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Abstract

Motivated by the need to create plans for delivering medication
quickly during a public health emergency, this paper formulates the
Inventory Slack Routing Problem. The planning goal is to deliver ma-
terial as early as possible to demand sites from a central depot at which
material arrives over time. The objective function is to maximize the
minimum slack of the deliveries so that all demand sites are treated
equitably. This paper presents and analyzes the problem, discusses
solution techniques, and discusses the results of computational exper-
iments used to compare the solution techniques. Although motivated
by planning for public health emergencies, this work is also applica-
ble to other settings in which material must be delivered quickly to
multiple facilities that rely upon the material to operate.

1 Background

This paper presents the Inventory Slack Routing Problem (ISRP). Our work
on this problem has been motivated by the need to create plans for delivering
medication quickly during a public health emergency, but the work is also
applicable to other settings in which material is required urgently at multiple
facilities that rely upon the material to operate, so stockouts is critically
important.

Events in the last ten years have highlighted the increased need for emer-
gency preparedness by government officials. Events such as the terrorist
attacks on September 11, 2001, Hurricane Katrina, and the 2008 earthquake
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in Chengdu, China, have provided real world examples of ill-preparation for
major disasters [4]. Thus, it is important for government officials to an-
ticipate disasters and plan accordingly. Mathematical models and decision
support tools can be used to support planning activities.

Some scenarios could require the quick and efficient distribution of med-
ication to a large number of people. For instance, the widespread release of
anthrax in a metropolitan area could result in casualties equivalent to that
of a small nuclear explosion [11]. In this scenario (and others involving mass
vaccination against communicable diseases such as smallpox and influenza),
it is logical to create Points of Dispensing (PODs) such that large popula-
tions can be given medication without having to travel to one location. PODs
may be setup in schools, recreation centers, churches, and other non-medical
facilities. The medication to be distributed at these PODs must be delivered
quickly from a central depot as soon as it arrives.

The proposed research is motivated by work with public health officials in
the state of Maryland who must plan the logistics for distributing medication
to the PODs from a central location. We consider the problem at the state
and local levels (not the national level). After the decision for mass dispensing
is made, local health departments will begin preparing to open multiple PODs
simultaneously at a designated time. The state will request medication from
the federal government, who will deliver an initial but limited supply of
medication to a state receipt, storage, and stage (RSS) facility (which we
call the “depot”). Contractors will deliver more medication to the depot,
but the state will begin shipping medication from the depot to the PODs
before everything arrives from the contractors. The deliveries to the depot
arrive in batches that we call “waves.”

Poor medication distribution plans will delay the time that some PODs
receive medication. This can delay the opening of these PODs, or cause PODs
to stop dispensing when they have no medication, and some residents may not
get their medication in a timely manner, which increases their risk of death
or illness. Clearly, there are many uncertainties in medication distribution,
including the timing of shipments to the depot, the time needed to load and
unload vehicles, travel times, and the demand for medication at each POD.
For this reason, planners need a robust plan. In particular, it is better if the
plan calls for delivering medication to PODs much earlier than it is needed.
This improves the likelihood that the PODs will open on-time, will not run
out of medication during operations, and will dispense medication to the
largest number of people in a timely manner.
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This problem, which we call the Inventory Slack Routing Problem (ISRP),
has some features of the inventory routing problem but also has some unique
assumptions, constraints, and objectives. In this case, a set of sites are served
by a set of vehicles that deliver material during a short time span. Thus,
the objective is not to minimize the cost or maximize the profit. Instead the
objective is to increase the earliness of the deliveries, the interval between
each delivery and the time at which the site would its inventory if the delivery
were delayed. This value will be known as the slack.

1.1 Related Work

Much research has been done to develop models to improve emergency pre-
paredness planning. Hupert et al. [11] presented a model to predict the hos-
pital surge after a large-scale anthrax attack and emphasized the importance
of timely antibiotic distribution, making logistics of delivery equally impor-
tant. Similarly, researchers have created simulation methods and planning
tools for PODs in makeshift locations such as school gymnasiums [1, 2, 12].

The operations of firefighters, emergency medical services, and police de-
partments have motivated research into location models [3, 8, 9] and dynamic
vehicle routing models [18]. However, these models are not relevant to the
medication distribution problem, which is more closely related to the inven-
tory routing problem, which will be discussed later in this section.

Planning humanitarian logistics is related to the Vehicle Routing Problem
(VRP) and Inventory Routing Problem (IRP). These problems have been
applied to a variety of commercial, military, and government applications.
The following description of the VRP is by Toth and Vigo [17].

The VRP details the delivery of a set of goods to a set of customers by
a set of vehicles. These goods are stored at a depot, or a set of depots, and
are delivered by a road network. This road network is usually detailed using
a graph with arcs representing roads and vertices as the sites and depots.
The solution to the VRP specifies a route for each vehicle that begins and
ends at the depot. Typical VRP problems have the following characteristics:
customer locations, demands for the customers, time windows for the cus-
tomers, loading and unloading times, and a set of available vehicles that can
be used.

