+ 7. corresponds to leading form, “—" corresponds

to lagging form. See Appendix B for expressions of ¢; and ¢;. Since (6.19) and (6.20)
are not zero in general, applying the lemma in appendix A, we can say 'éao% is strongly
equivalent to the normal form of pitchfork bifurcation. In addition, the type of pitchfork
bifurcation depends on the sign of (6.19) and (6.20). The assertion (4) is proved. R
Remarks 6.9: (i) The condition of Ay # \j guarantees that (6.20) and the denominator
of (6.19) are not zero. (ii) In general the bifurcation changes from a supercritical one to
subcritical one at the roots of numerator of (6.19). |

Example 6.10: To see how A; changes the bifurcation diagram with parameter Ay we

give following example. We will concentrate on the symmetric branch with respect to
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leading form. Let dyp = 2 and d; = 1. Then € and § have the following form

+ A3+ 6.938)\; — 3.623
= sgn
I 873 — 0.051A;

€

6T = sgn(1.025 — 0.028),)
Then

€+6+ — —1, if -7.426 < /\2 < 0488,
+1, otherwise.

Note that the region for A; is an approximation. So we can say that, when A, €

(—7.426, 0.488), the pitchfork bifurcation is supercritical. Otherwise, it is subcritical.

Figure 6.4 shows this result. ‘ ]

Before closing this section, we would like to make a few additional remarks.

(1) Although our discussion only concentrated on a structure of non-Grashof type, a
version of Theorem 6.7 also holds for the Grashof case.

(ii) Up to now we have understood the phenomenon of bifurcation on the symmetric
branches. The global analysis of the bifurcations involves massive symbolic computations.
However, as shown in the Example 6.6 in this section and other simulations, one can
numerically determine a global bifurcation diagram. A large body of such numerical
simulations show that the branches in the bifurcation diagram are connected. In other
words, for any point in shape space, there is a finite A\¢ for which that shape determines
a relative equilibrium. This is consistent with the linearity of V5 in A\g. This property
provides a possibility to control the attitude of a space structure with a closed kinematic
chain by simply changing the position of the centers of mass of some bars.

(ii1) Our results in this paper rely on some ideal conditions, for instance, the
symmetry condition (6.6), and the absence of external and internal disturbances. One
may ask what will happen when these conditions are violated. The answer to this question
may relate to the notion of universal unfolding in bifurcation theory. Numerical results
show that it is possible to use the unfolding property to control the shape of the structure

near the bifurcation point.
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7. GEOMETRIC PHASES

Recently, it has become clear that in a variety of mechanical contexts, certain
(angular) drift phenomena arise which can be understood via geometric methods. As
illustrations, we note the drift in the orientation of a satellite caused by oscillations in
flexible components of the satellite, the slow change in the plane of oscillation of a Foucault
pendulum during a 24-hour period, the ability of trampoline artists to reorient themselves
in mid-air through limb and trunk movements etc.. In the computation of such drifts,
one notes that some or all of the drift may be attributable to geometric quantities such
as a path integral in a space of equivalence classes (i.e. shape space) of configurations.
Hence the term geometric phase is used in connection with such drifts. We refer the
reader to (Shapere & Wilezek [1989]) and (Marsden, Montgomery & Ratiu [1990]) for
some of the basic references and the general theory. Of direct relevance to the present
paper are the computation of geometric phases in multibody systems in (Krishnaprasad
[1990]; Krishnaprasad & Yang [1991]; Krishnaprasad, Yang & Dayawansa, [1991]). See
also (Shapere [1989]) for an example of translational drift arising in swimming organisms.
In the present section, we will compute geometric phases for the four-bar linkage and show
special features arising from the presence of an closed kinematic chain. We begin with a
brief summary of the abstract framework. Consider

(a) a simple mechanical system with symmetry (Q, K, V,G);

(b) a principal G-bundle (Q,Q/G,G);

(c) controls (forces) acting on (Q,L,V,G), also leaving invariant the conserved
momentum map J* : TQ — G* associated to the free hamiltonian system with energy
K +V, where G* is the dual of the Lie algebra G of G. The map J* is given explicitly
by the formula

Jﬁ(wq)f = (waq)(ﬁQ(‘Z))

where ¢ € G, K’ is the Legendre transform and o is the infinitesimal generator (vector
field on Q) associated to £.

