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Wireless sensor networks are a promising technology for many real-world ap-

plications such as critical infrastructure monitoring, scientific data gathering, smart

buildings, etc.. However, given the typically unattended and potentially unsecured

operation environment, there has been an increased number of security threats to

sensor networks. In addition, sensor networks have very constrained resources, such

as limited energy, memory, computational power, and communication bandwidth.

These unique challenges call for new security mechanisms and algorithms. In this

dissertation, we propose novel algorithms and models to address some important

and challenging security problems in wireless sensor networks.

The first part of the dissertation focuses on data trust in sensor networks.

Since sensor networks are mainly deployed to monitor events and report data, the

quality of received data must be ensured in order to make meaningful inferences

from sensor data. We first study a false data injection attack in the distributed state

estimation problem and propose a distributed Bayesian detection algorithm, which

could maintain correct estimation results when less than one half of the sensors are



compromised. To deal with the situation where more than one half of the sensors

may be compromised, we introduce a special class of sensor nodes called trusted

cores. We then design a secure distributed trust aggregation algorithm that can

utilize the trusted cores to improve network robustness. We show that as long as

there exist some paths that can connect each regular node to one of these trusted

cores, the network can not be subverted by attackers.

The second part of the dissertation focuses on sensor network monitoring and

anomaly detection. A sensor network may suffer from system failures due to loss

of links and nodes, or malicious intrusions. Therefore, it is critical to continuously

monitor the overall state of the network and locate performance anomalies. The net-

work monitoring and probe selection problem is formulated as a budgeted coverage

problem and a Markov decision process. Efficient probing strategies are designed to

achieve a flexible tradeoff between inference accuracy and probing overhead. Based

on the probing results on traffic measurements, anomaly detection can be conducted.

To capture the highly dynamic network traffic, we develop a detection scheme based

on multi-scale analysis of the traffic using wavelet transforms and hidden Markov

models. The performance of the probing strategy and of the detection scheme are

extensively evaluated in malicious scenarios using the NS-2 network simulator.

Lastly, to better understand the role of trust in sensor networks, a game theo-

retic model is formulated to mathematically analyze the relation between trust and

cooperation. Given the trust relations, the interactions among nodes are modeled

as a network game on a trust-weighted graph. We then propose an efficient heuristic

method that explores network heterogeneity to improve Nash equilibrium efficiency.
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Chapter 1

Introduction

1.1 Sensor networks

Recent advances of MEMS technology have made the manufacturing of small

sensors technically and economically feasible. Sensor networks provide the ability

to enable remote interactions with the physical world at unprecedented physical

scales, with a broad set of sensors and at low cost. These tiny sensor nodes con-

sist of sensing, data processing, and communication components, usually named as

“Motes”. A typical example of a sensor node can be the Iris Mote, which has a

16MHz processor with 8KB RAM, 128 KB program flash and 512KB measurement

flash memories. There are also a little more advanced types of sensor nodes such

as the Intel Mote 2 (Imote2), which has a 32-bit XScale processor, running at ad-

justable frequency from 13 to 416 MHz, with 256KB SRAM, 32 MB flash memory

and 32 MB SDRAM. Both of these Motes have an integrated 802.15.4 radio and an

external 2.4 GHz antenna. They can be equipped with multiple onboard sensors,

such as accelerometers, magnetometers, passive infrared sensors, acoustic and video

sensors, etc.. Fig. 1.1 shows the Imote2 and the associated sensor board.

A wireless sensor network consists of a set of spatially scattered Motes that

can measure various properties of the environment, implement local and distributed

inferences, and make responses to events or queries. Sensor networks are usually
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Figure 1.1: Imote2 and the sensor board

ad-hoc and infrastructure free. Each node communicates with others by forming

a multi-hop radio path and maintain connectivity in a decentralized manner. The

connectivity among nodes can also be dynamic as nodes can join or leave the net-

work at any time. Typical sensor network applications include critical infrastructure

monitoring, emergency disaster relief, scientific data gathering, smart buildings, per-

sonal medical systems, context-aware services, etc.. However, a great deal remains

to be done in order for this vision to be realized. Especially, given the typically

unattended and potentially unsecured operation environment, there has been an

increased number of security threats to sensor networks.

Although wireless sensor networks come from wireless ad hoc networks, there

are important distinctions between them, which can greatly affect the system de-

signs including the security design. Compared to ad hoc networks, sensor networks

have limited energy, computational capability, memory capacity, and communica-

tion bandwidth. Design of sensor network algorithms must take into account these

resource constraints. For example, in a sensor network, the nodes usually have to

locally process the information they collect, then only the fused data is sent back

to the network operator. Efficient collaborative signal processing algorithms would
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be needed to enable such local fusion of data. To save sensor energy for longer

life time, techniques for operating in low energy state are required, such as placing

the nodes in some type of sleep mode. The emergence of new technologies for de-

signing energy harvesting devices is also promising for more energy efficient use of

sensor networks. Also, sensor networks are usually deployed with a large number of

nodes. For example, in surveillance applications, while the sensitivity of individual

sensors may be highly variable, with high node density they will be able to reliably

detect intruders. Therefore, scalability is another important issue that needs to be

considered for sensor network designs.

1.2 Main contributions and thesis organization

Given the unique characteristics of sensor networks, their security problems are

more complicated and challenging. In this dissertation we focus on some important

security issues in sensor networks and propose novel algorithms and models. The

main contributions of this dissertation are:

1. Data trust in sensor networks:

• Sensor networks are mainly deployed to detect events and report data.

To make meaningful inferences from sensor data, the quality of the re-

ceived data must be ensured. One of the important sources of false sensor

data is due to malicious attacks where the attackers compromise sensors

and inject false measurements. We study an example of false data in-

jection attack in the distributed state estimation problem and show that
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the estimation results can vary arbitrarily even if only one sensor is com-

promised. We then propose a distributed Bayesian detection algorithm

that can maintain correct estimation results as long as less than one half

of the sensors are compromised, without causing extra communication

costs.

• Trust has been widely used for many applications, including e-commerce,

peer to peer networks, web-based services and distributed computing.

Trust-based methods can provide a complementary security mechanism

for sensor networks. We present a special construction of trust system

in sensor networks, namely, the trusted cores, which are a special class of

nodes that have much higher levels of security than other sensor nodes.

We design a secure distributed trust aggregation algorithm that can uti-

lize the trusted cores to enhance data integrity in sensor networks. We

show that as long as there exist some paths that can connect each regular

node to one of these trusted cores, the network can not be subverted by

the attackers even if more than half of the sensors are compromised.

2. Sensor network monitoring and anomaly detection:

• Network monitoring is important for ensuring correct sensor network

functioning. The low bandwidth and energy constraints are the main

challenges for sensor network monitoring. We design a trust-assisted

probing strategy to monitor a hierarchical sensor network, where network

heterogeneity is exploited for better bandwidth and energy efficiency. The
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basic idea is to collect path measurements through a two-phase probing.

The first phase is used to identify the suspicious areas in the network

by sending a small subset of probes. It is formulated as a budgeted

maximum coverage problem. We propose an approximation algorithm

to efficiently solve this problem using linear programming duality. The

second phase aims at locating individual links that are responsible for the

observed path anomalies with minimum communication cost. We formu-

late the second phase as a Markov decision problem and solve it using an

efficient heuristic method. We provide thorough validations through sim-

ulations under different network settings and performance comparisons

with existing algorithms.

• Based on traffic measurements collected by probing, anomaly detection

algorithms can be applied to decide whether the observations are normal

or not. However, recent studies have shown that node mobility along

with spatial correlation of the monitored phenomena in sensor networks

can lead to observation data that have long range dependency, which

could significantly increase the false alarm rates for traditional anomaly

detection methods [73]. We develop an anomaly detection scheme based

on multi-scale analysis of the long range dependent traffic to address this

challenge. In the proposed detection scheme, discrete wavelet transforms

are used to approximately de-correlate the traffic data and capture data

characteristics at different time scales. The remaining dependencies are
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captured by a multi-level hidden Markov model in the wavelet domain.

To estimate the model parameters, we propose an online discounting

Expectation Maximization (EM) algorithm, which also tracks variations

of the estimated models over time. Network anomalies are detected as

abrupt changes in the tracked model variations. We evaluate our detec-

tion scheme thoroughly using numerical long range dependent time series

and also malicious scenarios simulated using the NS-2 network simulator.

3. Game theoretic analysis of security and trust:

• We present a game theoretic analysis of the efficiency of establishing

trust for improving node cooperation. The trust relations among nodes

are modeled as a trust-weighted network, and we study a graphical game

in this network where the nodes’ payoffs are affected by their trust re-

lations. We characterize the Nash equilibrium and the social optimum

point of this game and show that the game efficiency has a close rela-

tionship to Bonacich centralities of nodes in the trust-weighted network.

We also provide a method for improving game efficiency by allocating

heterogeneous resources to different nodes according to their Bonacich

centralities. We provide both experimental and theoretical analysis on

the resulting improvement of the game efficiency.

The rest of this dissertation is organized as follows. Chapter 2 reviews se-

curity issues in sensor networks, discusses security objectives, threat models and

the associated countermeasures. Chapter 3 and Chapter 4 focus on data trust in
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sensor network. Chapter 3 investigates the faulty data problem in sensor networks

and presents a distributed Bayesian detection algorithm. Chapter 4 discusses the

concept of trust in sensor networks and presents the trust aggregation algorithm

which uses trusted cores to enhance data integrity. Chapter 5 and Chapter 6 focus

on sensor network monitoring and anomaly detection. Chapter 5 presents our trust

assisted probing strategy and anomaly localization algorithm. Chapter 6 presents

our anomaly detection algorithm for long range dependent traffic. Lastly, Chapter

7 formulates a game theoretic model to study security and trust in sensor networks.
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Chapter 2

Security in Wireless Sensor Networks

In this chapter, we review security issues in sensor networks. Security ob-

jectives, threat models and the associated countermeasures for sensor networks are

discussed.

2.1 Security objectives

The security objectives of wireless sensor networks are summarized as follows.

• Data Integrity: This requirement measures the trustworthiness of the infor-

mation provided by the sensor network. The quality of the received informa-

tion allows the sensor network to correctly perform its function, e.g., formulate

local or distributed inferences, make responses to events or queries, etc. A vi-

olation of data integrity results in deception; authorized nodes receive false

information but believe the faulty information to be true.

Data integrity can be violated in several ways. Firstly, sensor nodes may report

data that are not representative of their intended environment. For example,

sensors may be compromised by the attacker, or the environment around sen-

sors may be intentionally affected by the attacker, e.g., the attacker may put

a magnet on top of a magnetometer or change the location of the sensor node.

Secondly, the message may be modified by unauthorized users during trans-
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mission, i.e., message tampering. Thirdly, as in-network processing of the

collected data is common in sensor networks, the attacker may compromise

data integrity during data aggregation. For example, assuming that sensor

nodes are gathering temperature data and need to report to the base station

the average temperature value from their neighbors, the attacker may corrupt

this average value. Since sensor networks are mainly deployed to monitor

events and report data, data integrity would be an important requirement for

sensor network security. In this thesis, Chapter 3 and Chapter 4 focus on data

integrity in sensor networks.

• Availability: this requirement means that the information collected by sen-

sors is accessible and usable upon demand by authorized users. A violation of

network availability results in denial of service: the prevention of authorized

access to sensor measurements. Adjusting the traditional security mechanisms

to fit within wireless sensor networks could weaken the availability of a sensor

network. For example, the additional computation and communication from

executing security mechanisms can consume additional energy, thus reduce

the lifetime of a sensor network; moreover, if a centralized scheme is used, the

single point of failure will also threaten availability of the sensor network.

• Data Authentication: This requirement allows the receiver to verify that

the data really originates from the claimed sender. In the case of two party

communication, data authentication can be achieved by a purely symmetric

mechanism; the sender and receiver share a secret key to compute the message
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authentication code of all communicated data. Authentication is also neces-

sary for administrative tasks such as network reprogramming or controlling

sensor node duty cycle.

• Data Confidentiality: This requirement addresses the need to ensure that

data collected by the sensor network will not leak outside and used by unau-

thorized parties. The unauthorized users should also be prevented to learn

the information collected by sensors. Privacy is a special case of confidential-

ity when the data collected is personal. Data confidentiality can be achieved

by cryptographic techniques, such as access control and privacy preserving

schemes.

2.2 Threat model

The types of threats in sensor networks would be different from the threats

against traditional computer networks. In traditional computer networks, such as

the Internet, infrastructures such as routers and DNS servers are usually well pro-

tected. Important computers can be kept in physically secure areas, and there will

be some level of redundancy and diversity that allows the infrastructure to survive

attacks. However, wireless sensor networks are usually deployed with no pre-existing

infrastructures. A sensor network is a collection of autonomous nodes that commu-

nicate with each other by forming a multi-hop radio network and the connectivity

may be maintained in a decentralized manner. Furthermore, sensor networks have

very limited resources, such as communication bandwidth and energy, and they are
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often deployed in an unattended and potentially unsecured environment. All of

these characteristics would bring unique types of threats against sensor networks.

2.2.1 Threat taxonomy

A general way to categorize the threats and attacks on sensor networks is as

follows.

• Insider vs. outsider attackers: An insider attacker has access to the

encryption keys or other secrets used by the network. In contrast, an out-

sider attacker has no access to the sensor network secrets. Therefore, insider

attackers can conduct much more complex attacks and lead to much more

severe damages.

• Passive vs. active attackers: A passive attacker is interested in collect-

ing sensitive data from the network, which compromises the confidentiality

requirement. For example, a passive attacker can eavesdrop packets in trans-

mission or analyze traffic patterns to get sensitive information, which may be

used later to launch active attacks. Such kind of attacks are much easier in a

wireless network than in a traditional wired network due to the ease to access

wireless channels. In contrast, the goal of an active attacker is to disrupt the

network functionality and degrade network performance. For example, the at-

tacker can inject false data into the network by pretending to be a legitimate

node and mislead the network into making wrong decisions.
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2.2.2 Attacks on sensor networks

We further categorize the attacks on sensor networks into three classes: attacks

on sensor nodes, on network communication stacks and application protocols.

2.2.2.1 Attacks on sensor nodes

• Physical tampering: Current sensor hardware does not provide any resis-

tance to physical tampering due to the requirement of low cost. Once the

Motes are physically captured, the attackers can easily extract the crypto-

graphic keys from the hardware. Physical attacks on sensor nodes can be

classified into two types: invasive and non-invasive.

In invasive attacks, the attackers have access to the chip level components of

the device, and then use reverse engineering and probing techniques to get un-

limited access to the information stored on the chip. In non-invasive attacks,

the device is neither opened nor physically tampered with. An example of a

non-invasive attack could be the side-channel attack, in which the attackers

gather information from the physical implementation of a crypto-system, for

example, the attack can get useful information by analyzing power consump-

tion, the timing of the software operation execution or the frequency of the

electro magnetic waves.

• Environment tampering: In environment tampering, the attackers com-

promise the integrity of sensor readings by tampering with the environment.

For example, an attacker can tamper with the temperature of the environment
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around the temperature sensor, or put magnets around a magnetometer.

2.2.2.2 Attacks on network communication stacks

• Physical layer: The sensor nodes communicate with each other through

wireless radio channels. One important attack on wireless channels is jam-

ming, in which the attackers deliberately use radio noise or signals to disrupt

the communications in the network. A common defense against jamming at-

tack is to use some form of spread spectrum communications, e.g., frequency

hopping, code spreading, etc. Another attack on the physical layer is eaves-

dropping, where the attacker can either passively listen to the wireless broad-

casts among sensor nodes, or actively send queries to sensor nodes to collect

information. Both cryptographic and non-cryptographic methods can be used

to defend against the eavesdropping attack. Cryptographic methods include

using message encryption to protect message content and using authentication

techniques to ensure the message is from the node it claims to be. Non-cryptic

methods include generating fake messages into the network that are indistin-

guishable from the real messages [3].

• MAC (Medium Access Control) layer: The MAC layer enables the trans-

mission of message frames through the use of physical channels. It also pro-

vides a management interface, controls frame validation, guarantees time slots

and handles node associations. Examples of attacks on the MAC layer include

deliberately causing collisions with packets in transmission, exhausting nodes’
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battery by repeated retransmissions and unfairness in using the wireless chan-

nels among neighboring nodes, which could lead to denial of service in sensor

networks. A number of solutions have been proposed for defending against

these attacks [75].

• Routing and network layers: In wireless sensor networks, each node acts

as a router, and communicates with others using multi-hop wireless channels.

At the same time, routing protocols in sensor networks usually have energy

and memory constraints. These unique characteristics could introduce new

complex dimensions to the design of routing protocols.

The most direct attack on the routing and network layers is to target the rout-

ing information. By spoofing, altering, or replaying routing information, the

attackers would be able to create routing loops, attract or repel network traf-

fic, partition the network, increase end-to-end latency, etc. [43]. For example,

a compromised node can spoof or replay an advertisement for an extremely

high quality route to the base station, in order to lure traffic from a particular

area to go through itself. Such an attack is known as the sinkhole attack.

By mounting a sinkhole attack, the attacker could have many opportunities to

tamper with application data, or enable many other attacks. For example, the

malicious node may refuse to forward certain messages and drop them, ensur-

ing that they are not propagated any further. While suppressing or modifying

packets originating from a selected few nodes, it will reliably forward the re-

maining traffic in order to limit suspicion of its wrongdoing.
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By manipulating routing and network layer messages, a malicious node can

also mount the Sybil attack, in which a single node presents multiple identities

to other nodes in the network. The Sybil attack can significantly reduce the

effectiveness of fault-tolerant schemes such as distributed storage, multi-path

routing and topology maintenance.

Another important attack on the routing layer is the wormhole attack. In a

wormhole attack, the malicious nodes create an illusion that two remote parts

of the network are directly connected, by performing a tunneling procedure,

i.e., one node will covertly tunnel packets to another colluding node, and the

colluding node will replay these packets as it receives them from its physical

neighbors. The wormhole attack will affect the shortest path routing and allow

the malicious nodes to attract traffic from other parts of the network. The

attacker can then analyze network traffic or degrade network performance.

The above mentioned attacks are a few of the important attacks on the routing

and network layers. A more complete list can be found in [43].

2.2.2.3 Attacks on application protocols

• In-network processing: In-network processing, also known as data aggrega-

tion, is an important building block of sensor networks. Many sensor network

applications involve a distributed system of sensors measuring the environ-

ment from many different points and then somehow aggregating the collected

data to form a global view that can be used for the whole network to make
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decisions and take actions. The benefits of in-network processing for wireless

sensor networks include improved scalability, prolonged lifetime and increased

versatility [21]. However, if a few nodes are compromised, they can inject

faulty data into the network, which will result in corrupted aggregation. For

example, consider a simple scenario where the sensor nodes are deployed to

monitor the temperature of the surrounding environment and the aggregation

process is to give the average of sensor readings. If a node is compromised and

provides much higher or lower readings, it will pull the result in one direction

and may lead to false alarms. In more complex applications such as object

tracking, the tracking result can deviate arbitrarily even if only one sensor

is compromised [81]. In this thesis, we will discuss in Chapter 3 and Chap-

ter 4 how to identify such malicious nodes and increase data integrity during

in-network processing in sensor networks.

2.3 Countermeasures

Basic security mechanisms in wireless sensor networks can be divided into

three categories: prevention, detection and survivability. This thesis mainly focuses

on detection and survivability.

Prevention mechanisms typically rely on cryptographic techniques for au-

thentication and access control. The goal is to prevent the attackers from par-

ticipating in the communication and compromising message integrity. However,

prevention is far from making sensor networks secure as there is always possibility
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that powerful attackers may learn the secrets either by breaking the cryptographic

techniques or through some other ways.

Detection mechanisms are thus very important to ensure the correct func-

tioning of wireless sensor networks. Intrusion detection is usually considered as the

second defense line for protecting a network, since malicious attacks in sensor net-

works can usually lead to network performance anomalies. For example, the denial

of service attack may cause very long transmission latency or high package loss rate.

Most of the detection schemes are based on detection of these performance anoma-

lies. However, the constrained resources of wireless sensor networks could bring

unique challenges for the design of detection schemes. We will discuss the related

issues in Chapter 5 and Chapter 6.

Survivability is the ability of the network to remain in operation despite

attacks on the network. We will discuss in Chapter 3 and Chapter 4 how to increase

sensor network survivability using the concept of trust.
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Part I

Data Trust in Wireless Sensor Networks
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Chapter 3

Faulty Data in Sensor Networks

3.1 False data injection

Modern sensor networks provide us with information about phenomena at a

much higher level of detail than previously available. In order to make meaningful

inference with sensor data, the quality of received data must be ensured. Faulty

data in sensor networks can be caused by different reasons. There may be physical

sensor problems such as calibration issues, power supply problems, or other unfore-

seen sensor issues that may cause non-normal sensor readings. However, one of the

important sources of false sensor data is due to malicious attacks. The low cost of

sensor hardware limits the security design of the nodes. And the unattended oper-

ation environment of sensor networks make it possible for attackers to compromise

sensors and introduce malicious measurements; the latter is the false data injection

attack [49]. As a first step to tackle the false data injection attack, we will study

an example in the distributed state estimation problem using sensor networks. The

case study will clearly demonstrate the severe performance degradation caused by

false data injection and illustrate how to defend against the attack.
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3.2 Case study: distributed state estimation

In a distributed sensor network, sensors are deployed to monitor some phe-

nomenon and the data gathered by sensors can be analyzed to provide state estima-

tion of the monitored phenomenon. For instance, a surveillance system can track

objects based on different kinds of signals measured by sensors, such as acoustic and

video signals. The output of state estimation may include positions, speeds, moving

directions of the objects, which can be used to guide the response algorithm of the

network. If the sensor data are contaminated, the false information can affect the

outcome of state estimation and mislead the network to make wrong decisions.

We consider a sensor network composed of n sensors. The monitored phe-

nomenon is modeled by a linear random process x(k+1) = Ax(k)+w(k). x(k) ∈ Rm

is the state vector with dimension m, w(k) ∈ Rm is the noise, which accounts for

modeling errors, uncertainties or perturbations to the process and is assumed to be

Gaussian with zero mean and covariance matrix Q. The initial state x0 has a Gaus-

sian distribution with mean µ0 and covariance matrix M0. Such a linear random

process, for example, can represent a moving object in the field monitored by the

sensor network. We assume that each sensor can sense this process and the sensing

model for each sensor is given by yi(k) = Hix(k) + vi(k), where yi(k) ∈ Rpi is the

pi-dimensional observation made by sensor i, and vi(k) ∈ Rpi is the measurement

noise, assumed to be Gaussian with zero mean and covariance Vi. In distributed

sensing, the measurements of an individual sensor may only contain partial infor-

mation of the state, so state estimation requires the cooperation of sensors in the
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network.