In many cases, it may not be possible to fully satisfy all of the customer
demand, and priorities or penalty functions must be employed. With this,
it is possible to formulate various objective functions to obtain a solution,
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including minimization of global transportation cost, minimization of vehi-
cles used, balancing routes for travel times and load, and minimization of
penalties. The VRP is a well-researched technique, and many heuristics,
mathematical programming, and search techniques are available.

The VRP has many variations including the Inventory Routing Problem
(IRP) [5, 6, 13]. The following description of the IRP is by Campbell et al.
[6]. The IRP differs from the VRP because the delivery company decides
when and how much to deliver to customers. The objective is to minimize
total cost over the planning horizon while ensuring that customers do not
run out of product. A single product is delivered from a single depot to a set
of n customers over a specified time period. These customers are served by
a set of V identical vehicles, each of which has a capacity of Q. A problem
solution answers three questions: when to serve a customer, how much to
deliver, and which routes to follow?

Most solutions detailed in literature focus on short-term scenarios solved
by mathematical programming techniques. There is a lack of basic heuris-
tics for solving IRPs. The Inventory Slack Routing Problem (ISRP) that we
present is similar to an IRP but has some unique assumptions. The main
concern is to supply material (medication) as quickly as possible, not to
minimize cost. As Hupert et al. [11] emphasize, delaying the start of POD
operations will significantly increase the number of people hospitalized. In
addition, the limited availability of material (medication) at the depot adds
an additional constraint to the problem. Finally, because there is uncertainty
in the loading times, unloading times, travel times, and demand, it is nec-
essary to have slack as a hedge against these uncertainties, and more slack
is better. The objective of the ISRP is to maximize the minimum slack in
order to develop a more robust plan.

1.2 Overview of Paper

The ISRP considers how to deliver inventory from a central depot to the
demand sites as early as possible given the availability of inventory at the
depot over time. A key constraint is that a solution must specify sufficient
deliveries to every site so that it receives the total amount required. We
develop a measure known as “slack” to denote how early a delivery reaches
its destination before it is needed. Slack is the difference in time between the
expected time when all previously delivered inventory will be exhausted and
the time that the delivery occurs. Solving the problem with a standard total

4



travel time or total cost objective function would not adequately address the
goal of delivering as early as possible.

A slack value can be calculated for each delivery. Maximizing the sum
of these values could yield an inequitable solution in which some deliveries
have a large slack (and the sites have excess inventory) and other deliveries
have little (or negative) slack (and the sites have little or no inventory).
Thus, we maximize the minimum slack, which achieves the primary objective
of ensuring that inventory arrives in a timely matter while also equitably
allocating inventory to the sites.

Section 2 introduces the problem formulation and presents a simple exam-
ple. Section 3 describes the solution approach, which separates the problem,
and the techniques used to solve the subproblems. Section 4 describes the re-
sults of computational tests used to compare the performance of the solution
techniques. Section 5 concludes the paper.

2 Problem Formulation

We are given a set of vehicles to deliver material from a depot to a set of
sites that will consume this material. In general, only some of the material
is available at the depot at the beginning of the time horizon, and more
material will become available in “waves,” which are batch deliveries to the
depot throughout the time horizon. The schedule of these deliveries to the
waves is given. The sites will start operating at a designated time. While
operating, each site consumes material at a given rate (for instance, at a
POD, the consumption rate equals the dispensing rate, which depends upon
the number of personnel at the site), and this demand may vary from site to
site. The vehicles must deliver enough material from the depot to the sites to
satisfy the total demand over the time horizon. The following section details
the notation to be used.

Although vehicles could follow different routes each time they leave the
depot and sites could be served by multiple vehicles, this makes supervising
and performing the deliveries more complex in practice. We therefore assume
that each and every site is assigned to exactly one vehicle, and each vehicle
always follows the same route to visit the sites assigned to it.
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2.1 Notation

We first describe an instance of ISRP. We denote time as t, where t = 0
refers to the first instant that the depot has inventory. There are n sites,
and k is the index for the sites. The depot is denoted as site n + 1. The
cumulative amount of material delivered to the depot between time 0 and
t is denoted by I(t) (if the material arrives in batches, this will be a step
function that increases at the times that batches arrive). Site k will start
consuming material at t = 0 and will stop at time ek. Each site has a non-
negative, possibly non-stationary, demand rate of Lk(t) for 0 ≤ t ≤ ek. Let
Dk =

∫ ek
0
Lk(t)dt be the total material requirements at site k. The depot will

eventually receive enough material to satisy all of the material requirements
at all of the sites. That is, there is a time t such that I(t) =

∑n
k=1Dk.

There are V vehicles that will deliver material to the sites, and v is the
index for the vehicles. Vehicle v has a capacity of Cv, which is an upper
bound on the amount of material that can be loaded into the vehicle at the
depot. At site k, the time required to unload a delivery is pk; at the depot,
pn+1 is time required to load a vehicle. The travel time from site i to j is
denoted as cij.

