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Human listeners can reliably recognize speech in complex listening environments. 

The underlying neural mechanisms, however, remain unclear and cannot yet be 

emulated by any artificial system. In this dissertation, we study how speech is 

represented in the human auditory cortex and how the neural representation 

contributes to reliable speech recognition. Cortical activity from normal hearing 

human subjects is noninvasively recorded using magnetoencephalography, during 

natural speech listening. It is first demonstrated that neural activity from auditory 

cortex is precisely synchronized to the slow temporal modulations of speech, when 

the speech signal is presented in a quiet listening environment. How this neural 

representation is affected by acoustic interference is then investigated. Acoustic 

interference degrades speech perception via two mechanisms, informational masking 

and energetic masking, which are addressed respectively by using a competing speech 

stream and a stationary noise as the interfering sound. When two speech streams are 



  

presented simultaneously, cortical activity is predominantly synchronized to the 

speech stream the listener attends to, even if the unattended, competing speech stream 

is 8 dB more intense. When speech is presented together with spectrally matched 

stationary noise, cortical activity remains precisely synchronized to the temporal 

modulations of speech until the noise is 9 dB more intense. Critically, the accuracy of 

neural synchronization to speech predicts how well individual listeners can 

understand speech in noise. 

Further analysis reveals that two neural sources contribute to speech 

synchronized cortical activity, one with a shorter response latency of about 50 ms and 

the other with a longer response latency of about 100 ms. The longer-latency 

component, but not the shorter-latency component, shows selectivity to the attended 

speech and invariance to background noise, indicating a transition from encoding the 

acoustic scene to encoding the behaviorally important auditory object, in auditory 

cortex. Taken together, we have demonstrated that during natural speech 

comprehension, neural activity in the human auditory cortex is precisely 

synchronized to the slow temporal modulations of speech. This neural 

synchronization is robust to acoustic interference, whether speech or noise, and 

therefore provides a strong candidate for the neural basis of acoustic background 

invariant speech recognition. 
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Chapter 1 

Introduction 
 

Speech is a dominant form of human communication, and speech communication 

is remarkably robust to acoustic interference. Such robustness, however, is lost for 

hearing-impaired listeners (Festen and Plomp, 1990) and cannot yet be emulated by 

automatic speech recognition systems (Cooke et al., 2010; Lippmann, 1997). Therefore, 

identifying how speech is represented in the normal-hearing human auditory system and 

how this neural representation leads to noise-robust speech perception is not only of great 

interest to neuroscience but also has potential applications in the design of hearing aid 

devices and noise-robust automatic speech recognition systems. 

The recognition of speech relies on the spectro-temporal modulations of speech, 

i.e. how the energy of speech varies over time and frequency (Chi et al., 1999). In this 

dissertation, we focus on the neural representation of the slow temporal modulations of 

speech (< 10 Hz), which reflect the syllabic and phrasal structure of speech (Greenberg et 

al., 2003; Poeppel et al., 2008). In quiet listening environments, these slow modulations 

lead to high speech intelligibility, even if accompanied by only very coarse spectral 

information (Elliott and Theunissen, 2009; Shannon et al., 1995). In complex listening 

environments, they provide cues for grouping relevant acoustic features into a coherent 

speech stream (Shamma et al., 2011; Sheft, 2007). Here, the neural representation of slow 

temporal modulations is investigated using magnetoencephalography (MEG) 

(Hämäläinen et al., 1993), a noninvasive neural recording tool. MEG is sensitive to 

neural activity in human auditory cortex (Lütkenhöner and Mosher, 2006) and has 
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millisecond level time resolution, high enough to resolve neural activity phase locked to 

these slow temporal modulations (Ding and Simon, 2009; Wang et al., 2012). A review 

of human auditory processing and MEG is provided Chapter 2. 

This dissertation consists of three studies. The first study (Chapter 3) addresses 

how the temporal modulations of speech are encoded in the human auditory cortex. 

Instead of excessively repeating a few syllables or short sentences, as done in traditional 

electrophysiological studies, discourse-level spoken narratives are employed to examine 

the neural encoding of natural, continuous speech and adopt a systems-theoretic approach 

to characterize the neural code. It is demonstrated that the slow temporal modulations of 

speech are encoded in the human auditory cortex by precisely phase-locked neural 

activity. Furthermore, when two speech signals from the same speaker are simultaneously 

presented to different ears (dichotic listening), the response to the speech being attended 

to is substantially stronger than the response to the unattended speech, demonstrating top-

down attentional modulation of the neural representation of slow temporal modulations. 

This study has been published in the Journal of Neurophysiology (Ding & Simon, 2012). 

The second study (Chapter 4) addresses the neural processing underlying how 

listeners selectively attend to one of two concurrent speech streams that are mixed into a 

single acoustic channel, which removes the binaural cues present in the previous study. 

This study demonstrates that longer-latency (~100 ms) cortical activity is selectively 

synchronized to the temporal modulations of the attended speech stream, even though the 

two competing speech streams have strong acoustic overlap. Critically, this neural 

representation is insensitive to the intensity ratio between the two competing speech 

streams, at least in the range where the attended speech remains intelligible (intelligibility 
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> 50%). These results suggest that concurrent speech streams are neurally segregated and 

encoded differentially in the human auditory cortex, based on their perceptual important 

rather than physical intensity. This study has been accepted for publication by 

Proceedings of the National Academy of Sciences. 

The third study (Chapter 5) addresses the neural encoding of speech embedded in 

stationary background noise. When processing concurrent streams of speech, the brain 

benefits from taking clean “glimpses” of the target speech stream when the interfering 

stream is instantaneously weak (Cooke, 2006). Stationary noise, however, eliminates 

such clean glimpses and therefore is more detrimental to speech intelligibility (Festen and 

Plomp, 1990). Neural synchronization to the slow temporal modulations of speech, 

however, is found to be robust to the background noise until it is 9 dB stronger than 

speech. Long-term temporal integration (> 100 ms) and neural adaptation to sound 

intensity are demonstrated to be crucial for the stable neural representation. Critically, the 

precision of the neural encoding of slow temporal modulations predicts how well a 

listener can understand speech in noise. 

Taken together, this series of studies demonstrate that, during natural speech 

comprehension, the temporal modulations of speech are encoded precisely by phase-

locked activity in the human auditory cortex (Chapter 3), even in the presence of acoustic 

interference, whether speech or noise (Chapter 3-5). The acoustic degradations caused by 

speech and noise represent respectively informational masking and energetic masking, 

two fundamental aspects of the interactions between speech and background (Brungart, 

2001; Durlach et al., 2003). Therefore, it is reasonable to infer that in any auditory scene 

that allows a listener to successfully attend to a speech stream, neural activity in the 
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listener’s auditory cortex is precisely synchronized to the attended speech stream. This 

noise-robust neural representation of the slow temporal modulations of speech provides a 

plausible neural basis for noise-robust speech recognition. 
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Chapter 2 

Background 

2.1 Overview: auditory neural computations 

The auditory system processes sounds through neural computations. Some of 

these computations are known. For example, the auditory system breaks up sounds into 

narrow frequency bands and applies a nonlinear compression to the amplitude of the 

sounds in each frequency band (Hudspeth, 2008). These two kinds of neural 

computations are the fundamentals of our basis of sound perception (Moore, 2003) and 

have parallels in signal processing, i.e. the wavelet transform (Mallat, 1999) and the static 

logarithmic nonlinearity. Furthermore, the auditory system is rapidly adapted to the mean 

and intensity of the stimulus, which provides a plausible neural basis for intensity 

independent auditory perception (Robinson and McAlpine, 2009; Zilany et al., 2009). 

Most of these well-characterized neural computations occur before the neural 

representations of sounds reach the part of the brain known as the cortex (Fig. 2.1). Little 

is known, however, about neural computations occurring inside the cortex, which are 

critical to sound segregation and speech coding (Hickok and Poeppel, 2007; Nelken, 

2008). 
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Figure 2.1. Auditory neural computations. The sub-cortical neural processing 

provides a spectro-temporal representation of the acoustic input (Yang et al., 

1992). The cortical neural processing is based on the sub-cortical representation 

of sounds but is also modulated by cognitive functions such as attention and 

memory. 

 

One neural computation known to occur in the animal primary auditory cortex is 

the selectivity to spectro-temporal modulations (Chi et al., 2005; Depireux et al., 2001). 
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From the perspective of signal processing, the spectral modulation analysis is an analysis 

of the power spectrum, similar to cepstral analysis and linear predictive analysis (Gold 

and Morgan, 2000). The temporal modulation analysis selectively processes sound 

features, e.g. the power spectrum, varying at different rates and is essentially similar to 

RASTA in speech processing (Gold and Morgan, 2000). The temporal modulation 

analysis can be viewed as filtering sound features in time, i.e., convolving the sound 

features with a temporal window. Therefore, temporal modulation analysis is also 

frequently discussed as a temporal integration process with certain time windows 

(Poeppel, 2003). Furthermore, cortical processing has been hypothesized to decompose a 

complex auditory scene into auditory objects, each being the sound generated from a 

single physical source (Griffiths and Warren, 2004; Nelken and Bar-Yosef, 2008; 

Shamma et al., 2011), although the neural evidence for this is still lacking. 

2.2 Human auditory system 

2.2.1 Neurons and neural systems 

The fundamental unit of the nervous system is the neuron. A neuron is separated 

from its outside environment by a cell membrane. A typical neuron contains three parts: 

the cell body, the axon, and the dendrites (Fig. 2.2A). The cell body is roughly tens of 

microns in diameter (Dayan and Abbott, 2001, Chapter 1). The dendrites and axons are 

processes (i.e. extensions) a neuron uses to connect with other neurons. 

The signal output of a neuron is a series of action potentials (or spikes), which are 

brief (1-2 ms in duration) voltage changes that propagate along the axon. An action 



  

 8 

potential is generated when the voltage difference across the membrane of a neuron 

reaches a threshold. The time when a neuron generates an action potential is called the 

firing time. The number of action potentials generated per second is called the firing rate. 

The firing rate can be as high as a few hundred Hertz.  

The signal inputs to a neuron are received from the dendrites. A dendrite connects 

to axons (usually from other neurons) via structures called synapses. Action potentials 

received by a dendrite cause a voltage change in the dendrite. This voltage change, called 

a post-synaptic potential, can last tens of milliseconds long. If a dendrite receives several 

action potentials within a short time period, the post-synaptic potential accumulates. 

When the accumulated voltage change reaches a threshold, an action potential will be 

generated by the neuron. The post-synaptic potential also leads to a current in the 

dendrite flowing towards the cell body (Fig. 2.2B). The dendritic current is typically on 

the order of fA (10-15 Ampere) (Hämäläinen et al., 1993). 

The activity of a single neuron can be recorded either extracellularly or 

intracellularly. An extracellular recording measures the electrical activity of a neuron 

through an electrode placed outside but close to the neuron. It primarily records the 

action potentials. An intracellular recording measures the voltage across the cell 

membrane and therefore reflects both action potentials and dendritic activities. A 

recording from a single neuron is usually called single unit recording. 
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Figure 2.2. (A) A cortical pyramidal neuron. It contains a cell body, an axon, 

and many dendrites. The green arrow indicates the direction of dendritic current. 

(B) The drawing of a slice of stained infant cortex by S. Ramon y Cajal. 

