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Abstract

In 1993, Scherpen generalized the balanced truncation
method to the nonlinear setting. However, the Scherpen pro-
cedure is not easily computable and has not yet been applied
in practice. We offer methods, tools, and algorithms for com-
puting the energy functions and coordinate transformations
involved in the Scherpen theory and procedure for nonlin-
ear balancing. We then apply our approach to derive, for the
first time, balanced representations of nonlinear state-space
models.

1 Introduction

This paper addresses the problem of computability pertain-
ing to the Scherpen theory and procedure for balancing of
nonlinear systems [1, 2]. We offer methods, tools, and algo-
rithms toward computing balanced realizations for asymptot-
ically stable affine nonlinear control systems, i.e., state-space
models of the form

ẋ(t) = f (x(t)) +
m∑
i=1

gi (x(t)) ui(t) (1)

y(t) = h (x(t)) (2)

whereu = (u1, . . . , um) ∈ U ⊂ IRm, y = (y1, . . . , yp) ∈
IRp, andx = (x1, . . . , xn) are local coordinates for a smooth
state-space manifoldM . The mapsf , g1, . . . , gm are smooth
and we assume thatf(0) = 0 andh(0) = 0.

We say thatf is stable (asymptotically stable) if0 is a
stable (asymptotically stable) equilibrium forẋ = f(x), and
normally assume asymptotic stability off . We refer to the
triple (f, g, h) as a realization of the nonlinear system.

The two main objects that we work with in nonlinear bal-
ancing are the controllability and observability energy func-
tions of the system, defined as follows.

Definition 1.1 (Controllability Function) The controlla-
bility function,Lc : IRn → IR, for system (1)-(2) is defined
by

Lc (x0) = min
u ∈ L2(−∞, 0)

x(−∞) = 0 , x(0) = x0

1

2

∫ 0
−∞
‖ u(t) ‖2 dt

(3)
2

Definition 1.2 (Observability Function) The observability
function,Lo : IR

n → IR, for system (1)-(2) is defined by

Lo (x0) =
1

2

∫ ∞
0

‖ y(t) ‖2 dt (4)

x(0) = x0 , u(t) ≡ 0, t ≥ 0

2

We will use the following results pertaining to the control-
lability function of a nonlinear system.

Proposition 1.3 In the case of an linear time-invariant
(LTI) system the controllability function specializes to the
quadratic form

Lc(x0) =
1

2
x0

TWc
−1 x0 (5)

where the symmetric positive-definite matrixWc is the famil-
iar controllability Gramian. 2

Theorem 1.4 (Scherpen [1, 2])Suppose that0 is an asymp-

totically stable equilibrium of−
(
f + g gT

[
∂Lc
∂x

]T)
on a

neighborhoodV of 0. Then, for allx ∈ V , Lc is the unique
smooth solution of

0 =
∂Lc

∂x
(x) f (x) +

1

2

∂Lc

∂x
(x) g (x) gT (x)

[
∂Lc

∂x
(x)

]T

(6)
with supplementary conditionLc(0) = 0 and under the as-
sumption that (6) has a smooth solution onV .



In this paper we will consider two of the fundamental
problems involved in computing balanced realizations for
nonlinear systems. First, we consider the problem of com-
puting the controllability energy function without solving
the family of optimal control problems implied in its def-
inition, or solving the associated Hamilton-Jacobi-Bellman
(HJB) equation (6). Then, we consider the problem of com-
puting a Morse coordinate transformation under which the
controllability function is locally quadratic on a neighbor-
hood of0. We apply the methods developed in this paper to
two example systems: a forced damped pendulum system,
and a forced damped double pendulum system.

Methods for computing the observability function and the
balancing coordinate transformation, algorithmic details, and
additional numerical studies can be found in [3]. We note
here that the authors have developed a MATLAB toolbox for
implementing the methods described herein, which was used
for performing all of the numerical studies.

2 Stochastic Methods for Computation

We seek a method for computing the controllability energy
function without solving the family of optimal control prob-
lems implied in its definition, or solving the associated HJB
equation (6). In this section we present an approach, based
primarily on the theory of stochastically excited dynamical
systems (see, e.g., [4, 5]), for computing an estimate of the
controllability function. We show that in certain situations
the method provides an exact solution. Below, for integerk,
we letk denote the set{1, . . . , k}.

