
University of Maryland College ParkInstitute for Advan
ed Computer Studies TR{2003{89Department of Computer S
ien
e TR{4521
MATRANA Fortran 95 Matrix Wrapper�G. W. StewartyAugust 2003ABSTRACTMatran is an wrapper written in Fortran 95 that implements matrix oper-ations and 
omputes matrix de
ompositions using lapa
k and the blas.This do
ument des
ribes a preliminary release of matran, whi
h treatsonly real matri
es. Its purpose is to get outside 
omments and suggestionsbefore the pa
kage jells. Consequently, this do
umentation is slanted to-ward the experien
ed programmer familiar with both matrix 
omputationsand Fortran 90/95. User oriented do
umentation will a

ompany the �nalrelease.

�This report is available by anonymous ftp from thales.
s.umd.edu in the dire
tory pub/reportsor on the web at http://www.
s.umd.edu/�stewart/.yDepartment of Computer S
ien
e and Institute for Advan
ed Computer Studies, University of Mary-land, College Park, MD 20742 (stewart�
s.umd.edu). This work was supported in part by the NationalS
ien
e Foundation under grant CCR0204084.





MATRAN iContentsPrefa
e iii1 Overview and example 11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 A least squares solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 The module MatranUtil m 83 The types Rmat and Rdiag 93.1 The type Rmat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103.2 The type Rdiag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Matrix Operations 164.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164.2 The Transpose suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184.3 The Sum suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194.4 The Produ
t suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194.5 The Solve suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204.6 The Join suit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224.7 The Border suit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224.8 The Submatrix suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Matrix mis
ellania 245.1 The Diag suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245.2 The Eye suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255.3 The Inverse suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265.4 The Norm and Norm2 suites . . . . . . . . . . . . . . . . . . . . . . . . 275.5 The Pivot suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275.6 The Print suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285.7 The Rand suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 De
ompositions 316.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316.2 The LU de
omposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326.3 The Cholesky de
omposition . . . . . . . . . . . . . . . . . . . . . . . . 346.4 The QR de
omposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356.5 The pivoted QR de
omposition . . . . . . . . . . . . . . . . . . . . . . . 366.6 The spe
tral de
omposition . . . . . . . . . . . . . . . . . . . . . . . . . 386.7 The singular value de
omposition . . . . . . . . . . . . . . . . . . . . . . 39



ii MATRAN6.8 The real S
hur de
omposition . . . . . . . . . . . . . . . . . . . . . . . . 416.9 The eigende
omposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 437 The real 
ore 448 Computing Arnoldi de
ompositions 449 Appendix: The Sun Fortran 95 6.2 Compiler 52



MATRAN iiiPrefa
eThis do
ument introdu
es a preliminary version of matran (pronoun
ed MAY-tran),a Fortran 95 wrpper that implements matrix operations and 
omputes matrix de
om-positions using lapa
k and the blas. Although matran is not based on a formallyde�ned matrix language, it provides the 
avor and 
onvenien
e of 
oding in matrix ori-ented systems like matlab, o
tave, et
. By using routines from lapa
k and theblas, matran allows the user to obtain the 
omputational bene�ts of these pa
kageswith minimal fuss and bother.Matran originated as follows. In 2002, my 
olleague Dianne O'Leary and I re
eivedan NSF grant to work on new algorithms for large-s
ale eigenvalue problems. Somewhatrashly we promised to implement our algorithms in a standard high level language,even though we knew that we would develop them using matlab. A 
ouple of yearspreviously I had published a Java matrix pa
kage 
alled jampa
k. The response wasless than enthusiasti
, owing in part to the awkward syntax for
ed on it by the absen
eof operator overloading in Java. Sin
e Fortran 95 not only 
an overload operators but
an also 
an de�ne new ones, it o

urred to me that jampa
k would look a lot 
leanerin Fortran 95 and 
ould, in fa
t, provide natural and eÆ
ient implementations of 
odefrom matrix oriented languages.At present matran implements only real matrix operations and de
ompositions.Consequently, it is still is small enough to survive signi�
ant 
hanges, provided they rep-resent substantial improvements. The purpose of this release is to soli
it 
omments andsuggestions before matran jells. For this reason, this do
ument is addressed largelyto experts|people well grounded in matrix 
omputations, Fortran 95, lapa
k, andthe blas. The formal release, whi
h will 
ontain 
omplex types, will be a

ompaniedby a more 
onventional user's manual.Matran may be obtained through my home pagehttp://www.
s.umd.edu/~stewart/This proje
t has many benefa
tors. I am supported by the National S
ien
e Foun-dation at the Computer S
ien
e Department and the Institute for Advan
ed ComputerStudies of the University of Maryland. I am also a fa
ulty appointee at the Mathemat-i
al and Computational S
ien
es Division of the National Institute for Standards andTe
hnology, where my division leader, Ron Boviert, has en
ouraged me to work on thisproje
t.I am greatly indebted to John Reid, who patiently steered me through my initialfumblings with Fortran 95 and provided useful suggestions for the design of matran.His ex
ellent book withMi
hael Met
alf, Fortran 90/95 Explained, has been my 
onstant
ompanion during this proje
t. Bill Mit
hel, the resident NIST expert on Fortran 90/95,has made himself 
heerfully available on a drop-in basis to answer my questions. Finally,



iv MATRANmy student Che-Rung Lee, who 
ame in at the middle of the proje
t and qui
kly learnedthe ropes, has been a valuable assistant ever sin
e.



MATRANA Fortran 95 Wrapper for Matrix OperationsG. W. Stewart1. Overview and exampleMatran is an open wrapper written in Fortran 95 that implements matrix operationsand 
omputes matrix de
ompositions using lapa
k and the blas. Matran is ablending of \matrix" and \Fortran," and is pronoun
ed MAY-tran. This do
umentdes
ribes a preliminary release of matran whi
h treats only real matri
es. Its purposeto get outside 
omments and suggestions before the pa
kage jells. Consequently, it isslanted toward the experien
ed programmer familiar with both matrix 
omputationsand Fortran 90/95. User oriented do
umentation will a

ompany the �nal release.1.1. OverviewMatran is a 
olle
tion of derived types and generi
 subprograms in Fortran 95 thatimplements matrix operations and 
omputes matrix fun
tions and de
ompositions. Al-though matran is not based on a formally de�ned matrix language, the results of usingmatran are akin to 
oding in a subset of matrix oriented programming languages likematlab, o
tave, et
. By using routines from lapa
k and the blas, matran al-lows the user to obtain the 
omputational bene�ts of these pa
kages with minimal fussand bother.Here are some of the features of matran.� This preliminary release of matran provides only two matrix types. The Rmat rep-resents matri
es stored in re
tangular arrays. The Rdiag implements diagonal matri
esstored in a linear array.1 However, this poverty of types is illusory. The type Rmat
ontains a tag �eld that subdivides the type into general, upper triangular, lower trian-gular, symmetri
, and symmetri
 positive de�nite matri
es. The �rst formal release willalso in
lude 
omplex versions of the two types. Ultimately, I would like to see matransupport band and sparse matri
es.� There are single and double versions of matran, 
orresponding to the single anddouble pre
ision versions of lapa
k and the blas. The default result of 
ompilation isdouble pre
ision; but 
ompilation of a single pre
ision pa
kage 
an be for
ed by settinga 
ag in the 
ompilation 
ommand line. Unfortunately, one 
annot mix or mat
h: the1In Fortran 95 these arrays are said to have rank two and one respe
tively. However, sin
e the wordrank has other meanings in matrix 
omputations, we use the terms re
tangular and linear instead.1



2 MATRANpa
kage is all single pre
ision or all double pre
ision. In
idently, if lapa
k quad 
odesbe
ome avaliable, it will be easy to extend matran to a quad pa
kage.� Matrix operations are provided by overloaded and de�ned operators. For exampleA + B 
ompute the sum of the matri
es A and B, while A.xhy.B 
omputes AHB. Asuite of subprograms 
omputes produ
ts like A�1B or A�HB. In addition, matrande�nes operations for 
ombining matri
es and extra
ting submatri
es.� Matran provides 
ommon matrix fun
tions|e.g., norms|as well as 
onstru
torsfor spe
ial matri
es like the identity.� Matrix types in matran are allowed to be void (aka empty)|that is, they mayhave zero row or 
olumn dimension (or both). This feature is useful in starting matrixalgorithms that build up matri
es by bordering.� Matran provides types for the following de
ompositions: the pivoted LU de
om-position, the Cholesky de
omposition, the pivoted and unpivoted QR de
ompositions,the spe
tral de
omposition of a symmetri
 matrix, the singular value de
omposition,and the S
hur and eigende
ompositions of a general square matrix. Matran providesmeans for reusing de
ompositions, as, for example, when one wishes to solve severallinear systems all having the same matrix.� Matran is modularized at a �ne-grained level. This means that the programmer 
anpi
k and 
hoose among matran's 
apabilities without linking to the entire pa
kage.� Storage management in matran requires only a minimal assist from the user. How-ever, matran provides additional means by whi
h the user 
an for
e the reuse ofstorage already allo
ated, thus redu
ing 
alls to the allo
ator. These features may beuseful to people doing large 
omputations with small matri
es, in whi
h the allo
ationof intermediate matri
es 
an amount to a signi�
ant part of the 
omputational load.� Many of matran's more advan
ed features are implemented via optional arguments,so that when they are not needed they do not 
lutter the 
ode.� Matran is an open pa
kage in the sense that its modules and types have no private
omponents. This fa
t has two useful 
onsequen
es.1. The programmer 
an use the resour
es of Fortran 95 to manipulate matri
es inways not provided by matran. This ability is espe
ially important for matrix
omputations, sin
e the number of things people want to do with matri
es farex
eeds the number of methods that a 
losed, obje
t-oriented pa
kage 
an provide.2. Closely related to the �rst is the fa
t that the programmer 
an do things in away that fa
ilitates 
ompiler optimization. To give a single example, a Rmat holdsits matrix in an array 
alled a. In matran, the standard way to referen
e the



MATRAN 3(i,j)-element of a Rmat M is M%a(i,j), whi
h means the the 
ompiler knows thatit is working with referen
es to a re
tangular array and 
an optimize the 
odea

ordingly. If a

ess were ex
lusively through fun
tions, the 
ompiler would notbe able to optimize.However, there is a downside to being open. Matran 
annot enfor
e its own 
onven-tions. Thus the matran programmer must be more both knowledgeable and moredis
iplined than the 
asual user of obje
t-oriented pa
kages.1.2. A least squares solverIn this se
tion we will illustrate some of matran's features and 
onventions by a simpleleast squares solver. Suppose we are given an m�n matrix A of full 
olumn rank n.Given an m-ve
tor b we want to 
ompute an n-ve
tor x su
h thatkb�Axk22 = min;where kuk22 = Pi u2i . In addition, we want to 
ompute the residual r = b � Ax at theminimum, and the residual sum of squares krk22.The QR de
omposition furnishes an elegant way of solving this problem. Spe
i�
ally,we 
an write A in the form A = QR; (1.1)where Q has orthonormal 
olumns and R is upper triangular. It 
an be shown thatx = R�1QTb:Hen
e, given the QR de
omposition of A, one 
an �nd x by simple operations involvingb, Q, and R.The 
ode in Figure 1.1 implements this algorithm. The statementuse MatranRealCore_minvokes a blanket module 
onsisting of use statements invoking the 
ore modules of ma-tran (x7).2 The se
ond use statement gets the module de�ning the QR de
ompositionand its 
onstru
tor.The variables A, b, x, and r have 
hanged to the Rmats A, b, x, and r. A Rmat is ade�ned type that implements a matrix as a set of numbers stored in a re
tangular arrayin the usual way. We will have more to say about Rmats later. But note that matranmakes no distin
tion between matri
es and ve
tors. The are all represented by the samederived type|the Rmat.2In matran all modules are suÆxed with m.