Neurons are densely distributed in the cortex. (Fig. 2.2A is adapted from Fig. 1.1 

of Dayan and Abbott (2001) and the Fig. 2.2B is adapted from 

http://en.wikipedia.org/wiki/File:Cajal_cortex_drawings.png) 

 

Neurons interconnect with one another and form neural networks (Fig. 2.2B). In 

each mm2 of the cerebral cortex, there are about 105 neurons (Hämäläinen et al., 1993). A 

common type of neuron in the cortex is the pyramidal neuron. Some dendrites of 

pyramidal neurons, called the apical dendrites, are roughly perpendicular to the surface of 

the cortex. The apical dendrites of neighboring neurons are approximately parallel, and 

therefore the current in the apical dendrites in a local neural network flow in very similar 

directions. When the currents along the dendrites of many neurons are synchronized in 

time, they may sum up to be a current source that generates a magnetic field strong 

enough to measure outside the brain (extracranially). Measurement of this magnetic field 
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is called magnetoencephalography (MEG). Similarly, synchronized neural activity can 

also generate an electric potential measurable extracranially, which is called 

electroencephalography (EEG). MEG/EEG can be measured noninvasively. Nonetheless, 

since MEG and EEG measure neural activity synchronized over millions of neurons, they 

have limited spatial resolution (millimeter to centimeter level). This spatial resolution 

issue is severely aggravated by the fact that reconstructing the spatial distribution of 

current sources based on its magnetic/electric field is an ill-posed problem (Baillet et al., 

2001). 

The activity of neural networks can also be indirectly measured by positron 

emission tomography (PET) and functional Magnetic Resonance Imaging (fMRI) 

(Logothetis, 2003; Raichle, 1983). PET and fMRI image the dynamics of blood flow 

inside the brain. Since neural activity has a high metabolic cost, it changes the flow and 

oxygen level of the blood in local brain areas. The dynamics of blood flow, however, are 

much slower than the dynamics of neural activity, and PET and fMRI have a time 

resolution lower than 1 Hz. Therefore, PET and fMRI cannot resolve the neural response 

phase locked to the slow temporal modulations of speech (1-16 Hz). 

 

2.2.2 Human auditory system 

Sounds are transformed from mechanical vibrations to electrical neural activity in 

the cochlea. The neural representations of sounds are then processed by a series of neural 

networks from the brainstem to the cortex. 
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In the cochlea, the basilar membrane acts as a filter bank (Fig. 2.3). It is about 35 

mm long, with its basal part tuned to high frequencies and its apical part tuned to low 

frequencies. The frequency tuning of the basilar membrane changes about 1/3-1/4 octave 

per millimeter (Greenwood, 1990). Besides frequency filtering, another important 

function of the cochlea is to compress the dynamic range of sound input in a nonlinear 

fashion (Hudspeth, 2008; Moore, 2003). The inner hair cells on the basilar membrane 

transform vibrational signals into electrical neuronal activity. The auditory nerves then 

transmit neural activity of inner hair cells to the central nervous system. 
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Figure 2.3. A schematic illustration of the function of the basilar membrane in 

the cochlea. The basilar membrane is a spiral structure in the cochlea (Left). It 

acts as a filter bank in logarithmic frequency spacing. The response of the 

basilar membrane to a chirp signal whose frequency linearly increases is 

simulated and plotted as a function of time (Right), where dark colors mean high 

activation. The basilar membrane response is simulated based on the model 

proposed by Yang, Wang, and Shamma (1992). The nonlinearity of the basilar 

membrane is not simulated. 
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The neural outputs of the auditory nerves are processed by several nuclei 

(compact networks of neurons) in the brainstem and thalamus before reaching the cortex. 

These sub-cortical nuclei refine the temporal synchronization of neural responses (Joris et 

al., 1994), integrate the inputs from two ears (Chapter 6, Pickles 1988), and may also 

refine the frequency tuning of neurons through lateral inhibition (Yang et al., 1992). As 

in the cochlea, a large number of neurons in these sub-cortical nuclei are tuned in 

frequency and the frequency tuning of these neurons is spatially ordered (Chapter 6, 

Pickles 1988). The temporal precision of neurons decreases gradually from the cochlea to 

cortex (Giraud et al., 2000; Joris et al., 1994). Neural phase locking to sound is seen 

above 1 kHz in auditory nerves, up to ~200 Hz in the thalamus, and generally below 40 

Hz in the cortex. 

The human auditory cortex is located in the superior part of the temporal lobe 

(Fig. 2.4). It can be divided into core, belt, and parabelt (association) regions (Hackett et 

al., 1998; Kaas and Hackett, 2000). The core auditory cortex, including the primary 

auditory cortex, is located in medial part of the transverse temporal gyrus (Heschl’s 

gyrus). Animal studies show that neurons in primary auditory cortex are generally tuned 

in frequency (Chapter 7, Pickles 1988). Similarly, human studies demonstrate very fine 

frequency tuning in some neurons in the Heschl’s gyrus (Bitterman et al., 2008). Single 

unit recording from monkeys and fMRI data from humans suggest a functional 

dissociation between core and belt auditory cortices (Rauschecker, 1998; Wessinger et 

al., 2001). The core auditory cortex receives direct input from the thalamus and is most 

sensitive to pure tones. The belt region receives input from the core auditory cortex and is 
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more sensitive to narrow band stimuli than pure tones. Neural activity also shows better 

phase locking to temporal modulations in the core auditory cortex than in some belt 

regions (Nourski et al., 2009). Since intracranial recording from human subjects are rare 

while extracranial recordings have limited spatial resolution, the functional division of 

different auditory regions of human auditory cortex is still far from clear. 

 

Figure 2.4. Anatomy of human auditory cortex. The human auditory cortex is 

located in the superior temporal gyrus (circled in red). The primary auditory 

cortex is in the Heschl’s gyrus. The planum temporale is an important area in the 

association auditory cortex. In this figure, a part of the cortex is removed in 

order to visualize the auditory cortex (adapted from Tervaniemi and Hugdahl, 

2003). 

(Tervaniemi and Hugdahl, 2003) 

In the association auditory cortex, an important area is the planum temporale 

(PT), which is posterior to the Heschl’s gyrus. The PT is supposed to play an important 

role in high level auditory processing, e.g. auditory scene analysis (Griffiths and Warren, 

2002). The PT (Lütkenhöner and Steinsträter, 1998) and/or the lateral part of Heschl’s 
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gyrus (Herdman et al., 2003) are localized as the sources of the M100, a strong MEG 

response occurring 100-ms after a sound onset. 

2.3 Neural processing in human auditory cortex 

2.3.1 Cortical processing of speech 

The temporal information of speech, as well as the neural processing of speech, 

occurs on multiple time scales (Poeppel, 2003; Rosen, 1992; Shamma, 2006). The fastest 

time scale (> 300 Hz) contains the spectral information of speech, and its variability may 

be called the spectral modulation of speech (Chi et al., 2005). It is the carrier signal for 

slower temporal modulations. In auditory cortex, the spectral modulations are represented 

by the spatial activation pattern of neurons (Chang et al., 2010; Mesgarani et al., 2008). 

Slower time scales, roughly between 70-300 Hz, are often called temporal periodicity 

cues (Elhilali et al., 2004; Rosen, 1992) (Fig. 2.5) and are related to pitch perception 

(Elliott and Theunissen, 2009; Zeng et al., 2005). The neural representation of temporal 

periodicity is still under debate (de Cheveigné, 2005; Lyon and Shamma, 1996). The 

slowest time scale of speech, below 16 Hz, is often called the slow temporal modulations 

of speech (Fig. 2.5) (Chi et al., 2005; Rosen, 1992) and reflects the syllabic and phrasal 

structure of speech (Greenberg et al., 2003). The slow modulations that are consistent 

over spectral regions constitute the temporal envelope of speech. From the auditory 

periphery to the auditory cortex, the slow temporal modulations are represented by phase-

locked neural activity (Brugge et al., 2009; Liegeois-Chauvel et al., 2004; Nourski et al., 

2009). 
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Figure 2.5. Spectro-temporal information of speech. The grayscale graph on the 

lower left side is the simulated neural representation of speech in the brainstem. 

This spectro-temporal neural representation is similar to a spectrogram but in 

log frequency scale. A spectral cross section of the neural representation is 

shown to visualize the spectral modulations (in blue). The first two formants (F1 

and F2) and the first three harmonics (H1, H2 and H3) are marked on the 

spectral profile. A temporal cross section of the neural representation is shown 

in red, to visualize the temporal modulations. The temporal modulations in 

speech are dominated by slow power fluctuations on the order of a couple of 

Hertz. A short segment of the temporal cross section is zoomed in to visualize 

the periodicity cue (in cyan), reflects the pitch of the speech. 
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2.3.2 Cortical processing of temporal modulations 

Neural processing of temporal modulations has been mostly studied using 

amplitude modulated (AM) sounds and frequency modulated (FM) sounds, which are 

among the simplest sounds that can capture some important dynamic features of speech 

and other natural sounds. Numerous studies have investigated the neural mechanisms 

underlying AM and FM processing (see, e.g., Joris et al., 2004 for a review). Slow 

AM/FM (< 20 Hz) has been most intensively studied since they drive cortical neurons 

most effectively (Eggermont, 2002; Liang et al., 2002). These slow modulations are 

encoded by sustained phase-locked neural activity in the cortex, as shown using single 

unit recording, EEG, and MEG (Alaerts et al., 2009; Ding and Simon, 2009; Eggermont, 

2002; Picton et al., 1987; Rees et al., 1986; Wang et al., 2012). The neural response to a 

5-Hz amplitude modulated broadband noise is illustrated in Fig. 2.6. When the stimulus 

modulation frequency is higher than ~40 Hz, phase-locking to the periodic features of an 

AM or FM is greatly weakened. It has been suggested that slow modulations are 

represented by a temporal code, while fast modulations are represented by a firing rate 

code (Wang et al., 2003).  
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Figure 2.6. A schematic illustration of the neural phase locking to a 5 Hz AM. 

An idealized neuron generates an action potential at a certain phase in every 

cycle of the AM. Dendritic activity and the MEG signal follow the AM as a 

slow oscillation at 5 Hz. The carrier signal of the stimulus, in this case a 

broadband noise, does not significantly affect the neural coding of temporal 

modulations. 

 

2.3.3 Modeling the neural processing of temporal modulations 

As discussed in the previous sections, in auditory cortex, the spectral modulations 

of sound are represented spatially (by different neurons) while the temporal modulations 

of sound are represented temporally (by the response waveforms of neurons). In this 

section, we discuss theoretical models of the neural processing of temporal modulations. 
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A linear time-invariant (LTI) system is characterized by its impulse response. The 

simplest way to characterize the impulse response of a system is to play a white noise and 

calculate the cross correlation between the system output and stimulus white noise. This 

method has been applied to estimate the impulse response reflecting cortical processing 

of temporal modulations (Lalor et al., 2009). (Since the temporal modulations are 

modulations of a carrier signal, their frequency cannot be very high. Therefore, the white 

noise in modulation domain has to be band limited, e.g. below 30 Hz.) The auditory 

system, however, is certainly nonlinear. Therefore, the impulse response is usually 

stimulus dependent. Spectro-temporally structured sounds, such as random chords and 

natural sounds, have also been applied to model the auditory system (Bitterman et al., 

2008; David et al., 2009; David et al., 2007; deCharms et al., 1998; Theunissen et al., 

2001). Natural sounds, unlike white noise, are correlated over time. Therefore, the 

autocorrelation in natural sounds has to be taken into consideration when estimating the 

impulse response. 

 

Let us denote the temporal modulation of the stimulus as x(t) and the neural 

response as y(t). Both x(t) and y(t) are discrete time signals and their relation, when 

described by an LTI system, is  

 
y t( ) = x t ! "( )h "( )

" =!#

#

$ + % t( ) ,
   

(2.3.1) 

where h(t) is the impulse response of the system (called the temporal response function 

(TRF) in this dissertation), and ε(t) is the neural response cannot be explained by the 

stimulus using the LTI model. ε(t) is uncorrelated with x(t − τ), for arbitrary time delay τ. 
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For a neural system, the impulse response is causal and of finite duration, i.e. h(t) = 0 for 

t < 0 and t > T. With this constraint, the relation between x(t) and y(t) is more 

conveniently expressed as 

    

y t( ) = hT x t( ) + ! t( ),
h = h 0( ),h 1( ),!,h T( )( )
x t( ) = x t( ),x t "1( ),!,x t " T( )( ) .

