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This thesis focuses on applying and augmenting ‘Reduced Order Modeling’

(ROM) techniques to large scale problems. ROM refers to the set of mathematical

techniques that are used to reduce the computational expense of conventional mod-

eling techniques, like finite element and finite difference methods, while minimizing

the loss of accuracy that typically accompanies such a reduction.

The first problem that we address pertains to the prediction of the level of

heat dissipation in electronic and MEMS devices. With the ever decreasing feature

sizes in electronic devices, and the accompanied rise in Joule heating, the electron-

ics industry has, since the 1990s, identified a clear need for computationally cheap

heat transfer modeling techniques that can be incorporated along with the elec-

tronic design process. We demonstrate how one can create reduced order models

for simulating heat conduction in individual components that constitute an ideal-

ized electronic device. The reduced order models are created using Krylov Subspace



Techniques (KST). We introduce a novel ‘plug and play’ approach, based on the

small gain theorem in control theory, to interconnect these component reduced or-

der models (according to the device architecture) to reliably and cheaply replicate

whole device behavior. The final aim is to have this technique available commer-

cially as a computationally cheap and reliable option that enables a designer to

optimize for heat dissipation among competing VLSI architectures.

Another place where model reduction is crucial to better design is Isoelectric

Focusing (IEF) - the second problem in this thesis - which is a popular technique

that is used to separate minute amounts of proteins from the other constituents

that are present in a typical biological tissue sample. Fundamental questions about

how to design IEF experiments still remain because of the high dimensional and

highly nonlinear nature of the differential equations that describe the IEF process

as well as the uncertainty in the parameters of the differential equations. There

is a clear need to design better experiments for IEF without the current overhead

of expensive chemicals and labor. We show how with a simpler modeling of the

underlying chemistry, we can still achieve the accuracy that has been achieved in

existing literature for modeling small ranges of pH (hydrogen ion concentration)

in IEF, but with far less computational time. We investigate a further reduction

of time by modeling the IEF problem using the Proper Orthogonal Decomposition

(POD) technique and show why POD may not be sufficient due to the underlying

constraints.

The final problem that we address in this thesis addresses a certain class of

dynamics with high stiffness - in particular, differential algebraic equations. With



the help of simple examples, we show how the traditional POD procedure will fail to

model certain high stiffness problems due to a particular behavior of the vector field

which we will denote as twist. We further show how a novel augmentation to the tra-

ditional POD algorithm can model-reduce problems with twist in a computationally

cheap manner without any additional data requirements.
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Chapter 1

A Geometric Introduction to Model Reduction

1.1 What is model reduction?

Model reduction is defined as the process of describing and simulating the

dynamics of a given physical problem in a minimal way. The implication is that

there is always an inverse relationship between the accuracy and computational

costs for modeling the problem and the choice of the model reduction technique is

made by paying close attention to that relationship and the desired accuracy of the

solution. The computational costs for any given model are specified by the required

memory allocation as well as simulation time. A reduction in computational time

and memory is achieved by reducing the number of states or degrees of freedom that

is needed to model the physics.

The most popular computational techniques like finite element and finite dif-

ference methods, which are very accurate and have been widely applied across a

range of physical problems, rely on breaking down the problem into computation-

ally accessible sub-problems. The differential equation that typically describe the

physics of the problem is broken down into a large number of states (from ≈14000

states for an unsteady CFD simulation of flow over an airfoil [119] to as high as

106 for complex problems like weather simulation [35] ) with each state’s behavior

described by much simpler algebraic equation(s) that can then be accurately solved
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on a computer. Each of these simpler algebraic equations describe the evolution of a

physical quantity on a single node (spatial location) using a few degrees of freedom

per node.

There are many problems (describe later in Sec. 1.4) where such computational

requirements (keeping track of millions of variables) are prohibitive and can in fact

be done away with by considering only a few dominant modes, especially when one

needs the value of only a specific set of node values. The modes of a physical problem

are like the harmonics that describe the vibration of the skin of a drum. The most

dominant mode would be the first harmonic, which is a good first approximation

of the vibrational motion. The field of model reduction deals with the search for

mathematical techniques that enable us to describe the physics of the problem with

a few well chosen modes. For example, in the problem of turbulent flow, it was

shown [99] how one could use a small number of dominant mode shapes to describe

coherent structures for fluid vortices that are generated in turbulent flow.

To understand any model reduction technique, it is essential to understand the

geometric picture behind the technique. One of the main mathematical concepts

that lies behind all model reduction techniques is that of projection. In the next

two sections, we motivate model reduction by linking it to the geometrical picture

of projection. We then describe some of the vast number of problems where model

reduction techniques have been applied. Finally, we end this chapter with a brief

description of this thesis’ contributions and its organization.
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1.2 Static Reduced Order Modeling (ROM)

The three problems of pattern recognition (in static images), video encoding,

and model reduction share the common aim of being able to minimally represent

the ‘original data’. The ‘original data’ is different in these three cases and so is the

idea of what the minimal representation is to be ultimately used for. Nevertheless,

because of this common aim, the algorithms used for minimal representation in

these three problems share common mathematical features, in particular, the idea

of projection. For example, one of the popular methods of model reduction - proper

orthogonal decomposition (POD) - is derived from the Karhunen Loeve technique in

pattern recognition of static images. In this section and in the next, we will contrast

the pattern recognition problem with the problem of model reduction in physics and

video encoding.

Consider the following problem: How many dimensions (or degrees of freedom)

are required to describe each of the 10 images of the ‘face of the bust’ in Fig. 1.1 ?

A simple way of storing each of the 10 images on a computer requires a vector

of length equal to the number of pixels in each of those images. If the number of

pixels in the first image equals 4096, then the computer considers the first image as

‘existing’ in 4096-dimensional space. For example, each of the entries in the 4096-

dimensional vector that stores the first image records the gray-scale value of one

pixel of that image. Hence, the complete set of 10 images can be represented as 10

different points in 4096-dimensional space, with each point corresponding to one of

the 10 images.
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Figure 1.1: A set of 10 images of the face of a bust [108], each of them
with a different pose or lighting direction. A human recognizes this
face as 3-dimensional, but a simple way of storing these images in a
computer involves a high dimensional vector, where each element of the
vector records the gray-scale value of one pixel of an image.

It is natural to then ask whether one can make the computer understand that

each of those images ‘exists’ in N -dimensional space, where N ¿ 4096? It turns

out that for this particular example, there is indeed a reduction algorithm (Isomap

[108]), that can represent these 10 images in 3-dimensional space. Moreover, the

three dimensions identified by the algorithm are ‘up-down pose’, ‘left-right pose’,

and ‘lighting direction’ as shown in Fig.1.2 (where many more images of the face

were used) unlike the 3 spatial dimensions that are apparent to a human observer.

Each of the blue dots in Fig. 1.2 is a 3-dimensional representation of an image of

the face with the 3 dimensions being ‘up-down pose’, ‘left-right pose’, and ‘lighting

direction’. A few of the faces are shown in Fig. 1.2 (which correspond to the blue

dots that are circled in red) and the lighting direction for those faces are shown with

the help of a knob below the face.

This is a standard problem in pattern recognition theory, which over here, we
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Figure 1.2: This figure is adapted from [108] and is a 3-dimensional rep-
resentation of the images of the ‘face of the bust’ according as computed
by the Isomap algorithm [108]. Each of the blue dots in the graph is an
image of the face. The blue dots that have been circled in red, have the
actual image shown next to the dot. The three dimensions are up-down
pose, left-right pose and lighting direction. The axes for the up-down
pose and left-right pose are shown, while the dimension for the lighting
direction is shown by the knob that is below each image.
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term as the ‘static model reduction problem’ - one searches for algorithms that can

optimally represent a data set (we can now store the collection of 10 faces in the

above example in just 3 instead of 4096 dimensions). One issue in static model

reduction that is not apparent in the above example is the optimality of the repre-

sentation. In the above example, a human observer would readily represent each face

in 3-dimensions (x, y, and z dimension) and this representation is arguably optimal

(a more optimal representation would have to go below 3 dimensions). One can

argue that the algorithm’s 3 dimensions are as optimal as the observer’s. However,

this will not necessarily hold in more complex problems. The observer’s represen-

tation (the 3 spatial dimensions) is error free because each point on the face has a

unique and fixed vector representation (upto Heisenberg’s uncertainty principle!).

This kind of error free representation will not hold in more complex problems - one

hopes to reduce the error in the representation to the extent possible and some al-

gorithms can even give apriori estimates for the errors (for example, the balanced

truncation algorithm [67]). However, model reduction (whether it is done for static

images or for physical problems) is always a game played in choosing between an

optimal representation and an acceptable error, with the decision ultimately based

on exactly what one intends to do with the reduced order model.

1.3 Dynamic Reduced Order Modeling

The next challenge is an optimal representation of the dynamics of some phys-

ical phenomenon. Suppose, one has a complex fluid phenomena for which one has
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available both, the governing equations, as well as a (computationally intensive) sim-

ulation. Two broad requirements that an engineer seeks are better physical insight

into the problem and a faster simulation time.

The problem that we have here is that not only do we need to have an optimal

(or compact) representation of the ‘image’ like we had in the static case, but we

also have to ‘track the trajectory’ between the images. Suppose the full order

model, which over here is the finite element model of the Navier-Stokes equation

that describes the fluid phenomenon, exists in a high dimensional real space RN (in

this thesis we will only be concerned with real spaces). This means that if each of

the dimensions represent an individual variable (say, velocity or density at a specific

point on the grid), then the differential equation governing the dynamics of that

problem (starting from a given initial state) can be assigned a unique trajectory

Tf like the one shown in Fig.1.3 (where N = 3). Now, the reduced order modeling

problem becomes one of ‘shadowing’ the trajectory Tf . Hence, if one wants to create

a reduced order model in say, 2 dimensions, then we search for a 2-dimensional

(linear) subspace, the 2-plane, on which one can shadow the original trajectory Tf

with the requirement that the error between the original Tf and the reduced Tr is

optimal in some sense. In principal, one could also search for a smaller nonlinear

manifold in which one can ‘shadow’ the trajectory, but this thesis (and most of the

existing literature for model reduction) focuses only subspaces which are linear by

definition.

To put model reduction in perspective, it is interesting to compare the ques-

tions in image processing and model reduction. The dynamic model reduction prob-
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Figure 1.3: The full order trajectory Tf that exists in 3 dimensions is
being ‘shadowed’ by the reduced order trajectory Tr in 2 dimensions.
A reduced order modeling algorithm will need to compute the optimal
subspace (shown in this figure as the X-Y plane) and the associated
projection operator that minimizes the error between Tf and Tr.

lem has a much broader aim than the analogous problem in image processing - video

compression (for example: MPEG compression). The aim of video compression is

efficiently archiving the details of that particular video , with a very high degree

of accuracy. The aim of dynamic reduced order modeling goes further - it is to

capture the physics that caused the dynamics in the video with the help of a few

sample videos, so as to be able to efficiently predict the outcome of similar physics

for a range of different initial conditions and/or parametric values. So, while video

compression deals with accurate archiving, model reduction deals with archiving

with the goal of capturing the underlying physics. From hereon, we will drop the

prefix ‘dynamic’ in ‘dynamic model reduction’ since we will always be interested in

‘shadowing the dynamics’ in this thesis.
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1.4 Applications of Model Reduction

The need for reduced order modeling of any given physics will arguably always

exist inspite of the availability of the state of the art computational hardware. Over

the years, as computational power has increased, so has the need for modeling of even

more ambitious problems, thus feeding the need for model reduction. We present a

sample of the existing literature on reduced order modeling (ROM) techniques that

shows the wide range of applications.

Two of the seminal papers in understanding macro-level properties of turbu-

lent fluids were in the works of Sirovich [99] and Lumley [59]. They addressed the

question of representing turbulent flows, that have chaotic attractors, with a rela-

tively small number of ‘eigenfunctions’. If this kind of representation is possible for

turbulent flows, then the effect of parametric changes in flows or geometries on tur-

bulent flows can be better understood. The essence of their work, for chaotic flows in

confined geometries relies on the low-dimensional representation of the ‘attractors’

in turbulent flow. The entire turbulent flow can be regarded as the movement of a

single point in infinite dimensional space. This point or state fully describes the flow

at each instant of time. It was observed that for chaotic flows this point is drawn to

a low-dimensional attracting set after an initial transient and that the dimension of

this attracting set was low. Lumley and Sirovich proposed to sample this state at

uncorrelated times and study the resultant ensemble so as to follow the state vector

in the low-dimensional space of the attractor. They proposed that using a model re-

duction technique - proper orthogonal decomposition - one can construct the ‘most
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likely’ states for the flow. The perturbations in the flow can be represented in terms

of these likely states or eigenfunctions and this representation can then be used for

further parametric analysis.

Another need for model reduction is in the need for predicting tidal waves

in coastal regions. The coast of Norway experiences frequent and dangerous tidal

waves, which need to be predicted at least 6 hours in advance to evacuate the coastal

population. The shallow water equations that are needed to predict the wave are

modeled with 60,000 variables in the finite element formulation. Such a model takes

at least 15 hours to compute and work on reducing this computational time has

been done in [35] so that the results of the computational model can be used in time

to warn and evacuate the affected population in case the tidal wave is dangerous.

Similarly, work on using reduced order models for storm tracking in the Pacific North

West has been described in [22]. The structural modules of the international space

station require around 1000 states and in order to orient the space station in real

time, reduced order controllers for performing the orientation of the space station

are needed and have been described in [4]. Reduced order modeling of the millions

of elements in the computational model of the Maxwell equations that describe the

electrical behavior of an electronic chip has been widely researched including the

first attempt by Pillage [76] (using Asymptotic Wave Transforms) and subsequently

by others [64], [89], [46]. Balanced truncation - a model reduction technique - that

uses ideas from control theory for reduced order modeling of linear systems was first

proposed by Moore [67] and subsequently used by many others including [95], where

it was used for control of forced response in bladed disks via mistuning. Arnoldi’s
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original paper [6] on minimizing iterations for the matrix eigenvalue problem has

subsequently been widely used in Krylov subspace model reduction, which will be

discussed in detail later in this thesis. Krylov Subspace techniques have been used

in interconnect modeling in chips [98], heat transfer modeling in chips [63] (which

forms part of this thesis), in Pade based design for circuit analysis [23] and MEMS

design [16]. Proper Orthogonal Decomposition, which will also be described later

in this thesis, is based on the singular value decomposition theorem and was first

proposed in probability theory by Loeve [56]. Since then, apart from Sirovich’s work

in turbulence, it has been widely used in modeling aeroelastic analysis of airfoils [86],

feedback control of parabolic equations [7], modeling and control of thin film growth

in HPCVD reactors [10], [43], [44] and finding stable conformations in protein folding

[87].

In this thesis, we will focus on applying and augmenting model reduction tech-

niques to problems in heat dissipation in electronic devices, separation of proteins

and on a class of stiff problems that poses a problem for traditional model reduc-

tion techniques. We give a brief description of this thesis’ contributions in the next

section.

1.5 Contributions of this thesis

The need for Joule heat dissipation in electronic devices is well known espe-

cially as characteristic lengths in circuits reached less than 100 nm in the early part

of this decade. Heat transfer design has become an integral part of chip design
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process, the design of small electronic devices like cell phones, MEMS devices, as

well as in the design of larger scale problems like placement of blades in servers.

The use of traditional computational techniques in heat transfer are either highly

accurate, but computationally expensive (like finite element methods) or not very

accurate at a fine scale, but much cheaper in terms of computational costs (like

resistor-capacitance modeling of heat transfer). For the electronics industry, which

innovates at the rate of a new generation device in every two years, there is a clear

need for accurate, yet computationally cheap modeling techniques for heat transfer

that can be incorporated along with the electronic design process. In this thesis, we

show how to compactly model heat conduction in electronic devices using Krylov

Subspace Techniques. We introduce a novel plug and play approach that would

allow the designer to interconnect components for any given architecture (as needed

by the VLSI design) in a cheap yet accurate manner. This kind of plug and play

approach will enable the designer to test different placements of the components

(within the constraints of the VLSI design process) and help him or her come up

with an architecture that is best suited for efficient heat dissipation. This plug

and play approach to understanding the effect of component architecture on heat

dissipation due to conduction will be shown in chapters 2-5.

Another place where model reduction is crucial to better design is Isoelectric

Focusing (IEF) - the second problem in this thesis - which is a popular technique

that is used to separate minute amounts of proteins from the other constituents that

are present in a typical biological tissue sample. This technique has been around for

over forty years, but fundamental questions about how to design IEF experiments
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still remain because of the high dimensional and highly nonlinear nature of the

differential equations that describe the IEF process as well as the uncertainty in

the parameters of the differential equations. In this thesis, we show how with a

simpler modeling of the underlying chemistry, we can still achieve the accuracy

that has been achieved in existing literature for small ranges of pH (hydrogen ion

concentration), but with less computational time. We investigate a further reduction

of time by modeling the IEF problem using the Proper Orthogonal Decomposition

(POD) technique and show why POD may not be sufficient due to the underlying

constraints. Modeling IEF with simpler chemistry and investigating the application

of POD to the IEF problem will be shown in chapters 6-8.

The final problem that we address in this thesis was inspired by our difficulty in

modeling IEF with POD. However this is not about the IEF problem but addresses

a certain class of dynamics with high stiffness - in particular, differential algebraic

equations. We show how the traditional POD procedure will fail to model certain

high stiffness problems due to a certain behavior of the vector field which we will

denote as twist. We further show a novel augmentation to the POD procedure, which

can model-reduce problems with twist in a computationally cheap manner without

any additional data requirements. Augmenting POD to model-reduce problems

which show twist will be shown in chapter 9.
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Chapter 2

Heat Dissipation in Electronic Devices and the Need for Model

Reduction

In this chapter, we begin by discussing how the increasing miniaturization in

electronic devices has resulted in severe heat dissipation issues. We then discuss how

the need for incorporating thermal design into the VLSI design of electronic devices

results in either computationally expensive or inaccurate computational models. We

focus on heat conduction and explain our novel approach to this problem - intercon-

necting component reduced order models to reproduce full device behavior in a way

that is accurate, computationally cheap and also allows a ‘plug and play’ approach

that is convenient for investigating the heat dissipation for various architectures.

2.1 Introduction

Thermal management and design in electronic and MEMS (Micro Electro Me-

chanical Systems) devices has assumed greater importance because of the trend

towards higher power densities and the continuous miniaturization of electronic de-

vices. A prediction by Gordon Moore in 1965 [68], about the number of transistors

on an integrated circuit chip doubling every two years, has evolved from an observed

trend to a stated goal of the semiconductor industry. The corresponding increase in

heat dissipation per unit volume from a chip is shown in Fig. 2.1.
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Figure 2.1: The trend in the exponential increase of transistors on a
chip has resulted in the corresponding increase in heat dissipation. The
extrapolated limit of the heat dissipation per unit area that is equivalent
to a nuclear reactor has recently been reached in June 2008 at the IBM
Zurich laboratory for a chip with 3-dimensional architecture. Figure
courtesy Dr. Eric Pop at the University of Illinois, Urbana-Champaign.
Data compiled by F. Labonte at Stanford University.
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The extrapolated trend in Fig. 2.1 of the heat dissipation reaching the level of

a nuclear reactor was reached in June 2008 at the IBM Zurich laboratory for a chip

with 3-dimensional (stacked) architecture. With that kind of heat dissipation, the

resultant temperature can easily surpass the melting point of the materials on the

chip without proper cooling. However, long before such an extreme temperature is

reached, individual transistors will stop functioning due to gate breakdown.

The switching of a transistor from an ‘on’ to ‘off’ state or vice versa generates

heat due to the charging and discharging of the transistor capacitances and due to

the flow of any (including leakage) current to the ground [49]. Part of the power

dissipated varies linearly with the clock speed of the device. Hence, faster com-

puters that have higher clock speeds imply higher power dissipation. In addition,

there is Joule heat generated due to the many layers of interconnecting wires that

transmit signals between different components in each device (the interconnects in

the Pentium IV processor in 2001 had a total length of 2 km [4]).

There have been various strategies to actively cool chips, which is an entire

research field in itself. This area of research focuses on the use of various kinds of

heat pumps to circulate air or a liquid coolant throughout the CPU, for example,

electroosmotically actuated micropump using DI water [42], valveless peizoelectri-

cally actuated micropump with ethanol as a coolant [92], and flexural plate wave

micropump using peizoelectrically actuation and fluorinert as a coolant [11]. In this

thesis, we focus on another important strategy - designing of the various components

in the VLSI architecture to achieve not only the traditional requirement of faster

signal speed, but also better heat dissipation into the environment.
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Today, it is common to find dual or four core chips even for desktops and

laptops. Each core contains a central processing unit (CPU), which can process

computations independent of other, spatially separated, cores. Thus, an appropri-

ately parallelized code can be run faster on multi-core chips, and will moreover make

a larger area available for heat dissipation. This is an example of designing different

kinds of architectures for enabling better heat dissipation. However, this was not

common till as recently as five years back. The introduction of multi-core chips,

despite the prevalence of serial processing software, was precipitated in part by the

performance of the Prescott series of chips in Intel’s Netburst architecture in 2004,

which failed due to the heat dissipation as clock speeds greater than 3.8 GHz were

attempted. The VLSI on this chip was purportedly designed for 10 GHz, so this

failure was a clear indication of bad thermal design rather than overclocking. Even

today, most commercial software is not optimized for such multi-core architectures.

Much of the software today is still written for serial, rather than parallel process-

ing, which is a big concern for companies like Intel and Microsoft who have begun

funding academic initiatives in 2008 for furthering the use of parallel processing (at

the ‘Universal Parallel Computing Research Centers (UPCRC)’ across the United

States).

Since 2004 there has been an even higher emphasis laid on designing VLSI ar-

chitecture by simultaneously accounting for heat dissipation as well as signal speed

for any given device architecture. The goal for industrial chip design has become

the following -

Can chip designers, incorporate heat design into the VLSI design process without
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slowing down the typical 2 year technology generation time-cycle at which new de-

signs have been introduced since 1965?

2.2 Examples of thermal design in electronic devices

In order to be able to create good thermal models of electronic devices, which

are required to do system design, the designer has to have a thorough understanding

of the heat transfer modes of the components of an electronic device. It is also nec-

essary for the designer to be able to efficiently and accurately compute the impact

of his or her design on the heat transfer properties of the device. A large volume of

work exists with regards to understanding the physics of heat transfer in electronic

enclosures. Yang [120] provides overviews of studies in the area of convection heat

transfer. Moffat and Ortega [66] and Peterson and Ortega [75] have detailed discus-

sions of applications involving natural convection in electronic enclosures. Larson

and Viskanta [50] determined that radiation heat transfer was orders of magnitude

larger than convection for 2 dimensional enclosures. Although convection and ra-

diation form a very important part of the heat transfer processes in an electronic

system, in this thesis we concentrate only on conduction. By itself, this is a very im-

portant problem (as discussed in [51]). It is hoped that the reduced order modeling

ideas discussed in this thesis can be extended to convection and radiation.

Although we have given the physical example of individual chips in the above

discussion, there is nothing sacred about this example. We could as well have

chosen blades (single computers) in a server, components in a MEMS device, or any
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other example, where heat conduction poses a problem, where the physical length

scale allows for modeling with the continuum approximation, and where efficiently

designing the device architecture leads to better heat dissipation. In this work, we

will denote all such physical examples with a single term: components on a device.

2.2.1 Heat conduction modeling on a device

The thermal properties of an electronic device are influenced by a range of

parameters like chip positions, cooling channel shapes and their placement, and fan

speed. An example of component layout in a device is shown in Fig.2.2.

Figure 2.2: Layout of an electronic device (www.informit.com/content/images)

In order to design for the heat dissipation for the device, a designer must be

able to search as much of the parameter space that influences the operating regime

of the device as possible. Finite element or finite difference methods are common nu-

merical procedures in studying heat transfer problems in electronic devices [17], [39].
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Resistance models [90], eigenfunction related methods [27], [9] and the deconvolu-

tion method [107] have also been applied to the analysis of thermal networks. Such

numerical schemes create a discretized model that is an approximation of the actual

thermal problem. If the designer needs to guarantee a high level of accuracy for this

large parameter space, the number of states in an FEM model has to be large. This

implies increased costs in terms of memory requirements and computational time.

Thus, in order to efficiently incorporate the thermal design of chips in the

VLSI design cycle, the computational costs for electro-thermal design of complex

devices necessitate the development of compact models. Kreuger and Bar-Cohen

[48] presented one of the earliest reduced order modeling efforts in which a chip

package was modeled with a simplified resistor network that reduced the mesh size

and the computational time involved. Lasance et al [117], formulated a simplified

resistance network that was independent of boundary conditions, while in [12], a

hierarchial reduced order modeling effort for chip packages was developed. While

these approaches reduce the computational costs, they do not yield the detailed

information that a designer needs for electro-thermal design of a complex device. For

example, they do not help the designer in deciding the placement of the components

on the board in Fig. 2.2. Fig. 2.3 below is a graphical comparison between different

approaches to heat transfer design.
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(a) Typical full-order model of an electro-thermal system: Components are modeled
with a finite element mesh. Large number of nodes implies good accuracy, but high
computational costs.
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(b) A commonly used reduced-order model: Modeling the system as an RC network
can minimize computation time, but the accuracy achieved may not be sufficient for
complex circuits.