By a stochastically excited dynamical system we mean a
control system for which them components of the input,ui,
i ∈ m, have been replaced by the sample paths ofm Gaus-
sian white noises,

{
(ζt)i, t ∈ IR+

}
, i ∈ m. The state equa-

tion is given by

d

dt
Xt = f(Xt) +

m∑
i=1

gi(Xt) (ζt)i (7)

The white noise driven system (7) is interpreted correctly
via the stochastic differential equation (SDE) (given elemen-
twise) fori ∈ n

(dXt)i = f̄i (Xt) dt+
m∑
i=1

gi (Xt) (dWt)i (8)

where fori ∈ n

f̄i (Xt) =


fi (Xt) + 1

2

n∑
j=1

m∑
k=1

∂gik

∂Xj
(Xt) gjk (Xt)



(9)

includes the so calledcorrection term, gij = (gj)i, i ∈
n, j ∈ m, and where solutions to (8) are defined in terms
of a corresponding stochastic integral.

The stateXt is a Markov process with transition proba-
bility densityp(x, t; y, s). Time evolution ofp(x, t; y, s) is

governed by the Fokker-Planck equation, given by

∂p

∂t
(x, t; y, s) =

−
n∑
i=1

∂

∂xi

(
f̄i (x) p (x, t; y, s)

)

+
1

2

n∑
i=1

n∑
j=1

∂2

∂xi ∂xj
(bij (x) p (x, t; y, s)) (10)

with initial condition

p (x, s; y, s) = δ (x− y)

and where

bij (x) =
m∑
k=1

gik (x) gjk (x) =
[
[g (x)] [g (x)]

T
]
ij

Finally, in the steady-state, Equation (10) simplifies to the
stationary Fokker-Planck equation

0 = −
n∑
i=1

∂

∂xi

(
f̄i (x) p∞ (x)

)
(11)

+
1

2

n∑
i=1

n∑
j=1

∂2

∂xi ∂xj
(bij (x) p∞ (x))

wherep∞ (x) denotes the stationary probability density (if it
exists).

In the LTI case, the transition density functionp(x, t; y, s)
describing the random properties of the state processXt is
Gaussian, and the stationary densityp∞ has zero mean and
covariance equal to the controllability Gramian matrixWc
(see, e.g., [6]), i.e.,

p∞(x) = [(2π)
n det(Wc)]

−1/2
exp

(
−
1

2
xT Wc

−1 x

)
(12)

Thus, in the LTI case, the controllability functionLc and
the stationary densityp∞ are related exactly by

p∞(x) = [(2π)
n
det (Wc)]

−1/2
exp (−Lc(x)) (13)

and

Lc(x) = −log (p∞(x)) + log
(
[(2π)n det (Wc)]

−1/2
)
(14)

In the nonlinear setting, the densityp(x, t; y, s), and in
particular the stationary densityp∞(x), are not, in general,
Gaussian, nor determined completely by their mean and co-
variance, i.e., higher order moments are involved. However,
because the balancing coordinate transformation is local to a
neighborhood of the origin, we are mainly interested in cap-
turing a local characterization of the controllability function.
In light of this, Equation (14) suggests that a useful approxi-
mation ofLc is defined by

L′c(x)
4
= −log (p∞(x)) + C (15)



whereC is a normalizing constant, dependent on the partic-
ular system, such thatL′c (0) = 0. By Equation (14),L′c
specializes to the exactLc in the LTI case.

There exist certain nonlinear systems for which Equa-
tion (15) provides an exact, rather than approximate, formula
for the controllability function. As one simple example, con-
sider the Langevin processXt governed by the first-order
SDE

dXt = −∇φ(Xt) + dWt (16)

whereφ : IRn → IRn is aC1 map such that−∇φ is asymp-
totically stable. The Maxwell-Boltzmann density

pMB∞ (x) = C exp (−2φ(x)) (17)

satisfies the stationary Fokker-Planck equation whereC is a
constant such that

∫
pMB∞ = 1. Now, using (15), define

LMBc (x) = −log
(
pMB∞ (x)

)
+ log (C) = 2φ(x) (18)

which is the unique controllability energy function for the
Langevin system, i.e., stable affine nonlinear system with
f(x) = −∇φ(x) andg(x) = 1I.