In distributed state estimation, the goal of each sensor is to compute an accu-

rate estimation of the state x(k) using its local measurements and the information

received from its communication neighbors. Distributed Kalman Filtering (DKF)

provides a basic solution for this problem. The main idea of DKF [59, 60] is to use

a standard Kalman filter locally by each sensor, together with a consensus step to

ensure that the local estimates agree. However, existing DKF algorithms are derived

in a benign setting without considerations of possible malicious attacks. Therefore

they are not robust against the false data injection attack. In what follows, we

use the DKF algorithm introduced in [60] as a basic algorithm to build our robust

distributed estimation algorithms.

Let G = (V , E) be a graph with an adjacency matrix [gij] that specifies the

topology of the sensor network, and Ni = {j ∈ V|gij 6= 0} be the communication

neighborhood of sensor i, i.e., the subset of sensors with whom i can exchange

information. Let Ji = Ni ∪ {i} denote the inclusive neighbors of node i and y(k) =

[y1(k), . . . ,yn(k)]T denote the measurements obtained from sensor 1 to sensor n at

time k. Then given the observations y(1 : k) = {y(1), . . . ,y(k)} at all sensors from

time 0 to time k, we denote the state estimation at node i as follows,

x̂i(k) = E[x(k)|y(1:k)], x̄i(k) = E[x(k)|y(1:k − 1)],

M̂i(k) = Cov(x(k)|y(1:k)), M̄i(k) = Cov(x(k)|y(1:k − 1)),

where x̂i(k) and M̂i(k) are the estimates of xi(k) and the covariance matrix given
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observations y(1 : k), and x̄i(k) and M̄i(k) are the corresponding estimations given

observations y(1 : k − 1).

The basic algorithm in [60] is described in Table 3.1, where ε is a small positive

constant. For simplicity, we omitted the time index. In each round, node i only

needs to broadcast the message (ui, Ui, x̄i) to its neighboring nodes, where Ui is the

locally aggregated data.

Table 3.1: Algorithm I – Basic DKF Algorithm

1. Initialization: M̄i = M0, x̄i = µ0

2. For each node in the network
3. While new data comes do
4. Locally aggregate data and covariance matrices:

∀ j ∈ Ji, uj = HT
j V

−1
j yj, zi =

∑
j∈Ji

uj,

Uj = HT
j V

−1
j Hj, Si =

∑
j∈Ji

Uj
5. Compute the Kalman-consensus estimate:

M̂i = (M̄−1
i + Si)

−1,

x̂i = x̄i + M̂i(zi − Six̄i) + εM̂i

∑
j∈Ni

(x̄j − x̄i)

6. Update the state of the Kalman-consensus filter:

M̄i = AM̂iA
T +Q, x̄i = Ax̂i

7. end while
8. end for

We model the false data injection attack using an attack vector

a(k) = [a1(k), . . . , an(k)]T ,

which represents the false measurements that the attackers add to the original sensor

measurements. In other words, let ya represent the vector of measurements that

may contain malicious data, then we have ya(k) = y(k) + a(k). The ith element of

a(k) being non-zero means that the attacker compromises the ith sensor and replaces

22



its original measurement yi(k) with a false measurement yi(k)+ai(k). The attacker

can choose any arbitrary vector as a(k). To illustrate the effect of this attack on

the outcome of state estimation, we study an example where the attack vector is

drawn from a multi-variate Gaussian distribution with mean µa = [µa1, . . . ,µ
a
n]T

and covariance matrix V a = diag(V a
1 , . . . , V

a
n ). The distributed estimation of states

x(k) follows the procedure in Table 3.2, where x̂a(k) denotes the estimated states

using ya(1 : k), and V̂i = Vi + V a
i .

Table 3.2: Algorithm II – DKF under a Gaussian attack vector

1. Initialization: M̄i = M0, x̄ai = µ0

2. For each node in the network,
3. While new data exists do
4. Locally aggregate data and covariance matrices:

∀ j ∈ Ji, uj = HT
j V̂

−1
j (yaj − µaj ), zi =

∑
j∈Ji

uj,

Uj = HT
j V̂

−1
j Hj, Si =

∑
j∈Ji

Uj
5. Compute the Kalman-consensus estimate:

M̂i = (M̄−1
i + Si)

−1,

x̂ai = x̄ai + M̂i(zi − Six̄ai ) + εM̂i

∑
j∈Ni

(x̄aj − x̄ai )

6. Update the state of the Kalman-consensus filter:

M̄i = AM̂iA
T +Q, x̄ai = Ax̂ai

7. end while
8. end for

Comparing the Algorithms in Table 3.1 and Table 3.2, we can see that when

the sensor nodes are not aware of the false data injection attack, even if only one

sensor is compromised, the state estimation x̂a(k) can deviate from the true state

x(k) arbitrarily or be arbitrarily noisy. This verifies that the false data injection

attack can cause serious errors.
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3.3 Bayesian detection of faulty data

The energy and cost constraints restrict the deployment of tamper resistant

hardware for the whole network. Therefore, once a node is compromised, all the

security information stored in the node will be exposed to the attackers. The nor-

mal nodes cannot distinguish the attackers by only using cryptographic techniques.

Most existing works use majority voting based schemes against the false data in-

jection attack. Ye et al. [76] presented a statistical en-route filtering mechanism in

which the truthfulness of data from each node is determined via collective decision

making by multiple nodes. Zhu et al. [84] proposed an interleaved hop-by-hop au-

thentication scheme where pairwise keys are established between nodes t + 1 hops

away. In their scheme, up to t compromised nodes can be tolerated. In [71], Shukla

et al. presented a secure statistical scheme to distinguish data transience from false

injection in a clustered sensor network by utilizing statistical digests sent from each

sensor. For additional results, see [79, 77, 61]. All of these works rely on a hierar-

chical architecture and central coordination among sensors, which limits the sensor

network scalability due to the large number of nodes and the volatility of the net-

work. In the following section, we propose a distributed state estimation method

with Bayesian learning, which achieves performance similar to a centralized majority

voting without causing extra communication overhead.
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3.3.1 The algorithm

Our DKF algorithm with Bayesian learning is inspired by the observation, in

Algorithm II, that the true system state can be accurately estimated if the attack

parameters are known. In reality, the attack parameters are unknown, but we can

use Bayesian learning to estimate them and remove the false measurements. Then

we can follow the same procedure of Algorithm II to obtain more reliable state

estimates.

Bayesian learning usually involves highly complicated computational tech-

niques such as Markov Chain Monte Carlo, which are not suitable for sensor net-

works due to the resource constraints. We propose an algorithm based on varia-

tional Bayesian learning, which provides approximate but efficient estimation of the

marginal likelihood of probabilistic models that have latent variables or incomplete

data [8].

3.3.1.1 Variational Bayesian EM algorithm

In this section, we briefly introduce the variational Bayesian EM algorithm.

Assuming that y is the observed data, x represents the latent variables, and θ is the

model parameters, variational Bayesian learning constructs and optimizes a lower

bound on the marginal likelihood f(y) using variational calculus. More specifically,

log f(y) is lower bounded by first introducing any distribution, over both latent

variables and parameters, which has the same support as f(x,θ|y) does, and then
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applying Jensen’s inequality [8], i.e.,

log f(y) = log

∫
f(y,x,θ)dxdθ ≥

∫
q(x,θ) log

f(y,x,θ)

q(x,θ)
dxdθ.

Maximizing the lower bound with respect to q(x,θ) results in q(x,θ) = f(x,θ|y),

which does not simplify the problem, as evaluating the true posterior distribu-

tion f(x,θ|y) requires knowing the normalizing factor, i.e., the marginal likeli-

hood. Therefore, a simple factorized approximation q(x,θ)≈qx(x)qθ(θ) is used, and

the variational Bayesian algorithm iteratively maximizes the above lower bound of

log f(y) with respect to the free distributions qx(x) and qθ(θ). Elementary varia-

tional calculus leads to the following updating rules [8]:

q(t+1)
x (x) ∝ exp[

∫
log f(y,x|θ)q

(t)
θ (θ)dθ],

q
(t+1)
θ (θ) ∝ f(θ) exp[

∫
log f(x,y|θ)q(t+1)

x (x)dx].

Since qx(x) and qθ(θ) are coupled, the algorithm would iterate these equations

until convergence. The variational Bayesian EM algorithm has been studied with

a particular class of graphical models with latent variables, namely, the conjugate-

exponential models [8], which satisfy the following two conditions:

Condition (1): The complete data likelihood is that of an exponential family

p(x,y|θ) = f(x,y)g(θ)exp{φ(θ)Tu(x,y)}, where φ(θ) is the vector of natural pa-

rameters, and u, f and g are functions that define the exponential family.

Condition (2): The parameter prior is conjugate to the complete data likelihood:
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p(θ|η,ν) = h(n,ν)g(θ)ηexp{φ(θ)Tν}, where η and ν are the hyper-parameters.

The following theorem [8] has been well established for the conjugate-exponential

model.

Theorem 3.3.1. Given i.i.d. data set y = {y1, . . . , yn}, for the conjugate-exponential

model, at every iteration of the variational Bayesian EM algorithm and at the max-

ima of F(qx(x), qθ(θ),y):

(a) qθ(θ) is conjugate with parameters η̃ = η + n, ν̃ = ν +
∑n

i=1 ū(yi):

qθ(θ) = h(η̃, ν̃)g(θ)η̃exp{φ(θ)T ν̃}

where ū(yi) = Eqxi
[u(xi, yi)], and Eqxi

denotes the expectation under the variational

posterior over the latent variables associated with the ith data.

(b) qx(x) =
∏n

i=1 qxi
(xi) with

qxi
(xi) = p(xi|yi, φ̄) ≈ f(xi, yi)exp{φ̄Tu(xi, yi)}

where φ̄ = Eqθ [φ(θ)] is the expectation of the natural parameters.

3.3.1.2 DKF with variational Bayesian learning

In our DKF model, the latent variables are the system states to be estimated

x(1 : k) = {x(1), . . . ,x(k)}, and the observations are the malicious measurements

ya(1 : k) = {ya(1), . . . ,ya(k)}. In general, the attack vector can be modeled by

a Gaussian mixture model (GMM), as GMM comprises a finite or infinite num-
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ber of different Gaussian distributions that can describe different features of data.

To simplify the problem and focus on algorithm performance, we assume that the

attack vector is drawn from a single multi-variate Gaussian distribution with pa-

rameters µa and V a and the attack signals at each sensor are uncorrelated, so V a is

a block-diagonal matrix. Let V̂ = diag(V1 +V a
1 , . . . , Vn +V a

n ) and denote the model

parameters by θ = {µa, V̂ }, the marginal likelihood of the model is

f(ya(1:k))=

∫ n∏
i=1

f(yai (1:k)|x(1:k),θ)f(x(1:k))f(θ)dxdθ.

Denoting the Gaussian distribution by N(·), we have

f(yai (1 : k)|x(1 : k),θ) =
k∏
j=1

N(Hi · x(j) + µai , V̂i),

f(x(1 : k)) =
k∏
j=1

N(A · x(j − 1), Q).

Furthermore, we assume that µa and V̂ have conjugate priors, so the posterior

probability distribution of θ will be in the same family as the prior probability

distribution, i.e.,

µa|(µ0, ρ0, V̂ )∼N(µ0, V̂ /ρ0), V̂ −1|(γ0, B)∼W (γ0, B−1/γ0),

where µ0, ρ0, γ0 and B are hyper-parameters and W (·) represents the Wishart

distribution. Since the distributions f(ya(1 : k)), f(x(1 : k)) and f(θ) all belong

to the exponential family, following Theorem 3.3.1, we can obtain the updating

rules for the attack parameters µ̃ai = E[µai |y(1 : k)] and Ṽi(k) = E[V̂i|y(1 : k)] as
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in equations (3.1) and (3.2). For simplicity, we assume B is diagonal, that is, we

assume that the measurement noise is uncorrelated in each dimension.

µ̃ai (k) =
ρ0µ0

i +
∑k

j=1[yi(j)−Hi · x̂i(j)]
ρ0 + k

, (3.1)

Ṽi(k) =
[diag(ρ0µ0

i +
∑k

j=1 yi(j)−Hix̂i(j))]
2 + γ0Bi

γ0 + k

+
ρ0·[diag(µ0

i )]
2 +

∑k
j=1[diag(yi(j)−Hix̂i(j))]

2

γ0 + k
, (3.2)

where diag(v) represents a diagonal matrix whose diagonal entries are the compo-

nents of vector v. Equations (3.1) and (3.2) require all data until time k to compute

µ̃ai (k) and Ṽi(k), so they can not be computed online. We rewrite them in a form

using only current observations by collecting sufficient statistics, i.e.,

µ̃ai (k + 1) =
ρ(k)µ̄ai (k) + yai (k)−Hix̂i(k)

ρ(k) + 1
,

Ṽi(k + 1) =
γ(k)V̄i(k) + ρ(k)[diag(µ̄ai (k))]2

γ(k) + 1

− (ρ(k) + 1)[diag(µ̃ai (k))]2 + [diag(yi(k)−Hix̂i(k))]2

γ(k) + 1
,

ρ(k + 1) = ρ(k) + 1,

γ(k + 1) = γ(k) + 1.

Our DKF algorithm with variational Bayesian learning is presented in Table 3.3.
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Table 3.3: Algorithm III – DKF Algorithm with Bayesian Learning

1. Initialization: M̄i = M0, x̄i = µ0, V̄ = B,
µ̄a = µ0, ρ = ρ0, γ = γ0

2. For each node in the network
3. While new data exists do
4. Locally aggregate data and covariance matrices:

∀ j ∈ Ji, uj = HT
j V̄

−1
j (yaj − µ̄aj ), zi =

∑
j∈Ji

uj,

Uj = HT
j V̄

−1
j Hj, Si =

∑
j∈Ji

Uj
5. Compute the Kalman-consensus estimate:

M̂i = (M̄−1
i + Si)

−1,

x̂i = x̄i + M̂i(zi − Six̄i) + εM̂i

∑
j∈Ni

(x̄j − x̄i)

6. Compute the attack parameter estimate:

µ̃ai = (ρµ̄ai + yai −Hix̂i)/(ρ+ 1),

Ṽi = (γV̄i + ρ[diag(µ̄ai )]
2 − (ρ+ 1)[diag(µ̃ai )]

2 + [diag(yi −Hix̂i)]
2)/(γ + 1)

7. Update the state of the Kalman-consensus filter:

M̄i = AM̂iA
T +Q, x̄i = Ax̂i, ρ = ρ+ 1,

γ = γ + 1, µ̄ai = µ̃ai , V̄i = Ṽi
8. end while
9. end for

3.3.2 Performance evaluation

To evaluate the performance of our DKF algorithm with Bayesian learning, we

study the application where sensors are deployed to estimate the position of a moving

object in a R2 plane that approximately moves in circles. The output matrix is

Hi = I2 and the state of the process dynamics is 2-dimensional corresponding to the

continuous-time system ẋ = A0x + C0w with A0 = [0,−1; 1, 0] and C0 = 50I2. We

use the discrete-time model with step-size ζ = 0.02, i.e., x(k+ 1) = Ax(k) +Cw(k)

with parameters A = I2 +ζA0 +ζ2A2
0/2+ζ3A3

0/6 and C = ζC0. The sensor networks

used in our experiments consists of 100 randomly located nodes. The attack vectors

are drawn from Gaussian distributions with different mean vectors µa and covariance

matrices V a.

30



There are two main observations in our experiments. First, the algorithm

is very robust under attacks that have mean vector µa = 0. No matter what

is the value of V a and how many sensors are compromised, as long as there is

one sensor telling truth, the network always provides accurate estimates. Second,

the algorithm performs as majority voting when µa 6= 0. Figure 3.1 shows an

example. In Figure 3.1, the attacker try to deviate the estimation result by 10
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Figure 3.1: Perfomrance of DKF with Bayesian learning

in both directions, i.e., µai = [10, 10] and V a = diag([0, 0]). It’s found that the

performance is very good when 45 sensors are compromised, but degrades abruptly

when 55 sensors are compromised. The reason for the two observations is that in

Algorithm III the nodes use all the data received for estimation and resolve the

inconsistency among data by adjusting the estimated mean and covariance matrix

of the measurement noise. When µa = 0, the algorithm handles the perturbation on

the covariance matrix well since it knows that large noise covariance matrix indicates

low accuracy. But when the perturbation is on the mean value, the algorithm cannot
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identify compromised nodes and only the majority voting rule can be used.

One limitation of majority voting is that the network may be totally subverted

when more than half of the sensors are compromised. In the next Chapter, we will

discuss how to use the concept of trust to overcome this limitation and ensure

network robustness even when more than half of the sensors are compromised.
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Chapter 4

Enhancing Data Integrity using Trusted Cores

4.1 Motivation

Trust has been widely used for many applications, including e-commerce, peer

to peer networks, web-based services and distributed computing [39]. Incorporating

the concept of trust in wireless sensor networks has recently attracted considerable

research attention [24]. While traditional security methods are inadequate or too

complicated to protect the sensor networks, trust-based methods provide comple-

mentary security mechanisms.

Trust can appear in various ways and meanings in wireless sensor networks.

It can refer to the trustworthiness of a sensor, meaning whether the sensor has been

compromised. It can also refer to the trustworthiness of the data transmitted by

a sensor, or refer to the trustworthiness of a link, e.g., whether it is jammed. The

trust information can help different functionality of the network, such as routing,

data aggregation, and malicious node detection. There are also various ways to

numerically represent trust weights. Both continuous and discrete numerical values

are used in the literature. In [53], the trustworthiness of a certificate is described by

a continuous value in [0, 1]. In [37], trust opinion is represented by a triplet in [0, 1]3,

where the elements in the triplet represent belief, disbelief and uncertainty respec-

tively. Trust has also been interpreted as probability, e.g., subjective probability is
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used in [38], while objective probability is used in [40].

In our work, we present a special construction of a trust system in sensor

networks, namely, the trusted cores. The trusted cores are a special class of nodes

that have much higher levels of security than other regular sensor nodes in the

network. The motivation is that we may achieve better security for the entire

network at the cost of a small subset of highly secured nodes.

4.2 The general model

4.2.1 Computational model for trust

We consider two types of trust in our model: local trust and global trust. The

global trust weight assigned to a node is a unique vector, independent of other nodes

who are evaluating the node. A local trust weight from one node to another node

provides the personalized trust value that depends on the opinion of the evaluating

node. To handle the uncertainty on the possible existence of malicious nodes, we

assume that each node is in one of two states: normal or malicious. We denote the

state space of a node by S = {S1, S2}, where S1 is the normal state and S2 is the

malicious state. The true state of node i is denoted by S(i). Then, the local trust

opinion of node i on node j is defined by the transition probability matrix:

Pi,j=

Pr(S(i) = S1|S(j) = S1) Pr(S(i) = S1|S(j) = S2)

Pr(S(i) = S2|S(j) = S1) Pr(S(i) = S2|S(j) = S2)

 .
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The transition probability matrix Pi,j is actually a column stochastic matrix, i.e.,

the sum of elements in each column is equal to 1. We will use Pi,j(m,n) to describe

the element in the mth row and nth column of matrix Pi,j. We model Pi,j(m,n) by a

logistic function that depends on the Euclidean distance between the measurements

from two neighboring nodes i and j. We assume that neighboring nodes have similar

observations, so the larger the distance between the neighboring measurements,

the smaller the local trust values. Let i and j be neighbors that exchange the

measurements yai (k) and yaj (k) at the kth step, and denote dij(k) = ||yai (k)−yaj (k)||2.

We compute the conditional probability by

Pij(1, 1) = Pi,j(2, 2) = f(yai (k),yaj (k)) =
2e−dij(k)/α

1 + e−dij(k)/α
.

The reason that we set Pij(1, 1) = Pi,j(2, 2) is that there is no prior information

on whether the node is in a normal state or a malicious state, so we treat the two

cases as equally likely. The function f(yai (k),yaj (k)) is actually a ‘soft’ step function,

i.e., when dij(k) = 0, it equals to 1 and when dij(k) = +∞, it equals to 0. The

parameter α controls the slope and cutoff value of the function.

To accumulate previous experience into the local trust opinion, we update the

matrix P
(k)
i,j at the kth step by

P
(k)
i,j =(1−β)

 f(yai (k),yaj (k)) 1− f(yai (k),yaj (k))

1− f(yai (k),yaj (k)) f(yai (k),yaj (k))

+βP
(k−1)
i,j

where β is a time discount factor.
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The global trust value for node i is defined to be a 2 × 1 vector gi, which

represents the probability of node i in one of the two states, i.e.,

gi = [Pr(S(i) = S1),Pr(S(i) = S2)]T .

Given node j’s global trust value, node i’s posterior probability to be in one of the

two states can be computed by Pi,j · gj. Assuming a uniform prior for node i’s

neighboring nodes, the estimation of gi can be written as

gi =
1

|Ni|
∑
j∈Ni

Pi,j · gj.

As the global trust values for the trusted core nodes are known, we can prop-

agate the global trust from them to other regular nodes in the network. Denote

the set of indices of the trusted core nodes by T and the set of indices of other

regular nodes by U . Without loss of generality, we assume that the trusted core

nodes are indexed from 1 to t. Let gT = [gT1 , . . . ,g
T
t ]T , gU = [gTt+1, . . . ,g

T
n ]T ,

DUU = diag(|Nt+1|, . . . , |Nn|), PUU be the probability transition matrix from U to

U , i.e.,

PUU =



0 Pt+1,t+2 . . . Pt+1,n

Pt+2,t+1 0 . . . Pt+2,n

...
. . . . . .

...

Pn,t+1 . . . Pn,n−1 0


,
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and PUT be the probability transition matrix from U to T , i.e.,

PUT =



Pt+1,1 Pt+1,2 . . . Pt+1,t

Pt+2,1 Pt+2,2 . . . Pt+2,t

...
. . . . . .

...

Pn,1 . . . Pn,t−1 Pn,t


.

Then the computation of the global trust values for nodes in U can be written in a

matrix form, i.e.,

gU = D−1
UUPUU · gU +D−1

UUPUT · gT . (4.1)

It can be shown that the spectral radius ρ(D−1
UUPUU) is less than 1, as long as

there exist some paths that connect each regular node to one of the trusted cores.

The proof follows a similar procedure as in [15], which is given below.