Figure 2.3: Typical methods that are used for modeling electro-thermal systems.
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2.3 The ‘reduce-then-interconnect’ approach

In [18], an Arnoldi-based reduced model of a thermal network has been pro-

posed that gives very good results using a single reduced-order model for an entire

device. For model reduction of electronic devices composed of many connected

components, there are two broad approaches:

1. Connect the components and model-reduce the entire device OR

2. Model-reduce the components and then connect the individual reduced models

to get a reduced-order model of the entire device.

We contend that the second option, if viable, is preferable to the designer. In the

first option, a full (unreduced) finite element model must be created and reduced

each time to create device models with different component architectures. In the

second option, we have a library of reduced-order component models, and these

components can be connected in different ways to get computationally cheap de-

vice models for different component architectures. We stress that heat flux that is

exchanged between parts of different components can always be represented in the

mathematical format that we will present in Chapter 4.

In this thesis we will focus on the reduce then connect method: we create

reduced-order component models that are sufficiently rich to provide accurate re-

sults but are also sufficiently small to enable fast simulation of heat conduction

in complex devices. A central requirement in our approach is that it should be

possible to interconnect the reduced-order component models in a stable and accu-

rate manner. In an application for controller reduction, Anderson[3] explains why

22



a straightforward interconnection of reduced order component models can result in

inaccurate or unstable behavior of the model of the entire device. We will formulate

an algorithm to interconnect the reduced-order component models in such a way

that the resulting device models for heat conduction are stable and accurate.

The amount of computational time that can be saved by using the reduce

then connect paradigm can be demonstrated by a simple two dimensional example.

Consider a device made up of five components as shown in Fig. 2.4.

Figure 2.4: A single reduced order model of the entire device (all 5 com-
ponents interconnected in a certain way) will take less simulation time
than the full order model. However, computing reduced order models
for each different architecture (different interconnections of the 5 compo-
nents) will require an initial expensive computational step for simulat-
ing the full order model of that architecture. This will make the model
reduction procedure expensive if one needs to evaluate many different
architectures for an optimization run.
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Suppose two of these components have external heating sources, and the device

temperature is to be monitored at twenty junctions. If each of the five components is

discretized with finite element methods in such a way that each component reduced

order model has 2000 states, then the finite element model of the entire device will

have 2000 × 5 = 10,000 states. Thus the mapping from the two external heating

sources q1, q2 to the twenty junction temperatures T1, .., T20 will be a 800 state

model. On a PC, such a model might take (say) 5 minutes of simulation time. Here,

we should keep in mind that 5 minutes would then be the amount of time required

to evaluate a single design in an optimization run (the total amount of time for the

optimization would depend on the size of the entire design space).

Suppose that we apply model reduction with the connect then reduce paradigm.

If this finite element description is reduced to 50 states by model reduction tech-

niques, then the 10,000 state mapping from the heating sources q1 and q2 to the

junction temperatures T1, .., T20 is replaced by a 50 state mapping that can be eval-

uated in (say) 5 seconds. Hence a simulation of the reduced order model will take

5 seconds for each architecture. However, if we want to examine a different device

architecture, i.e., if we wanted to connect the 5 components in a different geometry,

then we would have to recreate the reduced-order model of the device. Since the

initial creation of the reduced-order model requires an evaluation of the original

finite element model, it would take us 5 minutes to evaluate each new architecture.

Now, lets choose to use the ‘reduce then connect’ paradigm instead as shown

in Fig. 2.5. Assume that each 2000 state component is replaced by a 10 state

reduced-order model. Each model has inputs that will correspond to the fluxes and
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Figure 2.5: If the same reduced order models of each of the 5 components
can be interconnected for different architectures, the designer can adopt
a plug and play approach for testing the whole-device heat dissipation.
If viable, this approach will enable a simulation of each new architecture
in 5 seconds, without the need of the initial expensive step of simulating
the entire device. However, one needs to tune each component reduced
order model to the dominant frequency range of the device (which varies
with architecture only weakly) in order to make this approach possible.
We show how one can make such a library of component reduced order
models that can be used for different architectures.

25



temperatures that it will receive from the adjoining components and the models

for the two active components also have an input that corresponds to each of their

external heating fluxes. Likewise, each component has outputs that will supply its

neighboring components with temperature and heating fluxes that they need as their

boundary conditions. Now the five components that have 10 internal states each

can be connected in different ways to achieve reduced-order models with different

architectures. Each interconnected model will have 50 states and will evaluate in 5

seconds. In the reduce then connect paradigm, once a library of reduced-order mod-

els has been created, the designer can examine both different heating fluxes q1, q2

and different interconnection architectures, and can find the resulting temperatures

at the twenty junctions in seconds.

Though the second approach is more useful, a simple interconnection of the

reduced-order models can lead to stability problems as discussed in chapter 4 and

in [3]. In chapter 4 we will show that if we intend to interconnect the model reduced

subsystems, then we must make sure that the component reduced order models are

accurate at the dominant frequencies of the interconnected system. We describe a

novel control theoretic approach to interconnecting the reduced-order models of the

components in a way that replicates the behavior of the entire device in a stable

and accurate manner.

The next 3 chapters of this thesis are divided in the following manner. Chap-

ter 3 discusses the structure of state space models that is derived from the FEM

formulation of a conduction problem and also discusses reduced-order models. In

particular, the Krylov based reduction algorithm that we have used for creating the
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reduced-order models of each component are discussed in Chapter 3 along with nu-

merical examples. Chapter 4 discusses the approach that we use in interconnecting

the various reduced-order models so that we can achieve accurate full system behav-

ior and we demonstrate our approach with a numerical example. We conclude this

portion with a discussion of our approach in Chapter 5. In the rest of this thesis, the

terms ‘system’ and ‘device’ are used interchangeably, with the former being used in

the mathematical portion of the text and the latter being used otherwise. We also

interchangeably use the terms ‘sub-system’ and ‘component’, with the former being

used in the mathematical portion of the text and the latter being used otherwise.

The abbreviations FOM and ROM stand for Full Order Model and Reduced Order

Model respectively.
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Chapter 3

Model Reduction for Heat Conduction Using Krylov Subspace

Techniques

A very popular and a highly accurate way of computing the heat conduction

properties of an electronic device is by couching the partial differential equation for

heat conduction in a variational form and computing the solution of the infinite

dimensional partial differential equation (PDE) in a finite dimensional space. This

is achieved by splitting the physical domain into a finite but very large number of

smaller regions and the solution of the PDE in each small region is approximated

by the solution of an algebraic equation that is solved on a computer using an

appropriate solver. Such a solution of the PDE is termed as the finite element

solution of the problem and is arguably the most accurate way to computationally

obtain a solution of a given PDE (whose analytical solution is unknown).

In the heat conduction problem, if the heat conduction coefficient, density,

and specific heat of the material does not vary appreciably with temperature, then

the homogenous part of the partial differential equation for heat conduction is linear

with respect to temperature. The finite element formulation of this linear dynamics

can contain a large (in our examples, O(103)) number of degrees of freedom and is

computationally expensive.

In control theory, such linear dynamics can be represented in what is known
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as the state space form in the time domain and in the transfer function form in

the frequency domain. The state space form is equivalent to the finite element

formulation. The state space form will have the same number of states as the

total number of degrees of freedom in the finite element formulation. Once we have

formulated the problem in the state space form, there are model reduction techniques

like balanced truncation and Krylov subspace methods, that can considerably reduce

the number of states (in our examples to O(10)) and hence reduce the computational

costs, without losing much accuracy.

In this chapter, we we will define the transfer function for heat conduction of

a single component in a device and show how one can construct a reduced order

transfer function for that single component using concepts from Krylov subspace

theory. We begin with an introduction to the concepts of state space systems and

transfer functions.

3.1 Basics of control theory

In controls and dynamical systems theory, systems which can be described in

the following form,

Eẋ(t) = Ax(t) +Bu(t). (3.1)

y(t) = DTx(t) + Pu(t). (3.2)

with initial condition x(t = 0) = x0 are termed as linear systems [72] (the notation

ZT stands for the transpose of the Z matrix). The vector x(t) is called the state

vector. This state vector x(t) is chosen with the intent of providing a ‘complete’
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description of the system, where the ‘completeness’ has to do with the purpose of

the description. Eqns. 3.1 and 3.2 can be explained with the common example

of simple harmonic motion of a swing in the park. For the purpose of providing

a complete description of the motion of the swing at any given time t (under the

simple harmonic assumption), the state vector x(t) need only consist of two elements

- the angular position θ(t) and the angular velocity θ̇(t) [72]. If the motion of the

swing is undamped, then Newton’s first law and the simple harmonic assumption,

provide the following governing equation for the motion of the swing

m
d2θ(t)

dt2
= −kθ(t) + F (t) (3.3)

where m is the point mass of the spring, k is the spring constant of the swing, and

F (t) is the time-varying external force applied to the swing. We can write Eqn. 3.3

in the state space form of Eqn. 3.1 where the state space matrices are

x(t) = [θ(t) θ̇(t)]T

u(t) = [0 F (t)]T

A =




1 0

−k 0




E =




1 0

0 m




B =




1 0

0 1


 (3.4)

If one is interested in observing the angular velocity θ̇(t), then the output y(t)

in Eqn. 3.1 is y(t) = θ̇(t), the state space output matrices DT and P (t) are given
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by

DT = [1 0]

P = [0 0] (3.5)

Generalizing this, if x(t) has dimension M × 1, then the M elements of x(t),

should be chosen so that they ‘completely’ describe the system. If there are p inputs

provided to the system, then u(t) will have size p × 1. The vector y(t) describes

the observation that one needs to make regarding the system at a given time t.

This observation could consist of any linear combination of the elements of the state

vector x(t). In general, y(t) can be of size n×1, if one needs to make n observations

about the system. For the general case, especially when constraints are involved in

the update of the state vector x(t), the velocity vector ẋ(t) has a multiplier E of size

M ×M . In many cases, E is the identity matrix of size M , but for the theorems

in this chapter, we will not assume that E is the identity. Given the sizes of the

vectors, x(t), u(t), and y(t), the sizes of the matrices A,B,DT , P , and E follows -

A has size M ×M , B has size M × p, DT has size n×M , P has size r × p, and E

has size M ×M .

3.1.1 Transfer function

The behavior of the output y(t) in Eqn. 3.1 in response to the input u(t) which

varies sinusoidally at a certain frequency s, is very useful in analyzing the behavior

of a linear system because the response to an arbitrary u(t) can be analyzed in

terms of a linear combination of the responses to the sinusoidally varying Fourier
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components of u(t). The frequency response of the output y(t) to a sinusoidal input

u(t) can be analyzed with the help of the Laplace transform. The Laplace transform

for an arbitrary signal X(t) is denoted as X(s) and is defined by

X(s) = L(X(t))(s) =

∫ ∞

0−
e−stX(t)dt (3.6)

where L(.) denotes the Laplace transform and 0− denotes the left limit (from −∞)

to 0. The state space equation given in Eqn. 3.1 can then be represented in the

frequency domain with the help of the Laplace transform to give [72]

Y (s) = DT (sE − A)−1(Ex(0−) +BU(s)) + PU(s) (3.7)

where Y (s) is the Laplace transform of y(t) and U(s) is the Laplace transform of

u(t) and x(0−) is the initial condition for x(t). Hence we have

Y (s) = G(s)U(s) (3.8)

where the function G(s) that is defined by G(s) = DT (sE−A)−1(Ex(0−1)+B)+P

is called the transfer function of the linear system given in Eqn. 3.1.

In the next section, we describe how one can construct the transfer function

for describing heat conduction in a single component.

3.2 Transfer function for heat conduction

If each of the five components in Fig. 3.1, can be described with the help of

linear system dynamics, then they will each have a transfer function Gi(s) as shown

on the right of Fig. 3.1. The physical interconnection between them (because of the
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heat fluxes exchanged between them) can be shown with the help of a block diagram

as shown on the right of Fig. 3.1. In this chapter, we will only be concerned with

creating a reduced order model of the transfer function of a single component (for

example, G3(s) of the chip in Fig. 3.1). In the next chapter, we will show how the

interconnection (due to the heat fluxes) between the components can be represented

in a linear form. Fig. 3.1 is only for illustrative purposes - in this thesis we are only

dealing with heat conduction, whereas the fan and fluid region in Fig. 3.1 will

transfer heat via convection. The numerical examples in our work, will always deal

with examples of heat conduction between solid components.

The partial differential equation describing heat conduction is given by

∇ · (κ∇T ) +Q− ρCp
∂T

∂t
= 0. (3.9)

T and Q denote the temperature (in K) and the heat input (in W/m3) respectively.

The thermal conductivity κ, density ρ, and the specific heat capacity Cp are as-

sumed to be constant in our examples. In order to apply Krylov model reduction

techniques to any given problem, it is first necessary to couch the physics of heat

conduction in a state space format. In order to do this, we first create a finite

element formulation of the conduction (diffusion) equation using the commercial

software package FEMLAB [24]. The state space model of an isolated component

can be extracted from this finite element model by linearizing the problem around

a nominal temperature (we use FEMLAB to create the state space model from the

finite element solution). The governing equations of the state space model are

Eẋ(t) = Ax(t) +Bu(t). (3.10)
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Figure 3.1: Each component of the device on the left will have a transfer
function that describes heat conduction in that component. The physical
interconnection between the different components, because of the heat
fluxes exchanged between them, can be represented with the help of a
block diagram as shown on the right of the figure. In this chapter, we will
only be concerned with creating a reduced order model of the transfer
function of a single component, for example, G3(s) of the chip in this
figure.
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T (t) = DTx(t). (3.11)

in which x(t) is the M x 1 vector of the discretized temperature modes at the various

nodes of the mesh, and u(t) is the p x 1 vector of external heat inputs to the system

(power dissipated by the circuit, or flux received by the circuit). A and E are the

constant M x M stiffness and mass matrices respectively. B is a constant M x

p matrix that converts the external heat inputs u(t) into an M x 1 input vector

for the differential equation governing the state vector x(t). For typical structures

of electronic systems, M is usually very large. T (t) represents a set of n junction

temperatures at specified locations. D maps the M thermal modes to the n junction

temperatures.

Assuming zero initial temperature offset x(0) = 0 (we can include an initial

temperature in the formulation below but it does not change the basic results in

what follows), and taking the Laplace transform of Eqn. (3.10), we get the frequency

domain formulation of the state space model as

sEx(s)− Ax(s) = Bu(s) (3.12)

in which x(s) and u(s) are the Laplace transforms of x(t) and u(t). Hence, the

Laplace transform from the heat input u(s) to the junction temperatures T (s) is

given by

T (s) = DT (sE − A)−1Bu(s) (3.13)

The matrix DT (sE−A)−1B is termed as the transfer function for heat conduction of

the component and is denoted by the symbol G(s) = DT (sE−A)−1B. Eqn. 3.13 is

the complete state space model of heat conduction in the component, which relates
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the heat inputs u(s) and the junction temperatures T (s) in the frequency domain.

The frequency s is the speed of response of the system. The higher frequency modes

of the system die out quickly, while the lower frequency modes are dominant and

are mainly responsible for the long term response of the system.

3.3 Reduced order modeling of a single component

In the previous chapter, we discussed the potential utility of the plug and

play approach of creating reduced-order models of individual components before

interconnecting them to form a reduced-order model of the entire device. In this

section, we show how the well known Krylov Subspace Technique [32] can be used

for creating a reduced-order model of a single component of a device. This kind of

reduced order modeling has been shown by other groups including [18] (where it was

done for the entire device) and it forms the preliminary step for the interconnection

idea that we have developed in this thesis.

The reduced-order model for a given component can be obtained by project-

ing the original linear dynamic system (3.10)-(3.11) onto a smaller state-space of

dimension m << M , by means of an M x m projection matrix U . The geometrical

picture behind this projection is the same as the one shown in Fig. 1.3 where we

had the original FOM trajectory Tf in M = 3 being projected onto the ROM space

with m = 2 dimensions to give the ROM trajectory Tr. Derivation of the matrix U

is a critical step in any ROM technique and will be outlined later in this section, but
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for now we assume that U is known. The state variable x(t) can then be written as

x(t) = Ux̃(t). (3.14)

where x̃(t) is the state vector projected onto the reduced space. Here x(t), of

dimension M is large and x̃(t), of dimension m, is small. Substituting Eqn. (3.14)

into Eqn. (3.10) and multiplying by UT , a reduced-order model of the form

Ẽ ˙̃x(t) = Ãx̃(t) + B̃u(t). (3.15)

T (t) = D̃T x̃(t). (3.16)

is obtained, in which Ã, Ẽ, B̃ and D̃ are given by

Ã = UTAU, Ẽ = UTEU, B̃ = UTB, D̃ = UTD. (3.17)

Thus, the Laplace transform of the junction temperatures given by the reduced-

order model of the component is

T̃ (s) = D̃T (sẼ − Ã)−1B̃u(s). (3.18)

The projection matrix U must be chosen such that the input-output mapping of

the reduced-order model approximates the input-output mapping of the unreduced

model. We explain our choice of U in the next subsection.

3.3.1 Choice of reduction algorithm

Our choice of reduction algorithm for model-reducing each component was

guided by our idea of interconnecting the reduced order models of components. We

will describe the interconnection idea in detail in the next chapter. However, we will
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jump ahead and state the main criteria that any potential ROM approach needs to

have, in order for us to be able to interconnect ROMs of different components. This

criteria is frequency weighting.

Good frequency weighting in a ROM algorithm means that one should be

able to make the reduced order model match the full order model in the frequency

band that one desires. Suppose, that the component functions in the frequency

range 10− 100 Hz. A good reduced order model is one that matches the full order

model’s response in the frequency range 10 − 100 Hz, even if this means that the

reduced order model is not as accurate as the full order model in the rest of the

frequency spectrum. In the next chapter, we will show why one needs the individual

component ROMs to be accurate at the device’s natural frequency. Any candidate

reduction technique should be amenable to frequency weighting so that individual

component ROMs can be tuned to be accurate at the device’s natural frequency.

Our first choice for a suitable ROM approach was balanced truncation (BT),

which was first proposed by Moore [67]. The main attraction in BT is the optimality

of the reduced order model - one can apriori prescribe the exact number of modes

in the reduced order model so that the desired error bound between the FOM and

ROM is satisfied. The idea behind this approach is that for state space systems, it is

possible to choose a coordinate system for representing the state vector in which the

states that cannot be observed in the system response are also simultaneously the

states that cannot be controlled by the system’s external inputs and vice versa. In

control theory, such states are said to be simultaneously uncontrollable and unob-

servable (or minimally controllable and minimally observable). The transformation
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matrix U in Eqn. 3.17 is the one that equalizes, or balances, the controllability

and observability grammians of the linear systems and thus enables one to order

the states in decreasing order of simultaneous controllability and observability. A

geometrical explanation of how BT ‘balances’ the ellipsoids that represent the con-

trollability and observability grammians is given in [20]. Once this ‘balancing’ is

achieved, the size of the model is reduced by choosing only those states that are

simultaneously highly controllable and highly observable and discarding the rest of

the states.

The extent of controllability and observability of the states are quantified by

the Hankel singular values [67] of the system. The main advantage of BT is that an

apriori error bound is available (based on the Hankel singular values) - i.e., one can

choose the exact number of modes that satisfies a preset error bound between the

ROM and the FOM transfer functions.

However, our main requirement for a model reduction algorithm is frequency

weighting, which we found to be a computationally prohibitive step in BT. In our

simulations, we found that the state of the art frequency weighting in BT, as per-

formed by [118], adds considerably to the already prohibitive cost of balanced trun-

cation which, even without frequency weighting, has O(N3) computational cost and

O(N2) storage costs [4], where N is the total number of states in the full order model

of the component (we have more than 2000 states per component in our models).

For our problem, we found that model reduction (which is basically, making

an appropriate choice of U) can be cheaply and accurately achieved with the help

of a Krylov Subspace Technique (KST) algorithm which is explained below. The
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main advantage of KST (compared to BT) is that it provides an intuitive and

computationally cheap way to perform frequency-weighting, as we show in the next

subsection.

3.3.2 Model reduction by projecting on Krylov subspaces

The basic idea behind KST is to match the ROM and FOM in the desired

frequency range. This is achieved by creating a reduced-order model such that the

first few terms in the power series expansion of the ROM transfer function around

some frequency σ, matches the first few terms in the power series expansion of the

original (full-order) transfer function. This would ensure that the spectral behavior

of the ROM transfer function near σ matches that of the FOM transfer function

upto some higher order term. As we will show in this section [32], this matching

of the first few power series terms of the FOM and ROM can be simultaneously

achieved around multiple frequencies σi.

In model reduction literature, the terms (or coefficients) in the power series

expansion are also known as moments [32]. The moments are more rigorously defined

as the value and subsequent derivatives of the transfer function (given in Eqn. (3.13))

at s = σ , where σ is any particular frequency.

From the expression of the transfer function of the full order model G(s) that

is given in Eqn. 3.13, we can expand G(s) around any given s = σ (provided that

(σE − A) is nonsingular) in the following way:
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G(s) = DT (sE − A)−1B = −DT (A− σE − (s− σ)E)−1B

= −DT ((A− σE)(I − (s− σ)(A− σE)−1E))−1B

= −DT (I − (s− σ)(A− σE)−1E))−1(A− σE)−1B (3.19)

With a power series expansion around σ, G(s) can be written as:

G(s) =

j=∞∑
j=0

−(s− σ)jDT ((A− σE)−1E)j(A− σE)−1B

=

j=∞∑
j=0

(s− σ)jmj(σ) (3.20)

where the coefficient

mj(σ) ≡ −DT ((A− σE)−1E)j(A− σE)−1B (3.21)

is called the jth moment of G(s) at σ. The term σ is commonly referred to as an

interpolation point.

Analogously, for the reduced order transfer function G̃(s) given in Eqn.3.18,

the transfer function and the moments at σ can be written by using the reduced

order state space matrices Ã, B̃, D̃, and Ẽ in the following way:

G̃(s) =

j=∞∑
j=0

−(s− σ)jD̃T ((Ã− σẼ)−1Ẽ)j(Ã− σẼ)−1B̃

=

j=∞∑
j=0

(s− σ)jm̃j(σ) (3.22)

where the coefficient

m̃j(σ) ≡ −D̃T ((Ã− σẼ)−1Ẽ)j(Ã− σẼ)−1B̃ (3.23)
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is called the jth moment of G̃(s) at σ.

The choice of σ depends on the relevant frequencies of interest in the physical

problem. As shown in Fig. 3.2, there can be multiple interpolation points in a

typical model reduction algorithm if there are multiple regions in the frequency

spectrum in which we want the reduced-order model to match the full-order model.

Hence KSTs ensure that once the relevant frequencies of interest are provided as

inputs to the KST algorithm, the output is a reduced-order model whose first few

terms (the number of terms is decided by the designer) in its power series expansions

around those chosen frequencies matches those of the full-order model at and around

those same frequencies [32]. Mathematically, if the original system has the transfer

function G(s) and the reduced-order model has the transfer function G̃(s), then

KSTs provide a transformation matrix U , that projects the original system to the

reduced space in such a way that the first j moments of the original system G(s)

match the first j moments of the reduced-order model G̃(s). Since only the first few

terms of the power series expansion of G(s) and G̃(s) are supposed to match, the

match will be better at those frequencies which are near the interpolation points

and will differ at other frequencies (as shown in Fig. 3.2).

The transformation matrix U is to be chosen so that it projects the FOM

onto a subspace S in the manner of Eqn. 3.17 so that the first, say J , moments of

the FOM transfer function G(s) about an interpolation point σ matches the first J

moments of the ROM transfer function G̃(s). We will show how one can choose U so

that this moment matching happens simultaneously around multiple interpolation

points σk. The proofs used here are the same as the ones given in [91] and [32]
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Figure 3.2: Comparison of full-order model (FOM) and reduced-order model (ROM).
They match at low frequencies because the interpolation points are in the low fre-
quency range. At higher frequencies, the moments (the coefficients of the power
series expansion of the transfer function) of the ROM and FOM are no longer equal
and hence the behavior of the models diverge. This means that the ROM will match
the FOM at low frequencies but not at higher frequencies.
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except for some difference in notation.

First, we prove how this moment matching can be achieved between the FOM

and ROM of a SISO (single input, single output) transfer function for a single

interpolation point σ. Then we explain the generalization to the case of multiple

σ(k), k = 1, .., K and finally for MIMO (multiple input, multiple output) transfer

functions with multiple σ(k), k = 1, .., K. For this, we first need to define a Krylov

subspace.

Definition A jth dimensional Krylov subspace Kj(R, f) corresponding to some

matrix R and vector f is defined as

Kj(R, f) = span(f,Rf,R2f, ..., Rj−1f) (3.24)

where span(v1, v2, ..., vk) denotes the subspace spanned by the vectors v1, v2, ..., vk.

The moment matching property between the FOM and ROM transfer func-

tions of a SISO system is described in the following theorem.