The decision variables for this problem specify the route for each vehicle
to take on each trip and how much to deliver to each site on each trip. Since
we are considering a short time period, we assume that a vehicle is assigned
a subset of the sites and will visit these sites in the same sequence on each
trip (that is, a trip starts at the depot, visits one or more sites, and then
returns to the depot). This is done in order to reduce confusion.

A feasible solution specifies, for each vehicle, a route, the number of trips
that it makes, the time to start each trip, and the quantity to deliver to each
site on each trip. Let rv be the number of trips that vehicle v makes. The
sequence of sites that vehicle v will visit on each trip is denoted by σv. Each
trip j of vehicle v starts at time tvj by loading at the depot, continues by
visiting the sites in σv, and ends when the vehicle returns to the depot. The
quantity qvjk is delivered to each site k ∈ σv on trip j.

The time to complete one trip by vehicle v is denoted by yv. If vehicle v
visits site k, then the the site’s delivery will be finished by a vehicle in time
wvk (after the vehicle leaves the depot). These quantities can be calculated
as follows, where [i] refers to the i-th site in σv:
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wv[1] = pn+1 + cn+1,[1] + p[1]

wv[i] = wv[i−1] + c[i−1],[i] + p[i] i = 2, ..., rv

yv = wv[rv ] + c[rv ],n+1

We also define Rk(Q) as the time at which site k will finish consuming
Q units of material and will need more material to continue operating. We
define Rk(Q) = max{T :

∫ T
0
Lk(t)dt ≤ Q} for all Q < Dk .

The slack of a delivery measures how early that delivery is. It equals the
difference between the time that the delivery is completed (the material is
unloaded) and the time that the site would consume the last of all material
that was delivered in previous deliveries. If this delivery were delayed by an
amount of time greater than its slack, the site would be unable to operate
because it would have no material. The objective s is the minimum of all of
the slacks of the deliveries.

2.2 General Formulation

The ISRP can be formulated as follows.
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max s (1)

tvj − tv,j−1 ≥ yv v = 1, ..., V ; j = 2, ..., rv (2)∑
(a,b):tab≤tvj

∑
k∈σa

qabk ≤ I(tvj) v = 1, ..., V ; j = 1, ..., rv (3)

∑
k∈σv

qvjk ≤ Cv v = 1, ..., V ; j = 1, ..., rv (4)

rv∑
j=1

qvjk = Dk v = 1, ..., V ; k ∈ σv (5)

s+ (tvj + wvk)−Rk(

j−1∑
i=1

qvik) ≤ 0 v = 1, ..., V ; k ∈ σv; j = 1, ..., rv (6)

σv ∩ σw = ∅ v = 1, ..., V − 1;w = v + 1, ..., V (7)

∪Vv=1σv = {1, ..., n} (8)

tvj ≥ 0 v = 1, ..., V ; j = 1, ..., rv (9)

qvjk ≥ 0 v = 1, ..., V ; j = 1, ..., rv; k ∈ σv (10)

Equation 1 is the objective value which denotes maximization of the min-
imum slack where slack can be defined for each delivery to each site. This
value is defined as the difference in time between when a shipment is made
and when it is needed. Equation 2 ensures that no vehicle can start a new
trip before it has completed its previous trip. Equation 3 limits the amount
of material that is available to be loaded onto a vehicle at the start of a
trip. Equation 4 is the vehicle capacity constraint. Equation 5 ensures that
every site receives the amount of material required. The minimum slack is
bounded by the slack of each delivery, as described by Equation 6.

Equation 7 ensures that no two vehicles service the same sites, and Equa-
tion 8 ensures that all sites are serviced. The nonnegativity constraints for
the decision variables are given by Equations 9 and 10.

If all of the required material were available at t = 0, the vehicle capacity
constraint (Equation 4) did not exist, and the total rate at which the sites
consume material were greater than the rate at which the vehicles can deliver
material, then the slack of each delivery would be less than the slack of the
previous delivery to that site. In that case, this problem would be equivalent
to minimizing the maximum delivery time. A problem similar to this was
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studied by Campbell et al. [7] in an application for humanitarian logistics.
This paper will focus on a specific version of the ISRP. We assume that

all vehicles have the same capacity (all Cv = C); that all sites will begin
operating at the same time T1 and end operating at the same time T2 (that
is, all ek = T2), with 0 < T1 < T2; and that each site k has a constant demand
rate Lk so that Lk(t) = 0 for 0 ≤ t < T1 and Lk(t) = Lk for T1 ≤ t ≤ T2.
Thus, Dk = Lk(T2 − T1).

Note that the slack of the first delivery to each site does not depend on
previously delivered material because none has been previously delivered.
Thus, in some situations the minimum slack will occur on the first wave, and
the delivery quantities do not influence the minimum slack. It is possible to
show that this happens when, for every delivery, the time needed to consume
all inventory previously delivered is greater than the difference between that
delivery time and the first delivery time (i.e.,

∑j−1
i=1 qvjk/Lk ≥ tvj − tv1).