   (2.3.2) 

By assuming the stimulus and response to be stationary, we have 

   

E y t( )x t( )T( ) = hTE x t( )x t( )T( ) + E ! t( )x t( )T( )
h = E"1 x t( )x t( )T( )E y t( )x t( )( )

,

  (2.3.3) 

where E(.) denotes expectation over time. This solution is commonly known in the 

neuroscience literature as the normalized reverse correlation (Theunissen et al., 2001). 

This solution involves inverting the autocorrelation matrix of the stimulus envelope. 

When the stimulus envelope is white noise, the autocorrelation matrix is an identity 

matrix and therefore can be ignored. When the stimulus envelope has strong 

autocorrelation, however, inverting the autocorrelation may be an ill-posed problem, 

especially when the recording time is limited. To get a robust normalized reverse 

correlation, a principal component analysis (PCA) based dimension reduction or 

Tikhonov regularization is usually employed. 

Another way to solve the impulse response of neural systems is via boosting 

(David et al., 2007). The boosting algorithm assumes the impulse response to be sparse in 

time. It starts with a null impulse response and iteratively updates it to minimize the 
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prediction error of the model. In each iteration, h is changed by Δh. Each Δh contains 

only one nonzero element and is optimized to minimize the prediction error: 

   

!h = argmin
!h

E y t( ) " h + !h( )T
x t( )( )2#

$%
&
'(

!h
0
= 1and !h

1
= )

,

    (2.3.4) 

where ||.||0 and ||.||1 are the L0 and L1 norm respectively. Since the neural processing of 

temporal modulations is intrinsically nonlinear, its LTI model is stimulus dependent 

(Bitterman et al., 2008; David et al., 2009; Theunissen et al., 2001). Each LTI model can 

be viewed as a linear approximation of the nonlinear system under a certain stimulation 

condition. 

2.4 Noninvasive neural recording using MEG 

2.4.1 MEG system 

MEG records the magnetic field generated by neural currents in the cortex. MEG 

is most sensitive to dendritic currents spatially synchronized over a large scale (on the 

order of millimeter) (Baillet et al., 2001; Hämäläinen et al., 1993). A whole-head MEG 

system contains an array of sensors laid around the head (Fig. 2.7A). The sensors contain 

superconducting quantum interference devices (SQUIDs) and are sensitive to magnetic 

fields at femtoTesla (10-15 Tesla) level. A magnetically shielded room is built around the 

MEG system to reduce the impact of environmental magnetic fields. The MEG system 

employed by all studies in this dissertation is the University of Maryland and the 

Kanazawa Institute of Technology joint (UMD-KIT) MEG system, located at University 

of Maryland, College Park. The UMD-KIT MEG system has 157 sensors, which are 
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gradiometers. A gradiometer contains a pair of parallel coils and is only sensitive to the 

local magnetic field in a certain direction (roughly normal to the head surface). Three 

magnetometers are also built into the system. They are far away from the head and 

measure the environmental magnetic field. Recordings from the magnetometers and their 

time-shifted versions are used as regressors to clean up the neural signal recorded by the 

gradiometers (de Cheveigné and Simon, 2007). 

 

Figure 2.7. The MEG system. A, the MEG sensors are placed on around the 

head of a subject. B, MEG measures the magnetic field generated by electrical 

currents inside the brain. The magnetic field going out of the scalp is rendered in 

red while the magnetic field going inside is rendered in green. (Fig. 2.7A is 

adapted from Baillet et al. 2001) 

 

2.4.2 Source-space MEG analysis 

The relation between a current source in the brain and extracranially measured 

magnetic field is decided by the electromagnetic conductivity property of the head. A 

complete characterization of the conductivity property of the head is complicated and 

usually unrealistic. One way to make the problem tractable is to assume the head to be a 
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sphere. Although simple, the single sphere model works well and is widely used (Baillet 

et al., 2001). More sophisticated models include multiple-sphere models and element 

boundary models (Mosher et al., 1999), which are more computationally heavy and 

require a precisely digitized head. For the spherical head model, which is employed in 

this dissertation, there is a closed form relation between the cortical current distribution 

and the MEG recording. 

 

Single Dipole Model 

Suppose a single current dipole is located at rq and has dipole moment q. The 

magnitude of q is the strength of the current while the orientation of q indicates the 

direction of the current (in 3-D). When all the MEG sensors are radially oriented towards 

the center of the spherical head, the magnetic field picked up by a sensor located at r is 

described as (Baillet et al., 2001),  

   

B r,rq ,q( ) = µ0

4!
r " rq

r r # rq 2

3 $q ,    (2.4.1)

 

where ||.||2 is the L2 norm. From the equation, it can be seen that the magnetic field B(r, rq, 

q) is linear with respect to the moment of the dipole, q, but nonlinear with respect to the 

location of the dipole rq.  

In most MEG systems, like the UMD-KIT system, the sensors are not perfectly 

radially oriented. In this case, the magnetic field B(r) is still linear with respect to the 

dipole moment and nonlinear with respect to the dipole location. The magnetic field is 

expressed as follows (Mosher et al., 1999). 
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B r,rq ,q( ) = µ0

4!F 2 r,rq( ) F r,rq( )q " rq # q " rq( ) $ r%F r,rq( )( )
 

 (2.4.2) 

   

F r,rq( ) = d rd + r 2 ! r " rq( )( )
#F r,rq( ) = d 2
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(
) rq

d = r ! rq ,d = d
2
, and r = r

2   

When the dipole location rq and MEG sensor location r are fixed, the magnetic 

field B(r, rq, q) is solely a linear function of dipole moment q. It simply scales when the 

magnitude of dipole moment changes but behaves in a slightly more complicated way 

when the dipole moment rotates. The (3-D) dipole moment q can be decomposed into 

three orthogonal components, q = qxqx + qyqy + qzqz, where qx, qy, and qz are unit length 

vectors pointing to three orthogonal directions and qx, qy and qz are dipole strength in 

corresponding directions. Suppose qx and qy are tangential to the spherical head surface 

while qz is normal to the surface. Inside a spherical conductor, dipoles oriented radially 

do not generate any magnetic field that is measurable outside the conductor (Baillet et al., 

2001). Therefore, component qz is ignored when calculating B(r, rq, q) and, consequently, 

B(r, rq, q) = B(r, rq, qx)qx + B(r, rq, qy)qy. When q rotates, it is still a weighted sum of qx, 

qy and qz and therefore the new magnetic field is still a weighted sum of B(r, rq, qx) and 

B(r, rq, qy). Since B(r, rq, qx) and B(r, rq, qy) are generated from unit magnitude dipoles, 

they can be calculated independent of MEG measurements. 

For each MEG system, sensor positions, r1, r2,..., rNs, are fixed. The output of the 

MEG sensor array can be denoted as B(rq, q) = [B(r1, rq, q), B(r2, rq, q),..., B(rNs, rq, q)]. 

As a result of linearity, 
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B rq ,q( ) = B rq ,qx( ) B rq ,qy( )!
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#
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(2.4.3)

 

 

where 

    

B rq ,qx( ) = B r1,rq ,qx( )  B r2 ,rq ,qx( ),!, B rNs ,rq ,qx( )!
"

#
$

T

B rq ,qy( ) = B r1,rq ,qy( )  B r2 ,rq ,qy( ),!, B rNs ,rq ,qy( )!
"

#
$

T

. 

The magnetic field generated by a single current dipole is illustrated in Fig. 2.7B. 

 

Multiple Dipole Model 

There is usually more than one measurable neural source inside the brain. 

Therefore, the measured MEG response is a linear combination of the magnetic fields 

generated from multiple dipoles. In a matrix form, the response is expressed as, 

   
BMEG = B rqj ,q j( )

j=1

J

! = Bq
    

 (2.4.4)

 
where 

    

B = B rq1,qx1( ) B rq1,qy1( ) B rq2 ,qx2( ) B rq2 ,qy2( ) ! B rqJ ,qxJ( ) B rqJ ,qyJ( )!

"
#

$

%
&

q = qx1 qy1 qx2 qy2 ! qxJ qyJ
!
"#

$
%&

T
 

In the expression, j is the index of individual dipoles and J is the total number of dipoles. 

The matrix B is commonly called the lead field matrix. It is independent of the strength of 

dipoles and is decided by the property of the head model and MEG sensor configuration. 

Eq. 2.4.4 describes how an electrical activity pattern is transformed into a magnetic field, 

which is known as the forward problem (Baillet et al., 2001). 
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Sometimes, it is convenient to digitize the cortex into voxels and treat the neural 

activity from each voxel as a dipole. If a voxel is not activated, it is represented by a 

dipole of zero amplitude. Using this voxelized model, one can calculate the lead field 

matrix purely based on the head model, independent of the properties of neural sources. 

This way, the lead field matrix B can be viewed as an overcomplete basis to represent 

MEG signals, and q is a set of coefficients in the overcomplete basis set. 

 

Neural Source Estimation 

In experiments, the scalp magnetic field BMEG is measured while the source 

activity pattern q is unknown. The number of neural sources J is also unknown. 

Estimating q based on BMEG is known as the inverse problem (Baillet et al., 2001), which 

is not only hard to solve but also has no unique solution. In solving the inverse problem, 

we map the MEG response to a neural source activation pattern in the brain. Hence, MEG 

analysis methods based on solving the inverse problem are also called source space 

analysis methods. 

The most classic solution to the inverse problem is current-equivalent dipole 

fitting (Baillet et al., 2001). This method assumes that only a few neural sources are 

active, i.e. J small. Dipole fitting is an iterative process. It first tries to explain the 

measured magnetic field by a single dipole. Estimating the dipole position is a nonlinear 

problem and can be solved using various nonlinear optimization approaches (Uutela et 

al., 1998). Estimation of the dipole moment is linear and can be solved by, e.g., least 

squares methods (Baillet et al., 2001; Mosher et al., 2003). After the best dipole fit is 

determined, its magnetic field is removed from the measurement and another dipole is 
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fitted. If the number of neural sources J is known, J iterations are needed. Otherwise, the 

iteration stops when the measured magnetic field is satisfactorily explained by the fitted 

dipoles. The goodness of dipole fitting is evaluated as the correlation between the 

measured magnetic field and the fitted magnetic field, 

   
Cfit  = 

BMEG
T Bfit

BMEG 2
Bfit 2

,

     

(2.4.5) 

where Bfit is the magnetic field generated by the dipoles. 

Another popular solution to the inverse problem is the minimum norm estimation 

(MNE) (Hämäläinen and Ilmoniemi, 1994). MNE starts with calculating the lead field for 

a voxelized brain. Therefore, both BMEG and B in Eq. 2.4.4 are available. Even in this 

case, the source activity q still cannot be uniquely solved since Eq. 2.4.4 is highly 

underdetermined. The MNE method does not only require Eq. 2.4.4 to hold but also 

minimizes the L2 norm of q. The most basic solution of MNE methods is q = B+BMEG, 

where B+ is the pseudoinverse of B. 

A third popular solution is the beamforming approach (Van Veen et al., 1997). 

Electromagnetic signal travels at light speed and the MEG sensors are closely spaced. 