Theorem 3.3.1 For the full order SISO transfer function given by G(s) = dT (sE−

A)−1b (where b and dT are vectors corresponding to the single input and output

respectively), and the corresponding reduced order SISO transfer function given by

G̃(s) = d̃T (sẼ − Ã)−1b̃, we will have mj(σ) = m̃j(σ) : j = 0, ..., J − 1 where mj(σ)

and mj(σ) are the jth moments of G(s) and G̃(s) respectively (as given in Eqns. 3.21

and 3.23), if E, Ẽ, (σE−A), and (σẼ− Ã) are nonsingular and the transformation

matrix U (that is used in Eqn. 3.17 to create G̃(s) from G(s)) spans the Krylov

subspace KJ((A− σE)−1E, (A− σE)−1b).
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Proof We first show how the zeroth moment matches for the hypothesis, i.e.,

m0(σ) = m̃0(σ). Using Eqns. 3.23 and 3.17, the zeroth moment of G̃(s) around σ

is given by

m̃0(σ) = −d̃T (Ã− σẼ)−1b̃ = −dTU(UTAU − σUTEU)−1UT b (3.25)

The vector (A − σE)−1b is in the the Krylov subspace KJ and since U spans KJ ,

there exists a vector r0 such that

(A− σE)−1b = Ur0 (3.26)

Hence we have

(UT (A− σE)U)−1UT b = (UT (A− σE)U)−1UT ((A− σE)(A− σE)−1)b

= (UT (A− σE)U)−1UT (A− σE)Ur0 = r0 (3.27)

With this, we see that the zeroth reduced order moment m̃0(σ) equals the zeroth

full order moment m0(σ) because m̃0(σ) = dTUr0 = dT (A− σE)−1b = m0(σ).

For the next moment, the relation in Eqn. 3.27 can be used to conclude that

(UT (A− σE)U)−1UTEU(UT (A− σE)U)−1UT b = (UT (A− σE)U)−1UTEUr0

= (UT (A− σE)U)−1UTE(A− σE)−1b(3.28)

The vector (A − σE)−1E(A − σE)−1b is also in the Krylov subspace KJ . Hence

there exists r1 so that

(A− σE)−1E(A− σE)−1b = Ur1 (3.29)
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Hence we have

(UT (A− σE)U)−1UT ((A− σE)(A− σE)−1)E(A− σE)−1b

= (UT (A− σE)U)−1UT (A− σE)Ur1 = r1 (3.30)

With this, we can conclude that the first moment m̃1(σ) of the reduced order transfer

function equals the first moment m1(σ) of the full order transfer function because

m̃1(σ) = dTU(UT (A− σE)U)−1UTEU(UT (A− σE)U)−1Ub

= dTUr1 = dT (A− σE)−1E(A− σE)−1b = m1(σ) (3.31)

For the second moment, we use Eqns. 3.27 and 3.30 and knowing that ((A −

σE)−1E)2(A − σE)−1b can be written as the Ur2 for some vector r2 (since the

vector ((A−σE)−1E)2(A−σE)−1b lies in the Krylov subspace KJ which is spanned

by U). By repeating these steps, this proof can continued for the first J moments

to show that that m̃j = mj ∀j = 0, .., J − 1. 2

In order to ensure that the first Jk moments of G̃(s) around the kth interpola-

tion point σ(k) simultaneously match the corresponding moments of G(s), for all the

K interpolation points σ(k) : k = 1, .., K, we use the exact same proof as the above,

with the requirement that the transformation matrix U simultaneously spans the K

Krylov subspaces KJk
((A− σ(k)E)−1E, (A− σ(k)E)−1b).

For MIMO systems, the jth moment of the full order MIMO transfer function

G(s) = DT (sE − A)−1Bu(s) around the interpolation point σ(k) is given by the

matrix function

mj(σ
(k)) = DT ((A− σ(k)E)−1E)j−1(A− σ(k)E)−1B (3.32)
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We note that the element in the (lb, ld) position of mj(σ
(k)) is also the jth moment of

the SISO system that has state space matrices A,E, b, and d. Here, the vectors b and

d are the lthb and lthd column vectors of the matrices B and D respectively. Hence,

Theorem 3.3.1 can be applied to each of the elements of mj(σ
(k)) to analogously

prove the following moment matching theorem for MIMO systems [32], which we

state here without further proof.

Theorem 3.3.2 The first Jk moments mj(σ
(k)) : j = 0, ..., Jk − 1 around each

of the K interpolation points σ(k) ∀k = 1, ..K of the full order MIMO transfer

function given by G(s) = DT (sE − A)−1B equals the corresponding Jk moments

m̃j(σ
(k)) : j = 0, ..., Jk − 1 of the reduced order MIMO transfer function given by

G̃(s) = D̃T (sẼ− Ã)−1B̃, if E, Ẽ, (σ(k)E−A), and (σ(k)Ẽ− Ã) are nonsingular and

the transformation matrix U (that is used in Eqn. 3.17 to create G̃(s) from G(s))

simultaneously spans all the Krylov subspaces KJk
((A−σ(k)E)−1E, (A−σ(k)E)−1B)

∀k = 1, ..., K.

In particular, the KST algorithm we used in this paper is given in Algorithm 1.

3.3.3 Properties of ROMs created with Krylov Subspace Techniques

The transformation matrix U , is recursively built up by appending newly com-

puted columns um, in each step of the loop. The newly added columns are orthonor-

malized with respect to the previously computed columns before appending them to

the U matrix. Each subsequent column um (of the matrix U) contributes additional

information about the system behavior in the reduced model. The inputs to this
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Algorithm 1 Krylov Subspace Reduction via Arnoldi [32]

Initialize m = 0, U = [ ] (U is initialized as an empty matrix)

for k = 1 to K , (K is the total number of interpolation points)

for jk = 1 to Jk (Jk is the number of moments to be matched at the kth

interpolation point)

if jk = 1 ,
ũm = (σ(k)E − A)−1B ( σ(k) is the kth interpolation point.)
else
ũm = (σ(k)E − A)−1Eũm−1 ( ũm is the mth column of U)
end

Orthonormalize ũm with respect to all the previously
computed columns of U to get um

U = [U um]
m = m+ 1
end

end

algorithm are the full-order model, the choice of interpolation points σ(k), and the

number of moments Jk to be matched at that interpolation point. The choice of

the interpolation points will dictate the frequency range in which the reduced-order

model is accurate.

It is a well known problem in Krylov subspace techniques that for MIMO

systems in which we project only onto part of the controllability space (like in

Algorithm 1), having multiple (≥ 8) inputs and multiple (≥ 3) moments matched

at each interpolation point does not add new information to the transformation

matrix U because of numerical limitations while computing successive columns um

of U [32]. This is because limits to computational accuracy cause successive columns

um to lie in the subspace of the previously computed columns of U , thus making U
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less than full rank. In the next chapter, we will discuss how this affects our modeling

of interconnected components, but we note here that in order to avoid having a less

than full rank U matrix, it is better to have a smaller number of moments matched

at many interpolation points than having many moments match at relatively fewer

interpolation points [32]. This ensures that new information is always added to

successive columns um and U is not rank deficient.

In many applications where a specific output or small set of outputs need to be

monitored, a frequently used augmentation of Algorithm 1 is to incorporate informa-

tion of the Krylov observable space given by KJ((A−σ(k)E)−1E, (A−σ(k)E)−1DT )

into the projection framework. In such a case, one uses a two-sided projection where,

Ã = V TAU, Ẽ = V TEU, B̃ = UTB, D̃ = V TD (3.33)

is the reduced order state space matrix, with the matrix V constructed by applying

Algorithm 1 to finding a basis for KJ((A − σ(k)E)−1E, (A − σ(k)E)−1DT ) and the

matrix U is computed as in Algorithm 1. This can result in a smaller ROM than

using a one-sided projection. However, we did not use the two-sided projection,

because we are not concerned with any small set of node temperatures. Moreover,

such a two-sided projection can many times result in an unstable ROM even when

the original FOM is stable. Various algorithms, including the ones in [41] and

[26] ensure stability in ROMs created by KSTs. We have observed that with the

technique described in [41], where any unstable modes are discarded from the ROM,

accurate ROMs can be achieved at the desired input frequencies.

The computational cost of this algorithm [32] comes from solving q linear
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systems of equations, with each system having dimension N × N where N is the

size of the FOM state space matrix A and where

q = n

k=K∑

k=1

(jk + 1) (3.34)

where n is the size of the output vector, K is the total number of interpolation

points, and jk is the number of interpolation points matched at each interpolation

point. This cost can be further reduced by exploiting the sparsity structure of the

FOM state space matrices [4] which we have not implemented. There is no known

global apriori error bound for Algorithm 1 for multiple interpolation points.

3.4 Numerical Examples

We demonstrate two examples for model reduction of the heat conduction

problem for a single component. The Krylov subspace algorithm (Algorithm 1) was

used to create the reduced-order models for the components shown in Fig.3.3. They

demonstrate the efficacy of algorithm 1 in reducing the number of states without

losing accuracy.

The partial differential equation describing heat conduction is

∇ · (κ∇T ) +Q− ρCp
∂T

∂t
= 0. (3.35)

T and Q denote the temperature (in K) and the heat input (in W/m3) re-

spectively. The thermal conductivity κ, density ρ, and the specific heat capacity Cp

of each of the two systems are constant throughout the system and have the same

values as silicon at 163 W/m.K, 2330 kg/m3, and 703 J/kg.K respectively.
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Figure 3.3: Component geometries and heat sources for the reduced-
order modeling results shown in Fig.3.4 and Fig.3.5. For Components 1
and 2, Q1 = 1 ∗ 106 W/m3, Q2 = 3 ∗ 106 W/m3, Q3 = 2.5 ∗ 106 W/m3.

In Fig.3.4, we show full-order and reduced-order temperature profiles for 3 heat

sources (values mentioned in the Fig.3.3) on a single rectangular component. The

four boundaries of the component are maintained at T = 300 K. The plots show

the absolute temperature plot of the component above the nominal temperature of

T = 300 K at the end of 3 s. They were computed by calculating the temperature

rises for equally spaced mesh points of the component and interpolating for the

values between these points. The reduced-order model has 30 states and took 0.01

s to compute the temperature response on a computer running 64-bit MATLAB on

a 2.3 GHz AMD Opteron processor. The full-order model has 1243 states and took

over 13 s to compute the temperature response.

In Fig.3.5, we show temperature profiles for an arbitrarily shaped component
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Figure 3.4: Comparison of reduced and full-order temperature plots of
the top (rectangular) component with the heat sources shown in Fig.3.3.
The temperature profiles are shown for the final time t = 3s.
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having the same physical properties (silicon) as those in the above example. The

shape was chosen to demonstrate that there is no restriction on the component

geometry when we create its reduced-order model. The boundaries of the component

are thermally insulated. The value of the heat inputs are shown in the figure. The

reduced-order model has 30 states and took 0.01 s to compute the temperature

response. The full-order model has 1803 states and took over 49 s to compute the

temperature response.

Figure 3.5: Comparison of reduced and full-order temperature plots of
the bottom component in Fig.3.3. The temperature profiles are shown
for the final time t = 3 s.

For each of the two components shown in Fig.3.3, the number of states were

reduced from a full-order description of more than 1000 states to a reduced-order
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description of just 30 states. We computed the errors as the percentage difference

between the final and reduced model’s temperatures. We defined the error as the

percentage difference between the temperatures computed by the FOM and ROM

at a given point. The maximum error in temperature profiles was found to be below

1% for both the examples mentioned above.
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Chapter 4

Construction of the Device ROM by Interconnecting the Component

ROMs

In the previous chapter, we have demonstrated a Krylov subspace technique

for creating a reduced-order model for a single component. In this chapter, we show

how one can interconnect the component ROMs to form an accurate ROM for the

entire device. We split this chapter into four parts - modeling of the heat flux in

a control-theoretic format, showing how errors can come about if the errors in the

component ROMs amplify at the full device dominant frequency, showing how the

small gain theorem can be applied to rectify the above error, and demonstrating our

‘reduce-then-interconnect’ approach with a numerical example.

We assume the following notation from hereon: the transfer function gj(s) of

component j represents the full-order (unreduced) function that relates its inputs

(heating from neighboring components and heat source in component j) to its out-

puts (temperatures at specific locations on component j). The transfer function

g̃j(s) is the corresponding reduced-order transfer function. The inputs of both, the

reduced and unreduced models, are the same. They represent the exact same heat

inputs - due to heat flux from the adjacent components as well as from their own

internal heat sources. The outputs, for the reduced as well as the unreduced mod-

els, are exactly the same too. It is only the internal mapping between the inputs
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and outputs of the full (unreduced) model of a component that changes in defini-

tion (and size) when compared to the internal mapping of the reduced model of

the component (see Eqns. 3.13 and 3.18). To summarize, g1(s), g2(s), ..., gN(s) are

the complete (unreduced) transfer functions of the N components (subsystems) of

a device (system) and g̃1(s), g̃2(s), ..., g̃N(s) are the reduced transfer functions of the

same N subsystems.

4.1 Modeling heat flux in a control theoretical format

As shown in Fig. 4.1 heat flux is exchanged between the component and board

only through the top and bottom solder regions. These solder regions are idealized

as rectangles in our work, but they can be of any shape without affecting our results.
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Figure 4.1: Heat flux between the component and the board is exchanged
through the top and bottom solder regions.
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The exchange of heat between the component and the board can be represented

with the help of the following equations:

ẋBoard = ABoardxBoard +BBoard[f
Top
Board fBottom

Board ]T

TBoardSolder = DT
BoardSolderxBoard (4.1)

where ABoard, BBoard, and xBoard are the board state space matrices and state vector

respectively. The vector TBoardSolder is given by TBoardSolder = [T Top
BoardSolderT

Bottom
BoardSolder]

where T Top
BoardSolder and TBottom

BoardSolder are the average temperature of the grid points that

surround the top and bottom ‘solder’ regions of the board. The matrix DT
BoardSolder

is the corresponding output matrix. The fluxes fTop
Board and fBottom

Board are the heat fluxes

into the board through the top and bottom solder regions.

For the component, we have

ẋComp = ACompxComp +BComp[f
Top
Comp fBottom

Comp q]T

TCompSolder = DT
CompSolderxComp (4.2)

where AComp, BComp, and xComp are the component state space matrices and state

vector respectively. The vector TCompSolder is given by TCompSolder = [T Top
CompSolderT

Bottom
CompSolder]

where T Top
CompSolder and TBottom

CompSolder are the average temperature of the grid points

that surround the top and bottom ‘solder’ regions of the component. The matrix

DT
CompSolder is the corresponding output matrix. The fluxes fTop

Comp and fBottom
Comp are

the heat fluxes into the component through the top and bottom solder regions and

q is the internal heat source in the component.

The relation between the fluxes exchanged through the top and bottom solder
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regions of the board and component are given by the following equation

f top
Comp = − k

∆
(T top

CompSolder − T top
BoardSolder)

f bottom
Comp = − k

∆
(T bottom

CompSolder − T bottom
BoardSolder) (4.3)

where k and ∆ are the heat conduction coefficient and thickness of a solder connec-

tion between the board and component.

This kind of interconnection between the temperatures at grid points on the

board and component will yield a linear model if k is assumed constant with tem-

perature. It is possible to represent the above interconnection due to heat flux in a

state space format with the help of a connection matrix C which has the following

structure. Let α be a vector containing a concatenated list of all possible inputs

from all subsystems and β be a concatenated list of all possible outputs from all

subsystems. Then the connection matrix C depicts all the interconnections between

the various subsystems. The matrix C has element Cpq = 1 if the qth output βq is

connected to the pth input αp and Cpq = 0 otherwise. Physically, this means (refer-

ring to Figs. 4.2 and 4.3 below) that if the second output of component A which

is (for example) output 2 in the concatenated list of outputs β, is connected to the

first input of component B which is (for example) input 3 in the concatenated list

of inputs α, then C32 = 1. If they were not connected then C32 = 0.

Since the matrix C is defined solely on the basis of the interconnection of the

inputs and outputs of the state space model (whether reduced or unreduced) the ma-

trix C remains exactly the same whether we are dealing with the unreduced model or

the reduced model. Referring to Figs. 4.2 and 4.3, we can see that component A has
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Figure 4.2: This figure shows a physical interconnection structure between compo-
nents A,B, and Z. One of the outputs of component A is connected to an input of
component B. The components can also be connected to the board, but this con-
nection is not shown here in order to avoid clutter. The input/output numbering is
shown in Fig. 4.3, and the corresponding C matrix value is described below.
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Figure 4.3: In the transfer function format, this figure shows that an output of A,
the second in the concatenated list of outputs (of all components) is connected to
an input of B, the third in the concatenated list of inputs. Hence the connection
matrix C has entry C32= 1. If they were not connected then entry C32 would be 0.
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2 inputs and 3 outputs, component B has 3 inputs and 2 outputs, and component Z

has 1 input and 2 outputs. Hence the concatenated list of outputs of all components

has 7 elements and the concatenated list of inputs of all components has 6 elements.

Hence the interconnection matrix C is a 6 × 7 matrix. To avoid clutter in Figs.

4.2 and 4.3 we have reduced the number of inputs, outputs, and interconnections

between the components and we have also not explicitly shown the fact that each of

the components actually exchange heat with (and hence is connected to) the board.

In Figs. 4.2 and 4.3, we have shown a connection between components A and B -

an output of A (the second in the concatenated list of outputs of all components)

is connected to an input of B (the third in the concatenated list of inputs of all

components). Thus, element C32 of matrix C has value 1 and all the other elements

of matrix C have value 0. Thus if we wish to represent the interconnection between

the components A,B, and Z in the form of the interconnection matrix C for Fig.

4.3, then




0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

C = 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




It is straightforward to show that this interconnection yields the complete system
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transfer function F (s) between β (concatenated list of outputs of all components)

and α (concatenated list of inputs of all components) as

F (s) = G(s)[I − CG(s)]−1. (4.4)

where

G(s) = diag[g1(s), g2(s), ..., gN(s)]. (4.5)

with g1(s), g2(s), ..., gN(s) being the transfer functions of the N subsystems that

constitute the entire subsystem, G(s) being the transfer function made by appending

the transfer functions g1(s), g2(s), ..., gN(s) block-diagonally, and β(s) = F (s)α(s).

Now, if we connect the N reduced subsystems g̃1(s), g̃2(s), ..., g̃N(s) in the same

manner we get

F̃ (s) = G̃(s)[I − CG̃(s)]−1. (4.6)

where

G̃(s) = diag[g̃1(s), g̃2(s), ..., g̃N(s)]. (4.7)

and β(s) = F̃ (s)α(s).

In the next section we explain why the errors in the component ROMs when

interconnected to get the ROM of the device in the form of Eqn. 4.6, can amplify

at the whole device dominant frequency. We also show how to place an upper

bound on the device error by decomposing the error in the entire device into a sum

of weighted component errors using the triangle law. This decomposition and the

small gain theorem will enable us to formulate an algorithm that allows us to tune

the component ROMs to be accurate at the device dominant frequency so that the

error in the ROM of the entire device can be made as small as desired.
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4.2 Amplification of component ROM errors after interconnection

Even if the reduced and unreduced models of the individual components match

very well i.e., gj(s) ≈ g̃j(s) for the operating frequency range of that component,

there is still no guarantee that the connected unreduced and reduced models (F (s)

and F̃ (s) respectively in Eqns. 4.4 and 4.6 above) of the entire device will match.

The reason is that if the errors between gj(s) and g̃j(s) are large enough at the

dominant frequencies of the interconnected system, then these errors will multiply

(in the feedback sense) in Eqn. 4.6 and the interconnected system of reduced-order

models might be inaccurate and even unstable. Hence, if we intend to interconnect

the reduced subsystems, then we must make sure that the reduced subsystems are

accurate at the dominant frequencies of the interconnected system. The question of

how accurate the reduced subsystems must be can, in fact, be specified in the form

of a theorem.

This theorem relies largely on an application of the small gain theorem that

can be found in a standard controls textbook [122]. Fig. 4.4 aids in getting a better

understanding of the basic idea behind the small gain theorem.

Suppose we have a device that is made up of two components that are con-

nected in a cyclical fashion, i.e., each of them has exactly one input and exactly one

output, with the output of the first component being connected to the input of the

second component and vice versa. Suppose the first component amplifies it’s input

signal 10 times in its output and the second component diminishes its input signal

by 5 times in its output. Then we can see that the composite device (made up of the
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Figure 4.4: Components A and B are connected in a cyclical fashion. Component
A magnifies its input by 10 times in its output. Component B diminishes its input
by 5 times in its output.

two components) doubles any signal in a single cycle of the signal (a cycle is defined

as a passage of the signal exactly once through both the components). Thus, the

composite device made up of these two components is an inherently unstable system

because of the net magnification of any signal that passes through it. The small

gain theorem extends the above example to a device made up of multiple compo-

nents that are connected to each other in an arbitrary way. It turns out that the

question of stability of the device can in fact be answered for an input signal of any

particular frequency. The small gain theorem explicitly states a condition (based

on the transfer function of the individual components, the input signal frequency,

and the interconnection matrix C) that decides whether or not the device is stable

[122].

The theorem given below extends a previously derived result [3] (which itself
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makes use of the small gain theorem). The proof of the theorem is the same as given

in [96].

Theorem 4.2.1 Assume the subsystems g1(s), g2(s), ..., gN(s) are stable, that their

full-order interconnection F (s) = G(s)[I−CG(s)]−1 is stable, and the model reduced

subsystems g̃1(s), g̃2(s), ..., g̃N(s) are also stable (the components in our model do

have stable full-order and reduced-order transfer functions and the interconnection

of full-order transfer functions is also stable). Then the connected system composed

of reduced sub-systems, F̃ (s) = G̃(s)[I − CG̃(s)]−1 is guaranteed to be stable if

‖[I − CG(s)]−1CE(s)‖∞ = sup
Ω
‖[I − CG(iω)]‖2 < 1. (4.8)

where the supremum is over all frequencies Ω and E(s) = G(s)− G̃(s), where

G(s) and G̃(s) are defined as diagonal block matrices of subsystem and full-order

and reduced-order models respectively (as defined in Eqns. 4.5 and 4.7 respectively).

Proof We can rewrite the ROM transfer function of the entire device F̃ (s) in the

following way

F̃ (s) = G̃(s)(I − CG̃(s))−1

= G̃(s)
Adj(I − CG̃(s))

det(I − CG̃(s))

= G̃(s)
Adj(I − CG(s)− CE(s))

det(I − CG(s)− CE(s))
(4.9)

Since all the component ROMs g̃i(s) are assumed stable, we have that G̃(s) =
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diag(g̃1(s), g̃2(s), ..., g̃N(s)) is stable. Likewise, the adjoint matrix Adj(I−CG̃(s)) is

composed of an addition and multiplication of stable transfer functions and is hence

stable. Hence F̃ (s) is stable iff det(I − CG(s)− CE(s)) has no roots in the closed

right half plane (RHP).

But I − CG(s) − CE(s) = (I − CG(s))(I − CG(s)−1CE(s)) and det(AB) =

(det(A))(det(B)), so it is enough to show that det(I − CG(s)− CE(s)) = det((I −

CG(s)))det((I − CG(s)−1CE(s))) has no roots in the RHP.

We know that det((I−CG(s))) has no roots in the RHP by the assumption that

F (s) = G(s)(I−CG(s))−1 is stable. We also know that det(I−P (s)) has no roots in

the RHP by the small gain theorem because ||P (s)||∞ = ||(I−CG(s))−1CE(s)||∞ <

1.

The relevant statement of the small gain theorem is that det(I − P (s)) has

no roots in the RHP iff inf(σ(I − P (s))) 6= 0 for all s ∈ RHP (where σ(X) is the

minimum singular value of the matrix X), but the infimum is bounded below by

1− ||P (s)||∞ ≥ 0 and so it cannot be zero in the RHP. 2

4.2.1 Mitigation of the device ROM error by frequency weighting of

component ROMs

We are basically concerned about reducing the infinity norm of the error be-

tween the full-order and reduced-order system, i.e. we intend to minimize ||Ξ(s)||∞ =

||F (s)− F̃ (s)||∞. Now, it can be shown by extending results in [3] that up to a first

order approximation
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‖Ξ(s)‖∞ ≈ ‖U(s)E(s)V (s)‖∞,

U(s) ≈ Ũ(s), and

V (s) ≈ Ṽ (s). (4.10)

where

U(s) = G(s)[I − CG(s)]−1C + I, V (s) = [I − CG(s)]−1 ;

Ũ(s) = G̃(s)[I − CG̃(s)]−1C + I, Ṽ (s) = [I − CG̃(s)]−1 and

E(s) = G(s)− G̃(s).

The first order approximation in Eqn. 4.10 can be shown by realizing the equivalence

of either of the 2 substitutions: either we replace G̃(s) by G(s)−E(s) or we replace

G(s) by G̃(s)+E(s). In the first case, we get that (we omit the frequency dependence

to avoid clutter)

Ξ = G(I − CG)−1 − G̃(I − CG̃)−1

= G(I − CG)−1 − (G− E)(I − CG− E)−1

= G(I − CG)−1 − (G− E)(I + (I − CG)CE)−1(I − CG)−1 (4.11)

If the components are reduced so that the quantity ∆ = (I − CG)CE is kept

small, then we have that (I + ∆)−1 = I −∆ + O(||∆||2). Hence we have that

Ξ = (G(I − CG)−1C)E(I − CG)−1 + O(||∆||2) (4.12)

If instead, we had used the substitution, G = G̃+ E, we would similarly find

that

Ξ = (G̃(I − CG̃)−1C)E(I − CG̃)−1 + O(||∆||2) (4.13)
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Either way, the sub-system errors E(s) are, to the first order in E(s), being

amplified by the entire system frequency response (I − CG)−1

Ξ(s) ≈ (G(s)(I − CG(s))−1C)E(s)(I − CG(s))−1

≈ (G̃(s)(I − CG̃(s))−1C)E(s)(I − CG̃(s))−1 (4.14)

With the help of this first order approximation, we can use the triangle inequality

to show that

‖Ξ(s)‖∞ ≤
p=N∑
p=1

‖UIp(s)εp(s)VpJ(s)‖∞. (4.15)

where UIp(s) and VIp(s) denotes the Ipth block of U(s) and V (s) respectively,

and εp(s) = gp(s)− g̃p(s).

