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Environmental analysts face the problem of obtaining distributed measurements to 

evaluate increasingly small spatiotemporal model output. This thesis explores the use 

of remotely sensed snow covered area (SCA) maps to confirm a time series of model 

maps. The measurements come from National Aeronautics and Space Administration 

(NASA) Moderate Resolution Imaging Spectroradiometers (MODIS). The United 

States Agriculture Department provided the model: TOPMODEL-Based Land-

Atmosphere Transfer Scheme (TOPLATS). The Upper Kuparuk River Watershed 

(UKRW) on the North Slope of Alaska acts as the case study location. To meet the 

map-comparison goal, the Kappa statistic and probability functions expressing 

measurement uncertainty evaluate the ability of MODIS measurements to confirm the 

accuracy of TOPLATS model maps. Results show that composite statistics, like the 

proportion of agreement between two maps, can obscure spatiotemporally distributed 

confirmation information. Also, MODIS can confirm snowmelt predictions across 

areas less than 150 km
2
, however, clouds and malfunctioning sensors limit such use.  
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CHAPTER 1: INTRODUCTION 

1.1 OVERALL RESEARCH GOALS 

This study sought to develop a method for confirming modeled snow maps with 

remotely-sensed measurements, which inspired a second goal: to increase the 

usability of the remotely-sensed data. The following sections place this work in the 

context of global change research needs (1.2 Need & Problem), define research 

objectives (1.3 Objectives), introduce the Upper Kuparuk River Watershed (UKRW), 

the case study area, introduce the Moderate Resolution Imaging Spectroradiometer 

(MODIS) — a satellite sensor, and introduce the TOPMODEL-Based Land-

Atmosphere Transfer Scheme (TOPLATS) model. 

1.2 NEED & PROBLEM 

The Global Change Research Act of 1990 established the U.S. Global Change 

Research Program (USGCRP). The USGCRP aims to ―understand‖ and ―respond‖ to 

―global change, including the cumulative effects of human activities and natural 

processes on the environment. . . .‖ Thirteen federal organizations, tabulated in 

Appendix A, participate in the program. Each organization contributes to seven 

research areas: (1) atmospheric composition, (2) climate variability and change, (3) 

global carbon cycle, (4) global water cycle, (5) ecosystems, (6) land use / land cover 

change, and (7) human contributions and responses (US Global Change Research 

Program, 2007). The U.S. Office of Management and Budget (2007) reports that the 
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USGCRP spent $5.9 billion in FY 2006 and proposes $7.4 billion for FY 2008 to 

study global change. 

1.2.1 Map Comparison Needs 

Analysts in all seven of the USGCRP research areas are constructing models of the 

earth more frequently and with greater complexity than ever before. As desktop 

processing advancements and web-based communication tools drive this growth, 

analysts struggle to systematically compare and confirm model results with measured 

data. Pontius (2002) describes this problem as it applies to landscape modeling: 

Modeling Landscape Dynamics is an indication of the tremendous growth in 

the general field of landscape modeling. Our field abounds with variations on 

Markov Chain models, Cellular Automata models, agent-based models, multi-

nomial logistic regression models, etc. In fact, we are now producing models 

faster than we can validate them. 

The research described in this thesis responds to the charter from the USGCRP for 

better understanding of global changes by recommending mechanisms to confirm 

both spatially and temporally distributed model map results with remotely sensed 

measurement counterparts. It aims to answer water resources questions set forth by 

the USGCRP (2003) described in Chapter 5 of ―Strategic Plan for the U.S. Climate 

Change Science Program: Water Cycle.‖ In particular, this study addresses ways to 

―merge measurements from different satellite[s].‖ It address aspects of Question 5.3 

from the Strategic Plan, which ask for the ―key uncertainties in seasonal . . . 

predictions . . . and . . . improvements . . . in . . . regional models to reduce these 
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uncertainties,‖ ―better understanding and improved model representations of . . . 

seasonal . . . interactions of the atmosphere with vegetation, soils, oceans, and the 

cryosphere,‖ and ―the role of mountains in the annual water cycle.‖ This study also 

aspires to address new questions dealing with ―Integration of Water Cycle 

Observations, Research, and Modeling‖ (USGCRP 2007) set forth in the 2008 

strategic plan: ―FY 2008 activities will focus on . . . an observing system aimed at 

measuring key elements required to close the terrestrial water cycle budget on a 

regional scale such as a river basin or watershed.‖ 

 To address the USGCRP needs, this study uses snowmelt in the Upper 

Kuparuk River Watershed – measured by MODIS and modeled by TOPLATS – as a 

case study. This interest area and this remotely sensed dataset are both (a) 

strategically aligned with USGCRP needs and (b) practical choices for research for 

the following reasons: The interest area lies in the cryosphere; the interest area 

demonstrates seasonal variability; the interest area has a history of meteorological, 

geological, and hydrological measurements; the interest area has digital elevation 

information easily accessible to this research; the interest area exhibits spatial 

heterogeneity of snow cover during the melt season; the remotely sensed dataset 

exhibits a fine enough temporal resolution to monitor a short snowmelt season; the 

remotely sensed dataset is accessible at a low level of processing; and the remotely 

sensed dataset has other datasets available in the same location to check the 

measurements. With an interest area and data set selected, this study sets a goal to 

define methods for testing model accuracy both spatially and temporally. 
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1.2.2 Data Management Needs 

Simultaneous to the increasing need for map comparison, the USGCRP spurs a need 

for better management of remotely sensed data. Most notably, the USGCRP funds 

management of three remote sensing projects: The POES and GOES program 

primarily developed by NOAA and NASA; the LANDSAT program developed by 

NASA, USGS, and NOA; and the overarching Earth Observing System (EOS) 

program maintained by NASA at the Goddard Space Flight Center in Maryland. 

 These programs (detailed in Chapter Two) contract, launch, and maintain 

satellite missions equipped with multi-spectral sensors. In space, sensors capture and 

broadcast images of the earth. On the ground, analysts receive, process, and archive 

the images. Growth of archived data at multiple levels of processing has created a 

need to better disseminate information over the World Wide Web. USGCRP set 

decade-long goals to make data free, available, and accessible via web-based 

technologies and GIS systems. The program calls for a ―transparent‖ distribution 

service that allows end-users to focus on data. While first generation information 

systems are now in place, emerging web-based service technology indicate that 

―building this framework must be an evolutionary process‖ that will need to be 

―regularly updated . . . to respond to user requirements‖ (USGCRP 2003). Such web-

based technologies that could answer user requests for improved data management 

include the implementation of model view controller programming patterns through 

web-standard technologies and the developing semantic web standards. These 

technologies could answer requests for better conveyance of quality assurance 

datasets (MODIS conference 2006), data in user-specified geographic projections 
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(MODIS conference 2006), and on-demand data delivery (CUAHSI 2009). 

Complementing USGCRP goals to make remotely-sensed data manageable, this 

thesis aims to employ web technologies, when appropriate, during the process of (a) 

converting low-level (Level 2), remotely sensed (MODIS) data into a geographic 

information system (GIS) compatible format and (b) comparing observed and 

simulated results. 

1.2.3 Summary of Needs 

In summary, this study address two needs set forth by the USGCRP in the early 1990s 

which have been reevaluated and reinforced in 2008. First, this study aims to develop 

methods to access the accuracy and uncertainty of a time series of model maps in 

comparison to a time series of measured maps. These comparison-methods should 

provide an example for future researchers calibrating, validating, or evaluating the 

performance of a model predicting snow water equivalent or snow covered area in 

any small, mountainous watershed like the UKRW. Second this study should begin 

the development of a tool for making low-level (MODIS Level 2) measurements 

manageable. Developing a MODIS data-management tool should reveal the ability 

and practicality of comparing MODIS measurement of snow and ice to modeled snow 

cover. 

While these research needs are specific to snow cover during a quick snowmelt 

event, the methods and results developed in this study should be practical to analysts 

comparing other types of MODIS land cover measurements to other types of 

simulated results during quickly-occurring events. For example, wildfire modelers 
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could use MODIS forest-cover measurements and fire-cover measurements to 

calibrate their simulations. Flood modelers could similarly use MODIS water-cover 

measurements. 

1.3 OBJECTIVES 

The objectives of this study were to: 

1. Select resources 

a. Select an interest area 

b. Select a time period 

c. Select remotely sensed measurements  

d. Select a model 

3. Compare measured and modeled maps 

a. Spatially 

b. Temporally 

4. Make measured and model maps compatible (manage data) 

These objectives are briefly discussed below. 

1.3.1 Preliminary Objectives: Resource Selections 

Section 1.2 defines the preliminary objectives to investigate whether the UKRW 

snowmelt, MODIS, and TOPLATS meet the requirements for an interest area, a time 

period, measurements, and a model that will both help understand global change 

according to the USGCRP and act as the case study for developing methods for 

spatiotemporal map comparison. Chapter Three describes the reasons why these 

resources meet the needs of the USGCRP. 
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1.3.2 Map Comparison Objectives 

This thesis aims to compare modeled and measured maps spatially and temporally. 

The selection of TOPLATS as the model narrows the spatial map comparison 

objectives to the evaluation of a single, binary land category because TOPLATS only 

assigns snow (in the form of a snow water equivalent) and snow-free categories to 

designated regions. TOPLATS does not, for example, assign ice or water to any 

region. This decision to limit categories, and given the fact that the MODIS 

measurements include other categories like clouds and lake ice, creates the need for 

another objective to develop a way to reduce the number of categories in the 

measured data. Finally, a no-data category needs to be considered to account for 

potential problems from either the modeled or measured data. 

In line with USGCRP goals to uncover small scale mechanisms described in 

the ―Revised Research Plan for the U.S. Climate Change Science Program‖ 

(USGCRP 2008) and to exploit the high temporal resolution of the MODIS orbit, the 

overall temporal map comparison objective aims to recognize the independence of 

each measured scene. This objective includes analysis of different elevation zones as 

well as the entire watershed, addressing the impact of elevation on snowmelt (Déry et 

al. 2004). 

1.3.3 Data Management Objectives 

Data management objectives in this thesis aim to make MODIS measurements 

comparable to the model output as explained in Section 1.2.2. Specifically, the 

NSIDC distributes MODIS data that has been minimally processed in a swath data 
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format, explained further in Section 2.2 Remotely Sensed Measurements (Figure 2-6). 

For comparison of measured and model data, either measurements in the swath 

format need to be converted into model output format, or model output needs to be 

converted into the swath format. Data management objectives include evaluation of 

existing software tools for their ability to manage swath measurements. Section 

2.2.2.4 reviews these tools and reports results from attempting to benchmark them 

with measured data. 

1.4 POTENTIAL CONTRIBUTIONS AND IMPLICATIONS 

Potential contributions of this study include the creation of a mechanism to compare 

measured and modeled maps, the creation of a list of best practices to manage 

publically swath data, and possibly the foundation for a web-based GIS application to 

manage swath data and similar HDF-EOS files. Other USGCRP projects will both 

potentially review and improve on the map comparison mechanism and develop new 

data management systems influenced by the findings in this study. 
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CHAPTER 2: LITERATURE REVIEW 

Four topics contribute to the literature review: 

2.1 Watershed Background 

2.2 Remotely Sensed Measurements with a focus on MODIS snow cover 

2.3. Distributed Models with a focus on TOPLATS 

2.4 Map Comparison  

2.1 WATERSHED BACKGROUND 

2.1.1 Location & Area 

The Upper Kuparuk River watershed (UKRW), shown in Figure 2-1 and Figure 2-2, 

spans 147.6 km
2
 on the North Slope of Alaska in UTM Zone 6.

*
 It is located at the 

foothills of the Brooks Mountain Range in the USGS Philip Smith Mountains 

quadrangle. The UKRW is flanked by Toolik Lake (east) and Imnavait Creek (west) 

tributaries. Figure 2-3 shows the UKRW shape projected in UTM Zone 6. 

Water flows from the mountains, northward, into the main Kuparuk River 

(Figure 2-4). For comparison, the entire Kuparuk River watershed is almost 60 times 

as large as the UKRW. It covers 8,421 km
2
 and flows through three physiographic 

                                                 

 

 

* McNamara et al. (1998) delineate a 142 km2 watershed area for the Upper Kuparuk. This study uses 

the value 147.6 km2, derived from a glacial geology map of the Toolik Lake and the UKRW created by 

Walker et al. in 2003. This number agrees with the product of the number of pixels (8557 pixels) and 

the pixel size (131.34 m by 131.34 m) used by S. Déry et al. (2004). 
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provinces: arctic mountain, foothills, and coastal plains. The Kuparuk River 

watershed pours into the Arctic Ocean at Prudhoe Bay. 

 The UKRW is accessible to researchers via the Dalton highway (Alaska 11), 

also known as ―Haul Road‖ for its use during construction of the trans-Alaska oil 

pipeline in the 1970s. The road and pipeline run along the west boundary of the 

watershed (Figure 2-1). The road crosses the Upper Kuparuk River, forming the north 

boundary. The road makes the UKRW a prime place for hydrological and 

meteorological stations. 
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Figure 2-1. Upper Kuparuk River Watershed. 
This is a World Wind 1.4 render of LANDSAT 7 false-color mapped onto USGS 30-meter 
DEM. The image is from the perspective of a person looking upstream, north of the 
watershed outlet. The thin gray line represents the Dalton Highway, which delineates the 
northern watershed boundary. 

 

Figure 2-2. Location of the Upper Kuparuk Watershed with respect to Alaska 
From NSIDC (http://nsidc.org/data/arcss017.html) 

  

Dalton Highway 

Brooks Mountain Range 
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Figure 2-3. Watershed Shape and Bounding Study Area 
This figure shows the UKRW in context with other tributaries in UTM Zone 6. 

 

Upper Kuparuk River

Toolik River tributaries
Kuparuk River tributaries

Atigun River tributaries

Toolik Lake tributaries

Oksurukuyik Creek Tributaries

Sagavanirktok River tributaries

Itkillik River tributaries

Imnavait CreekItkillik River tributaries

Sagavanirktok River tributaries

Upper Imnavait Creek

0 7 143.5 Kilometers±
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Figure 2-4. Kuparuk River Watershed 
The entire Kuparuk River watershed is 8,421 km

2
. Water flows from the Upper Kuparuk, 

through the Kuparuk River into the Arctic Ocean at Prudhoe Bay. 

  

Upper Kuparuk River Watershed Brooks Mountain Range 

Arctic Ocean at Prudhoe Bay 



 

 

 

 14 

2.1.2 Snowmelt 

Statisticians describe winter-spring snowmelt as a secular event, usually lasting less 

than three months, occurring annually. In mountainous arctic regions, the event 

usually starts with 100% snow-covered land and ends in none.
†
 Plots of area-

composite snow variables, like %SCA or mean SWE, against time show that 

hydrologists can describe snowmelt with a decreasing logistic function (biological 

death curve) 

 
𝑠 𝑡 =

1

1 + 𝑒𝑏 𝑡−𝑎 
 100% 2-1 

For proportion %SCA s, time t, and location parameter a, and scale parameter b, 

where both a and b are greater than zero. Statistical models forecast snow using both 

autocorrelation relationships detected within past snow measurements and indirect 

correlations involving temperature (McCuen 2003). The effect of ground elevation on 

snowmelt exemplifies an indirect effect involving temperature. 

Snowmelt, in the UKRW specifically, usually accounts for a third of the 

annual runoff (Kane et al. 2000). This discharge from snow melt is due in part to both 

snow build up during the winter and thick permafrost limiting base flow in the arctic. 

The largest snowmelt event of the year in the UKRW usually begins in May (during 

bird migration season) and sometimes in June, when ―hordes‖ of mosquitoes (Alaska 

                                                 

 

 

† This arctic example of snowmelt does not imply the definition of snowmelt excludes the general case 

of snowmelt in which interest areas are do not begin with 100% SCA. Land cover, land use, regional 

temperatures, wind, and other factors in various interest areas often prevent 100% SCA at the end of a 

given winter season. When snow melts in these situations, statisticians still call it snow melt.. 
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Bureau of Land Management, 2006) make collecting measurements in the field 

particularly unattractive compared to gathering remotely-sensed data from an off-site 

location. This ―winter-spring‖ (Liston, 1998) event usually causes the largest annual 

discharge shortly afterward. Figure 2-5 hydrographs shows these events for the years 

2000, 2001, and 2002 in the UKRW. The peak discharge for each of these years 

rationally occurs at the time of the maximum rate of change in %SCA. This study 

uses this information to show that the UKRW snowmelt lasted six, ten, and seven 

days in years 2000, 2001, and 2002 in Chapter Four.  

In addition to the importance of snowmelt on discharge, and in turn, 

traditional water resources and construction applications, Liston (1998) emphasizes 

the importance of snow cover on the balance of the earth’s climate cycle. He 

attributes the effect of snowmelt on radiation due to the high reflectance and the low 

thermal conductivity of snow covered areas. 

 

Figure 2-5 Winter-Spring Hydrographs 
The peak discharge in the UKRW collected by Hinzman and Kane (2009) time during May 
and June, for each 2000, 2001, and 2002, guides the time period selection in each of this 
study’s initial queries for snow cover. It also allows this study to cross reference MODIS 
Quality Assurance information for those times. Note that the day of year references UTC 
time, not UKRW local time which is nine hours ahead. May 1 occurs on day 135. (See 
http://modland.nascom.nasa.gov/QA_WWW/). See MATLAB® script “plot_hydrographs.m” to 
reproduce this figure. 

http://modland.nascom.nasa.gov/QA_WWW/
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2.1.3 Meteorological Measurements & Geology in the UKRW 

Throughout the year, the U.S. National Weather Service (NWS) gauges the 

precipitation with a tipping bucket and Alter shields. During the snowmelt period, 

Kane, et al. (2003) make additional precipitation measurements. They measure 

precipitation twice daily. Wind contributes to the spatiotemporal variability of SCA 

along with accumulation and ablation (Zhang et al. 2000). 

The Laurentide Ice Sheet shaped the foothills of the Brooks range (French 2007) 

during the Wisconsian Glaciation (Kaufman and Manely 2004) of the late Pleistocene 

epoch (Porter 1964, Hamilton 1986). Permafrost penetrates into the ground down to 

600 meters in the Kuparuk River watershed near Prudhoe Bay (Osterkamp and Payne 

1981), and down to 250 meters under the UKRW (Kane, et al. 2003).  
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Table 2-1. Watershed Characteristics 

Characteristic Measurement Comments 

Area  

 

147.6 km
2
 

(= 56.99 mi
2
)

 
Small compared to the Kuparuk 

River watershed, which is 8,421 

km
2
. The watershed area is 

18.12% of the model area. 

  

Perimeter 56.63 km From vector area 

Number of Pixels 8,557 Includes only the Upper Kuparuk 

area shown in Figure 2-3 

Maximum Stream Length 22.24 km (= 13.82 mi) 

Elevation Min 736.4 m The watershed starts in alpine 

foothills and drains into a 

relatively flat tundra. 

Max 1,492 m 

Range 755.8 m 

Centroid X 404,610 m Calculated with .Centroid.X 

and .Centroid.Y shape objects  Y 606,652 m 

Extent UTM Zone 6 Global Coordinate System 

 Left 398,086 m West -149.508205° 

Right 413,190 m East -149.121345° 

Top 616,590 m North 68.649343° 

Bottom 598,334 m South 68.480656° 

Table 2-2. Model Area Characteristics 

Characteristic Measurement Comments 

Area  814.49 km
2 

(= 314.47 mi
2
) 

Includes model area around the 

watershed shown in Figure 2-3 

A = (131.34 m)
2 ⋅ 208 ⋅ 227 

= 814.5 km
2
 

= 314.5 mi
2
 

Number of 

Pixels 

Columns 208 

Rows 227 

Number 47,216 

Pixel Size Width (x) 

Height (y) 

131.34 m 

131.34 m 

Same as cell size. 

1 pixel = 17,250.20 m
2
 

Projection UTM Zone 6 Clarke 1866 Datum 

False Easting 500 km  

False Northing -7,000 km  

Extent UTM Zone 6 Global Coordinate System 

Left 390,862 m West - 149.697228° 

Right 418,181 m East -148.998749°  

Top 627,228 m North 68. 746202° 

Bottom 597,414 m South 68. 469708° 
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2.2 REMOTELY SENSED MEASUREMENTS 

Remote sensing of the Earth from satellites creates opportunity to analyze both the 

lay and utilization of the land. The process complements aerial remote sensing. In 

general, aerial sensors deliver higher resolution images than satellite sensors because 

of their proximity to the Earth; but aircraft paths are limited by flight zones, funding, 

and fuel constraints. At times, analysts using aerial images must composite output 

from different flights and different sensors to get a complete picture of an interest 

area. The National Operational Hydrologic Sensing Center  (NOHRSC) at NOAA, 

for remote-sensing of snow, gathers, processes, analyzes, and distributes both 

satellite-sensed and aerially-sensed snow cover information from their website 

(NOHRSC 2009). 

Builders and city planners can, in general, schedule single aerial flights for 

constructability analysis more easily than meteorologists, hydrologists, and other 

earth scientists can, in comparison, fund aircraft flights in order to monitor multi-day 

events and events that occur with little or no warning. These scientists, instead, 

predominantly use satellite imagery. Compared to sensors aboard aircraft, satellite 

sensors can potentially supply a persistent stream of images that blanket the earth. 

Satellites are expensive to build and maintain compared to aircrafts. When a problem 

occurs on a satellite, replacements parts (or a replacement satellite) cannot be as 

readily procured in comparison to a replacement part for an aircraft. Such problems, 

in conjunction with launches that are separated by years, lead to missing data. 
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2.2.1 Satellite Measurements Overview 

As introduced in 1.2.2 Data Management Needs, the USGCRP funds and manages 

the POES and GOES programs primarily developed by NOAA and NASA, the 

LANDSAT program developed by NASA, USGS, and NOAA, and the MODIS 

(Moderate Resolution Imaging Spectroradiometer) satellite programs developed by 

NASA. The GOES, POES, LANDSAT, and MODIS missions compose part of 

NASA’s Earth Observing System (EOS). For sensing snow and ice, NOAA uses the 

Interactive Multisensor Snow and Ice Mapping System (IMS) to process POES and 

GOES measurements. The resulting  images are best suited for large-scale (four to 25 

km cell size) meteorological forecasting in the northern hemisphere. LANDSAT 

missions deliver imagery with relatively high spatial resolution (15 m cell size) and 

relatively low temporal resolution (16 day earth coverage) while MODIS missions 

deliver imagery with relatively low spatial resolution (30 m to 500 m cell size) and 

relatively high temporal resolution (two-day earth coverage). Only MODIS 

measurements provide sufficient spatiotemporal resolution to monitor a seasonal land 

cover event like the snowmelt season in the UKRW. Table 2-3 summarizes the 

characteristics of the satellites and their instrument described in this section. 
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Table 2-3. Satellite and Instrument Characteristics for Sensing Snow & Ice 

Satellite LANDSAT AQUA & TERRA POES GOES 

Instrument ETM+ MODIS AVHRR 

Flight Pattern  near polar sun-synchronous geostationary 

Orbit Time 98.9 min [98,102] min
*
 

Nominal 

Satellite 

Altitude 

705 km 810 km & 

850 km 

36,000 km 

Swath Width 185 m 2,330 km up to 

24,140 km
**

 

not 

applicable
****

 

Swath Scene 

Area
***

 

3,145 m
2
 3,154,820 km

2
 nominally 

1,000 km
2
 

Scene Spatial 

Resolution 

(Cell Size) 

15 m 500 m for snow and 

ice products 

After processing through IMS: 

25 km before 2004 

4 km since 2004 

Time to 

sense every 

point on the 

earth. 

16 days 2 days 1 day 

 

(14.1 polar 

orbits / day) 

not 

applicable
****

 

* Johnson 1996 
** Swath widths vary between a “few” and 1,500 mi (NOAA 2006). 
*** For comparison, the surface area of the earth spans 510,065,600 km2. 
**** Geostationary satellites produce images centered around a single location on the earth. 