4 MATRANsubroutine qrlsq(A, b, x, r, RSS)use MatranRealCore_muse RmatQR_mimpli
it nonetype(Rmat), intent(in) :: A, btype(Rmat), intent(out) :: x, rreal(wp), intent(out) :: RSStype(RmatQR) :: qra!Prote
t temporaries.
all GuardTemp(A); 
all GuardTemp(b)! Get the QR de
omposition of A.
all QR(qra, A)! Solve the least squares problem.x = qra%R.xiy.(qra%Q.xhy.b)r = b - A*xRSS = NormF(r)**2! Clean up.
all Clean(qra)
all CleanTemp(A); 
all CleanTemp(b)end subroutine qrlsqFigure 1.1: QR least squares�The residual sum of squares is returned via the paramenter RSS. It is de
lared to bea real s
alar of kind wp. The parameter wp (for Working Pre
ision) is de�ned at 
ompile



MATRAN 5time in the module MatranUtil_m.Let begin with the 
omputational heart of the algorithm. The statement
all QR(qra, A)
omputes the QR de
omposition of A. In matran this de
omposition has the formtype RmatQRtype(Rmat) :: Qtype(Rmat) :: Rlogi
al :: 
ompanionend type RmatQRThe �rst two 
omponents are Rmats 
ontaining the Q- and R-fa
tors of A [
f. (1.1)℄. Thethird 
omponent will be dis
ussed later (x6.1).The 
omputation in the statementx = qra%R.xiy.(qra%Q.xhy.b)
onsists of two parts. The �rst part, qra%Q.xhy.b 
omputes t = QTb. The operator.xhy. is to be read, \x 
onjugate transpose y," and it means just what it says: the
onjugate transpose of the �rst operand multiplies the se
ond operand. This, of 
ourse,is the same as multiplying by the transpose. But matran prefers to spe
ify the 
onju-gate transpose for both real and 
omplex matri
es to aid in generalizing programs fromreal to 
omplex arithmeti
. (The pra
ti
e is similar to the use of the supers
ript `�' todenote the adjoint of a matrix or operator, whatever the underlying �eld.)The se
ond part 
omputes R�1t. The operation .xiy. reads \x inverse y." But the\inverse" is there only for brevity, and in fa
t it is never 
omputed. Instead matransolves the system Rx = t. Matran is smart enough to re
ognize that R is uppertriangular and use the appropriate algorithm.The 
omputation ofr = b - A*xuses the overloaded operators - and * and is straightforward. However, you 
an getunexpe
ted results if you 
ombine de�ned operators with overloaded operators be
ausethe latter bind more tightly than the former. For example, the expression a + B.xhy.

omputes (a + B)T
, not a + BT
 as expe
ted. To get the latter you must write a +(B.xhy.
). In matran the wat
hword is: When in doubt, parenthesize.33There is another reason for being 
areful with parentheses. Suppose A B and C are respe
tively n x 1,1 x n and n x n Rmats, and we wish to 
ompute A*B*C. For de�ned or overloaded operators, Fortran 95evaluates left to right| i.e., (A*B)*C, an expression whi
h requires O(n3) 
oating-point operations to
ompute. On the other hand, the expression A*(B*C) requires only O(n2) operations. Thus, in this
ase, the expression A*B*C should be parenthesized in the form A*(B*C).



6 MATRANAnother sour
e of 
onfusion arises from the fa
t that Fortran makes no distin
tionbetween upper and lower 
ase letters. Thus we 
ould have just as well writtenR = B - a*XThis 
an easily lead to programming errors in matrix 
omputations, where 
apital lettersfrequently denote matri
es and small letters denote ve
tors. For example, 
onsiderwriting 
ode based on a paper in whi
h u represent a 
olumn of a matrix U .Finally, the residual sum of squares is 
omputed as the square of the Frobeniusnorm of r. The fun
tion NormF is one of a suite of generi
 fu
tions that 
ompute matrixnorms.Matran automati
ally takes 
are of �nding storage to hold the results of its 
ompu-tations. Unfortunately, the user must help with deallo
ation. This is be
ause matranuses pointer arrays, whi
h are not deallo
ated automati
ally, to hold its matri
es.4 Therules for deallo
ation this are simple. The �rst rule isBefore returning from a subprogram use the Clean subroutine to deallo
atethe storage of all lo
ally de�ned matrix obje
ts and de
ompositions. (1.2)For example, the statement
all Clean(qra)in our sample program deallo
ates storage for the Rmats qra%Q and qra%R.The se
ond rule addresses a more subtle problem. Consider on
e again the state-ment r = b - A*xThe �rst thing that must be 
omputed is the quantity A*x, whi
h in matran is a Rmat.This temporary Rmat|
all it t|is no longer needed after it is used to 
ompute b - t,and matran silently deallo
ates it. Likewise another temporary Rmat is needed to holdb - t before it is 
opied to r. On
e again, matran silently allo
ates and deallo
atesthe temporary.The problem 
omes when you invoke a subprogram with a temporary for an a
tualargument. For example, one might 
all qrlsq as follows.
all qrlsq(A, 
-d, x, r)4The reason is that stri
t Fortran 95 does not allow allo
atable arrays appear in de�ned types.There is an extension of Fortran 95, guaranteed to be in the Fortran 200x standard, that allows su
h
onstru
tions; but it is not everywhere implemented. In the future matran will use allo
atable arrays,and the extension will be ba
kward 
ompatible with 
ode written in a

ordan
e with the 
onventionsof the present version.



MATRAN 7In this 
ase 
-d will be a temporary Rmat|but one that has 
ut free from matran,whi
h therefore 
annot deallo
ate it. The 
ure is 
ontained in the following rule.Just after entering a subprogram 
all GuardTemp with ea
h dummy matrixobje
t of the subprogram having the intent in. Just before leaving, 
allCleanTemp with ea
h of the same dummy arguments. (1.3)Thus in qrlsq we have the statements
all GuardTemp(A); 
all GuardTemp(b)at the beginning and the statements
all CleanTemp(A); 
all CleanTemp(b)at the end.Matran routines are not the only ones that generate temporary variables. When-ever a user de�ned fun
tion returns a matran matrix type, the returned value must beregarded as temporary, sin
e it 
an only o

ur in an expression or as an a
tual param-eter in an argument list. The subroutine SetTemp de
lares a matrix to be a temporary.If a fun
tion returns a matrix obje
t M, then exe
ute
all SetTemp(M)before returning. (1.4)Although these rules may seem involved, they generate very little 
ode. Moreover,the 
alls to GuardTemp o

ur only at the beginning of the routine in question. If theroutine is 
oded to have only one point of return (presumably at the end), the 
alls toClearTemp and SetTemp o

ur only at that point.Finally, as we have noted above, matran uses pointer arrays to store matri
es.Eventually, when the Fortran world is suÆ
iently settled, the pointer arrays will berepla
ed by allo
atable arrays, whi
h will obviate the need for the 
onvention (1.2){(1.4). However, to be 
onsistent with the 
hange to allo
atable arrays, you should notdo things with the pointer array of a matrix obje
t that 
annot be done with allo
atablearrays. In parti
ular, you should observe the following stri
tures.Neither 
hange the asso
iation of nor assign a pointer to the array in amatrix obje
t. (1.5)You may, however, allo
ate and deallo
ate the pointer arrays of a matrix obje
t. Justmake sure you know what you are doing.Owing to bug in Sun WorkShop 6 update 2 Fortran 95 6.2 2001/05/15, additionalinitialization has to be done on the result of a fun
tion. See x9



8 MATRAN2. The module MatranUtil mThe module MatranUtil_m is the root matran module. It 
ontains a parameter forde�ning the pre
ision of real types, error handlers, and pro
edures for reshaping rawarrays.MatranUtil de�nes the parameter wp by#ifdef snglinteger, parameter :: wp = kind(1.0e0)#endif#ifdef dblinteger, parameter :: wp = kind(1.0d0)#endifThus the spe
i�
ationreal(wp) :: <variable list>de
lares the variables in the list to be of the pre
ision sele
ted for this version of Matran.The default is double pre
ision. The sele
tion is done by de�ning one of the Fortranprepro
essor parameters sngl or dbl, whi
h 
an be done at 
ompilation time in the
ommand line. (A
tually, if you do nothing, you get double pre
ision.)The general error handler for matran issubroutine MatranError(ErrorMessage)where
hara
ter(*), intent(in) :: ErrorMessageThe subroutine prints the error message and stops.As we have mentioned, matran uses lapa
k and the blas to perform most ofits 
al
ulations. The former returns error indi
ations via a standard parameter info.In 
ase of su
h an error, matran uses the following error handler.\begin{frag}subroutine SupportError(ErrorMessage, infonum)\end{frag}where
hara
ter(*), intent(in) :: ErrorMessageinteger, intent(in) :: infonumThe subroutine prints the error message followed by



MATRAN 9subroutine ReshapeAryD2(Ary, m, n)real(wp), pointer :: Ary(:,:)integer, intent(in) :: m, ninteger :: shp(2)if (asso
iated(Ary)) thenshp = shape(Ary)if (m>shp(1) .or. n>shp(2)) thendeallo
ate(Ary)allo
ate(Ary(m, n))end ifelseallo
ate(Ary(m, n))end ifAry = 0.0end subroutine ReshapeAryD2Figure 2.1: An in
arnation of ReshapeAry�<infonum>and stops. (However, this pro
edure 
an be overridden. See x6.1.)In managing storage, matran always attempts to �t things into existing arrays.Only if the array is too small is it reallo
ated. The allo
ation is managed by a generi
subroutine ReshapeAry. Its fun
tion is best illustrated by an example. Figure 2.1 givesan in
arnation of this subroutine that reshapes a re
tangular double pre
ision array.The arguments m and n spe
ify the minimal extents of the array. If the array is largeenough, the subroutine does nothing, ex
ept set the array to zero. If not it deallo
atesthe array, if ne
essary, allo
ates it to have shape (m,n), and sets it to zero. The moduleMatranUtil_m provides subroutines to reshape linear and re
tangular arrays of typeinteger, double pre
ision, and double 
omplex.3. The types Rmat and RdiagIn this se
tion we will 
onsider the two matrix types 
urrently implemented inmatran:the Rmat and the Rdiag. It is important to keep in mind that a matran matrix type isreally a storage type. In parti
ular, the type Rmat implements double pre
ision 
oating-point matri
es that 
an be represented in natural order in a re
tangular array. In



10 MATRANtype Rmatreal(wp), pointer & ! The matrix array:: a(:,:) => null() !integer :: nrow = 0 ! Number of rows in the matrixinteger :: n
ol = 0 ! Number of 
olumns in the matrixinteger :: narow = 0 ! Number of rows in the arrayinteger :: na
ol = 0 ! Number of 
olumns in the array
hara
ter(2) & ! Type of matrix:: tag = 'GE' !logi
al :: adjustable =.true. ! Adjustable arrayinteger, pointer ! Intermediate value:: temporary => null() !end type Rmat Figure 3.1: The type Rmat�prin
iple, this means any double pre
ision matrix; but if we add the requirement thatthe representation use storage eÆ
iently, the set of 
andidates for a Rmat shrinks. Forexample, a diagonal matrix 
ould be written as a Rmat. But that would be an ineÆ
ientuse of storage, sin
e a diagonal matrix of order n has at most n nonzero elements,all lying on its diagonal. Therefore, matran provides a type Rdiag whi
h stores thenonzero elements in a linear array.3.1. The type RmatThe type Rmat in Figure 3.1 is de�ned in the module Rmat_m. Let us look at the
omponents in order.� a(:,:). This is the array 
ontaining the matrix. It 
an be allo
ated and deallo
ated,so that over time the array of a Rmat 
an vary in size.The reason for using a single letter a for the array of a Rmat is that the elementsof the matrix are referen
ed through the array. If X is a Rmat, then X%a(i,j) is the(i,j)-element of the 
orresponding matrix. This is easier to read in a program than alengthier alternative like X%Array(i,j).The array a of a Rmat is always re
tangular. This means, as we have noted earlier,that matran has no ve
tor types as su
h. Instead, an n�1 matrix represents a 
olumnve
tor and an 1�n matrix represents a row ve
tor.The initial status of a is unasso
iated. An important 
onvention of matran is thefollowing.