Thus any model reduction effort that hopes to capture the entire intercon-

nected device behavior will have to keep the individual component errors small at

the natural frequencies of the entire device. Furthermore, the amount of component

to device error amplification is adequately captured by a reduced order estimate

of the entire device dynamics (I − CG̃(s))−1. It is not necessary to know the full

order estimate (I −CG(s))−1 exactly in order to know the frequencies at which the

component ROMs are to be minimized as computing the dominant frequency range

from the FOM can be time consuming with respect to the rest of the reduced order

modeling process (since the precise picture of the dominant frequency range would

involve computing the eigenvalues of (I − CG̃(s))−1) .

We can use the intuition from the physics of the heat conduction problem

to decrease the time taken for the construction of the component reduced order

models. During heat dissipation, the dominant poles of the system are negative and
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close to zero. Hence, the behavior of the full-order system is mainly determined

by these dominant poles and we do not need to evaluate the full-order system’s

behavior in the entire frequency range. We only need to compute the dominant

natural frequencies of the entire system and ensure that the reduced-order models

of the subsystems are accurate in an appropriate dominant frequency range ∆ (say,

the low frequency range which is spanned by the two most dominant poles of the

system as illustrated schematically in Fig. 3.2).

Thus, we have to model reduce the sub-systems gk(s) in such a way so as to

keep ‖UIk(s)εk(s)VkJ(s)‖∆ (the error in the dominant frequency range ∆) small for

all k, where U(s) = G(s)[I − CG(s)]−1C + I, V (s) = [I − CG(s)]−1, and εk(s) =

gk(s) − g̃k(s). Since U(s) ≈ Ũ(s) and V (s) ≈ Ṽ (s), we can instead minimize

‖ŨIk(s)εk(s)ṼkJ(s)‖∆. In order to do this, we have to compute the entire system’s

frequency response, but this needs to be done only once (even a rough estimate of

the frequency response of the entire system is enough). In fact, if the designer has

knowledge about the dominant frequencies for a particular interconnection and if

the arrangement of the components is not drastically changed for the next design

iteration, then the dominant frequency range of the new interconnected system

will be approximately the same as that of the previous system. In that case, the

same set of reduced-order models of the components of the system may be used

and interconnected with the new interconnection matrix (since the reduced-order

models have already been computed in such a way that their interconnection yields

an accurate behavior in the dominant frequency range). In our trials with device

architectures that were not drastically different from each other we did observe a
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good agreement between the reduced and unreduced models of the device using

just a single library of reduced-order models. In the industry, the placement of

components on a board are primarily determined on the basis of VLSI design and

hence the range of architectures that a heat transfer specialist can optimize over can

be expected to be similar between different design iterations.

In the model reduction literature, ensuring that the reduced-order models are

accurate at particular frequencies is termed as ‘frequency weighted model reduction’.

According to Krylov based frequency weighted model reduction theory [32], a rule

of thumb to ensure frequency weighting is to choose the interpolation points to be

logarithmically spaced in the dominant frequency range.

In summation, the algorithm that we used to perform model reduction of the

individual subsystems and interconnect the reduced-order models, which is based

on Theorem 4.2.1 (that was originally proved by Anderson [3] in a different context)

is given in algorithm 2.

In brief, the above algorithm first estimates the dominant frequency range of

the complete system, computes initial (unweighted) reduced-order models for each

component and then iteratively refines these reduced-order models by solving the

minimization problem mentioned in step 4 of the algorithm. In each iteration of the

algorithm, we add interpolation points for each component’s reduced-order model

(as mentioned before, one interpolation point in each logarithmic decade of the

desired frequency range). A stopping criterion for the reduced-order model can be

applied by requiring that the total error between the full-order and reduced-order

system is less than a desired value. In our simulations, we needed 4 iterations for
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Algorithm 2 Creation and stable interconnection of reduced-order models

1. Estimate the dominant natural frequencies of the complete (unreduced) system
and choose the dominant frequency range ∆ of the system based on the spacing
between the eigenvalues of the system. Choose appropriate interpolation points
based on ∆.

2. Using the Krylov reduction algorithm 1, compute unweighted reduced-
order models for each of the N subsystems. Call these initial reduced-order models
as g̃0

1(s), g̃
0
2(s), ...., g̃

0
N(s).

3. Estimate Ũ(s) and Ṽ (s) (refer to Eqns. 4.10 and 4.15), the model
reduction projection matrices, based on g̃0

1(s), g̃
0
2(s), ...., g̃

0
N(s), namely

Ũ0(s) = G̃0(s)[I − CG̃0(s)]−1 + I and Ṽ 0(s) = G̃0(s)[I − CG̃0(s)]−1.

4. Find g̃1
1(s), g̃

1
2(s), ...., g̃

1
N(s) by solving the frequency weighted Krylov sub-

space problem: min ‖Ũ0
Ikεk(s)Ṽ

0
kJ‖∆ where the index k runs from 1 to N and εk(s)

is the error transfer function between gk(s) and g̃k(s). Frequency weighting in the
Krylov subspace method is done by choosing appropriate interpolation points to
lie in the required frequency range. The initial choice of interpolation points is
arbitrarily chosen in the dominant frequency range, but we have to vary the choice
of interpolation points in the dominant frequency range so that the minimum of
‖Ũ0

Ikεk(s)Ṽ
0
kJ‖∆ is reached for all components k.

5. Repeat steps 3 and 4 until an acceptable set of reduced subsystems (that
reduces the error between the interconnected FOM and ROM below a desired
value) is found.
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satisfactory results.

In the next section, we apply the proposed frequency weighted model reduc-

tion of the sub-systems and their interconnection mentioned above to a numerical

example in which 20 components are connected to and hence exchanges heat flux

with a board.

4.3 Numerical example of heat transfer between 20 reduced order

components to a board.

We now demonstrate an example for model reduction done on a system of 20

components connected to a board. The reduced-order models for the complete sys-

tem was done using Algorithm 1 (for creating ROMs of individual components) and

Algorithm 2 (for creating a stable and accurate interconnection of the component

ROMs). For our example, we have modeled a board with 20 components connected

to it as shown in Fig.4.5 below.

There are 20 components on the board (shown above in Fig.4.5). Each of the

components exchanges heat with the board and the only mode of heat transfer is

conduction. Each of the components are joined to the board by two solder connec-

tions as shown in Fig.4.5 inset above. These solder connections were a cluster of

5-6 finite element nodes near the top and bottom edges of each component. They

model a conducting surface (like thermal paste) that might be typically sandwiched

between the component and the board, but for this example we will term this clus-

ter as a “solder” connection. For an actual component, the number of nodes in the
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Figure 4.5: Arrangement of the 20 components on the board. The components are
numbered, and the corresponding step heat inputs applied to the components are
mentioned in Table 4.1 below. The bold boundaries on components 3,6,10, and
11 denote that each of those components have all 4 of their boundaries kept at a
constant temperature of 300 K.

cluster could be increased or decreased as per the situation. This decision should be

made while building up the library of component ROMs (and before interconnect-

ing the components). Each cluster in the solder region of the component exchanges

heat with the below cluster in the solder region of the board. All the nodes in each

solder cluster of a component were modeled so as to exchange the same heat flux

with the solder cluster of the adjacent component. This cluster is an idealization

of a thermal contact between a component and the board. The heat flux for an

entire cluster (solder contact) is modeled as just one input in the state space format

and this kind of contact between the board and the component was captured as

an input-output relationship with the connection matrix C explained in Eqn. 4.4.

This kind of interconnection between the components and the board reduced the

72



effective number of inputs to just two for each component in addition to the source

that generates heat in the component (which amounts to 3 inputs per component).

Each of the idealized components as well as the board were modeled as being

made of silicon and having constant material properties that were independent of

temperature. The physical properties of all the components and the board are the

same as silicon (as mentioned for the examples in Fig. 3.3). Components 3,6,10 and

11 (labeled in Fig.4.5) have each of their 4 boundaries at a constant temperature

of 300 K. The boundaries of the rest of the 16 components as well as the board,

are thermally insulated. For ease of notation, the step (heat) inputs that have

been applied to the components (labeled in Fig.4.5) have been denoted as follows

: qi = ui · 1(t − ai) which denotes that qi = 0 for t ≤ ai, and qi = ui for t > ai.

The heat inputs applied all 20 components are listed in Table 4.1. In Fig. 4.6, a

figurative explanation of the symbols ui and ai (used in Table 4.1) is shown for the

particular example of the step heat input applied to Component 1.
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Figure 4.6: This figure shows the step heat input applied to Component 1. Table
4.1 gives the values of the step heat inputs for all 20 components.

The interconnections between the components (subsystems) were modeled in
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the following way. The value of the system matrices A,B,E, and D for each of the sub-

systems was individually extracted from FEMLAB (a finite element solver). Within

FEMLAB, a linear time-dependent solver was used for simulating this problem.

Each of the components was discretized with mesh sizes of the order of around

1000 nodes per component. We extracted complete state space models of each of

the components with the inputs being the heat fluxes into each component. The

state space matrices were obtained by linearizing the finite element model around a

nominal temperature of 300 K. Though we created a reduced-order model for each

component, we did not create a reduced-order model for the board. The reason

is that when we initially connected the reduced-order model of the board to the

reduced-order model of the components, the whole system’s temperature response

showed an increased amount of error (around 7%) in certain areas on the board.

We consider this to be a result of an inherent numerical limitation in the Krylov

subspace method (Algorithm 1), which to the best of our knowledge has not yet

been resolved. A good explanation of this limitation can be found in [32]. Basically,

in each inner loop of Algorithm 1, we add more information about the full-order

model into the transformation matrix U , by appending new columns um to U . Now,

if there are many inputs in the state space model (i.e. a B is a “fat” matrix, like in

the state space model of the board in our numerical example, which has 40 inputs, 2

from each component connected to it), the new columns (um) that are added to U , in

successive iterations of the Krylov subspace algorithm (Algorithm 1) can, because of

limitations in computational accuracy, lie in the subspace of the previously computed

columns of U . This makes the matrix U have less than full rank. When such a (less
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Table 4.1: Heat Inputs applied to the 20 components

Component ui (106 W/m3) ai (s)

1 9 1.2

2 2 1.5

3 7 2.2

4 6.4 0.9

5 8.8 1.3

6 4.3 1.3

7 8.1 1.4

8 5.6 2.7

9 7.7 0.4

10 5.0 2.2

11 8.4 2.4

12 7.7 0.8

13 4.9 0.9

14 8.5 0.3

15 6.2 0.9

16 8.9 0.4

17 9.7 0.04

18 3.6 0.1

19 9.1 0.4

20 7.0 0.6
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than full rank) transformation matrix is used for reduced-order modeling, it results

in inaccurate reduced-order models.

Hence, we chose to connect the full-order model of the board to the reduced-

order model of the components and avoid the above problem. We would like to

stress that using a full-order model of the board has a one time, fixed computational

cost. It is basically the total number of components on the board that influences

the total number of states (and hence, computational cost) in the interconnected

system reduced model. Specifically, in our example the full-order model of the board

has 1429 states and the full-order model of each of the 20 components has around

1000 states and thus the full-order model of the interconnected system has 23109

states. The reduced-order model of each of the 20 components has 30 states. Thus

even though, we connect the reduced-order models of the components to the full-

order model of the board, the reduced-order model of the interconnected system

has only 2029 states (20 x 30 + 1429). As the number of components on the board

increases, the difference between the number of states in the FOM and ROM of the

interconnected system will roughly scale by the total number of components.

We connected the state space systems of the components on MATLAB (with

the connection matrix C) and computed the dominant frequency range of the entire

system. The dominant eigenvalues were clustered in the 0− 10 rad/s range (this is

step 1 of Algorithm 2). We chose to have 3 interpolation points at 0.1 rad/s, 2 rad/s

and 5 rad/s as the initial guesses for the interpolation points (with 1 moment to

be matched at each interpolation point) and allowed them to vary in the dominant

frequency range as mentioned in Algorithm 2.
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In our entire simulation, we required 4 iterations of Algorithm 2 which took

close to 40 minutes on a 2.3 GHz AMD Opteron processor (with 64 bit MATLAB).

The final interpolation points were chosen as σ1 = 1 rad/s, σ2 = 10−1 rad/s,

σ3 = 10−2 rad/s, σ4 = 10−3 rad/s, and σ5 = 10−4 rad/s. After the reduced-

order models were computed, it took less than 5 minutes to connect the reduced-

order models of the 20 components (and the full-order model of the board) to form

reduced-order models of the entire system.

The resulting temperature response at 4 points of the system are shown in

Figs. 4.7 and 4.8 below. Each plot shows results for the full-order as well as the

reduced-order model. The plots for the FOM and ROM response are indistinguish-

able because the errors are very small.

In Figs. 4.9 and 4.10, we have provided a plot of the temperature profile for the

entire system (components connected to the board). Fig.4.9(a) and Fig.4.9(b) show

the reduced-order and full-order plots of the components respectively. Figs.4.10(a)

and Fig.4.10(b) show the reduced-order and full-order plots of the board respectively.

The plots of the temperature profile for the 20 components are shown separately

(below) the plot of the temperature profile for the board, because the temperature

rise in the components is higher than that of the board.

The full-order model computations are very expensive, especially in terms

of memory involved. For the reduced-order models we required 340 MB memory.

This amount of memory usage is largely due to the full-order model of the board,

which is being connected to the reduced-order models of the 20 components. As

the number of components on the board increase, the (fixed) memory requirements
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for accomodating the full order model of the board will be much less relative to

the memory requirements of the components in the device ROM. For creating the

interconnected system model with the full-order systems, we had to make use of

the sparse structure of the system matrices (see Eqn.4.6 and Eqn.4.7), which are

mostly block diagonal except for the few off block-diagonal terms corresponding to

the solder connections. The plot was created by computing the temperature for

a few evenly spaced points with the respective (full or reduced) order models in

MATLAB, and interpolating for the values in between.

For each of the components, we can see that most of the component is at

roughly the same temperature except for the two solder regions near the top and

bottom of the component where the component exchanges heat flux with the com-

ponent. The solder regions are cooler than the rest of the component because the

heat flux flows out of the component and into the board. In the temperature plots

of the board, one can see the regions that are below the component have a higher

temperature then the surrounding. For the initial set of 3 interpolation points (be-

fore Algorithm 2 was applied for interconnecting the board to the components), the

reduced-order plots of the board temperature did not match that of the full-order

plot of the board. However, one can see that in Figs.4.9 and 4.10 (after Algorithm

2 was used, and the number of interpolation points for the component ROMs was

increased to 5), there is a very accurate match between the contours of the hot

spots on the board on the full-order model and the contours on the reduced-order

model. We computed the errors as the percentage difference between the full and

reduced model’s temperatures. The maximum error of the temperature response on
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Figure 4.7: Comparison between the full system and reduced system temperature
response of two different points on the device from t = 0s until t = 3 s. The
corresponding error between the full and reduced order model temperature response
is magnified by a factor of 104 and is shown in (b) and (d) respectively.
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(c) Temperature response of a point
on Component 4.
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Figure 4.8: Comparison between the full system and reduced system temperature
response of two different points on the device from t = 0s until t = 3 s. The
corresponding error between the full and reduced order model temperature response
is magnified by a factor of 104 and is shown in (b) and (d) respectively.
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(a) Absolute temperature plot of the reduced-order model of the components.
The two “cold” spots on each component correspond to the solder region of
the component. The two solder regions of each component do not have any
direct heat source like the rest of the component (the component heat source
values are mentioned in Table 4.1), which is the reason why it is at a lower
temperature than the rest of the component.

(b) Absolute temperature plot of the full-order model of the components.

Figure 4.9: Comparison between the full system and reduced system temperature
profiles of the components at the end of 3s.The components are shown separately
from the board because the temperature rise in the components are much larger
than on the board. The complete system FOM (board + component) has 23109
states, while the ROM has 2029 states.
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(a) Absolute temperature plot of the reduced-order model of the board.

(b) Absolute temperature plot of the full-order model of the board.

Figure 4.10: Comparison between the full system and reduced system temperature
profiles of the components at the end of 3s. The components are shown separately
from the board because the temperature rise in the components are much larger
than on the board.
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various parts of the system was less than 1%. The number of states for the entire

system was reduced from an original of around 23109 to 2029. In both, the full-

order and the reduced-order system, the board contributes 1429 elements. In the

reduced-order system, each of the components only have 30 states as compared to

more than 1000 states in the full-order model. Though there is a fixed cost due to

the includion of the full order model of the board, we can see that as the number of

components on the board increase, the savings in computational time and memory

are very significant in the reduced-order model of the system when compared to the

full-order model.

Table 4.2 presents a comparison of reduced order modeling techniques that

have been used for thermal simulation of microelectronic components. Each of

the other three modeling approaches - resistor modeling, Pade approximation, and

Arnoldi-based (single ROM for the entire device) - were created with a specific

need. The resistor modeling approach is intuitive, but the relative lack of feature

resolution of this approach can result in larger errors (as high as 7 % in [90]). While

the other two approaches - Pade [52] and Arnoldi-based [18] - have a very high

accuracy, they both rely on modeling the entire device with a single reduced order

model. In our simulations, the initial iterations - which consists of computing the

frequency weighted reduced-order model for all the components - took 40 minutes.

The connection of the reduced-order models of the components took less than 5

minutes, and after that, computing the temperature responses took 55 seconds.

Hence, the temperature distribution for new system architectures can be computed

in 5 min 55 seconds. For the connection structure in our problem, the error was less
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than 1% as compared to the full-order system. The main advantage of our models is

that we can interconnect many reduced-order models instead of having to compute

a reduced-order model of the entire system for each different component layout.
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Table 4.2: Comparison of Model Reduction Techniques

Modeling

method

FOM/ROM

number of ele-

ments (physi-

cal problem)

ROM run

time

Error

(com-

pared

to)

Recreate

device

ROM from

ground

up?

Resistor

modeling

[90]

ROM:2171 (9

components; 12

varying heat

sources)

25 min less than

7%(AN-

SYS)

YES

Pade ap-

proxima-

tion [52]

ROM:2375

(Voltage Regula-

tor)

240 s (as com-

pared to 3110 s

for FOM)

Almost ex-

act (FOM)

YES

Arnoldi

based sin-

gle ROM

[18]

FOM:30000

ROM: 85 (17

components on a

board)

10 min less than

1%(FOM)

YES

Algorithm

2 in this

chapter

FOM:23109

ROM:2029 (20

components on a

board)

less than 1 min

after the initial

interconnection

of the system

less than

1%(FOM)

NO
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Chapter 5

Discussion and Future Work for Interconnection of Reduced Order

Models

We have demonstrated the use of an efficient Krylov subspace method to create

reduced-order models of different components of a thermal conduction network of an

electronic device. We have also described a novel method of assembling various such

reduced-order models in order to accurately compute the entire system behavior.

The size of the system in the numerical example was reduced from 23109 states

to approximately 2029 states, which reduced the time for the simulation to less

than 1 minute (once the initial iterations for computing the frequency weighted

reduced-order models of the components have been completed). A designer can

use the method that we propose in this paper to create a library of reduced-order

component models and then connect them together to achieve reduced-order system

models.

The mathematical format for interconnection that we presented in this paper

can be effectively applied to model the kind of physical interconnection between

components that we have shown in Sec. 4.3, where the the heat conduction coeffi-

cient does not change appreciably with temperature. One of the future extensions of

the work presented here would be to account for variability in the heat conduction

coefficient. Such kind of ‘model reduction with parametric variation’ has been done
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using multi-parameter moment matching using Krylov subspace techniques for the

problem of accurate parametric reduction for addressing the variability of integrated

circuit interconnect performance [54].

In a finite element package like ANSYS or FEMLAB, the kind of reduced-

order results described in this paper can be offered as an option to the designer.

Once the designer has modeled a particular component of the device, he or she can

store the reduced-order description of the component in a library along with those

of other components. The designer can then connect that library of components to

create cheap but accurate system models. The designer would find it convenient

if there was a GUI incorporated in the software that would help him or her con-

nect the (heat) inputs of a particular component to those of another component,

instead of having to manually compute the interconnection matrix C. When faced

with a new interconnection structure, the designer should first check whether the

existing library contains component reduced-order models that satisfy the stopping

criterion in algorithm 2. If it does meet the criterion, then the designer can use the

same library, else he or she can use the component ROMs in the existing library

as a starting guess and use Algorithm 2 to compute new component reduced-order

models.

In Algorithm 2, one also needs to have an approximate idea of the dominant

frequency range of the system model for different interconnections. One can poten-

tially use a result from linear algebra to do this cheaply. Briefly, the idea is that if

one has access to the dominant eigenvalues of the component reduced-order models

that are being interconnected, the system’s state space matrix Asystem (which has
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only got a few known off block-diagonal terms corresponding to the entries due to

the solder joints) can be treated as a perturbation of a matrix that is formed by

block-diagonally appending the component matrices, Ai. Since we only need a rough

approximation of the dominant frequency range, this can be computed by applying

Gershgorin’s theorem [30] to the block-diagonal matrices (Ai, i = 1 to N) in order

to get the range in which the dominant eigenvalues will lie. Even a rough approxi-

mation of this range will suffice, because when creating ROMs of the component, it

is enough to add interpolation points that are logarithmically spaced in the required

frequency range.

In our simulations, we have modified the interconnection structure slightly

and observed that one can still use the same library with accurate results, but the

following problems is still open: in an optimization run that searches for maximally

heat dissipative architecture for the device, by how much can we modify the inter-

connection structure (which decides the architecture) without having to also modify

the library of reduced-order component models that we use to create the reduced

order model of the device?

The final aim is to couple these kinds of conduction ROMS to convection and

radiation ROMs (convection has been model-reduced using proper orthogonal de-

composition in many applications including flows past cavities [88] and identifying

coherent structures in turbulence [99]) and provide a complete design capability for

a heat transfer specialist using a similar ‘reduce-then-interconnect’ approach. We

think that the answers to the above two questions - allowable variation in intercon-

nection and ROMS for convection and radiation - are important topics for future
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research in order that designers be able to apply model reduction techniques to

practical problems.
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Chapter 6

Introduction to Isoelectric focusing: Definitions and Physics

For every kind of analysis of biological material, be it genomic, proteomic,

or glycomic, the base material (DNA, proteins, or carbohydrates respectively) is

always found in an impure state when it is extracted from the tissue. One needs

to be able to separate this base material from the other impurities in order to be

able to perform any kind of further analysis. In this part of the thesis, we will

concentrate on one such technique - the isoelectric focusing (IEF) process - which is

a popular technique that is used to separate proteins from the other constituents of

the extracted material. In this chapter, we will describe the IEF process and make

a few assumptions to keep this discussion at the level of an overview of the IEF

physics. In the next chapter, we will justify those assumptions in detail, describe

the governing equations for IEF, and our simulations of IEF physics.

6.1 Separation Techniques

A complete separation of a mixture of chemical constituents can be represented

[28] by

(a+ b+ c+ d+ .....) −→ (a) + (b) + (c) + (d) + ........ (6.1)

where the parenthesis represent different regions of space and the letters a, b, c,

d,... represent the individual constituents occupying those regions. A group of
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constituents that are originally intermixed, are forced into different spatial locations

by the process of separation.

There are about 20 basic techniques of separation [29]. Basic techniques are

either named after the underlying physical phenomena - adsorption, crystallization,

ion exchange, diffusion etc. - or a distinct form of operation - chromatography,

distillation, dialysis, field flow fractionation etc. Sometimes, different separation

techniques are used simultaneously for achieving separation. In Fig. 6.1 [36], we have

an example of a ‘2-dimensional’ separation technique in which 3 different proteins

are separated along two orthogonal axes. One of the axes uses IEF for separation

and the other uses capillary electrophoresis for separating the proteins.

Figure 6.1: Separation of three different proteins - GFP, FTC-
Ovalbumin, FITC-Dextran - at three time intervals as reported in [36].
The proteins are separated along two orthogonal axes, which use IEF
and capillary electrophoresis respectively as the separation techniques.
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The separation technique investigated in this thesis is isoelectric focusing

(IEF), which is used to isolate proteins in a mixture. The physics involved is that of

electrophoresis which is the movement of charged particles in a heterogenous fluid

under the influence of an electric field.

6.2 Separation of proteins

Proteins are large organic compounds made of amino acids arranged in a linear

chain and joined by peptide bonds (bond formed when the carboxyl group of one

molecule reacts with the amino group of another molecule [1]). They are consid-

ered as the building blocks of nature [1], and participate in every process within

cells. Proteins are involved in varied functions like catalyzing biochemical reactions

in metabolism, forming a scaffolding that maintains cell structure, cell signaling,

digestion etc.
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Figure 6.2: Proteins are building blocks of nature.
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The process of extraction of proteins from cells begins with cell lysis, in which a

cell’s membrane is disrupted and its internal contents released into a solution known

as crude lysate. The resulting mixture is purified in a centrifuge which fractionates

the various cellular components into fractions containing soluble proteins, membrane

lipids, cellular organelles and nucleic acids. The proteins formed as a result are salted

out (taking advantage of the amino acid structure). After the salting out process,

we get a solution that primarily contains a mixture of different proteins.