Now we seek conditions under which a broader class of
systems admits an exact relationship between the stationary
density and the controllability function. In particular, we
consider second-order mechanical systems with a Hamilto-
nian structure perturbed by dissipation and forcing. We de-
termine conditions under which the controllability function
for such a system can be expressed exactly in terms of the sta-
tionary density for the corresponding stochastically excited
system. We adopt and modify somewhat the notation and
framework of Fuller [7] and Zhu and Yang [8]. These au-
thors have presented conditions under which exact solutions
of the stationary Fokker-Planck equation can be derived. We
show that in certain cases, the same conditions are sufficient
for expressing the controllability function in terms of the sta-
tionary density, while in other cases, additional conditions
are required.

We consider a forced, dissipatively perturbed,n-DOF
Hamiltonian system. Letq = (q1, . . . , qn) ∈ IRn and
p = (p1, . . . , pn) ∈ IRn denote, respectively, the gener-
alized displacements and momenta. Let the Hamiltonian
H ′ = H ′ (q, p), i.e., the sum of the kinetic and potential en-
ergies of the system, beC2. Let c′ij = c′ij (q, p) for i, j ∈ n
be C1 functions representing nonlinear dissipation coeffi-
cients. Letdij = dij (q, p) for i, j ∈ n beC2. The system
that we consider is governed by the equations of motion, for
i ∈ n

q̇i =
∂H ′

∂pi
(19)

ṗi = −
∂H ′

∂qi
−

n∑
j=1

c′ij
∂H ′

∂pj
+
m∑
k=1

dik u (20)

The system is realized in standard state-space form with
coordinatesx = (q, p) ∈ IR2n and

fi =
∂H ′

∂pi
i = 1, . . . , n (21)

fi = −
∂H ′

∂qi
−

n∑
j=1

c′ij
∂H ′

∂pj
i = n+ 1, . . . , 2n

(gk)i = 0 i = 1, . . . , n; k = 1, . . . ,m (22)

(gk)i = dik i = n+ 1, . . . , 2n; k = 1, . . . ,m

The output maph is irrelevant for purposes of the discussion
here.

The corresponding stochastically excited system is gov-
erned by the SDEs, fori ∈ n

dQi =
∂H ′

∂Pi
dt (23)

dPi (24)

= −

(
∂H ′

∂Qi
+

n∑
j=1

c′ij
∂H ′

∂Pj
+
1

2

n∑
j=1

m∑
k=1

∂dik
∂Pj

djk

)
dt

+

m∑
k=1

dik (dWt)i

where we have adopted the usual notation by substituting
Q for q andP for p when dealing with the corresponding
random variables.

It is usually the case that the correction terms
1

2

n∑
j=1

m∑
k=1

∂dik

∂Pj
djk, i ∈ n, can be split into two parts: one

which modifies the conservative forces and the other that
modifies the damping forces (see [8]). This allows Equa-
tions (23) and (24) to be rewritten, fori ∈ n

dQi =
∂H

∂Pi
dt (25)

dPi = −


 ∂H

∂Qi
+

n∑
j=1

cij
∂H

∂Pj


 dt (26)

+
m∑
k=1

dik (dWt)i

for appropriately definedH andcij .
The stationary Fokker-Planck equation governing the sta-

tionary transition densityp∞ = p∞ (q, p) associated with
the SDEs (25) and (26) is given by

0 (27)

=

n∑
i=1

[
−
∂

∂Qi

(
∂H

∂Pi
p∞

)
+
∂

∂Pi

(
∂H

∂Qi
p∞

)]

+

n∑
i=1

[
∂

∂Pi

(
n∑
j=1

cij
∂H

∂Pj
p∞

)
+
1

2

n∑
j=1

∂2

∂Pi ∂Pj
(bij p∞)

]

where

bij =
m∑
k=1

dik djk =
[
[d] [d]T

]
ij

and subject to boundary conditions (vanishing probability
flow)

lim
‖ (q,p) ‖→∞

∂H

∂Pi
p∞ = 0 (28)



and

lim
‖ (q,p) ‖→∞


 ∂H

∂Qi
+

n∑
j=1

cij
∂H

∂Pj


 p∞ (29)

+
1

2

n∑
j=1

∂

∂Pj
(bij p∞) = 0

Observe that the first summation term on the right-hand-
side of (27) is equal to the Poisson bracket ofp∞ andH,
i.e.,

{p∞,H} (30)

=
n∑
i=1

[
−
∂H

∂Pi

∂p∞

∂Qi
+
∂H

∂Qi

∂p∞

∂Pi

]