Assuming that for each regular node i ∈ U , the number of i’s neighbors be-

longing to U is denoted by ui and the number of its neighbors belonging to T is

denoted by ti, i.e., |Ni| = ui + ti. Consider the eigenvalue equation

D−1
UUPUU · µ = λµ, (4.2)

where µ is a vector whose ith element is a 2× 1 vector. Let µi be the component of

µ that has the largest L1 norm. Consider the corresponding detailed equations in
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equation (4.2), i.e.,

1

ui + ti
(

∑
j∈Ni∩U

Pijµj) = λµi. (4.3)

Since we have

||
∑

j∈Ni∩U

Pijµj||1 ≤
∑

j∈Ni∩U

||Pijµj||1 ≤
∑

j∈Ni∩U

||Pij||1||µj||1

=
∑

j∈Ni∩U

||µj||1 ≤ ui||µi||1

By taking the L1 norm of equation (4.3) we have |λ| · ||µi||1 ≤ ui

ui+ti
||µi||1. Therefore

|λ| ≤ ui

ui+ti
. If ti > 0, i.e., node i has trusted core(s) as neighbor(s), we have λ < 1.

If ti = 0, we prove λ < 1 by contradiction. Assuming that |λ| = 1, we must have

||µj||1 = ||µi||1 in
∑

j∈Ni∩U Pijµj of equation (4.3). Then for each j ∈ Ni ∩ U , we

can repeat the above arguments. If there exists a path that connects node i and

a trusted core, we will hit a regular node k that has at least one trusted core as a

neighbor, i.e., tk > 0, which means that |λ| < 1. Therefore, for a network that there

exist some paths that can connect each regular node to a trusted core node, we have

ρ(D−1
UUPUU) < 1.

Since ρ(D−1
UUPUU) < 1, according to equation (4.1), we have

gU = (I −D−1
UUPUU)−1 ·D−1

UUPUT · gT . (4.4)

Using Theorem 4.2.1 [27] in the following statement, we can write equation (4.4) in
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an iterative way.

Theorem 4.2.1. Suppose b ∈ Rd and ∆
.
= M −N ∈ Rd×d is nonsingular. If M is

nonsingular and the spectral radius of M−1N satisfies the inequality ρ(M−1N) < 1,

then the iterates of x(k) defined by Mx(k+1) = Nx(k) + b converge to x = ∆−1b for

any starting vector of x.

Based on Theorem 4.2.1, the following Jacobi iteration will converge to the

solution of equation (4.4), i.e.,

∀i ∈ U , g
(k+1)
i =

1

|Ni|
[

∑
j∈U ,j∈Ni

Pi,jg
(k)
j +

∑
l∈T ,l∈Ni

Pi,lgl], (4.5)

which provides the distributed computation of a node’s global trust values.

The algorithm of global trust aggregation is described in Table 4.1. The con-

Table 4.1: Global trust aggregation algorithm

1. for each node i do

2. Query all nodes j ∈ Ni for g
(0)
j ;

3. do

4. Compute g
(k+1)
i = 1

|Ni| [
∑

j∈U ,j∈Ni
Pi,jg

(k)
j +

∑
l∈T ,l∈Ni

Pi,lgl];

5. Send g
(k+1)
i to all nodes j ∈ Ni;

6. Compute δ = |g(k+1)
i − g(k)

i |;
7. Wait for all nodes j ∈ Ni to return gk+1

j

8. until δ < ε
9. end for

vergence speed of the global trust aggregation depends on the graph structure. More

specifically, it is related to the second largest eigenvalue of the matrix D−1
UUPUU [31].

Experimental results show that this computation converges very fast, usually in less

than 10 iterations. Figure 4.1 shows the convergence of equation (4.5) in several
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different networks. These networks are randomly generated with uniform sensor

deployment with size 100. In each network, 10 randomly selected sensors are set as

the trusted core nodes with global trust value [0.95, 0.05]T .
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Figure 4.1: Convergence speed of global trust aggregation

4.2.2 Random walk interpretation

Imagine a random walk on the graph. Assuming that each node is in one of

two states, GOOD or BAD. Starting from a regular node i in state S(i), we move to

a node j in state S(j) with probability Pi,j(S(i), S(j)). The walk stops when we hit

a trusted core. Then gi(1) is the probability that the random walk, starting from

node i, hits a trusted core in GOOD state, while gi(2) is the probability that the

random walk hits a trusted core in BAD state. Intuitively, a node in GOOD state

will hit a trusted core in GOOD state with a higher probability, which explains why

our trust model works.
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4.2.3 Secure trust aggregation

In the previously presented algorithm, each node computes and reports its

own trust value. Malicious nodes could easily report false trust values to subvert

the system. To combat this, as discussed in [40], first, the trust value of a node

should not be computed by and reside at the node itself. We should have a different

node in the network computing the trust value of a node. Second, it will be in

the interest of malicious peers to return wrong results when they are supposed to

compute any node’s trust values. To overcome this situation, the trust value of one

node should be computed by more than one other nodes. Such schemes are usually

called secure score management schemes.

In peer to peer network, secure score management schemes depend on Dis-

tributed Hash Tables (DHT), such as EigenTrust [40], PowerTrust [83], etc. How-

ever, these DHT protocols typically interconnect nodes independently of their prox-

imity in the physical network topology, which is not suitable for energy constrained

sensor networks, as the DHT logical identifier space may actually be far apart and

each logical hop within a DHT may cost many packet transmissions. To satisfy the

constrained resources in sensor networks, we developed a secure score management

scheme based on the Virtual Ring Routing (VRR) [12] protocol.

VRR uses random unsigned integers to identify nodes and organizes the nodes

into a virtual ring in order of increasing identifier, with wrapping around zero. To

maintain the integrity of the virtual ring with node and link failures, each node

maintains a virtual neighbor set vset of cardinality r containing the node identifiers
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of the r/2 closest neighbors clockwise in the virtual ring and the r/2 closest neighbors

counter clockwise. Each node also maintains a physical neighbor set pset with the

identifiers of nodes that it can communicate with at the link layer. Fig. 4.2 from

[12] illustrates an example of the virtual ring with a 12-bit identifier space with

identifiers in base 16, and also the vset of the node with identifier 8F6 with r = 4.

Figure 4.2: Relationship between the virtual ring and the physical network [12]

VRR sets up and maintains routing paths between a node and each of its

virtual neighbors, which are called vset-paths. It can be shown that if the average

vset-path length is p, then a packet is expected to reach a node that has a vset-path

to the destination after visiting O(n/(rp)) nodes, which will add only a constant

stretch if p grows with
√
n, as in wireless ad hoc networks. VRR provides both

traditional point-to-point network routing and DHT routing to the node responsible

for a hash table key. More details can be found in [12].

We designed our secure score management scheme using the ability of VRR

to route messages sent to numerical keys to the node whose identifier is numerically

closest to the key. For each regular node i in the network, we assign node j as the

score manager of node i if it is the closest successor node of ki in the virtual ring
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space, where ki is the hash value of the identifier of node i by a predefined hash

function h1. To have multiple score managers for node i, we can use multiple hash

functions, namely, h1, . . . , hM , and we denote the score managers by s1(i), . . . , sM(i).

For each trusted core node k, we let it to be its own score manager.

During the trust aggregation, each trusted core node k submits its global trust

value gk to the score managers of its neighboring nodes. Each regular node i submits

the local trust values Pi,j, j ∈ Ni to its score managers sm(i), m = 1, . . . ,M . Since

node i also acts as other nodes’ score manager, if we denote the set of these other

nodes by Ci, node i also collects local trust values Pc,j, j ∈ Nc from all nodes c ∈ Ci.

In each round of trust update, node i will compute the value g
(k+1)
c based on Pc,j

and g
(k)
j , j ∈ Nc collected from the score managers of c’s neighboring nodes, then

send g
(k+1)
c back to these score managers. The update will stop if |g(k+1)

i − g(k)
i | < ε,

where ε is a small pre-defined constant. A summary of the secure trust aggregation

algorithm is described in Table 4.2.

By using such a secure score management scheme, a node in the network

will not be able to find out the node for whom it computes the trust values, so

malicious nodes cannot increase the reputation of other malicious nodes. Also by

using multiple trust score managers, possible conflicts arising from malicious nodes

presenting faulty trust values can be settled using a majority vote.
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Table 4.2: Secure trust aggregation algorithm

1. for each regular node i, do
2. submit local trust values Pi,j, j ∈ Ni to score managers sm(i), m = 1, . . . ,M ;
3. collect local trust values Pc,j j ∈ Nc for all nodes c ∈ Ci;
4. for each node c ∈ Ci, do
5. repeat

6. compute g
(k+1)
c = 1

|Nc| [
∑

j∈U ,j∈Nc
Pc,jg

(k)
j +

∑
l∈T ,l∈Ni

Pc,lgl];

7. send g
(k+1)
c to score mangers sm(j), j ∈ Nc, m = 1, . . . ,M ;

8. wait all nodes to return g
(k+1)
j , j ∈ Nc;

9. until |g(k+1)
i − g(k)

i | < ε
10. end
11. end
12. for each trusted core node k, do
13. submit gk to score managers sm(j), j ∈ Nk, m = 1, . . . ,M ;
14. end

4.3 Case study and performance evaluation

We now evaluate our trust aggregation algorithm in the setting of distributed

Kalman filtering. To handle the convergence of the distributed Kalman filtering

and the trust aggregation process together, we evaluate trust on a smaller time

scale than the DKF. That is, we let the trust aggregation algorithm achieve conver-

gence between each interval of state estimate updates in DKF. This is possible since

equation (4.5) converges very fast. Moreover, since an abrupt change to a node’s

trust value does not occur frequently, we can expect that after the first round of

trust aggregation, the following rounds will converge much faster.

Let ri = 1× gi(1) + 0× gi(2) be the trust weight of node i, which is also the

probability that node i is in the normal state. Figure 4.3 illustrates the performance

of the trust aggregation algorithm on distinguishing malicious nodes from normal

nodes. We can see that the trust weights for the normal nodes are much larger than
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Figure 4.3: Distribution of trust weights for nodes in the network

that of the malicious nodes.

In the trust-aware DKF algorithm, we weight the data sent by a node by its

trust weight ri. Table 4.3 presents the trust-aware DKF algorithm, where d(i) is

the degree of node i.

Table 4.3: Algorithm IV – Trust-aware DKF Algorithm

1. Initialization: M̄i = M0, x̄i = µ0

2. For each node in the network
3. While new data comes do
4. Locally aggregate data and covariance matrices:

∀ j ∈ Ji, uj = HT
j V

−1
j yaj , Uj = HT

j V
−1
j Hj,

zi =
(d(i)+1)

P
j∈Ji

rjujP
j∈J rj

, Si =
(d(i)+1)

P
j∈Ji

rjUjP
j∈Ji

rj

5. Compute the Kalman-consensus estimate:

M̂i = (M̄−1
i + Si)

−1,

x̂i = x̄i + M̂i(zi − Six̄i) + εM̂i
d(i)

P
j∈Ni

rj(x̄j−x̄i)P
j∈Ni

rj

6. Update the state of the Kalman-consensus filter:

M̄i = AM̂iA
T +Q, x̄i = Ax̂i

7. end while
8. end for

In Table 4.3, less trusted nodes have less impact on the algorithm. We can also

isolate those less trusted nodes by ignoring data sent from them. In this way, the
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algorithm can achieve better performance. We call this algorithm, of isolating less

trusted nodes, as Algorithm V. Table 4.4 shows the performance comparison of Al-

gorithm III from the previous chapter (DKF with Bayesian learning), Algorithms IV

and V (Trust-aware DKFs). In the experiments, we generate hundreds of networks

that consist of 100 uniformly distributed sensors, where 60 of them are randomly

selected to be compromised. We measure the algorithm performance by the mean

square error till time k, i.e., eMSE
i =

√
(
∑k

l=1(x̂i(l)− x(l))2)/k, where x̂i(l) is the

state estimation by sensor i at time l. In the experiment, we set k = 400. Since the

sensors can approximately achieve consensus in DKF [59], the estimated state x̂i(l)

is approximately the same for each sensor i, and so is the value of eMSE
i . Table 4.4

shows the average value of eMSE
i .

Table 4.4: Performance Comparison of Algorithm III, IV, V

µai , V
a
i [5, 5], 0 [5, 5], 2 [10, 10], 0 [10,10], 5

Algorithm III 4.7345 3.1572 9.8317 6.8935

Algorithm IV 1.2816 1.6131 3.3624 2.1507

Algorithm V 0.6724 0.5298 1.1997 0.8966

We can see that the trust-aware schemes (Algorithm IV and V) perform better

than the DKF algorithm with Bayesian learning (Algorithm III), and Algorithm V

performs better than Algorithm IV. The only drawback of Algorithm V is that the

isolation of the less-trusted nodes may lead to a disconnected network. Also we

observe that when V a
i 6= 0, the algorithms may perform better than the case when

V a
i = 0, which means that V a

i being non-zero in some sense reduces the impact of

µai on the estimated states.
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4.4 Discussion

In this chapter we proposed a secure distributed trust aggregation algorithm

that can utilize the existence of trusted cores to enhance data integrity and improve

network robustness. The trusted cores are a special class of nodes that have much

higher levels of security than other regular nodes. We show that as long as there

exist some paths that can connect each regular node to one of the trusted cores, the

network is robust even if more than half of the sensors are compromised. Future

research can be conducted to study the impact on algorithm performance due to the

changes on the number of trusted cores and their positions in the network. Also,

different models for the local trust opinion can be developed according to application

requirements.
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Part II

Sensor Network Monitoring and Anomaly Detection
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Chapter 5

Trust-assisted Network Probing and Anomaly Localization

5.1 Introduction

Due to the possibly unattended and hostile operating environment, a sensor

network may suffer from system failures due to loss of links and nodes, or malicious

intrusions. Therefore, it is critical to continuously monitor the overall state of

the sensor network to ensure its correct and efficient functioning. Compared to

the diagnosis protocols for the Internet, monitoring and diagnosing wireless sensor

networks pose unique challenges due to the low communication bandwidth and the

limited resources such as energy, memory and computational power in sensors.

Existing works on anomaly detection and localization in wireless sensor net-

works can be roughly divided into two categories: centralized and distributed. In

centralized approaches, a central controller takes responsibility of monitoring and

tracing anomalous behaviors in the network [64]. However, resource constrained

sensor networks can not always afford to periodically collect all the measurements

in a centralized manner. Distributed approaches address this issue by encouraging

local decision making: for example, nodes can rely on neighbor coordination such as

Watchdog [52] to detect misbehaving nodes. However, in a hostile environment, a

node may not report its status or its neighbors’ status honestly, and an intermediate

node can intentionally alter its forwarded messages. One possible solution for this
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problem would be to use only end-to-end measurements if the end nodes can be

trusted. Furthermore, it may be difficult to access individual nodes in large scale

sensor networks, and consequently end-to-end data provide valuable information for

inferring the internal status of the network. Making inferences using end-to-end

measurements has been extensively studied for wired networks such as the Internet

[23, 56]. However, these techniques cannot be directly applied to sensor networks

due to the constrained resources of sensor networks.

In this chapter, we present a trust-assisted framework for anomaly localiza-

tion in a heterogenous sensor network with a small set of nodes that have stronger

computation and communication capabilities. The set of stronger nodes is respon-

sible for collecting end-to-end measurements through a two-phase probing. In both

phases, the historic information on link trustworthiness is explored to achieve a good

tradeoff between the probing overhead and the inference accuracy.

5.2 Related Work

Network tomography. Anomaly inference from end-to-end measurements can be

generally categorized as a problem of network tomography, i.e., inferring a network’s

internal properties using information derived from end point data. It requires solving

a system of equations that relate the end-to-end measurements to link properties

such as packet loss rate, link delay, etc.. Most network tomography techniques are

developed for wired networks such as the Internet [23, 56, 28]. Duffield et al. [23]

formulated the network tomography problem as a set-cover problem and solved it on
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a tree topology to identify the most unreliable links of the network. In [56], Nguyen

et al. proposed a Boolean algebra based approach to improve inference accuracy by

an order of magnitude over previous algorithms. Gu et al. [28] presented an optimal

probing scheme for unicast network delay tomography that can provide the most

accurate estimation. However, these techniques usually incur high computational

complexity and probing overhead, and therefore are not suitable for sensor networks

due to the severe resource constraints.

Monitoring sensor networks. Monitoring wireless sensor networks has recently

generated a surge of interest from the research community [64, 57, 73]. Ramanathan

et al. [64] proposed Sympathy, which carefully selects a minimal set of metrics at

a centralized sink and uses an empirically developed decision tree to determine the

most likely causes of detected failures. Nguyen et al. [57] proposed inference schemes

based on maximum likelihood and Bayesian principles, which can isolate links with

high loss rates even with routing changes and noisy measurements. Wang et al.

[73] formulated the anomaly detection and localization problem as an optimal se-

quential testing guided by end-to-end data. They proposed a greedy algorithm that

can determine an optimal selection sequence of network measurements to minimize

testing cost, while the measurements are not limited to end-to-end behaviors. All

of the above mentioned work assume the existence of a centralized sink node which

is responsible for collecting required measurements, and rarely consider the strict

constraint on communication overhead. In our work, we do not use any central-

ized sink node but exploit a hierarchical network structure to improve bandwidth
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and energy efficiency. Furthermore, our work focuses on achieving a good tradeoff

between communication overhead and inference accuracy, which provides a more

practical and flexible solution for real-world applications.

Trust in sensor networks. We have discussed briefly on the concept of trust

in wireless sensor networks in the previous chapter. In this chapter, trust is as-

sociated with a communication link, which is computed according to the historic

observations of anomaly occurrences on the link. The information of link trustwor-

thiness enables us to achieve an effective tradeoff between algorithm performance

and resource consumption in sensor networks.

5.3 A trust-assisted two-phase probing and anomaly localization

5.3.1 Problem formulation

In this section, we describe the network model and define the problem of

anomaly localization. We use a two-layer heterogeneous network as illustrated in

Fig. 5.1. The lower-layer network is the main network responsible for environment

sensing and task execution. It consists of regular Mote-type sensor nodes with se-

vere energy and communication constraints. The upper-layer network is responsible

for monitoring the status of the lower-layer network by taking end-to-end measure-

ments. It consists of a set of nodes with stronger computation and communication

capabilities. These nodes are also highly trusted, e.g., they may be associated with

tamper resistant hardware, so they would not give false information. We found by
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experiments that a small number of the stronger nodes would be enough to mon-

itor a large network. The main concern of using such hierarchical structure is to

concentrate resource intensive computation and communication tasks only in the

upper-layer network, thus to prolong the lifetime of the lower-level network.

Figure 5.1: A hierarchical network structure

We assume that the anomalies may occur on any links in the monitored net-

work. These network anomalies typically lead to deviations of the end-to-end mea-

surements from the normal case, which can be explored for anomaly detection. We

will defer the discussion of the detection techniques in a later chapter. In this chap-

ter, we focus on how to probe the network to collect end-to-end measurements, and

given the detection results on individual paths, how to localize anomalous links that

are responsible for path anomalies.

Let P be the set of all end-to-end paths from the stronger nodes to the lower-

layer network nodes. Denoting the set of links that appear in P by E , we use

a matrix A of dimension |P| × |E|, namely the routing matrix, to represent the

information relating paths to links. Each row of A represents a path in P , and

each column represents a link in E . The entry aij equals to 1 if path Pi contains

link ej. Let xi be the indicator for the anomaly in path Pi, and yj be the indicator
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for the anomaly in link ej, i.e., xi = 1 indicates that Pi is anomalous, and yj = 1

indicates that link ej is anomalous. Assuming that |P| = np and |E| = ne, if the

network has no noise, the path Pi is anomalous if any of its links is anomalous, i.e.,

xi = 1 − Πne
j=1(1 − aijyj), so we have at most np constraints on ne variables. For a

sensor network with severe communication constraints, the number of observations

on path behaviors may not be sufficient to achieve a unique solution for the yj’s.

More generally, a practical network usually has some noise and follows the Noisy-OR

model [80], i.e., P (xi = 0|y) = (1 − ρj)
∏

j(aijρij)
yj where ρj is a leak probability

representing the probability that path Pj performs as anomalous even if all its links

are normal, and ρij is an inhibition probability representing the probability that link

ej in path Pi is anomalous but performs as normal. Therefore, exact inference for

the locations of the anomalous links may not be possible. We focus on the maximum

a posteriori estimation of the anomalous links.

A summary of the anomaly localization problem is as follows. We are given the

following information: (1) The set of wireless links E = {e1, . . . , ene}; (2) The set of

all paths P = {P1, . . . , Pnp}; (3) The routing matrix A = [aij]np×ne ; (4) Constraints

on probing overheads. The objective is to select a subset of paths in P to collect

end-to-end measurements under probing overhead constraints, and find the most

probable candidates of anomalous links.

Ideally, to monitor network status, probes should cover all links in the network

in order to detect all possible anomalies. However, probing all links at a rate that

is sufficiently fast for the detection may cost high communication overhead and

cause serious network congestion. In the following section, we propose a trust-
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assisted two-phase probing strategy for anomaly localization under communication

constraints. In the first phase, a small set of probes is sent to localize suspicious

areas and cover as many anomalous links as possible. In the second phase, probes

are sequentially selected based on previous probing results and sent only to the

suspicious areas to locate individual links responsible for the observed end-to-end

anomalous behaviors. In both phases, link trustworthiness information is utilized to

achieve the best possible performance under the given communication constraints.

5.3.2 Phase I: narrowing suspicious areas

Our first-phase probing scheme is motivated by the observation that different

links might be exposed to different levels of risks, e.g., the attacker may be more

likely to target some “important” links in the network. Therefore, the links should

be probed with different frequencies and priorities. The priority of a link can be

computed based on its trustworthiness and the obsoleteness of previously collected

information on the link. The probes are then selected to cover links of highest

priorities and satisfy a given communication constraint. The goal is to narrow the

suspicious areas to be examined in the second phase.

Problem Formulation For each link ei ∈ E at time k, we assign a trust value

ti(k) ∈ [0, 1) to represent the expected probability of ei being normal. To maintain

this trust information, we adapt to our probe selection scenario the Beta reputation

system [38], which is well known for its simplicity, efficiency for capturing user

trustworthiness and its firm foundation on the theory of statistics.
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The Beta reputation system is based on the beta probability density function

that can be used to represent probability distributions of binary events. It provides a

sound mathematical basis for combining feedback and expressing reputation ratings

[38]. In the Beta reputation system, the posterior probability of binary events, i.e.,

in our case, the probability pi(k) of whether the link is normal, is represented by a

beta distribution with parameter αi(k) and βi(k), i.e.,

f(pi(k)|αi(k), βi(k)) =
Γ(αi(k), βi(k))pi(k)αi(k)−1(1− pi(k))βi(k)−1

Γ(αi(k))Γ(βi(k))
,

where Γ(·) is the gamma function.