MATRAN 11If the array of a Rmat A is asso
iated, then A is a well-formed Rmat; i.e.,a has the dimensions narow and na
ol and 0 � nrow � narow and 0 �n
ol � na
ol. (3.1)� nrow, n
ol, narow, na
ol. The 
onvention (3.1) shows that matran makes adistin
tion between a matrix and the array that 
ontains it. The dimensions of thelatter 
an be greater than the former. Thus a Rmat must have two pairs of dimensions,one for the matrix and one for the array that 
ontains it. The matrix of a Rmat is alwaysin the northwest 
orner of the 
orresponding array, and all entries of the array outsidethe matrix are zero.It is permissible for nrow or n
ol (or both) to be zero. Su
h a matrix is 
alled anull matrix . Null matri
es are espe
ially useful in starting o� matri
es that expand asan algorithm progresses.� tag. We have already mentioned that Rmats 
an represent di�erent kinds of 
om-monly used matri
es. The tag 
omponent spe
i�es the kind of matrix, as shown in thefollowing table. Matrix type TagGeneral GEUpper triangular UTLower triangular LTSymmetri
 SYSymmetri
 positive (semi) de�nite SPThe tag of a Rmat tells programs that manipulate the Rmat that there is spe
ial stru
turepresent. For example, if the tag of A is UT, the routine in the Solve suite that 
omputesA�1B uses a spe
ial blas algorithm to 
ompute its result.The tags UT and LT apply to re
tangular matri
es as well as square ones. In ma-tran, a matrix A, regardless of its dimensions, is upper triangular ifi > j =) aij = 0and is lower triangular if i < j =) aij = 0:Re
tangular triangular matri
es are sometimes 
alled trapezoidal in the literature.Matri
es with the tag SP are usually generated in a way that mathemati
ally guar-antees that they are positive de�nite, or at least positive semide�nite (e.g., as withthe 
ross-produ
t ATA). However, it should be kept in mind that rounding error may
ause the matrix to not be de�nite. In su
h 
ases the 
onstru
tor for the Choleskyde
omposition will fail See x6.3).



12 MATRANMatran does not support pa
ked versions of the matri
es in the table above. Thusan upper triangular matrix is represented in a re
tangular array zeros and all. So thateveryone is sure what is in the array of a Rmat, we adopt the following 
onvention.A matri
es is fully represented in the array of its Rmat. Elements of the arrayoutside the matrix are zero.Thus, in a symmetri
 Rmat both the upper and lower part of the matrix are present.5� adjustable. This 
omponent addresses the following problem. It may sometimeshappen that a result to be stored in a Rmat is larger than the array of the Rmat. If theRmat is adjustable, then matran is permitted to reallo
ate the array to 
ontain theresult. We will return to this point at the end of this se
tion.� temporary. This 
omponent is used in 
onjun
tion with SetTemp, GuardTemp, andCleanTemp to deallo
ate temporary Rmats. If temporary is null(), the Rmat is nottemporary. If temporary is one or greater the Rmat is temporary. As long as you followthe 
onventions (1.3) and (1.4), your temporary arrays will be deallo
ated at the propertime. Note that temporary should be manipulated only by SetTemp, GuardTemp, andCleanTemp.6 |Asmentioned above, he module Rmat_m de�nes the three generi
 subroutines SetTemp,GuardTemp, and CleanTemp used to deallo
ate temporaries. It also de�nes a sanitizerClean that restores a Rmat to its pristine 
ondition.The module Rmat_m overloads the assignment operator for Rmats in four ways.Rmat A = Rmat BThe statement A = B 
opies B to A. It is not quite an exa
t 
opy: A%temporaryand A%adjustable are un
hanged whatever the values of the 
orresponding
omponents of B. Moreover, the shape of A%a may be di�erent from B%a, aswe will see in a moment.5All this is 
onsistent with the fa
t that matran segregates matri
es by storage type. A pa
kedsymmetri
 matrix, for an example, would be a new storage type and would have to have its own de�nedtype.6For those who want the full story, here it is. The real problem with temporaries is knowing whento deallo
ate them. If, for example, a subprogram with a temporary argument passes it on to anothersubprogram, the se
ond subprogram should not deallo
ate it, sin
e the invoking program may needto use it on return. To avoid premature deallo
ation, GuardTemp simply in
reases temporary by one,provided it is nonnull. CleanTemp de
reases temporary by one provided it is greater than one, but itdoes not deallo
ate the array a unless temporary is one after de
rementation. You 
an easily 
onvin
eyourself that if the 
onvention (1.3) is followed religiously then only the �rst subprogram invoked withthe temporary Rmat will deallo
ate its storage.



MATRAN 13Rmat A = Array B(:,:)The statement A = B 
auses A to be a Rmat whose matrix is the 
ontents ofB. A%tag is set to GE, The 
omponents A%temporary A%adjustable remainun
hanged.Rmat A = integer ve
(:)If ve
 = (/m,n/), then A be
omes an m x n zero matrix an an array whosesize is determined as des
ribed below. If ve
 = (/m,n, ma,na/), then Abe
omes an m x n zero matrix 
ontained in an ma x na array. The 
omponentadjustable remains un
hanged, but the array will be adjusted, whetheror not the Rmat A is adjustable. The array A%a is set to zero. The arrayA%temporary is un
hanged.Rmat A = real(wp) sThe statement A = s produ
es a 1 x 1 Rmat whose single element is s.Three of these overloaded assignments have operator forms, generi
ally written .dm.,for use in expressions..dm.aryProdu
es a Rmat C de�ned by C = ary, where ary is a re
tangular array..dm.ve
Produ
es a Rmat C de�ned by C = ve
, where ve
=(/m,n/) orve
=(/m,n, ma,na/)..dm.sProdu
es a Rmat C de�ned by C = s, where s is of type real(wp).The Rmats 
reated by Rmat A = ve
 and .dm.ve
 are initialized to zero. Hen
ematran does not provide spe
ial routines to 
onstru
t zero matri
es.It is now time to be more pre
ise about how matran treats arrays. When matranmust transfer an m x n matrix to a Rmat A, it always tries to use the spa
e available inA%a. If A%a 
an 
ontain the matrix matran uses A%a as is. If A%a is too small andA is adjustable, matran reallo
ates A%a to be m x n. Otherwise, matran gives anerror return. A good way of summing this up is to say: Left to itself matran mayin
rease the size of a Rmat array, but it will not de
rease it. The only ex
eptions are thesubroutine Clean, whi
h deallo
ates the array, and the assignment Rmat = ve
 whi
h
hanges the array shape a

ording to the 
ontents of ve
.The above re
ipe for adjusting arrays is implemented by the generi
 subroutinesubroutine ReshapeAry(A, n, m)Here m and n are the row and 
olumn dimensions of the matrix to be pla
ed in A. The�nal array is always set to zero. We have already seen an example of this subroutine in



14 MATRANinterfa
e assignment (=)module pro
edure RmEqualsRm, RmEqualsAry, RmEqualsRowColend interfa
e...
ontains...subroutine RmEqualsRm(A, B)type(Rmat), intent(inout) :: Atype(Rmat), intent(in) :: B
all GuardTemp(B)
all ReshapeAry(A, B%nrow, B%n
ol)A%a = 0A%a(1:A%nrow, 1:A%n
ol) = B%a(1:B%nrow,1:B%n
ol)A%tag = B%tag
all CleanTemp(B)end subroutine RmEqualsRm... Figure 3.2: Implementation of Rmat = Rmat�Figure 2.1, where the 
on
ern was with reshaping a raw array, rather than the array ofa matrix type.We 
on
lude this subse
tion with the implementation in Figure 3.2 of the assignmentRmat = Rmat, whi
h illustrates some of the points above. Many of the subprogramsimplementing matran are as simple as this. When in doubt about what matrandoes in a parti
ular situation, try looking at the 
ode.3.2. The type RdiagThe type Rdiag implements a diagonal matrix. It is de�ned in the module Rdiag_mby



MATRAN 15type Rdiagreal(wp), pointer & ! The matrix array:: a(:) => null()integer :: order = 0 ! The order of the matrixinteger :: na = 0 ! The length of the arraylogi
al :: adjustable = .true. ! Adjustable arrayinteger, pointer& ! Intermediate value:: temporary => null()end type RdiagThe 
omponents of Rdiag are analogous to those of Rmat.� a(:). Sin
e a diagonal matrix is nonzero only on its prin
ipal diagonal, it 
an berepresented by a linear array, whi
h in a Rdiag, as with a Rmat, is 
alled a.� order, na. The order of the diagonal matrix represented by a Rdiag 
an be lessthan the size na of the array 
ontaining its diagonal.� adjustable, temporary. These 
omponents serve the same fun
tions as they do ina Rmat. |The module Rdiag_m de�nes the usual generi
 subroutines SetTemp, GuardTemp,and CleanTemp for dealing with temporaries. It also de�nes ReshapeAry, whose 
allingsequen
e is
all ReshapeAry(Rdiag, n)to reallo
ate the array a, if ne
essary. As with a Rmat, Clean(D) restores the Rdiag Dto its default state.Rdiag_m also overloads the assignment operator. The implementing fun
tions alluse ReshapeAry to get storage. The 
omponents temporary and adjustable are un-
hanged.Rdiag D = Rdiag EThe statement D = E 
opies E to D.Rdiag D = Array E()The statement D = E 
auses D to be a Rmat, whose diagonal is the 
ontentsof E. The 
omponent adjustable remains un
hanged.Rdiag D = ve
If ve
 = (/n/), then D is a zero Rdiag of order n in an array obtained byreshaping D%a. If ve
 = (/n, na/) then D is a zero Rdiag of order n in anarray of length na. Note that the array will be adjusted regardless of thestatus of the 
omponent adjustable, whi
h remains un
hanged.