2.2.1.1 LANDSAT 

Scientists recognize the LANDSAT program as an old and comprehensive remote 

sensing project. Contractors are currently bidding on the development of the eighth 

LANDSAT satellite scheduled to replace the aging LANDSAT 5 (launched in 1984) 

and LANDSAT 7 (launched in 1999) satellites in 2011. Bergers (2006) estimates the 

value of the contract at $400 million. The LANDSAT 7 satellite orbits the earth once 

every 99 minutes in a near-polar, sun-synchronous pattern at an altitude of 705 km. 

While in orbit, the Enhanced Thematic Mapper Plus (ETM+) satellite sensor records 

a continuous strip of the Earth, called a swath, that is 185 km wide. The LANDSAT 

program divides swaths into segments, called scenes, that are 170 km long. The 
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LANDSAT 7 satellite takes 232 orbits or 16 days to record the entire earth (Williams 

2007). Figure 2-6 evinces the components of a swath. 

LANDSAT 7 produces digital images with pixels that have a cell size of 15m. 

This resolution makes LANDSAT 7 imagery especially useful in popular web-based 

mapping systems like Yahoo Maps and Google Maps. Additionally, desktop-based 

GIS like Google Earth and NASA World Wind uses false-color LANDSAT images in 

default views of Earth. While LANDSAT 7 provides enough resolution for many 

spatial applications, it does not provide enough temporal resolution for analysis of 

day-to-day events where significant change occurs in less time than the satellite takes 

to completely image the earth. 

2.2.1.2 MODIS Satellites Aqua and Terra 

In December 1999, NASA launched the first EOS mission by sending a Moderate 

Resolution Imaging Spectroradiometer (MODIS) sensor, among a total of 5 sensors, 

into orbit aboard the satellite called Terra. In 2002, NASA launched a sister satellite 

to Terra, called Aqua, with a second MODIS sensor. The satellites and their launches 

are pictured in Figure 2-7 and Figure 2-8. Like LANDSAT 7, both Aqua and Terra 

follow a near-polar, sun-synchronous orbit. Terra, also called EOS-AM, crosses the 

equator in the morning while Aqua, called EOS-PM, crosses the equator in the 

afternoon. 
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Figure 2-6. Swath 
A swath is a continuous strip of land sensed from a satellite in orbit. A swath scene is a 
portion of a swath. This figure depicts the parts of a single swath taken from two consecutive 
orbits. It also highlights an individual swath scene. The swath shown is similar to the one 
produced by LANDSAT 7 in that the “swath orbits” converge near the poles.  The swath is 
drawn on a pseudo-cylindrical Robinson projection. 

 

  

Scene

Orbit 2 Orbit 1
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Figure 2-7. Moderate Resolution Imaging Spectroradiometer (MODIS) 
MODIS is one of 5 instruments aboard Terra and one of 6 instruments aboard Aqua.  (a) The 
relative size of Terra is shown as it is being prepared for loading into the C-5 aircraft. (b) 
Aqua is shown with (c) the MODIS sensor highlighted. (Photos from http://www.nasa.gov/.) 

 

 

  

a. Terra being

prepared for
loading

b. Aqua

c. MODIS sensor

on Aqua
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Figure 2-8. Terra and Aqua Launch Photos 
(a) C-5 aircraft lifting Terra on December 18, 1999 and (b) Delta II rocket lifting Aqua, at 2:55 
a.m. PDT on May 4, 2002. Both satellites were launched from Vandenberg Air Force Base, 
CA. Photos from Wolfe (2002). 

 

  

a. Terra Launch

December 18, 1999

b. Aqua Launch

May 4, 2002



 

 

 

 25 

MODIS reports observations of clouds, fire, ice, land, ozone, snow, temperature, 

vapor, water, and more. It senses 36 different wavelengths ranging from below near 

infrared to mid-infrared (0.405 to 14.385 μm) at an average data rate of 6.1 megabits 

(about three-quarters of a megabyte) each second. MODIS records swath scenes that 

are 2,330 km wide — an order of magnitude larger than the LANDSAT 7 swath. The 

wide swath size, in comparison to LANDSAT, enables MODIS to see every point on 

the earth every two days, or less. 

The USGCRP has defined seven research topics based on MODIS data since 

Terra was initially launched: atmospheric composition, climate variability and 

change, global carbon cycle, global water cycle, ecosystems, land use / land cover 

change, and human contributions and responses (US Global Change Research 

Program, 2007). Riggs et al. (2006) present both an overview of MODIS concepts 

and specific details pertaining to snow cover sensing. The overview favors Terra over 

Aqua because of the former satellite’s ability to better detect snow in the mid-infrared 

waved lengths. Some detection bands on Aqua have failed. This study uses data 

collected by both Terra and Aqua. 
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2.2.1.3 GOES and POES Satellites 

NASA, NOAA, the United Kingdom, and France developed the Geostationary 

Operational Environmental Satellite (GOES) project and Polar Operational 

Environmental Satellite (POES) project for weather forecasting among other 

environmental and social causes (GOES 2008 and POES 2008). While the POES 

satellite traces a sun-synchronous, thereby viewing different points of the earth at 

different times, the GOES satellite follows a geostationary orbits. This means that 

GOES remains above the same point on the earth at all times. Both projects currently 

launch several satellites each equipped with an Advanced Very High Resolution 

Radiometer (AVHRR) among other payloads. AVHRR includes a channel (3A) for 

sensing snow and ice at 1.58 µm to 1.64 µm wavelengths and channels (1, 3B, 4) for 

sensing cloud coverage among other channels (AVHRR 2008). While AVHRR can 

produce relatively high resolution images with a pixel size as small as 1.1 km 

(Robinson 2003), the final IMS product currently produces relatively lower resolution 

images with a larger pixel size of four kilometers. POES and GOES projects 

contribute to the oldest record of the northern hemisphere started by NOAA in 1966 

when weekly products were created (Matson et al. 1986 and Robinson et al. 1993). 
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2.2.2 MODIS Snow Measurements 

2.2.2.1 Sensing Snow 

While clouds, snow, and water all highly reflect light in the visible spectrum, only 

clouds highly reflect light in the near infrared spectrum; snow and water absorb most 

near infrared light. Additionally, water reflects infrared light less than snow. The 

visible spectrum alone, therefore, cannot distinguish between snow, clouds, and 

water. The infrared spectrum, similarly, cannot solely distinguish between snow-

covered areas and snow-free land. AVHRR, EDM+, and MODIS use both the visible 

spectrum (0.4–0.7 µm) and near infrared spectrum (0.75–5 µm) to discriminate 

between snow, clouds, and water (Table 2-4). These sensors can only report unknown 

snow coverage in areas where clouds block the earth. This leaves analysts the job of 

estimating the uncertainty of the existence of snow in these areas. (Section 2.4.3.1 

further discusses missing data in partially-obscured scenes.) Hall et al. (2001) and 

Riggs et al. (2006) developed a snow mapping algorithm to test each point of the 

earth detected by MODIS for the presence of snow. The algorithm depends on the 

visible and near infrared bands of MODIS (Table 2-5) and consists of three Boolean 

requirements. Each point of the earth that MODIS detects must satisfy all three 

requirements in order for the algorithm to indicate the presence of snow at that point. 
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Table 2-4. Relative Visible and Near-Infrared Reflectance of Clouds, Land, and Snow 

Coverage Relative Reflectance 

 Visible Near Infrared 

Cloud High High 

Snow High Low 

Water High Very Low 

Snow-Free Land Low Low 
MODIS information from Riggs et al. (2006) 

Table 2-5. MODIS Bands Used to Detect the Presence of Snow 

Band Wavelength (µm) Spectrum 

1 0.645 Visible 

2 0.865 Near Infrared 

4 0.555 Visible 

6 1.640 Near Infrared 
MODIS information from Riggs et al. (2006) 

The first of the three requirements to detect snow is the calculation of the 

Normalized Difference Snow Index (NDSI) ratio 

 
𝑁𝐷𝑆𝐼 =

𝑏𝑎𝑛𝑑4 − 𝑏𝑎𝑛𝑑6

𝑏𝑎𝑛𝑑4 + 𝑏𝑎𝑛𝑑6
≥ 0.4 µm 2-2 

which considers the difference between the visible reflectance on the 0.555 µm 

wavelength (band 4) less the near infrared reflectance on the 1.640 µm wavelength 

(band 6), all normalized over the sum of these two reflectance values (Hall et al. 2001 

and Riggs et al. 2006). Normalizing the difference between visible and near infrared 

reflections helps determine the presence of snow in varying light conditions 

throughout the day. 

The second requirement distinguishes water from snow. It checks the a near-

infrared signal on the 0.865 wavelength (band 2). A reflectance greater than 0.11 

indicates snow. Smaller values indicate water. 

 
𝑏𝑎𝑛𝑑2 > 0.11 µ𝑚 2-3 
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The third requirement checks that enough visible reflectance on the 0.555 µm 

wavelength is available to make a reading: 

 
𝑏𝑎𝑛𝑑4 > 0.10 µ𝑚 2-4 

This last requirement, in other words, tests to make sure there is enough visible light 

to make a dependable reading of snow. 

The conjunction of all three requirements (equations 2-2, 2-3, and 2-4) form 

the snow mapping of the MODIS snow and sea ice Algorithm Theoretical Basis 

Document (ATBD) in practice (Hall et al. 2001): 

 
  𝑁𝐷𝑆𝐼 ≥ 0.4 µm  &  𝑏𝑎𝑛𝑑2 > 0.11 µm  &  𝑏𝑎𝑛𝑑4 > 0.10 µm  2-5 

Expanding 2-5 in terms of bands yields 

 
 
𝑏𝑎𝑛𝑑4 − 𝑏𝑎𝑛𝑑6

𝑏𝑎𝑛𝑑4 + 𝑏𝑎𝑛𝑑6
≥ 0.4 µm  &  𝑏𝑎𝑛𝑑2 > 0.11 µm  &  𝑏𝑎𝑛𝑑4 > 0.10 µm  2-6 

The accuracy of the snow mapping algorithm varies with land cover, grain size, and 

pollution. Hall et al. (2001) explains that 

. . . exclusive of clouds, the maximum, aggregated Northern Hemisphere 

snow-mapping error is expected to be about 7.5%. The error is expected to be 

highest (around 9-10%) when snow covers the boreal forest, roughly between 

November and April 

and that sensors detect snow best at solar noon. At this time, they are facing nadir — 

directly at the earth.  
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2.2.2.2 Snow Products 

The Distributed Active Archive Center (DAAC) at the National Snow and Ice Data 

Center (NSIDC) provides a web-based service for researchers to order MODIS snow 

and ice data products (NSIDC 2008a). The NSIDC DAAC is one of a eight DAACs 

in the EOS Distribution System (EOSDIS) sponsored by NASA. NSIDC DAAC 

labels products according to sensor satellite (either Terra or Aqua) and processing 

information. The processing information of a product indicates the unit 

spatiotemporal size (i.q. the amount of compositing) and spatial-format for that 

product. The sensor abbreviations MOD and MYD represent, respectively, MODIS 

aboard Terra and MODIS aboard Aqua (NSIDC 2006). Six processing information 

abbreviations, 10_L2, 10A1, 10A2, 10C1, 10C2, and 10CM, indicate, respectively, 5-

minute 500m swaths, 500m sinusoidal grids composited daily, 500m sinusoidal grids 

composited every eight days, 0.05 degree climate model grids (CMG) composited 

daily, 0.05 degree CMGs composited every eight days, and 0.05 degree CMGs 

composited monthly (NSIDC 2008a). Two satellites and six kinds of processing yield 

a total of 12 products. Of these 12 products, NSIDC refers to the two swath products 

(MOD10_L2 and MYD10_L2) as Level Two products. NSIDC builds Level Two 

products from fundamental MODIS reflectance data, MODIS geolocation data, and a 

cloud mask using the ATBD (Section 2.2.2.1). The remaining, gridded products 

comprise Level Three, which NSIDC builds from Level Two products. 

All products are stored in the EOS-specified hierarchal data format (HDF) 

called HDF-EOS. This means, in application, that researchers download product files 

(also called product granules in this context) that have a ―.HDF‖ file extension. The 
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National Center for Supercomputing Applications (NCSA) funded by the National 

Science Foundation (NSF) at the University of Illinois oversees continued 

development of the HDF file format. The HDF-EOS file format stores spatial 

information in three formats: swath, point, and grid. NSIDC distributes XML side-car 

files with each HDF-EOS granule that include metadata like database references, 

contributing products, time references, orbit number, the time the granule was last 

processed, and whether or not a granule is scheduled to be reprocessed. 

NSIDC advances products by reprocessing them based on both current 

scientific research and NCSA updates to make HDF more manageable. NSIDC 

assigns a version number, synonymously called a collection number, to each 

reprocessing initiative. Version five, the current version in the completion stages of 

being processed, improves on version four by, for example, using a more 

conservative cloud mask, adding fractional snow information to the MOD10_L2 

products and the MOD10A1 products, making products more manageable with new 

HDF compression techniques, and rendering preview images for each granule. 

Researchers have, in the past, found errors in data collections. NSIDC, when 

researchers correctly report processing errors, confirm the errors and temporarily 

remove access to error-effected data to patch it. NSIDC eventually deletes outdated 

collections. Table 2-6 lists the characteristics of the Level 2, Collection Four product. 

  



 

 

 

 32 

Table 2-6. MODIS Snow and Ice Level Two , Collection Four Product Characteristics 

Characteristic Value 

Spatiotemporal Properties 

Pixel Size (500 m)
2
 or 0.25 km

2
 

Nominal Swath Coverage 2,000 km across track 

1,354 km along track 

Scan Time 5-minute (1 Scene) 

Contributing Products 

Cloud MOD35_L2 

Geolocation MOD03 

Radiance MOD02HKM 

MOD021KM 

Pixel Categories (Snow_Cover SDS) 

Missing Data 0 

No Decision 1 

Night 11 

Snow-Free  25 

Lake 37 

Ocean 39 

Cloud 50 

Lake Ice 100 

Snow 200 

Detector Saturated 254 

Fill 255 
Data from Riggs et al. (2006), applicable to both MOD10_L2 (Terra) and MYL10_L2 (Aqua) 
products 

Hall et al. (2001) describe the Level Three CMG products composited every 

eight days and recommends them for most model confirmation experiments (pers. 

com. 2006) because of their popularity, usability, and the accessibility of data tools 

built around them. Level Three products are easy to use with the NASA’s HDF-EOS 

to GeoTIFF Conversion Tool (HEG-TOOL) developed by Raytheon Company, 

scripting libraries included with The MathWorks™ MATLAB® and ITT Visual 

Information Solutions™ Interactive Data Language® (IDL). 

Hall acknowledges that the Level Three eight-day composite period is an 

arbitrary period in many applications (pers. com. 2006). The Level Three CMGs, 

also, ―do not simulate the present Arctic climate very well‖ (Hall 2001 summarizing 
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Bromwich et al. 1994). The compositing process that NSIDC uses to create Level 

Three products, finally, marks pixels snow-covered if the snow mapping algorithm 

(Equation 2-6) is satisfied for at least one pixel among all location-coincident pixels 

in a composite period (Hall 2001). This means that the composite process maps a 

pixel as snow-covered even if only one location-coincident pixel within the 

composite period satisfies the snow requirements (Equation 2-6). Level Three 

temporal composites, therefore, are inadequate to confirm model results where model 

periods are close to or shorter than the eight-day measurement composite periods. 

2.2.2.3 Quality Assurance 

NSIDC (2006) explains that Collection Four, Level Two products include a layer 

called ―Snow Cover PixelQA‖ that reports an eight-bit quality assurance report
‡
 for 

each point recorded by the MODIS sensor in the swath. Bits zero and one represent 

the general quality of the product. The first two bits, bit zero and bit one read right to 

left, with values of [0,0] indicate nominal, usable quality. Values [0,1] (i.e. bit zero 

equals one and bit one equals zero) indicate abnormal quality. Values [1,0] indicate 

clouds, and values [1,1] indicate invalid data. 

                                                 

 

 

‡ Various websites and literature use the word ―quality assurance‖ and the word ―quality assessment‖ 

interchangeably. This thesis uses the word ―quality assurance.‖ Further, a quality assurance report 

describes a mult-point layer of — or multi-pixel layer of — quality assurance eight-bit values in the 

context of swaths and grids, whereas a quality assurance value describes a single, eight-bit value in the 

context of a single coordinate or a single pixel. 
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Abnormal quality, cloudy, and invalid reports, indicate respective locations 

were sensed both out of an acceptable 150 degree to 210 degree range and with an 

observation coverage area limited to 20% of the potential coverage area (NSIDC 

2006). The NSIDC does not further differentiate between these three quality 

assurance labels — abnormal quality, cloudy, and invalid — beyond the physical 

meaning inherent in the word ―cloudy.‖ (Data analyzed later in this thesis, however, 

infer that MODIS reports invalid locations throughout the day and night but reports 

abnormal locations predominantly during the daylight.) 

Bits two through seven detail supporting quality information. Bit three flags 

measurements taken with broken (―dead‖) detector bands. Bit four flags 

measurements taken at sensor view angles greater than 45 degrees. Bit five flags 

measurements derived from ―highly uncertain‖ band 6 radiance calculations. Bit six 

flags results given an undetermined cloud mask. Bit seven flags unusable sub-

calculations. Bit eight is unused. 

All other Collection Four (non Level Two) snow coverage products include a 

unique ―Spatial QA‖ index, which is derived from the Level Two ―Snow Cover 

PixelQA‖ and reported in four bits of eight bits. The first two bits report the same 

general quality information reported in the first two bits of the Level Two products. 

Bit three indicates a sensor azimuth angle between 150 degrees and 210 degrees. Bit 

four indicates an observation coverage of more than 20% of the are covered by the 

product. Bits five through eight are unused. 
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2.2.2.4 Swath To Grid Conversion Tools 

Many software tools exist to interpret and project MODIS snow data for mapping and 

comparison purposes. Most of these tools, however, read grid data only. Few tools 

read and project data originally in the swath format, and of these tools, even fewer 

work with the MOD10_L2 product. This section extends the literature review to a 

software review of three swath to grid conversion tools: 

1. MODIS Swath To Grid Toolbox (MS2GT) 

NSIDC distributes a combination of C programs, IDL scripts, and Perl scripts 

called in a package called MODIS Swath To Grid Toolbox (MS2GT). NSIDC 

make MS2GT specifically for converting swaths to grids (NSIDC 2003). 

MS2GT requirements, however, exceed the accessible resources of this 

research: comprehensive access to a UNIX platform with IDL and Level 1 

MODIS data. NSIDC has only tested MS2GT on a SGI O2 workstation 

(NSIDC 2003). 

2. HDF-EOS to GeoTIFF Conversion Tool (HEG-TOOL) 

HDF-EOS to GeoTIFF Conversion Tool (HEG-TOOL) converts most swath 

files into grids. HEG-TOOL converts and composites HDF-EOS products of 

all levels from all eight DAACs. The general tool works especially well 

compositing several Level Three granules (like MOD10C1) into a mosaic. 

The conversion tool, however, works only intermittently with the Level Two 

data. It seems to fail, although this study has not confirmed this, when 

converting swath granules with a large amount of no-data within bounds of an 
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interest area. In a batch conversion processes, implemented using HEG-

TOOL’s scripting interface, HEG-TOOL often halts mid-conversion. 

3. MODIS Reprojection Tool for Swath Data (MRT Swath) 

The Land Process DAAC (LP DAAC) created the MODIS Reprojection Tool 

(MRT) for Swath Data (MRT Swath). The LP DAAC created the tool 

especially for LP data. MRT Swath incorporates Delaunay triangulation to 

map swath points to cells. MRT Swath, in an attempt to automate the 

conversion process of MOD_10L2 and MYD10L2 products with batch 

scripts, failed in situations similar to those that failed with HEG-TOOL. MRT 

Swath often halts mid-conversion. Neither HEG-TOOL or MRT Swath 

created files that were completely compatible with the projection descriptions 

used by ArcGIS Desktop. 

2.3 DISTRIBUTED MODELS 

“No real advance will be made if we continue to force lumped models based 

on empirical relationships to represent the complexity of distributed runoff.”  

—Vieux (2004) 

Hydrologists have long relied on model concepts based on empirical observations, 

such as the unit hydrograph, and parameters that lump spatiotemporal-varying 

watershed characteristics into single values. The Natural Resources Conservation 

Service (NRCS) approach for estimating rainfall runoff and channel routing (Mokus 

1972) exemplifies a lumped-parameter model. Soil group, impervious area, land 

cover, hydrologic condition, and land use are all lumped into the single NRCS curve 
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number. A watershed-averaged storage parameter is another example of a lumped 

parameter. Lumped conceptual models, in general, are called ―grey-box‖ (Abbot et al. 

1996) models because they are not based on purely black-box empirical relationships 

yet they do not fully account for sub-watershed processes in what Abbot et al. (1996) 

calls ―white box‖ models.  

Lumping concepts based on empirical observations of one type of watershed 

(e.g. a relatively large watershed) into a particular parameter can lead to problems if 

that parameter is used to predict runoff in a different type of watershed (e.g. a 

relatively small watershed). Further, a conceptual model or model parameter 

developed for one application could be used in another application for the wrong 

physical basis. As lumped-parameter models are scaled to meet the needs of different 

applications, the number of calibration parameters can grow and the inter-correlation 

between calibration parameters can increase. Modelers, to compensate for these 

problems, package application-specific calibration parameters alongside matching, 

application-specific run-time processes. 

Remotely sensed measurements can uncover sub-watershed discrepancies 

between observations and lumped simulations. Such measurements drive the need to 

aggregate conceptual process models over smaller areas and smaller time intervals. 

Models that account for sub-watershed processes are called distributed models. The 

level to which a model is distributed is subjective and discussed further in relation to 

map comparison in Section 2.4.1. ―The Saint Venant equations for overland and 

channel flow, Richards’ equations for unsaturated zone flow and Boussinesq’s 
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equation for groundwater flow‖ are examples of partial differential equations used in 

distributed modeling (Abbot et al. 1996). 

The traditional comparison between empirical (black box), lumped-conceptual 

(grey box), and distributed physically-based (white box) models can be misleading. 

The common use of the words ―physically-based‖ in combination with the word 

―distributed‖ supports the fact that distributed models enable the detailed simulation 

of physical processes and produce maps that are comparable to remotely-sensed 

measurements. The words ―physically-based,‖ however, are not exclusive of lumped 

conceptual models. Most models and model parameters have a physical basis, 

including lumped-parameters like the NRCS curve number.  For the reason in these 

two points, the words ―differential-equation-based‖ well-replace the words 

―physically-based‖ in the comparison of such white models with black, empirical 

ones. 

The vintage of the programming techniques employed by a model does not 

determine if it is more lumped or more distributed. To efficiently create application-

specific modules for time-tested lumped programs, programmers compartmentalize 

legacy procedural code into object-oriented classes. These classes can be used in 

combination with distributed process models when, for example, distributed 

calibration data is unavailable. Using a combination of lumped concepts and 

distributed concepts can, ideally, result in smaller errors of prediction with modest 

gains in model complexity. These models are called semi-distributed models. 

TOPMODEL, which stands for Topographic Model, exemplifies semi-distributed 

models (Vieux 2004 and Bevin 1998a). Hydrological Simulation Program--Fortran 
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(HSPF) is another model that incorporates ―theory, laboratory experiments, and 

empirical relations from instrumented watersheds‖ (USGS 2008) with distributed 

modules. Critics of semi-distributed models like HSPF point out that there is a danger 

in significantly increasing model complexity to a point where there are minimal 

returns in increased model accuracy. 

The process of creating distributed models has recently become more practical 

as a result of accessibility to geospatial products, desktop GIS, and cheap computer 

processing. Distributed models are now advancing the state of the art. Abbot et al. 