=
n∑
i=1

[
−

∂

∂Qi

(
∂H

∂Pi
p∞

)
+

∂

∂Pi

(
∂H

∂Qi
p∞

)]

Thus, we can rewrite the stationary Fokker-Planck equa-
tion (27) as

0 (31)

= {p∞,H}

+

n∑
i=1

[
∂

∂Pi

n∑
j=1

(
cij
∂H

∂Pj
p∞

)
+
1

2

n∑
j=1

∂2

∂Pi ∂Pj
(bij p∞)

]

The relationship between the stationary density and the con-
trollability function, and an exact formula for the latter in
terms of the Hamiltonian, are given in the following results.
We first consider the case where the parametersc′ij anddik
are independent ofq andp, i.e., are constants. In this situa-
tion, the correction term vanishes,H = H ′, andcij = c′ij .
The following is modified from Fuller [7].

Theorem 2.1 (Fuller [7]) Consider the stochastically ex-
cited system corresponding to the forced, dissipatively
perturbed, n-DOF Hamiltonian system governed by the
SDEs (25)-(26) whereH is the Hamiltonian. Suppose that
the coefficientscij anddik are independent ofq andp. Fur-
thermore, suppose that the following constant ratio holds for
all i, j ∈ n:

cij

bij
= ` = constant (32)

Then the unique stationary densityp∞ that satisfies Equa-
tion (31) is

p∞ (q, p) = C exp (−2 `H (q, p)) (33)

whereC is a constant such that
∫
p∞ = 1.

Remark 2.2 The density (33) is of Maxwell-Boltzmann
form. 2

Remark 2.3 The condition (32) is referred to as theequipar-
tition of energycondition. The terminology derives from the
situation in statistical mechanics where each DOF of a multi-
particle system is associated with the same mean energy.2

Remark 2.4 The equipartition of energy condition imposes
a severe restriction on the class of systems for which (33) is
the stationary density. 2

The controllability functionLc uniquely satisfies the HJB
equation (6), which, for realization(f, g) given in Equa-
tions (21) and (22), takes the form

0 = {Lc,H}+
n∑
i=1


∂Lc
∂pi

n∑
j=1

(
−cij

∂H

∂pj
+
1

2
bij

∂Lc

∂pj

)
(34)

The relationship between the stationary density and the con-
trollability function, and an exact formula for the latter in
terms of the Hamiltonian, are given in the following result.

Theorem 2.5 Consider the forced, dissipatively perturbed,
n-DOF Hamiltonian control system, governed by the evolu-
tion equations (19) and (20), and realized by(f, g) given in
Equations (21) and (22). Under the conditions stated in The-
orem 2.1, the unique controllability energy function for the
system is given by

Lc (q, p) = −log (p∞(q, p)) + C
′

= 2 `H (q, p) + C′ (35)

where p∞ is the stationary density of the corresponding
stochastically excited system andC′ is a constant such that
Lc (0, 0) = 0.

Proof It is necessary and sufficient to show thatLc satisfies
Equation (34). SinceLc is a functional ofH, we have that

{Lc,H} = 0. Furthermore,
∂Lc

∂pj
= 2 `

∂H

∂pj
, so that Equa-

tion (34) becomes

0 =
n∑
i=1


2 ` ∂H

∂pi

n∑
j=1

(
−cij

∂H

∂pj
+ ` bij

∂H

∂pj

)(36)

=
n∑
i=1


2 ` ∂H

∂pi

n∑
j=1

∂H

∂pj
(` bij − cij)


 (37)

which is clearly satisfied given the equipartition of energy
condition (32).

We now consider the more general situation where the pa-
rametersc′ij anddik are permitted to be functions ofq andp.
The following is modified from Zhu and Yang [8].

Theorem 2.6 (Zhu and Yang [8]) Consider the stochasti-
cally excited system corresponding to the forced, dissipa-
tively perturbed,n-DOF Hamiltonian system governed by
the SDEs (25)-(26) whereH is the Hamiltonian. Suppose
that the following ratio holds for alli ∈ n and for some
functionalh ofH:

∑n
j=1

(
2 cij

∂H

∂Pj
+
∂bij

∂Pj

)
∑n
j=1 bij

∂H

∂Pj

= h (H) (38)



Then the unique stationary densityp∞ that satisfies Equa-
tion (31) is

p∞ (q, p) = C exp

(
−

∫ H(q,p)
0

h(u) du

)
(39)

whereC is a constant such that
∫
p∞ = 1.