Given previously observed states of link ei till time k, we denote the number

of events that ei is normal by ri(k) and the number of events that ei is anomalous

by si(k), then αi(k) and βi(k) can be represented by αi(k) = ri(k) + 1 and βi(k) =

si(k) + 1. Note that the variable pi(k) is a probability variable, and for a given

pi(k) the probability density f(pi(k)|αi(k), βi(k)) is a second order probability that

represents that the first order variable pi(k) has a specific value. Since pi(k) is

continuous, the second order probability f(pi(k)|αi(k), βi(k)) for any given value of

pi(k) will be vanishingly small and therefore meaningless [38]. Therefore, we define

the link trust value ti(k) to be the expected value of pi(k),

ti(k) = E[pi(k)] =
α(k)

α(k) + β(k)
=

ri(k) + 1

ri(k) + si(k) + 2
.

Fig. 5.2 shows the trust values for a link that has 20 normal behaviors first, then
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followed by 20 malicious ones. The initial trust value for the link is set to be 0.5.
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Figure 5.2: Link trust values

Since links may change behaviors over time, old observations are less relevant

for the current trust value, thus should be given less weight. Time discounting

factors can be introduced to gradually forget the old observations. In our case, we

let αi(k + 1) = κ1αi(k) + Ii(k + 1) and βi(k + 1) = κ2βi(k) + 1 − Ii(k + 1), where

Ii(k + 1) is the indicator function for whether the (k + 1)th observation of link ei is

normal, and 0 < κ1, κ2 ≤ 1 are the forgetting factors. The forgetting factors κ1 and

κ2 can be set differently, e.g., if we want to punish more on the occurrence of an

anomalous event, i.e., decrease trust value, we can set κ2 > κ1. For example, Fig.

5.3 shows the trust values for a link that has the same behaviors as in Fig. 5.2, but

with κ1 = 0.5 and κ2 = 0.8. We can see that the link’s trust value decreases very

fast after only a few malicious behaviors.
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Figure 5.3: Link trust values with forgetting

In our reputation system the trust value of a link only changes after we probe
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it, therefore, another important factor that must be taken into account is the obso-

leteness of this trust information. For example, if a link has a high trust value, but

it is obtained long time ago, this link should still have higher priority to be probed.

In this way, the trust information about all the links can be maintained at relatively

recent values, i.e., not stale values. We let the obsoleteness of link trust information

decrease exponentially with the number of rounds that the link is not probed. Let

Ai(k) denote the event that ei is not probed in the kth interval and ACi (k) denote

the opposite event. Then we define the link obsoleteness value to be

oi(k + 1) =


1− (1− oi(k))e−τ , if Ai(k),

0, if ACi (k).

where τ > 0 is a parameter controlling the fading speed of the information. The

more recent a link is probed, the smaller its obsoleteness value is. Let

wi(k) = ρ · (1− ti(k)) + (1− ρ) · oi(k),

with ρ being a parameter that adjusts the relative importance of the trust value

vs. the obsoleteness value. Then wi(k) can be used as a weight that indicates

the urgency of probing link ei. Note that our definition of link weights is only

one possible way, the link weights can also be defined in other ways if some other

information is known. As long as the link weight information is available, the first-

phase probing selection can be formulated as an optimization problem.

Assume that hi is the length of path Pi, and h0 is the probing overhead con-
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straint such that the number of links traversed by the probes can not be larger than

h0. Let ui be the indicator function for selecting path Pi, i.e., ui = 1 means that

path Pi is selected, and vj be the indicator function for selecting link ej, the probe

selection problem can be defined as

max z =
∑
j∈E

wj · vj, (5.1)

s.t. ∀ i ∈ P , ui ∈ {0, 1},
∑
i∈P

hiui ≤ h0, (5.2)

∀ j ∈ E , vj ∈ {0, 1}
∑
i∈P

aijui − vj ≥ 0. (5.3)

Constraint (5.2) represents the probing overhead constraint and constraint (5.3)

represents the fact that one link may belong to multiple paths.

The above optimization problem belongs to the class of the budgeted maximum

coverage problem [44], which is NP-hard. Khuller et al. [44] proposed a (1 − 1/e)

approximation algorithm that achieves a best possible approximation ratio, i.e., the

ratio of the objective value obtained by the approximation algorithm to the optimal

objective value is lower bounded by (1 − 1/e). However, their method involves an

enumeration of all subsets of P that have cardinality k, where k ≥ 3, which is

prohibitively computationally expensive for an implementation in sensor networks.

To solve the optimization problem efficiently, we propose an approximation al-

gorithm that has very low computational complexity. We also provide a numerical

performance bound for our algorithm. In addition, experimental results demon-

strate that our algorithm achieves not only low computation overhead but also high

approximation factor.
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The approximation algorithm. The approximation algorithm and its analysis

are based on linear programming duality. To solve the optimization problem, we

first relax the integer constraints in (5.2) and (5.3) to pairs of linear constraints

0 ≤ ui ≤ 1 and 0 ≤ vj ≤ 1. It can be further shown that 0 ≤ ui ≤ 1 and 0 ≤ vj ≤ 1

can be equivalently changed to ui ≥ 0 and vj ≤ 1. Then the dual problem of the

original optimization problem can be written as

minλ,γ λh0 +
∑
j∈E

γj (5.4)

s.t. ∀ i ∈ P , λhi +
∑
j∈E

aijγj ≥
∑
j∈E

aijwj = w̃i, (5.5)

where λ, γj for j = 1, . . . , ne, are Lagrange multipliers, and w̃i is the sum of the link

weights for path Pi.

We denote the set of selected paths as X , the set of links covered by X as E(X ),

and the total hop counts of the paths in X as hops(X ). Note that hops(X ) is usually

larger than |E(X )| as paths can have overlapping links. Let q0 = arg maxi∈P w̃i/hi,

the algorithm starts with the feasible dual solution X = {Pq0}, hops(X ) = hq0 ,

λ = w̃q0/hq0 and γj = 0 for j ∈ E(X ). Then in each iteration, the basic idea

is to reduce the dual objective value while improving the primal objective value.

Initially, the objective value of the dual problem is λh0 and only the qth0 constraint

in (5.5) is active. To reduce the dual objective value in each iteration, we choose one

inactive constraint in (5.5), say, the ith constraint and make it active. We reduce

the value of λ by a constant β and raise the value of γj by the same amount β.

Let overlap = |E({Pi}) ∩ E(X )| be the number of overlapping links between Pi and
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X , the change to the left side of the ith constraint will be −hi · β + overlap · β < 0

as hi = |E({Pi})| ≥ overlap. Therefore, the ith constraint can be made active

with a properly selected positive value of β. In order to keep the dual solution

feasible, all other constraints should not be violated, so the chosen constraint must

be associated with the smallest β among all the inactive constraints. For the already

active constraints, the change of their left side equations will be−hi·β+
∑

j aij ·β = 0,

so they are still active and not violated. After each iteration, the change of the dual

objective value is β ·(|E(X )|−h0). Since |E(X )| < hops(X ), the dual objective value

will be reduced as long as the primal solution is feasible, i.e., hops(X ) ≤ h0. The

algorithm will terminate as soon as the communication constraint is violated, i.e.,

hops(X ) > h0. Table 5.1 provides a summary of the algorithm.

The probe selection algorithm is performed among the stronger nodes in the

higher-layer network. Each of these nodes maintains a partial view of the network,

i.e., the information of the links that constitute its monitored paths, which can

be extracted from the routing protocol running in the lower-layer network, and

the corresponding link weights, which are updated locally by the Beta reputation

system. In the algorithm described in Table 5.1, except for the computation of

(max w̃i/hi) in the 1st line and the computation of (min βi) through lines 4-10 , all

other computations are local; i.e., they can be executed locally by individual nodes

without exchange of information. The distributed computation of minimum can

be achieved easily by maintaining a spanning tree among the stronger nodes [7].

Furthermore, the iterations in the ‘While-end’ statement through lines 2-19 can be

finished in less than h0/hmin rounds, with hmin being the length of the shortest path
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Table 5.1: A sequential algorithm for first-phase probe selection

1 Initialization: q0 = arg maxi∈P w̃i/hi,
X = {Pq0}, hops(X ) = hq0 , λ = w̃q0/hq0 , γj = 0.

2 While hops(X ) < h0,
3 β = inf, idx = 0
4 for each i /∈ X
5 overlap = |E({Pi}) ∩ E(X )|

6 βi =
λ·hi+

P
j∈E aijγj−w̃i

hi−overlap

7 if β > βi
8 β = βi, idx = i;
9 end
10 end
11 if hops(X ) + hidx <= h0

12 λ = λ− β,
13 ∀ i ∈ E(X ), γi = γi + β,
14 ∀ i /∈ E(X ), γi = γi,
15 X = X ∪ Pidx,
16 else
17 terminate
18 end
19 end

in P . Since the number of the stronger nodes is small, the communication cost for

this algorithm can be kept low.

We also derive the performance bound for the proposed approximation algo-

rithm, as given in Theorem 3. The proof is given in Appendix A.1.

Theorem 5.3.1. Assuming that the algorithm in Table 5.1 terminates after l1 it-

erations and the primal solution is X = {Ps1 , . . . , Psl1
} with objective value zp, and

let us denote the optimal objective value for the primal problem by z∗. Then zp can

be lower bounded by zp > z∗

δ(1+r/l1)
, where δ is the maximum number of paths in X

that intersect at the same link, and r = hmax/hmin, with hmax and hmin being the

maximum and minimum path lengths.
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Experimental results show that our method can achieve good approximation

ratios. Fig. 5.4 shows the approximation ratios for our method and the literature

method, where we generate networks with different sizes and the sensor nodes are

uniformly distributed. The results are averaged over 100 simulation traces. More

detailed descriptions of experimental settings can be found in a later section.
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Figure 5.4: Comparison of our method and the literature method

After the probes are selected and sent, the higher layer network nodes will

do hypothesis testings to detect anomalous paths based on the collected end-to-

end measurements. The detection is based on identifying significant measurement

deviations from the normal state. More details can be found in Chapter 6.

5.3.3 Phase II: locating malicious links

The goal of the second-phase probing is to find the individual links responsible

for the observed path anomalies. In this phase, additional probes are sequentially

selected according to previous observations and the predicted diagnosis quality. This

online selection is typically more efficient than its offline counterpart [65], where the

offline method attempts to select the set of probes before any observations are made.
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The proposed algorithm Denote the second-phase probe selection strategy by

π, the states of links in E by Y , and assuming that the observed path states from

the first phase is represented by x1, then the diagnosis quality of the probe selection

strategy π can be represented by f(π) = H(Y|x1) − H(Y|x1, φ(π)), where H(·)

represents the entropy of a random variable, and φ(π) represents the observed path

state based on the collected end-to-end measurements by implementing strategy π.

Let h(π) be the communication overhead for implementing π, measured by

the number of links traversed by the selected probes, and h̃0 be the communication

constraint for the second phase. Then the probe selection problem in this phase can

be formulated as to find a policy π∗ such that

π∗ = arg max
π

Eπ[H(Y|x1)−H(Y|x1, φ(π))], s.t. h(π) ≤ h̃0.

Solving this problem is equal to solving a finite-horizon Markov Decision Problem

(MDP) that has exponential state space [26], which is NP-hard.

A widely used method for solving this type of problem is to use a heuristic

greedy approach that iteratively selects the probe that provides the largest reduc-

tion in uncertainty at each step [80, 18]. More specifically, let XC represent the

previously sent probes, including the probes sent in the first phase. Assuming that

the observations for XC are denoted by xC , and the probing overhead is h(XC), then

the next probe is selected to be

i = arg max
j:hj≤h̃0−h(XC)

H(Y|xC)−H(Y|xC , Xj), (5.6)
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where hj is the hop count for path Pj and Xj is a random variable representing the

unknown state of path Pj. We will first a provide performance bound for this greedy

algorithm and then discuss its implementation issues.

Theorem 5.3.2. Assuming that the obtained diagnosis quality, i.e., the reduced

uncertainty on link states, by the greedy algorithm is ∆̃, and the optimal diagnosis

quality is ∆∗, then ∆̃ can be lower bounded by ∆̃ ≥ (1 − e−l2·hmin/h̃0)∆∗, where l2

is the number of probes selected by the greedy algorithm, hmin is the minimum path

length, and h̃0 is the probing overhead constraint in the second probing phase.

We now discuss how to implement the greedy algorithm according to equation

(5.6). Fig. 5.5 illustrates the graphical model, where X = {X1, . . . , Xnp} is the set

of the evidence nodes that represent path states which can be observed by probing,

and Y = {Y1, . . . , Yne} is the set of the latent nodes that represent link states which

can only be inferred from path observations.

Figure 5.5: Graphical Model: Bayesian Network

By simple algebraic manipulation, it is found that

H(Y|xC , Xj) = H(Y|xC)−H(Xj|xC) +H(Xj|Ypaj
,xC),
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where Ypaj
is the set of the parent nodes of Xj in the graphical model. Then,

equation (5.6) becomes

i = arg max
j:hj≤h̃0−h(XC)

H(Xj|xC)−H(Xj|Ypaj
,xC). (5.7)

Therefore, only H(Xj|xC) and H(Xj|Ypaj
,xC) need to be computed for the sequen-

tial probe selection. The computations can be carried out using a variant of the

Loopy Belief Propagation algorithm (LBP) [9].

LBP [9] is a message passing algorithm for performing inference on graphical

models, where it calculates the marginal distribution for each unobserved node,

conditioned on any observed nodes. A typical graphical model for performing LBP

is a Markov network with pairwise potentials, so that the joint distribution factors

according to ∏
s,t

Ψ(s, t)
∏
s

Ψ(s),

where s, t represent the nodes in the Markov network and Ψ(·) represents the

potential function. A graphical model with higher-order potential functions can

always be converted to a graphical model with only pairwise potential functions

[74].

In a Markov network, the LBP can be expressed as an iterated message-passing

process among nodes. Let µit→s(s) denote the outgoing message in the ith iteration
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from node t to a neighbor node s. Then µit→s(s) can be computed as

µit→s(s) ∝
∑

Ψ(t, s)
∏

u∈nb(t)\s

µi−1
u→t(t),

where nb(t) represents the set of neighboring nodes of t. The belief, or, marginal

probability of node t can be calculated by

pi(t) ∝ Ψ(t)
∏

u∈nb(t)

µiu→t(t).

In practice, the iterated LBP process can often arrive at a reasonable approxima-

tion to the correct marginal distributions. The fact that no global coordination is

required for LBP makes it suitable for sensor network applications.

We first convert our Bayesian network model in Fig. 5.5 to a Markov network

with pairwise potentials, as shown in Fig. 5.6. The conversion process is simple

Figure 5.6: Markov Network with pairwise potentials

and typical. For any evidence node Xi in Fig. 5.5, we create a compound node Ui

into which the parent nodes of Xi are clustered. This compound node is then con-
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nected to Xi and the individual parent nodes. To make the probability distribution

identical, we set the potential function Ψ(Ui, Xi) to be the conditional probability

P (Xi|Ypai
) and the potential function between Ui and an individual parent node

Yj ∈ Ypai
to be P (Yj). For example, in Fig. 5.5 if node Y1 and Yr are the only com-

mon parent nodes for node X1, then we create a compound node U1 and connect it to

X1, Y1 and Yr. The corresponding potential functions are Ψ(U1, X1) = P (X1|Y1, Yr),

Ψ(U1, Y1) = P (Y1) and Ψ(U1, Yr) = P (Yr). In this way, the Bayesian network in Fig.

5.5 can be converted into the Markov network in Fig. 5.6. The joint probability for

the Markov network is

P (X ,Y) =
∏
Ui,Xi

Ψ(Ui, Xi)
∏
Ui,Yj

Ψ(Ui, Yj),

which contains only pairwise potentials and is identical to the joint probability

corresponding to the Bayesian network shown in Fig. 5.5 .

We then perform sequential probe selection according to equation (5.7) based

on a variant of LBP executed on the Markov network. First, the LBP algorithm

already provides the marginal distribution P (Xj|xC) at node Xj, so H(Xj|xC) can

be easily computed as
∑
xj

P (xj|xC) logP (xj|xC) at node Xj.
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To compute H(Xj|Ypaj
,xC) in equation (5.7), we can write it as

H(Xj|Ypaj
,xC) = −

∑
Ypaj

P (ypaj
, xj|xC) logP (xj|ypaj

)

= −
∑
Ypaj ,xj

P (ypaj
, xj|xC) logP (ypaj

, xj|xC)

+
∑
Ypaj

P (ypaj
|xC) logP (ypaj

|xC). (5.8)

The second term in the right side of equation (5.8) can be computed using the

marginal distribution in the compound nodes. For example, if Ypaj
denotes the

set of parent nodes for node Xj, then it’s straightforward to see that the marginal

distribution at the compound node Uj is P (Ypaj
|xC). For the first term in the right

side of equation (5.8), we can compute it by piggybacking an additional message in

LBP. More specifically, in the ith iteration of LBP, the message from the Uj to Xj is

µiuj→xj
=

∑
Ypaj

Ψ(Uj, Xj)
∏

yi∈Ypaj

µi−1
yi→uj

= P i(xj|xC).

Therefore, P (ypaj
, xj|xC) can be obtained at the compound node Uj using

P (ypaj
, xj|xC) = Ψ(Uj, Xj)

∏
yi∈Ypaj

µi−1
yi→uj

,

We thus have finished the computation for sequential probe selection according to

equation (5.7).
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Implementation Issues. There are two main concerns for the implementation of

the above mentioned algorithm. First is the mapping from the graphical model to

the sensor network, as we should limit messaging across sensors whenever possible in

order to save resources. Second is that whenever an additional probe is selected, the

beliefs need to be updated, which requires repeated executions of LBP and may lead

to very high computational complexity. We first describe how to map the graphical

model to the sensor network and then propose a heuristic algorithm to speed up the

inference algorithm by utilizing the redundancy in each execution of LBP.

Mapping the graphical model to the sensor network. In the graphical model

Fig. 5.6 , the evidence nodes X , compound nodes U , and latent nodes Y are

connected by edges that represent statistical correlations. On the other hand, in

the sensor network, sensor nodes are connected through wireless channels, thus

constitute a communication graph. The communication graph is in general different

from the graphical model, so the graphical model must be mapped to the sensor

network and then we can assign inference functions in each individual sensor node.

More specifically, we assign each graphical model node to a unique sensor node so

each sensor node is associated with a subset of the graphical model nodes and it will

be responsible for handling the belief propagation within the subset of graphical

model nodes assigned to it, and also to other graphical model nodes assigned to

other sensor nodes.

Since the evidence nodes X correspond to the path state, we can assign each

of them to the higher-layer network sensors that monitors the corresponding path.
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Each compound node Ui corresponds to an evidence node Xi, so it can be assigned

to the same sensor node as Xi. The assignment of the latent nodes is a little more

involved as in the graphical model, the compound nodes are coupled through the

latent nodes. However, we can decouple the compound nodes by making duplicated

copies of the latent nodes. Similar ideas have been used in [69] for mapping a Markov

Random Field (MRF) to a sensor network.

Assuming that in the Markov network Fig. 5.6, the compound nodes Up and

Uq are coupled through a latent node Yr, i.e. Yr is a common neighboring node for

both Up and Uq, the corresponding sensor nodes assigned to Up and Uq, denoted

by Sp and Sq, are assumed to be connected through a path consisting of the sensor

nodes (Sr1 , . . . , Srn). In order to assign the latent node Yr to sensor nodes, we add

new latent variables (Zr1 , . . . , Zrn) to the original graphical model, remove the link

from Yr to Uq, and add new links for (Yr, Zr1), (Zr1 , Zr2), . . . , (Zrn−1 , Zrn), (Zrn , Xq)

with

Ψ(Zr1 , Yr) = I(Zr1 = Yr),

Ψ(Zrk+1
, Zrk) = I(Zrk+1

=Zrk), k = 1, . . . , n−1,

Ψ(Xq, Zrn) = P (Xq|Yr),

where I(·) is the indicator function. The newly added variables (Zr1 , . . . , Zrn) are

assigned to the sensor nodes (Sr1 , . . . , Srn) and the latent variable Yr is assigned to

the sensor Sp. Fig. 5.7 illustrates the process.

All coupled pairs of the compound nodes can be decoupled in this way, and
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Figure 5.7: An example of mapping an MRF to a sensor network

the latent nodes can be assigned to corresponding sensor nodes.

Belief Updating. Belief updating is the most computationally intensive part in

the second-phase probe selection algorithm as the beliefs need to be updated each

time when one additional probe is collected. In [80], Zheng et al. also utilized be-

lief propagation for online probe selection, however, the computation complexity is

pretty high in their implementation due to the repeated executions of belief propa-

gation. In [18], Cheng et al. proposed to improve algorithm efficiency based on an

observation of approximated conditional independence of probes, but their method

does not hold true in the online scenario where each probe is sequentially selected

according to previous observations.

We propose a heuristic algorithm that exploits the redundancy in the repeated

executions of LBP to reduce computational complexity. It is based on the obser-

vation that adding one evidence at a time may only affect a small region in the
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graphical model. Therefore, messages should be updated only in that region. A

similar principle is used for expanding frontier belief propagation (EFBP) in [55].

However, EFBP focuses on the case where the choice of evidence variables is fixed

but the evidence changes, while in our case the choice of evidence variable is not

fixed, i.e., one more evidence is added each time.

Our algorithm starts with one run of the full LBP algorithm to select the first

probe given the observations from the first-phase probing. Then for each time when

an additional probe is sent and the corresponding path state xi is observed, the

message from xi to its neighboring nodes in the graphical model, will be updated

and sent if and only if it differs by ε from the previous one, when xi last participated

in belief propagation. Similarly, if the neighboring node receives a new message, it

will update and send messages to its own neighbors if and only if the new message

differs by ε from the last one it received. Table 5.2 summarizes the algorithm, where

h(xi) represents the hop count of the path xi, h̃0 is the communication constraint

for the second phase, and µ
[k,i]
s→t represents the message from node s to node t in the

ith iteration of the kth run of our approximated LBP.

In most cases, the effect of adding one evidence dies out very quickly, so the

number of message passing is greatly reduced compared to the full LBP algorithm.

It is found by experiments that our heuristic approximation algorithm can achieve

similar performance as the repeated executions of full LBP, while the speed is more

than one order of magnitude faster.