16 MATRANRdiag D = real(wp) sThe statement D = x produ
es a Rdiag of order one whose single diagonalelement is s.Rmat A = Rdiag DA is the Rmat 
orresponding to D.Note that there is no operator 
orresponding to Rdiag D = Rmat A to extra
t thediagonal of a Rmat. See the RmatDiag suite.The Rdiag suite also has 
onversion operators..dd.aryProdu
es a Rdiag D de�ned by D = ary, where ary is a linear array..dd.ve
Produ
es a Rdiag D de�ned by D = ve
, where ve
 = (/order/) orve
 = (/order, na/)..dd.sProdu
es a Rdiag D de�ned by D = s, where s is of type real(wp)..dm.DProdu
es a Rmat A de�ned by A = D, where D is a Rdiag.4. Matrix OperationsIn this se
tion we introdu
e the basi
 matrix operations supported by matran. Other,less basi
 operations are gathered together in a loose grab bag 
alled matrix mis
ellany.4.1. GeneralitiesMatrix operations in matran are divided into suites of related generi
 subroutines andoperators. Here is a list of the operator suites des
ribed in this se
tion.Transpose AH, ATSum A+B, A�B, �AProdu
t �A, AB, ATB, . . .Solve A�1B, AB�1, A�TB, . . .Join (A B), �AB�Border A = (A B), A = (B A), . . .Submatrix A(i1:i2; j1:j2), A(:; j), . . .Ea
h suite is implemented by a sequen
e of modules 
orresponding to the derivedmatrix types in the wrapper. The types are arranged in a hierar
hy, and ea
h module



MATRAN 17is responsible for providing operations for both its type and for types lower in thehierar
hy.For example, suppose matran has three types, Rmat, Rdiag, and Cmat, arrangedhierar
hi
ally in that order. Then the module RmatSum_m is responsible for all sumoperations between Rmats. The module RdiagSum_m is responsible for all sum operationsbetween Rdiags and Rdiags and Rmats. CmatSum_m is responsible for all sums betweenCmats and Cmats, Rdiags, and Rmats.In addition the type that is higher in the hierar
hy has the responsibility for imple-menting mixed assignment operators involving itself and types lower in the hierar
hy.That is why the assignment Rmat = Rdiag is implemented in Rdiag_m instead of Rmat_m.This system has the advantage of 
learly delineating who is responsible for what, sothat it is 
on
eptually easy to add new types to the wrapper. However, the 
ode neededto implement a new type grows at least quadrati
ally with the number of types. For-tunately, it may not be ne
essary to implement all possible 
ombinations of operations.For example, if someone de
ides to introdu
e a type Dband for band matri
es, it maybe de
ided that while we need a produ
t between Dbands and Rmats, we do not need aprodu
t between Dbands and Dbands.Ex
ept for the Border suite, matrix operations are implemented in two forms: as anoperator (or fun
tion) and as a subroutine. For example, the * operator is overloadedso that the expressionC = A*B (4.1)results in a Rmat C 
ontaining the produ
t of the matri
es A and B. This is the formone would ordinarily use. However, it has some hidden storage allo
ation in the formof a temporary Rmat to hold the produ
t A*B before it is assigned to C.Temporary obje
ts are a potential sour
e of ineÆ
ien
y, sin
e in a loop they arerepeatedly allo
ated and deallo
ated. For programs involving large matri
es this willnot usually be a problem; the arithmeti
 
al
ulations will tend to dominate. For smallmatri
es, however, 
alls to the allo
ator may slow things down. To address this problemmatran shadows ea
h operation with a subroutine that performs the operation andpla
es the result in a Rmat of your 
hoosing. Suppose, for example, we have a loop ofthe formdo i=1, maxi...r = b - A*x...end doIf we make the de
larationtype(Rmat) :: temp



18 MATRANOperation Operator SubroutineC = AH C = .
tp.A 
all Ctp(C, A)C = AT C = .trp.A 
all Trp(C, A)� These operations are not available for RdiagsFigure 4.1: The Transpose Suite�then we 
an writedo i=1,maxi...
all Times(temp, A, x)
all Minus(r, b, temp)...end doThis does not get rid of the need for the temporary temp to hold the intermediate valueA*x, but temp's storage is reused rather than being allo
ated and deallo
ated with ea
hiteration of the loop.It is re
ommended that one initially use operators to write and debug programs,after whi
h they 
an be �ne tuned by using the subroutine forms where ne
essary.4.2. The Transpose suiteThe Transpose suite has two operations: the 
onjugate transpose and the transpose,as given in Figure 4.1. The format of the table is the desired matrix operation, theoperator version, and the subroutine version.We have already observed that de�ned binary operators bind so loosely that it maybe ne
essary to use parentheses to make an expression parse 
orre
tly. The operators inthis suite are unary operators. By Fortran 95 
onvention they have pre
eden
e over allother operators. Thus A + .
pt.B does not have to be re
ast in the form A + (.
tp.B)to work as expe
ted.It is important to note that for real matri
es the transpose and the 
onjugate trans-pose are the same. It is strongly re
ommended that the 
onjugate transpose be usedin working with real matri
es. In the overwhelming majority of 
ases, when a programdealing with real matri
es is rewritten for 
omplex matri
es, the 
onjugate transpose iswhat you want. The transpose operator should be used ex
lusive with 
omplex matri
es.This 
onvention a�e
ts the nomen
lature of some of matran's operations. Forexample, for real matri
es the operator that 
omputes ATB is .xhy., not .xty. asmight be expe
ted. See the Produ
t and Solve suites.



MATRAN 19Operation Operator SubroutineC = A+B C = A + B 
all Plus(C, A, B)C = A�B C = A - B 
all Minus(C, A, B)C = �A C = -A 
all Minus(C, A)� These operations are de�ned for any 
ombination of Rmats and Rdiags.Figure 4.2: The Sum suite�4.3. The Sum suiteThe Sum suite overloads the operators + and - to provide the sum and di�eren
e of twomatrix obje
ts. In addition the suite implements the unary minus. Figure 4.2 showsthe usage.The operations set the tags of the results appropriately. For example if A and B are
agged UT, so is C. The other suites do the same.4.4. The Produ
t suiteThe produ
t suite implements produ
ts of matri
es and their transposes, as shown inFigure 4.3All the operations in the suite involving transposes 
ould be implemented using theoperator * and .
tp. operator from the Transpose suite. For example, to 
omputeC = AHB one 
ould writeC = .
tp.A*Bwhere .
tp. is the matran unary operator that 
omputes the 
onjugate transpose(the same as the transpose for real matri
es). However, one 
an also writeC = A.xhy.Bwhere by 
onvention xhy is shorthand for XHY . The se
ond form is superior to the�rst, sin
e the se
ond 
alls a blas subroutine that 
al
ulates AHB dire
tly from A andB without forming the transpose.The Rmats produ
ed by .xhx. and .xxh. are tagged SP. Mathemati
ally, these ma-tri
es have to be at least semide�nite; however, rounding error may 
ause the 
omputedmatri
es to be inde�nite.Ordinarily, the operands in a produ
t must be 
onformable for matrix multipli
a-tion|that is, the number of 
olumns of the �rst operand must be the same as thenumber rows of the se
ond. However, if one of the operands represents a 1�1 matrix,



20 MATRANOperation Operator SubroutineC = sA C = s*A 
all Times(C, s, A)C = As C = A*s 
all Times(C, s, A)C = AB C = A*B 
all Times(C, A, B)C = AHB C = A.xhy.B 
all TimesXhy(C, A, B)C = ABH C = A.xyh.B 
all TimesXyh(C, A, B)C = AHA C = .xhx.A 
all TimesXhx(C, A)C = AAH C = .xxh.A 
all TimesXxh(C, A)� In the above s is a s
alar.� The operations s*A, A*s, and A*B are de�ned for any 
ombinations ofRmats and Rdiags.� The operations A.xhy.B, A.xyh.B, .xhx.A, and .xxh.A are de�ned forRmats only. Figure 4.3: The Produ
t suite�whi
h is essentially a s
alar, this requirement is dropped. A 
ommon example of this isthe statementxp = x - (q.xhy.x)*qwhi
h orthogonalizes the ve
tor x against the ve
tor q of 2-norm one.74.5. The Solve suiteThe Solve suite 
ontains operations to 
ompute the produ
t of a matrix and its inverse.It is 
alled the Solve suite, be
ause a prin
ipal appli
ation is to solve linear systemslike Ax = b, whose solution 
an be written in the form x = A�1b. The routines do not
ompute an inverse and multiply; instead, if ne
essary, they 
omputed a de
ompositionof the matrix in question and use it to solve systems of equations to get the answer.The operations are shown in Figure 4.4. These operations interrogate the tag �eldof the Rmat whose inverse appears in the �rst 
olumn. If the matrix is triangular, itsolves the system dire
tly using an appropriate blas. If not, it 
omputes a pivotedLU de
omposition (tag = GE, SY) or a Cholesky fa
tor (tag = SP) and uses that toperform the operation.7At least mathemati
ally. Numeri
ally, xp and x may be far from orthogonal. A way out of thispredi
ament is given by the subroutine gsro in x8.



MATRAN 21Operation Operator SubroutineC = A=s C = A/s 
all Solve(C, A, s)C = A�1B C = A.xiy.B 
all SolveXiy(C, A, B)C = A�HB C = A.xihy.B 
all SolveXihy(C, A, B)C = AB�1 C = A.xyi.B 
all SolveXyi(C, A, B)C = AB�H C = A.xyih.B 
all SolveXyih(C, A, B)� Ex
ept as noted below, these operations are de�ned for Rmats and Rdiags.� The operations A.xihy.B and A.xyih.B are de�ned only for Rmats.� The operation A.xiy.B is not de�ned for A a Rmat and B a Rdiag. Usethe Inverse suite.� The operation A.xyi.B is not de�ned for A a Rdiag and B a Rmat. Usethe Inverse suite. Figure 4.4: The Solve suite�In many appli
ations, systems involving the same matrix must be solved repeatedly.For matri
es of tag GE, SY, or SP, this means re
omputing a fa
torization of the samematrix for ea
h solve operation. To avoid this expense, the solve subroutines have twoadditional optional arguments LU and Chold. To see how this is used, 
onsider thefollowing 
odedo 
all SolveXiy(y, A, x, LU=lua)...<modify x>...end doAt ea
h 
all, SolveXiy determines if LU 
ontains a pivoted LU de
omposition by 
he
k-ing its 
ompanion 
omponent. If it does does not, then SolveXiy initializes LU to anLU de
omposition of A. Otherwise, SolveXiy assumes that the LU de
omposition isasso
iated of A. In either 
ase, it uses the LU de
omposition to 
ompute A�1x. It isthe responsibility of the user to maintain the integrity of the relation between A andLU. The programmer 
an announ
e that the relation has been broken by setting (in theabove example)lua%
ompanion = .false.in whi
h 
ase SolveXiy will 
ompute a new fa
torization.