(1996) contend that models distributed in space and time ―nearly always‖ limit 

uncertainty in comparison to lumped-parameter models. Abbot et al. (1996) cite this 

advantage of distributed models over lumped-parameter models in water resources 

applications for irrigation, erosion and land restoration, surface and ground water 

pollution remediation, flood and drought control, maintenance of aquatic ecosystems, 

and climate change assessment. ―In mountainous terrain, topographically induced 

spatial variability makes distributed snowmelt models [especially] attractive‖ (Colee 

2000). 

2.3.1 TOPLATS 

Snowmelt simulations analyzed in this study were produced by a model of the 

UKRW, built using TOPMODEL-Based Land-Atmosphere Transfer Scheme 

(TOPLATS). This study used TOPLATS because it was already implemented in the 

UKRW (Déry et al. 2004) and the input files were available from the USDA 

Agriculture Research Service (ARS) at the Hydrology and Remote Sensing Lab. 
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TOPLATS applies TOPMODEL surface water processes (Famiglietti and Wood 

1994a,b) on a cell-by-cell basis. The model incorporates a soil–vegetation–

atmosphere transfer (SVAT) scheme to simulate near-surface soil column energy 

balances (Peters-Lidard et al. 1997) and models physical representations of moss, 

snow, soil, and forest. The snow module divides snowpack into a thin surface layer 

and a thick subsurface layer. The surface snow layer interacts with the atmosphere 

and the subsurface snow layer exchanges heat with the soil. The forest module 

discriminates between an understory and an overstory. 

 Déry et al. (2004) add two ―key topographic effects‖ to TOPLATS in order to 

―capture some of the small-scale physical processes‖ that effect snowmelt: the effect 

of elevation on air temperature and the effect of slope on radiation. They also review 

the effect of an adiabatic lapse rate on the ambient air temperature with elevation. For 

the effect of elevation on air temperature, they report that a difference of 5.58 °C 

persists between the highest point (1490 m above sea level) and lowest point (570 m 

above sea level) of the watershed throughout each model run. For the effect of slope 

on radiation, TOPLATS calculates the position of the sun using the method 

developed by Gates (1980) combined with DEM data. 

TOPLATS prediction results consist of a time series of maps separated by 

regular time intervals. Déry et al. (2004) use a 10 minute time interval  and maps 

projected in UTM Zone 6 grid with a 131.34 m cell size. Initial conditions include the 

beginning of season SWE (mm of water). Input variables include precipitation (mm), 

relative humidity (%), temperature (°C), incoming solar radiation (W/m
2
), wind speed 

(m/s), air pressure (mbar). Model parameters include the UKRW DEM (m) and snow 
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albedo (a dimensionless ratio of reflected to incident solar radiation). Of all 

TOPLATS parameters, Déry et al. (2004) conclude that DEM and the adiabatic lapse 

rate of 6 °C / km
2
 drive model results. 

Déry et al. (2004) review the possibility of confirming model results in the 

UKRW with MODIS measurements. They conclude that although MODIS 

measurements could be reviewed, MODIS measurements ―do not provide the location 

covered by snow within a single grid cell, nor the SWE contained in the snow cover‖ 

and ―the persistence of low-level clouds in the Arctic during spring may also 

compromise its applicability.‖ While the last two points — that MODIS does not 

measure SWE and that clouds can block the near infrared radiation that MODIS 

senses — are problems, the first point — that measurements are not provided in grid 

cells can be overcome by either interpolating swath measurements into grid values or 

interpolating model predictions into a sinusoidal projection. (In this thesis, the former 

is complete as described in Chapter Three.) 

2.4 MAP COMPARISON 

2.4.1 Background 

Analysts evaluate the performance capabilities of spatiotemporal models by 

comparing model-created maps with measurements. Performance capabilities include 

simulation accuracy and predication capability. Maps consist of point, line, polygon, 

and pixel features, which delineate spaces into categories (e.g. snow, ice, snow-free) 

or continuous values (e.g. elevation) space. Maps with points (e.g. well locations) and 

maps with lines (e.g. topographic contours) that are relatively close together, and 
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maps with polygons  (e.g. land use) and maps with pixels (e.g. snow cover) that are 

relatively small, best describe physical processes that span relatively small areas and 

take place in relatively small interest areas. Analysts call such maps with high spatial 

resolution ―highly spatially distributed.‖ Changes in features or states in these maps 

are illustrated by a series maps representing different times. The time difference 

between scenes indicates, likewise, the relative degree of temporal distribution in a 

map. For composite map scenes, each created from several sequential scenes in time, 

the time interval(s) encompassing the sequences define the relative degree of 

temporal resolution. The granularity
§
 of measurements available in an interest area 

help modelers limit the physical processes that they choose to simulate when 

formulating a model. The increasing resolution of newer model results, in return, 

defines needs for developing sensors that capture images with higher resolutions for 

purposes of calibration and validation. 

Error statistics indicate confidence in observed data. The most relevant error 

statistics for a data product are often distributed within that data product as 

complementary series of maps. The MODIS L2 Collection Five product, for example, 

includes quality assurance estimates for every coordinate measured in each swath 

scene. Sometimes analysts need to derive error information from data that is not 

necessarily included in a product. For example, supplementary meteorological 

                                                 

 

 

§ Analysts often use the word granularity, which means increasing spatial resolution, in context with 

spatiotemporal data. 



 

 

 

 43 

measurements, elevation measurements, and detection band information can be used 

to infer error in MODIS measurements. The error statistics derived from 

supplementary sources like these are not necessarily reported in the same 

measurement system or coordinate systems as the measurements themselves. For 

instance, if there is a high correlation between a land-use feature and errors, that 

pattern may be presented spatially as a polygon which masks many pixels. In this 

case, error is spatially-lumped. Error may be lumped temporally as well. The 

continuous volatility of the stock market, for example, may be lumped into individual 

variances that represent periods of time between abrupt events like interest rate cuts. 

An analogous example in hydrology is the lumping of error in a rainfall-runoff model 

into two periods, before channelization and after channelization. 

The simplest process for comparing a modeled map with a measured map is to 

lay them side by side and visually assess similarities and differences. When a time 

series of maps need to be compared, the two series can be laid out side-by-side in 

chronological order. The comparison is easiest when the measured and modeled maps 

have a one-to-one relationship. Models, therefore, should ideally be set up to simulate 

conditions corresponding to the times the data in the measured maps were collected. 

Additionally, all maps should be presented in the same spatial resolution and 

coordinate system. Graphical software like GIS make this process of side-by-side 

comparison simple to execute. As the number of scenes increases, , however, visual 

comparison becomes increasingly onerous. The comparison problem provokes the 

need to find goodness-of-fit statistics that quantitatively capture the similarities or 

differences that visual inspection reveals. In addition, if map comparisons are to be 
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used for model evaluation  or calibration, these statistics need to quantify the degree 

of agreement between modeled and observed maps. 

2.4.2 Spatial Comparison 

Analysts need objective measures of agreement if they want to use distributed, 

measured maps to evaluate the performance of distributed, modeled maps. They 

cannot rely on subjective visual comparisons between measurement images and 

model output. This section describes theoretical tools that have been developed for 

map spatial map comparison. 

Calculating the change of a criterion that is spatially-lumped over an entire 

interest area accounts for the independence of each scene with respect to time, but 

ignores spatial processes within the interest area. For example, a comparison between 

the observed and modeled decline of snow covered area as a percentage of watershed 

area during a melt season could indicate a good agreement in the overall decline of 

snow. This comparison, however, does not confirm the correctness of — or reveal the 

absence of needed — sub-watershed processes in the model. (The effect of local 

elevation on the distribution of snow is an example of one of these sub-watershed 

processes.) Researchers using such a comparison exclusively could calibrate a model 

to correctly predict the change in a spatially-lumped coverage for the wrong physical 

reasons. Confirming model predictions of the decline of fuel in a wildfire is another 

example in which a agreement for a spatially-lumped statistic could lead to the 

oversight of small-scale, model failures. 
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2.4.2.1 Cohen’s Kappa Statistic 

Cohen’s Kappa goodness-of-fit statistic, K (Cohen 1960 and, for a more abstract case, 

Fleiss 1971), provide insight into spatial agreement of feature-scale (e.g. pixel-scale 

or point-scale) physical processes without tediously comparing model maps and 

measured maps side by side. The statistic ―gives a quick indication of the level of 

agreement between two maps.‖ It is, more explicitly, ―an indication of goodness-of-fit 

in comparison to a random situation‖ in which the pixels from each of the two maps 

being compared are relocated at random (Hagen 2002). 

Cohen (1960) popularized the Kappa statistic to measure the agreement 

between two judges, categorizing single items in a series of trials. In this case, each 

judge must place each item in each respective trial into one and only one of several 

categories. Fleiss (1971) extended the comparison to include multiple judges. 

―Smeeton (1985) traces [Kappa’s] history to Galton (1892)‖ (Pontius 2000). Two 

maps of a categorical variable in a spatial comparison are analogous to two judges 

considered by Cohen’s Kappa. Location-coincident pixels in the two maps are 

analogous to individual trials being categorized by the two judges. 

Kappa varies from negative infinity to one. Negative values of Kappa and 

Kappa equal to zero both indicate no agreement between two maps beyond what 

would be expected in the random relocation situation. Increasing, positive values of 

Kappa indicate increasing agreement between two maps. A positive value of Kappa 

close to zero indicates almost no agreement between two maps. A positive value of 

Kappa close to one indicates a strong agreement between two maps. Landis and Koch 

(1977) call negative values of Kappa ―poor,‖ and values from zero to one, in 0.2 
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intervals: ―slight‖ (0 to 0.20), ―fair‖ (0.21 to 0.40), ―moderate‖ (0.41 to 0.60), 

―substantial‖ (0.61 to 0.80), and ―almost perfect‖ (0.81 to 1). They call these labels 

―arbitrary‖ but ―useful benchmarks.‖ Sim and Write (2005), in response to this scale, 

note that Kappa decreases with increasing categories because an increase in 

categories decreases the chance of agreement between two maps in the random 

relocation situation. 

For the simple comparison of two raster maps I and II with pixels exclusively 

in any number of categories, Cohen’s Kappa statistic answers the following question: 

How well does the agreement between map I and map II compare to the agreement 

between theoretical maps, III and IV; where, the probability that location-coincident 

pixels in III and IV assume the same category equals the product of the following two 

fractions: (a) the fraction of that category in map I and (b) the fraction of that 

category in map II? The remainder of this section further details the calculation of 

Kappa and discusses complementary statistics Kno, Klocation, Kquantity all 

explained by Pontius (2000) and Khisto derived by Hagen (2002). 

The first step in making a quantitative comparison between a model map and 

a measured map, which is also the first step in calculating Kappa, is to calculate the 

proportion of agreement, PA, between the two maps. 

 
𝑃𝐴 =

𝑎𝑟𝑒𝑎 𝑖𝑛 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎
=

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
 2-7 

For example, two square maps, each with four-pixels and two-categories (snow or 

snow-free) that both have their two left-side pixels marked as snow and their two 

right-side pixels marked as snow-free have perfect agreement. In this example, there 

are no errors of commission (a false-positive detection of snow) and there are no 
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errors of omission (a false-negative missing detection of snow). In the case that the 

two left pixels of the measured map are observed to be snow-covered, and the model 

map shows the top two pixels as covered with snow, there is a 50% agreement: There 

is an error of commission in the upper right cell, there is an error of omission in the 

lower left cell, leaving two cells out of four (50% of the map) in agreement. 

Calculating the proportion of agreement between two maps shows how well 

two maps agree on a pixel-by-pixel basis. Success, however, is measured with the 

assumption that there are the same number of pixels, for each category, between each 

of the two maps being compared. (This is not to say each category has the same 

number of pixels as every other category.) If there are an unequal number of pixels of 

a particular category between maps, there can never be 100% agreement. This study 

calls this issue the ―unequal category count limitation‖ of the PA comparison. 

The Kappa goodness of fit statistic addresses the ―unequal category count 

limitation‖ of the simple PA calculation by comparing PA, for two given maps, with 

the proportion of expected agreement between those two maps when the cells in those 

two maps are rearranged. 

 
𝐾 =

𝑃𝐴 − 𝑃𝐸

1 − 𝑃𝐸
 2-8 

where, given two maps used to calculate PA, PE is the proportion of expected 

agreement between those two maps with a random rearrangement of cells. 

The calculation of PA and PE with a confusion matrix, which tabulates the 

probabilities of the joint distribution of all combinations of discrete categories in the 

measured map and the modeled map, explains the two statistics further. The sum of 

all the proportions in the confusion matrix, because they are analogous to the 
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probabilities in a joint distribution, equal one. Figure 2-9 shows the confusion matrix 

(boxed) for the abstract case with n categories. The row header cells and the column 

header cells contain category labels C1, C2, …, Cn. The rows correspond to map one 

and the columns correspond to map two. The proportion of cells of Ci in map one 

with coincident cells of Cj in map two, pij, appear in the cell at row i and column j. 

For example, the proportion of category-three cells in map one with coincident 

category-four cells in map two would be expressed as p34 and appear in row three and 

column four of the confusion matrix. The matrix diagonal contains proportions of 

cells in which map categories agree. The matrix trace, therefore, equals the total 

proportion of agreement, PA, between the two maps: 

 
𝑃𝐴 = 𝑡𝑟 𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 =  𝑝𝑘𝑘

𝑛

𝑘=1

 2-9 

In the calculation of PE, the sum of proportions in each row i of the confusion matrix 

equals the proportion of category i cells in map one. These totals are expressed in an 

n-by-one column to the right of the confusion matrix. 

 
𝐩   𝑖∗ =  

𝑝1∗

𝑝2∗

⋮
𝑝𝑛∗

  2-10 

in which pi*, for any category i where i = 1 . . . n, equals the proportion of cells 

containing category i in map one: 

 
𝑝𝑖∗ =  𝑝𝑖𝑘

𝑛

𝑘=1

= 𝑠𝑢𝑚  𝑝𝑖1 𝑝𝑖2 … 𝑝𝑖𝑛    2-11 

The proportion of category j cells in map two are similarly expressed in a one-by-n 

row below the confusion matrix. Map two proportion totals are expressed as 
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𝐩   ∗𝑗 =  𝑝∗1 𝑝∗2 … 𝑝∗𝑛  2-12 

in which p*j, for any category j where j = 1 . . . n, equals the proportion of cells 

containing category j in map two: 

 
𝑝∗𝑗 =  𝑝𝑘𝑗

𝑛

𝑘=1

= 𝑠𝑢𝑚   

𝑝1𝑗

𝑝2𝑗

⋮
𝑝𝑛𝑗

    2-13 

These total proportion vectors 𝐩   ∗𝑗  and 𝐩   𝑖∗ (Equations 2-10 and 2-12) are the marginal 

probabilities of a joint distribution. The product of the total proportion vectors,  𝐩   ∗𝑗  

and 𝐩   𝑖∗, equal PE: 

 
𝑃𝐸 = 𝐩   ∗𝑗  𝐩   𝑖∗ =  𝑝∗1 𝑝∗2 … 𝑝∗𝑛  

𝑝1∗

𝑝2∗

⋮
𝑝𝑛∗

  2-14 

where, each independent k component product 

 
𝑝𝑘𝑗 ∙ 𝑝𝑖𝑘  2-15 

for k = 1, 2, …, n, represents the probability of agreement for category k in every 

combination of cell pairs between — or, for random relocation of cells in — map one 

and map two. PE, thus, depends on the quantity of cells in each category in each map; 

PE does not depend on the location of cells within either map. 

Comparing two four-pixel maps with two categories C1 and C2, for instance, if 

each map contains three C1 pixels and one C2 pixel, there are nine pairs of pixels in 

which both pixels are in category C1 and there is one pair of pixels in which both 

pixels are in category C2 out of sixteen possible pairs in a random situation. PE in this 

instance equals 9/16 (for C1) + 1/16 (for C2) = 10/16 = 0.625. Replacing a C1 pixel 
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from map two with a C2 pixel doubles the probability of C2 pairs to 2/16 in the 

calculation of PE, but lowers the probability of C1 pairs from 9/16 to 6/16 and lowers 

the overall PE to 2/16 (for C2) + 6/16 (for C1) = 8/16 = 0.5. 
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  Map Two Categories 
Map One 

Totals, 𝐩   𝑖∗   C1 C2 … Cn 

Map One 

Categories 

C1 𝑝11 𝑝12 … 𝑝1𝑛  𝑝1∗ 

C2 𝑝21 𝑝22 … 𝑝2𝑛  𝑝2∗ 

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

Cn 𝑝𝑛1 𝑝𝑛2 … 𝑝𝑛𝑛  𝑝𝑛∗ 

Map Two Totals, 𝐩   ∗𝑗  𝑝∗1 𝑝∗2 … 𝑝∗𝑛  1 

Figure 2-9. Generic Confusion Matrix. 
The generic confusion matrix (boxed) can be used to calculate PA and PE for the abstract 
case in which there are an unlimited number of categories in the maps being compared. PA 
equals the trace of the matrix. PE equals the product of the total vectors: 𝑷𝑬 = 𝐩   ∗𝒋 𝐩   𝒊∗. 

 

  Measured Map Categories 

(true state) 
Modeled Map 

Totals, 𝐩   𝑖∗   Snow-Free Snow 

Modeled Map 

Categories 

H0: 

Snow-Free 

Agreement of 

Snow-Free 

Area 

Type II Error 

of Omission 

(False Negative 

or Miss) 

Proportion 

Snow-Free in 

Modeled Map 

HA: 

Snow 

Type I Error 

of Commission 

(False Positive) 

Agreement of 

SCA (Hit) 

Proportion Snow 

in Modeled Map 

Measured Map Totals, 𝐩   ∗𝑗  
Proportion 

Snow-Free in 

Measured Map 

Proportion 

Snow in 

Measured Map 

1 

Figure 2-10. Two-Category Confusion Matrix. 
The two-category confusion matrix (boxed) shows four possible coincident-cell outcomes. In 
this example, H0 equals the null hypothesis that indicates the model predicts that a cell is 
snow-free. HA is the alternative hypothesis that indicates that the model predicts that a cell is 
snow covered. 
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2.4.2.2 Cohen’s Kappa Statistic for Two Categories 

Figure 2-10 simplifies the generic confusion matrix used in Cohen’s calculation of 

Kappa for multiple categories (Figure 2-9) into a confusion matrix limited to two 

categories, snow-free and snow, used in this thesis. Figure 2-10 shows that the 

calculation of Kappa in this thesis can be thought of as n hypothesis tests, where n 

equals the number of cells in two maps being compared. This study calls each of 

these hypothesis tests a pixel test to distinguish them from the overall evaluation of 

agreement between two maps expressed by Kappa. In each pixel test, the null 

hypothesis indicates the absence of snow (snow-free) and the alternative hypothesis 

indicates the detection of snow: 

 
H0: Snow Free 

HA : Snow 

2-16 

 
2-17 

This study calls the situation in which the model falsely indicates that snow is present 

in a pixel test a Type I error of commission. In other situations, Type I errors have 

been called α errors, false alarms, false positives, and producer’s risk. This study calls 

the situation in which the model falsely indicates that snow is absent in a pixel test a 

Type II error of omission. Type II errors have been called β errors, non-detects or 

misses, false negatives, and consumer’s risk. 

The terms ―producer risk‖ and ―consumer risk,‖ are only meaningful  if the 

alternative hypothesis is undesirable (e.g. a polluted water sample or a defective 

product). A producer, in the case that an alternative hypothesis is undesirable, could 

incur unnecessary expenses (e.g. extraneously increase quality control in an 

acceptable system) due to a producer risk. A consumer, in the case that an alternative 
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hypothesis is undesirable, could suffer worse, unexpected ill-effects (e.g. sickness) 

due to a consumer risk. In this thesis both Type I and Type II errors are equally 

undesirable. False detection of snow is simply different, not worse, than a non 

detection of snow. This study, therefore, avoids the terms ―producer risk‖ and 

―consumer risk.‖ The calculation of Kappa, further, lumps both types of errors into 

PE (2-10, 2-12, and 2-14). Isolating Type I and Type II two errors could, however, 

reveal a systematic bias in the model. 

2.4.2.3 Kappa Variants 

This study cannot solely rely on Kappa to compare two maps. Cohen (1960) and 

Pontius (2000) warn that Kappa is best used only when the two judgments of a trail 

are independently made. Kappa, for example, appropriately explains a test of 

agreement between two biologists individually categorizing species of a random 

samples of nematodes, each isolated in separate Petri dishes. In this example, there is 

no known correlation between samples to the judges; judgments on a single sample 

are made separately from each other. In the general case of comparing model and 

measurement maps, in contrast, pixels are spatially correlated and therefore they are 

not independent. Pixels on a map, for example, are often dependent on spatial patterns 

like elevation. Researchers using Kappa to compare maps, therefore, should 

complement Kappa with additional information about model dependency, and model 

ability to predict, both the quantity of pixels in each category and the location of 

pixels. 
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 Pontius (2000) generalizes Cohen’s the calculation of Kappa (2-8) into, 

 
𝐾 =

𝑃𝐴 − 𝑃𝐸

1 − 𝑃𝐸

 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛  
             𝐾 =

𝑃𝐴 − 𝑃𝐶

𝑃𝑃 − 𝑃𝐶
 2-18 

where PC (analogous to PE in Cohen’s Kappa) equals the expected proportion of 

correctly categorized coincident cells made by a model, and PP (analogous to unity in 

Cohen’s Kappa) equals the expected proportion of correctly categorized cells when 

the model is perfect. This generalization provides the foundation to develop Kappa 

variants that account for situations in which models choose categories based on  

1. No 

2. Medium 

3. Perfect 

ability to specify 

1. The quantity or pixels in each category 

2. The location of individual pixels 

2.4.2.3.1 Kno 

Models with ―no ability‖ (Pontius 2000) to select either the quantity of pixels in each 

category or the location of individual pixels have a chance of 1/n to correctly predict 

a category at a specific pixel. Kappa for no ability, Kno (Pontius 2000) — also called 

кnor by Lantz & Nebenzahl in (1996), PABAK by Byrt et al. (1993), and random 

coefficient (RC) by Maxwell (1997) — exchanges PC in the generalized calculation 

of Kappa (2-18) with this chance that a model pixel could have the correct category at 

random, 1/n, 
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Kno =

𝑃𝐴 −
1
𝑛

1 −
1
𝑛

 2-19 

where, n is the number of categories. Hagen (2002) appropriately calls 1/n in this case 

the probability of agreement expected by the model due to the random selection of a 

category by the model, P(E)RC.  

 Pontius (2000) contends that Kno improves Kappa because it considers the 

quantity of cells that could agree in a completely random situation. Figure 2-11 

illustrates this point with a nine-pixel comparison in which snow rests in exactly one 

cell in each map. The strong agreement of snow-free pixels in this Figure 2-11 

produces a relatively high PE=0.8025 (2-8), but yields a misleading negative Kappa 

of -0.1250. Kno, comparatively, only considers the number of categories, 1/n = 

0.5000, yielding a rationally-positive Kno value of 0.7500. 

  

Figure 2-11. Kno and Kappa comparison. (Kno = 0.7500) > (K = -0.8025) 

Kno could be useful in the case that one pair of maps in a series may have two 

categories and another pair of maps in the same series might have three. All maps 

reviewed by Hagen in 2002 and most maps in this study, however, do not have 

varying categories. The pertinence of Kno in these cases, therefore, diminishes to 

 
Kno =

𝑛 𝑃𝐴 − 1

𝑛 − 1
=

𝑛 

𝑛 − 1
𝑃𝐴 −

1

𝑛 − 1
 2-20 
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which has a linear dependency on the probability of agreement, PA, despite the 

subjectively more-rational positive and negative values. This dependency diminishes 

the need to use Kno in an analysis where PA is already being used.  

2.4.2.3.2 Klocation and Khisto 

Both Kappa and Kno ―fail to distinguish . . . between quantification error and location 

error‖ (Pontius 2000). Poor (low and negative) values of Kappa and Kno, in other 

words, do not explain whether a model has poorly predicted the quantity of pixels in 

each category or whether a model has placed the correct quantity of pixels in the 

wrong locations. 