We now provide a performance bound for the difference of the estimated

marginal probabilities using LBP and our heuristic approximation method. In our
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Table 5.2: An improved LBP based algorithm for second-phase probe selection

1 Initialization: perform LBP to select the first

probe x1, obtain initial belief messages µ
[0]
·→·,

k = 1, hk = h(x1),

converged = false, S [k,0] = {x1},
2 while hk <= h̃0

3 i = 1
4 while converged == false

5 converged = true, S [k,i] = ∅
6 for s ∈ S [k,i−1]

7 for t ∈ N (s)

8 compute µ
[k,i]
s→t based on new

received message

9 if |µ[k,i]
s→t − µ

[k,i−1]
s→t | > ε

10 converged = false,

11 send µ
[k,i]
s→t to t

12 µ
[k,i−1]
s→t = µ

[k,i]
s→t, S [k,i] = S [k,i] ∪ t

13 end if
14 end for
15 end for
16 i = i+ 1
17 end while
18 k = k + 1
19 select the kth probe xk, hk = hk−1 + h(xk)

20 S [k,0] = {xk}
21 end while

approximation method, the belief message µis→t from node s to node t in the ith

iteration could be different from the true value µ̃is→t by at most ε. This difference

can be treated as a multiplicative error eis→t, i.e., µis→t = µ̃is→t · eis→t, where eis→t is

bounded by

1− ε/µ̃is→t ≤ eis→xi
≤ 1 + ε/µ̃is→t.

In [34], Ihler et al. introduced the concept of dynamic range of a function, defined
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to be d(f) = supa,b f(a)/f(b). In our case, the dynamic range of eis→t is bounded by

d(eis→t) ≤
1 + ε/µ̃is→t(a)

1− ε/µ̃is→t(b)
= δ(eis→t).

Then, according to the Theorem 15 in [34], we have the following theorem.

Theorem 5.3.3. Denote p∗t as the marginal probability of node t in the graphical

model of Fig. 5.6 estimated by LBP at convergence, and pnt as the marginal proba-

bility of node t using our approximation method after n iterations. Then we have

log d(pnt /p
∗
t ) ≤

∑
u∈nb(t)

log vnut,

where vnut is defined by the iteration

log vi+1
ts = log

d(Ψ(t, s))2γits + 1

d(Ψ(t, s))2 + γits
+ log δ(eit→s),

log γits =
∑

u∈nb(t)\s

log viut,

with the initial condition v1
ut = δ(eis→t) · d(Ψ(u, t))2, where d(Ψ(t, s)) is the dynamic

range for the potential function Ψ(t, s).

Proof. The theorem is a direct application of Theorem 15 in [34] with d(es→t) ≤

δ(eit→s) calculated for our case.
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5.4 Evaluations

5.4.1 Experiment setup

To evaluate the performance of the proposed algorithm, we generate a set of

different networks. The sensor nodes are uniformly deployed in a square field. Each

node is assumed to have identical transmission radii. If an edge between two nodes

is not greater than the radii, the two nodes are 1-hop neighbors. This is a widely

used model called “unit disk model” [47]. We employed the model here due to

its simplicity, so we can focus more on the performance of our algorithm. Table

5.3 summarizes the parameters for the evaluated networks with different sizes. For

each type of networks, we averaged the parameters and experimental results over

100 simulations. Fig. 5.8 shows some example network topologies used in our

experiment. In the generated networks, a small number, i.e., 5 ∼ 7 of the nodes

are randomly selected as the higher-level stronger nodes to collect the end-to-end

measurements. The monitored paths from the stronger nodes to other regular sensor

nodes follow the shortest path calculation. Initially, all the monitored paths are

considered as the suspicious paths in the network, i.e., they constitute the candidate

probe set.

The focus of our experiments is to evaluate the probe selection algorithm for

anomaly localization. We explicitly do not focus on the accuracy of the detection

scheme on individual path measurements. For this reason, rather than creating

network anomalies endogenously by simulating possible malicious attack scenarios,

we assume that the ground truth for the malicious links is known in advance. The
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Table 5.3: Network parameters

Net Avg. Num. Num. Num. Avg.
size node of of Num. path

degree M nodes links paths lengths

100 5.36 5 268 485 3.30

200 5.06 5 506 985 5.21

300 4.68 5 702 1779 5.30

400 5.09 5 1049 1985 6.39

500 6.27 7 1568 3472 7.83
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Figure 5.8: Example network topologies

effect of the performance of any employed detection scheme is captured as noise in

the Noisy-OR model. The occurrence of an anomaly on each link in the network

is modeled as a Bernoulli process. The probability associated with each Bernoulli

process can be adjusted for different anomaly densities, i.e., to make the anomaly

density higher, the success probability of the Bernoulli process will be increased.

For simplicity, we assume that once an anomaly occurs on a link, the link remains

anomalous until being detected.

An individual simulation experiment proceeds as follows. In the first phase, a
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small set of probes is selected and sent, given the communication constraint. Based

on the anomalous path measurements discovered by these probes, we reduce the sus-

picious area for the second phase probing. More specifically, the candidate suspicious

paths for the second phase will only contain those paths that are intersecting with

the discovered anomalous paths in the first phase. We then perform a second phase

probing, in which, the probes are sequentially selected to maximize the predicted

diagnosis quality under the constraint on probing overhead. For each additional

probe selection, our approximate LBP algorithm is performed. When the probing

overhead constraint is violated, we stop sending probes and infer the locations of

malicious links that are responsible for all the observed path anomalies during the

two phase probing. The inference is a maximum a posteriori estimation based on

LBP.

We implement our algorithm in MATLAB and report results for the two prob-

ing phases under different experimental settings, including different network sizes,

communication constraints and anomaly densities. Since existing works typically do

not consider a strict communication constraint, we design and implement a simple

baseline algorithm that can work under communication constraints and compare

our trust-assisted algorithm with the baseline algorithm. The baseline algorithm is

assumed to be not aware of the link trust information. It follows the same proce-

dures as the trust-assisted algorithm but assumes that each link is equally likely to

be anomalous with probability 0.5.
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5.4.2 Experimental results

First-phase probing. The first-phase probing generates a set of candidate probes

for the second phase probing. The goal is to narrow the suspicious area in the

network while cover as many anomalous links as possible given the communication

constraint. To measure the probe selection performance for this phase, we propose

two metrics based on the generated candidate probe set.

The first metric is the anomaly coverage rate, which is computed as the ratio of

the number of anomalous links in the generated candidate probe set to the number of

all anomalous links in the network. It measures our expectation that the candidate

probe set should cover as many anomalous links as possible. The second metric is the

suspicious area measured by the size of the candidate probe set. With smaller size

of candidate probe set, the second phase probing can be faster. These two metrics,

to some level, measure two conflicting properties of the candidate probe set, i.e.,

a large candidate probe set usually contains more anomalous links. However, we

want to optimize the tradeoff between the two metrics. The ideal case would be

to have a small candidate probe set but cover all the anomalous links. Considering

the randomness of anomaly occurrences in the network, this is not always possible.

We show that our trust-assisted algorithm can achieve relatively good performance

on optimizing the tradeoff between the two metrics, when compared to the original

candidate probe set and the one generated by the baseline method.

Fig. 5.9(a) shows the anomaly coverage rates for our trust-assisted method

and the baseline method in different networks under the same communication con-
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straints. Fig. 5.9(b) shows the size of the corresponding candidate probe sets. The

x-axis in the two figures correspond to the network size while other network pa-

rameters are shown in table 5.3. The number above the bars are the corresponding

communication constraints used for the first phase, in terms of the number of links

traversed by the selected probes. For larger network sizes, a larger communication

constraint is necessary for a fair comparison. Anomaly densities in these networks

are around 20%, i.e., about 20% of the links in the networks are anomalous.
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Figure 5.9: Comparison of the trust-aware method and the baseline method

From Fig. 5.9(a) we can see that the trust-assisted method can cover more

anomalous links than the baseline method given the same communication con-

straints, while Fig. 5.9(b) demonstrates that both the trust-aware algorithm and

the baseline algorithm have scaled down the suspicious areas: the number of candi-

date probes have been greatly reduced. We also note that the baseline method may

achieve a slightly smaller probe set; because it can only cover much fewer anomalous

links.

We next investigate the effects of different probing overhead constraints and
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anomaly densities for the first phase probing. Fig. 5.10(a) shows the anomaly

coverage rate and candidate probe set size using our trust-assisted selection method

when the probing overhead constraint varies. For illustration purposes, we show

the two metrics together in one figure, where candidate probe set size is normalized

over the original probe set size. Fig. 5.10(b) shows the results when the probing

overhead constraint is fixed to be 50 but the anomaly density varies. Network size

is 400 for both figures.
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Figure 5.10: Probe selection performance

We can see that when the probing overhead constraint increases, the candidate

probe set size and the anomaly coverage rate both increase, which is as expected.

However, the anomaly density does not affect the first-phase probe selection too

much, which is probably due to the randomness of anomaly occurrence on the links.

Given the same probing overhead constraint, the increase of anomaly density only

slightly degrades the performance, in terms of a slightly larger candidate probe size

and a slightly smaller anomaly coverage rate.

Another concern for the first-phase probe selection, as mentioned before, is

the computational complexity of the algorithm. We compare our approximation

method implemented in MATLAB to the exact method provided by MATLAB in-
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teger programming solver, in terms of both speed and performance. Fig. 5.11(a)

shows the running time of our method and the exact solution for different networks.

Fig. 5.11(b) shows the anomaly coverage rate for the two methods. Since the sizes

of candidate probe set selected by the two methods are within very small difference,

we do not show them here.
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Figure 5.11: Comparison of the approximation method and the exact solution

In Fig. 5.11(a), we note that for small networks, the exact solution is only

about 3 times slower than the approximation method. This is because the com-

munication constraint for these networks is also small, so the budgeted maximum

coverage problem has a small scale. However, the approximation method starts to

provide much superior performance over the exact method when the network size

becomes larger, e.g., for network size larger than 300, the approximation method is

more than one order of magnitude faster, while reduction on the anomaly coverage

rate is less than 0.1. Considering the much larger running time of the exact solution,

e.g, in the scale of minutes, the performance reduction of the approximation method

is acceptable.
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Second-phase probing For the second-phase probing, the goal is to find the indi-

vidual links that are responsible for the observed path anomalies. The performance

is thus evaluated in terms of the missed detection rate (MDR) and false alarm rate

(FAR). The missed detection rate represents the percentage of anomalous links in

the network that are not identified as anomalous, while the false alarm rate rep-

resents the percentage of normal links that are recognized as anomalous. Denote

E as the set of monitored links, EA as the set of anomalous links, and ED as the

set of anomalous links that are correctly identified. Then the MDR and FAR are

computed as

MDR = 1− |EA ∩ ED|
|EA|

, FAR =
|ED ∩ (E − EA)|
|E − EA|

.

The second-phase probing involves the repeated executions of the approxi-

mated LBP like algorithm for sequential probe selection. We have implemented our

algorithm on top of the belief propagation algorithm from Kevin Murphy’s Bayes

Net toolbox [54] in MATLAB. To demonstrate the effectiveness of our approxima-

tion method on improving algorithm efficiency, we also implemented the BPEA

(Belief Propagation for Entropy Approximation) algorithm proposed by Zheng et

al. [80], which, to the best of our knowledge, provides the best inference accuracy in

the literature. In BPEA, repeated executions of the LBP algorithm is also used for

online probe selection, however, it did not exploit the redundancy in each execution

of LBP, so it has very high computational complexity.

Fig. 5.12 shows the performance comparison of our method and the BPEA
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algorithm in a network with 400 nodes. Other network parameters are shown in the

corresponding row in Table 5.3. The anomaly density is around 30%. The candidate

probe set is generated from the first phase probe selection given communication

overhead at 50 hops. Fig. 5.12(a) compares the running time of our method and

the BPEA method. Fig. 5.12(b) compares the information gain in bits for the

two methods. The information gain measures the reduction on uncertainty for the

maximum probability estimation if the selected probes are sent, computed using

the conditional entropy. Fig. 5.12(c) shows the missed detection rates for the two

methods. The false alarm rate is very small for both methods, i.e., around 0.04, and

sending more probes did not change the false alarm rate much, so we don’t show it

here. The x-axis in the three figures corresponds to the communication constraint

for the second phase, measured by the number of hops traversed by the probes.
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Figure 5.12: Comparison of BPEA and our approach

We can see that our approximation method indeed speeds up the probe selec-
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tion process a lot, i.e., more than one order of magnitude than BPEA. In the case

that the communication constraint is 80 hops, BPEA needs about 35 minutes, which

is not realistic for real-time probe selection, while our approach only needs one and

a half minutes. The information gain obtained by the two methods are almost the

same for given communication constraints, while the missed detection rate is also

similar.

Next we change the anomaly densities in the network. Fig. 5.13 shows the

corresponding changes of MDR and FAR. It is observed that when the anomaly

density reduces, both MDR and FAR become lower. The reason is that, when there

are few anomalous links, the probes sent can concentrate more on the area near

these anomalous links, thus increase the inference accuracy. When the number of

anomalous links increases, the uncertainty on their locations becomes larger, and

using the same amount of probes will not be enough.
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Figure 5.13: Performance when anomaly density varies

The inference accuracy on the locations of anomalous links is also affected by

the noise level in the network, i.e., the leakage probability and the inhibition proba-

bility in the Noisy-OR model, where the leakage probability captures the situation
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that a path performs as anomalous even if all its constituting links are normal, and

the inhibition probability measures the situation that some links in the path are

anomalous but the path performs as normal. We investigate the impact of different

noise levels on the performance of our algorithm. Fig. 5.14 compares the MDR

and FAR when the inhibition and leakage probability varies. The anomaly density

is around 17%. Generally speaking, the performance degrades when more noise is

injected into the network, which is as expected. It is also found that for low noise

level, e.g., inhibit < 0.1, leak < 0.1, the performance does not change much.
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Figure 5.14: Performance under different levels of noise

5.5 Discussions

In this Chapter, we presented a trust-assisted framework for anomaly detection

and localization in resource constrained wireless sensor networks using end-to-end

traffic measurements. In contrast to most prior work that focus on detection and lo-

calization accuracy, our focus is on the tradeoff between inference accuracy and the

resource consumption in sensor networks. Especially, we are interested in the case

that there is a strict constraint on the communication bandwidth for anomaly de-
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tection and localization. We proposed a hierarchical network structure and designed

an efficient two-phase probing scheme that utilize link trust information to achieve a

good tradeoff between inference accuracy and probing overhead. Simulation results

demonstrate the efficiency and effectiveness of our algorithms.
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Chapter 6

Analysis of Long Range Dependent Traffic Effects on Anomaly

Detection

6.1 Introduction and related work

In Chapter 5, we discussed the problem of network monitoring and anomaly

localization. The results of anomaly localization not only depends on the probing

strategy and location inference algorithm, but also highly depends on the anomaly

detection techniques applied on the collected network traffic measurements. In this

chapter, we will discuss anomaly detection techniques for Long Range Dependent

(LRD) traffic in sensor networks. Especially, recent studies have shown that node

mobility along with spatial correlation of the monitored phenomenon in sensor net-

works can lead to LRD traffic [73], which can cause high false alarms if using tradi-

tional anomaly detection methods, as traditional anomaly detection methods usu-

ally assume that the traffic measurements are either independent or Short Range

Dependent (SRD).

Anomaly detection methods can be generally classified in two categories: signature-

based and statistics-based [22]. Signature-based detection methods use attack signa-

tures to identify anomalies. The attack signatures are collected based on historical

observations under the same attack, thus it can not be applied to detect unknown
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anomalies. Statistics-based detection methods overcome this drawback by only mod-

eling normal network traffic and treat everything that falls outside the normal scope

as anomalies. A typical statistics-based anomaly detection usually consists of the

following steps [22]: first, collect network measurements and model the normal traf-

fic as a reference, then, apply a decision rule to detect whether current network

traffic deviates from the reference. In the decision rule, some statistical distance

between the analyzed traffic and the reference is computed, then it must be decided

whether the distance is large enough to trigger an alarm.

The modeling of the normal traffic can be based on various statistical char-

acteristics of the data. For example, Lakhina et al. [48] proposed to use principal

component analysis to identify an orthogonal basis along which the network mea-

surements exhibit the highest variance. The principal components with high vari-

ance model the normal behavior of a network, whereas the remaining components

of small variance are used to identify and classify anomalies. Schereer et al. [63]

used a non-Gaussian long-range dependent process to model network traffic, which

can provide several statistics such as the marginal distribution and the covariance

to characterize the traffic. Zhang et al. [78] proposed a spatio-temporal model us-

ing traffic matrices that specify the traffic volumes between origin and destination

pairs in a network. Anomalies are detected by finding significant differences from

historical observations. Spectral density [17, 33] and covariance [36], have also been

used for modeling normal network traffic.

Besides these methods, wavelet transform is another popular technique used

for analyzing network traffic, especially for the LRD traffic. Abry et al. [2] proposed
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a wavelet-based tool for analyzing LRD time series and a related semi-parametric

estimator for estimating LRD parameters. Barford et al. [6] assume that the low

frequency band signal of a wavelet transform represents the normal traffic pattern.

They then normalize both medium and high frequency band signals to compute a

weighted sum of the two signals. An alarm is raised if the variance of the combined

signal exceeds a pre-selected threshold. In [45], Kim et al. used a wavelet-based tech-

nique for de-noising and separating queueing delay caused by network congestions

from various other delay variations. Zuraniewski et al. [85] have combined wavelet

transforms and change-point detection algorithms to detect the instants that the

fractality changes noticeably. The key feature of these wavelet-based methods lies

in the fact that the wavelet transform can turn the LRD that exists among the

data samples into a short memory structure among the wavelet coefficients [1]. In

our work, we build a wavelet-domain multi-level hidden Markov model for the LRD

network traffic. The merit of our method is the model’s mathematical tractability

and its capability of capturing data dependencies.

To measure the deviation of the analyzed traffic from the reference model,

several statistical distances can be used, including simple threshold, mean quadratic

distance [63], and entropy [29]. Entropy is a measure of the uncertainty of a prob-

ability distribution. It can be used to compare certain qualitative differences of

probability distributions. Gu et al. [29] used a maximum entropy technique to es-

timate the reference traffic model and compute a distance measure related to the

relative entropy of the analyzed network traffic with respect to the reference. Nychis

et al. [58] thoroughly evaluated entropy-based metrics for anomaly detection. In our
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detection scheme, we apply the symmetric relative entropy as a distance measure.

The online EM algorithm can efficiently compute the symmetric relative entropy

between the current HMM model and a previous estimated one. Anomalies are

then detected as abrupt changes in the symmetric relative entropy measurements.

6.2 Long range dependent traffic in sensor networks

A time series {x(t)}Nt=1 is considered to be long range dependent if its autocor-

relation function ρ(k) decays at a rate slower than an exponential decay. Typically,

ρ(k) asymptotically behaves as ck2H−2 for 0.5 < H < 1, where c > 0 is a constant

and H is the Hurst parameter. The intensity of LRD is expressed as the speed of

the decay for the autocorrelation function and is measured by the Hurst parameter,

i.e., as H → 1, the dependence among data becomes stronger. It can be shown that∑∞
k=1 ρ(k) = ∞. Intuitively, LRD implies that the process has infinite memory,

i.e., individually small high-lag correlations have an important cumulative effect.

This is contrast to the conventional Short Range Dependent (SRD) processes which

are characterized by an exponential decay of the autocorrelations resulting in a

summable autocorrelation function. LRD is an important property for traffic mod-

eling as it is likely to be responsible for the decrease in both network performance

and quality of service [63] .

For empirical time series, a number of time and frequency domain estimators

have been developed [72] for detecting LRD and quantifying its intensity, including

the aggregated variance plot, R/S analysis, periodogram analysis and Whittle’s
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estimator. The variance-time plot examines the decay of the sample variance at

increasing time aggregation levels which, for LRD time series, should be slower than

the reciprocal of the sample size. The R/S method examines the growth in the

rescaled range of the partial sums on the standard deviations of the time series, as

a function of the sample number in the time-aggregated series. The periodogram

method is based on the discrete Fourier transform and is an estimate of the power

spectral density of a discrete process which, for LRD time series, should exhibit

power-law behavior for frequencies close to the origin. Whittle’s estimator is a

maximum likelihood type estimator which is applied to the periodogram of the time

series. It requires the empirical series to be a Gaussian process and the underlying

form of the series must be provided, usually FGN or ARFIMA. We use these four

estimators for analyzing the behavior of network traffic in wireless sensor networks.

A wireless sensor network operates on the IEEE 802.15.4 standard. It has been

shown recently that the traffic generated from a single mobile node in a wireless sen-

sor network can be represented by an ON/OFF process X(t), where the probability

density function of the ON period τa can be approximated by a truncated Pareto

distribution [73]

fτa(x) =
γax

−(γa+1)

t−γa

min − t
−γa
max

,

with tmin(tmax) denoting the minimum (maximum) ON time and γa denoting the tail

index. The value of γa depends on the variability of node mobility pattern and the

spatial correlation of the monitored phenomena by the network. Using this traffic

model, we analyze the dynamic behaviors of sensor network traffic measurements,
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such as the packet round trip time, the number of received packets per second,

etc., by conducting experiments using Network Simulator 2 (NS-2). To determine

whether the collected data traces have the LRD property, we apply the aggregate

variance estimator, R/S estimator, Periodogram estimator and the Whittle estima-

tor using the SELFIS tool [41].

Fig. 6.1 illustrates one representative result using the collected packet round

trip time between a source-destination pair. Fig. 6.1(a) shows the autocorrela-
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Figure 6.1: Autocorrelation function and LRD estimators for packet round-trip time
in a wireless sensor network

tion function of the collected data samples. Fig. 6.1(b), 6.1(c) and 6.1(d) corre-

spond to the Hurst parameter estimations using the aggregate variance estimator,

R/S estimator, and Periodogram estimator respectively. The Whittle’s estimator

is a maximum likelihood estimator so it is not shown in the figure. The estimated

Hurst parameter using the Whittle’s estimator is 0.781 with 95% confidence interval

[0.760 − 0.801]. We can see that LRD do exist in the collected network measure-
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ments. It is also observed that the aggregate variance estimator is more consistent

with the periodogram estimator, while the R/S estimator is more consistent with

Whittle estimator for this trace. Varied estimates among different LRD estimators

are frequently reported in literature [10, 42]. We stress that here we do not examine

estimator accuracy but the existence of LRD in the collected data.

Similar LRD properties are observed in several other network measurements

such as the number of packets received per second, link throughput, etc. Since

traditional anomaly detection methods for sensor networks usually assume that

network measurements are either independent or SRD, the existence of LRD can lead

to high false alarm rates for these methods. Incorporating LRD traffic characteristics

accurately in the design of anomaly detection schemes for sensor networks is critical

and important.