Hence, all MEG sensors receive a signal at virtually the same time. As a result, an MEG 

beamformer cannot rely on the propagation time, but only the amplitude of the signal 

received by different sensors. The LCMV beamformer and the SAM beamformer are the 

most popular beamformers (Robinson and Vrba, 1999; Van Veen et al., 1997). They are 

both closely related to generalized least squares dipole fitting (Mosher et al., 2003). 
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2.4.3 Data driven MEG analysis 

Component Analysis 

Any solution to the inverse problem relies on the lead field matrix B, which is 

based on a head model and is therefore unavoidably imprecise. As mentioned in Section 

2.4.3, solving the inverse problem is the same as representing the MEG measurement 

using a basis set determined by the head model. Another way to analyze MEG data is to 

use a data driven approach to find a set of basis that is statistically optimal to represent 

the MEG signals. Popular data driven approaches include principal component analysis 

(PCA), independent component analysis (ICA), common spatial patterns (CSP), and 

denoising source separation (DSS) (Bell and Sejnowski, 1995; Blankertz et al., 2008; 

Särelä and Valpola, 2004). For the analysis of MEG responses evoked by auditory 

stimuli, DSS appears to be an especially effective method (de Cheveigné and Simon, 

2008; Wang et al., 2012) and can be used as a preprocessing method for dipole fitting 

(Ding and Simon, 2009). Each linear component of the MEG measurement is a linear 

combination of the measurements from different sensors: 

x(t) = aTBMEG(t)    (2.4.6)  

The MEG measurement contains neural activity of interest and all other kinds of 

interferences, e.g. environmental noises and background neural activity. Typically, neural 

activity of interest is assumed to be independent of any other activity. Symbolically, this 

decomposition of MEG activity is represented as BMEG(t) = Bs(t) + Bn(t), where Bs is the 

neural activity of interest and Bn contains interfering activity. Bs(t) and Bn(t) are assumed 

to be independent from each other, and therefore RMEG = Rs + Rn, where RMEG, Rs and Rn 

are the autocorrelation matrices of BMEG(t), Bs(t) and Bn(t). 
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DSS is equivalent to the generalized eigenvalue decomposition of Rs and Rn 

(Fukunaga, 1972). It is the solution of the following optimization problem 

   
max

a

aT Rsa
aT Rna

 .     (2.4.7) 

aTRsa is the power of neural activity of interest in a DSS component, and aTRna is the 

power of other activity in that component. Therefore, DSS maximizes the signal to noise 

ratio in each component. Rs is usually approximated by the covariance matrix of the 

evoked response (Section 2.5.1). Rn can be replaced by RMEG based on the property of 

generalized eigendecomposition (Fukunaga, 1972). 

After a DSS component is derived, it is subtracted from the raw data BMEG(t) and 

another DSS component can be derived in the same way. Each DSS component 

corresponds to a generalized eigenvector of RMEG and Rs. If we denote the whole set of 

DSS filters as A = [a1, a2, ..., ak], then the whole set of DSS components is d(t) = 

ABMEG(t), where  d(t) = [d1(t), d2(t), ..., dk(t)]T. Let U = A-1 and U = [u1, u2, ..., uk], then 

BMEG(t) = d1(t)u1 + d2(t)u2 + ... + dk(t)uk.   (2.4.8) 

Therefore, DSS is essentially re-representing the measurement using a new set of 

bases U. The neurophysiological meaning of Eq. 2.4.8 is that the MEG measurement 

consists of k uncorrelated magnetic field patterns, presumably generated by k current 

sources. 

 

Combining Component Analysis with Source-space Analysis 

Source space analysis methods convert the scalp magnetic field into a neural 

current distribution over the cortex and therefore have clear physiological meanings. 
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Nonetheless, source space analysis relies on a conductivity model of the head, which is 

unavoidably imprecise, and needs to solve the inverse problem, which is not robust. Data 

driven methods are more flexible and computationally efficient but their results are 

sometimes hard to interpret neurophysiologically. 

One way to get robust and physiologically meaningful decomposition of the MEG 

measurement is to combine data driven methods and source space methods sequentially. 

For example, in the analysis of the three experiments included in this dissertation, DSS is 

first applied to the MEG recording as a dimensional reduction method. The DSS 

components containing reliable neural activity are analyzed, and the results, which are in 

the DSS space, are then converted back to the sensor space, in which a source analysis is 

applied.  

This combined method is more computationally efficient than source space 

analysis methods, which exhaustively analyzes each voxel of the brain. The combined 

method is also better than pure data driven methods in that it has a clear physiological 

interpretation. 

2.5 MEG responses to auditory stimuli 

Evoked MEG Response 

MEG experiments usually repeat the same stimulus several times. The response 

averaged over trials is called the evoked MEG response. Responses having a random 

phase in each trial are attenuated by the average. Therefore, the evoked MEG response 

primarily reflects neural activity synchronized to the stimulus. Suppose, for example, a 
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neural network, denoted A, encodes a 5-Hz AM sound by purely enhancing its own 

spontaneous activity, while another neural network, B, encodes the same stimulus by 

generating a 5 Hz response phase locked to the stimulus envelope. In this case, only the 

response of network B will survive the average over trials. Several types of MEG 

responses have been demonstrated to be phase locked to the stimulus, for example the 

M100 response and the response following slow temporal modulations (Ding and Simon, 

2009; Fuentemilla et al., 2006; Luo and Poeppel, 2007). 

 

Transient MEG/EEG Responses 

The transient MEG/EEG response to the onset/offset of a sound has been 

extensively studied (Näätänen and Picton, 1987). The major components of the transient 

response are first defined in EEG as the P1-N1-P2 response complex. P1 (respectively, 

P2) is a positive potential measured at around 50 ms (150-200 ms) post-stimulus and N1 

is a negative potential measured at around 100 ms post-stimulus. In MEG, a similar 

response pattern is observed and is called the P1m-N1m-P2m complex or, based on the 

response latency, M50-M100-M150 complex (Chait et al., 2004; Poeppel et al., 1996). 

An example of the MEG transient response is shown in Fig. 2.8. 

The N1/M100 response is the most reliable component in the transient response 

complex. Its latency and amplitude are affected by various stimulus properties, e.g. 

loudness, frequency composition, onset, and signal to noise ratio (Biermann and Heil, 

2000; Kaplan-Neeman et al., 2006; Näätänen and Picton, 1987; Poeppel et al., 1996), and 

is modulated by attention (Hillyard et al., 1973). Although the N1/M100 response is 

frequently observed at the onset/transition of a sound, it is not observed after every 
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onset/transient in a sound (Chait et al., 2007; Chait et al., 2004; Gutschalk et al., 2008; 

Näätänen and Picton, 1987). The generation of the N1/M100 response may be related to 

the perceptual saliency of the sound onset/offset. 

 

Figure 2.8. The M100. (A) The MEG response to a 20-ms pure tone, with all 

MEG channels overlaid together. The response from one MEG channel is 

plotted in red to show the polarities of responses. The sound stimulus is 

illustrated as a bar in orange. (B) The spatial magnetic field distribution of the 

MEG response at 100 ms post-stimulus on a flattened head. 

 

The exact neural source of the M100 response is controversial. For example, some 

researchers localized it to planum temporale (PT) (Lütkenhöner and Steinsträter, 1998) 

while others localized it to the lateral part of the Heschl’s gyrus (Herdman et al., 2003). 

On a coarse level, however, all the studies agree that the M100 response is from the 

superior portion of the superior temporal gyrus, within auditory cortex. 
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Chapter 3 

Cortical representation of continuous speech 

3.1 Introduction 

Spoken language is the dominant form of human communication, and human 

listeners are superb at tracking and understanding speech even in the presence of 

interfering speakers (Bronkhorst, 2000; Cherry, 1953). The critical acoustic features of 

speech are distributed across several distinct spectral and temporal scales. The slow 

temporal modulations and coarse spectral modulations reflect the rhythm of speech and 

contain syllabic and phrasal level segmentation information (Greenberg, 1999), and are 

particularly important for speech intelligibility (Shannon et al., 1995). The neural 

tracking of slow temporal modulations of speech (e.g. 1–10 Hz) in human auditory cortex 

can be studied noninvasively using magnetoencephalography (MEG) and 

electroencephalography (EEG). The low frequency, large-scale, synchronized neural 

activity recorded by MEG/EEG has been demonstrated to be synchronized by speech 

stimulus (Luo and Poeppel, 2007) and is phase-locked to the speech envelope, i.e. the 

slow modulations summed over a broad spectral region (Abrams et al., 2008; Ahissar et 

al., 2001; Aiken and Picton, 2008; Lalor and Foxe, 2010; Luo and Poeppel, 2007). 

Temporal locking to features of speech has also been supported by intracranial recordings 

from human core auditory cortex (Nourski et al., 2009). The temporal features of speech 

contribute significantly to speech intelligibility, as do key spectral-temporal features in 

speech such as upward and downward formant transitions. The neural coding of spectro-

temporal modulations in natural soundtracks has been studied invasively in human 
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auditory cortex using intracranial extracellular recordings (Bitterman et al., 2008), where 

the spectro-temporal tuning of individual neurons was found to be generally complex and 

sometimes very fine in frequency. At a neural network level, the Blood Oxygen Level 

Dependent (BOLD) activity measured by functional Magnetic Resonance Imaging 

(fMRI) also shows complex spectra-temporal tuning and possesses no obvious spatial 

map (Schönwiesner and Zatorre, 2009). Which spectro-temporal features of speech are 

encoded in the large-scale synchronized neural activity measurable by MEG and EEG, 

however, remain unknown and are the focus of the current study.  

When investigating the neural coding of speech, there are several key issues that 

deserve special consideration. One arises from the diversity of speech: language is a 

productive system permitting the generation of novel sentences. In everyday life, human 

listeners constantly decode spoken messages they have never heard. In most 

neurophysiological studies of speech processing, however, small sets of sentences are 

repeated tens or hundreds of times (though see Lalor and Foxe, 2010). This is primarily 

due to methodological constraints: neurophysiological recordings, especially noninvasive 

recordings, are quite variable, and so integrating over trials is necessary to obtain a valid 

estimate of the neural response. An often-neglected cost of repeated stimuli, however, is 

that the listener has obtained complete knowledge of the entire stimulus speech after only 

a few repetitions. Without the demands of speech comprehension, the encoding of this 

repeated speech might be quite different from the neural coding of novel speech under 

natural listening conditions. It is pressing, therefore, to develop experimental paradigms 

that do not require repeating stimuli many times, in order to study how speech is encoded 

in a more ecologically realistic manner. 
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Second, speech communication is remarkably robust against interference. When 

competing speech signals are present, human listeners can actively maintain attention on 

a particular speech target and comprehend it. The superior temporal gyrus has been 

identified as a region heavily involved in processing concurrent speech signals (Scott et 

al., 2009). Recent EEG results have shown that human auditory cortex can selectively 

amplify the low frequency neural correlates of the speech signal being attended to (Kerlin 

et al., 2010). This attentional modulation of low frequency neural activity has been 

suggested as a general mechanism for sensory information selection (Schroeder and 

Lakatos, 2009). Since speech comprehension is a complex hierarchical process involving 

multiple brain regions, it is unclear whether the attentional effect seen in the auditory 

cortex directly modulates feedforward auditory processing or reflects only feedback from 

language areas, or even motor areas (Hickok and Poeppel, 2007). One approach to test 

whether feedforward processing is involved in speech segregation is to investigate the 

latency of the attentional effect. If the attentional modulation of MEG/EEG response has 

a relatively short latency, e.g. 100 milliseconds, then it is evidence that top-down 

attention modulates representations that are otherwise dominated by feedforward auditory 

processing. Otherwise, segregating and selectively processing speech may rely on 

feedback from non-auditory cortex or complex recursive calculations within auditory 

cortex. 