2.3 Combining Deliveries

Our approach for solving the ISRP determines the trip start times using
a deliver-when-possible algorithm that begins a new trip whenever there is
material available at the depot (see Section 3.2). If more material is due to
arrive at the depot soon, however, waiting for that material and then starting
a trip may increase slack. When vehicle capacity is sufficient, it is always
better to make a delivery of available inventory if the vehicle will return
before the next wave to the depot. However, when the vehicle can not return
before the next wave, it may be better to wait for the next wave.

Consider a feasible solution in which vehicle v visits sites k ∈ σv and
makes trips j and j + 1 (which start at times tvj and tvj + yv) but has the
option of waiting and combining them into one trip that would start at t∗vj
(and this is feasible with respect to capacity). Let svjk and sv(j+1)k denote
the slacks at site k for the two deliveries, and let s∗vjk denote the slack at site
k for the combined delivery. Let Qvjk be the cumulative amount of material
delivered to the site prior to tvj, and let qvjk denote the amount of the first
delivery to site k.

svjk = T1 +
Qvjk

Lk
− (tvj + wvk)

sv(j+1)k = T1 +
Qvjk+qvjk

Lk
− (tvj + yv + wvk)

s∗vjk = T1 +
Qvjk

Lk
− (t∗vj + wvk)
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If
qvjk
L1
≤ tvj + yv − t∗vj, then sv(j+1)k ≤ s∗vjk < svjk. That is, because

the delivery quantity is sufficiently small, the minimum slack of the two
deliveries to this site is sv(j+1)k and this is not greater than s∗vjk, so the
combined delivery does not decrease the minimum slack at this site. If this
condition holds for all k ∈ σv, then the combined delivery does not decrease
the minimum slack of this solution, and the solution formed by combining
the two deliveries is not worse than the original.

This discussion shows that, if a wave brings to the depot a relatively small
amount of material just before another wave arrives, it is reasonable to delay
vehicle trips until the second wave arrives. (The delivery quantities of any
trips that did start would also be relatively small.) Thus, the first wave does
not need to be considered separately when scheduling deliveries (it is added
to the second wave). Thus, we do not consider cases with such small waves.

2.4 Example Instance

To illustrate the importance of scheduling quantities, this section presents
a small example. This example is taken from the instances used in the
computational results section. This instance has three vehicles and five sites.
Three waves of material arrive at the depot and are available at t = 0,
t = 180, and t = 360. The material available in each wave is 48,000, 98,000,
and 73,000. The first vehicle visits sites 5 and 4; the travel times are w15 = 45,
w14 = 73, and y1 = 90. The second vehicle visits only site 3; the travel times
are w23 = 46 and y2 = 76. The third vehicle visits sites 2 and 1; the travel
times are w32 = 45, w31 = 74, and y3 = 91. Each vehicle begins a trip
at each wave and returns before the next wave, so the start times tv1 = 0,
tv2 = 180, and tv3 = 360. The consumption start and end times are T1 = 600
and T2 = 1200, and the site demand rates are L1 = 50, L2 = 75, L3 = 100,
L4 = 60, and L5 = 80.

If the delivery quantities to each site for each trip were decided by allo-
cating the material in each wave so that the quantities are proportional the
site demand rates, then we would have the solution displayed in Table 1. The
slack calculations for this solution are displayed in Table 2. The minimum
slack of 478 minutes occurs on the second delivery to site 1 by vehicle 3.

Given these routes and trip start times, this solution is not the best
allocation of inventory. It is possible to find a feasible solution that, in the
earlier trips, delivers more material to sites that are visited later in each route.
The revised schedule in Table 3 was found using the linear programming
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Table 1: Schedule for example.
Delivery quantity

Vehicle v Site k qv1k qv2k qv3k
1 5 10,521 21,479 16,000

4 7,890 16,110 12,000
2 3 13,151 26,849 20,000
3 2 9,863 20,137 15,000

1 6,575 13,425 10,000

Table 2: Slack calculations for example.
Slack

Vehicle v Site k wjk sv1k sv2k sv3k
1 5 45 555 507 595

4 73 527 479 567
2 3 46 540 492 580
3 2 45 555 507 595

1 74 526 478 566

formulation presented in Section 3.3. The slack calculations for this solution
can be seen in Table 4. The new minimum slack is 494, and the slack of
every delivery in the second wave equals this value. Note that sites 1, 3, and
4 received more material in the first wave, and sites 2 and 5 received less.
Also note that first wave slacks did not change.

3 Solution Approaches

The ISRP can be separated into three sets of decisions (subproblems): (“rout-
ing”) assigning sites to each vehicle and sequencing them to create routes,
(“scheduling”) determining how many trips each vehicle will make and when
each trip will start, and (“allocation”) determining the amount of material
to deliver to each site on each trip. We developed the following algorithms
for these subproblems. For the routing problem, we developed a route-first,
cluster-second heuristic (described in Section 3.1). For the scheduling prob-
lem, we developed a deliver-when-possible algorithm (described in Section
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Table 3: Revised schedule for example.
Delivery quantity

Vehicle v Site k qv1k qv2k qv3k
1 5 9,506 20,789 17,705

4 8,809 16,756 10,435
2 3 13,382 23,949 22,669
3 2 8,912 19,819 16,269

1 7,391 14,611 7,998

Table 4: Slack calculations for revised schedule.
Slack

Vehicle v Site k wjk sv1k sv2k sv3k
1 5 45 555 494 574

4 73 527 494 593
2 3 46 540 494 553
3 2 45 555 494 578

1 74 526 494 606

3.2). For the allocation problem, we developed a linear program (described
in Section 3.3).