Remark 2.7 The density (39) is of Maxwell-Boltzmann
form. 2

Remark 2.8 The condition (38) is analogous to an equipar-
tition of energy condition, again imposing a severe restric-
tion on the class of systems for which (39) is the stationary
density. 2

The relationship between the stationary density and the
controllability function, and an exact formula for the latter in
terms of the Hamiltonian, are given in the following result.

Theorem 2.9 Consider the forced, dissipatively perturbed,
n-DOF Hamiltonian control system, governed by the evolu-
tion equations (19) and (20), and realized by(f, g) given in
Equations (21) and (22). Suppose that the following ratio
holds for alli ∈ n and for some functionalr ofH:

∑n
j=1 cij

∂H

∂pj∑n
j=1 bij

∂H

∂pj

= r (H) (40)

Then the unique controllability energy function for the system
is given by

Lc (q, p) = 2

∫ H(q,p)
0

r(u) du+ C′ (41)

whereC′ is a constant such thatLc (0, 0) = 0. Furthermore,
if thebij are independent ofp then

Lc (q, p) = −log (p∞(q, p)) + C
′ (42)

where p∞ is the stationary density of the corresponding
stochastically excited system.

Proof Assume thatLc (q, p) = φ (H(q, p)) for some func-
tionalφ of H. Then{Lc,H} = 0. The HJB equation (34)
can be written

0 =
n∑
i=1

∂H

∂pi

∂φ

∂H

(
bij

∂H

∂pj

∂φ

∂H
− 2 cij

∂H

∂pj

)
(43)

which is clearly satisfied if we assign
∂φ

∂H
= 2 r (H) where

r (H) is defined by Equation (40). Thus, the desired
functionalφ is obtained through integration yielding Equa-
tion (41). Moreover, if thebij are independent ofp then
2 r (H) = h (H) whereh (H) is defined in Equation (38).
In that case Equation (42) holds.

Additional details appear in [3].

3 Computing the Morse Coordinate Transfor-
mation

Recall that for an LTI system, the energy functionsLc and
Lo globally take the form of quadratic functions given, for
example, by (5). We wish to generalize the linear balanc-
ing procedure to the nonlinear setting, but the functionsLc
and Lo are not, in general, quadratic. However, we can
appeal to some important results from critical point theory
(see, e.g., [9]) in order to find a change of coordinates un-
der which a smooth function takes a quadratic form locally
around a non-degenerate critical point. The key result is the
Morse lemma [10], which guarantees the existence of the
desired canonical form for functions with a non-degenerate
critical point (called Morse functions) defined on a finite-
dimensional manifold, and an analogous result of Palais [11],
which generalizes the notion to functions defined on a Hilbert
space. Our presentation of the established results are based
mainly on those found in [9, 12].

Theorem 3.1 (Morse-Palais)Letf be a smooth real-valued
function defined on an open neighborhoodO of 0 in the
Hilbert spaceE . Assume thatf(0) = 0 and that0 is a non-
degenerate critical point off . Then there exists a neighbor-
hoodU ⊂ O of 0, a local change of coordinatesφ onU , and
an invertible symmetric operatorA such that

f (x) = 〈Aφ(x), φ(x) 〉E x ∈ U (44)

2

Corollary 3.2 Let f be a smooth real-valued function de-
fined on an open neighborhoodO of 0 in the Hilbert space
E . Assume thatf(0) = 0 and that0 is a non-degenerate
critical point off . Then there exists a neighborhoodU ⊂ O
of 0, a local change of coordinatesz = ξ(x) onU , and an
orthogonal decompositionE = F+F⊥ such that if we write
z = ξ(x) = u+ v with u ∈ F andv ∈ F⊥ then

f (z) = f (ξ(x)) = 〈u, u 〉E − 〈 v, v 〉E x ∈ U (45)

2

Remark 3.3 Consider the special case whereE = IRn and
critical point 0 has indexr. Definez = ξ(x) for x ∈ U and
ψ = ξ−1 on ξ(U). Then Corollary 3.2 implies that

f(x) = f (ψ(z)) = −
r∑
i=1

z2i +
n∑

i=r+1

z2i (46)

In the new coordinates, the functionf is said to be inspher-
ical quadratic form. The transformation is illustrated in Fig-
ure 1. 2

Definition 3.4 (Morse Coordinate Transformation) A
change of coordinatesψ satisfying (46) is said to be aMorse
coordinate transformationfor f around0. 2



Figure 1: An example of a Morse function on IR2 (with
level contours) before and after transformation to spherical
quadratic form.