22 MATRANOperation Operator SubroutineC = (A B) C = A.jwe.B 
all JoinWE(C, A, B)C = �AB� C = A.jns.B 
all JoinNS(C, A, B)� These operations are de�ned for any 
ombinations of Rmats and Rdiags.Figure 4.5: The Join suite�4.6. The Join suitGiven two matri
es A and B we 
an join them in two ways. First, if A and B have thesame number of rows, we 
an form the matrixC = (A B):We say that A and B have been joined from west to east. Se
ond, if the two matri
eshave the same number of 
olumns we 
an form the matrixC = �AB� :We say that the matri
es have been joined north to south.Matran's Join suite provides these operation, as shown in Figure 4.5.4.7. The Border suitMany matrix algorithms expand a matrix by bordering it with other matri
es. Forexample, we might repla
e A with �A BC D� :This bordering 
an be implemented using the Join suite by the following fragment.A = A.jwe.BT = C.jwe.DA = A.jns.T (4.2)However, this 
ode is awkward and requires four temporaries| three impli
it tempo-raries for the assignments and the expli
it temporary T. Matran allows you to a

om-plish this by a single 
all to a subroutine:



MATRAN 23Operation Subroutine ResultBorder southeast BorderSE(A, S, E, SE) [A, E; S, SE℄Border northeast BorderSE(A, N, E, NE) [N, NE; A, E℄Border northwest BorderNW(A, N, W, NW) [NW, N; W, A℄Border southwest BorderNW(A, S, W, SW) [W, A; SW, S℄Border north BorderN(A, N) [N; A℄Border south BorderS(A, S) [A; S℄Border east BorderE(A, E) [A, E℄Border west BorderW(A, W) [W, A℄� The result is expressed in matlab notation.� All arguments to a Border subroutine must be of the type Rmat.Figure 4.6: The Border suite�
all BorderSE(A, C, B, D)Sin
e there are many ways of bordering, let us introdu
e some 
onventions. In theabove example, we say that A is border on the southeast. Obviously, we 
an also borderon the southwest, the northeast, and the northwest. Moreover, we 
an border A by asingle matrix to the north, south, east and west. Figure 4.6 des
ribes the subroutinesthat a

omplish the bordering.Arguments in the border subroutines must have dimensions for whi
h the operationmake sense. For example in BorderE(A, E) both A and E must have the same numberof rows.The subroutines of the Border suite are generi
 and 
ould potentially mix matrixtypes. However, the number of arguments to the border subroutines is so great thatwe would have an explosion of implementing subroutines. For example if we allowarbitrary 
ombinations of Rmats and Rdiags, the suite would have 264 subroutines. Forthis reason, matran allows only matri
es of a single type in the arguments of a bordersubroutine|and at present that is only the type Rmat. One 
ure for the problem ofmixed types is to 
onvert every argument of the fun
tion to the the type of the naturalresult before 
alling the subroutine. Another is to use the Join suite, whi
h does allowmixed types. See (4.2). Fortunately, mixed types are rare in pra
ti
e.4.8. The Submatrix suiteThe �nal suite extra
ts submatri
es from a Rmat. Sin
e spe
ifying a submatrix requiresinformation beyond the Rmat in question, submatrix extra
tion 
annot be implemented



24 MATRANSubmatrix Fun
tion SubroutineC = A(i1:i2; j1:j2) C = Sbm(A, i1, i2, j1, j2) GetSbm(C, A, i1, i2, j1, j2)C = A(:; j1:j2) C = Col(A, j1, j2) GetCol(C, A, j1, j2)C = A(:; j) C = Col(A, j) GetCol(C, A, j)C = A(i1:i2; :) C = Row(A, i1, i2) GetRow(C, A, i1, i2)C = A(i; :) C = Row(A, i) GetRow(C, A, i)� These routines are de�ned only for Rmats.Figure 4.7: The Submatrix suite�as a de�ned operator. Instead, we give fun
tions and 
ompanion subroutines, as shownin Figure 4.7.The e�e
t of these fun
tions 
an also be attained by using the operator .dm. 
om-bined with Fortran 95's subarray expressions. For example Sbm(A, i1, i2, j1, j2)is equivalent to .dm.A%a(i1:i2, j1:j2). However, one must be 
areful with 
olons.The equivalent of Col(A; j) is .dm.A%a(1:A%nrow ,j), not .dm.A%a(:, j).5. Matrix mis
ellaniaThis se
tion des
ribes a mis
ellany of suites to perform various fun
tions. Right now itis rather small, but it will grow.5.1. The Diag suiteThe kth diagonal diag(A; k) of a matrix A is de�ned as the diagonal starting with a1;k+1if k � 0 and with a�k+1;1 if k < 0. Thus diag(A; 0) is the main diagonal of A; diag(A; 1)is the �rst superdiagonal; and diag(A;�1) is the �rst subdiagonal. The Diag suiteprovides a generi
 subroutine and fun
tion for extra
ting a diagonal.The subroutine has the formsubroutine GetDiag(D, A, k)wheretype(Rdiag), intent(inout) :: DOn return 
ontains the kth diagonal of A.type(Rmat), intent(in) :: AThe matrix whose diagonal is to be extra
ted.integer, optional, intent(in) :: kThe diagonal to be extra
ted. If not present, extra
t the main diagonal.



MATRAN 25The fun
tion has the formfun
tion Diag(A, k) result(D)wheretype(Rdiag) :: DA Rdiag 
ontaining on return the kth diagonal of A.type(Rmat), intent(in) :: AThe matrix whose diagonal is to be extra
ted.integer, optional, intent(in) :: kThe diagonal to be extra
ted. If not present, extra
t the main diagonal.5.2. The Eye suiteThe module RmatEye_m generates identity matri
es|or rather zero matri
es with oneson their prin
ipal diagonals. As usual, it de�nes both a generi
 subroutine and anasso
iated fun
tion. The subroutine has the 
alling sequen
e
all Eye(A, m, n)wheretype(Rmat), intent(inout) :: AOn return A is a Rmat with ones on its prin
ipal diagonal and zeros elsewhere.integer :: minteger, optional :: nIf n is not present A is m x,m.If n is present A is m x n.The fun
tional form isfun
tion Reye(m, n) result(A),wheretype(Rmat) :: AOn return I is a Rmat with ones on its diagonal and zeros elsewhere.integer :: minteger, optional :: nIf n is not present A is m x,m.If n is present A is m x n.



26 MATRAN5.3. The Inverse suiteThe inverse of a matrix is seldom needed: the Solve suite 
omputes matri
es like A�1Bfaster and more stably than by inverting A and multiplying. But for the rare o

asionswhen an expli
it inverse is required, matran provides the Inverse suite. As usual ithas a subroutine and operator form.The subroutine has the formsubroutine Inv(C, A, luda, 
hola, info, mywork)wheretype(Rmat), intent(out) :: CThe inverse matrix.type(Rmat), intent(in) :: AThe matrix to be inverted.type(RmatLudpp), optional, intent(inout) :: ludaA pivoted LU de
omposition. If present and luda.
ompanion is true, the de-
omposition is used to 
ompute the inverse. If present and luda.
ompanionis false, the LU de
omposition is 
omputed and returned. If absen
e an LUde
omposition is silently 
omputed. Applies only to Rmats of tag GE.type(RmatChol), optional, intent(inout) :: 
holaA Cholesky de
omposition. If present and luda.
ompantion is true, the de-
omposition is used to 
ompute the inverse. If present and 
hola.
ompanionis false, the de
omposition is 
omputed and returned. If absen
e a Choleskyde
omposition is silently 
omputed. Applies only to Rmats of tag SP.integer, optional, intent(out) :: infoWhen a de
omposition is 
omputed to 
al
ulated the inverse, info, if present,
ontains on return the value of the info parameter from the lapa
k routinethat 
omputed the de
omposition. Applies only to Rmats of type GE, SY, andSP.real(wp), pointer :: mywork(:)For matri
es of type SY, the lapa
k routine DSYTRF requires an auxiliarywork array, whi
h is ordinarily allo
ated and deallo
ated by Inv. If myworkis present and 
ontains enough storage, it is used as the work array. If it ispresent but does not 
ontain enough storage, it is reallo
ated and used as thework array. This storage is not deallo
ated, so that mywork 
an be reusedwhen Inv is 
alled in a loop.The operator has the form.inv.Awhere A is a Rmat.



MATRAN 275.4. The Norm and Norm2 suitesThe Norm suite provides generi
 fun
tions to 
ompute the following three norms.1. The 1-norm: kAk1 = maxjPi jaij j2. The Frobenius norm: kAkF =qPij jaij j23. The 1-norm: kAk1 = maxiPj jaijjThe fun
tions have the following 
alling sequen
es.Norm1(A); NormF(A); NormInf(A)where A is a Rmat.The 2-norm of a matrix A is de�ned bykAk2 = maxkxkF=1 kAxkF.The Norm2 suite provides a generi
 fun
tionNorm2(A)to 
ompute the 2-norm of a Rmat. The reason that the 2-norm is segregated in a separatesuite is that its 
omputation requires the expensive solution of an eigenvalue problem.Think twi
e before using it!5.5. The Pivot suiteThe Pivot suite provides subroutines to apply inter
hanges to the rows or 
olumns of aRmat, thus e�e
ting a permutation of the rows or 
olumns. It also applies the inversepermutation. The permutation is spe
i�ed by an array pvt of length npvt. The e�e
tof pivoting and its inverse on an array x is given by the following fragments of pseudo-
ode. Pivoting Inverse pivotingdo i=1 to npvt do i=npvt,1,-1swap x(i) and x(pvt(i)) swap x(i) and x(pvt(i))end do end doThere are four generi
 fun
tions in the suite.



28 MATRANsubroutine PivotRow(A, pvt, npvt)subroutine PivotInvRow(A, pvt, npvt)subroutine PivotCol(A, pvt, npvt)subroutine PivotInvCol(A, pvt, npvt)wheretype(Rmat), intent(inout) :: AThe Rmat to be pivotedinteger, intent(in) :: pvt(:)The pivot arrayinteger, intent(in) :: npvtThe number of pivots.In the names of these subroutines, Row indi
ates that the rows of A are inter
hanged, Colthat the 
olumns of A are inter
hanged, and Inv that the inverse pivoting is performed.5.6. The Print suiteFortran 95 has the ability to print obje
ts in any 
on
eivable format, and it is expe
tedthat most programmers will wish to 
ustom 
ode their output. However, in debuggingmatran 
ode, it is 
onvenient to be able to print out Rmats and their arrays in astandard format. The Print suit provides a generi
 subroutine to do this.The subroutine to print a re
tangular array has the 
alling sequen
e
all Print(A, m, n, w, d, e, lw, nbl)wherereal(wp), intent(in) :: A(:,:)The array to be printed.integer, intent(in) :: mThe number of rows to print.integer, intent(in) :: nThe number of 
olumns to print.integer, intent(in) :: winteger, intent(in) :: d



MATRAN 29integer, optional, intent(in) :: eThis and the next two argument spe
ify the format by whi
h the elementsare to be printed. Spe
i�
ally, the elements are printed in 1pe<w>.<d>e<e>format. The exponent width �eld e is optional. Its default value is 3.integer, optional, intent(in) :: lwThe width in 
hara
ters of an output line. The default value is 80.logi
al, optional, intent(in) :: nblIf nbl (for no blank line) is present and true, it suppresses the printing of ablank line above the array.The subroutine to print a Rmat has the 
alling sequen
e.
all Print(A, w, d, note, e, lw)wheretype(Rmat), intent(in) :: AThe Rmat that is to be printed.integer, intent(in) :: winteger, intent(in) :: dinteger, optional, intent(in) :: eThis and the next two argument spe
ify the format by whi
h the elementsare to be printed. Spe
i�
ally, the elements are printed in 1pe<w>.<d>e<e>format. The exponent width �eld e is optional. Its default value is 3.
hara
ter(*), optional, intent(in) :: noteIf present the string note is printed along with the array.integer, optional, intent(in) :: lwThe width in 
hara
ters of an output line. The default value is 80.This print fun
tion also printsA%nrow, A%n
ol, A%narow, A%na
ol, A%tag, A%adjustable, A%temporary(A
tually, Print tells a little white lie. If pointer A%temporary is asso
iated it prints thevalue of its target; if not, it prints zero.) Here is some sample output generated by
all Print(A, 9, 1, 'This is the Rmat A')