6.3 Anomaly detection using wavelet domain hidden Markov model

Wavelet transforms have been popular [2, 6] for analyzing autocorrelated time

series due to their capability to compress multi-scale features and approximately

de-correlate the time series. They can provide compact information about a signal

at different locations in time and frequency. Our traffic model is in the wavelet

domain. More specifically, we build a Hidden Markov Model (HMM) for the wavelet

transformed network measurements. The basic idea for transform domain models is

that a linear invertible transform can often restructure a signal, generating transform

coefficients whose structure is simpler to model.
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6.3.1 Wavelet domain hidden Markov model

In wavelet transform (decomposition), the measurements x(t), t = 1, . . . , N

are decomposed into multiple scales by a weighted sum of a certain orthonormal

basis functions,

x(t) =
N∑
k=1

aL,kφL,k(t) +
L∑

m=1

∑
k

dm,kψm,k(t),

where φL,k, ψm,k are the orthonormal basis, aL,k, dm,k are the approximation and

detail coefficients. The approximation coefficients aL,k provide the general shape of

the signal, while the detail coefficients dm,k from different scales provide different

levels of details for the signal content, with d1,k providing the finest details and dL,k

providing the coarsest details. The locality and multi-resolution properties enable

the wavelet transform to efficiently match a wide range of signal characteristics from

high-frequency transients and edges to slowly varying harmonics.

In our work, we apply the Discrete Wavelet Transform (DWT) to measured

network traffic. A DWT is a wavelet transform for which the basis functions are

discretely sampled. DWT can be explained using a pair of quadrature mirror filters,

which includes a high pass filter h[n] and a low pass filter g[n] [51]. Efficient meth-

ods have been developed for decomposing a signal using a family of wavelet basis

functions based on convolution with the corresponding quadrature mirror filters. A

2-level discrete wavelet transform using the corresponding quadrature mirror filters

is illustrated in Fig. 6.2.

However, the wavelet transform cannot completely decorrelate real-world sig-
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Figure 6.2: 2-level discrete wavelet transform

nals, i.e., a residual dependency always remains among the wavelet coefficients. A

key factor for a successful wavelet-based algorithm is an accurate joint probability

model for the wavelet coefficients [20]. A complete model for the joint probability

density function would be too complicated, if not impossible, to obtain in practice,

while modeling the wavelet coefficients as independent is simple but disregards the

inter-coefficient dependencies. To strike a balance between the two extremes, we use

a Hidden Markov Model (HMM) to capture the remaining dependency among the

wavelet coefficients. It is based on two properties of the wavelet transform [20, 50]:

first is the Clustering property, meaning that if a particular wavelet coefficient is

large/small, the adjacent coefficients are very likely to also be large/small; second

is the Persistence property, meaning that large/small values of wavelet coefficients

tend to propagate across scales.

For the wavelet coefficients dj,k, j = 1, . . . , L and k = 1, . . . , nj, where L is

the decomposition level and nj is the number of wavelet coefficients in scale j, we

assume that each dj,k is associated with a hidden state sj,k. We then use a hidden
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Markov model to characterize the wavelet coefficients through the factorization

P ({d1,i, s1,i}n1
i=1, . . . , {dL,i, sL,i}

nL
i=1)

= p(sL,1)

nL∏
j=2

p(sL,j|sL,j−1)
L−1∏
i=1

p(si,1|si+1,1)

·
L−1∏
i=1

ni∏
j=2

p(si,j|si,j−1, si+1,dj/2e)
L∏
i=1

ni∏
j=1

p(di,j|si,j). (6.1)

This factorization involves three main conditional independence assumptions: first,

conditioned on the states at the previous coarser scale i+1, the states at scale i form

a first order Markov chain; second, conditioned on the corresponding state at the

previous coarser scale i+ 1, i.e., si+1,dj/2e, and the previous state at the same scale,

i.e., si,j−1, the state si,j is independent of all states in the coarser scales; third, the

wavelet coefficients are independent of everything else given their hidden states. The

three independence assumptions are critical for deriving the inference algorithms for

this wavelet domain HMM. Fig. 6.3 illustrate a hidden Markov model for a 3-level

wavelet decomposition.

Figure 6.3: HMM for 3-level wavelet decomposition
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6.3.2 Model estimation: backward-forward decomposition

6.3.2.1 The Expectation-Maximization (EM) algorithm

Denote the set of wavelet coefficients by D = {{dL,i}nL
i=1, . . . , {d1,i}n1

i=1} and

their hidden states by S = {{sL,i}nL
i=1, . . . , {s1,i}n1

i=1} respectively, where ni is the

number of wavelet coefficients in the ith scale. The parameters of the HMM include

the following three probability distributions: first is the initial probability for the

state sL,1, i.e., πk = P (sL,1 = k), k ∈ K, where K represents the domain of the

hidden states; second is the two types of state transition probabilities, i.e.,

πi,1k1|k2 = P (si,1 = k1|si+1,1 = k2) for i < L,

πik1|k2,k3 = P (si,j = k1|si,j−1 = k2, si+1,dj/2e = k3);

and third is the conditional probability of the wavelet coefficient given its hidden

state, i.e., P (di,j|si,j = k), which can be modeled by a mixture Gaussian distribution.

For simplicity and presentation clarity, we use a single Gaussian distribution to

capture P (di,j|si,j = k), i.e, P (di,j|si,j = k) ∼ N (µik, σ
i
k), where µik and σik are the

mean and the standard deviation for the state k in the ith scale. The extension to a

mixture Gaussian distribution is straightforward. These model parameters, denoted

by θ = {πk, πi,1k1|k2 , π
i
k1|k2,k3 , µ

i
k, σ

i
k}, can be estimated from the real data using the

maximum likelihood criterion. Due to the intractability of direct maximization of

the likelihood function, we apply an Expectation Maximization (EM) algorithm to

estimate the parameters.
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The EM algorithm provides an maximum likelihood estimation of model pa-

rameters by iteratively applying an E-step and an M-step. In the E-step, the ex-

pected value of the log likelihood function Q(θ|θ(t)) = ES|D,θ(t) [logPθ(S,D)] is com-

puted. Then in the M-step, the parameters that maximizes Q(θ|θ(t)) are computed,

i.e., θ(t+1) = argmaxθ Q(θ|θ(t)).

To implement the two steps, we define the following posterior probabilities,

γi,jk = P (si,j = k|D),

γi,1k1,k2 = P (si,1 = k1, si+1,1 = k2|D), for i < L

γi,jk1,k2,k3 = P (si,j = k1, si,j−1 = k2, si,dj/2e = k3|D).

According to equation (6.1), maximizing Q(θ|θ(t)) using the Lagrange multiplier

method leads to the following estimate of θ,

πk = γL,1k , πi,1k1|k2 =
γi,1k1,k2∑
l∈K γ

i,1
l,k2

, πik1|k2,k3 =

∑ni

j=2 γ
i,j
k1,k2,k3∑

l∈K
∑ni

j=2 γ
i,j
l,k2,k3

,

µik =

∑ni

j=1 γ
i,j
k di,j∑ni

j=1 γ
i,j
k

, (σik)
2 =

∑ni

j=1 γ
i,j
k (di,j − µik)2∑ni

j=1 γ
i,j
k

.

The computation of the posterior probabilities γ(·) is more involved. Using a

brute force computation by direct marginalization will take O(N · |K|N) operations,

where |K| represents the cardinality of set K and N is the length of the input signal.

However, by exploiting the sparse factorization in equation (6.1) and manipulating

the distributive property of ‘+’ and ‘×’, we are able to design a forward-backward
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decomposition algorithm to compute these posterior probabilities with computa-

tional complexity O(N · |K|L+1), where L is the wavelet decomposition level and is

much smaller than N .

6.3.2.2 Forward-backward decomposition

Our algorithm extends the classical forward-backward decomposition algo-

rithm for a one-level hidden Markov model to our multi-level case. The key idea

is to only maintain L appropriate hidden states in both the forward and backward

variables for computational efficiency.

Forward decomposition. Let

Si,j = {sL,d2i−Lje, . . . , si+1,d2−1je, si,j, si−1,2(j−1), . . . , s1,2i−1(j−1)},

Di,j = {dL,k≤d2i−Lje, . . . , di+1,k≤d2−1je, di,k≤j, di−1,k≤2(j−1), . . . , d1,k≤2i−1(j−1)},

we define the forward variable to be αi,j = P (Si,j,Di,j). Denote [α1,2h−1j] = f(h, αh,j)

for h, j ∈ Z+, to be a dynamic programming algorithm with input parameters

(h, αh,j) and output parameter α1,2h−1j. The pseudo-code for computing the forward

variables using dynamic programming is shown in Table 6.1. Its correctness can be

proved using the three conditional independence assumptions in our HMM, which

is shown in Appendix B.1. For simplicity and presentation clarity, in Table 6.1 we

assume that the input data length N is a power of 2, and denote the conditional

probability P (di,j|si,j) by g1(di,j), and P (si,j|si,j−1, si+1,dj/2e) by g2(si,j).
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Table 6.1: Algorithm for computing forward variables

Initialization: αL,1 = P (sL,1, dL,1)
For kL = 1 to 2−LN
α1,2L−1kL

= f(L, αL,kL
)

αL,kL+1 = g1(dL,kL+1)
∑
sL,kL

[g2(sL,kL+1) · α1,2L−1kL
]

end

function [α1,2h−1j] = f(h, αh,j)
If h == 2,

α1,2j−1 = g1(d1,2j−1)
∑
s1,2j−2

[g2(s1,2j−1) · α2,j]

α1,2j = g1(d1,2j|s1,2j)
∑
s1,2j−1

[g2(s1,2j) · α1,2j−1]

else

αh−1,2j−1 = g1(dh−1,2j−1)
∑

sh−1,2j−2

[g2(sh−1,2j−1) · αh,j]

α1,2h−2(2j−1) = f(h− 1, αh−1,2j−1)

αh−1,2j = g1(dh−1,2j)
∑

sh−1,2j−1

[g2(sh−1,2j) · α1,2h−2(2j−1)]

α1,2h−2(2j) = f(h− 1, αh−1,2j)
End

There is some implementation issue for the algorithm in Table 6.1, namely,

the numerical under- or over-flow of αi,j as P (Si,j,Di,j) becomes smaller and smaller

with the increasing size of the observations Di,j. Therefore, it is necessary to scale

the forward variables by positive real numbers to keep the numerical values within

reasonable bounds. One solution is to use a scaled version ᾱi,j =
αi,j

ci,j
, where ci,j =∑

Si,j
αi,j. In this way, ᾱi,j represents the probability P (Si,j|Di,j) and ci,j represents

the probability P (di,j|Di,j\di,j). It is straightforward to prove that both ci,j and

ᾱi,j do not depend on the number of observations. The algorithm for computing

(ᾱi,j, ci,j) can be obtained by adding a normalization step after each update of αi,j

for the algorithm in Table 6.1. A by-product for the scaled forward decomposition
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algorithm is that the log-likelihood logP (D) can be easily computed as

logP (D) =
L∑
i=1

ni∑
j=1

log ci,j.

Backward decomposition. Letting Dci,j = D − Di,j, we define the backward

variable to be βi,j = P (Dci,j|Si,j). It can be computed using a similar dynamic

programming algorithm as the one in Table 6.1. To avoid the numerical under- or

over-flow problem, instead of computing βi,j, we compute a scaled version β̄i,j as

is shown in Table 6.2. The scaled backward variable β̄i,j represents the probability

P (Dc
i,j |Si,j)

P (Dc
i,j |Di,j)

. The correctness of the algorithm in Table 6.2 can be verified using

the three conditional independence assumptions in our HMM, which is shown in

Appendix B.2.

Computing posterior probabilities. Since ᾱi,j = P (Si,j|Di,j) and β̄i,j =
P (Dc

i,j |Si,j)

P (Dc
i,j |Di,j)

,

we have ᾱi,j · β̄i,j = P (Si,j|D) according to the Markovian property of our HMM.

Then the posterior probability γ(·) can be computed as

γi,jk =
∑

ᾱi,j · β̄i,j,

γi,1k1,k2 =
∑

ᾱi,1 · β̄i,1,

γL,jk1,k2
=

∑
ᾱ1,2L−1(j−1) · β̄L,j ·

g1(dL,j)g2(sL,j)

cL,j
,

γi,jk1,k2,k3 =


∑
ᾱ1,2i−1(j−1)β̄i,j ·

g1(di,j)·g2(si,j)

ci,j
, if j is even,∑

ᾱi+1,dj/2eβ̄i,j · g1(di,j)·g2(si,j)

ci,j
, if j is odd.
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Table 6.2: Algorithm for computing the scaled backward variables

Initialization: β̄1,N/2 = 1
For kL = 2−LN to 1
β̄L,kL

= f(L, β̄1,2L−1kL
)

β̄1,2L−1(kL−1) =
∑
sL,kL

g1(dL,kL
)g2(sL,kL

)β̄L,kL

cL,kL

end

function [β̄h,j] = f(h, β̄1,2h−1j)
If h == 2,

β̄1,2j−1 =
∑
s1,2j

g1(d1,2j)g2(s1,2j) · β̄1,2j

c1,2j

β̄2,j =
∑
s1,2j−1

g1(d1,2j−1)g2(s1,2j−1) · β̄1,2j−1

c1,2j−1

else
β̄h−1,2j = f(h− 1, β̄1,2h−22j)

β̄1,2h−2(2j−1) =
∑
sh−1,2j

g1(dh−1,2j)g2(sh−1,2j) · β̄h−1,2j

ch−1,2j

β̄h−1,2j−1 = f(h− 1, β̄1,2h−2(2j−1))

β̄h,j =
∑

sh−1,2j−1

g1(dh−1,2j−1)g2(sh−1,2j−1) · β̄h−1,2j−1

ch−1,2j−1

End

Without confusion, we omit the variables under
∑

for the above equations. The

correctness of these equations is proved in Appendix B.3.

6.3.3 Anomaly detection by tracking model variations

A first thought on the anomaly detection problem is to treat the anomalies

as abrupt changes in the HMM model data and then apply change-point detection

methods to detect these abrupt changes as anomalies. This is also the general routine

used in the literature [22]. However, it is found that directly applying change-

point detection methods to the HMM modeled data is computationally expensive.
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We designed here a lightweight anomaly detection scheme based on detecting the

structural changes of the estimated HMM.

Difficulty of applying change-point detection methods directly on the

HMM modeled data. An anomaly detection problem can be formulated as a

hypotheses testing problem, i.e., given finite samples Y1:N = {y1, y2, . . . , yN}, testing

between two hypotheses,

H0 : for 1 ≤ k ≤ N, pθ(yk|Y1:k−1) = pθ0(yk|Y1:k−1),

H1 : ∃ unknown 1 ≤ t0 ≤ N, s.t.
for 1 ≤ k ≤ t0 − 1, pθ(yk|Y1:k−1) = pθ0(yk|Y1:k−1),

for t0 ≤ k ≤ N, pθ(yk|Y1:k−1) = pθ1(yk|Y1:k−1),

where θ0 and θ1 represent the model parameters for the normal network traffic and

the abnormal network traffic respectively. Since θ1 usually can not be known in

advance, the hypothesis H1 is composite (i.e., θ1 ∈ {θ : θ 6= θ0}). The generalized

likelihood ratio test (GLR) [16] is one of the most popular change-point detection

method for solving this type of hypothesis testing problem. The GLR test can be

written as

gk = max
1≤j≤k

sup
θ1

Skj

Skj =
k∑
i=j

ln
pθ1(yi|Y1:i−1)

pθ0(yi|Y1:i−1)

t0 = min{k : gk ≥ h}
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It is known that the likelihood of an HMM belongs to the so called locally asymptotic

normal family [14], and the GLR statistic supθ1
Skj can be approximated by the

second-order expansion of Skj at θ0 without the computation of supθ1
over all possible

θ1’s. However, the computation of this second-order expansion involves computation

of the Fisher information matrix of ln pθ0(yi|Y1:i−1), which, in our case, would require

an update of an L|K|3 × L|K|3 matrix each time when a new data sample arrives.

This is not computationally realistic for our application, especially in the resource

constrained wireless sensor networks.

In the next subsections, we design a lightweight algorithm for anomaly de-

tection by detecting structural changes of the estimated HMM. An important re-

quirement for anomaly detection is to make the decision making process online.

Therefore, we first develop an online EM algorithm for HMM model estimation.

An online discounting EM algorithm The online discounting EM algorithm

is derived based on the so called limiting EM algorithm [13]. We first briefly present

the limiting EM algorithm. Let x denote the hidden states and y denote the ob-

servations. If the joint probability distribution pθ(x,y) belongs to an exponential

family such that

pθ(x,y) = h(x,y) exp(〈φ(θ), ss(x,y)〉 − A(θ))

where 〈·〉 denotes the scalar product, ss(x,y) is the sufficient statistic for θ and

A(θ) is some log-partition function. If the equation 〈∇θφ(θ), ss〉−∇θA(θ) = 0 has
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a unique solution, denoted by θ = θ̄(ss), then the limiting EM algorithm obeys the

simple recursion

sst+1 = Eθ∗ [Eθ̄(sst)[ss(x,y)|y]],

where θ∗ represents the true model parameter . Since Eθ∗ [Eθ[ss(x,y)|y]] can be

estimated consistently from the observations by 1
N

∑N
t=1 Eθ[ss(xt, yt)|yt] , an online

EM algorithm can be obtained by using the conventional stochastic approximation

procedure [13],

ŝst+1 = γt+1Eθ̄(ŝst)[ss(xt+1, yt+1)|yt+1] + (1− γt+1)ŝst,

where γt+1 is a time discounting factor. The estimation of model parameters can

then be derived from the sufficient statistic ŝs. It is proved in [13] that under suitable

assumptions, this online EM algorithm is an asymptotically efficient estimator of the

model parameter θ∗.

It is not difficult to see that the joint probability distribution of our HMM

model, i.e., P (S,D), satisfies the above mentioned conditions. For each wavelet

coefficient di,j, we have the following sufficient statistics for computing the HMM

model parameters,

τ i,jl,k =
∑ni,j

l
m=1 P (sl,m = k,Si,j|Di,j),

τ̂ i,jl,k =
∑ni,j

l
m=1 P (sl,m = k,Si,j|Di,j) · dl,m,

τ̄ i,jl,k =
∑ni,j

l
m=1 P (sl,m = k,Si,j|Di,j) · d2

l,m,

τ i,jl,k1,k2,k3 =
∑ni,j

l
m=2 P (sl,m = k1, sl,m−1 = k2, sl+1,dm/2e = k3,Si,j|Di,j),
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where l ∈ {1, . . . , L} is the scale index, k ∈ K is the hidden state index, and ni,jl

represents the number of observed wavelet coefficients in scale l after di,j arrives,

i.e.,

ni,jl =


d2i−lje if l ≥ i,

2l−ij if l < i.

It is straightforward to prove that the HMM model parameters {πlk1|k2,k3 , µ
l
k, σ

l
k} can

be updated using {τ i,jl,k , τ̂
i,j
l,k , τ̄

i,j
l,k , τ

i,j
l,k1,k2,k3

} as follows,

πlk1|k2,k3 =

∑
Si,j

τ i,jl,k1,k2,k3∑
k1

∑
Si,j

τ i,jl,k1,k2,k3
, (6.2)

µlk =

∑
k

∑
Si,j

τ̂ i,jl,k∑
k

∑
Si,j

τ i,jl,k
, (6.3)

(σlk)
2 =

∑
k

∑
Si,j

τ̄ i,jl,k∑
k

∑
Si,j

τ i,jl,k
− (

∑
k

∑
Si,j

τ̂ i,jl,k∑
k

∑
Si,j

τ i,jl,k
)2. (6.4)

The other HMM parameters πk and πi,1k1|k2 can be updated using sufficient statistics

defined as τ̃ i,jL,k = P (sL,1 = k,Si,j|Di,j) and τ̃ i,jl,1 = P (sl,1 = k1, sl+1,1 = k2,Si,j|Di,j).

We omit the related computations here, as they are similar.

The next step on the design of our online EM algorithm is to obtain recursive

(online) updates of the sufficient statistics τ i,jl,k , τ̂ i,jl,k , τ̄ i,jl,k and τ i,jl,k1,k2,k3 . According to

the Markovian property of our HMM, the online updates of the sufficient statistic

can be computed by following a similar dynamic programming procedure as the one

for computing the scaled forward variables ᾱi,j. Recall that ᾱi,j is computed by

adding a normalization step after αi,j is computed in the algorithm in Table 6.1.
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The sufficient statistics are updated once ᾱi,j is updated. For illustration purposes,

we show here how to update the sufficient statistics when αh,2j−1 in Table 6.1 is

computed. Updates for the other cases are similar.

For l ∈ {1, . . . , L}, let γh−1,2j−1 be a time discounting factor, and δlh−1 be the

Dirac Delta function such that

δlh−1 =


1 if l = h− 1,

0 if l 6= h− 1.

Define

rlh−1,2j−1 = δlh−1 · γh−1,2j−1 · ᾱh−1,2j−1,

tlh−1,2j−1 = (1− δlh−1γh−1,2j−1)
g1(dh−1,2j−1)

ch,j
,

qlh−1,2j−1 = δlh−1γh−1,2j−1
g1(dh−1,2j−1)g2(sh−1,2j−1)ᾱh,j

ch−1,2j−1
,

where g1(·) and g2(·) are defined as in Table 6.1. We have the following equations

for updating the sufficient statistics,

τh−1,2j−1
l,k = rlh−1,2j−1+t

l
h−1,2j−1

∑
sh−1,2j−2

g2(sh−1,2j−1)τh,jl,k , (6.5)

τ̂h−1,2j−1
l,k = rlh−1,2j−1dh−1,2j−1+t

l
h−1,2j−1

∑
sh−1,2j−2

g2(sh−1,2j−1)τ̂h,jl,k , (6.6)

τ̄h−1,2j−1
l,k = rlh−1,2j−1d

2
h−1,2j−1+t

l
h−1,2j−1

∑
sh−1,2j−2

g2(sh−1,2j−1)τ̄h,jl,k , (6.7)

τh−1,2j−1
l,k1,k2,k3

= qlh−1,2j−1+t
l
h−1,2j−1

∑
sh−1,2j−2

g2(sh−1,2j−1) · τh,jl,k1,k2,k3
. (6.8)

The correctness of these updates are proved in Appendix B.4 using the condi-

tional independence assumptions in our HMM.
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In summary, the online discounting EM algorithm works as follows. Each time

a new wavelet coefficient arrives, the sufficient statistics are updated accordingly,

e.g., when dh,2j−1 arrives, updating the sufficient statistics using equations (6.5),

(6.6), (6.7), and (6.8). After a minimum number nmin of wavelet coefficients are

observed, where nmin is small, i.e., nmin = 20 might be enough, the HMM model

parameters are updated according to equation (6.2, 6.3, 6.4).