This is where the separation techniques prove useful. In order to to understand

any significant properties of proteins, for example, how structural changes of an

individual protein correlates with a particular phenotypic behavior of the organism,

this mixture of proteins need to be separated in the manner of Eqn. 6.1. These

are achieved by separation techniques that differentiate among proteins because of

the differences in their physical properties like molecular weight, net charge, and

binding affinity.

6.3 History of Separation Processes

Two well understood physical properties that are used for separating mixtures

of fluids or particles are separations based on charge and mass. The earliest docu-

mented example of the first kind (i.e., based on electrokinetic forces) was discovered

by Reuss [80] in 1809. He discovered the phenomenon of electroosmosis, which is

the motion of polar liquids in an electric field, when he found water moving through

sand particles under the influence of an external electric field. Tiselius [109] was
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the first to monitor the movement of protein molecules in an electric field which

was termed as moving boundary electrophoresis (MBE). The principle of MBE was

that when the light refracted by regions of the liquid medium in which the proteins

were dispersed was analyzed in a schlieren optics device, one could differentiate be-

tween different regions of the separated protein-liquid mixture because each of the

regions had a different refractive index. This technique enabled the first accurate

measurement of protein mobilities [57]. In zone electrophoresis (ZE), the proteins

are completely separated from each other (unlike in MBE where they overlap). This

was achieved by carrying out the electrophoresis on a ‘support medium’ and not in

a liquid. Paper was the first such ‘support medium’ that was used [47]. However,

the high content of carboxylic groups in paper produced severe streaking of the pro-

teins across the paper during separation. In 1950, Gordon et al. [30] introduced the

technique of electrophoresis in an agar gel. This process achieved popularity when

the first ‘2-dimensional’ separation of biological fluids like sera was achieved in the

gel [31]. Here ‘2-dimensional’ separation means that, orthogonal to a first dimension

electrophoretic step, an immuno-detection step based on simple diffusion was acti-

vated by placing proper antisera (blood serum containing a mixture of antibodies,

produced by the immune system for the same antigen) across the length where elec-

trophoresis took place. Smithies [100] was the first to report the excellent resolving

power of starch (specifically, potato starch) based gels for detecting haptioglobins in

sera, but their use waned due to the opaqueness of this gel. Electrophoresis in thin

layers of silica gels was first reported by Honnegar [38] in 1961. It was around this

time that the first separation of proteins using IEF was reported. IEF exploited the
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‘amphoteric’ properties of proteins. We will explain more about this property over

the next few sections.

With the proliferation of separation techniques, many ‘2-dimensional’ separa-

tions based on orthogonal coupling of any two techniques were devised (as shown

in Fig. 6.1). Some of the other separation techniques that were used in conjunction

with the ones that have been mentioned above were SDS-PAGE (based purely on

mobility difference due to mass) [25], gel-chromatography [77] and isotachophoresis

[34].

Whether used purely by itself, or in combination with an orthogonal technique

(especially SDS-PAGE), IEF attained immense popularity, partly due to its use of a

unique property of proteins that distinguishes itself from many other impurities that

are typically found in biological samples. This property, termed ‘amphotericity’, and

the way it is exploited in IEF is described next.

6.4 The IEF separation process

A few definitions [28] are in order before an explanation of IEF.

• Amphoteric molecules: Molecules that interact with both acids and bases

are called amphoteric molecules. Eg: water, amino acids.

• Electrolytes: Substances that dissociate into free ions, when dissolved in a

solvent, are called electrolytes. Eg: acids, bases, salts.

• Ampholytes: Substances that are both amphoteric as well as electrolytic in

nature are called ampholytes. Eg: proteins, peptides.
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• pH: pH = −log10([H+]), where [H+] denotes the local concentration of hy-

drogen ions in mol/litre. pH always lies in the range 0 < pH < 14. Acids have

pH < 7, and bases have pH > 7.

IEF is a separation technique based on electrophoresis that is used to isolate am-

pholytes (like proteins and peptides) from the mixture in which they occur. The

basic experimental setup is shown in Fig. 6.3.
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Figure 6.3: IEF experimental setup.

From Fig. 6.3, we can see that when the external potential is switched on,

there will be an electric field vector at each point in the channel. Assume for the

moment that the electric field vector at each point in the channel is constant. The

channel is filled with some gel-like medium (explained in detail later in Sec. 7.2)

and it connects the acid and base reservoir. Further assume, that this medium

establishes a stable pH gradient along the channel (there must be a pH gradient

because the left (acidic) reservoir has a lower pH than the right (basic) reservoir).

Now, consider the behavior of a single protein molecule. Since this protein molecule

is an ampholyte, it will dissociate into ions due to its electrolytic tendency. Due to its
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amphoteric tendency, the ampholyte molecule will simultaneously react chemically

with the hydrogen (H+) as well as hydroxyl (OH-) ions that it finds in its vicinity.

The protein molecule is an amino acid, so it will either gain or lose charge (by way of

reacting with H+ or OH- ions) according to the surrounding pH. Thus, each protein

molecule can have a net positive or negative charge on it. As long as the protein

molecule has a net charge, it will drift along the channel because of the electric

field at each point along the channel, and continuously gain or lose charge to the

surrounding medium according to a chemical law that is governed by what is known

as its titration curve (explained later in Sec. 7.1 and in the next chapter). The

forces acting on a single ampholyte molecule are shown in Fig. 6.4.
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Figure 6.4: Forces on Ampholyte molecule.

At some point in time, due to the nature of the titration curve, the molecule

might find itself at a point in the channel where it does not have any charge on

it. At this point, which is termed as the isoelectric point of that ampholyte, the

molecule will stop having a convective velocity, but it will still have motion due to

diffusion. Until the molecule reached near its isoelectric point, the diffusive forces
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acting on it were negligible as compared to the convective forces that were acting

on it.

This random diffusive velocity is very small, but it might take the molecule

away from its isoelectric point. However, as soon as the molecule moves away from

its isoelectric point, it will gain or lose charge (in accordance with its titration curve

and the local pH) and will gain a drift velocity due to the electric field that will focus

it back to its isoelectric point. Thus all the molecules of a particular ampholyte are

continuously focused back to their isoelectric point.

The assumptions made in the above argument (which will be justified in the

coming sections) for the focusing behavior of proteins were:

• A constant electric field in the channel.

• A stable pH gradient is established in the channel due to the gel-like medium

in the channel.

• Each ampholyte in the channel (including the required proteins) is continually

focused to its isoelectric point (pI) along the channel.

Different ampholytes have different pIs and will hence focus at different regions

along the channel, thus yielding the needed separation. Once this focusing has been

completed, each protein can be eluted separately from the channel. Though an

experimental research topic in its own right, in this thesis we are not concerned

with the process of eluting the ampholytes.

98



6.5 Advantages of IEF as a separation process

The main advantage of IEF as compared to other separation processes is that

it is based on a unique property of proteins (or peptides) - that it is an ampholyte.

In the previous section, it was shown how this unique property is exploited for the

purpose of separation. IEF has been used to separate proteins with a pI difference

of as low as 0.005 pH units [111]. This unique property has enabled the use of IEF

in conjunction with other separation process that are based purely on charge or

mass of the protein molecule. For example, this kind of ‘2-dimensional’ separation

can be done by firstly, separating proteins according to their pI (by IEF) in a

slab of gel and then, separating those proteins that find themselves close to each

other even after IEF (because of very close isolectric points), by gel electrophoresis

(separation based on difference in molecular weights of the protein molecules) along

a perpendicular direction in the gel. This kind of 2-D separation has been used

to separate proteins, hundreds at a time from biological fluids and tissues [2]. IEF

is also used in monitoring the purification of proteins, evaluating the stability of

proteins and in proteomics.

In the next chapter, we will begin by explaining the two main concepts that

justify the assumptions mentioned in Sec. 6.4:

• The titration curve for each ampholyte - which will help explain the isoelec-

tric point and its relation to the ampholytes’ focusing behavior.

• The carrier ampholytes - which will help explain the stability of the pH

gradient in the channel that is essential for good focusing.
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We will then discuss the need for a computational model for a better design of

the IEF experiment. We look at the governing equations for IEF and show how

our approach to modeling the chemical reaction between the ampholytes and the

hydrogen ions results in reduced simulation times.
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Chapter 7

Governing Equations and Full Order Model Simulations for IEF

In this chapter, we will first discuss two main concepts - the titration curve

and carrier ampholytes - that explain the chemistry of the IEF process and

justify the assumptions made in the previous chapter. We will then present an

overview of the experimental and computational results that are currently available.

After that we will derive the governing equations for IEF in Sec. 7.5 and our fast

dynamics assumption that enables us to perform quicker simulations than the ones

in the existing literature. We will then present the simulations of the finite element

simulations of our model which we run using the COMSOL finite element modeling

software. We note at the outset that even though our model in this chapter provides

a much faster simulation time than the existing literature, there is still a need for

even cheaper simulations. Our simulations in this chapter will provide the data

for a further reduction in model size that we attempted with proper orthogonal

decomposition. The further reduction in model size will be explained in the next

chapter in which we will denote the model and the finite element simulations of this

chapter as the full order model for IEF simulations.
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7.1 Titration curves

Titration curves explain the dynamics of the chemical reaction between

ampholytes and the surrounding H+ and OH- ions. Mathematically, the titration

curve gives the net charge per ampholyte molecule at a given pH. In this thesis this

net charge per ampholyte molecule is denoted as f(H) (or f(pH), though f(H) is

used in this thesis). Three examples of ampholyte molecules are given in Fig. 7.1.

In what follows, we non-dimensionalize the chemical reaction by denoting the

non-dimensionalized hydrogen ion concentration [H] as [Ĥ] = 10−7 mol
litre

[Ĥ]. The

non-dimensionalized hydroxyl ion concentration [ÔH] is given by [ÔH] = 1

[Ĥ]
(since

[Ĥ][ÔH] = 10−14 mol2

litre2 ). The equation for the titration curve f(H) can be determined

from the rate constants of the chemical reaction between the ampholyte molecule

and the surrounding H+ and OH- ions in the following way.

Let the ampholyte have a concentration [Q] at the instant that it is introduced

into the buffered solution. We assume equilibrium chemistry for the dissociation re-

action of the ampholyte, which means that for the purposes of determining the

migration of the ampholyte molecules, we do not need to account for the fact that

there is a finite amount of time that is needed for the ampholyte molecule to dis-

sociate (during which the convective forces on the ampholyte molecule might vary

by a small quantity). We can then use the Henderson Hasselbalch equation [53]

for weak acids to determine the average net charge on the ampholyte molecule at

a particular pH. Assume that at equilibrium, a certain fraction A of the ampholyte
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Figure 7.1: The schematic of an ampholyte molecule is shown at the
bottom of the figure. The molecule at the top is the parent ampholyte
molecule Pentaethylenehexamine, and the molecule below it is derived
from the former by adding acidic groups to it [85].
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molecules has dissociated into its acidic group in the following way:

QR +H2O
KR−−⇀↽−− H3O

+ +QR− (7.1)

where QR is the acidic portion of the ampholoyte molecule that dissociates into QR−

when it donates a hydrogen ion. Hence we have (for weakly buffered solutions),

[QR] = [Q](1 − A), [QR−] = [Q]A and KR is the equilibrium constant for the

reaction.

Assume that at equilibrium, a certain fraction B of the ampholyte molecules

has dissociated into its basic group in the following way:

QL+H2O
KL−−⇀↽−− OH− +QL+ (7.2)

where QL is the basic portion of the ampholoyte molecule that dissociates into QL+

when it donates a hydroxyl ion. Hence we have (for weakly buffered solutions),

[QL] = [Q](1 − B), [QL+] = [Q]B and KL is the equilibrium constant for the

reaction. Then we have that

[H+][QR−] = [H+][QR]A = KR[QR] = KR[Q](1− A). (7.3)

and

[OH−][QL+] = [OH−][QL]B = KL[QL] = KL[Q](1− A). (7.4)

From hereon, we drop the square brackets that denote the concentration for

a given species. For example, instead of the [H], we will denote the hydrogen ion

concentration as H (or Ĥ in the non-dimensional case). The net average charge per
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ampholyte molecule f(Ĥ), is given by f(Ĥ) = Q(B−A), which from Eqns. 7.3 and

7.4 can be written as (since [OH] = 1
H

)

f(Ĥ) = Q(B − A) = Q(
KLĤ

KLĤ + 1
− KR

KRĤ + 1
) (7.5)

The net charge f(Ĥ) is zero at the isoelectric point. Denote the hydrogen

ion concentration at the isoelectric point as IEH. We get IEH by setting the value

of f(Ĥ) in Eqn. 7.5 to zero. Hence we have that [IEH] = (KR

KL
)1/2. If we denote

the quantity (KRKL)1/2 as q, then we can rewrite the titration curve equation Eqn.

7.5 as

f(Ĥ) =
q

q + IEH

Ĥ

− q

q + Ĥ
IEH

(7.6)

Consider an ampholyte molecule that has an isoelectric point pI = 8. Then

the net charge per unit ampholyte molecule is given by the titration curve in Fig.

7.2 (where the net charge is plotted against pH instead of Ĥ).

From Fig. 7.2, we can see that the net charge on the ampholyte molecule,

when it finds itself in a region in the channel wih pH = 8 is zero. This pH is called

the isoelectric point or pI of that particular ampholyte. This fits in with the

definition of the isoelectric point mentioned in Sec. 6.4 where we stated that the

ampholyte molecule focuses at its pI because at that point there is no net charge

on the molecule and hence it does not experience any convective force due to the

electric field. When the ampholyte molecule finds itself in a region that has pH < pI,

which is in the left portion of the titration curve in Fig. 7.2), the net charge on the
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Figure 7.2: Example of Titration Curve.

ampholyte molecule is positive. Hence it experiences a convective force to the right

(since the electric field points to the right), towards its isoelectric point. When the

ampholyte molecule finds itself in a region that has pH > pI, which is in the right

portion of the titration curve in Fig. 7.2), the net charge on the ampholyte molecule

is negative. Hence it experiences a convective force to the left, again, towards its

isoelectric point. In this way, the amphoteric property of proteins is exploited in

IEF to isolate the proteins by focusing it at its isoelectric point.

7.2 Carrier Ampholytes

In Sec. 6.4, one of the assumptions made in order to explain the focusing

process in IEF was that a stable pH gradient is established in the channel, which is

maintained by the ‘medium’ present in the channel. This ‘medium’ is described in

this section.
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Beginning in 1961, Svensson [104], [105], [106] was the first to report the

possibility of separating amphoteric molecules (like proteins) if a stable pH gradient

could be established across two electrodes in an appropriate medium. However, he

lacked the technique to ‘carry’ such a stable pH gradient across a wide pH range.

His student Vesterberg was the first to chemically construct such a medium [115],

[116]. He made certain oligoamines react with a α−β acrylic acid to simultaneously

generate a range of amphoteric molecules whose pIs were closely spaced and spanned

a pH range that was wide enough for a viable separation of many different kinds of

proteins that were typically found in a biological sample. This ‘medium’ is then, a

collection of many (> 100) ampholytes [81] whose isoelectric points (pI), uniformly

span the pH range between the left (acidic) reservoir and the right (basic) reservoir.

These ampholyte molecules are called carrier ampholytes because they maintain a

stable pH gradient in the channel (they ‘carry’ the pH gradient).

Each of these carrier ampholytes (CAs) are present in much higher concentra-

tion (in the order of 1000 times greater) than the proteins in the mixture. These

carrier ampholytes are commercially available for any given pH range, and we use

these carrier ampholytes to separate the proteins that we desire. For example, if we

need to separate 2 proteins P1 and P2 which have pIs 6.50 and 6.86 respectively, we

can purchase a mixture of carrier ampholytes with their pI’s in the range 6 < pH < 8

and use them to separate the 2 proteins. These ampholytes when introduced into

the CA mixture at the beginning of the IEF process, seek out each of their pIs along

the channel, to create a staircase-like pH gradient as shown in Fig. 7.3.

The ‘steps’ in the staircase-like pH gradient are created because each of the
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Figure 7.3: The pH profile for isoelectric focusing with 30 ampholytes
is said to have a staircase-like gradient as shown in this illustration.
Proteins P1 and P2 focus at the regions of the channel that have pH
values that match their respective isoelectric points (pI). In the figure
we show how the 15th carrier ampholyte CA15 helps maintain a near
constant pH equal to its pI (=6.67) due to its buffering properties.
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CAs focus at their respective pIs. When a particular CA focuses in a particular

region, it results in that region having a near constant pH around where that CA

focused, and which is equal to that particular CA’s pI. This corresponds to the flat

portion of one step shown in Fig 7.3. The width of each step depends on the mobility

and diffusivity coefficients of that particular CA [81]. For example, if in Fig. 7.3

the acid reservoir has pH = 6, and the basic reservoir has pH = 8, and CA15 has

pI = 6.67, then at the end of the focusing process, CA15 maintains a region of near

constant pH (= pI = 6.67) in the region around where it focuses.

Now, the protein mixture is introduced into the channel filled with the CAs.

Since the proteins have a much lower concentration than the CAs, the CAs act

like buffers that maintain a step like pH gradient, while the proteins disturb the pH

gradient in the focusing process. Since the proteins as well as the CAs have both got

the ampholytic tendency, the proteins can be simultaneously introduced along with

the CAs, and both, the proteins and the CAs, undergo simultaneous focusing in the

channel. The order of introduction of the proteins and the CAs does not change the

basic physics in any way. For a different initial condition, the transient behavior will

change compared to the first case (when the protein mixture is introduced after the

CAs). However, the final positions of the CAs as well as the proteins after focusing,

as well as the buffering nature of the CAs remain the same.

From the point of view of an individual protein molecule, one can imagine its

basic tendency as ‘always seek the isoelectric point (pI)’. That being the case, even

if the pH gradient is changing in the channel (due to the CAs being focused), the

protein molecule will keep gaining/losing charge and moving towards its isoelectric

109



point. Since the CAs have much higher concentration than the proteins, the pH

gradient created by the CAs is stable with respect to the (minor) changes in pH

caused by the focusing of the proteins.

One can see that a large number of carrier ampholytes corresponds to a large

number of steps in the pH gradient. Hence the term ‘staircase-like pH gradient’ is

often used in literature [81]. The formation of this staircase-like pH gradient is used

as one of the tests of a computational model.

7.3 The assumption of constant electric field in the channel

One of the assumptions that we have made in modeling IEF is that the electric

field in the channel is constant throughout the focusing process. In reality, there

is a sharp drop in electric field intensity as soon as the voltage is switched on

and then a relatively constant electric field is observed for the rest of the focusing

process. The inclusion of varying electric fields will involve an additional Poisson

equation for electric field intensity that will increase computational time because of

the involvement of all charged species in the resultant governing equations. Here,

we explain our reasoning behind the constant electric field assumption.

The electric current in the channel is monitored with the help of an ampmeter

in the external circuit that is shown in Fig. 7.4. It has been reported [103] that

in order to avoid Joule heating in the channel, the best experimental results are

obtained when the voltage is increased in a few steps. One will typically observe

an initial electric current which shows a sharp drop and then remain at a constant
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level till the next step up in the voltage is applied as shown in Fig. 7.4.

Figure 7.4: Electric field stabilization at each step in the stepped-voltage
experiment

The physics behind the quick drop of the current in the channel to a near

constant level at a given constant voltage is the following - the initial large cur-

rent is due to all the carrier ampholytes moving towards their respective isoelectric

points. There is a contribution due to the movement of the proteins too, but it is

negligible due their small concentrations relative to the CAs. As the CA molecules

focus around their pIs, they lose almost all their charge and from then on, only

gain/lose charge due to their (relatively small) diffusive movement away from their

pIs. However, any deviation away from their pI will result in them getting focused

back to the pI by the electric field due to the charge they will pick up by reacting

with hydrogen or hydroxyl ions. Hence, when the current in the external circuit

shows a steep drop, one can conclude that most of the CA molecules are near their

pIs. For the purposes of our modeling, we will hence assume that it is enough to be

able to predict the IEF characteristics like the ampholyte concentration, focusing
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time and the pH gradient with the assumption of a constant electric field.

7.4 Previous experimental and theoretical techniques used to under-

stand IEF

There are only two tools that have been widely used for monitoring IEF exper-

iments: optical imaging of dyes in the channel and monitoring the electric current

in the channel. Since accurate measurement of quantities like the step width of all

steps in staircase-like pH gradient is not possible with only the above two tools,

experimental techniques have a limited scope in understanding the dynamics of the

focusing process and moreover, they are both expensive and time consuming.

Optical imaging is a widely used technique ([61], [60]) in which a dye marker

(which has a known pI), is introduced in along with the CAs and the proteins in

the channel. We then know that the region where this dye focuses has a pH equal

to the pI of that dye. If one uses many dyes with known pIs, and captures the

movement of each of those dyes in that channel, then one can plot the approximate

formation of the pH gradient in time. For a more accurate graph of the pH in the

channel, one needs to use a proportionately bigger number of dyes (with different

pIs) and carefully track the movement of each dye in the entire channel, which is a

labor intensive process.

However, there is much more detail about the focusing process, like the widths

of the individual regions where each ampholyte focuses and the concentration of the

ampholytes in each peak that can neither be measured by monitoring the electric
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current [103] nor by using dyes (since the dyes would need to have the same diffu-

sivity and mobility as the ampholytes).

The experimental techniques that rely on monitoring the electric current in

the channel, yield a rough measure of the pH gradient formation and the time till fo-

cusing. Recognizing the limitations of such experimental techniques, many research

groups have applied numerical techniques towards understanding the focusing pro-

cess. Exact electrochemical data like diffusivity, mobility, and titration curves that

are needed to simulate IEF are not known even to the manufacturers of the CAs be-

cause all the CA molecules are synthesized together using variations of Vesterberg’s

original synthesis technique and chemists have not been able to isolate every (≈

1000) type of CA molecule from such mixtures in order to measure their individual

chemical properties. Nonetheless, non-dimensional results have been used to gain an

understanding of the IEF process. Palusinski et al. [73] had one of the first theoreti-

cal explanations of the way in which the IEF parameters affect the focusing process.

In [110] and [69] a finite difference analysis of the IEF equations for 5 ampholytes

showed a match of some qualitative features of the results to experimental data. In

[71] a finite element simulation of the IEF equations with 150 ampholytes showed

the formation of the step-like pH gradient. However this simulation took almost 40

hours for a single run (for a pH range of 3-10). In [111] and [61] the protein elec-

trochemical parameters completely determined the width of the focusing region and

their results matched those given by a detailed optical imaging experiment. In [60]

the sensitivity of changes in the pH gradient due to changes in the initial condition

of the experiment wee explained.
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The main argument for better modeling and computational techniques for un-

derstanding IEF is that even though the chemical techniques for designing better

CAs have advanced in the past 40 years, it is not clear what exact molecular prop-

erties to aim for in the chemical design. For example, the question of how sensitive

the focusing process is to the sharpness of the titration curves, is not something that

can be cheaply answered by experiments or by the present modeling/computational

techniques. Due to the approximations that we make in our modeling approach,

we will show how it is able to predict focusing for small pH gradients in a much

shorter simulation time than existing approaches. We contend that our approach

can be further used as a guide for designing ampholyte electrochemical properties

for experiments that use larger pH gradients. Our modeling technique is explained

in the next section

7.5 Governing Equations of IEF

In this section, we derive the governing partial differential equation that de-

scribes the focusing of ampholytes in a one dimensional channel. Except for more

recent explorations of IEF in 2-dimensional geometries (including [102] and some

work which we have presented elsewhere [62]), all prior computational treatments

of IEF make use of one dimensional geometries - i.e., the ampholytes, hydrogen and

hydroxyl ions, all diffuse and convect in one dimension. This is reasonable because

the channels used for IEF are typically ≈ 30mm long and have an internal diameter

of 0.2mm [103]. We note however that the underlying physics does not change in
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2 dimensions and our modeling of the physics can be used to answer questions in

2D IEF like for example, how the use of tapered channels can be used to create a

steeper pH gradient in the thinner sections of a channel and hence separate proteins

which have isoelectric points that are very close to each other.

From hereon, all the modeling that is described is for IEF in 1 dimension (the

x-axis). The unsteady convection-diffusion equation describing the behavior of the

ampholyte species Qi is given by

∂(Qi(x, t))

∂t
= Di · ∂(Qi(x, t))

∂x2
− ∂

∂x
(Mi · E · fi(H(x, t)) ·Qi(x, t)) (7.7)

The diffusive flux is modeled as −Di
∂Q(x,t)

∂x
using Fick’s law of diffusion [21].

The diffusion constant Di is assumed as constant because we assume that the fo-

cusing process is isothermal [111]. The convective flux which is given by

Fconv(Qi(x, t)) = MiE(x, t)Qi(x, t)fi(H(x, t)) (7.8)

can be understood by accounting for the physics of each molecule’s motion. The

electric field E(x, t) makes the charged ampholytes drift. The net charge on each

ampholyte molecule on average at a given pH is given by fi(H(x, t)) as given by

the titration curve. Hence the net charge for the ampholyte concentration Qi(x, t)

is Qi(x, t)fi(H(x, t)). The constitutive relation used here (analogous to the ones

for mass, heat and momentum) is that the flux is proportional to the force. The

proportionality constant Mi is called the mobility coefficient. We will discuss the

relation between Mi and Di later in this chapter.
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The electric field E(x, t) will be assumed as constant in space and time, for

reasons mentioned before. From hereon, we denote it as E. The error in focus-

ing time due to this assumption is small, because the spatio-temporal variation is

significant only in the small time interval at the beginning of the focusing process.