30 MATRANThis is the Rmat A4 5 4 5 GE T 01 2 3 4 51 2.0E+000 3.0E+000 4.0E+000 5.0E+000 6.0E+0001 2 3 4 52 3.0E+000 4.0E+000 5.0E+000 6.0E+000 7.0E+0001 2 3 4 53 4.0E+000 5.0E+000 6.0E+000 7.0E+000 8.0E+0001 2 3 4 54 5.0E+000 6.0E+000 7.0E+000 8.0E+000 9.0E+0005.7. The Rand suiteMatran provides routines to generate uniformly or normally distributed random Rmats.There are two subroutine forms.
all RandX(A, m, n)where X is either U or N. If X = U the elements of the matrix are independently uniformlydistributed in [0; 1). If X = N the elements of the matrix are independently normallydistributed (0; 1).type(Rmat), intent(inout) :: AThe random Rmat generated by the subroutine.integer, intent(in) :: minteger, optional, intent(in) :: nIf m is not present, A is m x m. If m is present, A is m x n.The fun
tional forms areDrandX(m, n) result(A)where X is the suÆx U or N, as des
ribed above, andtype(Rmat), intent(inout) :: AThe random Rmat generated by the subroutine.integer, intent(in) :: minteger, optional, intent(in) :: nIf n is not present, A is m x m. If m is present, A is m x n.The uniformly distributed random variables are obtained using the Fortran 95 in-trinsi
 subroutine random_number, and the user is warned that the quality of the pseu-dorandom numbers so generated are implementation dependent. Normally distributed



MATRAN 31random numbers are 
omputed by an algorithm of Leva [ACM Trans. Math. Software,18 (1992) 454{455.℄To 
ontrol the seed for both uniform and normal random matri
es, use the intrinsi
subroutine random_seed.6. De
ompositions6.1. GeneralitiesA matrix de
omposition is a fa
torizations of a matrix into a produ
t of two or morematri
es. Matran provides a number of standard de
ompositions. The fa
tors ofea
h de
omposition are generated by a generi
 subroutine, whi
h puts the fa
tors in ade�ned type parti
ular to the de
omposition, whi
h we will 
all the 
ontainer of thede
omposition. Here is a list of the de
ompositions 
urrently provided by matran.De
omposition Container Constru
torLU with partial pivoting RmatLudpp LudppCholesky de
omposition RmatChol CholQR de
omposition RmatQR QRQR de
omposition with pivoting RmatQRP QRPSpe
tral de
omposition RmatSpe
 Spe
Singular value de
omposition RmatSVD SVDEigende
omposition RmatEig EigIn addition ea
h de
omposition has a generi
 sanitizer Clean to deallo
ate the storageof de
ompositions 
onstru
ted in subprograms.The standard 
alling sequen
e for the 
onstru
tors is
all <
onstru
tor>(<
ontainer>, <matrix>, <optional arguments>)In order to intera
t with the lapa
k drivers that 
ompute the de
ompositions, mostof the 
onstru
tors have optional arguments, in addition to the 
ontainer and matrix.They fall into two 
lasses.First, some of the drivers have a parameter 
alled info that returns informationabout the status of the 
omputation. If the status indi
ates an error, the 
onstru
tor
auses an error message to be printed and terminates the run. However, if the optionalparameter info is present in the 
alling sequen
e of the 
onstru
tor, the 
onstru
torsets it to the value of returned by the driver and returns, thus giving the 
alling programa 
han
e a
t on the error 
ag.Se
ond, many of the drivers require that the user furnish additional work arrays.Ordinarily, matran silently allo
ates and deallo
ates this storage. However, through



32 MATRANthe optional parameters the user 
an furnish the working storage expli
itly. This mayredu
e storage management time when the 
onstru
tor is 
alled inside a loop.The 
ontainers are all derived types|a di�erent one for ea
h de
omposition. Butthey all have a 
ommon 
omponent 
ompanion that is used to 
ontrol the reuse of ade
omposition. Spe
i�
ally, 
onsider the following loopdo
all Ludpp(lua, A)<
al
ulations involving lua>if (<
ondition>) then<modify A>endend doSuppose that the if statement is only pla
e in the loop where A is modi�ed. Then if<
ondition> is not true the 
all to Ludpp is redundant|expensively redundant. To
ure this problem we 
an 
ode as follows.doif (.not.lua%
ompanion)&
all Ludpp(lua, A)<
al
ulations involving lua>if (<
ondition>) then<modify A>lua%
ompanion = .false.endend doThus 
ompanion is a 
ag that tells the program that a de
omposition is asso
iated witha matrix of interest.In using 
ompanion, it is important to keep in mind that it does not in itself suppressthe 
omputation of the de
omposition. It has absolutely no e�e
t on Ludpp or any otherde
omposition 
onstru
tor. It is just a handy 
ag that enables the programmer to de
idewhether or not to 
ompute the de
omposition in question.The default value of 
ompanion is false. All de
omposition 
onstru
tors set 
ompanionequal to true.In the Solve suite we gave an example of the use of 
ompanion to for
e the re
om-putation of a de
omposition. The same treatment has been applied to our introdu
toryexample qrlsq in Figure 6.1. It is worth pondering a bit.6.2. The LU de
ompositionGiven an m�n matrix A, there is a permutation matrix P su
h thatPA = LU; (6.1)



MATRAN 33subroutine qrlsq(A, b, x, r, oldqra)use MatranRealCore_muse RmatQR_mimpli
it nonetype(Rmat), intent(in) :: A, btype(Rmat), intent(out) :: x, rtype(RmatQr), optional, intent(inout), target :: oldqra! Internal variables.type(RmatQR), target :: newqratype(RmatQR), pointer :: qra!Prote
t temporaries.
all GuardTemp(A); 
all GuardTemp(b)! Get the QR de
omposition of A.if (present(oldqra)) thenqra => oldqraif (.not.qra%
ompanion) 
all QR(qra, A)elseqra => newqra
all QR(qra, A)end if! Solve the least squares problem.x = qra%R.xiy.(qra%Q.xhy.b)r = b - A*x! Clean up.if (.not.present(oldqra)) 
all Clean(qra)
all CleanTemp(A); 
all CleanTemp(b)end subroutine qrlsqFigure 6.1: QR least squares�



34 MATRANwhere U is an upper triangular matrix and L is a lower triangular matrix with oneson its diagonal and with its subdiagonal elements not greater than one in magnitude.Matran represents su
h a de
omposition by the derived typetype RmatLudpptype(Rmat) :: L ! The L-fa
tortype(Rmat) :: U ! The U-fa
torinteger, pointer :: pvt(:) ! The pivot arryinteger :: npvt ! The number of pivots.logi
al :: 
ompanion ! True if the de
omposition is! that of a Rmat of interest.end type RmatLudppThe members L and U are Rmats with 
ags LT and UT respe
tively. The array pvten
odes the permutation P in (6.1) as a sequen
e of inter
hanges. Spe
i�
ally, theve
tor Px 
an be 
omputed by the following fragment.do i=1,npvttemp = x(i); x(i) = x(pvt(i)); x(pvt(i)) = tempend doFor more see the Pivot suite.The de
omposition is 
omputed by the generi
 subroutine Ludpp whose 
alling se-quen
e is
all Ludpp(lu, A, info)wheretype(RmatLudpp), intent(inout), target :: luOn return lu 
ontains the LU de
omposition of A.type(Rmat), intent(in) :: AThe Rmat whose LU de
omposition is to be 
omputed.integer, intent(out), optional :: infoIf this optional argument is present, Ludpp returns the info parameter fromthe lapa
k routine DGETRF. The normal return is info=0. If info>0, theinfoth diagonal of U is zero.6.3. The Cholesky de
ompositionGiven a symmetri
 positive de�nite matrix A of order n there is an upper triangularmatrix R su
h that A = RTR:The matrix R is 
alled the Cholesky fa
tor of A.The 
ontainer for the de
omposition is de�ned type RmatChol de�ned by



MATRAN 35type RmatCholtype(Rmat) :: R ! The R-fa
torlogi
al :: 
ompanion ! True if the de
omposition is! asso
iated with a Rmat of interestend type RmatCholwhere R represents the Cholesky fa
tor. The use of 
ompanion is explained in x6.1.The Cholesky de
omposition of a Rmat of tag SP is 
omputed by the generi
 sub-routine Chol, whose 
alling sequen
e is
all Chol(
hola, A, info)wheretype(RmatChol), intent(inout), target :: 
holaOn return 
hola 
ontains the Cholesky de
omposition of A.type(Rmat), intent(in) :: AThe Rmat whose Cholesky de
omposition is to be 
omputed.integer, optional, intent(out) :: infoIf this optional argument is present, Chol returns the info parameter fromthe lapa
k routine DPOTRF. The normal return is info=0. If info>0, theleading submatrix of A of order info is inde�nite.6.4. The QR de
ompositionLet A be an m�n matrix with m � n. Then there is an orthogonal Q su
h thatQTA = �R0� ; (6.2)where R is an n�n upper triangular matrix. We 
all (6.2) the QR de
omposition of A.If we partition Q = (Q1 Q2);where Q1 is m�n, then we 
an write A = Q1R: (6.3)This version of the de
omposition is sometimes 
alled the QR fa
torization. It 
annotdo as many things as the full de
omposition, but it requires mu
h less memory whenm� n.If m < n then we 
an write the de
omposition in the formA = QR (6.4)



36 MATRANwhere Q is orthogonal and R is an m�n upper triangular matrix.The matran module RmatQR_m provides the means of 
omputing the three de-
ompositions (6.2), (6.3), and (6.4). The 
ontainer is RmatQR, whi
h has the followingde�nition.type RmatQRtype(Rmat) :: Q ! The Q-fa
tortype(Rmat) :: R ! The R-fa
torlogi
al :: 
ompanion ! True if The de
omposition is! asso
iated with a Rmat of interestend type RmatQRThe de
omposition is 
omputed by the generi
 subroutine QR, whose 
alling sequen
eis 
all QR(qra, A, fullq, mywork)wheretype(RmatQR), intent(out), target :: qraThe QR de
omposition of A.type(Rmat), intent(in) :: AThe Rmat whose QR de
omposition is to be 
omputed.logi
al, intent(in), optional :: fullqIf fullq is absent or present and false, QR 
omputes the de
omposition (6.3)or (6.4), depending on the row and 
olumn dimensions of A. If fullq ispresent and true, QR 
omputes the de
omposition (6.2) or (6.4), dependingon the row and 
olumn dimensions of Areal(wp), pointer, optional:: mywork(:)The lapa
k subroutine DGEQRF requires an auxiliary work array, whi
h isordinarily allo
ated and deallo
ated by QR. If mywork is present and 
ontainsenough storage, it is used as the work array. If it is present but does not
ontain enough storage, it is reallo
ated and used as the work array. Thisstorage is not deallo
ated, so that mywork 
an be reused when QR is 
alled ina loop.6.5. The pivoted QR de
ompositionLet A be an m�n matrix with m � n. Then there is an orthogonal matrix Q and apermutation matrix P su
h that QTAP = �R0� ; (6.5)



MATRAN 37where R is an n�n upper triangular matrix. The matrix P is formed by a pro
ess of
olumn pivoting that results in a matrix R su
h thatr2kk � maxj>k fPi�kjrij j2g:This de
omposition is 
alled the pivoted QR de
omposition or the QRP de
omposition.If we partition Q = (Q1 Q2);where Q1 is m�n, then we 
an write AP = Q1R: (6.6)This version of the de
omposition is sometimes 
alled the pivoted QRP fa
torization ofA. If m < n then we 
an write the de
omposition in the formAP = QR (6.7)where Q is orthogonal and R is an m�n upper triangular matrix.The matran module RmatQRP_m provides the means of 
omputing the three de-
ompositions (6.5), (6.6), and (6.7). The 
ontainer is RmatQRP, whi
h has the followingde�nition.type RmatQRPtype(Rmat) :: Q ! The Q-fa
tortype(Rmat) :: R ! The R-fa
torinteger, pointer :: pvt(:) ! The pivot arraylogi
al :: 
ompanion ! True if The de
omposition is! asso
iated with a Rmat! of interestend type RmatQRPThe array pvt en
odes the permutation P in as a sequen
e of inter
hanges. Spe
if-i
ally the ve
tor xTP 
an be 
omputed by the following fragment.do i=1,A.mtemp = x(i); x(i) = x(pvt(i)); x(pvt(i)) = tempend doThe de
omposition is 
omputed by the generi
 subroutine QRP, whose 
alling se-quen
e is
all QRP(qrpa, A, fullq, first
ols, mywork)