Klocation, introduced by Pontius (2000) attempts to correct Kappa and Kno 

by substituting PP in the generalized calculation of Kappa (Equation 2-18) with the 

maximum success rate of agreement that a model could achieve in the situation in 

which the number of pixels in each category predicted by that model does not change. 

 
Klocation =

𝑃𝐴 − 𝑃𝐸

𝑃𝑚𝑎𝑥 − 𝑃𝐸
 2-21 

where 

 
𝑃𝑚𝑎𝑥 =  min(𝑝𝑘∗, 𝑝∗𝑘)

𝑛

𝑘=1

 2-22 

Think of the calculation of 𝑃𝑚𝑎𝑥  (2-22) in comparison to the calculation of PE 

(2-14). In the calculation of PE, the product the two map proportions for each 

category are summed. In the calculation of 𝑃𝑚𝑎𝑥 , alternatively, the minima of the two 

proportions (one for each map) are summed. 𝑃𝑚𝑎𝑥 , therefore is less than one except in 
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the perfect-quantity case in which the proportion of pixels in each category are equal 

between maps. 

Klocation reports a lower agreement in comparison to the Kappa value when a 

cell of one category is displaced. Klocation, however, fails to consider the distance of 

a displaced cell. For example, in a mountain scene where it is known that snow is 

present on the mountain tops, but not in the valleys, a comparison between actual and 

simulated maps is made. In this example, Klocation will report identical values no 

matter if a pixel falsely reporting snow coverage is found either on a peak or in a 

valley. Despite this fallacy, Klocation is still valuable. It replaces the ideal 100% 

agreement used for PP (2-18) in standard Kappa calculation (2-8) with a realistic 

calculation for the maximum possible agreement, 𝑃𝑚𝑎𝑥 . 

Kquantity, also introduced by Pontius (2000) attempts to correct Kappa errors 

resulting from differences in the quantity of cells for each category between two 

different maps. It is ―the success due to the simulation’s ability to specify quantity 

divided by the maximum possible success due to a simulation’s ability to specify 

quantity perfectly.‖ Hagen (2002) renounces the statistic as ―incomprehensible‖ and 

reports, with personal agreement from the Pontius, that the statistic is unstable. 

―Minor changes in the maps can lead to major change in the statistic‖ in cases where 

the denominator of the calculation is close to zero. 

Hagen introduces an alternative to Kquantity, named Khisto, which is used in 

this study. It is called Khisto because it can be calculated from the histograms of two 

maps. 
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 Khisto =
𝑃𝑚𝑎𝑥 − 𝑃𝐸

1 − 𝑃𝐸
 

2-23 

The product of Khisto and Klocation equals Kappa: 

 Khisto ∙ Klocation =  
𝑃𝑚𝑎𝑥 − 𝑃𝐸

1 − 𝑃𝐸
  

𝑃𝐴 − 𝑃𝐸

𝑃𝑚𝑎𝑥 − 𝑃𝐸
 =

𝑃𝐴 − 𝑃𝐸

1 − 𝑃𝐸
= K 

2-24 

2.4.3 Temporal Comparison 

2.4.3.1 Missing Data in Partially Obscured Scenes 

Scalar statistics like %SCA or basin average SWE summarize spatially-distributed 

properties of a map scene for a point in time. Measuring model performance by 

comparing modeled and measured summary statistics over a period of time (e.g. 

comparing two SCA depletion curves) presents the problem of accounting for 

uncertainty in partially obscured measured scenes. While models predict complete 

results and complementary summary statistics, sensors yield incomplete 

measurements. Satellite orbit limitations (Table 2-3), for example, limit both the 

resolution and the frequency of scenes that a sensor can measure. Smoke that 

obscures the video camera mentioned in the previous wildfire example (described 

2.4.2.1), or clouds that block a remote sensing instrument, as shown in this study, 

leave measured maps spatially incomplete. Smoke and clouds are only two possible 

physical causes of why a sensor could tag a spatial feature with a no-data label. 

To compensate for missing data in measurement summary statistics, due to 

partially obscured scenes or other sensor problems, one could report a likely value 

based on either surrounding areas, surrounding scenes, or other spatiotemporal trends. 
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(The decrease of soil moisture over time in a watershed illustrates a spatiotemporal 

trend.) Making educated guesses like these, based on physical relationships and past 

observations, creates complete, usable products. Making these guesses in 

measurements, however, defeats the theoretical basis of comparing observed and 

modeled data; a ―simulated measurement‖ is an oxymoron. Creating an artificial 

measurement, based on the same physical theories used in a model that the 

measurement is being compared to, can lead to artificially increased goodness-of-fit 

statistics. This problem reveals the need to calculate the uncertainty of a summary 

statistic for individual measured scenes, not based on external factors, but based on 

data from within the scene itself. 

Many remotely sensed measurements, including many MODIS products (0), 

actually are composited over time to fill in the gaps of the missing data from clouds. 

NSIDC, for example, composites sea and snow ice data over time in the MODIS 

Level Three products (Section 2.2.2.2). NSIDC reports time intervals with Level 

Three composites — not only the mean points in time — so that analysts understand 

the implications of comparing model results to composite measurements. When 

composite time intervals are large compared to the time for physical processes to 

occur (like snow blown overnight by wind), those physical processes that occur out of 

sensing range (e.g. behind clouds), are missed. In the case of quick winter-spring 

snowmelt (0), which occurs in a matter of days in the Upper Kuparuk, Level Three 

MODIS data hides too much information from analysts to make reasonable 

judgments about physical processes in models. 
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2.4.3.2 Using Probability to Express Measurement Uncertainty 

Brubaker et al. (2005) present a solution for comparing MODIS SCA measurements 

and IMS SCA estimates to surface station snow/snow-free reports across the 

continental United States while accounting for no-data fields. They develop a single 

triangle-shaped probability density function (PDF) of %SCA for each remotely-

sensed map in a time series. Each PDF relies on the quantity of categorical data, 

including missing data, exclusively from within its respective scene. They plot the 

PDFs on a probability density (ordinate) versus %SCA (abscissa) axis. 

Brubaker et al. (2005) use snow cover information in cloud-free areas of each 

scene to estimate a possible range of snow cover for the entire scene. They assume 

that the most likely value of %SCA in a scene is proportional to the fraction of the 

cloud-free part of the scene which is snow-covered. 

 
%SCA𝑙𝑖𝑘𝑒𝑙𝑦 =

%SCA𝑐𝑙𝑜𝑢𝑑  𝑓𝑟𝑒𝑒

100% − %CCA
 2-25 

In equation 2-25, all percentages are relative to the entire scene: %SCA𝑙𝑖𝑘𝑒𝑙𝑦  is the 

likely estimate of %SCA relative to the entire scene, %SCAcloud-free is the cloud-free 

%SCA relative to the entire scene, %CCA is the percentage of cloud-covered area 

relative to the entire scene, and 100% – CCA% equals the percentage of cloud-free 

area relative to the entire scene. 

The mathematically minimum possible %SCA equals %SCAcloud-free. In this 

hypothetical case, snow-free land lies under the cloud-covered area. The 

mathematically maximum possible %SCA equals %SCAcloud-free plus %CCA. In this 
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opposite case, snow completely blankets the land under the cloud-covered area. These 

points define the triangular PDF because the area under any PDF equals unity,  

 

1 =

(  %SCA𝑐𝑙𝑜𝑢𝑑  𝑓𝑟𝑒𝑒 + %CCA                 
max  %SCA

− %SCA𝑐𝑙𝑜𝑢𝑑  𝑓𝑟𝑒𝑒           
min  %SCA

)                               
triangle  base

 PD(%SCA𝑙𝑖𝑘𝑒𝑙𝑦 )           
triangle  height

2
 

2-26 

where PD %SCA𝑙𝑖𝑘𝑒𝑙𝑦   equals the probability density of the most likely percentage of 

snow cover over the entire scene. Solving 2-26 for PD(%SCA𝑙𝑖𝑘𝑒𝑙𝑦 ) yields, 

 
PD %SCA𝑙𝑖𝑘𝑒𝑙𝑦  =

2

%CCA
 2-27 

Take, for example, a PDF for an area measured with 30% snow, 30% snow-

free, and 40% cloud-covered shown in Figure 2-12a. Solving equation 2-25 for the 

most likely percentage of snow cover in this example yields  

 %SCA𝑙𝑖𝑘𝑒𝑙𝑦 =
30% 

100% − 40% 
 

= 50%  
2-28 

Solving equation 2-26 for the probability density of most likely percentage of snow 

cover yields 

 
PD %SCA𝑙𝑖𝑘𝑒𝑙𝑦  =

2

40%
= 0.05 2-29 

A congruent calculation for snow-free land yields a 0.05 probability density of likely 

snow-free area. A second example, plotted in Figure 2-12b, shows how the ratio of 

the same 30% SCA used in the first example to a reduced 20% snow-free area raises 

the overall likely %SCA. The apex %SCA in this case equals 60% (equation 2-27) 

and has a probability density of 0.04 (equation 2-29). In a final example, not shown, 

the probability density of the likely %SCA in a map with 100% coverage approaches 

infinity. In this case, the maximum and minimum %SCA equal the %SCA likely. 
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Figure 2-12. Example Triangle Probability Density Functions 
Example PDFs for two cases where %SCA equals 30% and (a) %CCA = 40% (b) %CCA = 
50%. The likely %SCA in the cloud-covered area depends directly on the proportion of snow-
covered area in the cloud-free area. The likely %SCA in the cloud-covered area only depends 
on the quantity of cells in that scene; it does not depend on the location of known values in 
the scene or in scenes measured within a time period. 

A generalized case of the triangle-PDF approach of estimating the most likely %SCA 

under a cloud-covered area can estimate the percentage of any category in an 

unknown area based on a known area. It is a quantity-only, scene-independent 

approach. The method, in other words, estimates uncertainty in obscured areas 

irrespective of the coverage in previous and subsequent scenes. Using this method in 

a comparison of modeled and measured maps, triangle PDFs of remotely sensed 

%SCA can be compared to model predictions of %SCA on a scene-by-scene basis. 
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CHAPTER 3: RESOURCES AND METHODS 

This chapter explains the rationale for selecting resources (Section 3.1), describes the 

approach for comparing maps (Section 3.2), and lists procedures for managing 

measured and modeled data (Section 3.3). Table 3-1, a decomposition of objectives 

(Section 1.3.1 Preliminary Objectives: Resource Selections, 1.3.2 Map Comparison 

Objectives, and Section 1.3.3 Data Management Objectives), outlines the methods. 

Table 3-1. Functional Decomposition of  Objectives 
1. Select resources 

a. Select an interest area 
i. In the cryosphere. 
ii. Is subject to past analysis, including 

1. Hydrologic study 
2. Meteorological study 
3. Other studies in the 7 USGCRP research areas listed in 

“Need & Problem” 
iii. Has measurements available 
iv. Has seasonal mechanisms 

b. Select a time period 
i. Over a seasonal event. 
ii. That includes an extreme event 
iii. That has obtainable measured and modeled data 

c. Select remotely sensed measurements 
i. With enough temporal resolution to monitor the seasonal event 
ii. With enough spatial granularity to see the impact of DEM 
iii. That reports snow and ice 

d. Select a model 
i. That has all the objective properties of the measurements listed 

above 
ii. That is ideally available to modify 
iii. That can be calibrated 
iv. That ideally has been validated in the past 

2. Compare measured and modeled maps 
a. Spatially, by 

i. Statistical comparison, that accounts for 
1. Proportion agreement 
2. Location errors 
3. Category errors 

ii. Visual inspection 
b. Temporally, by statistical comparison of independent scenes, for the entire 

watershed and DEM zones 
3. Manage data 

Make measured data and model output compatible, by either 
a. Converting measured data into the model format, or, 
b. Converting model output into measured the measured format 

 



 

 

 

 64 

3.1 RESOURCE SELECTION 

As introduced in 1.3.1 Preliminary Objectives: Resource Selections, this study 

selected the Upper Kuparuk River watershed (UKRW) for the interest area, an annual 

snowmelt season for the time period, MODIS data for the measurements, and 

TOPLATS to produce model results. 

The interest area lies in the cryosphere, in a mountainous region. The entire 

Kuparuk area is well studied. ―It has the longest history of research of any basin 

within Arctic Alaska, as both the Toolik Lake and Imnavait Creek watersheds are part 

of this system‖ (Nolan 2003). The area has glacial geology measurements (Walker et 

al. 2003), hydrological measurements (Kane and Hinzman 2009), and meteorological 

measurements (Kane and Hinzman 2009) all available online. Hinzman and Kane 

(2009) provide hydrological and meteorological measurements during snowmelt. 

For remotely sensed measurements, this study selected MODIS Level Two 

products, LANDSAT, and high resolution DEM (Nolan 2003) measurements for their 

online availability and use in past research. Déry et al. (2005) have compared the 

MODIS measurements in this area to LANDSAT measurements in the area. MODIS 

Level Two products, although not as widely used or readily available to use in 

existing software packages, describe daily information compared to the eight day 

composites in Level Three products.  

The model, TOPLATS, simulates spatial heterogeneity in the snow and 

considers interactions with environmental factors of interest to USGCRP, including 

vegetation and radiation from the sun. Déry et al. (2004) showed that TOPLATS can 

be used to model the UKRW with a time step as small as 10 minutes. The TOPLATS 
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model of the UKRW is set up to produce results in the same mask and the same 

coordinate system defined by Walter et al. (2003). Only the snow cover module of 

TOPLATS is investigated in this study. While TOPLATS was originally developed 

on a big-endian UNIX platform, updates to the model (Section 2.3.1) made by Déry 

et al. (2004)  included modifying the code to enable it to run on a little-endian 

platform. This study modified the model again to enable it to run on the University of 

Maryland UNIX system. These updates included, mainly, updating file paths, 

updating the format of input files, and reverting byte-swapping subroutines that Déry 

et al. (2004)  had last modified. In all updates, special characters and character 

encodings were considered. 

3.2 MAP COMPARISON 

This study uses two methods to compare model and measurement maps. In the first 

method, the proportion of agreement (PA), Cohen’s Kappa goodness of statistic 

(Section 2.4.2.1) and Kappa variants (Section 2.4.2.3) show the agreement between 

maps accounting for the quantity and location of pixels categorized as either snow, 

snow-free, or not available. The second method compares model and measured 

%SCA depletion curves, where the quantity of categorized pixels in each independent 

scene are used to measure the uncertainty of MODIS %SCA. (as in Section 2.4.3.2).  

 For both methods, MODIS measurements and TOPLATS predictions need to 

be put into comparable formats. TOPLATS predicts SWE depths over grids of pixels 

in UTM Zone 6 while MODIS reports arrays of categories codes, each corresponding 

to a snow or sea ice feature, across point features in swath scenes. While this study 
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could have developed a procedure to convert TOPLATS grids to MODIS-comparable 

swaths, this study instead defined a way to convert MODIS swaths into a TOPLATS-

comparable grid format. This study selected the latter procedure because (a) it is 

easier to visualize and analyze data in a grid format compared to a swath format and 

(b) it would be hard to assign MODIS categories like lake ice, night, and ocean to 

TOPLATS SWE values without updating the theoretical basis of the model and 

modifying the model code. The last part of this chapter lists the data management 

procedures used to make the model predictions and measurements comparable. 

After completing the data management procedure, this study put MODIS 

measurement codes (Table 2-6) into groups (Table 3-2) where 

 The ―Available‖ group includes points that have been successfully identified 

by the sensor as either snow, lake, ocean, lake ice, or snow. 

 The ―Frozen‖ group includes points reported as either lake ice or snow; a 

subset of available measurements 

 The ―Snow‖ group is an exclusive subset of the frozen group 

 The group labeled ―Not Available‖ contains member points that MODIS has 

not decidedly identified or detected. This group also includes points reported 

by MODIS as ―night‖ and points for a given granule which were outside the 

respective swath coverage 

MODIS measurement groups are independent of quality assurance values and satellite 

detection angles. For purposes of evaluating a pixel as either snow-covered or snow-

free in map comparison, this study generalizes the word ―snow‖ to include ―frozen‖ 

pixels including lake ice.  



 

 

 

 67 

Table 3-2. MODIS Measurement Groups 

Group Members 

Value Characteristic 

Available 25 

37 

39 

100 

200 

Snow-Free 

Lake 

Ocean 

Lake Ice 

Snow 

Frozen 

(called snow during map comparison) 

100 

200 

Lake Ice 

Snow 

Snow 200 Snow 

Not Available 0 

1 

11 

254 

255 

Missing Data 

No Decision 

Night 

Detector Saturate 

Fill 
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3.2.1 Spatial Comparison with Kappa and Kappa Variants 

To compare MODIS and TOPLATS scenes, this study calculates PA, K, Kno, 

Klocation, and Khisto according to Figure 3-1 and evaluates the results according to 

Table 3-3. It also reports intermediate values Pmax and PE. The criteria for interpreting 

the strength of agreement of the Kappa statistics in Table 3-3 reflects the number of 

categories being compared (two, snow and snow-free, rather than a multi-categorical 

test), the Kappa evaluation scale developed by Landis and Koch (1977), and visual 

comparison of maps. This scale should be revaluated by researchers that are seeking 

to reproduce these methods for a different location and/or for different categories. 

 This study plots these statistics using a set of MATLAB® comparison scripts 

(Appendix H) that filter model results and projected measurements with the following 

parameters: initial model albedo, SWE threshold, number of elevation zones, 

elevation zone, percent available threshold, and time of day. Model input files define 

the initial model albedo parameter. The SWE threshold parameter determines the 

minimum height of snow at a particular pixel simulated by the model that this study 

can consider to be snow-covered. This threshold enables this study to compare SWE 

predictions with SCA measurements. The number of elevation zones parameter 

determines the elevation boundaries between each elevation zone by dividing the 

difference of the maximum elevation and the minimum elevation into equal parts. 

The elevation zone parameter determines the elevation zone to report results for. The 

percent available threshold parameter determines the scenes to include in the 

comparison based on the percentage of cells available — where available means 

reporting either snow or snow-free, opposed to for example, cloud-covered or missing 
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— in the MODIS scenes. If the percent available threshold is set to 50%, for example, 

than the comparison script only evaluates scenes in which MODIS reports at least 

50% of the pixels within the scenes as either snow or snow-free. Scenes that report 

more than 50% of cells as cloud or no-data, in this example, are excluded from the 

comparison. The time of day input parameter determines the scenes to include based 

on the time of day — morning or evening relative to solar noon. In each comparison 

this study shows the effect of changing each parameter. 

This thesis provides an online tool to learn about the Kappa statistics for two 

categories. This learning tool shows the effect of varying grid size on Kappa and 

varying category assignments on Kappa (Figure 3-2). 

  MODIS Map Categories 

(measurement) 
TOPLATS Map 

Totals, 𝐩   𝑖∗   Snow-Free Snow 

TOPLATS  

Map 

Categories 

H0: 

Snow-Free 

Agreement of 

Snow-Free 

Area 

Type II Error 

of Omission 

(False Negative 

or Miss) 

Proportion 

Snow-Free in 

TOPLATS Map 

HA: 

Snow 

Type I Error 

of Commission 

(False Positive) 

Agreement of 

SCA (Hit) 

Proportion 

Snow in 

TOPLATS Map 

MODIS Map Totals, 𝐩   ∗𝑗  
Proportion 

Snow-Free in 

MODIS Map 

Proportion 

Snow in 

MODIS Map 

1 

Figure 3-1. MODIS-TOPLATS Confusion Matrix. 
The MODIS-TOPLATS confusion matrix (boxed) shows four possible coincident-cell 
outcomes: Agreement of snow-free area (upper-left box), agreement of snow covered area 
(lower-right box), error of commission where TOPLATS falsely predicts snow cover (upper-
left box), and an error of omission where TOPLATS predicts a snow-free area in an area that 
MODIS reports to be snow covered (upper-right box). 
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Table 3-3. Kappa and Kappa Variant Interpretation 

Statistic Criteria Agreement Strength* 

PA 0.00 

0.01 – 0.40 

0.41 – 0.60 

0.61 – 0.80 

0.81 – 0.90 

0.91 – 1.00 

None 

Poor 

Low 

Moderate 

Substantial 

High 

K, Klocation, Khisto < 0.00 

0.01 – 0.10 

0.11 – 0.30 

0.31 – 0.60 

0.61 – 0.80 

0.81 – 1.00 

Poor 

Slight 

Low 

Moderate 

Substantial 

High 
* Based on Landis and Koch (1977), adjusted for snow/snow-free categories and visual 
inspection of snow cover maps in this particular study location. 

 

 

Figure 3-2. Interactive Map Comparison 
Visit http://terpconnect.umd.edu/~dchoy/thesis/Kappa to interact with, and visually inspect, 
Kappa statistics for two categories. See the effect of varying grid size on Kappa and varying 
category assignments on Kappa. 

http://terpconnect.umd.edu/~dchoy/thesis/Kappa
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3.2.2 Temporal Comparison 

Varying the same parameters from the spatial comparison — initial model albedo, 

SWE threshold, number of elevation zones, elevation zone, percent available 

threshold, and time of day — this study compares MODIS and TOPLATS %SCA 

depletion curves and evaluates the sensitivity of changing the percent available 

threshold on the upper and lower limits of MODIS uncertainty. In this comparison, 

this study reports the most likely MODIS proportion of  SCA, the minimum possible 

proportion of MODIS SCA, and the maximum possible proportion of MODIS SCA in 

probability distributions. Finally, this study visually compares TOPLATS 

performance to a logistic curve (death curve). 
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3.3 DATA MANAGEMENT  

3.3.1 Measured Data 

Each MOD10_L2 and MYD10_L2 swath needs to be converted into a projected grid 

in order to compare TOPLATS model results with MODIS measurements. After this 

study failed to batch-convert series of measurements using MS2GT, HEG-TOOL, and 

MRT Swath (reviewed in 2.2.2.4), and after exploring layers of swath information 

using NCSA’s HDFView (version 2.3) application, MATLAB®, and IDL, this study 

created the methodology to convert swaths to grids. The conversion procedure builds 

on the theory and procedures documented by MS2GT, HEG-TOOL, and MRT Swath 

and produces grids comparable to TOPLATS output described in Table 2-2. This 

study names the procedure Level 2 Swath to TOPLATS Grid Tool for the Upper 

Kuparuk River Watershed and abbreviates it as Swath to Kuparuk (S2K). S2K creates 

grids with the same coordinate system (UTM Zone 6) used by Walker (2003) and the 

same cell size (131.34 m) used by Déry et al. (2004). S2K relies on MATLAB® to 

convert swath points to grid cells and ESRI ArcGIS to project, resample, and mask 

the grids that MATLAB® creates. (ESRI has yet to functionally realize hearsay plans 

for natively supporting HDF-EOS swaths in the ArcGIS application suite.) S2K can 

be modified to accommodate other watersheds by modifying interest area and 

projection variables, including a watershed polygon. S2K could, for example, capture 

measurements from nearby research areas like Toolik Lake with minimal 

modification. 
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To complete the S2K procedure the general data management procedure in 

this study adheres to the following general steps for MOD10_L2 and MYD10_L2 

swath scenes overlapping the interest area: Download swaths, transform swath into 

grids, and make grids comparable to model results. The remainder of this section 

details this procedure. 

3.3.1.1 Download Swaths 

The process of downloading swaths begins with querying the NSIDC DAAC for 

MOD10_L2 and MYD10_L2 measurements via a web-based interface (NSIDC 

2008c). This query includes a square bounding box in GCS coordinates (latitude and 

longitude) and time period. A query with coordinates bounding the watershed only, as 

expected, yields fewer granules than a query with coordinates bounding the entire 

model interest area. (Compare Table 2-1 and Table 2-2) The difference in the number 

of granules the DAAC returns, however, is not significant (e.g. <3% difference during 

the 2005 winter-spring snow melt). It is practical, therefore, to conservatively select 

the larger area to build a query. 