From these components we developed three solution approaches for the
ISRP: (1) the Routing-and-Scheduling (R&S) approach, which solves the sub-
problems in order with the route-first, cluster-second heuristic, the deliver-
when-possible algorithm, and the linear program; (2) an adaptive large neigh-
borhood search (ALNS), which first searches over the routes, using the deliver-
when-possible algorithm to schedule deliveries and a heuristic that can gen-
erate good material allocations, and then uses the linear program after the
search ends (this is described in Section 3.4); and (3) a branch-and-bound ap-
proach that enumerates the routes, uses the deliver-when-possible algorithm
to schedule deliveries, and uses the linear program both to create bounds for
incomplete solutions and to evaluate complete solutions (this is described in
Section 3.5).
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3.1 Routing Vehicles to Sites

Our route-first, cluster-second heuristic approach is based on the procedure
presented in Toth and Vigo [17]. First, a “big route” is constructed with the
depot and all of the sites. Second, the big route is divided into clusters, one
for each vehicle. Because the vehicles are identical, we used procedures that
try to keep the clusters the same “size” with respect to travel time or total
demand rate. The sequence from the big route is used to sequence the sites
in each vehicle’s route. This method was first presented by Montjoy et al.
[14].

To construct the “big route,” we used two different methods that do not
use X-Y coordinates. In many real world situations, the X-Y coordinates are
not as important as the travel times between sites, and, in some situations,
the X-Y coordinates may be unavailable. The first method started at the
depot and used the nearest neighbor heuristic to select the next site in the
route until all sites were visited. The route ended back at the depot. Given
this route, the second method used a 2-opt exchange to improve the route
by reducing the total travel time.

Once a big route was obtained, it was necessary to divide (“cluster”) the
sites among all of the vehicles available. The sites are first divided between
vehicles as equally as possible. Each vehicle route includes a subsequence of
the big route and is completed by adding the trip from the depot to the first
site and the trip from the last site back to the depot. Because this division of
the big route ignores both the demand at the sites and the travel times, the
durations (and demands) of the routes may vary widely, which can reduce
the minimum slack of any solution constructed from these routes. Thus,
we used improvement algorithms to reduce the variation; one considered the
travel time, and one considered the total demand.

The first improvement algorithm method sought to make the route du-
rations as similar as possible by minimizing the range of route durations.
This method begins by calculating each vehicle’s route duration. In each
iteration, the algorithm examines the vehicles with maximum and minimum
travel times and considers moving sites at the beginning (or end) of one route
to the previous (or next) vehicle’s route. If the potential move decreases the
range of route durations, then the routes are updated to reflect this change.
This continues until no further improvement can be made.

The second improvement algorithm is similar but sought to make the total
demand of the routes as similar as possible. For route σv, the total demand
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of the route Dv = (T2−T1)
∑

k∈σv Lk. At each iteration, the algorithm moves
a site from one route to another to decrease the range of total demand.

Given two methods for constructing the big route and two algorithms for
improving the routes after dividing the big route, we have four versions of
this heuristic.

3.2 Scheduling Deliveries

Given routes for the vehicles, our deliver-when-possible algorithm was used to
find feasible start times for each trip. This procedures begins by temporarily
allocating to each vehicle a amount of material from each wave that is propor-
tional to the demand rates (and material requirements) of the sites that the
vehicle visits. Let Jk(t) = I(t)Lk/

∑n
i=1 Li. Then, let Jv(t) =

∑
k∈σv Jk(t) be

cumulative material available for vehicle v.
Every vehicle starts its first trip at t = 0. All of the material available for

vehicle v (which equals Jv(0)) will be delivered on the first trip if the vehicle
capacity is sufficient (that is, if Jv(0) ≤ C). If not, then, when the vehicle
returns to the depot, the vehicle will pick up the undelivered material, which
equals Jv(yv) − C, and start another trip. This will continue until no more
material is available for that vehicle.

Whenever no material is available for a vehicle, it will wait at the depot
until the next wave, when more material becomes available (and Jv(t) > 0),
and will start a trip then.

3.3 Material Allocation

Given the routes for the vehicles and the delivery start times, it is possible
to allocate material optimally by solving a linear program (LP). In this LP,
the decision variables are avj, which is the amount of material delivered by
vehicle v for trip j, and qvjk, which is the amount of material delivered to
site k by vehicle v on trip j. We know that vehicle v takes rv trips.