38 MATRANwheretype(RmatQR), intent(out), target :: QRThe QR de
omposition of A.type(Rmat), intent(in) :: AThe Rmat whose QR de
omposition is to be 
omputed.logi
al, intent(in), optional :: fullqIf fullq is absent or present and false, QR 
omputes the de
omposition (6.6)or (6.7), depending on the row and 
olumn dimensions of A. If fullq ispresent and true, QR 
omputes the de
omposition (6.5) or (6.7), dependingon the row and 
olumn dimensions of Alogi
al, intent(in), optional, target :: first
ols(:)If present, the 
olumns A(:; j) of A for whi
h first
ols(j) is true are movedto the beginning of A and frozen there during the pivoting pro
ess. Thelength of first
ols may be less than A%n
ol.real(wp), pointer, optional:: mywork(:)The lapa
k subroutine DGEQRP requires an auxiliary work array, whi
h isordinarily allo
ated and deallo
ated by QRP. If mywork is present and 
ontainsenough storage, it is used as the work array. If it is present but does not
ontain enough storage, it is reallo
ated and used as the work array. Thisstorage is not deallo
ated, so that mywork 
an be reused when QRP is 
alledin a loop.6.6. The spe
tral de
ompositionLet A be a symmetri
 matrix of order n. Then there is an orthogonal matrix V su
hthat A = V DV T (6.8)where D = diag(Æ1; : : : ; Æn) with Æ1 � � � � � Æn. The s
alars Æi are the eigenvalues of Aand the 
olumns vi of V are the 
orresponding eigenve
tors. The de
omposition (6.8)is 
alled the spe
tral de
omposition of A.The matran module RmatSpe
_m de�nes and 
omputes the type RmatSpe
, whi
hhas the following de�nition.type RmatSpe
type(Rdiag) :: D ! The matrix of eigenvalues.type(Rmat) :: V ! The matrix of eigenve
tors.logi
al :: 
ompanion ! True if the de
omposition is! asso
iated with a Rmat of interestend type RmatSpe




MATRAN 39The spe
tral de
omposition is 
omputed by the generi
 subroutine Spe
, whose
alling sequen
e is
all Spe
(S, A, wantv, info, mywork)wheretype(RmatSpe
), intent(out) :: SThe spe
tral de
omposition of A.type(Rmat), intent(in) :: AThe symmetri
 Rmat whose spe
tral de
omposition is to be 
omputed.logi
al, optional, intent(in) :: wantvIf wantv is present and true, 
ompute both eigenvalues and eigenve
tors.Otherwise 
ompute only eigenvalues.integer, optional, intent(out) :: infoIf present info returns the info parameter of the lapa
k routine DSYEV.The normal return is info=0. If info>0, DSYEV failed to 
onverge.real(wp), pointer, optional :: mywork(:)The lapa
k subroutine DSYEV requires an auxiliary work array, whi
h isordinarily allo
ated and deallo
ated by Spe
. If mywork is present and 
on-tains enough storage, it is used as the work array. If it is present but doesnot 
ontain enough storage, it is reallo
ated and used as the work array. Thisstorage is not deallo
ated, so that mywork 
an be reused when Spe
 is 
alledin a loop.6.7. The singular value de
ompositionLet A be an m� n matrix with m � n. Then there are orthogonal matri
es U and Vof order m and n su
h that A = U �D0�V T; (6.9)where D = diag(Æ1; : : : ; Æn)with Æ1 � � � � � Æn:The de
omposition (6.9) is 
alled the singular value de
omposition of A. The Æi are
alled the singular values of A, and the 
olumns of U and V are 
alled the left and rightsingular ve
tors of AIf we partition U = (U1 U2), where U1 has n 
olumns, then we may writeA = U1DV T: (6.10)



40 MATRANThe de
omposition (6.10) is sometimes 
alled the singular value fa
torization of A.If m < n the singular value de
omposition assumes the formA = U(D 0)V T; (6.11)where D is now of order m. Partitioning V = (V1 V2), where V1 has m 
olumns, we 
anwrite A = UDV T1 (6.12)The module RmatSdv_m 
omputes one of the de
ompositions (6.9), (6.10), (6.11), or(6.12). The de
omposition is 
ontained in the derived type RmatSvd.type RmatSVDtype(Rdiag) :: D ! The singular valuestype(Rmat) :: U ! The right singular ve
torstype(Rmat) :: V ! The left singular ve
torslogi
al :: 
ompanion ! True if the de
omposition is! asso
iated with a Rmat! of interestend type RmatSVDThe de
omposition is 
omputed by the generi
 subroutine SVD, whose 
alling se-quen
e is
all SVD(svd
mp, A, wantu, wantv, full, info, mywork)wheretype(RmatSVD), intent(out), target :: svdThe singular value de
omposition of Atype(Rmat), intent(in) :: AThe Rmat whose singular value de
omposition is to be 
omputed.logi
al, optional, intent(in) :: wantuIf present and true 
ompute 
ompute the left singular ve
tors.logi
al, optional, intent(in) :: wantvIf present and true 
ompute 
ompute the right singular ve
tors.logi
al, intent(in), optional :: fullIf present and true, 
ompute the full 
omplement of singular ve
tors requestedby wantu or wantv. Otherwise 
ompute the fa
torizations (6.10) or (6.12).integer, optional, intent(out) :: infoIf present info returns the info parameter of the lapa
k routine DGESVD.The normal return is info=0. If info>0, DGESVD failed to 
onverge.



MATRAN 41real(wp), pointer, optional:: mywork(:)The lapa
k subroutine DGESVD requires an auxiliary work array, whi
h isordinarily allo
ated and deallo
ated by SVD. If mywork is present and 
ontainsenough storage, it is used as the work array. If it is present but does not
ontain enough storage, it is reallo
ated and used as the work array. Thisstorage is not deallo
ated, so that mywork 
an be reused when SVD is 
alledin a loop.6.8. The real S
hur de
ompositionLet A be of order n. Then there is an orthogonal matrix U su
h thatA = UTUT;where T is blo
k upper triangular with 1�1 and 2�2 blo
ks on its diagonal. The 1�1blo
ks are the real eigenvalues of A. The 2�2 blo
ks 
ontain the 
omplex eigenvaluesof A. Su
h a de
omposition is 
alled a real S
hur de
omposition of A. The 2�2 blo
ks
an be standardized to have the form �r b
 r� ;where b
 < 0. It is easily veri�ed that the real part of the eigenvalues of this blo
k is rwhile the imaginary parts are �pjbjpj
j.8The matran module RealS
hur_m 
ontains the wherewithal to 
ompute a stan-dardized real S
hur de
omposition of a Rmat A. The 
ontainer istype RmatRealS
hurtype(Rmat) :: T ! The blo
k upper triangular matrix! of the de
omposition.type(Rmat) :: U ! The orthogonal matrix of the! de
omposition.
omplex(wp), pointer :: D(:) ! D 
ontaines the eigenvalues of T! in the order the appear on the! diagonal of T.logi
al :: 
ompanion ! True if the de
omposition is! asso
iated with a Rmat of! interest.The real S
hur de
omposition is 
omputed by the subroutine RealS
hur, whose
alling sequen
e is8This formula is preferable to its mathemati
al equivalent �pjb
j, whi
h is subje
t to exponentex
eptions.
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all S
hur(S, A, wantu, info, mywork)wheretype(RmatRealS
hur), intent(out) :: SThe real S
hur de
omposition of A.type(Rmat), intent(in) :: AThe Rmat whose real S
hur de
omposition is to be 
omputed.logi
al, optional, intent(in) :: wantuIf present and true, 
ompute U and T. Otherwise 
ompute only T.integer, optional, intent(out)If present info returns the info parameter of the lapa
k routine DGEES.The normal return is info=0. If info>0, DGEES failed to 
onverge.real(wp), pointer, optional:: mywork(:)The lapa
k subroutine DGEES requires an auxiliary work array, whi
h isordinarily allo
ated and deallo
ated by RealS
hur. If mywork is present and
ontains enough storage, it is used as the work array. If it is present but doesnot 
ontain enough storage, it is reallo
ated and used as the work array. Thisstorage is not deallo
ated, so that mywork 
an be reused when RealS
hur is
alled in a loop.The order in whi
h eigenvalues appear on the diagonal of T 
annot be predi
ted.Thus it may be ne
essary to reorder the blo
ks. The subroutine ReorderS
hur. movesdiagonal a blo
k up or down the diagonal of T by pairwise ex
hanges. Its 
allingsequen
e isReorderS
hur(S, i1, i2, info)wheretype(RealS
hur), intent(inout) :: SThe real S
hur de
omposition whose blo
ks are to be reordered. On returnthe blo
ks will be reordered as des
ribed below. The 
ontents of S%U (ifpresent) and S%D will be 
hanged appropriately, so that S is still a standard-ized real S
hur de
omposition of the original matrix.integer, intent(inout) :: i1, i2The blo
k beginning in row i1 is moved by pairwise ex
hanges of blo
ks tothe row i2. If S%D(i1) is the se
ond of a pair of 
omplex eigenvalues, i1 isde
remented by 1. On return i2 points to the �rst row of the blo
k in its �nalposition, whi
h may di�er from its original value by �1. The parameters i1and i2 may take any values from 1 to n.



MATRAN 43integer, optional, intent(out)If present, the info parameter from the lapa
k routine DTREXC is returned.A nonzero value indi
ates an error.Reordering is a numeri
al pro
edure, and it 
an alter the blo
ks of T . In parti
ular,blo
k 
ontaining two 
omplex eigenvalues 
an split into two blo
ks 
ontaining real eigen-values (mostly when the imaginary parts are very small). However, two real eigenvalues
an never merge to form a 
omplex blo
k.6.9. The eigende
ompositionLet A be a nondefe
tive matrix. Then there is a (generally 
omplex) matrix X su
hthat X�1AX = D � diag(Æ1; : : : ; Æn): (6.13)The numbers Æi are 
alled the eigenvalues of A and the 
olumns xi of X are the 
orre-sponding eigenve
tors, whi
h satisfy Axi = Æixi:If Y H = X�1, then the 
olumns yi of Y satisfyyHi A = ÆiyHi :The yi are 
alled the left eigenve
tors of A.The module RmatEig_m provides the means to 
ompute the de
omposition (6.13).The 
ontainer istype RmatEig
omplex(wp), pointer :: D(:) ! The eigenvalues
omplex(wp), pointer :: X(:,:) ! The right eigenve
tors
omplex(wp), pointer :: Y(:,:) ! The left eigenve
torslogi
al :: 
ompanion ! True if the de
omposition! is asso
iated with a Rmat! of interestend type RmatEigNote that this de
omposition is di�erent from the others| the results are not returnedin matrix types. This is be
ause at this point we have not de�ned a 
omplex matrixtype. Later a 
ontainer CmatEig will remedy this de�
ien
y. However, the type RmatEigmay still be useful to those who do not want to bear the burden of in
orporating the
omplex types into their programs.The de
omposition (6.13) is 
omputed by the generi
 routine Eig, whose 
allingsequen
e is the following.