Finally, the divergence of the diffusive and convective flux is equated with the

time rate of change of concentration of the ampholyte to give Eqn 7.7.

Apart from the carrier ampholytes, each of the protein species are also mod-

eled in exactly the same manner (since, they too, are ampholytes) with their corre-

sponding physical parameters Dj,Mj, and fj(H(x, t)). The governing equations for

a protein species Pj are

∂(Pj(x, t))

∂t
= Dj · ∂(Pi(x, t))

∂x2
− ∂

∂x
(Mj · E · fj(H(x, t)) · Pj(x, t)) (7.9)

To summarize, for N ampholytes and M proteins, the convection diffusion equations

that govern them are

∂(Qi(x, t))

∂t
= Di · ∂(Qi(x, t))

∂x2
− ∂

∂x
(Mi · E · fi(H(x, t)) ·Qi(x, t)); i = 1 : N

∂(Pj(x, t))

∂t
= Dj · ∂(Pi(x, t))

∂x2
− ∂

∂x
(Mj · E · fj(H(x, t)) · Pj(x, t)); j = 1 : M(7.10)

One could write similar equations for the hydrogen ion dynamics, because they too

are ampholytic. Since the charge on each hydrogen ion is exactly +1, we would have

the following equation

∂(H(x, t))

∂t
= DH · ∂(H(x, t))

∂x2
− ∂

∂x
(MH · E ·H(x, t)) (7.11)
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However, with our assumption of equilibrium chemistry due to the fast reaction time

of the hydrogen ion and the ampholytes and the chemical reactions given in Eqns.

7.3 and 7.4, we choose to model only this fast dynamics in the following way. Since

the ith ampholyte has concentration Qi(x, t) at (x, t), the hydrogen ions consumed

by it since the initial instant is given by ∆Hi(x, t) = Qi(x, t)fi(H(x, t)). Let Ho(x)

be the initial concentration of hydrogen ions at the initial time. Then we have the

total hydrogen ion consumption by all the ampholytes as

H(x, t) = H0(x)−
i=N∑
i=1

Qi(x, t)fi(H(x, t))−
i=M∑
j=1

Pj(x, t)fj(H(x, t)) (7.12)

With this the complete set of equation that govern the ampholytes, proteins and

hydrogen ions concentration are gven by

∂(Qi(x, t))

∂t
= Di · ∂(Qi(x, t))

∂x2
− ∂

∂x
(Mi · E · fi(H(x, t)) ·Qi(x, t)); i = 1 : N

∂(Pj(x, t))

∂t
= Dj · ∂(Pi(x, t))

∂x2
− ∂

∂x
(Mj · E · fj(H(x, t)) · Pj(x, t)); j = 1 : M

H(x, t) = H0(x)−
i=N∑
i=1

Qi(x, t)fi(H(x, t))−
i=M∑
j=1

Pj(x, t)fj(H(x, t)) (7.13)

In [111], the boundary conditions for the ampholytes at the end of the channels

have been set as impermeable to ampholytes and proteins. However, in actual IEF

experiments, it has been noted by [111] (and others like [61]), that the ampholytes’

and proteins’ flux into the reservoirs is proportional to their concentration at the

ends of the channel (which is very small compared to the peak concentration of

the ampholyte at the isoelectric point). However, this proportionality constant,
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i.e., the permeability is not well understood by the IEF modeling community. We

have instead chosen to model the boundary condition as Dirichlet type with a small

constant ampholyte (or protein) concentration at the edges of the channel. We have

set this small value the same as that set at the initial condition (which is very small

as compared to the maximum concentration at the focused peak of the ampholyte),

which also helps in satisfying the hydrogen ion constraint that we have defined in

Eqn.7.13.

7.5.1 Titration Curve value for CA molecules

Here, we compute the titration curve parameter q for CA molecules with good

buffering capacities - i.e., CA molecules that can maintain a stable pH value in

the part of the channel that is near the ampholyte’s isoelectric point, inspite of

(small) changes in ampholyte concentration due to the chemical reaction between

the ampholyte and the hydrogen ion.

The acid dissociation constant pKa [28] for a hydrogen ion donor group is

defined as pKa = −log10K, where K = [H+][A−]
[HA]

, is the equilibrium constant of the

dissociation reaction of the acidHA. It is well known [81] that the difference between

the pKa values of the acidic and basic groups (QR and QL) of the CA molecules

lie between 2.0 and 2.5. Higher buffering capacities for the ampholyte molecule are

desirable and they are achieved with a lower value of pKa. We assume that all

CA molecules have pKa = 2 (again, this can be changed with better knowledge of

individual CA molecule properties) and term such ampholytes as ‘good’ ampholytes.
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Now the base dissociation constant pKb for any group is defined as pKb = 14− pKa

[28]. It is defined analogously as compared to pKa, except with the hydroxyl instead

of hydrogen ion. Since the equilibrium constant KL was defined for the hydroxyl

ion reaction, from the above, for a good ampholyte, we should have

pKR − (14− pKL) = 2 (7.14)

where pKR = −log10KR and pKL = −log10KL. We have normalized the hydrogen

ion concentration in the following way Ĥ = H
10−7 . With this, we get the non-

dimensionalized equilibrium constants as K̂R = KR

10−7 and K̂L = KL

10−7 . Using the

values of K̂R, K̂R, Eqn. 7.14 and some algebra, we get that

q = (K̂RK̂L)0.5 = 10−(
ˆpKR+ ˆpKL

2
) = 0.1 (7.15)

This is the value of q for a good CA molecule in our model for the titration curve.

We can analogously compute the value q for CA species that have sub-optimal

buffering, i.e., higher values of the difference between the pKa values of the QR and

QL groups.

7.6 Non-Dimensionalization and Simulation Results

As explained before, most of the parameters in the IEF physics, including

mobility, diffusivity, and the titration curve parameters, and even the individual

concentrations of each ampholyte molecule in the experimental setup are only known

approximately. Hence, our aim is to understand the effect of scaling the convective
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and diffusive forces, relative to appropriate units. In this section we will show

how we non-dimensionalized Eqn. 7.13. Once again, all the non-dimensionalized

parameters have a ‘hat’ symbol over them. For example, the parameter DH when

non-dimensionalized, will be represented by the symbol D̂H . In the next section, we

will show the results for our simulation of the IEF process with 100 ampholytes.

We begin by noting that the values for the mobility coefficients MH and

MQ that have been widely used in simulations (including [61], [103]), are MH =

36.2× 10−8 m2

V.s
and MQ = 3× 10−8 m2

V.s
. The value of MQ is the average mobility co-

efficient for all ampholytes, but in our simulations, we will be using the same value

of MQ for all ampholytes. The reason for this is that very little is known about

the exact distribution of the carrier ampholyte molecules in terms of their molec-

ular structure [111]. The molecular structure is needed for knowing the molecular

weights and ultimately DQ and MQ. Some information about the molecular struc-

ture is known in the following sense - chemists can know for sure that 3 or 4 specific

ampholyte molecules are definitely present among the hundreds that are synthesized

in the laboratory [85]. It is also known that ampholyte molecular weights increase

with decreasing pIs, because of the addition of acidic groups as shown in Fig. 7.1.

In a conversation with Amgen - one of the manufacturers of carrier ampholytes -

the author confirmed that even they do not have any more information about the

individual ampholyte molecular properties. This lack of information about the am-

pholyte molecules sounds dire, but we note that even with such ‘average molecule’

information we can get results that agree with experiment (as have other research

groups [111]) and we also note that such information (whenever it is eventually
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known) is easy to incorporate in our modeling.

We model the governing equation for the hydrogen ions as constraints in Eqns.

7.13, and hence the mobility and diffusive parameters DH and MH , are not present

in the governing equations 7.13. However, we will use them to non-dimensionalize

the other parameters and the length and time scales. From the definition of the

mobility coefficient and the Einstein-Nernst relation [78], we have the following

relation between MH and DH

MH

DH

=
zF

RT
≈ 38V −1 (7.16)

where z = +1 is the charge on the hydrogen ion, F = 9.65× 104 C
mol

is the Faraday

constant, R = 8.31 J
K.mol

is the universal gas constant and T = 300K is room

temperature (IEF experiments are conducted at room temperature). From this we

get that DH ≈ 10−8 m2

s
. We define the non-dimensional parameters for length x and

time t as

x = l0x̂

t = t0t̂ (7.17)

where l0 is the length scale and t0 is the time scale. The scales l0 and t0 are chosen

in the following way. When we divide Eqn. 7.7 (where we replace the symbols Di,

Mi and Qi by DQ, MQ, and Q for clarity) by DHt0 and multiply it by l20, we get

(
l20

DHt0

)
∂Q(x, t)

∂t
=

(
DQ

DH

)
∂2Q(x, t)

∂x̂2
−

(
l0MQE

DH

)
∂(Q(x, t)f(H(x, t)))

∂x̂
(7.18)
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We choose l0 = 3 × 10−2m, which is a typical channel length in IEF exper-

iments, and t0 = 9 × 104s to get
l20

DH t0
= 1. Next, we estimate D̂Q =

DQ

DH
in the

following way. From Stokes’ drag for a low Reynold’s number flow and from Ein-

stein’s relation for Brownian motion [78], we have the following relation between the

diffusion coefficient of a spherical particle and its diameter

D ≈ kT

µd
(7.19)

where µ is the viscosity of the liquid, dQ is the diameter of particle. Hence we have

DQ

DH

≈ dH

dQ

(7.20)

The above equation is approximate because the Stokes drag is for spherical

particles, while the ampholyte molecule and the hydrogen ion are not spherical. For

a hydrogen ion, which typically exists as a hydronium ion (H3O+) surrounded by

6 water molecules in a solvation shell around it [121] we estimate dH ≈ 1 nm. Now

protein molecules can vary in size between 1−10 nm [1], which we also approximate

as the average size of the carrier ampholyte molecule. We take the more conservative

estimate of dQ = dP = 10 nm. We note that in our simulations, the higher the value

of dQ, the longer it takes for our simulations to converge, because the high Peclet

number of our problem (which is the ratio of the convective to diffusive forces)

turns out to be inversely proportional to dQ and hence increases with decreasing dQ.

Hence, with respect to our model, we are in a sense choosing the worst case scenario

by choosing the higher value of dQ. This makes the non-dimensional value of the
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diffusion coefficient D̂Q as

D̂Q =
DQ

DH

≈ dH

dQ

≈ 0.1 (7.21)

Next, we compute the value of the constant
l0MQE

DH
. As mentioned before, E

is considered a constant along the channel. In typical experiments, the electric field

strength across the channel is around 3 × 104 V
m

[111]. We rewrite the ratio
MQ

DH
as

MQ

DH
=

MQ

DQ

DQ

DH
≈ 0.1× MQ

DQ
.

From this, and from the Einstein-Nernst relation in Eqn. 7.16 (when rewritten

for ampholyte molecules) will give the value of the ratio
MQ

DQ
≈ 40V −1. This is

because we assign the conservative value of 1 for the average charge number z for

an ampholyte molecule. This value is conservative because after the small initial

time at the start of the focusing process, most of the ampholyte in the channel is

near its isoelectric point. The titration curve would then imply that the average

charge number z is closer to 0 than 1. Once again, this higher value of the average

charge number for the ampholyte molecule should increase the Peclet number which

is supposed to slow the convergence of the simulations. In future simulations, once

the behavior of the charge number of the CAs is better known to experimentalists,

the amount of dissociation of the ampholyte molecule into the QR and QL and the

valency of the dissociated ions will be better known (as compared to our assumption

that the ampholyte molecule dissociates into monovalent groups). At that point,

our model can be modified by the Linderstrom-Land approximation which states

that a z-valent ion behaves like a monovalent ion with z-fold concentration [112].
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Thus, we get that
MQ

DH
≈ 0.1 × 40 = 4V −1. We define the non-dimensional

parameter M̂Q =
l0MQE0

DH
, where E0 is the electric field scale and E = E0Ê. If we

set E0 = 3 × 104 V
m

(so Ê = 1), we get the value M̂Q = 10−2 × 4 × 3 × 104 = 1200.

We now have all the parametric values for simulating IEF and present the results

of our simulation in the next section.

7.7 Simulation Results for IEF with 100 Carrier Ampholytes

We present here, the results of a simulation for the focusing of 100 ampholytes

in a 3cm long channel (non-dimensional length l̂ = 1) with the acidic reservoir at

pH=6.0, and the basic reservoir at pH=8.0. The electric field strength is 3× 104 V
m

,

which corresponds to the non-dimensional Ê = 1. The 100 ampholytes have equally

spaced isoelectric points pI in the above pH range, with the ith ampholyte having

pIi = pHL+ (pHR−pHL)
N+1

i = 6+ 2
101
i. These are the same conditions that are simulated

in [112] and we will compare our simulations to their results. The main difference

in our modeling approach as compared to [112] lies in our modeling of the titration

curves and the hydrogen ion governing equations. In [112] each titration of an am-

pholyte molecule is represented with the help of differential equations (from the rate

equations of the respective chemical reactions) which take a small, but finite, amount

of time as compared to the instantaneous titration reaction as represented in our

governing (algebraic) equation for the hydrogen ions. The other approximations we

make (which are not made in [112]) are constant electric fields and Dirichlet bound-

ary conditions. Our simulations were run on the finite element software COMSOL
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running on a Linux Platform on a 2.3 GHz dual Opteron processor.

The non-dimensional initial conditions for all ampholytes is uniform with

Q̂i(x, 0) = Q̂0 = 1. There is one protein species with pI = 7.0 and uniform ini-

tial condition P̂ (x, 0) = P̂0 = Q̂0

133
(equal to the ratio in [112], which lies in the

80-240 fold decrease in protein to ampholyte concentration for actual IEF experi-

ments [103]). As explained before we have Dirichlet boundary conditions for both

ampholytes and proteins set at Q0 and P0 respectively. The initial condition for

hydrogen ions need to satisfy the constraint in Eqn. 7.13, and are set in the follow-

ing way. When there are no ampholytes in the channel and we only have the acid

and base in the respective reservoirs at the ends of the channel, we expect a linear

distribution of hydrogen ions across the channel due to diffusion. We denote this

distribution by Ĥ0(x), and have Ĥ0(x) = ĤL + ĤR−ĤL

L
x where ĤL and ĤR are got

from pHL, pHR and the constant Co = 10−7 as described in Sec. 7.1. Now, when

we introduce the ampholytes and proteins in the channel, but do not yet switch on

the electric field, we can expect the distribution of the hydrogen ions to be modified

due to the chemical reaction between the ampholytes and the hydrogen ions. This

new hydrogen ion distribution which we call HoBC (the ‘BC’ stands for ‘before

current’), is given by

HoBC(x) = H0 −
i=N∑
i=1

Qi(x, 0)fi(H0(x))

j=M∑
j=1

Pj(x, 0)fj(H0(x)). (7.22)

It is HoBC that is the initial condition for the constraint in Eqn. 7.13. At time t0,

we switch on the constant electric field Ê = 1, and run the simulation till T̂ = 0.1,

which corresponds to an experimental focusing time of 15 minutes.
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Focusing is said to be achieved when the required protein (or any other am-

pholyte) first attains a quasi-steady focused peak at some point in the channel. In

[112] the simulations show that the carrier ampholyte with pI = 7, getting focused

at 14 minutes. In our simulations, for the ampholyte with pI = 7, we see that the

peak of the ampholytes starts stabilizing between t = 800s and t = 900s. This is

shown in Fig. 7.5.

Figure 7.5: The focused peak for the ampholyte Q50 with pI=7 begins
stabilizing between 800-900s

The focusing of the protein with pI=7, is shown in Fig. 7.6, with the focusing

time being the same as for the ampholyte with pI=7.0. This is to be expected be-

cause we have assigned the same mobility, diffusivity and titration curve parameters

to this protein as the carrier ampholytes.
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Figure 7.6: The focused peak for the protein with pI=7 begins stabilizing
between 800-900s
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The focused peaks of 4 of the carrier ampholytes are shown in Fig. 7.7 and

the resultant (experimentally expected) step-ladder pH graph in Fig. 7.8.

Figure 7.7: The concentrations of the 4 ampholytes Q1, Q30, Q60 and
Q70 at t=15 minutes. The ampholyte Q70 (and higher) have begun
drifting out of the channel by this time.

The pH gradient towards the basic end of the channel (near pH=8) has begun

degrading because the carrier ampholytes with isoelectric points in that range have

begun washing out of the channel. This kind of degradation of the pH gradient

at the cathodic (basic) end of the channel is also observed experimentally and is

termed as cathodic drift [81]. To this day, this is a big obstacle in the successful
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Figure 7.8: pH step ladder graph at the initial time and at t=15 minutes.
The pH gradient at the basic end of the graph begins degrading by the
end of the simulation because the carrier ampholytes in that region have
begun washing out of the channel.
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focusing of the ampholytes with pIs greater than 7 [83].

The causes of cathodic drift have been listed as including electroosmosis and

electrophoretic flux [70], but it is not yet well understood (the cathodic drift time

predicted by electroosmosis and electrophoretic flux exceed the experimental ca-

thodic drift time in [112]). In our simulations, cathodic drift can be seen by the

stretching out of the steps’ plateau in the pH gradient near the acidic end, and

shrinking near the basic end of the channel. Our simulations predict a faster occur-

rence of cathodic drift as compared to [112] because we have modeled the boundary

conditions as Dirichlet-type. This allows for a greater ampholyte flux through the

ends of the channel, than if the ends were semipermeable like in an actual experi-

ment.

The experimental focusing time for the same conditions as in our simulations,

was reported by Thormann et al. [112] as ‘similar’ to their computational results.

They (and other research groups including [61]) have reported that exact experimen-

tal verification of focusing time is difficult without further advances in accurately

imaging the movement of dyes in the channel.

As noted before, the main advantage of computer simulations is in being able

to design better IEF experiments by, say, understanding the sensitivity of focusing

behavior to CA molecule parameters like titration curve and mobility coefficient.

This will ultimately help chemists in designing better CA molecules that can focus

proteins with closely spaced pIs without overlap between each other. For such opti-

mization problems, one needs to have modeling approaches that are fast even at the
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expense of omitting some detail in the physics (like we have in the hydrogen con-

straint and assumptions of equilibrium chemistry). Our simulations were run on the

COMSOL software that ran on a 2.3 GHz dual Opteron processor (using Linux). For

our simulations, with the experimental focusing time of 15 minutes, our computer

simulation takes close to 25 minutes, whereas other groups have reported simulation

times [111], [61] varying between 20 hours for the pH range 5-8 and 40 hours for the

pH range 3-10. Our simulations for the pH range 5-8 matched the focusing time for

the ampholyte pI=7 given in [111], but our cathodic drift caused greater degradation

of the pH gradient near pH=8 than [111]. However, we believe that on the basis of

the simulation time taken for the 5-8 case (20 hours at least), we can conclude the

following:- With the assumptions that we have made for modeling IEF, and at the

expense of faster cathodic drift for the ampholytes that are nearer to the basic end

of the channel, our model of the IEF process predicts focusing times (especially for

ampholytes that are further away from the basic end) with a much lower simulation

time. Hence, our modeling approach is better suited for time-intensive optimization

runs of the CA molecule chemical design (for example, sensitivity of focusing time

to titration curves) or for examining the effects of changing other parameters of the

IEF experimental setup (like channel length or applied voltage).

Due to the fast simulation time (25 minutes) of our approach, the way in

which we have modeled IEF in this chapter, already qualifies as a ‘reduction tech-

nique’. However, many of the current experiments in IEF have thousands of carrier

ampholytes over wider pH ranges. Moreover, the electric field strengths are double

or triple than the ones which we have used in our simulations (or the comparable

131



experiments in [112]), which means the ratio of convective to diffusive forces - the

Peclet number - is double or triple in value as compared to our simulations. The

number of elements of the stiffness matrices in the finite element formulation (ig-

noring finer grids that would be needed for higher Peclet numbers), will vary at

least as the square of the number of ampholytes. Collectively, the larger number of

ampholytes, higher Peclet number and higher pH gradient will make the computa-

tional time prohibitive for more complex simulations of IEF, especially when they

need to be incorporated in optimization runs. The peak memory requirements for

our simulation was around 1.4GB which again, would only increase in more intensive

simulations.

We note that the simulation time and memory allocation that quantify our

simulation performance are all still restricted to 1-dimensional channel geometries.

Experiments for 2D IEF, in which 2-dimensional channel geometries were used for

focusing of ampholytes with closer pIs [19], will also require simulations for better

design of channel geometries. Even for as few as 5 ampholytes, we observed [62]

that 2-dimensional (tapered) channel geometries require over 10 hours of simulation

time (in part this was due to the increased number of grid points required at the

inflection points in the 2-dimensional geometry). There is clearly a further need for

model reduction of the IEF problem, which we investigated with the use of proper

orthogonal decomposition. We present this in the next chapter.
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Chapter 8

Model Reduction for Nonlinear Dynamics - Proper Orthogonal

Decomposition

In the previous chapter we saw how even for the case of just 100 ampholytes in

a relatively small pH range of 6-8, the finite element simulation took close to a half

hour and over 1.4 GB of memory. Actual IEF experiments can have a few thousand

ampholytes and a pH range of 3-10 [61]. The amount of time needed for a single

such simulation can run into days with orders of magnitude increase in the amount

of memory (in another group’s work [111] 40 hours were needed for simulating

a 120 ampholyte IEF experiment with pH range 3-10). This is notwithstanding

the simulation time needed for more complex channel geometries like 2D which

are currently being investigated [97]. Clearly, this kind of computational power is

not available to every biochemist who wants to design better experiments, by say,

designing CA molecules with sharper titration curves that can separate proteins

having only a small difference in their isoelectric points. If the correct mathematical

requirements for sharper titration curves are known, then the CA molecules can be

better designed. The above reasons necessitate the need for reduced order modeling

of the IEF problem.

The IEF problem has a nonlinear constraint that governs the hydrogen ion

evolution as well as nonlinearities in the convective portion of the differential equa-
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tions that govern each ampholyte. The projection based methods that are successful

for model reduction are techniques like balanced truncation, Krylov subspace tech-

niques and Pade approximants. Most of these techniques are suited only for full

order models with linear dynamics. Modifications of these have been used with

some success for weakly nonlinear problems [33] that use the Jacobians of the non-

linear functions to attain a linearized FOM to which KSTs are applied. However,

such techniques have additional costs associated with them, depending on the kind

of modifications that are required, that make them impractical for the reduction of

most nonlinear problems.

We have investigated the use of POD for model reduction of the IEF problem.

POD was first suggested as a model reduction tool in CFD by Lumley in 1970 [59].

It was developed in probability theory in 1978 by Loeve [56]. Interest in it as a tool

in model reduction greatly increased after its use in modeling coherent structures by

Sirovich [99] in 1987 and then later in modeling the turbulent boundary layer in [8]

and for modeling compressible flows in [114]. POD is a systematic model reduction

technique that is popularly used for nonlinear problems. As explained later in

Sec.8.1, POD is not dependent on the full order model being linear. Moreover, using

POD, one can make a clear, physical choice of the mode shapes and include them

in the ROM subspace on the basis of the strength of their individual contribution

to the evolution of the dynamics.

Even though the use of POD did not succeed in model-reducing the IEF prob-

lem it motivated us to look for shortcomings of the traditional POD procedure when

applied to stiff problems. This resulted in our observation of a particular kind of
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shortcoming (termed twist) which we explain in the next chapter, where we also

show how this shortcoming can be successfully resolved by augmenting the tradi-

tional POD algorithm.

In this chapter, we first give a detailed explanation of the main theorem in

POD and the properties of the POD reduced order model. We then discuss Galerkin

projection, and how it can be used to project the full order dynamics on the reduced

subspace of the POD modes. Finally, we explain our investigation of applying the

POD procedure for reducing the IEF problem and why we believe this leads to an

ill-conditioned problem.

8.1 Main theorem in POD

The geometrical question that is answered by POD can be stated with the

help of Fig. 8.1. The reduced order curve xr is the projection of the full order curve

x on the subspace S. The full order curve x evolves according to the full order

dynamics given by ẋ = fFOM(x) (where fFOM(.) is the full order vector field) and

the reduced order curve xr evolves according to the reduced order dynamics given

by ẋr = fROM(xr) (where fROM(.) is the reduced order vector field). Placing this in

context of the turbulence example that we described in Sec. 1.4, if x describes the

trajectory of the infinite dimensional vector that describes the state of the chaotic

turbulent flow, then xr describes the projection of x onto the low dimensional chaotic

attractor. The question answered by POD is:

Given the full order curve x that evolves in a high dimensional space (for example,
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R3 in Fig. 8.1 and R2618 in our IEF problem, as explained later), what is the

subspace of a smaller, fixed dimension (a 2-dimension plane in Fig. 8.1), and the

associated reduced order dynamics given by ẋr = fROM(xr), which minimizes the

induced 2-norm error ||x− xr||2 which is given by

||x− xr||22 =

∫ tf

ti

||x(t)− xr(t)||22dt (8.1)

where the initial time ti and final time tf denote the starting and ending instant of

the evolution of the full and reduced order trajectory.
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Figure 8.1: The full order curve x evolves in a high dimension space (say, R3, in
this illustration). A projection P of the curve x onto a smaller dimensional space
S, gives the reduced order curve xr. The optimal subspace S (as per the criterion
in Eqn. 8.1), is generated by POD. The squares denote ‘snapshots’ of the FOM
trajectory, i.e., values of the values of the state vector in the FOM, which will be
used to create the optimal subspace S via POD.