Define I, the symmetric bilinear form on G by

I,(&,n) = K(q(q),nq(q))-
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Let IE’I : G — G* be the corresponding pairing. Then we have a vertical-horizontal splitting

of the tangent bundle T'Q),

TQq = (Vert); & (Hor),

wy = (1) " we(@) + (wg — (1,) 7 w)e(a)

where p = J¥(w,). This splitting has the equivariance property with respect to the G-
action on ) and defines a principal connection. This connection, referred to as mechanical
connection, appears to be originally due to Smale and Kummer (see (Marsden, Montgomery
& Ratiu [1990])).

In the concrete setting of planar many-body problems with rigid and flexible
components, in which G = S! is abelian, the phase shift (angle) associated to a specific
path + in shape space S = Q/G is simply the integral of the connection form over the
path. For loop ~ it is the holonomy. In (Krishnaprasad [1990]), a formula for the phase
shift for a system of N planar rigid laminae connected by (N —1) single degree of freedom
(N —1) pin joints is derived. For this system, the configuration space is TV parametrized
by 6 = (61,...,6n) and the shape space is TV~ parameterized by ¢ = (¢1,...,d8-1),

where ¢; = ;11 — 0;. Let
v = {(1(1), ...on-1(t))|t € [0,T], for some T > 0}

be a closed curve in TV=! ie. ¢;(0) = ¢;(T). Then absolute reorientation or phase shift

of the first body is given by

T
Ab; :H(T)—&(O):/ s dt-/ii@ (7.1)

e-Je e-Je
where e = (1,...,1)7 € RY; M ¢ RV*(N=1) i5 defined by

M”___{l ifi>j>1,
oy 0 otherwise.

J is a configuration-dependent N x N matrix, which defines a riemannian metric on T,
is invariant under the S§1 action: (8;,...,0y) — (61 +0,...,05 + 8) for § ¢ S! (in other

words, it 1s a matrix of functions of ¢ ); and, the constant p = e-J8 is angular momentum
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of the system. Since v is closed, Af; = Ay, for ¢ = 2,..., N. Equation (7.1) computes
the reorientation of the whole system. The first term of (7.1) is referred to as dynamic
phase which will be zero if the system is originally at rest; the second term is referred to
as geometric phase which will be of interest to us.

We now turn to systems of floating four-bar linkages. As we have seen, the riemannian
metric given by J in Section 4 is also invariant under the S' action. This implies that
the formula (7.1) is applicable to floating four-bar linkages. We will consider Grashof and
non-Grashof mechanisms separately.

Recall that, for Grashof mechanism, the configuration space (after center of mass
reduction) is S x S*, which can be parameterized by (y,6;) globally. The corresponding

shape space is simply S!. Recall that the angular momentum of the system is
p=(1,1)J6 (7.2)

where 6 = (6p,6;). Since J is a matrix of functions of 6;; = ¢, one can derive the same

equation as (7.1) with N = 2. By appealing to Proposition 4.3, one gets

. ..
M
A%:/ ‘ﬂa-/e,vwm (7.3)
0 v

e-Je e-Je

where e = (1,1,1,1)7, J has been shown in Section 4 and M is the second column of

(I,QT)T matrix, i.e.

MT=(0 1 -pRES B )

Recall that in Grashof case, the configuration space has two connected components,
corresponding to leading form and lagging form, respectively. On these components, J has
different symbolic expressions. Consequently, the phase shift generated by the same closed
curve in shape space will be different. We illustrate this point by the following example.
Example 7.1:

Let p = 0. We choose the parameters as follows.

mo=1 my =1 mo=1 mg =1,
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fo

do3 == (—1.5,0), d01 = (15,0), d10 = (—0.5,0), d12 = (05,0),

d21 = (——1.5,0), d23 = (1.5,0), d32 = (—-—2’ —1), d30 — (2’ __1)

LA L L e O B B
" b
300
i Leading form ﬂ
— _
- _ -
-—-—Lagging farm B
200
- ——“—'\\\\ —
b \\'\\\ —
- -\'\._\.\ \“.M/— |
100
L -
0 i N A I N I I U U U T ST U O N O N A N O O A
0 50 100 150 200 250 300 350
610 - T
Figure 7.1

Figure 7.1 shows, for both leading and lagging form, how the orientation of the 0-th
bar varies when the 1-st bar revolves about the 0-th bar. One can see that when the
linkage returns to its original shape (in this example, the 0-th bar and 1-st bar are folded
together), the 0-th bar has been re-oriented by A6, which is less than zero. Its value
for leading form is different from the one for lagging form because the existence of the

mass-offset in the 3-rd bar. Here, we see again in Grashof mechanisms, two forms should

be considered separately.