Additionally, the auditory encoding of speech is lateralized across the two 

cerebral hemispheres. It has been hypothesized that the right hemisphere is specialized 

for the encoding the slow temporal modulations of speech (Poeppel, 2003). Support for 

this hypothesis arises from the observation that neural activity in the right hemisphere is 
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more faithfully synchronized to a speech stimulus than the left, for monaurally and 

diotically presented speech (Abrams et al., 2008; Luo and Poeppel, 2007). Nevertheless, 

how this proposed intrinsic lateralization of speech encoding interacts with the 

asymmetry of the ascending auditory pathway is still unclear.  

In this study, we investigate the neurophysiology underlying speech processing in 

human auditory cortex, using minutes-long spoken narratives as stimuli. To address the 

robustness of this neural coding of speech under more complex listening conditions, the 

listeners were presented with two simultaneous (and thus competing) spoken narratives, 

each presented in a separate ear, as a classical, well-controlled illustration of the cocktail 

party effect (Cherry, 1953). This design affords us both the opportunity to investigate the 

spectro-temporal coding of speech under top-down attentional modulation, and the 

opportunity to separate the intrinsic hemispheric lateralization of speech encoding with 

the interaction between the left and right auditory pathways. Moreover, previous studies 

have only demonstrated that speech is encoded in MEG/EEG activity with sufficient 

fidelity to discriminate among 2 or 3 sentences (Kerlin et al., 2010; Luo and Poeppel, 

2007). With a long duration, discourse-level stimulus, we can test the limit of this fidelity 

by quantifying the maximum number of speech stimuli that can be discriminated based 

on MEG responses. 

Inspired by research on single-unit neurophysiology (deCharms et al., 1998; 

Depireux et al., 2001), the analysis of MEG activity was performed using the spectro-

temporal response function (STRF), which can reveal neural coding mechanisms by 

analyzing the relationship between ongoing neural activity and the corresponding 

continuous stimuli. The properties of network-level cortical activity, which plays an 
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important role in auditory processing (Panzeri et al., 2010; Schroeder and Lakatos, 2009), 

were characterized in terms of features of the STRF, such as the spectro-temporal 

separability (Depireux et al., 2001; Schönwiesner and Zatorre, 2009), predictive power 

(David et al., 2009), binaural composition (Qiu et al., 2003), attentional modulation (Fritz 

et al., 2003), and hemispheric lateralization, in parallel with what has been done in single 

neuron neurophysiology and fMRI. The quantification of these fundamental 

neurophysiological features establishes the neural strategy used to encode the spectro-

temporal features of speech in mass neural activity, conveying information 

complimentary to that obtained by single unit neurophysiology and fMRI. 

 

3.2 Methods 

3.2.1 Subjects, stimuli and procedures 

Subjects 

Ten normal hearing, right-handed, young adults (between 19 and 25 years old) 

participated in the experiment, six female. One additional subject participated in the 

experiment but was excluded from analysis due to excessive head movement (> 2 cm) 

during the experiment. All subjects were paid for their participation. The experimental 

procedures were approved by the University of Maryland institutional review board. 

Written informed consent form was obtained from each subject before the experiment.  
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Stimuli 

Our stimulus consisted of 2 segments from a public domain narration of the short 

story The Legend of Sleepy Hollow by Washington Irving (http://librivox.org/the-legend-

of-sleepy-hollow-by-washington-irving/), read by a male speaker. The 2 segments were 

extracted from different sections of the story and each of the two-minute duration 

segments was further divided into 2 one-minute long stimuli. The speech signal was low 

pass filtered below 4 kHz. Periods of silence longer than 300 ms were shortened to 300 

ms and white noise, 20 dB weaker than the speech, was added to the signal to mask any 

possible subtle discontinuities caused by the removal of silent periods. All stimuli were 

presented at a comfortable loudness level of around 65 dB. The two stimulus segments 

were sinusoidally amplitude modulated at 95% modulation depth, at 37 and 45 Hz 

respectively. As determined by Miller and Licklider (1950), gating a speech signal on and 

off at a high rate (near 40 Hz) does not significantly affect the intelligibility of speech. 

Such a gating, however, enabled the analysis of auditory steady state response (aSSR), 

commonly localized to core auditory cortex (Herdman et al., 2003), and therefore 

allowed us to monitor the activity in the earliest stage of cortical auditory processing. The 

association between stimulus segment and modulation rate was counterbalanced over 

subjects. 

 

Procedures 

The dichotic listening condition was conducted first. The two audio book excerpts 

were presented dichotically (separately in each ear) to the subjects using a tube phone 

plugged into the ear canal. The subjects were instructed to focus on one of the ears until 
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the stimulus ended. Then the same stimulus was played again but the subjects were 

instructed to switch focus to the other ear. This process was repeated three times for the 

same set of stimuli, resulting in 3 identical experimental blocks. All subjects described 

the dichotic listening task as moderately difficult, and all but one subject reported paying 

more, or a similar amount of, attention during the second and third presentations of a 

stimulus, compared with the attention they paid to the first presentation. Which stimulus 

was played first and which ear was attended to first were counterbalanced over subjects 

(Table 3.1). After the dichotic listening condition, the monaural speech condition was 

presented. In this condition, each audio book excerpt was presented monaurally, on the 

same side as in the dichotic condition. Each stimulus was repeated four times. The 

subjects kept their eyes closed during the whole experiment and had a break every 

minute. During the break, they were asked a question related to the comprehension of the 

passage they just heard. On average, the subjects answered 90% of the questions 

correctly. The performance of the subjects was not significantly different over the 3 

repetition of the stimulus (1-way repeated-measures ANOVA). Additionally, before the 

main experiment, a pre-experiment was performed. 100 repetitions of a 500-Hz tone pip 

were presented to each subject to measure the M100 response. 
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 Left Ear Right Ear 

 Listening Material AM rate (Hz) Listening Material AM rate (Hz) 

Order A Segment 1 45 Segment 2 37 

Order B Segment 1 37 Segment 2 45 

Order C Segment 2 45 Segment 1 37 

 

Table 3.1. The different stimulus sets used. The stimulus attended to first in the 

cocktail-party-like condition is in bold italic. Each listening material segment is 

2 minutes in duration and is presented to the same ear for both the single speech 

condition and the cocktail-party-like condition. 

 

3.2.2 Data recording and analysis 

Data Recording and Processing 

The neuromagnetic signal was recorded using a 157-channel whole-head MEG 

system (KIT, Kanazawa, Japan), in a magnetically shielded room, with 1 kHz sampling 

rate. A 200-Hz low-pass filter and a notch filter at 60 Hz were applied on-line. Three 

reference channels were used to measure and cancel the environmental magnetic field (de 

Cheveigne and Simon, 2007). Five electromagnetic coils were used to measure each 

subject’s head position inside the MEG machine. The head position was measured twice, 

once before and once after the experiment, to quantify the head movement during the 

experiment.  
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MEG Processing and Neural Source Localization 

Recorded MEG signals contain not only responses directly driven by the stimulus, 

but also stimulus-irrelevant background neural activity. The response component reliably 

tracking stimulus features is consistent over trials but the stimulus-irrelevant neural 

activity is not. Based on this property, we decomposed the MEG recording using 

Denoising Source Separation (DSS) (de Cheveigne and Simon, 2008), a blind source 

separation method that extracts neural activity consistent over trials. Specifically, DSS 

decomposes the multi-channel MEG recording into temporally uncorrelated components, 

where each component is determined by maximizing its trial-to-trial reliability, measured 

by the correlation between the responses to the same stimulus in different trials. We 

found that only the first DSS component contains a significant amount of stimulus 

information (see Results), and so analysis was restricted to this component. The spatial 

magnetic field distribution pattern of this first DSS component was utilized to localize the 

source of neural responses. In all subjects, the magnetic field corresponding to the first 

DSS component showed a stereotypical bilateral dipolar pattern, and was therefore well 

modeled by a single equivalent-current dipole (ECD) in each hemisphere. A spherical 

head model was derived for each subject using MEG Laboratory software program 

v.2.001M (Yokogawa Electric, Eagle Technology, Kanazawa Institute of Technology). 

Position of the ECD was estimated using a global optimization approach (Uutela et al., 

1998). The ECD position in each hemisphere was first determined using 54 MEG 

channels over the corresponding hemisphere. The positions of bilateral ECDs were then 

refined based on all 157 channels. 
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After the position of an ECD was determined, the time course of the dipole 

moment strength was reconstructed using the generalized least squares method (Mosher 

et al., 2003). In the reconstructed source activity, the polarity of M100 response was 

defined as negative (to be consistent with the traditional conventions of MEG/EEG 

research). The temporal activity reconstructed for the neural sources in the left and right 

hemispheres was employed for further analysis. 

 

STRF Estimation 

We modeled the cortical auditory processing using the STRF, which describes the 

input-output relation between a sub-cortical auditory representation and the cortical MEG 

response. The sub-cortical auditory representation of the sounds is a function of 

frequency and time and is denoted as SL(f, t) or SR(f, t), for the stimulus in the left or the 

right ear respectively. The MEG response is a function of time and is denoted as r t( ) . 

The linear STRF model can be formulated as 

r t( ) = STRFL f ,!( )
!
! SL f , t "!( )

f
! + STRFR f ,!( )

!
! SR f , t "!( )

f
! + ! t( ) , 

where STRFL f , t( )  and STRFR f , t( )  are the STRFs associated with the left and right side 

stimuli and ! t( )  is the residual response waveform not explained by the STRF model. In 

the monaural stimulus condition, only the relevant stimulus ear is modeled. The sub-

cortical auditory representation is simulated using the model proposed by Yang, Wang 

and Shamma (1992). This auditory model contains 100 frequency channels between 200 

Hz and 4 kHz, similar to a spectrogram in log frequency scale. For STRF estimation, the 

100 frequency channels are downsampled to five. 
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The STRF was estimated using boosting with ten-fold cross validation (David et 

al., 2007). The estimation procedure is described below. 

 

1. Initialize the STRF. 

STRF0 f , t( ) = 0 , for all f and t. 

2. Iteratively optimize STRF. 

The nth iteration is based on the results of the n-1th iteration: 

rn!1 t( ) = STRFn!1 f ,!( )
!
" S f , t !!( )

f
" + !n!1 t( )  

In the nth iteration, 

rn t( ) = STRFn f ,!( )
!
! S f , t "!( )

f
! + !n t( ) , where 

STRFn f ,!( ) = STRFn!1 f ,!( ) + "STRF f ,!( )  

!STRF f ,!( ) = ! , if f = f0, t = t0
0

"
#
$

 

The prediction error in the nth iteration is !n t( ) = !n!1 t( )!!S f0, t0( ) . 

ΔSTRF is selected to minimize the prediction error, i.e. 

!STRF f ,!( ) = argmin
f0 ,t0

!n
2 t( )

t
" = argmin

f0 ,t0
!n#1 t( )#!S f0, t0( )( )2

t
"  

3. Terminate the iteration when the prediction error of the model drops based on 

cross validation. 

 

During STRF estimation, each one-minute long MEG response was divided into 

10 segments. Nine segments were used to iteratively optimize the STRF while the 
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remaining segment was used to evaluate how well the STRF predicts neural responses by 

its “predictive power”: the correlation between MEG measurement and STRF model 

prediction. Iteration terminated when the predictive power of the STRF decreased for the 

test segment (e.g. started to demonstrate artifacts of overfitting). The ten-fold cross 

validation resulted in ten estimates of the STRF, whose average was taken as the final 

result. 