In Fig. 8.1, the concepts of projection and higher dimensional space have been

depicted in terms of the familiar space R3. However, the main theorem of POD,
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and the properties of the reduced order models, hold true for appropriate extensions

in more general function spaces [37]. In the explanation of the main properties of

POD given below, we will restrict ourselves to the familiar space RN , but we note

that an analogous extension to more general function spaces is well understood [37].

The POD technique uses data - either from experiments or from computer

simulations - in constructing smaller dimensional subspaces on which one can project

the full order dynamics. Such data sets are commonly called snapshots in POD

literature [99] (as shown in Fig. 8.1). These snapshots are elements of RN . For

example, for the example of applying POD in order to understand the structure of

the chaotic attractor of the turbulent flow, one would first create a full order finite

element formulation model of the flow. This model will have 3 variables (from the

velocity) plus one variable (from the temperature) for each of the grid points, for a

total of 4 variables for each grid point. Thus, for M grid points in the simulation,

this would mean that the snapshot at a particular time t, would lie in R4M .

For a general problem, let U(x, t) denote the full order data in RN (where N

is the total number of degrees of freedom in a finite element formulation and could

hence be ≈ 103 or higher) which one needs to approximate in a smaller dimensional

subspace S. The size of N would be typically decided by the number of grid points

and the number of independent variables as explained in the turbulence chaotic

attractor example above. Let (x, y) denote the inner product of two vectors in RN

is given by
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(x, y) =
i=N∑
i=1

xi · yi (8.2)

where xi and yi are individual elements of the vectors x and y respectively. The

main idea in POD is to find a subspace of a small (and fixed) dimension m, whose

orthonormal basis vectors form the basis of the subspace φ, so that the following

maximum is reached:

max
(η,η)=1

〈|(U ′
, η)|〉2 = 〈|(U ′

, φ)|〉2 (8.3)

where (U
′
, η) denotes the inner product of the basis η with U(x, t), and 〈z〉 denotes

the time average of the quantity z. The optimal subspace φ (of dimension m) that is

given by POD, gives the least error on average, as compared to any other subspace

of the same (or lower) dimension.

Any time average (instead of the simple linear time average) or inner product

(instead of the canonical one given in Eqn. 8.2) can be used. The only requirement

of the time average 〈.〉 is that it commutes with the inner product (.). In most

applications, including in this thesis, the time average 〈.〉 is typically chosen to be a

(weighted) arithmetic mean, which does commute with the inner product given in

Eqn. 8.2.

In order to solve the constrained optimization problem in Eqn. 8.3, we can

use the following Lagrangian function,

L(η, λ) = 〈|(U ′
, η)|2〉 − λ((η, η)− 1) (8.4)
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where λ is the Lagrange multiplier for the constraint on the normality of the basis

function η. The optimal basis φ which maximizes the cost function in Eqn. 8.3 will

satisfy the following condition for all basis variations ζ:

d

dδ
L(φ+ δζ, λ)|δ=0 = 0 (8.5)

Differentiating with respect to δ and setting the result to zero, and using the fact

that the time average commutes with the inner product, we get that the optimal

solution φ must solve the following eigenvalue problem:

Rφ = λφ (8.6)

where the kernel R, is given by:

R = 〈|(U ′
U)|〉 (8.7)

In a practical application of POD, the kernel R that is based on the contin-

uous solution U(x, t) in Eqn. 8.7, has to be approximated with a finite number of

snapshots of the solution. Suppose there are k snapshots of the solution, that are

available either through a time series simulation or from an experiment. We denote

each snapshot as Ui, i = 1, .., k, with Ui ∈ RN . One can approximate the kernel with

the outer product of the snapshots in the following way:

R =
1

k

i=k∑
i=1

Ui(x)Ui(x)
′

(8.8)

With this approximation (based on the finite number of snapshots Ui, i =
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1, .., k instead of the continuous U(x, t)), the optimal basis φ are the eigenvectors

of R = 1
k

∑i=k
i=1 Ui(x)Ui(x)

′
. It can be shown that the maximum described in Eqn.

8.3, is attained by the basis φ. This is expressed in the following theorem [37] which

is valid for the infinite dimensional case (with continuous U(x, t)), but which we

present here for the practical case of the finite snapshot set.

Theorem 8.1.1 Let U = (Ui : Ui ∈ RN , i = 1, .., k) be an ensemble of k snapshots

of some process, and let R be the covariance matrix of the snapshots as defined in

Eqn. 8.8. Let λj be the ordered eigenvalues of R, with λ1 ≥ λ2... ≥ λk ≥ 0. Let

ρSU be the projection of U onto some m(≤ k) dimensional subspace S. Then the

minimum value of the projection error ||U −ρSU || over all m dimensional subspaces

S is given by
∑j=k

j=m+1 λj. In addition, the basis of the minimizing subspace S is given

by the span of the eigenvectors φ1, .., φm corresponding to the eigenvalues λ1, ..., λm.

R is symmetric positive semi-definite and hence we are guaranteed real non-

negative eigenvalues λj. Hence in order to have a maximum 2-norm error of say

1% , we set the value λperc = 99% and choose the smallest value m, and the sub-

space S spanned by the corresponding eigenvectors φ1, .., φm such that the following

condition is satisfied

∑j=m
j=1 λj∑j=k
j=1 λj

≥ λperc = 0.99. (8.9)
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8.2 Cheap computation of the optimal basis: The method of snap-

shots [99]

The matrix of the eigenvalue problem in Eqns. 8.6 and 8.8 is of size N × N ,

where N is the size of the snapshot vector Ui. N can be very large depending on

the number of grid points in the problem. We have 238 grid points in our IEF

simulation and we perform the simulation for 10 ampholyte species and hydrogen.

Hence, we have a total of N = 238× 10 + 238 = 2618 degrees of freedom. In order

to construct the kernel R in Eqn. 8.8, one needs to compute outer products of k

vectors with themselves, with each vector of size N . If each element of a single

outer product matrix takes O(1) computational time (this is the time taken for

computing the inner product of two vectors of size N), then since there are N2

entries in each outer product and k outer products, the total computational cost for

constructing R is O(kN2). In many problems, a small number of snapshots can be a

good representative set of the full order dynamics. In such a case (when the number

of snapshots k is much lesser than N), instead of the expensive direct method of

constructing the kernel R which would take O(kN2) steps, one can make use of the

following trick, called the method of snapshots (first proposed by Sirovich [99]), for

computing φ.

From the definition of the kernel R (Eqn. 8.8), we can see that the range of R

is contained in the span of the snapshots Ui. For the case of the kernel being chosen

as a weighted arithmetic mean of the snapshots, we have:
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R =
i=k∑
i=1

αiUi(x)Ui(x)
′

(8.10)

with weights αi, i = 1, .., k satisfying
∑i=k

i=1 αi = 1. We can see that for any vector z,

Rz = (
i=k∑
i=1

αiUiU
′
i )z =

i=k∑
i=1

αiUi(U
′
iz)

=
i=k∑
i=1

ciUi

(8.11)

where the scalar ci = αi(U
′
iz). Since Rφ = λφ, we can see that the optimal basis φ

lies in the snapshots Ui. Hence, there exists scalars bl,j such that any of the basis

vectors φl can be written as:

φl =

j=k∑
j=1

bl,jUj (8.12)

Hence the eigenvalue problem Rφl = λlφl simplifies to:

R
j=k∑
j=1

bjUj = λl

j=k∑
j=1

bl,jUj

i=k∑
i=1

αiUiU
′
i

j=k∑
j=1

bl,jUj = λl

j=k∑
j=1

bl,jUj

i=k∑
i=1

αiUi(

j=k∑
j=1

U
′
iUjbl,j) = λl

i=k∑
i=1

bl,iUi (8.13)

Since the above relation holds for each of the snapshots Ui, we see that it is

enough to solve the following eigenvalue problem:

V b = λb (8.14)

142



where b = [b1b2...bk]
′
and V is a k × k matrix with each entry Vij = αi(U

′
iUj).

The k eigenvalues λ1, .., λk of the kernel V are exactly the same as the k largest

eigenvalues of the kernel R, with the rest of the N − k eigenvalues of R equal to

zero since R has rank k. For a given eigenvalue λl of V and the corresponding

eigenvector bl = [bl,1bl,2...bl,k]
′
, we can use the snapshots Uj to construct the required

basis vectors φl using Eqn. 8.12. Since constructing V has a cost of order O(Nk2)

(since we compute N outer products of vectors, with each outer product matrix of

size k × k), this is much cheaper than constructing R (which has a cost of order

O(kN2)), when k << N (number of snapshots much lesser than the dimension of

the full order space), which is frequently the case in POD applications.

8.3 Galerkin projection

The final tool that one needs in order to perform model reduction via POD

is an appropriate projection technique. In this section, we describe the Galerkin

projection technique and the way it is used for projecting the dynamics of the

full order dynamics (a large finite dimensional space in the case of finite element

models), onto a lower dimensional space, where one tracks the evolution of a finite

set of ODEs. The explanation of Galerkin projection in terms of a general Hilbert

space (instead of the special case RN) is given below. RN is a Hilbert space with

inner product defined as in Eqn. 8.2 so the results in this section follow exactly

for real spaces by replacing H with RN . The geometric picture for the Galerkin

projection is shown in Fig. 8.1 itself.
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A Hilbert space H is a space of all vector valued functions which are smooth

(belong to C∞, i.e. the function and all its derivatives are continuous) and has the

following norm (inner product) for any two elements u and v which belong to H.

(u, v) =

∫

Ω

u(x) · v(x)dV (8.15)

Dynamical systems which evolve on a Hilbert space H, can be described in the

following form:

du

dt
= X(u) (8.16)

where X(.) represents a nonlinear operator that may involve spatial derivatives

and/or integrals. Here u(t) ∈ H , and X(u) is a vector field on H. Any model

reduction technique aims to ‘shadow’ the full order dynamics given by Eqn. 8.16 on

a reduced subspace in the following way:

dv

dt
= XS(v) (8.17)

where XS(v) is a vector field on a subspace S ∈ H, and v(t) ∈ S. The Galerkin

projection operator P which achieves the projection P : H→ S, is described by the

basis of the subspace S. Let φ1, .., φn form an orthonormal basis of S. Then we have

P = Φ · ΦT , where Φ = [φ1φ2.....φn]. The vector field XS is given by

XS(v) = P ·X(v) (8.18)

When applied to POD, we track the evolution of the full order PDE vector
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field X with ODEs on the reduced subspace S, on which the vector field is given by

XS. This is achieved in the following manner. Eqn. 8.17 is written in the basis of

the reduced subspace’s coordinates. In our case, this basis is found from the POD

process. Hence, we have

v(t) =
k=n∑

k=1

ak(t) · φk (8.19)

Using Eqns. 8.17 and 8.19, and taking inner products with each of the basis vectors

φk, we get

j=n∑
j=1

d(aj)

dt
· (φj, φk) = (XS(v(t)), φk) k = 1, ...., n (8.20)

Since the basis vectors are orthonormal, we have

dak

dt
= (XS(v(t)), φk) k = 1, ...., n (8.21)

Hence, we track the evolution of the original full order Eqn. 8.16, with the n

ODEs given by Eqn. 8.21.

We see then, the need for the snapshots of the dynamical system to be well

chosen to represent the range of all possible dynamical behavior that one wishes to

capture in the reduced order model. If the behavior of the system is not represented

in the set of snapshots (for example, the chaotic attractor of the turbulence dynamics

at a particular Reynolds number), then one should not expect to see that behavior

reproduced in the reduced order model. Many times, the strategy that is adopted is

taking snapshots at every ∆t time step in the evolution of the full order dynamics
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with the value of ∆t set to a small enough value so that no appreciable change

occurs in the dynamics of the full order model within that time interval.

The Galerkin projection technique is independent of the subspace S. It is the

main theorem of POD (Sec. 8.1), which provides the appropriate subspace where

this reduction is optimal. We now have the tools for the complete POD algorithm,

which we will term as the Traditional POD algorithm (as originally used by Sirovich

for the problem of turbulence in fluid flow) to differentiate it from the Augmented

POD algorithm which we will describe in the next chapter. We state the traditional

POD algorithm in Algorithm 3 and in the next section, we discuss our application

of this algorithm to the IEF problem.

Algorithm 3 Traditional POD algorithm

1. Generate k snapshots Ui ∈ RN : i = 1, .., k that span the time interval and
parametric range of interest.

2. Set the value of the ‘energy retained’ parameter λperc

3. Compute the POD basis φ using the method of snapshots described in
Eqns. 8.13 and 8.14.

4. Arrange the k eigenvectors of the POD basis φ according to the decreas-
ing values of their respective eigenvectors. Choose the first m of these basis vectors
so that the condition given in Eqn. 8.9 is satisfied. Denote this set of m largest
basis vectors as the reduced order subspace S.

5. Project the full order dynamics onto S by the Galerkin projection method using
Eqn. 8.21 to get the reduced order model.
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8.4 POD implementation for the IEF problem

We investigated the use of POD on a smaller IEF problem than the one shown

in the previous section. The main difference was that we reduced the number of

ampholytes to N = 10 and we maintained the pH range between the acid and base

reservoir at pHL(acid) = 6 and pHR(base) = 8. The reduced number of ampholytes

results in a system of 10 PDEs coupled with the constraint for the hydrogen ion.

The reduced pH range resulted in a less nonlinear variation of the hydroigen ion

constraint. The isoelectric points were linearly spaced in the range pHL − pHR.

For this problem, we found that most of the ampholytes retain their focused

peaks till time t = 0.1 before washing out of the channel. The plots for all the

ampholytes and hydrogen at t = 0.1 are shown in Fig. 8.2. Most of the ampholytes

begin to concentrate near their pIs by time t = 0.02 as shown in Fig. 8.3. For this

reason, we decided to create a ROM for the time period 0.02 < t < 0.1.

We created separate sets of modes for each of the ampholytes and for hydrogen.

One way to compute the hydrogen ion evolution in the ROM is to use a nonlinear

constraint solver to solve for the hydrogen constraint equation. However, this took

much more time than computing the full order model. Hence, we needed to create

POD modes for the hydrogen ion constraint equation. Using the POD algorithm 3,

we used the 9 snapshots of the ampholyte and hydrogen at times t = 0.02, 0.03, .., 0.1.

We observed that the underlying shape of most of the ampholyte focused peaks

do not change between consecutive snapshots and providing more closely shaped

snapshots do not ultimately provide any more (or better) mode shapes.
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Figure 8.2: Plots for non-dimensionalized concentrations of ampholytes Q1 and
Q7 and Ĥ at t = 0.1. The hydrogen ion concentration is non-dimensionalized as
described in the previous chapter - Ĥ = H

10−7 . Ampholytes Q8, Q9, and Q10 have
begun washing out of the channel and their concentrations in the channel are much
lower than the concentrations of the other ampholytes.
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Figure 8.3: Plots for ampholytes Q1, Q7, Q8 and Ĥ at t = 0.02. Ampholytes Q9,
and Q10 have begun washing out of the channel and their concentrations in the
channel are much lower than the concentrations of the other ampholytes.

For better accuracy of the reduced order model, and also to enable the Dirichlet

boundary conditions for the ampholytes to be automatically satisfied in the ROM,

we created the ROM for only the perturbations in the ampholytes’ behavior. We did

this by subtracting the mean of the snapshots of a particular ampholyte from each

of the snaps of that ampholyte to get the ‘perturbed snaps’. The POD algorithm

was applied to these ‘perturbed snaps’. By setting the retained energy parameter

λperc to λperc = 99% for each of the ampholytes snapshots, we get the following

differential algebraic equation (DAE) :
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dak
i (t)

dt
= Fi(t) = (Ai(x, t), φ

k
i (x))

0 = G(t) = (B(x, t), ψj
H(x)) (8.22)

where (x, t) is the spatio-temporal location of the concerned variable, φk
i (x) is the kth

mode of the ith ampholyte Qi and ak
i (t) is the coefficient multiplying that ampholyte

mode. ψj
H(x) is the jth mode of the hydrogen ion. (Ai(x, t), φ

k
i ) and (B(x, t), ψj

H(x))

are the inner products of Ai(x, t) and G(t) with the respective ampholyte and hy-

drogen ion modes where Ai(x, t) and G(t) are given by

Ai(x, t) = Di(

k=pi∑

k=1

ak
i (t)

d2φk
i (x)

dx2
)−MiE(

d

dx
(

k=pi∑

k=1

fi(

j=q∑
j=1

aj
H(t)ψj

H(x))ak
i (t)φ

k
i (x)))

B(x, t) = Ho(x)−
j=q∑
j=1

aj
H(t)ψj

H(x)−
N∑

i=1

(

k=pi∑

k=1

ak
i (t)φ

k
i (x))fi(

j=q∑
j=1

aj
H(t)ψj

H(x))

where aj
H(t) is the mode coefficient that gives the time evolution of the hydrogen

ion mode ψj
H(x). The ith ampholyte Qi has a total of pi POD modes. The hydrogen

ions has a total of q POD modes. N is the total number of ampholytes. Di,Mi and

fi(.) are the diffusion coefficient, mobility coefficient, and the titration curve of the

ampholyte Qi and E is the constant electric field.

The ampholyte mode shapes for one such ampholyte Q4 is shown in Fig. 8.4.

The hydrogen ion mode shape is shown in Fig. 8.5.

For each of the 10 ampholytes, we get an average of close to 4 modes, for a

total of 39 modes. For the hydrogen ion, we get 5 modes. Thus, the resultant DAE

is of the form shown in Eqn. 8.22 with a total of 39 DEs and 5 AEs, with each DE
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Figure 8.4: Q4 ampholyte mode shape
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Figure 8.5: Q4 ampholyte mode shape
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(or AE) as the governing equation for the corresponding mode.

We analytically compute the Jacobian, which we denote in the following way.

J(aQ, aH) =




∂F
∂aQ

∂F
∂aH

∂G
∂aQ

∂G
∂aH


 .

where the time and space dependence of the variables are suppressed to avoid clutter.

F is the ampholyte vector field projected on the ampholyte’s POD modes, G is the

projection of the hydrogen ion’s constraint on the hydrogen ion’s POD modes, aQ

is the vector of mode coefficients of all the ampholytes’ POD modes, and aH is

the vector of mode coefficients of the hydrogen ion. In what follows, we explain

how the weaker POD modes for the hydrogen ion constraint are needed to retain

the accuracy of the ROM, but their retention causes the condition number of the

constraint’s Jacobian to worsen and prevents the ROM-DAE from evolving beyond

a very small time step.

8.4.1 Need for a balance between ROM simulation error and the

condition number of the constraint Jacobian ∂G
∂aH

The solvability of a DAE is determined by whether or not the matrix ∂G
∂aH

is

singular [13]. The DAE is said to have index=1 if we can construct a differential

equation (as opposed to the available algebraic equation) for the dependent variable

in the constraint equation by differentiating the constraint once (with respect to the

independent variable) and using the nonsingularity of ∂G
∂aH

(along with the implicit

value theorem). If the minimum number of times that the constraint has to be
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differentiated in order to construct a differential equation for the dependent variable

in the constraint is n, then the DAE is said to have index n. Solvers for DAEs with

index=1 are available, but as the index of the DAE increases to 2 or more, the

solvers become less reliable.

From the analytical Jacobian that we computed, we checked that constraint

Jacobian given by the matrix ∂G
∂aH

is non-singular and hence the DAE 8.22 has

index=1 at the initial condition. Since the algebraic constraint is essentially a

conservation law for the hydrogen ions, it is automatically satisfied at the initial

time.

For our problem, we have relied on the MATLAB stiff solvers ode15s, ode23t,

ode23s, and ode23tb. The results stated in this section were achieved by using

ode15s but similar results were attained by using the other solvers. The condition

number for the DAE Jacobian J(aQ, aH) is 107, but problems with higher condition

numbers have been solved, in particular for problems dealing with combustion [79].

However, the condition number of just the constraint’s Jacobian ∂G
∂aH

has to be

maintained at a low value throughout the simulation. This follows from the nature of

the focusing process. At the sharp ends of each step in the step ladder-like hydrogen

ion concentration profile, any error in the hydrogen ion concentration at time ti will

translate into an error in the concentration profiles of the two ampholytes that

border that sharp end of the step. Such an error in the ampholyte concentration at

the sharp end of the step at time ti+1 will then cause a larger error in the hydrogen

ion concentrations at subsequent time steps. Hence, if the constraint equation for

the hydrogen ions is to be strictly satisfied (within a given error tolerance), then it
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is crucial that the condition number of constraint’s Jacobian ∂G
∂aH

is low, because it

is the constraint’s Jacobian that determines the error in the DAE solver [13].

In our problem, the large condition number of ∂G
∂aH

prevents the solver from

proceeding beyond a small initial time interval. With the POD mode coefficients set

at the values attained by projecting the 9 snaps at t = 0.02, 0.03, .., 0.1, we found

that the condition number of ∂G
∂aH

increases to as high as 630 as shown in Fig. 8.6.
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Figure 8.6: Condition number of ∂G
∂aH

at the 9 snaps at t = 0.02, 0.03, .., 0.1. On the

x-axis, the FOM initial condition 1 corresponds to the snap at t = 0.02, FOM initial

condition number 2 corresponds to the snap at t = 0.03, and so on.

The errors ei for each component yi of the dependent variable in the Matlab

ODE solvers are made to satisfy [94]

ei ≤ Relerror · |yi|+ Abserrori (8.23)
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where Relerror is termed as the relative error for all components and Abserrori is

the absolute error tolerance for each component. For relative error tolerances that

vary in the range 10−9 < Relerror < 10−3 and for absolute tolerances that vary in

the range 10−7 < Abserrori < 10−3, we found that the ROM DAE does not proceed

beyond ∆t = 10−3, i.e., until t = 0.021.

The increase in the condition number is caused by the nature of the IEF

physics. The concentration of the hydrogen ions decreases in the IEF simulation

because the hydrogen ion profile across the channel becomes more step-ladder like

as shown in Fig.8.2 with sharper steps as time progresses because of the sharper

concentration of the ampholytes. The weaker POD modes for hydrogen ions con-

tribute lesser as the simulation progresses causing the condition number of ∂G
∂aH

to

increase.

Hence, we have opposing interests at work - we need the weaker modes to retain

the accuracy and satisfy the constraint, but their retention soon causes the condition

number of ∂G
∂aH

to worsen and prevents the ROM-DAE from evolving beyond a very

small time step. We need to find a balance between retaining the weaker modes,

until their effect on the ROM simulation error is negligible, and discarding them after

a small time step so that they do not cause the ill-conditioning of the constraint

matrix ∂G
∂aH

.

One of the ways in which we attempted to overcome this ill-conditioning was

by weighting the hydrogen modes. The idea was that one could weight the weaker

hydrogen modes in such a way that after a small time interval, their contribution

to the ampholyte concentration would be less than a small constant. For example,
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we experimented with exponentially decreasing (with time) weights attached to the

weaker modes, which we could remove from the original list of ROM equations,

once their contribution was lower than a small preset value. This would prevent the

ill-conditioning of ∂G
∂aH

without loss of too much accuracy.

However, this weighting needs to be systematic and logically extendible to the

case of many more ampholytes. The constraint modes which drop off from the list

of ROM equations as a result of the weighting are those that primarily contribute to

the edges of the steps in the pH gradient. For a fixed value of N (the total number

of ampholytes), we could device an ad-hoc way of weighting the constraint modes so

that a balance between simulation error and ill-conditioning could be made. If the

weaker constraint modes are dropped off from the list of ROM equations at an earlier

than recommended time step, the ROM simulations will no longer be accurate and

the errors will propagate into further time steps. For the general case of varying

N , we could not devise a systematic way to attach weights to the weaker constraint

modes so that the balance between accuracy and ill-conditioning is optimal. Hence,

we could not extend this approach to the general case of an arbitrary number of

ampholytes.

A different approach for reduced order modeling of the IEF equations, that

could be tried is the ‘equation-free’ approach as described by Kevrekidis et. al [45].

This approach relies on using a reduced order model in conjunction with the full or-

der model, in order to compute the dynamics that evolves at the different time-scales

in a multi-scale problem. In the ‘equation-free’ approach, the faster hydrogen ion

dynamics would be computed using the original PDE, while the slower ampholyte
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evolution would be computed using POD or any other appropriate reduction tech-

nique. The computational treatment of different time scales with separate numerical

techniques has led to a reduction in overall computation time for various multi-scale

problems like protein-folding and catalytic surface reactions as noted in [45] and can

arguably be applied to the IEF problem as well. However, this approach is a subject

for future research and has not been tested in our work.

While considering the impact of stiffness, especially in DAEs, on the tradi-

tional POD algorithm, we observed that a certain kind of dynamics would not be

reducible through the traditional POD process. In the next chapter, we present this

shortcoming and a novel augmentation of the POD algorithm that overcomes this

shortcoming.
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Chapter 9

A Shortcoming in Applying POD to DAEs, and a Computationally

Cheap Resolution

9.1 Introduction to the shortcoming

POD is arguably the most important systematic technique that is known for

model reduction of problems with nonlinear dynamics. Modifications to POD are an

area of ongoing research because the traditional methods of applying POD have been

found wanting in special classes of dynamics [79]. Here we present a shortcoming

to applying traditional POD to an important class of dynamics - problems with

high stiffness, in particular, DAEs. In this chapter, we denote traditional POD by

the reduction procedure described in the previous chapter (Algorithm 3)- where the

modes were chosen solely on the basis of energy of the snapshots of the solution of

the original (full order) problem.