The notation from the original formulation remains as follows: C is the
capacity of a vehicle, tvj is the time that vehicle v begins trip j, σv is the
route that vehicle v follows, wvk is the delay from the beginning of trip j until
the delivery at site k by vehicle v, I(t) is the cumulative amount of material
that has arrived at the depot by time t, and Qvjk is the cumulative amount
of material delivered to site k by vehicle j before trip j.
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In addition, let nv(t) be the number of trips taken by vehicle v up to, and
including, time t. Let Tv = {tvj, j = 1, ..., rv} be the set of all trip start times
for vehicle v. Let T be the union of all trip start times for the V vehicles:
T = T1 ∪ ... ∪ TV .

The LP can be described as follows:

max s (11)

V∑
v=1

nv(t)∑
j=1

avj ≤ I(t) ∀t ∈ T (12)

avj ≤ C v = 1, ..., V ; j = 1, ..., rv (13)∑
k∈σv

qvjk = avj v = 1, ..., V ; j = 1, ..., rv (14)

rv∑
j=1

qvjk = Lk(T2 − T1) v = 1, ..., V ; k ∈ σv (15)

Qv1k = 0 v = 1, ..., V ; k ∈ σv (16)

Qvjk =

j−1∑
m=1

qvmk v = 1, ..., V ; j = 2, ..., rv; k ∈ σv (17)

s+ tvj + wvk ≤ T1 +
Qvjk

Lk
v = 1, ..., V ; j = 1, ..., rv; k ∈ σv (18)

avj ≥ 0 v = 1, ..., V ; j = 1, ..., rv (19)

qvjk ≥ 0 v = 1, ..., V ; j = 1, ..., rv; k ∈ σv (20)

Equation 12 is the objective function, which seeks to maximize the min-
imum slack. Equation 13 limits the amount of material that the vehicles
can deliver to the amount available at the depot. Equation 14 is the vehicle
capacity constraint. Equation 15 ensures that a vehicle delivers all of the
material that it takes from the depot every trip. Equation 16 ensures that
every site receives the amount of material required there. Equations 16 and
17 define the cumulative quantity amounts. Equation 18 is the upper bound
on the slack and ensures that the objective function value is the minimum
slack. Equations 19 and 20 are the nonnegativity constraints for the decision
variables.
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3.4 Adaptive Large Neighborhood Search

Our search approach was a version of the Adaptive Large Neighborhood
Search (ALNS) [16]. One advantage of this method is that each iteration
of the search uses simple heuristics (and is thus quick), but the diversity
of these heuristics reduces the likelihood of the search being trapped at a
locally optimal solution. The search begins with an initial feasible solution
created by the heuristic technique. Then each iteration of the search partially
destroys and rebuilds the solution.

The general framework for this search can be summarized as follows:

1. Start with initial route and calculate objective value.

2. Choose removal heuristic randomly based on past performance.

3. Choose insertion heuristic randomly based on past performance.

4. Calculate objective function value and accept or reject based on simu-
lated annealing framework.

5. Update heuristic performances and cooling parameters.

6. Return to Step 2 (unless the number of iterations has reached the de-
sired limit).

7. Output best solution found.

Our ALNS used four removal heuristics that are appropriate for the ISRP
and have the ability to diversify the search. These removal heuristics take a
complete sequence of sites for each vehicle, relax a specified number of sites,
and output a partial solution. The search also used four insertion heuristics,
which take a partial solution and insert the removed sites to form a complete
solution. When a partial solution is presented to an insertion heuristic, the
first step is to ensure that each vehicle has at least one site to service. Montjoy
and Herrmann [15] described these heuristics and their parameters in more
detail.

Like the procedure of Pisinger and Ropke [16], our ALNS selects a re-
moval heuristic and an insertion heuristic each iteration. A heuristics selec-
tion probability is proportional to its weight. Both selected heuristics are
rewarded in three cases: (1) a new global best solution is found, (2) the new
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solution is better than the previous one and has not been accepted before,
and (3) the new solution is not better than the previous one and it has not
been accepted before. If rewarded, the heuristics observed weights are in-
creased by 5 (in case 1), 3 (in case 2), or 1 (in case 3). The search process is
divided into segments of 50 iterations. At the beginning of a segment, every
heuristic has an observed weight of zero. At the end of a segment, the ALNS
calculates new weights based on the weights from the previous segment and
the observed weights. Our ALNS used a simulated annealing procedure to
determine if a new solution is accepted. The starting temperature of the
simulated annealing procedure was selected by observing the objective value
of an initial solution and choosing by a desired probability for a relatively
lesser value. The cooling rate was then tuned to have reasonable acceptance
probabilities towards the end of the search.

Step 4 in the search calculates the objective function value by using the
deliver-when-possible algorithm (Section 3.2) to determine the start times
and then using simple rules to find quickly a good material allocation (instead
of using the LP described in Section 3.3). These rules first allocate material
proportionally to the demand rates and then adjust the allocations to improve
the minimum slack; these are described in detail in Herrmann et al. [10].