 

STRF Analysis 

The spectral and temporal profiles of the STRF are extracted using singular value 

decomposition (SVD), STRF f ,t( ) = !kSRFk f( )TRFk t( )k! ,  !1 > !2 > ! . In SVD, the 

sign of the singular vectors are arbitrary, but we then further require that the spectral 

singular vectors be overall positive, i.e. SRFk f( )
f! > 0 . We refer to the first spectral 

singular vector, i.e. SRF1(f), as the normalized spectral sensitivity function, and the 

product of the first temporal singular vector and its singular value, i.e. λ1TRF1(t), as the 

temporal response function. Here, the temporal response function reflects the cortical 

response evoked by a unit broadband power increase of the stimulus. The spectral 

sensitivity function and temporal response function consider only the first spectral and 

temporal singular vectors, and therefore only account for some fraction of the total 

variance of the STRF. This fraction, !1
2 / !k

2
k! , is called the separability of STRF 

(Depireux et al., 2001). If the separability of STRF is high (near 1), the STRF is well 

represented as the outer product of the normalized spectral sensitivity function and the 



  

 44 

temporal response function, and the spectral and temporal properties of STRF can be 

discussed separately without any loss of information. 

The temporal features of STRF, e.g. the M100STRF, were extracted from the 

temporal response function, since the STRF proved to be highly separable. The M100STRF 

was determined as the strongest negative peak in the temporal response function between 

70 ms and 250 ms. In analysis of the M100STRF, the MEG responses to each one-minute 

long stimulus were averaged within each attentional state unless the experimental block 

number was employed as an analysis factor. 

 

Decoding Speech Information from Neural Responses 

The STRF model addresses how spectro-temporal features of speech are encoded 

in cortical neural activity. To test how faithful the neural code is, we employ a decoder to 

reconstruct the speech features from MEG measurements. Since STRF analyses show 

that only coarse spectro-temporal modulations of speech are encoded in the MEG activity 

(see Results), we concentrate on decoding the envelope of speech in a broad frequency 

band between 400 Hz and 2 kHz (calculated by summing the auditory channels in this 

range). The linear decoder is formulated as ŝ t( ) = r t +!( )D !( )!! + " t( ) , where ŝ(t), 

r(t), and D(t) are the decoded speech envelope, the MEG source activity, and the decoder 

respectively. This decoding analysis naturally complements the STRF analysis 

(Mesgarani et al., 2009), and the decoder is estimated using boosting in the same way that 

the STRF is estimated. The time lag between neural activity and stimulus, τ, is assumed 

to be between 0 ms and 500 ms. 
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To evaluate the performance of the decoder, we calculate the correlation 

coefficient between the decoded envelope and the envelope of the actual stimulus, and 

compare it with the correlations between the decoded envelope and the envelopes of 

other speech signals. We define the decoding of a neural response as being successfully 

decoded if the decoded envelope is more correlated with the envelope of the actual 

stimulus than other non-stimulus envelopes. Using this criterion, when decoding the 

responses to the 4 one-minute duration spoken narratives, a response is correctly decoded 

if the reconstructed envelope is more correlated with the actual stimulus than the other 3 

stimuli. In this particular case, the decoding task is not very demanding since only 2 bits 

of information are needed to discriminate four stimuli, while having access to the entire 

one-minute duration. In order to test the maximum amount of information decodable 

from the MEG response, we increase the difficulty of the decoding task by splitting the 

stimulus and the speech envelope decoded from the neural response into multiple 

segments and determining the relationship between stimulus and response on a segment 

basis. For example, if the segment duration is 2 seconds, each one-minute long 

stimulus/response results in 30 segments. To perfectly identify the 30 stimulus segments, 

one needs at least log(30) ≈ 5 bits of information in the 2 second long response, resulting 

in an information rate of 2.5 bit/s (all uses of the log function are with base 2 implied, as 

is customary in information theoretic analysis). It is worth noting that the information rate 

here describes how faithful the decoded envelope resembles the actual envelope, rather 

the linguistic information carried in speech. 

Information theory is employed to characterize how much information can be 

extracted from the neural encoding of speech. The minimal amount of information 
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needed to discriminate N patterns is log(N) bits. When the mutual information between 

the stimulus and response, I(s,r), is less than log(N) bits, it is not possible to perfectly 

decode N equally probable stimulus patterns based on the response. The decoding 

accuracy is limited by Fano’s inequality (Cover and Thomas, 1991). 

H(Pe) + Pelog(N − 1) > log(N) − I(s,r), 

where Pe is percent of correct decoding and H(Pe) = Pelog(Pe) + (1−Pe)log(1−Pe). From 

the inequality, we also have an estimate of the lower bound of the mutual information 

between stimulus and response: I(s,r) > log(N) − H(Pe) − Pelog(N − 1). This inequality 

holds for any N stimulus patterns, even if the stimulus patterns and the decoding 

algorithm are optimized. For simplicity, we assume the mutual information I(s,r) 

increases linearly with the duration of stimulus/response and therefore express the result 

as the mutual information rate, mutual information divided by the stimulus duration. 

To avoid overfitting while decoding, we divided the 2 one-minute long stimuli in 

each ear into two equal size groups. We used one group to train the decoder and the other 

group to evaluate decoding accuracy. The two groups were then switched. The decoding 

results, i.e. the correlation between decoded stimuli and real stimuli, were averaged over 

the two groups. 

 

Significance Tests 

The statistical significance of the STRF was estimated by comparing the actual 

STRF results with the null distribution of the STRF parameters. To estimate the null 

distribution, we derived pseudo-STRFs based on each spoken narrative and mismatched 

neural responses. To generate a mismatched response, under each listening condition 
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(monaural/attended/unattended), we concatenated all the responses to the four spoken 

narratives and randomly selected a one-minute duration neural recording from the 

concatenated response. A thousand such mismatched responses were generated and 

resulted in 1000 pseudo-STRFs in each listening condition. 

The predictive power of the actual STRF was viewed as significant if it was 

greater than any of the predictive powers of the 1000 pseudo-STRFs (P < 0.001). 

Similarly, the M100STRF in actual STRF was viewed as significant if it was stronger than 

any of the peaks in the pseudo-STRF in the same time window (P < 0.001). The 

amplitude of the M100STRF was further analyzed using repeated-measures ANOVA with 

Greenhouse-Geisser corrections, using the CLEAVE statistical analysis tool 

(http://www.ebire.org/hcnlab). 

 

Auditory Steady State Response Analysis 

Sinusoidal amplitude modulation of a stimulus would be expected to evoke an 

aSSR at the modulation rate. In the aSSR analysis, responses to the same stimulus were 

averaged and converted into the frequency domain using the Discrete Fourier Transform 

(DFT), with 0.017 Hz resolution (based on the one-minute duration recording). Two 

stimulus modulation rates, 37 and 45 Hz, were employed in the experiment. In the 

monaural speech condition each stimulus was only modulated at one rate, and therefore 

measurements at the other modulation rate were used to evaluate the background neural 

noise level at that frequency. The significance of the response at a modulation rate was 

determined by comparing the response magnitude in the presence of the stimulus 
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modulation and the response magnitude in the absence of the stimulus modulation 

(permutation test with paired data). 

3.3 Results 

Representation of Speech in the Low Frequency Neural Response 

In the monaural listening condition, two minutes of a single spoken narrative were 

presented to each ear. We employ the STRF to model how the spectro-temporal 

modulations of speech are encoded in the MEG activity filtered into different frequency 

bands. Fig. 3.1 shows the predictive power of STRF, the correlation between the STRF 

model prediction and the MEG measurement, for every 2-Hz wide frequency band 

between 1 Hz and 59 Hz. The predictive power is above chance level only in the low 

frequency region (1 - 8 Hz), which is further analyzed in the following. 
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Figure 3.1. The predictive power of STRF model for each 2 Hz wide frequency 

band between 1 Hz and 57 Hz. The grand averaged predictive power is shown as 

the black line, with error bars representing one standard error on each side. The 

shaded gray area covers from 5 to 95 percentile of chance level predictive 
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power, estimated by bootstrap. The predictive power of STRF of MEG speech 

response is significantly higher than chance level below 7 Hz.  

 

 Neural Representation of Spectro-temporal Features in Speech 

The STRF derived from the low frequency MEG response (1 - 8 Hz) is shown in 

Fig. 3.2A. The STRF can be interpreted in several ways (deCharms et al., 1998; Simon et 

al., 2007). One is that the STRF at each frequency represents the contribution to the MEG 

response evoked by a unit power increase of the stimulus in that frequency band. 

Another, complementary, interpretation is that the STRF, when reversed in time, 

represents the acoustic features most effective at driving MEG responses. The STRF 

shows the strongest activation between 400 Hz and 2 kHz, with a peak at ~100 ms post-

stimulus. This peak is referred to as the M100STRF, in parallel with the M100 evoked by 

sound onset. This STRF indicates that the MEG response tracks spectro-temporal 

modulations of speech at latency near 100 ms. From another perspective, the 

instantaneous MEG response is dominantly driven by spectro-temporal modulations that 

were present in the stimulus 100 ms ago. 

The predictive power of STRF is above chance level (test described in Methods, P 

< 0.001) in each hemisphere for each ear, and is significantly higher in the right 

hemisphere (paired t-test, t19 = 3.3, P < 0.004). In the right hemisphere, the grand 

averaged predictive power is 0.25 (0.21) for the left (right) side stimulus (significantly 

higher for the left, paired t-test, t9 = 2.4, P < 0.05). In the left hemisphere, the predictive 

power is similar for stimuli in both ears (0.11 for the left and 0.12 for the right). 
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Figure 3.2. STRF derived from the MEG speech response to monaurally 

presented speech (A) and dichotically presented simultaneous speech signals 

(B). The most salient feature of the STRF is a negative peak (same polarity as 

M100/N1) at ~100 ms post-stimulus, sometimes followed by a later peak of 

opposite polarity. In the dichotic listening condition, the amplitude of the STRF 

is higher for the attended speech than for the interfering (unattended) speech. All 

examples are from the right hemisphere for speech presented contralaterally. 

The STRF is smoothed using a 2-D Gaussian function with standard deviations 

5 semitones and 25 ms; representative subject = R1474. 
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Figure 3.3. Predictive power and separability of the STRF. Each point in the 

figure is the result from individual subjects in one condition. STRFs with any 

substantial predictive power are skewed toward high separability. Circles and 

squares are respectively the results from monaural and binaural listening 

conditions. Filled and empty symbols are respectively results from left and right 

hemispheres. The background contour map shows the joint probability 

distribution density of predictive power and STRF separability. The probability 

distribution density is obtained by smoothing the 2-D histogram using a 

Gaussian function (SD = 0.1 in both directions). 
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Figure 3.4. Temporal response function and spectral sensitivity functions. (A) 

Grand average of the temporal response functions to speech stimuli, under three 

different listening conditions. The amplitude of the temporal response function 

is higher in the monaural speech condition and is strongly modulated by 

attention in the dichotic listening condition. (B) The normalized spectral 

sensitivity function (grand average over subjects) has a peak between 400 and 

2000 Hz, in both hemispheres and all listening conditions. Normalized spectral 

sensitivity functions to contralateral and ipsilateral stimuli are not significantly 

different and are therefore averaged. The spectral sensitivity function is 

smoothed using a Gaussian function of 5 semitones standard deviation.
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An STRF is called spectro-temporally separable when its temporal and spectral 

processing are independent of each other (Depireux et al., 2001). The separability of the 

MEG STRF is very high and is quantitatively illustrated in Fig. 3.3. Furthermore, the 

STRF separability is positively correlated with the STRF predictive power (Fig. 3.3), 

indicating that STRFs that predict the MEG response well are generally separable. A 

separable STRF can be decomposed into the product of a single temporal function (Fig. 

3.4A) and a single spectral function (Fig. 3.4B), and therefore the spectral property and 

temporal property of MEG STRFs are analyzed separately in the following.  