One example where a need for a reduced order model for a stiff problem might

occur is in designing a controller for a chemical reaction. The chemical reactions are

frequently modeled with algebraic equations for the equilibrium chemistry. Hence,

the dynamics of the chemical plant will be described by DAEs. Now, when a con-

troller is needed to say, regulate the input of a certain catalyst, one would need to

design a ‘computational model’ of the entire plant, which will be used in conjunc-
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tion with chemical sensors to regulate the catalyst’s input. To be able to do this in

real time, this ‘model’ should be computationally cheap (as well as accurate) - thus

necessitating the need for a reduced order model of the chemical plant.

We began considering this class of problems while thinking about model reduc-

tion of the IEF problem, whose governing equations are stiff because of the presence

of the reactive chemistry of the ampholytes and hydrogen ions, which we model as

a constraint. The over-arching problem is stiffness: reduced order modeling of stiff

systems is a difficult problem (for example, in problems regarding combustion [58]

and chemical engineering [93]). However, the shortcoming in POD that we show in

this chapter- which we will term as twist from hereon - does not appear explicitly in

the IEF problem. With the help of examples, we show how twist can happen in some

stiff problems and describe how we can augment the traditional POD procedure and

fix this issue. However, we emphasize that the solution to the twist issue does not

solve the IEF model reduction problem (which is an area of future research).

The term twist refers to something that occurs in the phase-plot geometry

and will be motivated and defined more precisely with numerical examples in the

later sections, but we provide a brief explanation here. When performing POD,

one expects the ROM subspace to be large enough so that the the ROM trajectory

can shadow the FOM trajectory in the ROM space. However, as in all FOM/ROM

examples, the FOM trajectory will have components that evolve in subspaces that

are not included in the ROM subspace. The assumption is that these neglected

subspaces are not important for the shadowing of the FOM trajectory in the ROM

space. However, as we show in some stiff problems, when the evolution of the FOM
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trajectories happens in subspaces that are entirely outside the ROM space, the ROM

space can be rendered incapable of providing a large enough ‘playground’ for the

ROM trajectory to shadow the FOM trajectory. We term such an evolution of the

FOM trajectory entirely outside the ROM space as twist.

This can also be described with the following analogue. Suppose one watches

a movie and is then assigned the task of describing the movie’s plot to some one who

hasn’t watched it. Any twist in the movie’s plot must be explained more clearly than

the rest of the movie, and the failure to do so will leave the second person unable to

understand the rest of the description of the movie. The twist in the movie’s plot

is similar to the twist in the phase-plot of the dynamics, the narration of the plot is

analogous to the shadowing of the FOM trajectory (the whole movie) in the ROM

subspace, and the failure to understand the rest of the movie is analogous to the

failure of the ROM trajectory to shadow the FOM trajectory till the final time step

of the trajectory’s evolution (end of the movie). The key is to augment the ROM

space with all the subspaces in which twist can happen so that the ROM space is

large enough to enable the ROM trajectory to shadow the FOM trajectory. Such an

augmentation is necessary, because, as we will show, the traditional POD algorithm

is incapable of finding the ROM space where twist occurs.

With the help of examples, we show how the presence of stiffness makes it

more likely that traditional POD cannot be applied. We also show how twist can

be addressed by a computationally cheap augmentation of the traditional POD

program.
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9.2 Examples that show ‘twist’

Traditional POD chooses the ROM subspace based solely on the energy cri-

terion. In this section, we will show examples of dynamics where traditional POD

does not work due to the occurrence of twist in FOMs which have constraints. In

the next section, we will show how one can augment POD to successfully resolve

this issue. All the equations in these examples will be in cylindrical coordinates.

9.2.1 Cylinder example with constraint

Eqn. 9.1 is an example of dynamics in which twist is observed. The differential

equation in Eqn. 9.1 evolves on the surface of the cylinder with radius R as shown

in Fig. 9.1. The trajectories first evolve along increasing values of z, and then

circumscribe the cylinder at or very near the top of the cylinder (z = max), before

evolving back down towards decreasing values of z.

The equations (in cylindrical coordinates) describing the evolution of the tra-

jectory on the surface of the cylinder shown in Fig. 9.1 are:

θ̇ = exp(α(z −max))

ż = (z −max)(θ −Θ) (9.1)

0 = r2(cos2(θ) +
sin2(θ)

1− ε
)−R2.

The parameters for the above equation were set as given in Table 9.1

The slenderness of the cylinder is shown in the side-by-side view of the cylinder

and its magnified view in Fig. 9.2. In order to show the FOM and ROM trajectories
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Figure 9.1: The cylinder is a two-dimensional manifold on which the
differential algebraic equations given in Eqn. 9.1 evolve for the given
time interval. This illustration (not to scale) shows the parameters that
describe the cylinder and also shows two trajectories T1 and T2, that
evolve according to Eqn. 9.1 with initial conditions IC1 and IC2 respec-
tively. The arrows along T1 and T2 represent the direction of the vector
field. The trajectories first evolve along increasing values of z, and then
circumscribe the cylinder at or very near the top of the cylinder (max),
before evolving back down towards decreasing values of z.
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Table 9.1: Parameter Values for Eqn. 9.1

α max R ε Θ

10 10 10−3 0 π
2

that evolve on the surface of the cylinder, we will show the magnified view of the

cylinder from hereon, with the scales labeled on the axes. We will continue showing

the magnified view in the next example in subsection 9.2.2 where the cross section

of the cylinder is an ellipse.

The evolution of the trajectory starting at the initial condition [0, 0, 10−3] is

shown in Fig. 9.3 and Fig. 9.4 on the time interval [0, 10]. One can see that the

trajectory peaks at the top of the cylinder, then evolves along the top surface of

the cylinder (the trajectory circumscribes the top of the cylinder along increasing

values of θ) before tracing a path along the wall of the cylinder towards decreasing

values of z.

For computing the POD basis for this FOM, we used 51 snapshots that were

equally spaced in the time interval [0, 10] with the retained energy parameter λperc

set at λperc = 95%. The mode energies for the first 3 POD modes are given in Fig.

9.5.

From Fig. 9.5 and with the value of λperc set at λperc = 95%, the POD

basis (that was computed with the traditional POD algorithm) consists of only

the following vector: [−.1711,−.9853,−10−4], which in Cartesian coordinates is
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Figure 9.2: The cylinder described in Table 9.1 is slender with the slen-
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R
= 104, where max is the height of the cylinder and R

is its radius of cross-section. The magnified view of the cylinder is on the
right and it is this visual scale that we will use to show the trajectories
in the rest of this chapter.
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Figure 9.3: FOM trajectory evolving on the surface of a cylinder (of cir-
cular cross section) according to Eqn. 9.1 with parameter values men-
tioned in Table 9.1. Each snapshot of the trajectory is marked by a
square. In this view, we see the trajectory rising up to the top of the
cylinder and evolving along the top of the cylinder.
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[−9.8 × 10−5, 1.7 × 10−5 − .99], which is a vector that is very slightly tilted away

from the z-axis. This is understandable because the radius of the cylinder is very

small and the FOM trajectory’s energy is almost completely determined by it’s

projection on the z-axis. We note that inspite of the ‘respectable’ value of λperc, the

ROM basis consists of only a single vector. In fact, if we had allowed the trajectory

to evolve further (this would be along the negative z-axis) and included snapshots

further along that trajectory, then even if we had chosen a much higher value of

λperc, we would still only pick up the single vector in the POD basis. None of the

dynamics in the x− y plane would be picked up by this basis.
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Figure 9.5: The energies of the first 3 POD modes are shown. The first
POD mode has over 97 % of the total POD mode energy.

The FOM state vector can be projected onto the POD basis φ, to get the

following ROM representation.

a(t) = c(t)φ (9.2)

where a(t) = [θ(t), z(t), r(t)] is the FOM state vector, φ is the POD basis which
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in this case is just a single vector given by φ = [φ1, φ2, φ3], and c(t) is a scalar

which describes the ROM’s evolution along the POD basis. In traditional POD, to

formulate the equation that describes the evolution of the ROM, we substitute Eqn.

9.2 in Eqn. 9.1, and pre-multiply both sides of the resulting equation by φT to get

MROMc(t) = fROM(c(t)) (9.3)

where MROM = φTMFOMφ, MFOM = diag([1, 1, 0]), and fROM(c(t)) = φTf where

f(t) = [f1(t), f2(t), f3(t)]
T is given by

f1(t) = exp(α(c(t)φ2 −max))

f2(t) = (c(t)φ2 −max)(c(t)φ1 −Θ) (9.4)

f3(t) = (c(t)φ3)
2(cos2(c(t)φ1) +

sin2(c(t)φ1)

1− ε
)−R2.

The ROM given by Eqns. 9.2, 9.3, and 9.4 only evolves until the top of the cylinder.

This corresponds to the top most point of the FOM’s trajectory as shown in Figs.

9.6 and 9.7.

One can see that at the top most point of the trajectory, we will have fROM =

φTf = 0, i.e., the field f as defined in Eqn. 9.4 is orthogonal to (or twists out of)

the POD-subspace φ at the top most point of the trajectory. This is the point at

which twist occurs, and since the ROM vector field vanishes at this point, the ROM

trajectory is unable to shadow the FOM trajectory beyond this point. So, after it

finishes evolving along the top most part of its trajectory (the top of the cylinder),

the FOM trajectory evolves back down along the wall of the cylinder, but the ROM

trajectory can not shadow the trajectory back down towards lower values of z.
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Figure 9.6: ROM trajectory is only able to evolve uptil the top of the
cylinder (see Fig. 9.7 for another view of this figure). The squares show
the snapshots of the ROM trajectory, which is mapped back onto the
FOM space (in this case back onto R3). Successive snapshots of the
ROM trajectory in this figure are uniformly separated in time. We can
see that the ROM vector field vanishes (equals zero) at the top of the
cylinder (since the successive squares of the ROM trajectory get closer
to each other in space, although they are equally separated in time).
This prevents the ROM trajectory from shadowing the FOM trajectory
(shown in Fig. 9.4) back down to lower values of z.
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Figure 9.7: Side views of the ROM trajectory that is only able to evolve
uptil the top of the cylinder. We can see that the ROM vector field
vanishes (equals zero) at the top of the cylinder (since the successive
squares of the ROM trajectory get closer to each other in space, although
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With the above motivating example, we can give the following definition of

twist :

Definition Twist is said to occur when the ROM vector field vanishes (fROM =

φTf = 0) even if the FOM field does not, i.e., the field f as defined in Eqn. 9.4 is

orthogonal to the POD-subspace φ.

9.2.2 Elliptical example with constraint

In this example, we include multiple trajectories (corresponding to different

initial conditions) and we see that in spite of including many trajectories and in-

cluding the snaps along all of them, twist still persists. We retain the same value of

λperc = 95%, but we choose the constraint manifold as the cylinder with an elliptical

cross section. As we proceed in this example, it will become clear that depending

on the initial conditions, a higher eccentricity in the ellipse can force the occurence

of twist for even higher values of λperc (with a higher value of λperc one should ide-

ally expect a more accurate ROM). In the next section, we will show how one can

augment POD to avoid the occurence of twist.

Apart from a higher eccentricity of the FOM equations are the same as in Eqn.

9.1, with the parameters set as in Table 9.2.

Table 9.2: Parameter Values for Eqn. 9.1

α max R ε Θ

−.03 10 10−3 0.9 π
2
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We chose to include 51 equally spaced (in time) snapshots for each of the 4

trajectories, corresponding to the 4 initial conditions as given in Table 9.3.

Table 9.3: Four Initial conditions for FOM with constraint manifold as cylinder with

an elliptical cross section

IC-1 IC-2 IC-3 IC-4

θ .5341 .5655 .5969 .6283

z 0 0 0 0

r 5× 10−4 5× 10−4 5× 10−4 5× 10−4

Two views of the FOM plot corresponding to the initial condition [.6283, 0, 5×

10−4] are shown in Figs. 9.8 and 9.9. The POD basis, in polar coordinates, is the

vector [−.14, .99, 0], which in Cartesian coordinates is just the z-axis [0, 0, 1].

Following the same general procedure as in Eqns. 9.2, 9.3 and, 9.4, we can

construct the ROM model for this example by projecting the FOM Eqn. 9.1 (with

the parameters as given in Table 9.2) onto the POD basis φ = [−.14, .99, 0]. The

ROM evolves till t = tfinal, but it stalls at the particular point on the ROM subspace

where the projected vector field vanishes because once again, we see that at this

point, fROM = φTf = 0, i.e., the field f as defined in Eqn. 9.4 (with parameters

set for this example as in Table 9.2) is orthogonal to (or twists out of) the POD-

subspace φ at the top most point of the trajectory. Hence, the ROM trajectory

shown in Fig. 9.10 can only shadow the FOM trajectory along the z-axis and hence,

cannot shadow it beyond the top most point (the largest z-axis value) of the FOM
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Figure 9.8: First view of the FOM trajectory evolving on the surface
of a cylinder, with an elliptical cross section. The eccentricity of the
ellipse is 0.9. The initial condition of the trajectory in polar coordinates
is [.6283, 0, 5× 10−4].
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Figure 9.9: Second view of the FOM trajectory of Fig. 9.8.
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Figure 9.10: The ROM trajectory for the cylindrical constraint with
elliptical cross section is only able to evolve uptil the top of the cylinder
where the ROM vector field vanishes.

It is partly a matter of chance that using the traditional POD program with

a given value of λperc is able to create a ‘big enough ROM playground’, i.e., an

ROM subspace in which the FOM trajectories can be shadowed. The chances of

producing a large enough playground are bettered if the problem has dynamics with

a low stiffness. This is because the FOM trajectories would then be able to ‘spread

out’ further, because there is no constraint binding it to any surface, and hence the

POD energy in the snaps will show a wider spread across the dimensions in the

FOM space. If this spread is not large enough, then as we have shown, it is possible
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that some of the dimensions into which the FOM trajectory evolves, will not contain

enough energy (as defined in the POD sense) to be included in the reduced POD

basis and hence cause twist. We note that this can occur (as in our examples) even

if the FOM trajectory spends a long enough time evolving solely along the neglected

POD dimensions (not having the FOM trajectory evolve for a sufficient amount of

time in the neglected, but crucial, POD dimensions was recognized early on [99] as

a deficiency in POD based reduction). All the snapshots in the FOM trajectories

in both examples are equally spaced in time, and we see that a majority of them

are present in the top most part of the cylinder (near z = max), which means that

the FOM trajectories spend a longer time at or near the top of the trajectories than

along the side walls of the cylinder. We know of no general result for arbitrarily high

dimensional dynamics that shows how to choose a ‘high enough’ value of λperc to

ensure that twist never occurs. Moreover, a ‘high enough’ value of λperc, if carelessly

set, will lead to an unnecessarily large ROM space, which would lead to very little

reduction in computation time.

9.3 Augmenting the traditional POD basis

Twist occurs because the ROM vector field needs to evolve in a subspace

that the traditional POD procedure has neglected. There is no known general way

to apriori know this subspace. For a typical higher dimensional FOM, where for

example, 5 ROM modes out of a total of 1000 FOM modes have been chosen as part

of the traditional POD basis, based purely on the retained energy λperc, one cannot
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know which subset of the neglected 995 modes are necessary to avoid twist. As far

as we know, the spread of energy among the POD modes is problem specific. If we

did apriori know the set of those state vector snaps near which twist occurred, then

we could assign an appropriately higher weight to those snaps before the traditional

POD procedure or we could set λperc to an appropriately high value. But as it stands,

the one characteristic that has been observed for problems that can be successfully

modeled with POD or any other ROM procedure, is that the modes’ energies fall

roughly exponentially [37] or even more strongly in stiff problems, as shown in Fig.

9.11.

Since twist occurs when the vector field is ignored in stiff problems, the so-

lution to avoiding twist would lie in augmenting the traditional POD basis with

the dominant part of the POD basis of the vector field. However, if we visualize

the vector field in Fig. 9.12, we can also expect a large component of the vector

field’s POD energy λperc to lie along the traditional POD basis. This is because the

2-norms of the vector field snaps are dominated by the part of the trajectory that

crawls along the walls of the cylinder and we will yet again be ignoring the part

where the twist occurs - the top portion of the cylinder, where the 2-norm of the

vector field is small because of the slow dynamics. In the subspaces of the FOM

space were the norm of the vector field is large, it is more likely that the snapshots

of the trajectories themselves will also have a large norm and contribute to the POD

energy of the Traditional POD algorithm 3. Hence, it is more likely that the ROM

space created by the Traditional POD algorithm with a lower value of λperc will end

up including the subspace in which the vector field norm is large. One should focus
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Figure 9.11: This illustration depicts the observation that the POD
modes’ energy tend to drop off exponentially in many physical prob-
lems. The dominant modes are included in the reduced order model. In
general, it is not possible to apriori know which of the neglected modes
need to be included in the ROM subspace in order to eliminate twist. If
a large value of λperc (which determines the number of retained modes
in the ROM space) is set arbitrarily, will lead to an unnecessarily large
ROM space, which would lead to very little reduction in computation
time
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instead on the region of the FOM space were the norm of the vector field is smaller.
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Figure 9.12: The portion of the FOM subspace due to which twist occurs
is the X−Y plane. The energy of the trajectory in the X−Y plane has
a negligible contribution to the retained energy λperc in the traditional
POD procedure. However, the vector field in this portion of the subspace
twists out of the POD space computed by the traditional POD algorithm.

We should concentrate on computing the POD basis of only the small-norm

portion of the vector field, which is the subspace that is more likely to be excluded

from the ROM space and is hence the region where the FOM trajectory is more

likely to twist out of the ROM space. By linearity, the POD basis of the small-norm
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portion of the vector field can also be expected to have a subset of its basis vectors

very close to the traditional POD basis, but it will also have the crucial neglected

basis vectors because of which the twist occurred. We consider only the lowest

η% (by 2-norm) of the vector field snaps for further augmenting the POD basis.

The value of the η is to be set by the user, but it should be low enough so that it

mainly concentrates on the slower portion of the dynamics - where the twist is more

likely to occur. For example, one can choose η by saying that the L1 norm of the

chosen fraction of the vector field snaps should be lower than some preset fraction

of the L1 norm of the entire set of vector field snaps, where the fraction is set by

some characteristic number of the underlying physics. For example, in convection-

diffusion problems which can have very different time scales, there will could be

a convection dominated part of the dynamics and a diffusion dominated portion.

This competition between convection and diffusion is captured by the global Peclet

number Pe. In such a case, one can set η by requiring that we should consider all

those vector field snaps whose 2-norms are less than 1/Pe of the entire set of snaps.

The portion of the POD basis of the small-norm portion of the vector field

which are ‘close’ to the traditional POD basis can be eliminated by a cheap merging

step. The ideas of this section results in the following algorithm that seeks to

eliminate twist by augmenting the traditional POD basis with the POD basis of the

small-norm portion of the vector field.

In the next section, we will show how even using fairly conservative values for

λState
perc , λField

perc , η, and λMerge
perc we can augment the POD basis of the example shown

in subsection 9.2.2 and achieve a successful reduced order model.
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Algorithm 4 Augmented Basis algorithm to eliminate twist

1. Perform traditional POD with the FOM state vector snaps and retain those
modes which together contain λState

perc of the energy. Denote these modes as Basis1.

2. Estimate the FOM vector field snaps from the finite differences of the
FOM state vector snaps in the following way: If (U j

i : i = 1, .., N) are the N
snapshots of the FOM state vectors for a trajectory corresponding to the jth initial
condition, then the N − 1 vector field snaps (V j

i : i = 1, .., N − 1) for the jth initial
condition are given by V j

i = U j
i+1 − U j

i .

3. Sort the vector field snaps in ascending order of their 2-norms.

4. Perform POD on the lowest (by 2-norm) η % of the vector field snaps
and retain those modes which together contain λField

perc . Denote these modes as
Basis2.

5. Merge Basis1 and Basis2, by eliminating those basis vectors in Basis2

that are ‘close’ to Basis1 by a very cheap POD step that uses the vectors in Basis1

and Basis2 as ‘snapshots’ retains those modes which together contain λMerge
perc of the

union of Basis1 and Basis2.

9.4 Implementing the Augmented Basis algorithm on a numerical

example

In subsection 9.2.2, for the problem of creating a reduced order model for

the case of the full order model having a cylindrical constraint with elliptical cross

section, we showed how the traditional POD basis failed to shadow the 3-D FOM

trajectory in the 1-D ROM space (Fig. 9.10).

We now apply the Augmented Basis algorithm of the previous section to the

above example. As mentioned before, with λperc = 95% we get the POD basis

Basis1 = [−.14, 99, 0]. For each of the 4 initial conditions stated in Table 9.3, we

compute the 50 vector field snaps from the differences of the 51 state vector snaps

that are aready available to us and stack them in the ascending order of their 2-
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norms. In Fig. 9.13 we show the vector field snaps for one of the initial conditions,

which we separate into two groups - the vector field snaps that are circled are those

those which have lower 2-norms on average than the ones that are not circled.
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Figure 9.13: The vector field snaps that are circled are roughly where
twist occurs. This set of vector field snaps have a lower 2-norm on
average than the rest of the vector field snaps (that are not circled). It
is only the vector field snaps that are circled that have to be considered
for augmenting the POD basis to avoid twist. This set of snaps should
be separated out of the rest of the vector field snaps with an appropriate
choice of the parameter η.

In this example, we set η = 10%. We found that a POD procedure on this low-

norm fraction of the vector field snaps yielded the 2-D POD basis Basis2 = [v1; v2] ,

with v1 = [−.998,−.069, 0] and v2 = [−.069,−.998,−10−4], even with a λperc as low

as 81%. It is clear that we get this 2-D basis (and hence an eventually successful
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ROM) because we are focusing on the crucial parts of the vector field where the

twist happened. Now we see that Basis1 (the POD basis got from traditional

POD applied to the trajectory snapshots) is very close to Basis2 (the POD basis

of the low-norm vector field) and hence we should do an additional, but very cheap

POD step, in order to eliminate the redundancy. The final 2-D augmented basis

AugBasis = [w1;w2] with w1 = [−.1361,−.99, 0] and w2 = [.99,−.1361, 0] captures

the energy of the 3 ‘snapshots’ of Basis1 and Basis2 for any value of λMerge
perc in the

range 67% < λMerge
perc < 99%. This additional ‘merging’ step should be expected

because the fraction η is heuristically set (with a nod to the underlying physics) and

will hence tend to pick a part of the traditional POD basis (Basis1) or basis-vectors

that are very close to it as a part of vector field POD basis (Basis2). The resulting

2-D ROM equations are given by the previously stated set of equations Eqns. 9.2,

and 9.3, except that we now have the previously 1-dimensional basis φ replaced with

the 2-dimensional augmented basis AugBasis = [w1;w2] and the scalar c(t) in Eqns.

9.2, and 9.3 is now a 2-vector with c(t) = [c1(t), c2(t)]. The results of the successful

ROM with the sugmented basis are as follows.

Both the vectors of the augmented basis in the cylindrical coordinates have

non-zero θ − z components, but have a zero radial (r) component. However, the

main source of the any error between the FOM and any ROM for this example lies

in the (in)ability of the ROM to ‘shadow’ the evolution of the FOM trajectory along

the z-axis. We see that the augmented ROM is able to shadow the z-axis evolution

of the FOM trajectory very well, all the way till the final time step of the FOM

trajectory, as shown in Fig. 9.15.
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184



0 10 20 30 40 50 60
−60

−50

−40

−30

−20

−10

0

10

Time Steps

z

FOM z−value
ROM z−value

Figure 9.15: The error between the z-axis values of the FOM and aug-
mented ROM is low.

185



A comparison of the times taken for the FOM and ROM procedures is given

in Table 9.4.

Table 9.4: Simulation time for the Augmented POD algorithm

FOM time for 1 initial condition 1.9s

ROM time for 1 initial condition 0.71s

Traditional POD basis computation time 6.17× 10−2s

Augmented POD basis computation time 6.39× 10−2s

9.5 Discussion

The phenomenon of twist can be expected to occur in highly stiff problems,

as shown in the simple examples in this chapter. The geometry of the constraint

manifold, together with the dynamics of the FOM trajectory can force the traditional

POD algorithm (which does not focus on the vector field) to pick an insufficiently

large ROM space that does not allow the ROM trajectory to successfully shadow

the FOM trajectory for the entire time interval of the trajectory’s evolution. In

chemical engineering and biochemistry, the presence of reactive equations which

could be modeled algebraically is one example of such dynamics. In control theory,

when such stiff dynamics need to be cheaply modeled as a ‘plant’ in the control

loop, one may need to account for twist. We show how one can account for twist

by augmenting the traditional POD algorithm. One advantage of the augmented
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(AugBasis) algorithm is that no exact knowledge of time scale variation or the shape

of the constraint manifold is needed, which would have been critical for setting λperc

in the traditional POD procedure. Another advantage is that the extra computation

is cheap and no additional data is required apart from what is already available for

the traditional POD technique (since the vector field is estimated from the state

vector snaps).
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