The original proof by Morse uses the Gram-Schmidt or-
thogonalization process which is essentially a coordinate-by-
coordinate induction argument. The generalization by Palais
is proved without a coordinate-wise procedure, which we use
to our advantage for purposes of computation. For purposes
of brevity, the proofs do not appear here. We proceed directly
to the algorithms.

We present here, somewhat loosely, an algorithm for nu-
merical implementation of Theorem 3.1 and Corollary 3.2.
The algorithm is presented more rigorously in [3] where a
computational framework is introduced. The algorithm takes
a Morse functionf and returns a neighborhoodU , Morse co-
ordinate transformationφ, and invertible symmetric matrixA
under whichf takes the desired form (44) onU . An addi-
tional algorithm takesφ, A, andU and returns a coordinate
transformationξ under whichf takes the spherical quadratic
form (45). The main building blocks are as follows.

smooth function decompositionGiven smooth real-valued
functionf with critical point at0, return smooth func-
tionsgi, i ∈ n, such that

f(x) =
n∑
i=1

gi(x)xi i ∈ n, x ∈ O (47)

and

gi(0) =
∂f

∂xi
(0) i ∈ n (48)

1. Compute (approximate) partial derivatives
∂f

∂xi
,

i ∈ n.

2. For each pointx in the domain of defi-
nition of f , compute (approximate) integrals

gi(x) =

∫ 1
0

∂f

∂xi
(tx) dt, i ∈ n.

Morse function decomposition Given Morse functionf ,
i.e., f has non-degenerate critical point at0, return
smooth functionshij , i, j ∈ n such that

f(x) =
n∑
i=1

n∑
j=1

hij(x)xi xj i, j ∈ n, x ∈ O

(49)

with symmetry property

hij(x) = hji(x) i, j ∈ n, x ∈ O (50)

and such that

hij (0) =
1

2

∂2f

∂xi ∂xj
(0) =

1

2
D2f (0) (51)

This is accomplished vian+1 smooth function decom-
positions.

1. Apply the smooth function decomposition tof
yieldinggi, i ∈ n.

2. Apply the smooth function decomposition to each
of thegi yieldinghij , i, j ∈ n.

matrix square root Given matrixB close to the identity, re-
turn its square rootC, i.e.,B = C2. The matrixB must
satisfy

‖ 1I−B ‖ < 1 (52)

In that case, the following algorithm converges to a
fixed point corresponding to the desired matrixC =
B1/2.

Ck+1 = Ck +
1

2

(
B − C2k

)
k = 0, 1, . . .(53)

C0 = 1I

The convergence of the sequence{Ck} to the fixed
point B1/2 can be shown to be a consequence of the
contraction mapping principle.

Morse-Palais transformation Given Morse functionf , re-
turn neighborhoodU , coordinate transformationφ, and
invertible symmetric matrixA such that Equation (44)
holds.

1. Apply the Morse function decomposition tof
yieldinghij , i, j ∈ n. LetH (x) = [hij (x)] and
A = H (0). Note that the nondegeneracy of0 en-
sures the invertibility ofA.

2. For each pointx in the domain of definition off :

(a) Compute the solutionB of the matrix equa-
tionAB = H (x). Note thatB = 1I atx = 0.

(b) If ‖ 1I−B ‖ < 1 then:
i. Apply the matrix square root algorithm to

computeC = B1/2.
ii. Let φ (x) = C x.
iii. Include the pointx in the neighborhood

U .
(c) Otherwise, do not include the pointx in the

neighborhoodU and no further calculations
apply.

This procedure provides an estimate of the neighbor-
hoodU for which the function can be transformed to the
canonical quadratic form. It is possible that the maximal
neighborhood is larger.



spherical transformation Given transformationφ and in-
vertible symmetric matrixA such that Equation (44)
holds, return indexr and coordinate transformationψ
such that Equation (46) holds.