The normalized spectral sensitivity function of the STRF shows a broad peak 

between 400 Hz and 2 kHz (Fig. 3.4B). The spectral sensitivity function significantly 

changes as a function of frequency (frequency × hemisphere × stimulus side, 3-way 

repeated-measures ANOVA, F1,359 = 28, P < 0.0001) but is not significantly influenced 

by stimulus side or by hemisphere.  

The M100STRF is well captured in the temporal response function (Fig. 3.4A) and 

is statistically significant in each hemisphere for each stimulus presentation side (test 

described in Methods, P < 0.001). The amplitude and latency of the M100STRF are 

summarized in Fig. 3.5. The amplitude of this response is larger in the right hemisphere, 

independent of the stimulus side (hemisphere × stimulus side, 2-way repeated-measures 

ANOVA, F1,39 = 11.6, P < 0.008), while the latency is shorter for a contralateral stimulus 

(hemisphere × stimulus side, 2-way repeated-measures ANOVA, F1,39 = 14.6, P < 0.005). 
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Figure 3.5. Amplitude and latency of the M100STRF (grand average). Error bars 

represent one standard error. The response amplitude is universally larger and 

the response latency is universally shorter for monaurally presented speech. In 

the dichotic condition, the response is stronger for the attended speech than for 

the unattended speech. 

 

Speech Decoding based on the MEG Response 

The STRF analysis above has shown that spectro-temporal modulations of speech 

are encoded in auditory cortex as a temporal code. The fidelity of this temporal code is 

further assessed by decoding, i.e. reconstructing, speech features from MEG responses. 

Since the frequency tuning of STRF is broad, we concentrate on decoding the temporal 

envelope of speech. In the decoding, we divide the MEG response and corresponding 

stimulus into multiple segments of equal length and use the decoder (estimated from a 

non-overlapping data set) to decode the stimulus from each segment. The correlation 
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between the decoded envelope and real stimulus envelope is shown in Fig. 3.6A, as a 

grand averaged confusion matrix. This result is based on the right hemisphere’s response 

to a one-minute duration contralateral stimulus, for the case where the stimulus and 

response are divided into fifty (1.2 s duration) segments. In Fig. 3.6A, the fifty stimulus 

segments and the fifty envelopes decoded from response segments are indexed 

sequentially from 1 to 50. If each decoded envelope is attributed to the stimulus whose 

envelope is most correlated with it, 86 % of the fifty stimulus segments are correctly 

decoded. 

The number and duration of stimulus/response segments have a profound 

influence on speech decoding performance. Fig. 3.6B shows the speech decoding 

performance as a function of the number of stimulus segments divided by the duration of 

each stimulus. Based on Fano’s inequality, the speech decoding performance demands 

that at least 4 bits/s of information in speech is encoded in the right hemisphere MEG 

response. In the left hemisphere, this value drops to 1 bit/s. This decoding result is based 

on the confusion matrix averaged over subjects. Analysis of individual subjects confirms 

that more information is decoded from the right hemisphere than the left (hemisphere × 

stimulus side 2-way repeated-measures ANOVA, F1,9=28.5, P < 0.0005) while a similar 

amount of information is decoded for the left and right side stimuli.  
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Figure 3.6. Stimulus information in the MEG response. (A) The correlation 

(color coded) between the stimulus speech envelope and the envelope 

reconstructed from the right hemisphere MEG response. The stimulus envelope 

most correlated with each reconstructed envelope is marked by a square. (B) 

Stimulus decoding accuracy as a function of the number of stimulus segments 

per second. The blue and the red curves are the results from the left and right 

hemispheres respectively. Solid and dashed curves are based on the left and 

right side stimulus. The information decoded from the right (left) hemisphere is 

roughly 4 bit/s (1 bit/s), and is a conservative estimate of the stimulus 

information available in the MEG response. 
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Figure 3.7. Stimulus information in the MEG response. (A) Information decoded 

from the response to single speech for individual subjects. The decoded 

information rate is approximately three times higher in the right hemisphere than 

left, but not significantly influenced by stimulus side. (B) Information decoded 

from the response to attended speech and unattended speech. The decoding is 

based on the grand averaged confusion matrix. More information about the 

stimulus can be decoded when the speech is being attended to than when not. 

 



  

 58 

The decoding result in Fig. 3.6 is based on the confusion matrix averaged over 

subjects. A significant amount of information can also be decoded from individual 

subjects (Fig. 3.7A). The information decoded from individual subjects is significantly 

higher in the right hemisphere than in the left hemisphere (hemisphere × stimulus side 

two-way repeated-measures ANOVA, F1,9=28.5, P < 0.0005) but is not significantly 

influenced by the stimulus side. 

 

Spectro-temporal Representation of Simultaneous Speech Signals 

Beyond the monaural listening condition analyzed above, subjects also took part 

in a dichotic listening experiment. In this condition, on top of the single spoken narrative 

in one ear, another spoken narrative was presented simultaneously in the opposite ear, 

resulting in a dichotic listening condition. In each experimental block, the subjects were 

first instructed to listen to the spoken narrative in one ear, and then, when the stimulus 

was repeated, to listen to the spoken narrative in the other ear. Therefore, the speech 

signal in each ear serves both as a target (when attended to) and as an interference signal 

(when not being attended to). Each experimental block was presented three times. The 

STRF is determined separately for the stimulus in each ear, under each attentional 

condition and for each hemisphere. 

The STRF shows salient M100STRF for both attended and unattended speech (Fig. 

3.2 and Fig. 3.4A), similar to the STRF for monaural speech. The STRFs obtained from 

this dichotic listening condition remain highly separable (Fig. 3.3). Frequency × 

hemisphere × attentional state (attended vs. unattended) 3-way repeated-measures 
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ANOVA shows that the normalized spectral sensitivity function is not influenced by 

attentional state and is not different between the two hemispheres (Fig. 3.4B).  

The M100STRF is statistically significant for both attended and unattended speech 

(test described in Methods, P < 0.001). Compared with the M100STRF for monaural 

stimuli, the M100STRF for dichotic stimuli is weakened (paired t-test. P << 0.0001 for 

both attended response and unattended response) and delayed (paired t-test. P < 0.002 for 

attended response and P << 0.0001 for unattended response). A 4-way repeated measures 

ANOVA (attentional state × hemisphere × stimulus side × experimental block) shows 

that the latency of this peak in each hemisphere is shorter for the contralateral stimulus 

(F1,239 = 13.5, P < 0.006).  

In the dichotic listening condition, the neural representation of speech remains 

faithful. The predictive power of the STRF is far above chance level (test described in 

Methods, P < 0.001). It is not significantly affected by hemisphere or which ear is 

attended to individually but is affected by the interaction between the two (2-way 

repeated-measures ANOVA, F1,39 = 20.0, P < 0.002). The predictive power is higher 

when attention is paid to the contralateral stimulus (0.17 vs. 0.10), for either hemisphere. 

A considerable amount of speech information can be decoded from the MEG responses 

to both the attended and the unattended speech (Fig. 3.7B). The amount of information 

extracted from individual subjects is analyzed using a 3-way repeated-measures ANOVA 

(attentional state × hemisphere × stimulus side). More information is decoded when the 

stimulus is being attended to (F1,79 = 23, P < 0.0009) and in the right hemisphere (F1,79 = 

6.5, P < 0.03). 
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Attentional Modulation during Dichotic Listening 

The amplitude of the M100STRF (Fig. 3.5) is substantially modulated by attention. 

A 4-way repeated-measures ANOVA (with attentional state, hemisphere, stimulus side 

and experimental block number as factors) reveals that the neural response to attended 

speech is significantly stronger than the neural response to unattended speech (F1,239 = 

10.0, P < 0.02). There is a significant interaction among attentional state, hemisphere and 

stimulus side (F1,239 = 9.1, P < 0.02). For the speech stimulus in each ear, the attentional 

effect is more salient in the contralateral hemisphere (paired t-test, t59 = 3.3, P < 0.002). 

There is also an interaction between hemisphere and stimulus side (F1,239 = 16.2, P < 

0.003). The response to the stimulus on either side is stronger in the contralateral 

hemisphere. None of the factors interact with experimental block number. Even when 

only the first experimental block is considered, the attention effect is significant 

(attentional state × hemisphere × stimulus side, 3-way repeated-measures ANOVA, F1,79 

= 28.1, P < 0.0005, stronger when attended) and the interaction among attentional state, 

hemisphere and stimulus side is significant (F1,79 = 9.0, P < 0.02, attentional modulations 

stronger in the contralateral hemisphere). 

To investigate the temporal dynamics of the attentional gain effect within a single 

presentation of the stimulus, each one-minute response was divided into 10 six-second 

segments and the temporal response function estimated for each segment independently. 

The attentional gain of the M100STRF was extracted from each temporal response function 

as the gain difference between attended response and unattended response, in dB. A 3-

way repeated-measures ANOVA (hemisphere × stimulus side × segment) on the 
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attentional gain of the M100STRF reveals no significant interaction between the attention 

gain and segment number. 

Correlation between binaural
and monaural responses
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Figure 3.8. Correlation between the MEG response to dichotic speech stimuli 

and the MEG responses to the two speech components presented monaurally. 

Each symbol in the figure is the result from one subject. The response in the 

right (left) hemisphere is plotted as stars (squares). For each hemisphere, if the 

attended ear in the dichotic condition is the contralateral ear, the result is plotted 

as a filled symbol but otherwise a hollow symbol. The response to dichotic 

stimuli is more correlated with the response to the attended speech component, 

especially in the contralateral hemisphere. 

 

As a result of the attentional gain effect, one might expect the neural response to 

the speech mixture to be more similar to the neural response to the attended speech than 

the response to the unattended speech. This hypothesis is confirmed by the analysis of the 

correlation between the MEG response to the speech mixture and the MEG responses to 
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individual speech components measured during monaural listening (Fig. 3.8). A 3-way 

repeated-measures ANOVA, with speech component (attended or unattended), 

hemisphere, and stimulus side as factors, confirms that the response to the mixture is 

more correlated with the response to the attended speech component (F1,79 = 36.2, P < 

0.0002). The ANOVA analysis also reveals a significant interaction among speech 

component, hemisphere, and stimulus side (F1,79 = 39.7, P < 0.0001): the response to the 

mixture is especially dominated by the response to the attended speech in the hemisphere 

contralateral to the ear the attended speech is presented to. 

 

Neural source localization 

In the STRF and decoding analyses, the MEG speech response is decomposed 

into components using a blind source separation method, DSS (de Cheveigné and Simon, 

2008). Only the first DSS component, which has the strongest trial-to-trial reliability, 

produced any STRF with substantive predictive power (Fig. 3.9). The topography of the 

spatial magnetic field associated with this first DSS component is quantitatively similar 

to that of the well-known M100 response. The correlation between them is 96.0% for the 

grand average magnetic fields (with a 95% confidence interval of 94.6% to 97.0% 

correlation, estimated by bootstrap sampling). The magnetic field patterns associated with 

the first DSS component and the M100 are separately modeled by a single ECD in each 

hemisphere. The correlation between the measured magnetic field and that of the dipole 

model is 94 % ± 5% and 92% ± 7% (mean ± SD) for the DSS component and the M100 

respectively. The ECD locations for the two responses are not distinguishable (P > 0.1 in 

all directions), consistent with their topographical similarity, which implies that both are 
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centered in association auditory cortex (Lütkenhöner and Steinsträter, 1998; Woldorff et 

al., 1993). 
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Figure 3.9. Predictive power of the STRF derived from each DSS component. 

The first DSS component results in significantly higher predictive power than 

other components and therefore was the only one used to localize the source of 

the MEG response. 