The temporal correspondence between the winter-spring snowmelt and runoff 

shown in hydrographs (described in Section 2.1.2) guides the selection of the 

snowmelt time period in each query. For each year, this study initially selects a time 

period before the peak seasonal discharge. Plots of %SCA versus time reveal whether 

or not an initial time period inferred from hydrographs captures the melt period. In 

the case that a time period does not overlap with the melt period, this study modifies 

the query period in another trial. This trial and error process repeats until it identifies 
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a query that returns a time window in which the first several days of scenes show at 

least 99% snow- and ice-covered (frozen) area and the last couple days of scenes 

show at most 1% frozen area. In all queries, this study seeks to limit the number of 

granules returned to limit download time and S2K processing time. If download time 

and processing time could be executed one or two orders of magnitude faster 

(through, for example, a web-based controller of a server-side processing tool), the 

overall process of downloading swaths could practically mitigate the trial and error 

query process by initially selecting three months of data instead of a few weeks of 

data based on hydrograph plots. The NSIDC, in that vein, provides an option to skip 

night data in queries. This study always excludes night data from each query. The 

choice limits the number of scenes that cannot be well evaluated by the snow 

mapping algorithm (2-6) and halves processing time. 

Most queries run shy of one hour and require a persistent connection to the 

internet to complete. After queries are complete, DAAC web users purchase granules 

(currently free) via a shopping cart interface. Next, NSIDC DAAC processes, 

compresses, and makes available the selected granules via an FTP connection. The 

time it takes NSIDC to process the granules and copy them to an FTP location is 

often shorter than a couple hours, but the process can take up to one day. This study 

always request NSIDC to compress all requested granules (using zip compression; 

HDF compression is currently unavailable) to limit the hard disk requirements for 

each year of data. Extracting 200 MB of compressed granule files yield about 5GB of 

uncompressed information. Users, therefore, need to check if there is enough 

available disk space at a their destination locations before uncompressing the HDF 
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files to them. At the end of each query execution, the DAAC provides a summary of 

search results. This summary, converted into a spreadsheet, keeps track of the scenes 

selected by a query. Search result summaries, additionally, ensure that the time 

periods encompassing results of each query trial overlap and therefore scenes are not 

overlooked. 

3.3.1.2 Transform Swaths into Grids 

3.3.1.2.1 Overview 

The MATLAB® script ―animate_series.m‖ (Appendix G) simultaneously animates a 

directory of HDF-EOS swaths in the GCS and creates a series of GCS ASCII files 

formatted for ArcGIS. The script depends on two subroutines, ―expandgrid2.m‖ and 

―proccessDuplicates.m.‖ Note that the script ―animate_series.m‖ and its subroutines 

fully utilize a single processor and require at least 2GB of memory to interpolate up 

to 200 swaths in the UKRW. Without at least 2GB of memory, disk caching 

operations excessively increase the time to complete the interpolation of the swaths. 

If MATLAB® depletes all physical memory and starts paging information to the hard 

disk, break the script and run it again after moving the HDF files that have been 

already converted into a new folder. Be sure to delete, in this case, the last ASCII file 

the script created because that file is probably incomplete. The scripts instructs 

MATLAB®, for each file in a user-specified directory, to: 

1. Read data: Use the inherent MATLAB® function, ―hdfinfo,‖ to read HDF 

granule data into a MATLAB® structure. 
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2. Extract three grids of points from the HDF MATLAB® structure into three 

matrices: 

a. Snow categories 

b. Latitudes 

c. Longitudes 

3. Assign latitude and longitude coordinates to each snow category point by 

resampling latitude grids and longitude grids ten-fold. This means finding 100 

intermediate points (ten by ten) for every set of four latitude values and four 

coincident longitude values forming four points. 

4. Assign categories to duplicate coordinates using a modal decision (explained 

further in Section 3.3.1.2.3). 

5. Fit an evenly spatially-spaced grid to the surface defined by the three 

duplicate-free snow category, latitude, and longitude grids using Delaunay 

triangulation built into the MATLAB® function ―griddata.‖ 

6. Write fitted data to an ASCII file formatted for ArcGIS 

After  ―processDuplicates.m‖ runs, ―animate_series.m‖ could  logically perform 

another modal  decision to make measurement categories more comparable to 

TOPLATS categories by compositing all categories listed in Table 3-2 into two 

categories: snow and snow-free. The ―animate_series.m‖ script, however, does not 

perform this secondary processing so that this study can evaluate MODIS 

measurement groups, later, during map comparison. By not consolidating all 

categories at this step, S2K could be readily modified to confirm results from 
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distributed snow-cover models that, unlike TOPLATS, account for categories like 

water and ice. 

3.3.1.2.2 Extract and Resample Location Grids 

The snow category matrix, the latitude matrix, and the longitude matrix, although 

presented in the HDF-EOS file as two dimensional grids and visualized by 

HDF View in a similar manner, are not regularly spaced in the GCS because the 

MODIS sensor, while in its sun-synchronous orbit, collects these grids in a 10-minute 

―long‖ flyby. If the points were regularly spaced, NSIDC could replace the latitude 

matrix and longitude matrix in the MODIS product with relatively simple metadata 

containing the position of a fixed point (e.g. the top left corner of a map) and a pair of 

values representing the x- and y-spacing between points. 

The resolution of each snow category matrix, additionally, is ten times finer 

than both the latitude matrix and the longitude matrix. If, for example, a snow 

category matrix contained 20 rows and 20 columns, then both corresponding location 

matrices would contain two rows and two columns — a total of four cells in each 

location matrix. The first (upper left) cell in a snow category matrix maps to the first 

cell in both the latitude matrix and the longitude matrix. The tenth cell (ten cells 

below the first cell) in the snow matrix maps to the second cell (directly below the 

first cell) in the location matrices. 

The ―animate_series‖ script creates intermediate latitude values and 

intermediate longitude values spaced evenly between original location values to 

enable a one-to-one matching of snow category values with location values. To do 
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this, the script instructs MATLAB® to perform a bilinear interpolation on each 

location grid with the ―interp2‖ function build into MATLAB®. MATLAB® 

executes this interpolation process in the ―expand_grid.m‖ subroutine. (The 

subroutine does not increase the spatial extent of a grid.) The ―expand_grid.m‖ 

subroutine, for example, expands a two cell by two cell square in an original matrix 

into a ten cell by ten cell square. Equation 3-1 demonstrates this example for a case in 

which the original cells are expanded by a factor of two rather than by a factor of ten.  
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Equation 3-1 greatly exaggerates the actual expansion of GCS coordinates and shows 

interpolated values in bold. The values of neighboring cells in the latitude and 

longitude matrices vary only slightly, if at all, compared to the demonstration values 

shown in equation 3-1. The distance between originally spaced location points 

decreases between scenes as the MODIS sensor approaches nadir in relation to the 

UKRW as described in Figure 3-3. 
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Figure 3-3 Effect of Satellite Angle on Sample Point Quantity 
Assuming MODIS measures points at evenly spaced angles, the point density on the interest 
area is the greatest when MODIS is close to nadir. The sample point density under the acute 
angle (in red) is greatest on the left-hand side of the interest area and the smallest on the 
right-hand side of the interest area. The sample point density under the obtuse angle (in blue) 
is greatest at the center of the interest area and smallest at the edges of the interest area. 

3.3.1.2.3 Assign Categories to Duplicate Coordinates 

Given a limited floating point size for coordinate values, the ―expand_grid.m‖ 

subroutine may produce duplicate coordinates while creating intermediate coordinates 

to match all snow category points in a granule. The ―expand_grid.m‖ subroutine more 

likely produces duplicate coordinates from points that are sensed by MODIS close to 

nadir in comparison to coordinates that are relatively far apart on the earth. These 

duplicate coordinates, further, may have conflicting snow categories. When duplicate 

coordinate points all share the same snow category, ―animate_series.m‖ removes all 

but one of the points from the surface. When duplicate coordinate points report 

conflicting snow categories, ―processDuplicates.m‖ replaces these points with a 
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single point in the same location with a snow category derived by a modal decision 

algorithm. For an n-size sample of points with the same location: 

1. Eliminate L1BMissingData points if there are points with other values 

2. Eliminate DetectorSaturated points and NoDecision points if there are points 

with other values 

3. Eliminate cloud-obscured points if there are points with other values 

4. Eliminate night points if there are points with other values 

5. Determine the frequency of categories reported by the remaining points. 

6. If there is a maximum category frequency, replace all duplicate points with a 

single point marked with the maximum category frequency. If, otherwise, 

there is a ―category-tie‖ among the remaining points, pick one of the tied 

categories at random 

S2K alerts the MATLAB® command window in the case it finds duplicate 

coordinates. While running S2K, if many (e.g. 5%) duplicate coordinates are found, 

consider modifying the procedure by increasing the floating point size of coordinate 

variables. In this case, if the physical memory of a computer limits increasing the 

floating point size of coordinate variables, consider dividing the interest area up if the 

interest area is large, or ignoring snow-cover values at interpolated coordinates if the 

interest area is small. 

3.3.1.2.4 Surface Fitting 

After ―processDuplicates.m‖ determines the snow category for points with duplicate 

coordinates in the swath surface, ―animateSeries.m‖ creates an evenly spaced location 
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grid from the swath surface in the GCS. Input variables, that ―animateSeries.m‖ reads 

at the beginning of the script, describe the evenly spaced surface 

west = -149.53; %lons 

east = -149.10; 

north = 68.67; %lats     

south = 68.47; 

west_to_east_inc = .001; 

south_to_north_inc = .001; 

where the bounding variables (west, east, north, and south) describe the UKRW 

extent in the GCS and the increments (west_to_east_inc and 

south_to_north_inc) describe the spacing between each point in the evenly spaced 

grid. The MATLAB® function ―griddata.m‖ performs Delaunay triangulation to 

populate the evenly spaced grid with categorical values from the swath surface. 

Categories are picked on a nearest neighbor basis. Note that west_to_east_inc and 

south_to_north_inc values smaller than 0.001 cause ―griddata.m‖ to produce 

unexpected, irrational results in which categorical values are averaged rather than 

selected based on nearest neighbor sampling. Delaunay triangulation is used by other 

swath-to-grid conversion tools like the LP DAAC MRT Swath Tool (2).  After 

―griddata.m‖ fits each swath surface into evenly spaced grids, ―animate_series.m,‖ in 

a final step, saves these grids as ArcGIS compatible ASCII files and animates the 

series on screen in the GCS. 

3.3.1.3 Make Grids Comparable to Model Results 

The third step in the S2K process begins with projecting GCS (WGS 1984) maps 

created by ―animate_series.m‖ into the model projection system, Clarke 1966 UTM 

Zone 6. When an ArcMap user attempts to directly project an UKRW map from the 
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GCS into the model coordinate system and model extent, using for example an 

―ArcToolbox‖ wizard, ArcGIS unexpectedly shuts down. To compensate for this 

problem, the Python script ―ascii2kuparuk.py‖ instructs the ArcGIS processor, called 

the ―geoprocessor,‖ to first project GCS maps into the Albers Equal Area Conic 

coordinate system, and then to secondly project the maps from the equal area 

coordinate system into the model coordinate system. (Note that ESRI makes the 

intermediate coordinate system, Albers Equal Area Conic, a standard that is easily 

available to ArcDesktop users. This coordinate system is available to users under the 

hierarchy of labels: Continental, North American, Alaskan. The Albers Equal Area 

Conic system could be useful in confirming model results spanning larger arctic areas 

like the entire Kuparuk River.) 

 In a final step, ―ascii2kuparuk‖ masks the raster in the model coordinate 

system with a watershed raster defined by a cell size and extent comparable to 

TOPLATS output 

gp.extent = "390862.8 597414.74 418181.52 627228.92" 

gp.cellSize = "131.34" 

where the values, in order, of ―gp.extent‖ define minimum easting, minimum 

northing, maximum easting, and maximum northing values, all in meters. The 

parameter, ―gp.cellSize,‖ defines the cell size of the mask, 131.34 m, which equals 

the cell size output by TOPLATS. The mask is simply a rectangular grid in the model 

projection system defining the extent of the interest area. Watershed pixels in the 

mask report unity while all other pixels report zero (re-classed from null values). 

Once a granule is masked, ―ascii2kuparuk‖ saves it in a floating point file for 

comparison to the model. 
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Figure 3-4 Python Script, “ascii2kuparuk” Processes 
The python script, “ascii2kuparuk,” instructs the geoprocessor to transforms GCS grids 
created by “animate_series.m” into raster images that are comparable with model output. 

Figure 3-4 charts the process ―ascii2kuparuk‖ performs on each GCS grid. In 

order to reproduce this procedure ArcMap users must set up their workspace; they 

must 

1. Add the ―ascii2kuparuk.py‖ script to their tool box or load it from an existing 

toolbox. 

2. Obtain the Spatial Analyst extension and set the Spatial Analyst options to 

match the extent of the mask: 

a. top: 627228.92 

b. left: 390862.8 

c. right: 418181.52 

d. bottom: 597414.74 

3. Set the cell size variables in the Spatial Analyst options (accessible in ArcMap 

via Spatial Analyst  Options > Cell Size Tab) and the environment settings 

(accessible via Tools menu  Options  Geoprocessing Tab  Environment 

Settings Button) to: 

a. Cell size: 131.34 

b. Number of rows: 227 

c. Number of columns: 208 

ASCII to 
Raster

Define 
GCS 

Projection

GCS to 
Equal Area 

Conic

Equal Area 
to Model 
System

Mask 
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Warning: Only raster multiplication will correctly mask the watershed for an 

individual granule. The ―Extract by Mask‖ command, alternatively, consistently 

produces an offset error and, sometimes, produces maps with a number of cells 

incomparable with model output. This is why this process does not use the ―Extract 

by Mask‖ command. 

3.3.2 Model Calibration 

The entire modeling process consists of model conceptualization, model formulation, 

preliminary application, model calibration, and model confirmation. This thesis 

focused on developing tools for the model calibration and confirmation steps. The 

conceptualization, formulation and preliminary application steps had already been 

accomplished by the USDA ARS at the Hydrology and Remote Sensing Lab (Déry et 

al. 2004). The calibration processes in this study sought to determine whether the map 

comparison methods would be sensitive to changes made in model parameters and 

therefore useful in setting the values of model parameters that cannot be directly 

measured. The process includes determining the winter-spring melt time period from 

MODIS measurements. 

 

 

 

  



 

 

 

 85 

CHAPTER 4: RESULTS AND DISCUSSION 

Chapter Four presents MODIS measurements independent of TOPLATS results (4.1), 

presents results from running TOPLATS with three different albedo values and 

varying the SWE threshold (4.2), and presents, finally, map comparison results to 

show how well MODIS confirms TOPLATS (4.3). Chapter Four limits its discussion 

of implications of each result to their effects on steps presented in Chapter Three, 

(including evaluation of statistics via Table 3-3), while Chapter Five summarizes all 

results, critiques the methods, and suggests future work. Note: Throughout Chapter 

Four and Chapter Five, unless lake ice is specifically mentioned, snow refers to both 

members of the MODIS measurement group ―frozen‖ defined in Table 3-2 — lake 

ice and snow. 

4.1 MEASUREMENTS 

This study needs to download and review MODIS measurements before running 

TOPLATS because model input parameters depend on the winter-spring melt period 

revealed by MODIS. Additionally, the quality assurance of MODIS measurements 

determines the usability of individual scenes in model confirmation. This section 

shows measurement results from this review exclusive of model results. It shows 

swath plots and grid plots of MODIS snow cover, cloud cover, quality assurance, and 

other categorical data throughout the S2K procedure described in Section 3.3.1. It 

shows the effect of observation time during the day, the effect of cloud coverage, and 

the effect of elevation on snow cover measurements. The results in this section reveal 

ambiguities in MODIS measurements, and ultimately aid this study in selecting a set 
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of observations that this study believes are closest to ―ground truth.‖ This study uses 

these observations — the ones that this study has the most confidence in — for both 

selecting the times to get model results in Section 4.2 and confirming model results 

via map comparison in Section 4.3. Probability quantifies this study’s uncertainty of 

measurements at each scene through the triangle-shaped probability density function 

described in Section 2.4.3.2. Plots of %SCA versus time of day and plots of %SCA 

versus day of the year, along with plots of supporting quality assurance information 

like cloud coverage and like overall quality, support qualitative explanations of this 

study’s confidence in individual MODIS scenes to confirm model results. 

4.1.1 DAAC Query Results  

Given that the peak annual discharge of the UKRW usually occurs shortly after the 

winter-spring snow melt in the UKRW, as explained in Section 2.1.2, the peak 

winter-spring discharges shown in the UKRW hydrographs for years 2000, 2001, and 

2002 (Figure 2-5) guided the time period for this study’s initial queries to the NSIDC 

DAAC. Figure 4-1 shows final results of the trial and error process described in 

Section 3.3.1.1 of downloading granules and plotting %SCA versus day of the year in 

relationship to the these hydrographs. Notice that the %SCA data Figure 4-1 shows 

many, unrealistically rapid (within time intervals of less than one day) melt and 

accumulation periods during the course of an overall melt period confined by a 

smooth, logistic-shaped, upper envelope.  
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Figure 4-1 Hydrograph Relationship to %SCA for years 2000, 2001, 2002 
The beginning of the winter-spring melt in the UKRW occurs within ten days prior to the peak 
winter-spring discharge in each of the years, 2000, 2002, and 2002, shown. The %SCA 
series shows results of each scene returned by the DAAC from the day-time query, 
irrespective of cloud coverage, day of year, measurement quality, or any other scene-
excluding factor. %SCA in this plot is calculated over the watershed area, not the model 
bounding box. See MATLAB® scripts “compare_calculate_all.m” and “plot_hydrographs.m” to 
reproduce these figure. 
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The reason why Figure 4-1 reports an unrealistic result, is because the figure 

shows %SCA results irrespective of the following filters (a) supporting quality 

assurance information (Section 2.2.2.3), (b) collection time information (besides night 

time), (c) elevation information, and (d) satellite. This unfiltered
**

 %SCA series only 

considers categories listed in Table 3-2 and the decision to request only daytime 

granules from the DAAC. Table 3-2 categories plus the daytime query flag, even 

though they yield the overall unrealistic %SCA series in Figure 4-1, do sufficiently 

indicate a rough (plus or minus a few days) time period to narrow collection of model 

input parameters and perform map comparison. Figure 4-1 indicates that model 

confirmation for the winter-spring snowmelt depends on model results between day 

150 and day 165 in the year 2000, day 145 and day 165 in the year 2001, and day 135 

and day 150 in the year 2002. Appendix G shows the MATLAB® script, 

―plot_hydrographs.m‖, which shifts the hydrograph data from Kane (2009) in Alaska 

local time into coordinated universal time (UTC) and plots results with MODIS snow 

cover. 

All MODIS scenes can be viewed using the application at 

http://choy.me/david/research/thesis/filter.php, where MODIS maps can be sorted by 

the filters described in Table 4-1. The application colors unavailable pixels, including 

                                                 

 

 

** The word ―unfiltered,‖ when exclusively describing measurement maps in this study or comparison 

results in this study, refers to the scenes corresponding to the measurement times described in this 

passage. ―Filtered‖ scenes, alternatively, refer to a subset of scenes defined by one or more variables 

Table 4-1 lists most of these filters. 

http://choy.me/david/research/thesis/filter.php
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cloud-covered pixels, grey; it colors snow blue; and it colors snow-free land brown. 

Complete sets of unfiltered MODIS snow cover maps support their unrealistic %SCA 

series counterparts from Figure 4-1. The unfiltered maps show patches of snow cover 

that appear and disappear from one scene to the next. The maps suggest that either 

physical factors like wind possibly moved snow across the watershed between 

measurement times, or that the snow cover observations do not fully consider the 

impact of supporting quality assurance information — such as a broken detector 

band, an obtuse sensing angle, an uncertain radiance calculation, or clouds (Section 

2.2.2.3). Chapter Five suggests additional factors, not necessarily completely inherent 

to HDF-EOS quality assurance information, that could contribute to 

measurement error. 

Table 4-1. Scene Filters 
View http://choy.me/david/research/thesis/filter.php to apply these filters on MODIS data in 
the TOPLATS model system where each cell has a side length of 131.34 meters. Grey cells 
represent clouds, blue cells represent snow, and brown cells represent snow-free land. 

Filter Description / Values 

Temporal 

Year All   (2000, 2001, 2002) 

2000 

2001 

2002 

Day of Year Range Time since the beginning of a year in decimal days 

Time of Day All   (Morning and evening) 

Morning  (Near solar noon) 

Evening   (Near night) 

Sequence Number Rank of a map among all unfiltered maps for a year 

Spatial 

Quality Rage Proportion of good quality swath points in a GCS 

bounding box 

Proportion Available Range Proportion of snow-covered or snow-free pixels 

  

http://choy.me/david/research/thesis/filter.php
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4.1.2 Influence of Availability, Collection Time, and Quality 

Assurance Filters on Measurement Uncertainty 

While the unfiltered maps seem to indicate patches of snow moving from one scene 

to the next in short time intervals (under one day), time-composite maps of counts of 

SCA pixels over the entire melt period of each year, shown in Figure 4-2, indicate 

that snow consistently persists the longest during the melt period at locations in the 

lower elevation zones (Figure 4-3) across all three years evaluated. The color of each 

pixel in this figure represents the number of scenes in a series that show that pixel 

covered with snow. Figure 4-2a does not provide clear results compared to Figure 

4-2b because clouds and invalid data influence the plots shown in Figure 4-2a while 

Figure 4-2b considers three filters: 90% available coverage, 50% or greater quality of 

points, and the morning time period (close to solar noon) times. 

Figure 4-4, Figure 4-5, and Figure 4-6 show sets of filtered scenes from 

respective years 2000, 2001, and 2002. Each set contains images that start with close 

to 100% likely SCA and end in none. The filter selections in each of these figures 

maximize the useful information for each year. In Figure 4-4, nine sequential morning 

scenes from year 2000 between noon (UTC) at day 151 and the end of day 154 reveal 

unavailable pixels, resulting from mainly clouds, obscure the melt window. Changing 

the morning filter to an evening filter in this figure reveals a series which include a 

similar amount of cloud coverage and likely, mis-detected points. These evening 

scenes can be viewed by adjusting Figure 4-4 at the website location specified in the 

caption of this figure. 
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Figure 4-2 Sum of Snow-Covered Pixels Across Unfiltered and Filtered Melt Series 
Brightness-normalized plots of the sum of the number of pixels where snow lasts during a 
melt series indicates either the location of possible physical features that should be 
considered by a model to limit snow melt, or the location of features that limit MODIS from 
correctly sensing snow. In the UKRW, clouds and poor quality measurements confuse the 
plots derived from the unfiltered scenes (a). The plots derived from the filtered scenes (b), 
however, clearly show two areas flanking the river path where snow lasts the longest. Maps 
are shown in the model coordinate system where southing and easting units are pixels widths 
of 131.34 m. See MATLAB® script “plot_cumulative_sca.m” to reproduce these figure. 
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Figure 4-3 UKRW Elevation Zones 
Elevations equally spaced at 736.4 m (minimum elevation), 925.4 m, 1,114.3  m, 1,303.3 m, 
and 1,492.2 m (maximum elevation) above sea level bound four 189.0 m elevation zones in 
the UKRW. In the 131.34 m model grid (Table 2-2), zone one covers 3,015 pixels (52.01 
km

2
), zone two covers 4,173 pixels (71.99 km

2
), zone three covers 1,184 pixels (20.42 km

2
), 

and zone four covers 185 pixels (3.191 km
2
). Note that easting and southing units are pixel 

widths in the model grid. See MATLAB® script “elevationszones.m” to reproduce this figure 
and see a side views of the watershed elevation zones. 
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Figure 4-5 shows nine sequential morning scenes from year 2001 between day 

151 and day 159 with 0.40 or greater proportion of good quality swath points. These 

scenes represent the beginning of the melt period inferred from Figure 4-1, which 

appears to last from day 150 to 160. The middle of the melt period, occurring 

between day 154 through day 157, is absent from these filtered results. During this 

time, in the middle of the melt period, the proportion of good quality swath points 

falls below 0.40. The figure reveals a strong correlation between the proportion of 

points available in the scene and the quality assurance information. Changing the 

time-of-day filter parameter to evening yields nine scenes with unavailable 

information, blanketing the series. Evening scenes may be viewed by adjusting Figure 

4-5 at the website location specified in the caption of this figure. 