1. Compute the spectral decomposition of matrixA,
i.e.,A = V ΛV T.

2. LetE = diag(|λ1| , . . . , |λn|).

3. Letr equal the number ofλi such thatλi < 0.

4. LetR = E V T.

5. For each pointx in the domain of definition off ,
letψ (x) = Rφ (x).

Remark 3.5 The terminology “Morse function decomposi-
tion” is somewhat misleading since the decomposition (49)
merely requires a critical point that is not necessarily non-
degenerate. However, we adopt the terminology for lack of a
better name and because we are applying the decomposition
to Morse functions. 2

4 Applications

In this section we illustrate our methods and algorithms by
applying them to two examples of rigid link mechanical
systems. We compute a balanced realization for a forced
damped pendulum system, and take steps toward balancing a
forced damped double pendulum system.

The first example that we consider is a simple pendu-
lum system as illustrated in Figure 2. The system incorpo-
rates linear torsional damping, linear torsional stiffness, and
a torque input at the rotary joint. We assume that the shaft is
massless and that the pendulum moves only in the plane. We
consider the case where the joint angle is measured (position
read-out). (See [3] for the case of velocity read-out.)

It is beneficial to study the pendulum as an example be-
cause

• it is nearly linear, so we can use linear theory to obtain a
good estimate of the correct results for comparison; and

• in previous sections we have studied second-order me-
chanical systems and obtained an exact formula for the
controllability function.

We obtain a state-space realization(f, g, h) for the pendu-
lum system via Lagrangian mechanics. Let the generalized
positionq and velocityq̇ correspond to the joint angleθ and
angular velocityθ̇, respectively. The affine nonlinear control
system is realized in coordinatesx = (x1, x2) = (q, q̇) by

f (x) =




x2

−
G

L
sin (x1)−

k

mL2
x1 −

b

mL2
x2


 (54)

g (x) =




0

1

mL2


 (55)

θ

m

L

τ
b,k

mg

Figure 2: Planar pendulum system with massless shaft, lin-
ear torsional damping, linear torsional stiffness, and torque
input applied at the rotary joint. Parameter values used for
numerical studies:m = 1/40, b = 2, k = 1, L = 20,
G = 10.

andh (x) = x1.
The HamiltonianH for the pendulum system is given by

H (x) = K (x) + U (x)

=
1

2
mL2 x22 +

1

2
k x21 −mGL cos (x1)(56)

Furthermore, the equipartition of energy condition (32) is
satisfied trivially for the 1-DOF system with ratio` = b. Ap-
plying Theorem 2.5, the controllability functionLc is given,
exactly, by

Lc (x) = −2 bmGL cos (x1) + b k x
2
1 (57)

+bmL2 x22 + 2 bmGL

Numerical studies were conducted via application of our
algorithms to the pendulum system with parameter values
given in Figure 2. The observability functionLo was com-
puted using an algorithm based directly on Equation (4). The
controllability and observability functions for the pendulum
system with position read-out are shown in Figure 3.

We also computed an approximation to the controllability
function via Equation (15) and a Monte-Carlo approach. We
simulated 50,000 sample paths for the pendulum system with
approximate Gaussian white noise injected as the torque in-
put. We assumed that steady-state was reached after 60 time
units, 6 times the largest time constant of the system.

The results of the Monte-Carlo experiments are presented
in Figure 4. In this case, we used a relatively coarse
grid, which is roughly the highest resolution that provides
a smooth approximation. By generating additional sample
paths, we can increase the grid resolution while maintaining
a smooth approximation.

Even though we have an exact expression forLc, we use
the approximationL′c generated by the Monte-Carlo experi-
ments in order to compute a balanced realization for the pen-
dulum system. We do this to demonstrate thatL′c can be a
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Figure 3: The exact controllability function (top) and observ-
ability function (bottom) for the pendulum system with posi-
tion read-out.
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Figure 4: The stationary density (top) and derived approxi-
mate controllability function (bottom) for the pendulum sys-
tem.
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Figure 5: The singular value functions for the pendulum sys-
tem with position output. Left:σ1(x) nearly constant 0.367;
Right: σ2(x) nearly constant 0.284.

suitable surrogate forLc in the balancing algorithms. The
algorithm presented in Section 3 was applied toL′c to com-
pute a Morse coordinate transformation. Further computa-
tions (see [3]) yielded a balanced representation for the pen-
dulum system with position read-out.

The computed singular value functions (see [1, 2]) are
shown in Figure 5. Because the pendulum system is nearly
linear, we expect the singular value functions to be nearly
constant at the value of the corresponding Hankel singular
values of the linearized system. This is reflected in the com-
putations. The singular value functions are nearly constant
at grid points close to the origin, taking values close to 0.367
and 0.284. This closely matches the Hankel singular values
of the linearized system which are 0.3671 and 0.2838. One
state is roughly 1.3 times as important to the input-to-output
behavior of the system.