Now we consider non-Grashof mechanisms. Recall that in this case. the configuration

space is still S' x S! and the symmetry group is S'. However, the physical angles 6,
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and 6; cannot parameterize the configuration space globally. Nevertheless, the angular
momentum of the system can still be expressed as (7.2) locally. More precisely, every
element in the matrix J is a branched function (branched by corresponding leading and
lagging form) and not defined at the angle limits of 610. Since these limits are only two
isolated points in shape space S', the integration (7.3) can be performed. Let v be the

closed loop on S! given by
A
vo= {Hlo(t)lt S Al} U {glo(t)lt € AQ} = Ylead U Ylag

where

Ay = {t € [0, T]|sin(b32) < 0( leading form})
Ay = {t € [0,T]|sin(fs2) > 0( lagging form})
and Ay UAy =[0,T]. Then the phase reconstruction (net reorientation) is given by

- I M SIM
AaO:/ al dt+/ ad dt-/ ° J~Md910—/ © T dho  (T4)
A, e-Je a, e-Je vieaa €-Je e, €-Je

In the following we show an example of the non-Grashof case.

Example 7.2:

Again, let ¢ = 0. The parameters are given as follows.

mog=29, mp=1, me=1, m3z=1;

d03 = (—2,0), d01 = (2,0), d10 = (—1.5,0), d12 = (1.5,0‘),
doy = (=1.5,}), doz=(1.5,)), da2=(-1.5,0), ds =(1.5,0).

It should be noted that this system has symmetric configurations for any A. The scheme
to change the shape of the system is given by the following steps.

1. Starting at a symmetry configuration in leading form:;

bo

Increasing 6,9 — 7 until it reachs the dead point;

Decreasing 6,9 — 7 in lagging form until it reaches the second dead point;

W

Increasing 8,9 — 7 in leading form until it reaches the original symmetric configura-

tion.
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Figure 7.2

Figure 7.2 shows the change of 8, versus the change of the shape of the linkage by the
above scheme for different A. It is interesting to observe that the value for re-orientation of
the 0-th bar can be positive, negative or zero. One can show that when a floating four-bar
linkage is at rest at its symmetric configuration, varying the position of center of mass of
the 0-th or the 2-nd bar so that the condition (6.6) is unchanged will not change the shape
and the orientation of the system. Then, this example suggests that the system can be
reoriented to arbitrary direction by allowing the center of mass of the 0-th or 2-nd bar to

be movable so that the condition (6.6) is kept satisfied. | |
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8. CONCLUSION

The kinematics and dynamics of planar, floating four-bar linkages have been investi-
gated in this paper. We have observed that the topology of the configuration space for such
linkages is related to the classical Grashof criterion. We have shown that, depending on
the ratios of the lengths of the linkages, the configuration space is the union of two copies
of R? x §' x S!’s (Grashof mechanism), or a single copies of R? x S! x S! (non-Grashof
mechanism), or R? x S x “figure 8” (change-point mechénism) which is not a smooth
manifold. We have derived a closed form of the lagrangian for the system after account-
ing for the loop closure condition (potential energy has been ignored). The expression for
the lagrangian reveals that systems of floating four-bar linkages possess S! symmetry after
center of mass reduction. This property made it possible for us to understand the dynamics
of the system via the theory of symplectic and Poisson reduction. Although the geometric
structure of this system is parallel to that of the planar two-body problem (Sreenath et
al. [1988]), because of the presence of kinematic loop constraints and greater freedom in
the choice of structural parameters, floating four-bar linkages have more complicated and
interesting dynamics. We have demonstrated this point by studying the relative equilibria
for those linkages which admit symmetric configurations. As we have shown, a symmetric
configuration is itself a relative equilibrium. If we vary certain kinematic parameters which
preserve the symmetry, a symmetric relative equilibrium may be bifurcated. The type of
bifurcations can be either supercritical or subcritical pitchfork. The stability of the relative
equilibria at symmetric configurations was also investigated. The examples have shown
that a floating four-bar linkage can have as many as ten relative equilibria. Finally, we
investigated the re-orientation problem. We have shown that the formula for calculating
the geometric phase for an open chain system can be extended to floating four-bar linkages.
Through an example, we showed that for non-Grashof mechanisms which admit symmetric
shape, the geometric phase shift may be generated in arbitrary direction.