 Figure 4-6 shows fifteen sequential morning scenes with a proportion of 

quality swath points greater that 0.50 between day 138 and day 146 during the year 

2002. The year 2002 contains more available coverage with higher quality 

measurements during the melt period than either the year 2000 or the year 2001. 

Unlike the series shown in Figure 4-4 for the year 2000, this figure shows no cloud 

coverage. Unlike the series shown in Figure 4-5 for the year 2001, this figure contains 

scenes that are more evenly sampled across time during the melt period. Notice that 

all of the scenes in this figure have 100% available coverage, which means the 

estimate of uncertainty in these measurements due to unavailable pixels is zero. Like 

Figure 4-4 and Figure 4-5, adjust Figure 4-6 at the website location specified in the 

caption of the figure. 
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Figure 4-4 2000 Select MODIS Scenes 
Blue = snow; brown = snow-free; grey = unavailable data, including cloud. 
Unavailable data, caused predominantly by cloud coverage, obscures the most important 
scenes during the 2000 melt period. This figure shows morning scenes during the melt 
period. See evening scenes, which include a similar amount of cloud coverage and likely, 
mis-detected points by adjusting this figure at 
http://choy.me/david/research/thesis/filter.php?Y=2000&Tmin=151.5&Tmax=154.9&M=Morni
ng&Qmin=0.00&Qmax=1.00&Amin=0.00&Amax=1&Nmin=1.00&Nmax=500&go=Submit. 

http://choy.me/david/research/thesis/filter.php?Y=2000&Tmin=151.5&Tmax=154.9&M=Morning&Qmin=0.00&Qmax=1.00&Amin=0.00&Amax=1&Nmin=1.00&Nmax=500&go=Submit
http://choy.me/david/research/thesis/filter.php?Y=2000&Tmin=151.5&Tmax=154.9&M=Morning&Qmin=0.00&Qmax=1.00&Amin=0.00&Amax=1&Nmin=1.00&Nmax=500&go=Submit
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Figure 4-5 2001 Select MODIS Scenes 
Blue = snow; brown = snow-free; grey = unavailable data, including cloud. 
Morning scenes with 0.40 or greater proportion of good quality swath points show the 
beginning of the melt period inferred from Figure 4-1, which appears to last from day 150 to 
160. The middle of the melt period, between day 154 through day 157, is absent from these 
filtered results. At these times the proportion of good quality swath points falls below 0.40. 
Adjust this figure at 
http://choy.me/david/research/thesis/filter.php?Y=2001&Tmin=151&Tmax=158.91&M=Mornin
g&Qmin=0.4&Qmax=1.00&Amin=0.00&Amax=1&Nmin=1.00&Nmax=500&go=Submit. 

http://choy.me/david/research/thesis/filter.php?Y=2001&Tmin=151&Tmax=158.91&M=Morning&Qmin=0.4&Qmax=1.00&Amin=0.00&Amax=1&Nmin=1.00&Nmax=500&go=Submit
http://choy.me/david/research/thesis/filter.php?Y=2001&Tmin=151&Tmax=158.91&M=Morning&Qmin=0.4&Qmax=1.00&Amin=0.00&Amax=1&Nmin=1.00&Nmax=500&go=Submit
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Figure 4-6 2002 Select MODIS Scenes 
Blue = snow; brown = snow-free; grey = unavailable data, including cloud. 
Continued on the next page, the fifteen 2002 morning images with a proportion of good 
quality swath points greater than 0.50 shows more clear information than the images from 
previous two years. Unlike year 2000, this figure shows no cloud coverage. Unlike year 2001, 
this figure contains scenes that are evenly sampled during the melt period. View more at 
http://choy.me/david/research/thesis/filter.php?Y=2002&Tmin=138&Tmax=145.85&M=Mornin
g&Qmin=0.5&Qmax=1&Amin=0.00&Amax=1&Nmin=1.00&Nmax=500&go=Submit. 

http://choy.me/david/research/thesis/filter.php?Y=2002&Tmin=138&Tmax=145.85&M=Morning&Qmin=0.5&Qmax=1&Amin=0.00&Amax=1&Nmin=1.00&Nmax=500&go=Submit
http://choy.me/david/research/thesis/filter.php?Y=2002&Tmin=138&Tmax=145.85&M=Morning&Qmin=0.5&Qmax=1&Amin=0.00&Amax=1&Nmin=1.00&Nmax=500&go=Submit
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Figure 4-6 2002 Select MODIS Scenes Continued from Previous Page 
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Extending the time periods in Figure 4-4, Figure 4-5, and Figure 4-6 to days 

both before and after their respective melt periods reveal some scenes that have high 

data availability, but unrealistic coverage. MODIS reports near complete SCA, for 

example, on day 144 of the year 2000 and almost no SCA on the local evening of day 

145 at 5:25 UTC. The sensor, subsequently, reports almost 100% SCA later in the 

day after a period of low availability due to cloud coverage. The time that a given 

measurement was collected explains the poor quality of this scene, and many others 

like it. Figure 4-7, Figure 4-8, and Figure 4-9 show the effect of measurement time 

and quality on SCA for all the unfiltered scenes from 2000, 2001, and 2002. The first 

plot in each of these figures (a) shows the proportion of four supporting quality 

assurance measures at each swath point cropped by the model area in the Global 

Coordinate System (GCS). The second plot in each of these figures (b) shows the data 

from data on an hourly basis in relationship to sunset, sunrise, and solar noon. These 

plots define two measurement time periods — morning, which is close to solar noon 

and evening, which extends past sunset. The third plot in each of these figures (c) 

summarizes plot a, plot b, and SCA reports. The larger, bluer, circles in these plots 

represent increasing proportions of good quality swath points. Note that the evening 

data in the second plot of each figure includes night scenes even though all the 

DAAC queries in this study included the request to ignore night data. See Figure 4-7 

for this description of the three plots specific to year 2000. 

The 2000 data in Figure 4-7 shows MODIS collected the highest quality 

measurements (> 0.90) before and after the three days of quick snow melt. During the 

melt, almost all the scenes with 50% or higher quality assurance are morning scenes. 
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Figure 4-8 shows 2001 data in the same types of plots described in Figure 4-7. Figure 

4-8a shows a high proportion of abnormal quality points during the melt period which 

are reflected by the gray areas in Figure 4-4 maps. Figure 4-8b shows that while 

MODIS reports the highest cloud coverage after sunset, it also reports many good 

quality points. This could suggest that MODIS could mistake low-lit ground for 

clouds after sunset. In each day during the beginning of the melt shown in Figure 

4-8c, the points that deviate from the upper SCA envelope the most are all evening 

points. The quality of these points, however range from 0% good quality points to 

over 50% good quality points. The scenes on day 148 and 149 with the lowest SCA 

and medium-good quality, for example, both occur in the evening. These points, 

therefore, are probably invalid due to poor measurement capabilities of MODIS in the 

evening. 

Figure 4-6a, which plots supporting quality assurance information versus the 

time of year 2002, shows the proportion of good quality points scattered across the 

month of May starting on day 121. Abnormal points are also scattered over the 

month. The proportion of cloud obscured points remains consistently below 0.3 or 

over 0.9 with the exception of four outliers, half of which contain mostly invalid 

points of data among the remaining cloud free points. The other two outliers contain 

mostly good points of data among remaining cloud free points. Figure 4-6a shows 

that the fourteen scenes with a proportion of invalid points greater than 0.01 all occur 

before day 133 with the exception of one scene occurring on day 139 with a 

proportion of invalid points under 0.05. The apparent drop off of invalid points later 

in the month cannot easily be explained by this figure alone. Figure 4-6b shows there 
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are exactly 47 scenes in the morning set and 47 scenes in the evening set. Looking at 

the proportion of quality assurance information in Figure 4-6b in relationship to 

apparent sunset, the set of data collected later in the evening includes many invalid 

points after sunset between hour seven and hour nine UTC. Based on the apparent 

association between invalid points and time after apparent sunset, the drop off of the 

proportion of invalid points on day 133 (unexplained by Figure 4-6a alone) may be 

due to DAAC results successfully limiting night scenes starting on day 133. Also, in 

the evening period, the median of the good quality points in the model interest area 

above 0.10 at night is higher than the median of all other proportions of good quality 

points above 0.10. In other words,  at night, MODIS reports that measurements are 

either very poor quality or very high quality. There is no proportion of good quality 

points between 0.20 and 0.80 at night and this study has not found an explanation for 

this result in the literature. This study can, however, attribute the lack of ―abnormal‖ 

points and increase of ―invalid points‖ at night to the poor reflectance of snow in low 

light. The evening points, in summary, contain less trustworthy information based on 

the night scenes with a high proportion of invalid points. Finally, the frequency of the 

proportion of cloud-covered points in the model area during the morning times and 

the evening times is compared: There are no points in the morning time interval with 

more than a 0.05 proportion of cloud coverage while every hour in the evening time 

interval has at least one scene with a 0.15 proportion of cloud coverage. Based on 

both these observations and conclusions made by Hall et al. (2001) (Section 2.2.2.1), 

the map comparison in this study uses the set of measurement scenes captured in the 

morning instead of set of measurement scenes captured in the evening. 
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Given the results described above, and the availability of TOPLATS input 

parameters for 2000, 2001, and 2002, the remainder of this study discusses the 

morning scenes for the year 2002, and focuses in particular, on the filtered 

observations in Figure 4-6. Of the three years discussed, this study has the most 

confidence in the measurements from the year 2002. The MODIS data from the year 

2000 contains too many invalid scenes (Figure 4-4 and Figure 4-7). Data from 2001 

does not contain any scenes in the middle third of the melt period. Although scenes 

like the one on day 143 at 20:15 in 2002 shown in Figure 4-6 look out of place in 

context with the two filtered scenes occurring before and after it, the number of 

available (including cloud-free) scenes in the year 2002 outnumbers the available 

scenes in the other two years. The 2002 measurements show two areas of persistent 

snow, that get progressively smaller (Figure 4-2b and Figure 4-6) more clearly than in 

2000 and 2001. MODIS observations for the year 2002, therefore, can most 

appropriately be used to evaluate model output.



 

 

 

 102 

 

Figure 4-7a. Supporting Quality Assurance  Information Versus Day of Year 

 

Figure 4-7b. Supporting Quality Assurance  Information Versus Hour of Day 
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Figure 4-7c. SCA Versus Day of Year, Morning or Evening, and Quality Assurance 

Figure 4-7 Year 2000 Quality Assurance, Collection Time, and Proportion SCA  
MODIS reports four supporting quality assurance measures at each swath point. Figure 4-7a 
shows the proportion of each of these measures in every scene cropped by the model area in 
the GCS. Figure 4-7b shows the data from Figure 4-7a on an hourly basis in relationship to 
sunset, sunrise, and solar noon. The plot defines two measurement time periods — morning, 
which is close to solar noon and evening, which extends past sunset. Figure 4-7c combines 
Figure 4-7a, Figure 4-7b, and SCA reports. In Figure 4-7c, the larger, bluer, circles represent 
increasing proportions of good quality swath points within a model area scene. Figure 4-7a 
and Figure 4-7c share the same x-axis scale and range. 

Good quality scenes during the year 2000 melt are almost all morning scenes. Read more 
about this figure in Section 4.1.2. 
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Figure 4-8a. Supporting Quality Assurance  Information Versus Day of Year 

 

Figure 4-8b. Supporting Quality Assurance  Information Versus Hour of Day 
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Figure 4-8c. SCA Versus Day of Year, Morning or Evening, and Quality Assurance  

Figure 4-8. Year 2001 Quality Assurance, Collection Time, and Proportion SCA  
This figure shows 2001 data in the same types of plots described in Figure 4-7. This study 
suspects evening points, like one with the medium-good quality but no SCA during  the 
beginning of the melt on day 148, report invalid information due to the poor ability of MODIS 
to detect snow at times of the day far from solar noon. Section 4.1.2 analyzes this figure 
further.
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Figure 4-9a. Supporting Quality Assurance  Information Versus Day of Year 

 

Figure 4-9b. Supporting Quality Assurance  Information Versus Hour of Day 
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Figure 4-9c. SCA versus Day of Year, Morning or Evening, and Quality Assurance 

Figure 4-9. Year 2002 Quality Assurance, Collection Time, and Proportion SCA 
This figure shows 2002 data in the same types of plots described in Figure 4-8. Section 4.1.2 
analyzes this figure further. 
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Figure 4-10 plots the minimum, likely, and maximum proportion SCA values 

that define the triangle-shaped probability density (PD) distributions described in 

Section 2.4.3.2. Plots are shown for (a) all scenes, (b) all morning scenes, and (c) all 

morning scenes with a 0.50 or greater proportion of good quality swath points. The 

figure reinforces the conclusion that a combination of measurement availability, 

collection time information, and supporting quality assurance information determines 

the overall usefulness of a series of measurements. The black circles in each scene 

represent the most likely proportion of SCA and the black lines represent the 

probability distribution. The red x points represent the least likely proportion of SCA 

and the green cross points represent the maximum proportion of SCA. In cloud-free 

scenes with 100% availability, the maximum and minimum proportion of SCA values 

are equal. Figure 4-10 marks these scenes with overlapping red x points and green + 

points; but for clarity, does not include black PDF lines which would extend infinitely 

on the PD axis. Additionally, Figure 4-10 hides the black PDF lines for scenes with 

100% unavailable (in-part cloud obscured) pixels. The figure does show, however, 

the opposing minimum (0) and maximum (1) proportion of SCA values for these 

scenes. The PDF lines in these scenes, if they were shown, would form the apex of a 

triangle at a PD equal to 2 and at a proportion of  SCA equal to 0.50, making the 

figure hard to read. 

Figure 4-11 show the proportion of SCA for all morning scenes. Figure 4-12 

shows the proportion of SCA for only morning scenes with a 0.50 or greater 

proportion of good quality swath points (Figure 4-10). Bothe figures show SCA for 

the whole watershed and each elevation zone. The plots show more scatter in the 
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higher elevation zones. The scatter, however, is likely due to the smaller sample sizes. 

(Figure 4-3 explains that zone one covers 3,015 pixels, zone two covers 4,173 pixels, 

zone three covers 1,184 pixels, and zone four covers 185 pixels.) 
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Figure 4-10a. All Scenes 

 

 

Figure 4-10b. Morning Scenes 
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Figure 4-10c. Morning Scenes with a 0.50 or Greater Proportion of Good Quality Points 

Figure 4-10. 2000 Probability as a Measure of Uncertainty 
Probability density (PD) plots indicate increasing certainty of measurements from (a) all 
scenes to (b) morning scenes to (c) morning scenes with a 0.50 or greater proportion of good 
quality swath points. In each figure, the black lines represent the triangular proportion of SCA 
distribution, the red x points represent the minimum proportion of SCA and the green cross 
points represent the maximum proportion of SCA. The black circles represent the most likely 
proportion of SCA for scenes with any available points or scenes where the maximum 
proportion of SCA does not equal the minimum proportion of SCA. 
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Figure 4-11a. Watershed 

 

Figure 4-11b. Zone One 

 

Figure 4-11c. Zone Two 
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Figure 4-11d. Zone Three 

 

Figure 4-11e. Zone Four 

Figure 4-11. 2002 Morning Scenes Across The UKRW and Four Elevation Zones 
The proportion minimum, likely, and maximum SCA shown in Figure 4-10b are plotted for (a) 
the entire watershed and four elevation zones (b-e). Only, and all, morning scenes are 
shown. 
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Figure 4-12a, Watershed 

 

Figure 4-12b. Zone One 

 

Figure 4-12c. Zone Two 
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Figure 4-12d. Zone Three 

 

Figure 4-12e. Zone Four 

Figure 4-12. 2002 Morning Scenes with a Proportion of 0.50 or Greater Good Quality 
Swath Points Across The UKRW and Four Elevation Zones 
The proportion minimum, likely, and maximum SCA shown in Figure 4-10c are plotted for (a) 
the entire watershed and four elevation zones (b-e). Only, and all, morning scenes with a 
proportion of 0.50 or greater good quality swath points are shown. 
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4.2 MODEL SNOW MAPS 

The USDA ARS at the Hydrology and Remote Sensing Lab helped perform the 

model runs to provide this study with model output maps at selected times 

corresponding to the MODIS scenes. Two parameters, in addition to DEM and 

adiabatic lapse rate (discussed in Section 2.3.1), drive model %SCA results: (a) the 

snow albedo, measured in a percentage of light reflected by the snow surface, and (b) 

the SWE threshold, which indicates the minimum millimeters of SWE to consider a 

model cell snow-covered. The model predicts a continuous SWE value in each pixel, 

whereas MODIS snow or snow-free categories. In order to make a comparison 

between these measures, a new parameter — SWE threshold —  defines the value of 

SWE at a model pixel where that pixel is considered snow covered. 

In a sensitivity study where snow albedo varies between trials, the model 

produced two simulated SWE maps for each trial: an overstory map and an 

understory map. This study uses the sum of the overstory SWE and the understory 

SWE. Raising the snow albedo lengthens the melt period by causing the snow to 

reflect more, and absorb less, of the incoming energy. In some trials, raising the snow 

albedo led TOPLATS to irrationally simulate snow accumulation during the melt 

period. 

Section 4.2.1 discusses TOPLATS results independent of MODIS 

measurements and independent of any SWE threshold. It maps three TOPLATS 

scenes corresponding to the select 2002 scenes from Figure 4-6, and shows the effect 

of elevation on SWE results in the model. Section 4.2.3 shows the effect of three 
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SWE thresholds on SWE results in conjunction with MODIS SCA results. This 

section only discusses results from the year 2002. 

4.2.1 Snow Water Equivalent 

Figure 4-13 shows TOPLATS SWE maps for snow albedo values of 0.75, 0.80, and 

0.85 for the (a) first, (b) middle (seventh), and (c) last scene of the select 2002 

MODIS scenes shown in  Figure 4-6. Figure 4-14, Figure 4-15, Figure 4-16, Figure 

4-17, and Figure 4-18 show SWE means, SWE standard deviations, and box plots 

grouped by day for the entire watershed and each of four elevation zones during the 

2002 melt period. 

Figure 4-13 shows the effect of elevation on model results. Snow in the higher 

elevation zones, framed by Figure 4-3, depletes most quickly. The whitest areas in 

both Figure 4-13b for a 0.80 albedo and Figure 4-13c for a 0.85 albedo show that 

snow remains the longest along the river path. Figure 4-13 also indicates the model 

with the 0.80 albedo, without consideration to a SWE threshold, best predicts the 

2002 MODIS measurements because the other two scenarios show complete snow 

melt on day 142 (albedo = 0.75) and incomplete snow depletion at the end of the melt 

period (albedo = 0.85). The mean watershed SWE and daily SWE boxplots shown in 

Figure 4-14 confirm this result. 
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a 

 

b 

 

c 

 

Figure 4-13 Select TOPLATS SWE Scenes for Albedo Values 0.75, 0.80, and 0.85 
(a) On day 138, TOPLATS blankets each watershed with snow. (b) On day 142, the 0.75 
albedo watershed has no snow and the 0.80 watershed has very little snow. (c) On day 
151, after the measured melt, TOPLATS shows snow on the 0.85 map. Southing and 
easting coordinates reference the model coordinate system and interest area. Figure 4-6 
shows respective MODIS scenes. 

 

 

 



 

 

 

 119 

 

 

 
Figure 4-14 TOPLATS Watershed SWE (8,557 pixels) 
 (a) 8,557 SWE pixel values averaged over the watershed versus time confirm that the time 
for snow to melt increases with albedo. (b) The slope of the standard deviation of SWE for all 
pixels increases with albedo. (c) Box and whisker plots grouped by day show that the 
distribution is skewed with a relatively long tail below the twenty-fifth percentile. For each box, 
the line in the box is the median and the “+” in the box is the mean. The box encloses points 
above the twenty-fifth percentile and points below the seventy-fifth percentile. (The “+” 
whisker lines outside the box are the tenth and ninetieth percentile.) 
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Figure 4-15 TOPLATS Zone One SWE (3,015 pixels) 
Zone one pixels have the lowest elevation and reach the farthest north compared to the other 
two zones. (a) 3,015 zone one SWE pixel values start higher and end lower than the 
watershed SWE values for an albedo of 0.85. (b) Standard deviation values are lower than 
those for the entire watershed. (c) The range of SWE at each day in zone one is smaller than 
that shown in the entire watershed. See Section 4.2.1 for further analysis. 
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Figure 4-16 TOPLATS Zone Two SWE (4,173 pixels) 
4,173 zone two SWE pixel values are overall lower than zone one values. The shorter melt 
causes the standard deviation values for the 0.80 albedo simulation and 0.85 albedo 
simulation to rise above standard deviation values in the zone one simulation. 
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Figure 4-17 TOPLATS Zone Three SWE (1,184 pixels) 
Zone three SWE values decrease faster than the lower elevation zones. 
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Figure 4-18 TOPLATS Zone Four SWE (185 pixels) 
Zone four pixels have the highest elevations and are the farthest south compared to the other 
three zones. The SWE in the 185 pixels in zone four are the lowest compared to the other 
four zones. The time to melt, therefore, is the shortest compared to the other zones. 
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Figure 4-14, additionally, shows (a) a period of relatively constant SWE from 

day 146 to day 150 given an albedo of 0.85, (b) a decreasing SWE standard deviation 

in the 0.75 albedo series compared to an increasing SWE standard deviation in the 

0.80 albedo series and the 0.85 albedo series, and (c) SWE values further below the 

25% quartile than above the 75% quartile. The shape of the simulated SWE curve 

appears to match that of an arc more than the decreasing logistic function referenced 

by McCuen (2003) (Section 2.1.2). 

In the 0.75 albedo series, the snow melts relatively quickly compared to the 

other two albedo series. The model reports no snow at the end of day 140. The mean 

SWE plot reveals snow melting in downward ―steps‖ that each, shown in a zoom 

view, incline upward slightly with time. The mean SWE starts at 1.97 cm. In the 0.80 

albedo series, snowmelt completes exactly four  days (96 hours) after the melt 

completes with an albedo of 0.75 and the total SWE starts at 2.56 cm. During this 

time period, the SWE standard deviation and range increase over the melt period. In 

the 0.80 albedo series snowmelt completes well after the expected time period. The 

range and standard deviation of the SWE values increase throughout the simulation. 

The mean SWE starts at 2.89 cm and exceeds 1 cm through day 150. 

Mean SWE model results for an albedo of 0.85 start higher and end lower in 

elevation zone one (Figure 4-15a) compared to watershed values (Figure 4-14a). 

Standard deviation values for zone one (Figure 4-15b) are lower than those for the 

entire watershed (Figure 4-14b) and increase during the beginning of the melt defined 

by the mean values. Box plots for zone one (Figure 4-15c) show that the range of 

SWE at each day in zone one is smaller than that shown in the entire watershed 
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(Figure 4-14c). The zone one boxes, whiskers, and minimum values are all larger than 

those in the entire watershed. The maximum values are close to those in the 

watershed. Zone two through four SWE values, therefore, should have lower SWE 

values than zone one. The time to melt in zone one appears to mirror that of the 

watershed. 

Zone two SWE values shown in Figure 4-16a and Figure 4-16c are lower than 

zone one values shown in Figure 4-15a and Figure 4-15c. Given the 0.80 albedo box-

plots in zone one and zone two, while melt completes in both series at day 145,  the 

mean SWE value approaches zero more quickly (day 144) in zone two. The 

magnitude of the spread and standard deviation of the SWE values in zone two is 

close to that of zone one because they have similar sample sizes compared to the 

watershed. A shorter melt period in zone two compared to zone one causes the 

standard deviation of the 0.80 series to increase more rapidly from the beginning of 

the melt period through day 143 where it drops down to close to zero at the end of the 

0.80 albedo melt on day 144. The standard deviation of the 0.75 series, conversely, 

decreases in zone two during the melt period compared to the increase in zone one.  