Change-point detection on model variations To measure the structural changes

of the estimated HMM models over time, we use the concept of the symmetric rela-

tive entropy to define a model variation score [32]. Denote the model at time t− 1

and t by Pt−1 and Pt respectively, then the model variation score is defined to be

vt = lim
n→∞

1

n
D(Pt||Pt−1) + lim

n→∞

1

n
D(Pt−1||Pt),

where D(p||q) represents the relative entropy of distribution p to q, and n represents

the length of the input data. It is natural to let n → ∞ as we can then compare

the two models under the stationary states in the limit of n→∞.

It is proved in Appendix B.5 that

lim
n→∞

1

n
D(Pt||Pt−1) =

L∑
i=1

1

2i
D((πik1|k2,k3)

t||(πik1|k2,k3)
t−1)

+
L∑
i=1

1

2i

∑
k

(πik)
tD(N ((µik)

t, (σik)
t)||N ((µik)

t−1, (σik)
t−1)),

where πik = P (si,j = k). Therefore, besides the probability distributions πik1|k2,k3 and
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N (µik, σ
i
k) provided by the online EM algorithm, the computation of limn→∞

1
n
D(Pt||Pt−1)

also involves the probability distributions πik1,k2,k3 = P (si,j = k1, si,j−1 = k2, si+1,dj/2e =

k3) and πik. The estimation of πik and πik1,k2,k3 can be obtained from the sufficient

statistics τ l,mi,k and τ l,mi,k1,k2,k3 as follows,

πik =
∑
Sl,m

τ l,mi,k , πik1,k2,k3 =
∑
Sl,m

τ l,mi,k1,k2,k3 .

The other relative entropy lim
n→∞

1

n
D(Pt−1||Pt) can be computed similarly. We can

see that the symmetric model variation score actually captures two types of changes.

The first is the changes in the transition probabilities of the hidden states while the

second is the changes in the generation pattern of the observed data from a fixed

state. By using the symmetric relative entropy as a distance measure between two

HMM models, it is expected that not only the changes of the data generation pattern

will be detected, but also the changes in the hidden states can also be detected.

6.4 Evaluations

6.4.1 Numerical evaluations

In this section, we numerically evaluate the statistical properties of the pro-

posed anomaly detection scheme. Two types of LRD time series, including the

Fractional Gaussian Noise (FGN) and the Autoregressive Fractionally Integrated

Moving Average (ARFIMA) model, are used for generating data. We then inject

two types of model variations as anomalies. First is the mean level shift, i.e., a
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step function with a constant amplitude is imposed on the original signal. Second

is to vary model parameters for the data generation process, including the standard

deviation and the Hurst parameter for FGN and ARFIMA. The duration for the

normal state and the anomaly state is generated from exponential distributions with

different mean values. The performance of the detection scheme is evaluated by the

detection latency and the Receiver Operating Characteristic (ROC) curve, which is

a plot of the detection rate versus the false alarm rate at different thresholds.

The selection of the wavelet basis used in our scheme is based on a balance

between its time localization and frequency localization characteristics [6]. Long

filters usually have poor time localization, which can lead to excessive blurring in

the time domain, thus may miss strong but short-duration changes in the time series.

In contrast, short filters have good time localization but poor frequency localization,

which can lead to the appearance of large wavelet coefficients when no significant

event is occurring and can cause high false alarms rates if detection is based on a

simple threshold. In our scheme, we build a hidden Markov model for the wavelet

coefficients and the detection is based on HMM structural changes rather than a

simple threshold, thus the sensitivity of the filter’s frequency localization capability

on detection performance is significantly reduced. In our experiments, we found

that the D2 (Haar wavelets) and D4 wavelets from the Daubechies family wavelets

can give us relatively good performance. Hence we use the Haar wavelets for all the

experiments in this thesis.

For performance comparison, we implement a baseline method adapted from

[6], in which only the mean and variance of the wavelet coefficients is used for
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anomaly detection. More specifically, for the wavelet coefficients in each scale, the

method computes the mean and variance over a time window with fixed length. Any

abrupt changes in the mean and variance values are treated as anomalies.

Detection on Mean level shift. We first discuss the detection performance on

mean level shifts in the synthetic LRD time series. Fig. 6.4 shows one representa-

tive example. The top figure illustrates the time series, which is generated from an

ARFIMA model with Hurst parameter 0.9 and length 215. The standard deviation

for the generated data sequence is set to 1. The mean level shift occurs at the first

quarter of the time and ends at the middle with intensity 0.75, which is less than

the standard deviation. The bottom two figures show the corresponding model vari-

ation scores computed by our online EM algorithm with 5-level and 4-level wavelet

decomposition respectively. The x axis represents the aggregated time due to the

wavelet decomposition and the y axis represents the model variation score.
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Figure 6.4: Effects of different decomposition levels
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From Fig. 6.4, we can see that the visual inspection of the injected mean

level shift from the time series directly can be difficult. However, in the tracked

model variation scores, there are abrupt changes of the model variation scores at

the two time locations where the mean level shift starts and ends. These two abrupt

changes suggest where the injection starts and ends. Especially when the wavelet

decomposition level is 5, these are the only 2 abrupt changes that exist. When the

wavelet decomposition level is 4, there are some false alarms. We further compare the

effects of the wavelet decomposition level on detection performance. Fig 6.5 shows

the Receiver Operating Characteristic (ROC) curves using different decomposition

levels. The ROC curves are obtained over 1000 randomly generated FGN time

series with standard deviation 1. The mean level drift starts at different random

time points with length 213. For a fair comparison, all of them have the same injected

intensity of 0.75.
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Figure 6.5: ROC curves for different decomposition levels

We can see that a higher decomposition level can reduce the false alarms while
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achieving the same detection rate. However, an L-level decomposition has a 2L time

aggregation scale, i.e., it transforms the data samples within a 2L time window

to the wavelet domain so the wavelet coefficients within that window are time-

indistinguishable. Therefore, a higher level decomposition would often give longer

detection latency than that of a smaller level decomposition. In our experiments,

we found that a 5-level wavelet decomposition can give a reasonably good balance

between detection accuracy and latency.

The intensity of the injected mean level shift also affects the detection per-

formance. Fig. 6.6 shows the ROC curve and detection latency for the injected

mean shift with different intensities. Each curve is obtained over 1000 simulation

traces with the 5-level wavelet decomposition. As is expected, for higher injected

mean level shifts, the detection becomes much easier, in terms of lower false alarms,

higher detection rates, and smaller detection latency. For example, the detection

for injected mean level shift with intensity 1.25, which is only slightly higher than

the standard deviation, is very accurate and fast.

Detection on changes of data generation model. We next evaluate the ability

of our algorithm to detect the second type of anomalies, i.e., anomalies that change

model parameters for the data generation process, including the Hurst parameter

and the data variance.

Fig. 6.7 shows a typical example of the performance on detecting the Hurst

parameter changes. The top figure shows the generated data, which is initially from

an ARFIMA model with Hurst parameter 0.9 and standard deviation 1. From the
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Figure 6.6: Effects of different injected intensities

first quarter to the middle of the time series, it changes to an ARFIMA model

with Hurst parameter 0.7 ( the standard deviation is unchanged). The bottom

figure shows the model variation scores tracked by our online EM algorithm, from

which we clearly see that two abrupt changes exist around the time when the Hurst

parameter change starts and ends.

Fig. 6.8 shows the ROC curve and detection latency for the detection on Hurst

parameter changes. Three types of scenarios are simulated, including the change of

Hurst parameter from 0.9 to 0.8, 0.7 and 0.6 respectively. Each curve is obtained

from 1000 simulation traces. It can be seen that when the Hurst parameter changes

more, the detection becomes easier, i.e., the false alarm rate is lower, the detection

rate is higher, and the detection latency is smaller.

We next evaluate the performance of our algorithm on the detection of data

variance changes. Fig. 6.9 shows detection results over 1000 simulation traces for
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Figure 6.7: Detection of changes on Hurst parameter

data variance changing from 1 to 1.2 and 1.5 respectively. As expected, the detection

of variance changed from 1 to 1.5 is much easier than that from 1 to 1.2.

Performance comparison to baseline method. We also compare the perfor-

mance of our algorithm to the baseline method. It is observed that our method can

always beat the baseline method. For example, Fig. 6.10 shows the ROC curves and

detection latency for our method and the baseline method on the detection of Hurst

parameter changing from 0.9 to 0.7. The results are obtained over 1000 simula-

tions. While achieving the same false alarm rate, our method has a higher detection

rate and smaller detection latency. Similar results are observed for the detection of

other types of injected anomalies. These experiments verify our expectation that

the hidden Markov model can capture more characteristics of the wavelet domain

data than using only the first and second order statistics.
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6.4.2 NS-2 simulation studies

We next create anomaly scenarios in wireless sensor networks using the NS-2

simulator. More specifically, we simulate the wormhole attack in the routing layer

and evaluate the proposed detection scheme. Note that our detection scheme is a

general method, i.e., it is not only designed for the wormhole attacks, but can adapt

to detect any other attacks that will cause the network traffic to deviate from its

normal state.

Application to wormhole detection. The wormhole attack is collaborative at-

tack on the routing layer. During a wormhole attack, the malicious nodes perform

a tunneling procedure to form a wormhole where one node receives packets and

covertly tunnels them to another colluding node, and then the colluding node re-
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Figure 6.9: Detection of changes on data variance

plays these packets as if it received them from its physical neighbors. Based on

different covert communication mechanisms used for tunneling, wormhole attacks

can be classified as in-band wormholes and out-band wormholes. The in-band worm-

hole connects the purported neighbors via multi-hop tunnels over the existing wire-

less medium while the out-band wormhole attack uses an external communication

medium such as a wired link or a long-range wireless transmission channel. Worm-

hole attacks can affect shortest path routing calculations and allow the attacking

nodes to attract and route traffic from other parts of the network to go through

them, thus create artificial traffic choke points that can be utilized at an opportune

future time to either analyze network traffic or to degrade network performance.

We evaluate the case of in-band wormholes. In-band wormholes are important

for several reasons. First, because they do not require additional specialized hard-

ware, they can be launched from any node in the network; as a result, they may
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Figure 6.10: Comparison with the baseline method

be more likely to be used by real adversaries. Second, unlike out-band wormholes,

which actually add channel capacity to the network, in-band wormholes continu-

ously consume network capacity (i.e., waste bandwidth) thereby inherently causing

service degradation. Fig. 6.11 shows an example of a 3-hop in-band wormhole. By

‘n-hop wormhole’, we mean that the actual path length between the two wormhole

endpoints is n-hop but the routing protocol is fooled to consider it as only 1 hop.

Figure 6.11: An in-band wormhole

In the in-band wormhole attack, the multi-hop tunneling process can cause
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the transmission delay along a path to deviate from its normal state. For example,

in Fig. 6.11 the attacker fools the routing protocol to treat the 3-hop path 3-5-7-8

as a 1-hop path 3-8. The transmission delay of a 3-hop path, however, would be

different from a real 1-hop path due to different path lengths, not to mention that

the wormhole attack can introduce additional congestion in the path due to the

attraction of traffic from other parts of the network. The difficulty of detection lies

in the fact that traffic variability such as normal network congestion may lead to

high false alarm rates.

We create the in-band wormholes in networks containing 50 nodes in a 1000×

1000 square field using NS-2. Different simulation scenarios are considered, including

networks that have different levels of background traffic and wormholes that have

different length.

Fig. 6.12 shows three typical scenarios of the collected packet round trip time

between a source-destination pair that was attracted by a 4-hop wormhole, where

the wormhole starts at time around 2500. The top figure (scenario 1) corresponds

to the case when the background traffic is relatively light, so there is no congestion

in the wormhole or other places of the network. The packet round trip time be-

comes slightly higher after the wormhole attack starts. The middle one (scenario

2) shows the case when the background traffic becomes heavier. Since more traf-

fic was attracted by the wormhole, leading to some level of congestion inside the

wormhole, traffic going through the wormhole have much longer round trip time

than its previous normal state. This case is the easiest case for wormhole detection.

In the bottom figure (scenario 3) the background traffic becomes much heavier, in
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which case the network congestion causes large traffic variation even when there is

no wormhole attack. It is the most difficult case for wormhole detection.
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Figure 6.12: Different traffic scenarios under wormhole attack

Fig. 6.13 presents the ROC curves for detection of the 4-hop wormhole under

different levels of background traffic corresponding to the three described scenarios.

The results are obtained over 100 simulation runs. In the worst case, i.e., scenario

3, our algorithm performs much better than a random guess, e.g., when the false

alarm rate reaches 0.4, the detection rate is around 0.8. The results are satisfactory

considering that the end-to-end packet round trip time is the only traffic profile we

used for detection. We expect that if our detector is combined with methods based

on other characteristics of the network traffic, better detection performance can be

achieved. Fig. 6.14 shows performance comparison of our method with the baseline

method for scenario 3, in which our method achieves better performance.

We also create wormholes with different lengths. Fig. 6.15 shows the detection
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performance of a 4-hop wormhole and a 6-hop wormhole, which are averaged over 100

simulation traces. For illustration purpose, we only show here the case corresponding

to scenario 3, which is the most difficult detection scenario. As is expected, the

detection of a longer wormhole is easier than that of a shorter one. Therefore,

although a longer wormhole can attract more traffic to go through it, thus possibly

cause more damages, it suffers a higher risk to be detected.

6.5 Discussion

In this chapter, we studied the anomaly detection problem in wireless sensor

networks. As discovered by recent works, the traffic in wireless sensor networks

can have the similar long range dependency (LRD) property as for the wireline

and wireless 802.11 network. The existence of LRD could significantly increase the

difficulty of network anomaly detection. To reduce the effect of LRD on anomaly
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Figure 6.14: Comparison with the baseline method

detection performance, we proposed a wavelet-domain hidden Markov model for

capturing the normal network traffic. The wavelet transform is able to turn the

long range dependency that exists among the sample data into a short memory

structure among its wavelet coefficients. The HMM in the wavelet-domain is used

to capture the remaining dependency among the wavelet coefficients, thus model the

traffic variability more accurately. Network anomalies are then detected as abrupt

changes in the tracked HMM model structures. The performance of our algorithm is

evaluated by extensive simulations, including numerical experiments in Matlab and

network simulation studies in NS-2, which show promising results. Future work can

be conducted to further optimize the wavelet domain HMM to improve detection

performance.
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Part III

Analytical Tools for Security and Trust
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Chapter 7

Game Theoretic Modeling

7.1 Motivation and related work

Ad hoc networks including wireless sensor networks rely on the mutual co-

operation among nodes to achieve network-wide goals. However, due to resource

constraints, these nodes may not be willing to cooperate as cooperation consumes

their own resources. A large amount of research have been devoted to studying the

collective behaviors of such selfish nodes [67, 68, 30]. By modeling the interactions

among nodes as a game, the Nash equilibria are used to study the operating points

of the network. It is shown that such operating points usually have inferior per-

formance when compared to the social optimum, which is the operating point that

all nodes are subject to centralized control [30]. To encourage cooperation from

the self-interested nodes in the Nash equilibria, various incentive mechanisms have

been proposed in the literature [70, 5, 62]. One promising technique is to establish

trust relations among nodes. Most literature works focus on the design of different

aspects of the trust schemes, such as trust evaluation, trust information storage

and retrieval. However, few efforts have been made on quantitatively analyzing the

efficiency of establishing trust for improving node cooperation. In this Chapter, we

provide a game theoretic analysis as a first step towards this end.

We model the trust relations among nodes as a trust-weighted network and
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study a simple game in which the user’s payoff depends on the contributions from

itself and its neighbors, weighted by the trust values associated with each neighbor.

This game can capture the efforts of nodes to coordinate across the network and

the effects of trust relations on nodes’ efforts. We analyze the characteristics of the

Nash equilibrium and social optimum of this game and show that they have a close

relationship to the Bonacich centralities of nodes in the trust-weighted network. We

then evaluate the efficiency of the game which measures the effect of establishing

trust for improving node cooperation. The efficiency of the game is measured by

the price of anarchy [68], which is defined to be the ratio of the payoff at the worst

Nash equilibrium to that of the social optimum. It is demonstrated that the node

centralities in the trust-weighted network are very important for determining the

game efficiency. Moreover, motivated by the observation that nodes with heteroge-

neous resources have different willingness to cooperate, we exploit the potential of

improving game efficiency by introducing heterogeneous resources. Critical issues

on this aspect include where and how many resources to introduce. We provide

both experimental and mathematical analysis and show that the resources should

be introduced according to node centralities in the trust-weighted network.

Most literature works on establishing trust relations in ad hoc networks have

focused on the design of the trust models. For example, Seredynski et al. [70]

proposed a trust model for the routing service in ad hoc networks. Their model

encourages cooperation among nodes through the incentives they receive: more

cooperation gives a node higher trust which results in better service for itself. Baras

and Jiang [5] proposed a model based on cooperative games, in which the nodes can
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form coalitions in order to maximize their payoffs. Their scheme utilizes a feedback

relation among the strategy, the payoff and the trust level. Additional works on

game theoretic models on trust and cooperation can be found in [35, 46, 82]. While

the solutions put forth in these references address important issues, most of them

did not consider the relation between game efficiency and the structure of the trust

relations among nodes. In this paper, we propose an initial analysis of this aspect.

Our work is partly motivated by the work in [19], which investigated the effect

of network topology in a model of content contribution in peer-to-peer networks with

linear quadratic payoffs. They identified the relation between Bonacich centralities

and Nash equilibria within their game model and discussed a network-based policy

for improving the equilibrium performance by exclusion of a single player. However,

no trust relations are considered in their model, and the effect of network topology

on game efficiency is not analyzed. In our work, we use a more general payoff

function, and focus the analysis on game efficiency and trust relations among nodes.

7.2 Game model and efficiency analysis

7.2.1 Formal description of the model

To investigate the effect of establishing trust for improving node cooperation in

Nash equilibria, we study a game in which the network participants can experience

a marginal increase in payoff from neighbors’ contributions. This type of relations

among neighbors are very common in practice. We model the trust relations among

nodes as a directed graph G = {V,E} associated with a trust matrix T = [tij],
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where tij ∈ [0, 1] represents the trust opinion from i to j. Due to the asymmetric

property of trust relations, tij may not be equal to tji. The set of i’s neighbors,

denoted by Ni, is the set of users that have trust relations with i, i.e., Ni = {j ∈

V |tij 6= 0}. The payoff of a user depends on the contributions from itself and its

neighbors. Each user simultaneously chooses a contribution level xi ≥ 0. The effect

of neighbors’ contribution on the node is captured by a parameter δ ∈ (0, 1]. Since

nodes are connected by their trust relations, the actual contributions received by

node i are weighted by the trust values associated with each neighbor. In summary,

the contribution that node i receives from its neighbors is δ
∑

j∈Ni
tijxj. We assume

that each user receives benefits according to a benefit function b(xi + δ
∑

j∈Ni
tijxj).

Assuming that the cost for making a unit contribution is c, then the benefit function

satisfies the conditions that b(0) = 0, b′(0) > c and b′(+∞) < c, as no user will make

any effort if b′(0) < c and all users will make infinite efforts if b′(+∞) > c. The users

are rational and risk averse, so the benefit function b(·) is concave [25]. Denoting as

usual profile of all users other than i by x−i, then the payoff for user i is

ui(xi,x−i) = b(xi + δ
∑
j∈Ni

tijxj)− c · xi, (7.1)

where xi ∈ [0,+∞). Actually, since b′(0) > c and b′(+∞) < c, there exists some

w > 0 such that b′(w) = c, then the range of effort xi becomes [0, w].

This simple form of payoff can capture the efforts of nodes to coordinate across

the network and the effects of trust relations on nodes’ efforts. Moreover, it allows

us to focus on the structure of the trust-weighted network.
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7.2.2 Nash equilibria and efficiency analysis

Before we introduce the analysis of the Nash equilibria for this game, we first

introduce a network centrality measure put forth by Bonacich [11]. Given a scalar α

and a network with adjacency matrix A such that (I −αA) is invertible, the vector

of Bonacich centralities for the nodes is defined to be h(α,A) = (I − αA)−1A · 1,

where 1 is the vector of all 1. Let a
(k)
ij be the element in the ith row and jth column

of the matrix Ak, the kth power of A, and let ρ(A) be the spectral radius of A,

i.e., the largest absolute value of A’s eigenvalues , then if |α| < ρ(A), we have

hi(α,A) =
∑∞

k=0 α
k
∑

j a
(k+1)
ij , where hi(α,A) is the Bonacich centrality for node i.

We can see that a
(k)
ij actually accounts for the total weight of all paths of length k

from user i to user j and α acts as a decay factor that scales down the relative weight

of longer paths. If α < 0, hi(α,A) puts positive weights on node i’s neighbors, but

negative weights on the neighbors’ neighbors, and so on. In other words, the larger

weights the node’s neighbors put on their other neighbors, the less central is the

node.

We now analyze the Nash equilibria of the defined game. Due to the concavity

of the benefit function and linearity of cost, there are no mixed equilibria for this

game. More specifically, a user would always get a higher payoff by playing the

average of a set of contribution levels than playing a mixed strategy over this set

of contribution levels. The existence of pure Nash equilibria is guaranteed by the

standard fixed point argument since the payoff function is concave and the strategy

set is compact and convex [66].
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At the equilibria of this game, the strategy xnei of user i should satisfy the

following conditions,


xnei = w − δ

∑
j∈Ni

tijx
ne
j , if w > δ

∑
j∈Ni

tijx
ne
j ,

xnei = 0, if w ≤ δ
∑

j∈Nii
tijx

ne
j .

(7.2)

where w is the point where b′(w) = c. From equation (7.2) we can see that a user

will make up any shortfall from its neighbors’ contributions to reach w, and exerts

no contribution if the weighted sum of its neighbors’ contributions has reached w.

For small values of δ, Theorem I in [4] implies that if δ < 1/(1 + ρ(U − I − T )),

where U is a matrix whose entries are all 1s and I is the identity matrix; then there

exists a unique interior solution for (7.2). Denote the unique solution by xne. Then

since xne is interior, according to equation (7.2) we have (I + δT ) · xne = w · 1.

Due to the existence and uniqueness of xne, we know that (I + δT ) is invertible and

xne = w · (I + δT )−1 · 1 = w · (1− δ ·h(−δ, T )). Therefore, in the Nash equilibrium,

nodes that have higher Bonacich centrality, i.e., with a higher value of hi(−δ, T ),

exert less contributions. To simplify the notation, we use h to represent h(−δ, T )

in the rest of the paper.