44 MATRANEig(eiga, A, wantx, wanty, info, xwork, ywork, wwork)wheretype(RmatEig), intent(out) :: eigaThe eigende
omposition of Atype(Rmat), intent(in) :: AThe Rmat whose eigende
omposition is to be 
omputed.logi
al, optional, intent(in) :: wantxIf present and true, 
ompute right eigenve
tors.logi
al, optional, intent(in) :: wantyIf present and true, 
ompute left eigenve
tors.integer, optional, intent(out) :: infoIf present info returns the info parameter of the lapa
k routine DGEEV.The normal return is info=0. If info>0, DGEEF failed to 
onverge.real(wp), pointer, optional :: rv(:,:), lv(:,:), mywork(:)The LAPACK Routine DGEEV requires an auxiliary work arrays, whi
h areordinarily allo
ated and deallo
ated by EIG. If any of these three arrays ispresent present it is used, perhaps after a reallo
ation. This storage is notdeallo
ated, so that the arrays 
an be reused when EIG is 
alled in a loop.7. The real 
oreAt present Matran is a small pa
kage, and one 
an expli
itly use only the modulesone desires. As it grows, however, it will be desirable to de�ne a 
ore of modules thatrepresents most of the needs of a typi
al program. The module in Figure 7.1 is anattempt at a beginning. What it leaves out is more signi�
ant than what it in
ludes.The modules RmatInv_m and RmatNorm2_m are ex
luded be
ause their use 
an be asour
e of unne
essary 
omputation. All the major de
ompositions, ex
epting the LUand Cholesky de
ompositions, have been left out, on the grounds most programs needonly a small sele
tion of de
ompositions. The LU and Cholesky de
omposition arein
luded be
ause they are used by RmatSolve_m.Of 
ourse there is nothing to prevent the matran user with spe
ial needs fromde�ning a di�erent list of modules. Only, please, do not 
all it RealCore_m.8. Computing Arnoldi de
ompositionsIn this se
tion we give a more extended example of matran's 
apabilities. Let A be amatrix of order n. An Arnoldi de
omposition of A of order m is a relation of the formAUm�1 = UmBm;m�1; (8.1)



MATRAN 45module MatranRealCore_m! Root moduleuse MatranUtil_m! The two matrix obje
tsuse Rmat_m; use Rdiag_m! Matrix operationsuse RmatTranspose_m; use RmatSum_m; use RmatProdu
t_muse RmatSolve_m : use RmatJoin_m; use RmatBorder_muse RmatSubmatrix_muse RdiagSum_m; use RdiagProdu
t_m; use RdiagSolve_m! Matrix Mis
elaniause RdiagDiag_m; use RmatEye_m; use RmatNorm_m;use RmatPivot_m; use RmatPrint_m; use RmatRand_m! De
ompositionsuse RmatLudpp_m; use RmatChol_mend module RealCore_m Figure 7.1: The Matran real 
ore�where Um is an orthonormal matrix with m 
olumns, Um�1 
onsists of the �rst m�1
olumns of Um and B is an m�(m�1) upper Hessenberg matrix. As the order of anArnoldi de
omposition in
reases, the matri
es Bm�1;m�1, 
onsisting of the �rst m�1rows of Bm;m�1 generally 
ontain in
reasingly a

urate approximations to the extremeeigenvalues of A. Approximate eigenve
tors 
an also be extra
ted from Um�1, by apro
ess known as the Rayleigh{Ritz method.If we denote by Uk the matrix 
onsisting of the �rst k 
olumns of Um and Bk;k�1



46 MATRANthe leading (k+1)�k submatrix of Bm;m�1, thenAUk�1 = UkBk;k�1 (8.2)is also an Arnoldi de
omposition of A. This suggests that we 
ompute (8.1) by forminga sequen
e of Arnoldi de
ompositions ea
h 
omputed from the previous one. Here isthe algorithm for passing from the de
omposition (8.2) to the next.1. uk+1 = Auk2. r = UTk uk+13. uk+1 = uk+1 � Ukr4. � = kuk+1k25. uk+1 = uk+1=�6. Uk+1 = (Uk uk+1)7. Bk+1;k = �Bk;k�1 r0 �� (8.3)
The pro
ess must be started with a ve
tor u1. In our example u1 will be a normalizedrandom ve
tor.Steps 3{5 in this algorithm orthogonalize Auk against Uk and normalize it, a pro
essknown as Gram{S
hmidt orthogonalization. Unfortunately, the pro
ess 
an fail, and weuse a more 
ompli
ated pro
ess 
alled Gram{S
hmidt with reorthogonalization.The following 
ode shows implements the Arnoldi pro
ess. It 
onsists of a mainprogram Arnoldi and three subroutines:ArnStepImplements the algorithm (8.3).gsro Performs Gram{S
hmidt with reorthogonalization.AmultMultiplies a ve
tor by A. In this 
ase A = diag(1; 0:95; 0:952 ; : : : ; 0:95n�1).For 
onvenien
e these routines are made lo
al to the program Arnoldi.program Arnoldiuse Rmat_muse RmatSum_muse RmatProdu
t_muse RmatNorm_muse RmatRand_muse RmatSolve_m



MATRAN 47use RmatBorder_muse RmatPrint_muse RmatEye_muse RmatEig_muse RmatSubmatrix_mimpli
it none! Let U_m = (u_1,...,u_m) be orthonormal and let B_{m,m-1}! be an mx(m-1) upper Hessenberg matrix. If!! (*) AU_{m-1} = U_mB_{m,m-1},!! then (*) is 
alled an Arnoldi de
omposition of A. An Arnoldi! de
omposition 
an be built up sequentially by starting with a! normalized ve
tor u_1. Given U_{k-1}, u_{k} is generated by! orthonormalizing Au_{k-1} against the 
olumns of U_{k-1}. The! orthogonalizing 
oeffi
ients form the k-th 
olumn of B_{k,k-1}.! The eigevalues of B_{k-1,k-1} often 
ontain in
reasingly a

urate! approximations to the extreme eigenvalue of A.!! This program 
ompute an Arnoldi de
omposition starting from a! normalized random ve
tor. It also 
omputes the dominant eigenvalue! of B_{k-1,k-1} to show its 
onvergen
e. It uses the subroutine! ArnStep to advan
e the de
omposition. ArnStep in turn uses Amult! to multiply a ve
tor by the matrix in question and gsro! (Gram-S
hmidt with reorthogonalization) to perform the! reorthogonalization.type(Rmat) :: U, Btype(RmatEig) :: eigbinteger :: bigeiglo
(1), k, n, m! Get the order n of A and the number of! Arnoldi ve
tors to 
ompute.print *, 'Input n and m'read *, n, m! Initialize storage for U and BU = (/n,0, n,m/)B = (/0,0, m+1,m/)



48 MATRAN! Compute the Arnoldi de
omposition.
all random_seed() ! Initialize the random number generator.do k=0,m-1! Advan
e the de
omposition.
all ArnStep(U, B)! Compute and print the largest eigenvalue of! the Rayleigh quotient B(1:k,1:k)if (k>0) then
all Eig(eigb, Sbm(B, 1,k, 1,k))bigeiglo
 = maxlo
(abs(eigb%D(1:k)))print '(e23.15, e9.1)', eigb%D(bigeiglo
(1))end ifend do! Che
k the defining relations of the final! Arnoldi de
omposition.print *, ' 'print *, NormF(.xhx.U - Deye(m)), &NormF(Amult(Col(U, 1,m-1)) - U*B)
ontainssubroutine ArnStep(U, B)type(Rmat), intent(inout) :: U, B! ArnStep takes expands an Arnoldi de
omposition ! of order k to! one of order k+1. If k=0, ArnStep ! initializes the! de
omposition to a random ve
tor.type(Rmat) :: x, xp, rreal(wp) rhointeger kn = U%nrowk = U%n
ol! Get a starting ve
tor for the Krylov sequen
e.



MATRAN 49if (k==0) thenU = DRandN(n,1)U = U/NormF(U)
all ReshapeAry(B, 1, 0)returnend if! Compute Au_k, orthogonalize it, and fold the results! into U and B.x = Amult(
ol(U,k))
all gsro(U, x, xp, r, rho)
all BorderE(U, xp)
all BorderSE(B, .dm.(/1,k-1/), r, .dm.rho)end subroutine ArnStepsubroutine gsro(Q, x, xp, r, rho)type(Rmat), intent(in) :: Q, xtype(Rmat), intent(out) :: xp, rreal(wp), intent(out) :: rho! gsro orthogonalizes a 
olumn ve
tor x against the the 
olumns of! the orthonormal matrix Q to produ
e a normalized ve
tor xp that! is orthogonal to Q to working a

ura
y. Moreover, the relation!! x = Q*r + rho*xp!! is satisfied to working a

ura
y. The method used is! Gram-S
hmidt with reorthogonalization.real(wp), parameter :: run = 2.2d-16 ! Rounding unit.real(wp) :: nu, sig, tautype(Rmat) :: s, xp
all GuardTemp(Q)
all GuardTemp(x)nu = NormF(x)r = .dm.(/Q%n
ol,1/)



50 MATRAN!Spe
ial a
tion for null Qif (Q%n
ol == 0) thenxp = x/nurho = nugo to 99999end ifsig = nuxp = xdo ! Orthogonalize.s = Q.xhy.xpr = r + sxp = xp - Q*stau = NormF(xp)! Finished if redu
tion in norm is not too great.if (tau > 0.5*sig) exit! If the 
urrent norm of xp has not dropped! below the 0.1 times the rounding unit relative! to original norm of xp, 
ontinue orthogonalizing.! Otherwise repla
e xp by a small random ve
tor.if (tau > 0.1*nu*run) thensig = tauelsenu = 0.1*nu*runsig = nu
all RandN(xp, xp%nrow, 1)xp = sig*(xp/normf(xp))end ifend do! Normalize and return.rho = NormF(xp)xp = xp/rho99999&
all CleanTemp(Q)
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all CleanTemp(x)end subroutine gsrofun
tion Amult(x) result(y)type(dmat) :: ytype(dmat), intent(in) :: x! Amult 
omputes the produ
t y = Ax, where! A = diag(1, .95, .95^2, ..., .95^{n-1}).integer :: ireal(wp) :: s
all GuardTemp(x)y%a => null() ! Ne
essary be
ause the SUN f95 6.2
all Clean(y) ! does not initialize the results of! fun
tions properly.y = xs = 1.0do i=1,y%nrowy%a(i,1:y%n
ol) = s*y%a(i,1:y%n
ol)s = 0.95*send do
all CleanTemp(x)end fun
tion Amultend program Arnoldi



52 MATRAN9. Appendix: The Sun Fortran 95 6.2 CompilerWhen the result of a fun
tion is a de�ned type, the Sun Fortran 95 6.2 Compiler maynot initialize it properly. The following 
ode (implementing an aspe
t of .dm.) showsthe ne
essary �x.! RmFromAry overloads .dm. to produ
e C = ary.fun
tion RmFromAry(ary) result(C)type(Rmat) :: Creal(wp), intent(in) :: ary(:,:)C%a => null() ! Nullify the C%a and C%temporaryC%temporary => null() ! and 
all Clean to initialize
all Clean(C) ! the other 
omponents.C = ary
all SetTemp(C)end fun
tion RmFromArySin
e I developed matran on a Sun system, all 
ode has been thoroughly sun-s
reened. The �x will be removed as soon as Sun �xes the problem.