Figure 4-17 shows that zone three SWE values decrease faster than the lower 

zones. Unlike zone one and zone two, during end melt for both the 0.80 albedo and 

the 0.85 albedo, on day 142, the standard deviation of the SWE values for the 0.80 

albedo series is higher than that of the 0.85 albedo series. Also unlike lower zones, 

the 0.80 albedo series completely melts at day 144 compared to day 145. At the top of 

the watershed, SWE values shown in Figure 4-18 are the lowest and the melt period is 

the shortest. There is still snow on the ground, however, on the last simulated day 
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(day 151). The standard deviation values for all three albedo values in zone four are 

all almost the same until day 141 when the 0.75 albedo series melts. On day 143, the 

0.80 series standard deviation series diverges from the 0.85 series standard deviation 

series because TOPLATS, at this time, completely depletes the snow in some partial 

areas of zone four. 

4.2.2 Comparison with MODIS Maps 

Two plots in Figure 4-19 compare SWE values from Figure 4-14a with MODIS SCA 

values on a second, overlapping axis. The first plot (Figure 4-19a) shows mean SWE 

values and the second plot (Figure 4-19b) shows the mean SWE values normalized by 

the minimum mean and maximum mean SWE values in the series. In each plot, blue 

circles mark the likely MODIS proportion SCA for each scene. Blue lines, capped 

with blue points, connect the minimum and maximum possible proportion SCA 

values (Section 2.4.3.2). Figure 4-20 shows a subset of the information in Figure 4-19 

filtered by the morning scenes with a proportion of 0.50 good quality swath points. 

The MODIS measurements in this figure are the same as those plotted in Figure 

4-12a. The uncertainty of MODIS measurements in this figure are the same as those 

plotted in Figure 4-10c. Fewer uncertainty lines in Figure 4-20 compared to Figure 

4-19 confirm the finding described in Section 4.1 that morning scene measurements 

are less ambiguous than evening scene measurements. The two figures also confirm 

that the 0.75 albedo series depletes too quickly and the 0.85 series, even when it is 

normalized, depletes too slowly. Figure 4-20 suggests that the 0.85 series, normalized 

by the maximum mean SWE at the start of the series (2.89 cm) and the minimum 
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mean SWE at the end of the apparent MODIS melt period, around day 145, could be 

more comparable to the 0.80 series. Figure 4-21 tests this idea and reveals that if the 

normalized SWE series were used to indicate proportion SCA, the 0.85 albedo series 

would overestimate the MODIS proportion SCA more than the 0.80 albedo series 

would underestimate it. 

In summary, plots of SWE and SCA show that the 0.75 albedo series time to 

melt is too short. The 0.80 albedo series and 0.85 albedo series, however, could both 

predict MODIS SCA depending on both the spatial variability of SWE values (shown 

in Figure 4-14 through Figure 4-18) and a SWE threshold. 

Section 4.1 reviewed the MODIS measurements in terms of filters including 

collection time of day and quality assurance information. The section shows that 

measurements from the year 2002 can be trusted more than those from the year 2000 

and 2001. In Section 4.2.1 and in Section 4.2.2, the SCA measurements from 2002 

are compared with TOPLATS SWE model results in a sensitivity study for values of 

varying albedo. This section shows that while the 0.80 albedo simulation or the 0.85 

albedo simulation could possibly predict the measured data, at least on a time-to-melt 

basis, the 0.75 simulation produces a brief melt time that under-predicts the observed 

melt time. 
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Figure 4-19a. Mean SWE (m) 

 

Figure 4-19b.  Mean SWE Normalized by the Minimum, Mean, and Maximum Mean SWE 

Figure 4-19 2002 Effect of the Albedo Parameter on SWE Model Results 
TOPLATS pixel SWE values, averaged over the watershed, for snow albedo values 0.75, 
0.80, and 0.85 (left axes) are shown with MODIS SCA (right axis, blue circles) from day 134 
through 152. Plot b shows the SWE values normalized by the minimum, mean, and maximum 
mean SWE values in the watershed area. 
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Figure 4-20a. Mean SWE (m) 

 

Figure 4-20b.  Mean SWE Normalized by the Minimum, Mean, and Maximum Mean SWE 

Figure 4-20 2002 Effect of the Albedo Parameter on SWE Model Results for Good 
Quality Morning Points  
The morning scenes with a 0.50 or greater proportion of good quality swath points are shown 
on the same types of plots described in Figure 4-19.  
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Figure 4-21 2002 Effect of the Albedo Parameter on SWE Model Results for Good 
Quality Morning Points Ending for All Scenes Measured Before The Apparent End of 
Melt on Day 146. 
Compared to Figure 4-20, normalizing the 0.85 series over the shorter time interval makes 
the 0.85 series more comparable to the 0.80 series. The proportion of good quality swath 
points at each scene, labeled with black text, however, shows that higher quality scenes lie 
closer to the 0.80 series than the 0.85 series. 
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4.2.3 Snow Covered Area Threshold 

Converting the continuous SWE values from the model output to binary snow/snow-

free values is necessary for comparing model maps to the MODIS maps. The SWE 

threshold parameter (Section 3.2.1) determines the minimum SWE for any pixel in 

any scene for this study to consider that pixel snow covered. The mean SWE and 

normalized mean SWE plots help seed the selection of this SWE threshold: Figure 

4-20a suggests the SWE threshold seed for the 0.80 albedo series starts at 0 m 

because the mean SWE series depletes before the MODIS SCA series does; raising 

the threshold for this series would lower the mean SWE values yielding an even 

earlier time of depletion at some locations. For the 0.85 albedo series, Figure 4-20a 

suggests seeding the SWE threshold between 1 cm and 1.5 cm where the snow melts 

at day 145. The SWE distributions marked with box-plots in Figure 4-14c, however, 

shows that these thresholds need to be expanded to consider the distribution of SWE 

values about the mean. Therefore, given these seed values and box-plots, a fair 

comparison between the 0.80 albedo series and the 0.85 albedo series considers SWE 

thresholds from 0.00 cm to 3.00 cm in 0.25 cm increments. 

 With the TOPLATS SWE maps converted to TOPLATS categorical maps 

using the SWE threshold, quantitative map comparison analysis, using the methods of 

Section 3.2, is possible. The first two plots in Figure 4-22a through Figure 4-22f (i) 

compare MODIS and TOPLATS proportion SCA and (ii) show the proportion of 

agreement between the two maps, both due their initial arrangement and in 

consideration of a random relocation of cells, for a 0.80 albedo. The first two plots in 

Figure 4-23a through Figure 4-23f show similar information for a 0.85 albedo 
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simulation. Both Figure 4-22 and Figure 4-23 only show select plots relevant to their 

respective albedo values. 

The proportion SCA comparison in Figure 4-22a, which employs the 0.00 cm 

SWE threshold seed value inferred from Figure 4-20a shows the 0.80 albedo 

TOPLATS series over predicting for the MODIS observations. In Figure 4-22b, the 

0.75 cm SWE threshold model data gets closer to the TOPLATS data, especially at 

the beginning and end of day 141. The modeled proportion of SCA at the end of day 

141 in Figure 4-22c, for a 1.00 cm SWE threshold, lies the closest to the measured 

SCA data than that in any marker shown in Figure 4-22 – but the prediction of SCA 

on day 143 is too close to zero compared to a measurement of  0.40 proportion SCA. 

Therefore, based on the SCA and proportion of agreement plots alone, the 0.75 cm 

SWE threshold series shown in Figure 4-22b best predicts the MODIS measurements 

for the 0.80 albedo. Figure 4-23, similarly, shows that the 2.50 cm SWE threshold 

series (Figure 4-23d) best predicts the MODIS observations for the 0.85 albedo. 

Figure 4-24 shows the absolute maximum error in the 0.80 series is higher than then 

the 0.85 series on every day except for day 142. Overall, the 0.85 albedo series with a 

2.50 cm SWE threshold best matches the MODIS measurement scenes. 

This section focuses on SCA and proportion of agreement results. The 

following section discusses the Kappa statistics for the 0.80 albedo results (Figure 

4-22) and 0.85 albedo results (Figure 4-23). 
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Figure 4-22a 0.00 cm SWE Threshold (Year 2002, 0.80 Albedo) 
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Figure 4-22b 0.75 cm SWE Threshold (Year 2002, 0.80 Albedo) 
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Figure 4-22c cm 1.00 SWE Threshold (Year 2002, 0.80 Albedo) 
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Figure 4-22d 1.25 cm SWE Threshold (Year 2002, 0.80 Albedo) 
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Figure 4-22e 1.50 cm SWE Threshold (Year 2002, 0.80 Albedo) 
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Figure 4-22f 2.50 cm SWE Threshold (Year 2002, 0.80 Albedo) 

Figure 4-22 Year 2002 0.80 Albedo Map Comparison for the Entire Watershed (Zone 0) 
Select plots from a complete set of plots for SWE thresholds from 0.00 to 3.00 cm. 
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Figure 4-23a 0.00 cm SWE Threshold (Year 2002, 0.85 Albedo) 
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Figure 4-23b 1.50 cm SWE Threshold (Year 2002, 0.85 Albedo) 
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Figure 4-23c 2.25 cm SWE Threshold (Year 2002, 0.85 Albedo) 



 

 

 

 142 

 

Figure 4-23d 2.50 cm SWE Threshold (Year 2002, 0.85 Albedo) 
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Figure 4-23e 2.75 cm SWE Threshold (Year 2002, 0.85 Albedo) 



 

 

 

 144 

 

Figure 4-23f 3.00 cm SWE Threshold (Year 2002, 0.85 Albedo) 

Figure 4-23 Year 2002 0.85 Albedo Map Comparison for the Entire Watershed (Zone 0) 
Select plots from a complete set of plots for SWE thresholds from 0.00 to 3.00 cm. 
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Figure 4-24 Year 2002 0.80 Albedo and 0.85 Albedo SCA Error 
SCA error from both the 0.80 albedo 0.75 SWE Threshold series and the 0.85 albedo 2.50 
SWE Threshold series. 
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4.3 MODEL CONFIRMATION 

Section 4.2 describes results from selecting a SWE threshold for each of two snow 

albedo values using only (a) overlaying, filtered model and measurement SCA plots 

and (b) plots of the proportion of agreement between the two map series to confirm 

the best quality observed scenes shown in Figure 4-21. This study should consider (c) 

the Kappa statistics, (d) the effect of elevation on the overall map comparison, and (e) 

the uncertainty in the MODIS measurements for scenes with less than 100% coverage 

in order to both calibrate the model and use the best MODIS measurements to 

evaluate the model performance. This section completes item c and item d for the 

select series from Section 4.2.3, plots filtered, modeled, and measured maps side by 

side, and shows the zone-specific comparison statistics all in order to determine if a 

time series of MODIS scenes can be used to evaluate the TOPLATS model 

performance. The section skips item e because the given filters based on QA and 

collection time in the 2002 reduced the series of measurement scenes to those with 

only 100% available coverage. This completely cloud-free series raises this study’s 

overall confidence in the measurement series to report truth and leaves confirmation 

subjective to the QA information in each scene, which ranges from 0.50 to 0.92 

(Figure 4-21), side-by-side maps, and elevation information. 

 Figure 4-25 and Figure 4-26 separate the series of statistics in Figure 4-22b 

and Figure 4-23d into four elevation zones. The SCA plots in these series show SCA 

agreement across the watershed as a whole agrees much better than the SCA on a 

zone-basis. This explains the poor Kappa and Klocation values in Figure 4-22b and 

Figure 4-23d showing the watershed composite results. Even though the proportion of 
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agreement on a watershed basis is good; the Kappa statistics reveal poor agreement in 

by pixel-pixel comparisons. The zone statistics in Figure 4-25 and Figure 4-26 show 

the Kappa values are best for zone one at the beginning of the melt period and that the 

0.80 simulation confirms the start and middle of the melt period across zones two 

through four better than the 0.85 series.  

Figure 4-27 shows the two series side by side with MODIS observations. The 

maps illustrate the result from Kappa statistics, both across the watershed and 

separated into zones, that TOPLATS poorly confirms MODIS results. Further, the 

figure reiterates that TOPLATS relies primarily on DEM information and shows that 

additional physical processes should be incorporated, or further emphasized, in order 

for TOPLATS to well confirm MODIS results. 
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Figure 4-25a Zone One (year 2002, 0.80 albedo, 0.75 cm threshold) 
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Figure 4-25b Zone Two (year 2002, 0.80 albedo, 0.75 cm threshold) 
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Figure 4-25d Zone Three (year 2002, 0.80 albedo, 0.75 cm threshold) 
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Figure 4-25d Zone Four (year 2002, 0.80 albedo, 0.75 cm threshold) 

Figure 4-25 Year 2002 0.80 Albedo, 0.75 cm SWE Threshold for Four Elevation Zones 
Select plots from a complete set of plots for SWE thresholds from 0.00 to 3.00 cm. 
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Figure 4-26a Zone One (year 2002, 0.85 albedo, 2.50 cm threshold) 
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Figure 4-26b Zone Two (year 2002, 0.85 albedo, 2.50 cm threshold) 
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Figure 4-26d Zone Three (year 2002, 0.85 albedo, 2.50 cm threshold) 
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Figure 4-26d Zone Four (year 2002, 0.85 albedo, 2.50 cm threshold) 

Figure 4-26 Year 2002 0.85 Albedo, 2.50 SWE Threshold for Four Elevation Zones 

Select plots from a complete set of plots for SWE thresholds from 0.00 to 3.00 cm. 
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MODIS 
TOPLATS 

A = 0.80; SWEt = 0.75 cm A = 0.85; SWEt = 2.50 cm 

 

 

 

Figure 4-27 SCA Maps for Measured, and Two Sets of Model SCA Results 
Continued on the following pages, the 15 MODIS scenes selected for 2002 in Figure 4-6 
(column one) are shown to the left of TOPLATS results for an albedo (A) of 0.80 and a SWE 
threshold (SWEt) of 0.75 cm (column two) and the TOPLATS results for an albedo of 0.85 
and a SWE threshold of 2.50 cm (column three). 
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CHAPTER 5: CONCLUSIONS 

This chapter:  

1. Summarizes accomplishments 

2. Summarizes findings and implications 

3. Critiques the methods and describes the value of the data 

4. Suggests future work 

5.1 ACCOMPLISHMENTS 

In summary, the results of this study accomplished the objectives in Table 3-1 by 

developing and executing scripts and procedures to 

1. Batch-manipulate MODIS granules for the UKRW in order to make MODIS 

data comparable, on a snow/snow-free basis, to categorical data in the 

TOPLATS coordinate system (Section 3.3). This data-management processes 

included developing a swath-to-grid data conversion procedure, which 

included a resamping algorithm with a modal decision (Section 3.3.1.2.3) used 

to assign categories with duplicate values. 

2. Create visualizations of MODIS and model maps. These maps (frames of 

series) were displayed side-by-side and in overlays for visual comparison. The 

processes considered quality assurance information in the MODIS product 

itself and reviewed the association of quality information with the time of day 

and time of year measurements were collected. 

3. Quantitatively compare maps, both spatially and temporally, using the simple 

proportion of agreement statistic, Kappa statistics, depletion curves, and 
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probability as a measure of uncertainty in cloud-obscured — or otherwise 

unavailable areas of — measurement maps. This process shows the value of 

Kappa as a summary statistic of the agreement between map two series. These 

procedures are now available to be updated for the analysis of other 

watersheds with other categories. 

5.2 FINDINGS AND IMPLICATIONS 

5.2.1 Usefulness of MODIS for Modeling The UKRW  

Results confirm Déry et al. (2004) concerns that clouds hinder MODIS from making 

complete measurements in the UKRW. MODIS snow cover maps (Figure 4-4) and  

supporting quality assurance information show that clouds, during the winter-spring 

snowmelt of the year 2000 in particular, obscure the MODIS view of the ground 

during three and a half days between noon (UTC) at day 151 and the end of day 154 

accounting for half the seven day melt period. The results also show that, in 

conjunction with cloud coverage, other factors help determine the usability of 

MODIS measurements. These factors include MODIS supporting quality assurance 

information described by NSIDC (2006) to create the Snow Cover PixelQA eight-bit 

layer — invalid data, broken detector bands, obtuse sensor angles, ―highly uncertain‖ 

band 6 radiance, unusable sub-calculations — and also include time-of-day 

information. A combination of filters, described in Chapter Four, sift out the most 

usable MODIS measurements.  

 This research also agrees with Déry et al. (2004) in that both Level Two and 

Level Three MODIS results do not directly confirm SWE maps. For Level Two 
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measurements, MODIS does not measure SWE nor does MODIS report results in a 

grid format. For Level Three MODIS measurements, while they are more readily 

projected into grids because they are delivered in the GCS, the temporal composite 

inherent in them is longer than the melt-period in the UKRW. Level Three 

measurements, therefore, are better suited to confirm snow predictions of longer melt 

periods occurring across larger, global regions like the entire Kuparuk River 

watershed. For Level Two MODIS measurements, however, the methods in this study 

in-part overcomes these problems through the S2K procedure and a modal decision to 

generalize multi-category swaths into grids containing three category groups of cells: 

snow, snow-free, and unavailable. (For these groups, the snow group includes all 

―frozen‖ locations including ice, and the snow-free group includes both snow-free 

land and water.) Plots of MODIS and TOPLATS maps side-by-side (e.g. Figure 4-27) 

show that, despite factors that limit the spatiotemporal measurement information in 

MODIS measurements, MODIS data can reveal sub-watershed problems with a 

model during relatively cloud-free years. In the case of TOPLATS predictions for the 

year 2002, Figure 4-27 suggests TOPLATS relies on DEM information at, perhaps, 

the expense of other physical factors and other processes that need to be determined. 

This study’s confidence in this conclusion is limited largely by the measurement 

quality assurance proportions in these cloud-free scenes, which range from 0.57 to 

0.94, with an average proportion of 0.73 good quality cells. 

This study can make the conclusion that image spectrometers on sun 

synchronous satellites like Aqua and Terra have the spatiotemporal resolution to 

monitor and confirm SCA predictions for short snow melt periods in watersheds that 
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are a similar size as the UKRW. Improvements in the quality and quantity of MODIS 

measurements during melt periods over areas like the UKRW, however, are limited 

by both natural (cloud coverage) and technological (small number of satellites and 

broken sensor) factors. 

5.2.2 Quantifying Uncertainty In Scenes Containing Unavailable 

Measurements 

Addressing the attempt to use probability to express measurement uncertainty 

(Section 2.4.3), this study defines unavailable locations in scenes as those that are 

cloud obscured or otherwise deemed poor quality by MODIS (Chapters Three and 

Four). Determining the probability distribution of the proportion of SCA for scenes 

containing unavailable measurements, based only on known information, only 

slightly increases this study’s confidence in confirmation results because most scenes 

with any unknown coverage are generally filtered out based on time of day and 

quality assurance information before they can be considered. The final year 2002 

series analyzed in Chapter Four, for example, contains zero cloud-obscured areas. 

In summary, after filtering out MODIS data based on a combination of quality 

assurance layers inherent to the HDF-EOS granules, observed cloud coverage, and 

time of day, for each of three years, this study found only a small number of — and 

sometimes no — remaining usable scenes during the melt period to confirm 

TOPLATS results. In the usable scenes, only a marginal amount of unavailable pixels 

were left which could bear any impact on this study’s conclusions for the UKRW. 
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5.2.3 Applicability of Kappa Statistics 

With a limited sample size, the Kappa statistic and Kappa statistic variants plotted 

over the melt period do not indicate much more than the proportion of agreement 

between measured MODIS SCA measurements and inferred TOPLATS SCA model 

results over the same time period, but they do show some useful information. Three 

figures — (1) plots of Kappa comparison statistics in Figure 4-22b for the 0.80 

albedo, 0.75 SWE threshold series, (2) plots of Kappa comparison statistics in Figure 

4-23d for the 0.85 albedo, 2.50 cm SWE threshold series, and (3) the side-by-side 

measured and modeled results in Figure 4-27 — show the usefulness of Kappa 

statistics in comparison to the proportion of agreement. The remainder of this section 

reviews these plots from the beginning of the melt period to the end of the melt 

period. The beginning of the melt period for the 0.85 series shows the most useful 

information. 

During the beginning of the melt period, from day 138 through day 140, 

shown in the first three rows of images in Figure 4-27, the 0.80 simulated series 

remains blanketed with snow while MODIS and the 0.85 simulated series both report 

snow depletion. In this beginning-of-melt period, therefore, the Kappa statistic cannot 

be calculated for the 0.80 series because there are uneven number of categories 

between the measured and modeled maps. There are always two categories in the 

measured data and only one category — snow — in the modeled data. In this case, 

the proportion of agreement can be considered the ―alternative‖ Kappa. In the 0.85 

series alternatively, two categories exist in both maps in each of the three early 

scenes. Kappa reveals, in this case, more than the proportion agreement does. While 
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the proportion of agreement shows relatively high values, and the proportion SCA 

points are close together in the SCA versus time plot, the low Kappa values reflect 

problems in the model maps. The side-by-side plots in Figure 4-27 of measured and 

modeled data for the 0.85 albedo series confirm the problems detected by the Kappa 

summary statistic. On the first scene shown in this plot (Day 138 at 00:05), for 

example, while the bulk of the maps look the same where snow covers the ground, 

the snow-free areas are in almost completely different locations. The two scenes from 

day 140 shows similar problems not revealed by the proportion of agreement. On all 

three scenes, Klocation is always lower than Khisto indicating that the spatial 

problems in the model are due to location problems more than quantity problems. In 

other words, the quantity of pixels in each of the two categories predicted by the 

model contributed less to the poor Kappa statistic than the location of the those 

pixels. The high maximum success rate of agreement Pmax and the relatively low 

proportion of agreement (Equation 2-8) are the contributing factors to the lower 

Klocation. 

During the middle of the melt period from day 141 through day 143, low and 

negative Kappa values confirm what the proportion of agreement already shows and 

do not reveal much more. When Kappa falls to values between 0.50 and -0.50 in the 

0.80 albedo series for example, the proportion of agreement fall to values between 

0.80 to 0.30. The 0.85 Kappa values show similar information. In both cases, 

however, the proportion of agreement and the Kappa values show more than the side-

by-side proportion SCA plot where the proportion SCA values between the model 

and the measurements are relatively close. The Klocation and Khisto values in both 
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the 0.80 albedo series and the 0.85 albedo series show that, like at the beginning of 

the melt, spatial location errors influence the poor proportion of agreement and poor 

Kappa values in comparison to the influence of the quantity of cells in each category. 

This explains the close proportion of SCA results. 

At the end of the melt period, from day 144 through day 145, the Kappa 

statistics are the least relevant and provide little information compared to the 

proportion of agreement. During these times, like in the beginning of the melt period, 

there are an uneven number of categories between the model maps (all snow-free in 

this case) and the MODIS maps. Klocation demonstrates, like it did in the beginning 

of the melt, the difficulty the model has in predicting patchy snow cover during the 

melt period (Figure 5-1). 

 

Figure 5-1 Patchy Snow in the Kuparuk River 
TOPLATS poorly predicts the patchy location of where snow melts, as shown in this south-
facing photo, picture toward the end of the melt period. This photo was taken by G. W. Kling 
from the University of Michigan on May 28, 1996 (Déry et al. 2004). 
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5.3 CRITIQUE AND FUTURE WORK 

In this research, model output is compared to measurements in the model coordinate 

system, Clark 1866 UTM Zone 6. The sensitivity of the error of measurement, 

however, has not been propagated through the intermediate Albers Equal Area 

projection. For interest areas that are smaller than, or on the order of magnitude in 

size of the resolution of the MODIS sensor (in this case 500 meters), the swath to grid 

operations could be subject to reduced comparison accuracy. A sensitivity analysis 

should be conducted in the future. One way to overcome the intermediate projection 

is to test other GIS products in performing directional transformations from GCS to 

UTM Zone 6 for the UKRW data. 