Next we analyze the social optimal point of the game, which is the network

operating point when all users are subject to centralized control and the social

welfare achieves its maximum value. We define the social welfare to be the sum of
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all individual payoffs, i.e.,

SW (x) =
n∑
i=1

[b(xi + δ ·
∑
j∈Ni

tijxj)− c · xi], xi ≥ 0. (7.3)

Since SW (x) is concave, and the inequality constraints are convex, the Kuhn-Tucker

conditions are the necessary and sufficient conditions for optimality. Therefore, the

social optimum xso satisfies the following conditions,


if xsoi > 0, b′(xsoi + δ

∑
j∈Ni

tijx
so
j ) + δ

∑
j 6=i tjib

′(xsoj + δ
∑

k∈Nj
tjkx

so
k )− c = 0,

if xsoi = 0, b′(xsoi + δ
∑

j∈Ni
tijx

so
j ) + δ

∑
j 6=i tjib

′(xsoj + δ
∑

k∈Nj
tjkx

so
k )− c ≤ 0.

The social optimum xso has the following property.

Lemma 7.2.1. Let v = [v1, . . . , vn] be the vector that satisfies

[b′(v1), . . . , b′(vn)]T = c · (I + δ · T )−1 · 1 = c · (1− δ · h),

and define x∗ = (I + δT )−1 · v. If x∗ is non-negative, we have xso = x∗. Otherwise,

xso is different from x∗ but we have SW (xso) < SW (x∗).

Proof. By simple manipulation of liner algebra, we know that x∗ is the solution for

the following problem

max
x

n∑
i=1

[b(xi + δ
∑
j 6=i

tijxj)− c · xi], (7.4)

which is only different from the maximization problem in (7.3) by dropping the non-
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negative constraints on xi’s; so if x∗ is non-negative, it is also the optimal solution for

(7.3). Otherwise, x∗ is not the optimal solution for (7.3), but the maximal objective

value of (7.4) is never smaller than that of (7.3), so we have SW (xso) < SW (x∗)

From the above analysis, we can see that both the Nash equilibrium and

the social optimum of this game is closely related to the Bonacich centralities of

the nodes in the trust-weighted network. To describe the difference between the

maximum social welfare SW (xso) and the social welfare at the Nash equilibrium

SW (xne), we compute the Price of Anarchy (PoA) for this game. The PoA measures

the price that the users will pay if they play selfishly in a decentralized manner

rather than play according to a centralized control. It is defined as the ratio of the

social optimal welfare to the welfare of the worst Nash equilibrium. Since the Nash

equilibrium of this game is unique when δ < 1/(1 + ρ(U − I − T )), and we have

SW (xso) ≤ SW (x∗), the PoA of this game can be upper bounded by

PoA≤ SW (x∗)

SW (xne)
=

∑n
i=1[b(x∗i + δ

∑
j∈Ni

tijx
∗
j)− c · x∗i ]∑n

i=1[b(xnei + δ
∑

j∈Ni
tijxnej )− c · xnei ]

.

Lemma 7.2.2. The PoA of this game can be upper bounded by PoA ≤
∑

i hi · vi/
∑

i hi · w.

Proof. Since b(·) is a concave function, b
′
(w) = c, (I + δ · T ) · x∗ = v and (I + δ ·

T ) · xne = w, we have

b(x∗i + δ
∑
j∈Ni

tijx
∗
j)− b(xnei + δ

∑
j∈Ni

tijx
ne
j )

= b(vi)− b(w) ≤ (vi − w) · b′(w) = (vi − w) · c.
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Let c = c · 1 and w = w · 1, then the PoA can be written as,

PoA ≤
∑n

i=1[b(w) + c · (vi − w)− c · x∗i ]∑n
i=1[b(w)− c · xnei ]

= 1 +

∑n
i=1[c · (vi − w)− c · (x∗i − xnei )]∑n

i=1[b(w)− c · xnei ]

< 1 +
cT (v−w)− cT (I + δT )−1(v−w)

n · w · b′(w)− cT (I + δT )−1w

= 1 +
δcT (I − (I + δT )−1)(v−w)

cT (I − (I + δT )−1)w

= 1 +
δcTT (I + δT )−1(v−w)

δcTT (I + δT )−1w

=
1T · T (I + δT )−1v

1T · T (I + δT )−1w
=

∑n
i=1 hi · vi∑n
i=1 hi · w

(7.5)

Lemma 7.2.2 shows that the upper bound of the PoA depends on the Bonacich

centralities of nodes in the trust-weighted network. Since w is always smaller than

vi and a node with higher Bonacich centrality has a higher value of vi, the larger the

variance of the Bonacich centralities, the lower the upper bound of the game effi-

ciency. An intuitive explanation for the low efficiency is that although the contribu-

tions from users with higher Bonacich centrality would benefit more users compared

to the contributions from users with lower centrality, those users tend to exert less

contribution in the Nash equilibrium because they can rely more on their neighbors.
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7.2.3 Heterogeneity and efficiency improvement

To improve game efficiency, one way is to increase the contributions from

the nodes that have higher Bonacich centralities. Observing that nodes who have

more resources will have higher willingness to contribute, we propose to introduce

more resources to those nodes that have higher Bonacich centralities, so they may

contribute more at the Nash equilibrium.

We model the different resources in nodes by a discount factor on cost, i.e.,

after introducing more resources, the cost for user i to make contribution xi is now

(1− γi) · c ·xi, where γi ∈ [0, 1) depends on the amount of resources introduced. If a

node has more resources, the cost for it to make the same level of contributions will

be smaller than nodes with fewer resources. There are two important issues that

need to be addressed, i.e., the amount and the position of heterogeneous resources

to be allocated. We first study two example networks in Figure 7.1(a) and 7.1(b),

and then provide mathematical analysis for these two issues.

The links in Figure 7.1(a) and 7.1(b) represent the trust relations among nodes.

In Figure 7.1(a) trust values are displayed with the links. In Figure 7.1(b) we assume

all the trust values are 1, in order to focus on the underlying structure of the network.

We use the benefit function b(x) = −x2 + 2x, x ∈ [0, 1) and let the cost coefficient

be c = 1. The benefit function is chosen to satisfy the concavity constraint. The

parameter δ is set to 0.2 for Figure 7.1(a) and 0.1 for 7.1(b), in order to satisfy the

constraint δ < 1/(1 + ρ(U − I − T )).
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(a) Network I (b) Network II

Figure 7.1: Two Example Networks

For Figure 7.1(a), the Bonacich centrality measurement for the nodes is

h = [2.7400, 0.2712, 0.2712, 0.2260, 0.3164]T .

The Nash equilibrium of the game is achieved at

xne = [0.2260, 0.4729, 0.4729, 0.4774, 0.4684]T .

As expected, the center node, which has much higher Bonacich centrality than

others, contributes much less in the Nash equilibrium. However, the social optimum

point will be

xso = [0.5037, 0.4667, 0.4667, 0.4722, 0.4611]T ,

in which the center node makes the highest contributions. To improve game effi-

ciency, we introduce heterogeneous resources for the nodes. Figure 7.2(a) and Figure

7.2(b) illustrate the social welfare at the various Nash equilibria when introducing
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more resources to nodes 1 and 5. Obviously, the social welfare can be improved

when node 1 is supplied by an appropriate level of additional resources. But in-

troducing more resources to node 5 actually reduces the social welfare. Therefore,

we should design carefully where to introduce the heterogeneous resources. Also, it

is observed in Figure 7.2(a) that the social welfare does not monotonically increase

with the increasing of resources at the center node, which poses another challenge

for the design, i.e., to determine the optimal amount of additional resources.
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(b) Introducing more resources to node 5

Figure 7.2: Efficiency Improvement for Network I

For the network in Figure 7.1(b), although node 1 appears to be the most

‘central’ in the network, it actually has lower Bonacich centrality than nodes 2, 3

and 4. This is because Bonacich centrality puts negative weights on even length

paths. The actual Bonacich centrality is 2.2105 for node 1, 2.6316 for nodes 2, 3

and 4, and 0.7368 for nodes 5, 6, 7, 8, 9, 10. Figure 7.3 shows the social welfare

improvement by introducing more resources to node 1 (NE1), node 2 (NE2) and

node 1, 2, 3, 4 together (NE3). We observe that the game efficiency is not improved

much by introducing more resources for node 1 or node 2 only, but is significantly
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improved by introducing more resources for node 1, 2, 3 and 4 together. That is,

not only where the additional resources should be introduced but also how many

nodes should be allocated with additional resources need to be carefully designed.
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Figure 7.3: Efficiency Improvement for Network II

Next we mathematically analyze the possible improvement of game efficiency

by introducing heterogeneous resources. Let c̃ = (1 − γ) · c be the cost for users

to make a unit effort after we introduce additional resources to them, where γ =

[γ1, . . . , γn] is the vector of cost discount factors for users. Assuming w̃ is the vector

that satisfies [b′(w̃1), . . . , b′(w̃n)]T = c̃, note that due to the concavity of b(·), the

value of w̃i increases with the increase of γi , the strategy for user i at the new Nash

Equilibrium, denoted by x̃ne, becomes


x̃nei = w̃i−δ

∑
j∈Nii

tijx̃j
ne if δ

∑
j∈Ni

tijx̃j
ne < w̃i,

x̃nei = 0 if δ
∑

j∈Ni
tijx̃j

ne ≥ w̃i.

(7.6)

Since equation (7.6) is also the Kuhn-Tucker condition for the following maximiza-
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tion problem

max
x

xT · w̃− 1

2
xT (I + δT )x,∀ i, xi ≥ 0, (7.7)

and (I + δT ) is invertible, there is a unique solution to problem (7.7) and thus a

unique Nash equilibrium for the new game. Furthermore, if (I + δT )−1w̃ is non-

negative, we have x̃ne = (I + δT )−1w̃. Otherwise, the Nash equilibrium will have

some i with x̃nei = 0. The non-negativeness of (I + δT )−1w̃ depends on the choice

of c̃ and the benefit function b(·).

Lemma 7.2.3. When (I+δT )−1 ·w̃ is non-negative, thus being the Nash equilibrium

for the new game, the improvement of social welfare at the Nash equilibrium can be

bounded by

SW (x̃ne)− SW (xne)≥
∑
{i:γi>0}

(w̃i − w)(δ · hi − γi) · c (7.8)

SW (x̃ne)− SW (xne)≤
∑
{i:γi>0}

δ · c · (w̃i − w) · hi, (7.9)

and the improvement on the PoA value can be bounded by

SW (x̃ne)

SW (xne)
≤

∑
i w̃ihi∑
iwhi

. (7.10)

Proof. Since b(·) is concave, (I + δT ) · x̃ne = w̃, and (I + δT ) · xne = w, the

improvement of social welfare at the equilibrium by introducing heterogeneity can

be written as
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˜SW
ne − SW ne =

n∑
i=1

[b(w̃i)− b(w) + c(xnei − x̃ne)]

˜SW
ne − SW ne ≥ c̃T (w̃−w) + cT (xne − x̃ne)

= (w̃−w)T (c̃− (I + δT )−1c)

=
n∑
i=1

(w̃i − w)(δ · hi − γi) · c,

˜SW
ne − SW ne ≤ cT (w̃−w) + cT (xne − x̃ne)

= (w̃−w)T (δT (I + δT )−1c)

=
n∑
i=1

δ · c · (w̃i − w) · hi.

Following a similar procedure as in the proof of Lemma 7.2.2, we have

SW (x̃ne)

SW (xne)
≤ δw̃TT (I + δT )−1 · c

δwTT (I + δT )−1w
=

∑
i w̃ihi∑
iwhi

.

The upper bound on the social welfare improvement in (7.9) is monotonically

increasing with the increase of cost discount factor. But from the lower bound in

equation (7.8), we can see that increasing the cost discount factor to the nodes

that have higher Bonacich centralities could increase the value of the term (w̃i−w)

but decrease the value of the term (δ · hi − γi), so the social welfare improvement

may not monotonically increase, which is consistent with the observation in Figure

7.2(a). Also, by equation (7.10) we can expect that the higher the variance of the

Bonacich centralities of nodes in the trust-weighted network, the more room we have

to improve game efficiency by introducing heterogeneous resources.
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When the non-negativeness of (I + δT )−1w̃ is not satisfied, the Nash equilib-

rium of the new game will have some i such that x̃nei = 0, which is a much more

involved case.

7.3 Discussion

We studied the effects of trust relations among users on the equilibria in net-

work games. We considered a game in which each user locally interacts with its

neighbors, where the local interactions are affected by their trust relations. We

characterized the unique Nash equilibrium in this game using Bonacich centrality

measures, and proved that the game efficiency, measured in terms of the price of

anarchy, is also highly related to this centrality measure. The more spread the

Bonacich centralities among nodes, the lower the game efficiency. Motivated by the

observation that users that have more resources will have higher willingness to con-

tribute, we also proposed to improve game efficiency by introducing heterogeneous

resources according to nodes’ centralities.

In future work, this static game can be extended to repeated rounds to capture

the evolution of trust and cooperation among nodes. The potential of heterogene-

ity on improving Nash equilibrium quality can be further explored when the trust

relations change dynamically.
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Appendix A

Proofs for theorems in Chapter 5

A.1 Proof for performance bound for the approximation algorithm

in first phase probing

Proof. The primal objective value zp can be written as zp =
∑

j∈E(X ) wj according

to (5.1), which is lower bounded by 1
δ

∑
i∈X w̃i. Since the paths in X have active

constraints in the dual problem, we have [
∑

i∈X w̃i =
∑

i∈X (λhi +
∑

j aijγj) < δ · zp.

On the other hand, the dual objective value zd can be written as zd = λh0 +
∑

j∈E γj.

Since γj = 0 for j /∈ E(X ), we have

zd = λ(h0 −
∑
i∈X

hi) +
∑
i∈X

(λhi +
∑
j

aijγj) < λhmax + δ · zp.

Since λ
∑

i∈X hi < δ · zp and |X | = l1, we have

λhmax <
δ · zp

l1 · hmin
hmax.

Then zd can be upper bounded by zd < δ · zp · (1 + r/l1) and we have the optimal

objective value z∗ satisfying

z∗ < zd < δ(1 + r/l1)zp.
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A.2 Proof for performance bound on the greedy algorithm in second

phase probing

Proof. First, the diagnosis quality f(π), measured in the reduction of estimation

uncertainty, satisfies the adaptive monotonicity property defined in [26], i.e. getting

more probing observations can never decrease the diagnosis quality. Second, it

also satisfies the adaptive submodularity property, i.e., when there are fewer probes

that have been sent, probing one additional path can provide the same or more

information than the case of probing the same additional path but there are more

probes that have been sent. In other words, for XA ⊆ XB ⊂ X and Xi ∈ X\XB, we

have

f(XA, Xi)− f(XA) = H(Y|XA)−H(Y|XA, Xi)

≥ f(XB, Xi)− f(XB) = H(Y|XB)−H(Y|XB, Xi),

which is due to the fact that

H(Y|XA)−H(Y|XA, Xi)− (H(Y|XB)−H(Y|XB, Xi))

=
∑
XB

∑
Xi

P (XB, Xi) log
P (XB, Xi)

P (XB)P (Xi|XA)

= DKL(P (XB, Xi)||P (XB)P (Xi|XA)) ≥ 0,
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where DKL(·) represents the Kullback-Leibler divergence. Following Theorem 3 in

[26], we have ∆̃ ≥ (1 − e−l2/k)∆∗, where l2 is the number of steps for the greedy

algorithm and k is that of the optimal algorithm. In our case, the number of steps

in the greedy algorithm is equal to the number of probes selected by the greedy

algorithm, and the number of steps for an optimal algorithm can be upper bounded

by k ≤ h̃0/hmin, so we have ∆̃ ≥ (1− e−l2·hmin/h̃0)∆∗.

Appendix B

Proofs for theorems in Chapter 6

B.1 Proof for the correctness of the forward decomposition

To prove the correctness of the forward decomposition algorithm, we need to

prove the correctness of the following results for h ≥ 2:

αh−1,2j−1 = g1(dh−1,2j−1)
∑

sh−1,2j−2

[g2(sh−1,2j−1) · αh,j], (B.1)

αh−1,2j = g1(dh−1,2j)
∑

sh−1,2j−1

[g2(sh−1,2j) · α1,2h−2(2j−1)]. (B.2)
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By the definition of Si,j and Di,j, we have

Sh−1,2j−1 = {Sh,j\sh,j} ∪ sh−1,2j−1,

Dh−1,2j−1 = {Dh,j\dh,j} ∪ dh−1,2j−1,

Sh−1,2j = {S1,2h−2(2j−1)\s1,2h−2(2j−1)} ∪ sh−1,2j,

Dh−1,2j = {D1,2h−2(2j−1)\d1,2h−2(2j−1)} ∪ dh−1,2j.

Then it is trivial to prove the correctness of equation (B.1),(B.2) according to the

Markovian property of the proposed HMM model.

B.2 Proof for the correctness of the scaled backward decomposition

To prove the correctness of the scaled backward decomposition algorithm, we

need to prove the following results for h ≥ 2:

β̄1,2h−2(2j−1) =
∑
sh−1,2j

g1(dh−1,2j)g2(sh−1,2j) · β̄h−1,2j

ch−1,2j

, (B.3)

β̄h,j =
∑

sh−1,2j−1

g1(dh−1,2j−1)g2(sh−1,2j−1) · β̄h−1,2j−1

ch−1,2j−1

. (B.4)
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Note that β̄i,j =
P (Dc

i,j |Si,j)

P (Dc
i,j |Di,j)

and ci,j = P (di,j|Di,j\di,j), and by the definition of Si,j

and Di,j, we have

S1,2h−2(2j−1) = Sh−1,2j\sh−1,2j,

D1,2h−2(2j−1) = Dh−1,2j\dh−1,2j,

Dc1,2h−2(2j−1) = Dch−1,2j ∪ dh−1,2j,

Sh,j = Sh−1,2j−1\sh−1,2j−1,

Dh,j = Dh−1,2j−1\dh−1,2j−1,

Dch,j = Dh−1,2j−1 ∪ dh−1,2j−1.

Therefore, according to the Markovian property of the proposed HMM model, we

have for the right side of equation (B.3) that

g1(dh−1,2j)g2(sh−1,2j) · β̄h−1,2j

ch−1,2j

=
P (sh−1,2j,Dch−1,2j ∪ dh−1,2j|Sh−1,2j\sh−1,2j)

P (Dch−1,2j ∪ dh−1,2j|Dh−1,2j\dh−1,2j)

=
P (sh−1,2j,Dc1,2h−2(2j−1)

|S1,2h−2(2j−1))

P (Dc
1,2h−2(2j−1)

|D1,2h−2(2j−1))
,

which proves the equality in equation (B.3). The proof for equation (B.4) can be

derived similarly.
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B.3 Proof for the computation of the posterior probabilities

We need to prove the following equations:

γi,jk1,k2,k3 =


∑
ᾱ1,2i−1(j−1)β̄i,j ·

g1(di,j)·g2(si,j)

ci,j
, for j even,∑

ᾱi+1,dj/2eβ̄i,j · g1(di,j)·g2(si,j)

ci,j
, for j odd.

γL,jk1,k2
=

∑
ᾱ1,2L−1(j−1) · β̄L,j ·

g1(dL,j)g2(sL,j)

cL,j
.

We will only prove here the case when j is even for γi,jk1,k2,k3 . The proof for the other

two equations can be derived similarly.

First note that when j is even, we have

S1,2i−1(j−1) = Si,j\si,j,

D1,2i−1(j−1) = Di,j\di,j,

Dc1,2i−1(j−1) = Dci,j ∪ di,j.

Then we can know that

ᾱ1,2i−1(j−1)β̄i,j ·
g1(di,j) · g2(si,j)

ci,j

=
P (S1,2i−1(j−1)|D1,2i−1(j−1))P (Dc1,2i−1(j−1), si,j|S1,2i−1(j−1))

P (Dc
1,2i−1(j−1)

|D1,2i−1(j−1))

= P (si,j,S1,2i−1(j−1)|D),

from which the value of γi,jk1,k2,k3 can be derived by an appropriate summation.
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B.4 Proof for the correctness of the equations for recursively updat-

ing the sufficient statistics

The proof is based on the Markovian property of our HMM model. We prove

here the updating equation for τh−1,2j−1
l,k when the new data dh−1,2j−1 arrives, i.e.,

τh−1,2j−1
l,k = rlh−1,2j−1 + tlh−1,2j−1

∑
sh−1,2j−2

g2(sh−1,2j−1)τh,jl,k .

The proof of updating equations for the other sufficient statistics can be derived

similarly.

For l 6= h − 1, we have nh,jl = nh−1,2j−1
l and rlh−1,2j−1 = 0. By manipulating

the Markovian property of the proposed HMM model, it is easy to prove that

tlh−1,2j−1

∑
sh−1,2j−2

g2(sh−1,2j−1)τh,jl,k =

nh−1,2j−1
l ∑
m=1

P (sl,m = k,Sh−1,2j−1|Dh−1,2j−1) = τh−1,2j−1
l,k .

If l = h− 1, we have nh,jl = 2j − 2 and

rlh−1,2j−1 = γP (sh−1,2j−1 = k,Sh−1,2j−1|Dh−1,2j−1),

where γ is the time discount factor. We also have

tlh−1,2j−1

∑
sh−1,2j−2

g2(sh−1,2j−1)τh,jl,k = (1− γ)

2j−2∑
m=1

P (sh−1,m = k,Sh−1,2j−1|Dh−1,2j−1),

therefore, according to the limiting EM algorithm, the updating equation for τh−1,2j−1
l,k
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is exactly the form shown in (6.5).

B.5 Proof for the computation of the relative entropy

The proof is as follows.

lim
n→∞

1

n
D(Pt||Pt−1)

= lim
n→∞

1

n

∑
S,D

Pt(sL,1)
L−1∏
i=1

Pt(si,1|si+1,1) ·
L∏
i=1

ni∏
j=2

Pt(si,j|si,j−1, si+1,dj/2e)

·
L∏
i=1

ni∏
j=1

Pt(di,j|si,j) · [
L∑
i=1

ni∑
j=1

log
Pt(di,j|si,j)
Pt−1(di,j|si,j)

+ log
Pt(sL,1)

Pt−1(sL,1)

+
L−1∑
i=1

log
Pt(si,1|si+1,1)

Pt−1(si,1|si+1,1)
+

L∑
i=1

ni∑
j=2

log
Pt(si,j|si,j−1, si+1,dj/2e)

Pt−1(si,j|si,j−1, si+1,dj/2e)
]

=
L∑
i=1

1

2i

∑
k1,k2,k3

(πik1,k2,k3)
t log

(πik1|k2,k3)
t

(πik1|k2,k3)
t−1

+
L∑
i=1

1

2i

∑
k

(πik)
tD(N ((µik)

t, (σik)
t)||N ((µik)

t, (σik)
(t))).
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