We simulated the pendulum system in the original and bal-
anced coordinates using two input signals:u ≡ 0 (natural
response) andu(t) = 0.5 sin (t/π). The output responses
are shown in Figure 6. Theoretically, the output responses of
the original and balanced systems should be identical, since
they are merely different representations of the same physi-
cal system. However, the computations introduce numerical
error.

In [3], it was demonstrated that by using the exact con-
trollability function, the output responses of the original and
balanced systems are virtually identical. Thus, the algo-
rithms for computing the Morse, input-normal, and balanc-
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Figure 6: Output response for the pendulum system with po-
sition read-out: original coordinates (solid) vs. balanced co-
ordinates (dashed). Top: zero input, approximateLc; Bot-
tom: sinusoidal input, approximateLc.

ing transformations introduced negligible error. On the other
hand, when using the approximate controllability function
generated using Monte-Carlo data, the output responses of
the original and balanced systems deviate somewhat. Thus,
a better approximation may be desirable, which can be
achieved by generating additional Monte-Carlo data.

We now consider a double pendulum system as illustrated
in Figure 7. As with the pendulum system, the system incor-
porates linear torsional damping, linear torsional stiffness,
and torque inputs at the rotary joints. We assume that the
shafts are massless and that the pendulum moves only in the
plane. We measure the horizontal position of the end-effector
as the system output (a nonlinear function of the state vari-
ables).

As before, we obtain a state-space realization(f, g, h) for
the pendulum system via Lagrangian mechanics. The affine
nonlinear control system is realized in coordinates
x = (x1, x2, x3, x4) = (q1, q2, q̇1, q̇2) by

f (x) =

[
q̇

−M−1 (q) (C (q, q̇) +N (q, q̇))

]
(58)

g (x) =

[
0

M−1 (q)

]
(59)

where expressions for the matricesM , C, andN can be
found in [3] andh (x) = L1 sin (q1) + L2 sin (q1 + q2).

θ1

m1

L1

τ1
b1,k1

m1g
m2

m2g

θ2

τ2b2,k2

L2

Figure 7: Planar double pendulum system with massless
shafts, linear torsional damping, linear torsional stiffness,
and torque input applied at the rotary joints. Parameters val-
ues used for numerical studies:m1 = m2 = b1 = b2 =
k1 = k2 = L1 = L2 = 1,G = 10.

The double pendulum system is not integrable and does
not, in general, satisfy the equipartition of energy condition.
However, in the special case whereb1 = b = b2 the equipar-
tition of energy condition is satisfied with ratio` = b. Apply-
ing Theorem 2.5, the controllability function for the double
pendulum system is given, exactly, by

Lc(x) = (60)

b (m1 +m2)L
2
1 x
2
3 + bm2L

2
2 (x3 + x4)

2
+

2 bm2L1 L2 cos (x2) x3 (x3 + x4) +

b k1 x
2
1 + k2 x

2
2 − 2 b (m1 +m2) GL1 cos (x1)−

2 bm2GL2 cos (x1 + x2) +

2 bG ((m1 +m2) L1 +m2 L2) (61)

A numerical study was conducted via application of our
algorithms to the double pendulum system with parame-
ter values given in Figure 7. Graphical representations of
the controllability and observability functions are presented
in [3]. Figure 8 shows a 2-dimensional slice of each sin-
gular value function for the double pendulum system. At
the origin, the singular value functions take the values, re-
spectively, 0.487, 0.444, 0.135, and 0.050. These values are
reasonable close to what we expect from the Hankel singular
values of the linearization, which are0.5029,0.4702, 0.0249,
and0.0106. Two states of the balanced realization have con-
siderably greater input-to-output importance than the other
two states. We also observe that numerical errors are more
prominent for the singular value functions of small magni-
tude, i.e., the oscillations that they display are likely caused
by numerical error rather than being an accurate reflection of
their actual behavior.
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Figure 8: Singular value functions for double pendulum (x3-
x4 plane). Top left:σ1(x); Top right: σ2(x); Bottom left:
σ3(x); Bottom right:σ4(x).

5 Concluding Remarks

Because of the computational complexity of our algorithms,
this research merely represents a first step toward making the
balancing procedure a practical model reduction tool. It is
also clear that results with broader applicability will be of
benefit.
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