As we have mentioned in the first section, a floating four-bar linkage is the simplest,
but non-trivial multibody systems with closed loop. Fully understanding the kinematics
and dynamics of these kinds of systems will certainly be useful in investigating more

complicated systems. One can expect that the kinematic and dynamic properties of floating
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four-bar linkages discovered in this paper will also show up in more complex systems. This

will be pursued in future work.
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Appendix A.
In this appendix, we review some basic concepts and results of bifurcation theory.
The standard reference is (Golubitsky & Schaeffer [1985]).

Consider a single scalar equation
§(@,A) = 0 (A1)

The bifurcation theory studies how the solutions z of this equation change with the
parameter \; or, more precisely, what type of bifurcation occurs with parameter .
Without loss of generality, one can assume ¢(0,0) = 0. Moreover, we assume g : RXR — R
is smooth. This is one of the standard local (static) bifurcation problems with one state
variable, called the recognition problem. As with many bifurcation problems, this problem
can be solved successfully through singularity theory, in which the related issue i1s called
finite determinacy. Let z = (z,\). Near origin, the function g can be written as
1.0
az)= Y (50700 + Y aa(2)s", (4.2)
lo|<k+1 laj=k+1

for some smooth functions a, defined in a neighborhood of the origin. Here we used the

conventions with multi-indices:

la] = a1 + g, al = (a1)ar)!,

0o 0.0, 0
5. = (3,07 (57)

[e 3 (o8] /\012
)

ZT =T

Q2

A key question is what terms in (A.2) can be ignored such that the values of coefficients of
remaining terms can be used to determine the qualitative behavior of the original equation
(A.1), for example, the variation in number of solutions. Singularity theory solves this
problem by finding a suitable change of coordinates such that function ¢ is equivalent
to a standard model h, called normal form. A precise definition is given as follows (see
(Golubitsky & Schaeffer [1985])).

Definition A.1: Two smooth mappings ¢g,h : R x R — R defined near the origin are
equivalent if there exist a local diffeomorphism of R?, (z,)\) — (X(z,)),A(}\)) at the

origin and a nonzero function S(z, ), such that
gz, A) = S(z, VA(X (2, 1), A(V)) (4.3)
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where X;(0,0) >0 and A'(0) > 0. If A=A, g and h are strongly equivalent. [

From this definition we see that, since S(z,\) is nonzero, the solution of g(z,\) =0
and h(X,A) = 0 are the same in the sense of diffeomorphism. From this point of view,
by means of singularity theory one can show why and what the high-order terms in (A.2)
do not effect the qualitative behavior of equation g(z,A) = 0. It should be noticed that
although this method does not tell us how to derive an appropriate normal form h, for
most physical problems, such as the one considered in this paper, it is not hard to pick up
some of the candidates from a large number of known simple polynomials of z and A, or
the model of normal forms which have standard bifurcation diagrams. This is in essence
the spirit of application of singularity theory to a physical problem.

Without considering detailed issues of singularity theory which are applicable to
bifurcation problems, we directly give the following result which will be used in the next
section. For details see (Golubitsky & Schaeffer [1985]), chapter 2. First we need the
concept of germs.

Definition A.2: Two smooth functions defined near the origin are equivalent as germs if
there is some neighborhood of the origin on which they coincide. Let £, ) denote the set
of equivalence classes of such functions. The elements in £; » are called germs. |

Lemma A.3: A germ g € &, 5 is strongly equivalent to

ext + )z (A4)
for k>2ifandonlyifat z=\A=0
0 0 r_q 0
and
0 & a 0
€= sgn(%) g, b= Sgn o=+ (A.5b)
|

Remark A.4: When k = 3 the normal form (A.4) provides a pitchfork bifurcation. From
this lemma, so is g if (A.5) holds. It is easy to show that if €5 > 0, the pitchfork bifurcation

is subcritical; if €6 < 0, the pitchfork bifurcation is supercritical. |
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Appendix B

The expression of ¢; and §; in the theorem 6.7 are of the following form.

= —12d3(dy — do)*(d5 — dod3 — didy — 2ds + d} — 4dy);
€2 = 48d3ds((da — do)? — 1)(d5 — d§)/4 — (do — d2)%;
€3 - 48d3da(dy — do)*(d3 — dod2 — d2dy — 4dy + db — 2dy);
es = dy((da — do)* ~ 4)(d2 — do)*V/4 — (do ~ d3)%;
es = 2d5((dy — dp)? — 4)((dy — do)* ~ 4dy).

Let

A = 4d%i\/4 — (dy — d»)2.

Then

1
51 = —Z(dg do \/4 (d() -

2 3 2 2 3
b = = 2+ 30— 3+ 4+ )
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