When the search is complete (after 1,500 iterations), we used the LP
introduced in Subsection 3.3 to optimize the material allocation given the
routes and delivery schedule in the best solution found by the search (this
approach was first presented as the “LinProg” version of the ALNS in Yan
et al. [19]).

3.5 Branch-and-Bound Approach

We developed a branch-and-bound algorithm to find optimal solutions where
possible. The approach implicitly enumerates all feasible routes, uses the
deliver-when-possible procedure to schedule deliveries (as described in Sec-
tion 3.2, and uses the LP to find the optimal material allocations (as described
in Section 3.3).

The algorithm proceeds by examining each vehicle in turn. The general
scheme can be described as follows. At the initial node, there are no sites
assigned to the first vehicle. The branches from this node correspond to
placing different sites as the first site in the route of the first vehicle. At any
other node, the branches correspond to adding remaining sites to the current
vehicle’s route or terminating this route and starting the route for the next
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vehicle. For example, the first branch from the initial node assigns site 1 as
the first site in the route of the first vehicle. If there are three remaining
sites (2, 3, and 4), then the branches from this node will be 1-2, 1-3, 1-4, and
1-T, where 1-T denotes that the route for the first vehicle is terminated (that
is, the vehicle will return to the depot after visiting site 1) and the second
vehicle is now the current vehicle. The strategy for searching this tree is to
start from the “far left” and systematically look at all combinations while
ignoring redundant or non-desirable solutions. This can be done by ensuring
that the vehicles in a solution are ordered by the first site in their sequence
and by using the following rules:

1. Consider only the first n − V + 1 sites to be the first site on the first
vehicle;

2. If the remaining number of sites equals the remaining number of ve-
hicles, evaluate this solution if the solution can still be increasingly
ordered by the first site assigned to each vehicle;

3. Among a set of remaining sites to be the first in the route on a new
vehicle when Vr vehicles have not yet been considered, the Vr − 1 last
remaining sites can not start the next vehicle (for example, if there are
three vehicles and 1-2-3-8-9-T is the first vehicle’s route, then there are
Vr = 2 remaining vehicles, sites 4, 5, 6, and 7 are the remaining sites,
and site 7 can not be the first site assigned to the second vehicle);

4. When adding sites to the route of a vehicle that begins with site a, at
least Vr sites with indices that are greater than a must remain unas-
signed, so do not add to this route a site with an index that is greater
than a if there are only Vr such sites remaining (for example, in a
three-vehicle, nine-site problem, if the first vehicle’s route is currently
5-3-7-8-2, then neither 6 nor 9 can be added to this route).

Recall that the objective function is to maximize the minimum slack. An
initial lower bound is found by applying the routing-and-scheduling approach.
At each node explored in the branch-and-bound approach, an upper bound
can be found by assuming each and every site not yet assigned to any route
is assigned to an extra vehicle that has infinite capacity, visits only that site,
and starts each delivery when each new wave arrives. After combining these
hypothetical vehicles and routes with the actual routes being considered, the
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start times were determined using the deliver-when-possible procedure, and
the optimal material allocations were determined using the LP.

At any node, if the upper bound is below the current lower bound, the
node is not explored.

4 Computational Testing

To compare the quality of the solutions generated and the computational
effort of each solution technique, instances based on real-world settings and
traditional VRP test instances were generated. For datasets that had street
addresses, Toursolver and Google Maps were used to calculate travel times
between the sites. We invented demand and wave delivery information to
be similar to real world mass dispensing plans from Maryland. All of the
instances had loading times of 15 minutes. Montjoy et al. [14] described
the process of generating the instances. (These instances are available upon
request.)

A subset of 21 instances were used for this work. There were seven base-
line instances (which specify the site locations and other details), but the
number of vehicles was varied to create three instances from each baseline
instance.

On each instance, we ran the routing-and-scheduling (R&S) approach four
times (once with each version of the route-first-cluster-second heuristic), ran
the ALNS search five times (with 1,500 iterations per run), and conducted a
branch-and-bound search. The branch-and-bound search was terminated if
it did not complete within 24 hours.

4.1 Solution Quality

The quality of each solution is its minimum slack. We kept the best solution
of those generated from the four versions of the routing-and-scheduling (R&S)
heuristic and averaged the minimum slack of the solutions generated by the
five runs of the ALNS.

Table 5 lists the minimum slack of these solutions and the upper bound,
which presumes that every site has its own vehicle (cf. Section 3.5) and does
not depend upon the number of vehicles in the instance. For those instances
on which the B&B approach terminated without finding an optimal solution,
no value is listed for the B&B. The instances with an asterisk are those

19



in which the solution’s minimum slack occurs on the first wave. In these
instances, the minimum slack is determined by the first delivery to a site.
The later deliveries have more slack.

The vehicle capacity constraint was not tight on any deliveries, and none
of the instances had small waves that arrived soon before larger ones. Thus,
no solution could be improved by combining any two deliveries (as discussed
in Section 2.3). Thus, if the branch-and-bound approach generated a solu-
tion, it is an optimal solution.