 Another piece of information that could be used is the MODIS Collection 5 

fractional snow cover information. Besides reporting quality assurance information 

and Boolean snow information compared to unavailable information, fractional snow 

information could show how close a model might be in predicting snow cover over a 

watershed.  

5.3.1 Other Statistics 

This study’s observations call for a similar analysis in a larger area with a longer melt 

period to determine the applicability of Kappa statistics over in these kinds of areas 

and timeframes. The entire Kuparuk River could be a candidate for such a study. 

These two factors — space and time, however, are not dependent on each other and 

an analysis of Kappa on the comparison between MODIS measurements and spatially 

simulated results over either a larger area or a longer time frame would increase the 
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sample of cells and make the Kappa statistics more relevant to review than they are in 

this research. Alternatively, several watersheds the size of the UKRW with a similar 

snow melt time frames as the UKRW could be reviewed in tandem to further 

determine the applicability of the Kappa statistics. 
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Other statistics could be used in a future analysis including a ratio of Kappa to the 

proportion of agreement. Simplifying this ratio where Kappa is defined by Equation 

2-8 

 
 
𝐾

𝑃𝐴
=

1 − 𝑃𝐸/𝑃𝐴

1 − 𝑃𝐸
 

5-1 

This ratio could show analysts if category location problems or category quantity 

problems in the model results could be present where the proportion of agreement 

between the two maps in the comparison fails to show any, or few, problems. This 

ratio is driven by the proportion of expected agreement due to a random relocation of 

cells (PE) over the proportion of agreement (PA). As PE gets higher in comparison to 

PA, analysts can expect the K/PA ratio to get lower indicating Kappa is a stronger test 

then the Proportion of Agreement. In future work, calculating this ratio for several 

watersheds like the UKRW during like snow-melt periods could reveal the potential 

of the Kappa statistic as an objective function for model evaluation. 

 Another statistic that could be evaluated is a fuzzy Kappa statistic (Dou et al. 

2007; Hagen 2002). Fuzzy statistics summarize individual statistics taken at various 

resolutions. For example, a sixty-four-pixel square map could be composited into a 

forty-nine pixel square map, and these two maps could be compared in a fuzzy 

analysis. Most of the time, composites are conducted irrespective of physically-

distributed features. If physical features are believed to influence criteria, however, 

perhaps the compositing process inherent in reducing the resolution of an image could 

be taken over physical features instead of in a grid. In this case, a triangular irregular 

network (TIN) could be used in place of a grid (Vivoni et al. 2005). The following 
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question could be addressed for a simple physical feature like DEM in determining if 

this feature influences snowmelt: Given two fuzzy Kappa series (a) Kappa statistics 

for maps with increasingly coarse pixel resolution and (b) Kappa statistics for maps 

with increasingly coarsely-defined elevation zones, can comparison of these two 

series quantify the dependence of a distributed snow-cover model on elevation at a 

particular interest area? 

5.3.2 Variable Time-Rate Composite MODIS Data 

This research, by employing Level Two MODIS data, highlights the fundamental 

problem with Level Three MODIS data described by Hall (2001, pers. com. 2006) in 

discussed in Chapter Two: The information in Level Three MODIS data is 

composited over an arbitrary fixed eight-day time interval. While this temporal 

composite potentially ―eliminates unknown‖ measurement information at locations 

from cloud obscured and other unavailable regions in individual scenes, it (a) could 

hide sub-scene changes and physical process and (b) could composite information 

where no compositing is needed — between scenes with 100% measurement 

coverage. These problems from eight-day temporal compositing could greatly hinder 

the ability of Level Three MODIS data to evaluate the capabilities of a model during 

a relatively short time period. In the example of the UKRW where snow melts in less 

than eight days, the Level Three MODIS data is useless. Level Two data, in 

comparison however, is hindered by clouded and poor quality measurements. In 

conclusion, a variable time-rate composite could be created out of Level Two MODIS 

data that composites sequential scenes over variable time lengths. The criteria for 
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determining the time length could be spatial measurement availability and quality 

assurance information from the MODIS product. In an extreme example, if a ten-

scene series contains all unavailable data during scenes one, two, four, five, seven, 

eight, and ten and all cloud-free, high quality scenes on days three, six, and nine, a 

variable time-rate composite could consist of three composites for (1) days one 

through four, (2) days five through seven, and (3) days eight through ten. In this 

example the composites last for four, three, and three days each with periods of no-

data divided as evenly as possible between them. Similar to a variable bit-rate (VBR) 

music file on a computer (like modern mp3 file formats) where file size is optimized 

by varying the bit-rate dependent on the waveforms in a song, variable time-rate 

composites would optimize the useful information in a series of MODIS 

measurements for a given interest area. The composite scenes in such a series could 

depend on user-specified thresholds such as maximum number of scenes in a 

composite, minimum number of scenes in a composite, maximum time period of a 

composite, minimum time period of a composite, minimum proportion of available 

information in an interest area, and the product of the minimum probability of 

certainty – measured across time – with the number of cells in a scenes. Note that 

―cells‖ could be determined on a pixel-basis, or on a vector basis, grouped by 

physical areas like DEM as described in suggestions for Kfuzzy statistic analysis. 

5.3.3 Comparing Data in Swath Format 

In the case of UKRW, the model is based on DEM data in UTM Zone 6. Comparing 

measurements in the raster coordinate system of the model is the most common 
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method of using MODIS data to confirm model results. This way is usually used 

because common MODIS products, such as Level Three products, are already 

provided in grid formats that may easily be projected using GIS packages like those 

reviewed in Chapter Two. These packages, which did not work well to batch-convert 

Level Two MODIS data, are made specifically to convert Level Three data into UTM 

zone data. In future work, a different method could be used to confirm model results. 

Point data could be extrapolated from the raster model data and compared more 

directly with the measurements. In this analysis, the model would be used to produce 

results in the measurement format rather than transforming the measurements to the 

model format. It would reduce the propagation of measurement uncertainty and error 

through multiple projections. It would, however, also create the need to spatially 

weight Kappa statistic values according to point density. The weighting algorithm 

would need to be developed in future work. 

 Another way to compare the model and measurement maps, both given SCA 

categories (opposed to SCA and SWE categories) could be to compare raster model 

results with swath points projected, without bitmap interpolation, in the model 

projection system. Maps of these comparisons, visually, would contain measurement 

swath points overlaid on simulated model cells with color-coded categories. A raster-

point comparison, like this, would enable use of hdf-eos information without 

geographic transformations that reduce measurement certainty. The analysis would 

require maximum distances to determine the influence of a measurement point on the 

simulated model cell. For example, the prediction of a model cell could be compared 
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to the data points within it, or with data points in a region nearby. This region could 

be defined by a distance or, perhaps, a physical feature. 

5.3.4 Revaluate HEG-TOOL 

Raytheon Company updated HEG-TOOL during the 2007-2008 International Polar 

Year since it was first evaluated for converting MOD10_L2 and MYD10_L2 swath 

graduals into projected grids. One notable update, the ability of HEG-TOOL to 

project data in the Albers Equal Area, could possible solve the batch-conversion 

problems described in Chapter Three. HEG-TOOL, thus, should be revaluated. If 

HEG-TOOL no longer halts during conversion of some HDF-EOS products, it could 

be used in place of a subset of the methods for converting swaths to grids created in 

this thesis. 

5.3.5 Select Only High Quality Scenes Within Sub Time Intervals 

Section 4.1 narrowed the selection of scenes down to morning scenes with a 0.50 or 

greater proportion of good quality swath points. In Section 4.2.1, the morning scenes 

alone showed that the 0.80 albedo simulation and the 0.85 albedo simulation 

performed better than the 0.75 series in terms of matching normalized SWE values to 

SCA values. Quality information can further narrow the selection of scenes to 

evaluate the model. For example, at the end of day 136, Figure 4-21 shows the point 

with 0.87 QA is more trustworthy than the point with 0.79 QA; and at the end of day 

137, this study can have the most confidence in the scene with 0.84 QA. The 

candidate model that best matches the highest quality measurements within a given 

time interval could be identified. 
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5.4 RESEARCH SUMMARY 

In summary, MODIS Level Two data and the Kappa statistic could be used in 

evaluating spatiotemporally distributed models. For model calibration, it would be 

necessary to calculate an objective function from the time series of different Kappa 

statistics. The methods in this study, however, would give more robust results in a 

larger watershed with a longer melt period: The duration and characteristics of the 

snow melt period in the UKRW proved to be problematic in terms of comparison 

with MODIS. The snow disappears in about a week, and in two of the three years the 

weather was cloudy during the entire period. So there were virtually no usable 

MODIS scenes available in those years. Even in the year 2002, which had a 

comparatively cloud-free melt period, other factors rendered a fraction of the MODIS 

scenes unusable. At the outset  of this study, the selection of the UKRW with an area 

of 148 km
2
 compared to a nominal swath resolution of 500 m seemed like it would 

provide enough data for a good comparison of maps and answer the conclusion that 

MODIS measurements ―do not provide the location covered by snow within a single 

grid cell‖ (Déry et al. 2004) with the development of a a swath to grid conversion 

methodology. The time short melt period, ―the persistence of low-level clouds in the 

Arctic during spring,‖ and other problems with the data, however, proved to be 

greater limiting factors than problems with spatial resolution and comparing swaths to 

grids.  

Level Two MODIS data best describe snow-melt situations with slightly 

longer melt periods and larger areas than the UKRW. Level Two data still, however, 

show more than the eight-day composite Level Three data. Funding for more 
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satellites and funding to repair existing satellite sensors would increase the chance of 

collecting good quality coverage data. A report generated by an online web-service 

found toward the end of this research called ―Product Quality Documentation for 

MOD10_L2, C4,‖ located at the ―MODIS Land Quality Assessment web site‖ 

(NASA 2009), confirms this study’s findings on the usability of data collected 

between the end of April in the year 2002 (day 120) and the end of the year 2002 (day 

365). For these times, ―Snow cover is mapped with reasonable accuracy. However, 

snow/cloud confusion and false snow detection do occur in some situations. Analysis 

of inaccuracies in snow mapping continues. Discretion should be exercised in use of 

this product.‖ The report warns further that, ―Snow mapping errors may occur on the 

perimeters of snow fields, cloud edges, and water boundaries,‖ and the data is ―being 

investigated‖ for further errors. For Collection Five data, not reviewed in this report, 

the web service reports similar problems. Additionally, while the Collection Five 

report confirms the data collected by MODIS during the 2002 UKRW melt has been 

―inferred‖ to pass a science quality test, the report marks the times right before (April 

14 at day 104 through April 15 at day 105) and right after (three hours on June 19 at 

day 170) the winter-spring melt-window as ―suspect‖ for quality errors. 

The tools and methods in this study are now available for other researchers 

wishing to create maps from Level Two MODIS swath granules, select the MODIS 

scenes most useful for model evaluation, compare MODIS maps with model maps 

using Kappa statistics, and compare MODIS maps with model maps using the 

proportions of available (visible) snow coverage in each MODIS scenes as a measure 

of uncertainty for the snow coverage in cloud obscured, or otherwise unavailable, 
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areas of measurement maps. The Kappa statistic in this study shows small amount of 

information beyond the proportion of agreement statistic in the map comparison of 

the year 2002 data. Evaluation of a model that directly outputs SCA instead of SWE, 

could further reveal the usefulness of the Kappa statistic in map comparison for 

evaluation of a spatially distributed snow-melt models. Exploration of the Kappa 

family of statistics, overall, indicate that they are potentially useful in creating 

objective performance measures of spatially distributed models, and might eventually 

be useful for model calibration.
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APPENDIX A. UNITED STATES GLOBAL CHANGE 

RESEARCH PROGRAM ORGANIZATIONS 

Agency for International Development  

Dept. of Agriculture  

Dept. of Commerce, Natl. Oceanic & Atmospheric Admin.  

Dept. of Defense  

Dept. of Energy  

Dept. of Health and Human Services, National Institutes of Health  

Dept. of State  

Dept. of Transportation  

Dept. of the Interior, US Geological Survey  

Environmental Protection Agency   

National Aeronautics & Space Administration  

National Science Foundation  

Smithsonian Institution 

  

http://www.usgcrp.gov/usgcrp/agencies/aid.htm
http://www.usgcrp.gov/usgcrp/agencies/usda.htm
http://www.usgcrp.gov/usgcrp/agencies/noaa.htm
http://www.usgcrp.gov/usgcrp/agencies/defense.htm
http://www.usgcrp.gov/usgcrp/agencies/doe.htm
http://www.usgcrp.gov/usgcrp/agencies/nih.htm
http://www.usgcrp.gov/usgcrp/agencies/state.htm
http://www.usgcrp.gov/usgcrp/agencies/dot.htm
http://www.usgcrp.gov/usgcrp/agencies/interior.htm
http://www.usgcrp.gov/usgcrp/agencies/epa.htm
http://www.usgcrp.gov/usgcrp/agencies/nasa.htm
http://www.usgcrp.gov/usgcrp/agencies/nsf.htm
http://www.usgcrp.gov/usgcrp/agencies/smithsonian.htm
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APPENDIX B. PROJECTED MODIS MEASUREMENTS 

See online images at http://choy.me/david/research.  

  

http://choy.me/david/research
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APPENDIX C. SOFTWARE REQUIREMENTS 

The following software is required to repeat or modify the methods described in 

Chapter Three and present the results in Chapter Four. 

1. Microsoft Windows XP 

2. Mathworks MATLAB® 7 with HDF-EOS support 

3. Python 4 for Windows and Pythonwin 

4. ESRI ArcGIS 9.1 or 9.2 with the Spatial Analyst extension 
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APPENDIX D. COMPARISON OVERVIEW DATAFLOW 

 

Local File System

Receive
Order

Information
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APPENDIX E. MODIS SWATH SCENE OBJECTS 

Scene

(HDF-EOS Swath Band)

Time

(In File Name)

Extend

(Geolocation Band)

Snow Cover

(Data Field Band)

Snow Cover

(Swath Data Grid)

Quality Assesment

(Swath Data Grid)

Reduced Cloud

(Swath Data Grid)

Fractional Snow Cover

(Swath Data Grid In 

Collection 5 Only)

Latitudes

(Swath Geolocation Grid)

Longitudes

(Swath Geolocation Grid)

Satellite

(Defined in DAAC Query)
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APPENDIX F. GLOBAL CHANGE ONLINE RESOURCES 

Agency Global Change Website Information 

Agency for 

International 

Development  

http://www.usaid.gov/our_work/environment/climate 

 

Dept. of Agriculture  http://www.ars.usda.gov/main/main.htm 

Dept. of Commerce, 

National Oceanic & 

Atmospheric Admin. 

(also, National 

Institute of Standards 

and Technology)  

http://www.climate.noaa.gov/ 

Dept. of Defense  http://www.crrel.usace.army.mil/ 

Dept. of Energy  http://www.science.doe.gov/ober/CCRD_top.html 

Dept. of Health and 

Human Services, 

National Institutes of 

Health  

http://www.cancer.gov 

 

Dept. of State  http://www.state.gov/g/oes/climate/ 

http://usinfo.state.gov/gi/global_issues/climate_change.html 

Dept. of 

Transportation  

http://climate.volpe.dot.gov/ 

Dept. of the Interior, 

US Geological 

Survey  

http://geochange.er.usgs.gov/ 

Environmental 

Protection Agency   

http://cfpub.epa.gov/gcrp/ 

National Aeronautics 

& Space 

Administration  

http://science.hq.nasa.gov/earth-sun/science/water.html 

National Science 

Foundation  

http://www.nsf.gov/dir/index.jsp?org=GEO 

Smithsonian 

Institution  

http://www.serc.si.edu/research/searchresults.jsp?themeId=21 

 

  

http://www.usaid.gov/our_work/environment/climate
http://www.ars.usda.gov/main/main.htm
http://www.climate.noaa.gov/
http://www.crrel.usace.army.mil/
http://www.science.doe.gov/ober/CCRD_top.html
http://www.cancer.gov/
http://www.state.gov/g/oes/climate/
http://usinfo.state.gov/gi/global_issues/climate_change.html
http://climate.volpe.dot.gov/
http://geochange.er.usgs.gov/
http://cfpub.epa.gov/gcrp/
http://science.hq.nasa.gov/earth-sun/science/water.html
http://www.nsf.gov/dir/index.jsp?org=GEO
http://www.serc.si.edu/research/searchresults.jsp?themeId=21
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APPENDIX G. SWATH TO KUPARUK (S2K) CODE 

Please contact the author for (a) python code for projecting, masking, and converting 

maps to little-endian floating point format and (b) MATLAB® code for converting 

HDF-EOS files to ASCII files. 
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APPENDIX H. COMPARING MODEL AND MEASUREMENTS 

Please contact the author for MATLAB® code for creating the figures in this thesis 

and comparing model and measurements. 
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GLOSSARY 

Aqua EOS satellite launched in. Collects MODIS data. To compliment Terra, Aqua 

crosses the equator in the afternoon. 

(http://aqua.nasa.gov/) 

Advanced Very High Resolution Radiometer (AVHRR) Instrument aboard POES. 

Catchment-Based Land Surface Model (CLSM) A catchment-based model used by 

Koster et al. (2000) and Ducharne et al. (2000) in a general circulation model. 

Collection, MODIS A MODIS collection of data sets. Collection 5 includes 

fractional snow coverage. 

Confusion Matrix (or Contingency Table) Shows agreement and disagreement 

between categorical results. The transformed confusion matrix with only two 

categories shows type 1 errors (producer risk) and type 2 errors (consumer 

risk). Confusion matrix has been used in computer science for testing data 

mining algorithms. 

Distributed Active Archive Center (DAAC) Center for storing and distributing 

HDF-EOS data. The NSIDC DAAC stores relevant snow and ice MODIS 

measurements. 

Enhanced Thematic Mapper Plus (ETM+) LANDSAT Sensor 

Earth Observing System (EOS) NASA satellite program for measuring long-term, 

global changes (http://eospso.gsfc.nasa.gov/) 

Geoproccessor The fundamental ArcGIS programming object 

(http://webhelp.esri.com/arcgisdesktop/9.2/pdf/Geoprocessor.pdf) 

http://aqua.nasa.gov/
http://eospso.gsfc.nasa.gov/
http://webhelp.esri.com/arcgisdesktop/9.2/pdf/Geoprocessor.pdf
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Geostationary Operational Environmental Satellite Program (GOES) Satalite 

program currently operated by NOAA, GOES refers to the satellite program 

and the satellites themselves. GOES satellites orbit the earth at the speed of 

the earth’s rotation, enabling them to constantly hover above a single point on 

the earth. 

Granule A single HDF-EOS dataset taken at a set time. Represents a single MODIS 

―scene‖ or ―snapshot.‖ 

Granularity Increasing spatial resolution, in context with spatiotemporal data. 

Grid The division of a quantity (in this study, usually space measured in meters), or 

multiple quantities (like quantities on the axis of a plot), into similar, smaller 

quantities. (A grid can also refer to different types of charts, like a comparison 

chart.) 

griddata.m MATLAB® script used to fit swath surfaces to evenly spaced grids. 

Earth Observing System (EOS) Project developed by NASA to study the earth. 

Includes the launch of Aqua and Terra. 

(http://eospso.gsfc.nasa.gov/)  

Feature (called Feature Class by ESRI) Either a point, line, polygon, or pixel where 

the term line is generalized to include Bezier curves. ESRI excludes pixels 

from their definition of a feature and groups features into classes that can be 

assigned to layers of a map. ArcMap users cannot mix features within a layer, 

but can overlay layers in a single map. Three dimensional and four 

dimensional measurements can theoretically be called features. In practice 

http://eospso.gsfc.nasa.gov/
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however, such measurements are usually described by composite layers across 

time series of maps. 

HDF (Hierarchal Data Format) A data storage file format developed by NCSA. 

(http://www.hdfgroup.com/) 

HDF-EOS Extension of the HDF file format used to store EOS data. Geographic data 

is stored in Swath, Grid, or Point formats in HDF-EOS files. 

(http://hdf.ncsa.uiuc.edu/hdfeos.html) 

Interactive Multisensor Snow and Ice Mapping System (IMS) Software written by 

NOAA to create 25km, daily snow and ice data products. 

http://www.ssd.noaa.gov/PS/SNOW/ims.html 

MS2GT The MODIS Swath-to-Grid Toolbox 

(http://nsidc.org/data/modis/ms2gt/) 

Land Surface Model (LSM) A model that yields results that are distributed in a 

projected, Cartesian grid. 

Moderate Resolution Imaging Spectroradiometer (MODIS) The tool that 

measures snow albedo, among other qualities, aboard AQUA and TERRA. 

Nadir The direction directly below an observer, opposite from the zenith. In the case 

of a satellite, the direction towards the earth. 

National Aeronautics and Space Administration (NASA) U.S. government agency 

that both observers the earth and explores space. Developed the HDF-EOS 

format based on the NCSA HDF format. 

http://www.hdfgroup.com/
http://hdf.ncsa.uiuc.edu/hdfeos.html
http://nsidc.org/data/modis/ms2gt/
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National Center for Supercomputing Applications (NCSA) Developed the HDF 

format. 

(http://www.ncsa.uiuc.edu/)  

National Snow and Ice Data Center (NSIDC) Maintains a DAAC of MODIS snow 

and ice data in HDF-EOS format. 

(http://nsidc.org/) 

National Oceanographic Are Agency 

Polar Operational Environmental Satellite (POES) Satellite program launched by 

NASA and operated by NOAA. Used primarily for meteorological 

forecasting. 

Permafrost Rock or soil that has been frozen for two or more years. 

Projection 

Albers Equal Area An equal area projection from the view of a pole 

 Cylindrical Equidistant A global project with latitude an longitude units 

 Robinson A common Pseudo-Cylindrical global projection. 

qHull or QuickHull. Algorithm used by MATLAB® script ―griddata.m‖ to perform 

nearest-neighbor Delaunay triangulation. See http://qhull.com. 

Scene A segment of a swath. 

Swath One of three ways HDF-EOS data is stored (Swath, Grid, Point) 

Snow Covered Area (SCA) sdf 

Solar Noon The time midway between sunrise and sunset. At Solar Noon, MODIS 

sensors view the earth near nadir, the best possible angle. 

http://www.ncsa.uiuc.edu/
http://nsidc.org/
http://qhull.com/
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Level 2 Swath to TOPLATS Grid Tool for the Upper Kuparuk River Watershed 

(S2K) Procedure to convert MODIS swaths to grids comparable to TOPLATS 

output in the Upper Kuparuk River Watershed. 

Terra EOS satellite launched in . Collects MODIS data. To compliment Aqua, Terra 

crosses the equator in the morning. 

(http://terra.nasa.gov/) 

TOPMODEL-based Land-Atmosphere Transfer Scheme (TOPLATS)  A 

distributed snowmelt model created by Pauwels and Wood 1999. 

Triangular Irregular Network (TIN) A delineation of space into irregular triangle 

shapes, suggested in this study for evaluating maps with consideration to 

physical map features like land use or elevation. 

United States Global Change Research Program (USGCRP) U.S government 

program that appropriates funds to 13 federal agencies to study global change, 

with a focus on climate change. 

Universal Transverse Mercator (UTM) Alaska lies in UTM zones 1 through 10. 

The Upper Kuparuk is in UTM Zone 6. 

(http://erg.usgs.gov/isb/pubs/factsheets/fs07701.html)  

(http://rockyweb.cr.usgs.gov/outreach/gps/UTM_Zones_AK.pdf#search=%22

alaska%20utm%22) 

http://terra.nasa.gov/
http://erg.usgs.gov/isb/pubs/factsheets/fs07701.html
http://rockyweb.cr.usgs.gov/outreach/gps/UTM_Zones_AK.pdf#search=%22alaska%20utm%22
http://rockyweb.cr.usgs.gov/outreach/gps/UTM_Zones_AK.pdf#search=%22alaska%20utm%22
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