The three solution techniques generate solutions that have similar quality.
The most notable exceptions are the 20-site instances, on which the ALNS
found solutions that were approximately 20 minutes better than the solutions
generated by the R&S heuristics. A representation of the routes from the
best heuristic solution and ALNS can be seen in Figure 4.1 for the 6 vehicle
variant. (Note that the instance comes from a real-world road network and
this is an estimation of the points in a Euclidean space.) The slack occurs
on the first delivery, so the route that minimizes the latest delivery time will
yield the best solution. The ALNS is able to find a better solution because
the heuristic focuses on servicing sites that are closer together by the same
vehicle.

We also noted that adding more vehicles increases the minimum slack,
which is expected because deliveries can be completed sooner. The size of
the increase is limited, however, because the minimum slack approaches the
instance upper bound.

4.2 Computational Effort

The computational effort for the ALNS and the B&B grows as the number
of sites increases. Table 6 presents the runtime in seconds for the ALNS and
the B&B. The run time for the ALNS is the average for the 5 runs. The run
times for the R&S heuristic were less than a few seconds.

For the smaller instances, the B&B requires less time than the ALNS
because the ALNS runs the same number of iterations for each instance. As
the number of sites increases, the run time for the B&B grows quickly.

The run time for the ALNS increases more slowly. The ALNS is able to
complete 1,500 iterations in less than 7 minutes for the largest instances.
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Figure 1: Representation of routes from the heuristic and ALNS for the 20
site, 6 vehicle instance. The dotted line represents the return from the last
site to the depot. The site with the minimum slack is denoted in bold.
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Table 5: Objective function values (minutes) for the solution approaches.
R&S = routing-and-scheduling, ALNS = Adaptive Large Neighborhood
Search, B&B = branch-and-bound. The symbol * denotes solutions in which
the slack occurs on the first wave for all techniques.

Sites Vehicles R&S ALNS B&B Upper Bound
5 2 481.5 481.5 483.7 501.8

3 493.8 493.8 493.8
4 498.1 498.1 498.1

9 3* 1273.0 1281.0 1281.0 1329.0
5* 1300.0 1316.0 1316.0
7* 1325.0 1328.0 1328.0

9 3* 458.0 458.0 458.0 496.0
5* 471.0 482.6 483.0
7* 496.0 496.0 496.0

10 3 1080.8 1083.2 1084.7 1105.5
5 1095.3 1095.3 1096.8
7 1100.0 1100.0 1101.1

20 6* 124.0 148.8 - 188.0
10* 167.0 180.4 -
14* 167.0 188.0 188.0

50 15 1273.0 1273.0 - 1302.0
25 1291.8 1291.8 -
35 1297.5 1297.5 -

189 30* 1244.0 1245.2 - 1351.0
71* 1318.0 1320.4 -
100* 1333.0 1333.0 -
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Table 6: Computational time in seconds for the ALNS and B&B techniques.
Sites Vehicles ALNS B&B

5 2 12.6 3.3
3 9.6 1.3
4 8.2 0.3

9 3 26.1 1762.0
5 18.2 177.0
7 15.6 9.7

9 3 39.5 1804.6
5 26.5 238.1
7 20.2 1.8

10 3 40.1 46615.4
5 25.8 7100.0
7 20.0 330.9

20 6 31.1 -
10 21.7 -
14 20.4 68.2

50 15 101.1 -
25 81.2 -
35 80.0 -

189 30 380.3 -
71 221.6 -
100 216.1 -

For an instance, the run time decreases as the number of vehicles in-
creases. When inserting a site into an existing route, the ALNS tries every
location in a vehicle’s route; in an instance with more vehicles, the vehicle
routes are shorter and have fewer potential locations that must be considered.
Likewise, the B&B has fewer branches to investigate at each point.

5 Conclusions

The inventory slack routing problem is a unique vehicle routing problem that
focuses on delivering material as early as possible and emphasizes robustness
and equity. This work was motivated by the problem of delivering antibiotics
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during the response to an anthrax attack, but the problem can occur in other
emergencies or situations in which urgently needed material must be delivered
over a short time horizon.

Due to its complexity, we decided to separate the ISRP into three sub-
problems: routing, scheduling, and material allocation. For the routing
problem, we developed a route-first, cluster-second heuristic; for the schedul-
ing problem, we developed a deliver-when-possible algorithm; and, for the
allocation problem, we developed a linear program. From these compo-
nents we developed three solution approaches for the ISRP: (1) the Routing-
and-Scheduling (R&S) approach, (2) an adaptive large neighborhood search
(ALNS), and (3) a branch-and-bound (B&B) approach.

A set of instances was used to test the various techniques. The R&S
approach performed well in smaller instances but performed much worse
than the ALNS and B&B in larger instances. The B&B was unable to find
complete solutions within a reasonable time for most instances with more
than 10 sites. Thus, the ALNS appears to be a useful technique for solving
this problem.

Future work is needed to consider problems in which the demand at each
site is uncertain and to develop approches for updating solutions to the ISRP
problem as real-time information about actual demand at the sites becomes
available so that the right amount of material can be delivered to the right
place.
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