 

Auditory Steady State Response 

The sinusoidal modulation of the speech waveforms near 40 Hz generates a small 

but observable aSSR. For the monaural speech condition, the aSSR at both modulation 

rates is statistically significant (P < 0.05). In the dichotic listening condition, the 

attentional modulation of aSSR power is assessed by 2-way repeated-measures ANOVA 

(attentional state × hemisphere) but no significant effects are seen. 
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3.4 Discussion 

In this study, we have characterized how spectro-temporal features of speech are 

encoded in spatially synchronized activity in auditory cortex, by quantifying the 

relationship between ongoing MEG response and continuous speech stimulus. To 

summarize the major results: (1) the neural activity in auditory cortex precisely encodes 

the slow temporal modulations of speech (< 8 Hz) in a broad spectral region between 400 

and 2000 Hz, which roughly encompasses the first and second formants of speech. (2) 

The neural coding of slow temporal modulations is stronger and more precise in the right 

hemisphere, regardless of which ear the speech stimulus is presented to. In the right 

hemisphere the neural code is faithful enough to discriminate the responses to hundreds 

of speech stimuli based a few seconds of neural recording. (3) The neural response in 

each hemisphere is weaker, and has a longer latency, for speech stimulus monaurally 

presented to the ipsilateral ear, similar to what is observed for the M100 response (Pantev 

et al., 1986; Rif et al., 1991). 

Using a dichotic listening paradigm, we have further demonstrated how 

competing speech signals are encoded. (1) Auditory cortex precisely tracks the temporal 

modulations of both incoming speech signals but substantially more strongly for the 

attended one. (2) The effect of attentional modulation in auditory cortex has latency of 

only 100 ms, indicating that the segregation of dichotic speech stimuli must still involve 

feedforward neural processing. (3) The attentional modulation of auditory activity is 

present even during the subjects’ first exposure to a dichotic speech mixture. (4) The 

attentional gain effect is more salient in the hemisphere contralateral to the attended ear. 
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(5) The neural response to speech in either ear is weakened (c.f. Fujiki et al. 2002; Penna 

et al. 2007) and delayed by speech in the other ear. 

These results on the spectro-temporal neural encoding of speech provides a clear 

explanation for stimulus-synchronized neural response observed in previous experiments 

(Abrams et al., 2008; Ahissar et al., 2001; Aiken and Picton, 2008; Lalor and Foxe, 2010; 

Luo and Poeppel, 2007; Nourski et al., 2009). The properties and indications of this 

neural code are discussed in the following. 

 

Attentional Gain Control for Unfamiliar Speech 

The attention-modulated sensory gain control shown in this study is largely 

independent of specific knowledge of the content of the speech, since it is effective even 

on the first exposure to the speech. As far as we know, this is the first evidence that 

attentional gain modulation is active with a relative short latency when human listeners 

strive to comprehend novel speech in the presence of interfering speech. While natural 

speech has built-in contextual and rhythmic cues, these do not predict the content of the 

speech by any means. It is known that even without any rhythmic cues the auditory 

evoked response to an attended stimulus can be enhanced (Hillyard et al., 1973). It is also 

possible, however, that contextual cues, and especially the rhythm of natural speech, 

facilitate the neural amplification of speech encoding (Lakatos et al., 2008). Experiments 

using dichotically presented tone sequences demonstrate that the effect of attention on the 

M100 (N1) is observed for stimuli with some kinds of rhythm (typically fast) (Ahveninen 

et al., 2011; Hillyard et al., 1973; Power et al., 2010; Rif et al., 1991; Woldorff et al., 

1993), but not others (Hari et al., 1988; Ross et al., 2000). Therefore, it is critical to show 
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directly whether early auditory response to speech, with its unique complex temporal 

structure, is modulated by attention. 

Equally as important, the attentional gain effect is seen in auditory cortex, directly 

affecting a neural response component whose latency is only about 100 ms, and which is 

phase locked to low-level acoustic features of speech. Therefore, the segregation and 

selective processing of two dichotically presented speech signals almost certainly involve 

feedforward auditory neural computations. Also, because of the relatively short latency 

and the neural source location, it is unlikely that this observed speech segregation occurs 

during or after the semantic processing of speech. It is also worth noting, however, that 

the early sensory response to the unattended speech is suppressed but not eliminated. This 

relatively weak auditory response may be further processed, leading to the interaction 

between dichotically presented speech signals seen behaviorally. Additionally, although 

the M100STRF is modulated by attention, the aSSR is not. This result is consistent with 

previous observations that 40-Hz aSSR is not, or only very weakly, modulated by 

attention or even awareness of sounds (Gutschalk et al., 2008; Lazzouni et al., 2010; 

Linden et al., 1987). Compared with the M100STRF, the aSSR has a shorter latency at 

about 50 ms (Ross et al., 2000). Moreover, the neural source location of the aSSR is 

commonly believed to be in core auditory cortex (Herdman et al., 2003), while the neural 

source location of the M100STRF is centered in association auditory cortex (Lütkenhöner 

and Steinsträter, 1998). Therefore, although feedforward processing is clearly involved in 

dichotic speech segregation, it may not occur at the level of core auditory cortex. It is also 

possible, however, that the lack of statistically significant attentional effects on the aSSR 
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is due to the weakness of the aSSR; it is known that aSSR is attenuated by slow temporal 

modulations, such as those present in speech (Ding and Simon, 2009). 

Although dichotic speech segregation is reflected in the feedforward early 

auditory response seen here, it is certainly under the modulation of higher order cortical 

networks. Further experiments are still necessary to identify the network controlling the 

attentional gain effects seen in auditory cortex, which may include areas in the frontal 

and parietal cortex (Hill and Miller, 2010; Shomstein and Yantis, 2006). The attention-

control signals by no means need to be phase-locked to acoustic features of the speech 

stimulus and therefore cannot be extracted using the STRF analysis employed here. 

In addition, since the current experiment uses the same speaker and same 

narrative source for both ears, rather than tones of different frequencies, we have 

demonstrated that this attentional sensory gain control can be driven entirely by the 

stimulus ear, not needing, e.g., spectral cues. Of course other monaural cues, such as 

pitch and rhythm, and binaural cues, such as interaural time difference (ITD) and 

interaural level difference (ILD), can also be utilized to segregate concurrent sounds 

(Bronkhorst, 2000). Previous experiments with simple non-speech stimuli have 

demonstrated that monaural cue based segregation of spectrally non-overlapping sounds 

is reflected neurally in human auditory cortex (Bidet-Caulet et al., 2007; Elhilali et al., 

2009b; Xiang et al., 2010). Future experiments are needed to address whether speech 

segregation itself, which is a much harder problem, also occurs in human auditory cortex 

at a short latency. 
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Hemispheric Lateralization of Speech Coding in Auditory Cortex 

Although the neural tracking of spectro-temporal modulations in speech is seen 

bilaterally, it is strongly lateralized to the right hemisphere, independent of the stimulus 

ear. This lateralization is demonstrated by the amplitude of the M100STRF (Fig. 3.5) and 

more critically by the fidelity of neural coding (Fig. 3.6B). This strong right hemisphere 

dominance effect is surprising, however, since it is not observed in the M100 response to 

sound onsets or to aSSR to 40-Hz amplitude modulations (Rif et al., 1991; Ross et al., 

2005), both of which are instead stronger in the hemisphere contralateral to the ear 

receiving the stimulus or equally strong in both hemispheres. Furthermore, even for 

responses to speech, if both the response tracking speech features and other responses are 

considered, the total response is stronger in the left rather than right hemisphere (Millman 

et al., 2011). Nor can the rightward lateralization of the neural representation of speech 

be explained anatomically, since the dominant excitatory input to each hemisphere is 

from the contralateral ear (Pickles, 1988). Therefore, this result gives further support to 

the hypothesis that the right hemisphere is intrinsically dominant in processing the slow 

modulations (<10 Hz) in speech during natural speech comprehension (Poeppel, 2003). 

This right hemisphere dominance has also been observed in the neural response to speech 

(Abrams et al., 2008; Kerlin et al., 2010; Luo and Poeppel, 2007), and even in 

endogenous neural oscillations (Giraud et al., 2007). 

On top of this intrinsic right hemisphere dominance, however, during dichotic 

listening the effect of attentional gain control is even more prominent in the hemisphere 

contralateral to the attended side. This hemispheric lateralization effect likely arises from 

the anatomical asymmetry between the left and right afferent pathways to each 
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hemisphere. When two different sounds are presented to the two ears separately, their 

neural representations form a competition (elaborated below in Binaural Interaction). 

One result of this competition may be that each hemisphere primarily processes 

information from the contralateral ear, where most of the excitatory afferent inputs are 

from (Pickles, 1988). Therefore, the neural processing of each stimulus can be most 

strongly modulated by the attentional gain change in the contralateral hemisphere. 

 

Neural Coding of Spectro-Temporal Dynamics of Speech Signals 

Using STRF analysis, we have demonstrated that slow temporal modulations of 

speech (particularly of coarse spectral modulations) are precisely encoded in human 

auditory cortex. Taking advantage of the fine time resolution of MEG, we show that the 

observed neural responses encode at least 4 bit/s information. This indicates that, using a 

linear decoder, we can errorlessly discriminate about 16 speech stimuli (4 bits) of one-

second duration based on their MEG responses. Similarly, this same information rate 

allows one to errorlessly discriminate about 256 speech stimuli (8 bits) of two-second 

duration. The possibility of discriminating MEG/EEG responses to speech has been 

suggested by earlier studies but only shown based on a small number of several-second 

duration sentences (Kerlin et al., 2010; Luo and Poeppel, 2007). The MEG response is 

also robust: an M100STRF is observed even for unattended speech. This contrasts with the 

observation that the neural representation of sounds in anesthetized avian auditory 

forebrain is severely degraded by acoustic interference (Narayan et al., 2007) and 

therefore suggests that the robust neural coding may require top-down attentional 

modulation. 
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In speech, temporal modulations below 10 Hz convey syllabic and phrasal level 

information (Greenberg, 1999). In quiet, these slow modulations, in concert with even a 

very coarse spectral modulation, accomplish high speech intelligibility (Shannon et al., 

1995). When speech is masked by acoustic interference, slow temporal modulations of 

the interference releases the masking of the target speech (Festen and Plomp, 1990). 

Faster acoustic fluctuations of speech, e.g. spectral and pitch cues, that contain phonetic 

and prosodic information, are gated by the slow modulations (Rosen, 1992). Similarly, 

the neural processing of speech features on short time scales (< 100 ms) may also be 

modulated by the low frequency neural activity analyzed in this study. The phonetic 

information of speech has been suggested to be spatially coded over neural populations in 

auditory cortex (Chang et al., 2010). This spatial code discriminates different syllables 

most effectively at around 100 ms after the syllable onset, consistent with the latency of 

the M100STRF. Other possible neural signatures of higher level processing of speech are 

high frequency neural oscillations (40 - 150 Hz), which are also coupled to slow neural 

oscillations below 10 Hz (Lakatos et al., 2008). Therefore, the slow activity 

noninvasively measured by MEG probably reflects the timing of such microscopic neural 

computations of the phonetic level information of speech. 

 

The STRF of the MEG Speech Response 

The mathematical linear system bridging the speech stimulus and the neural 

representation of that speech can be represented graphically by the STRF. The predictive 

power of the MEG STRF compares well to that obtained from single cortical neurons for 

speech stimuli (Biermann and Heil, 2000; David et al., 2009; David et al., 2007). The 
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MEG STRF is highly separable: the temporal processing of the speech stimulus is 

consistent over the entire frequency range of the STRF and is equally sensitive to upward 

and downward changes in frequency content. This contrasts with the variety of 

separability seen in the STRFs of single neurons in primary auditory cortex (Depireux et 

al., 2001) and the inseparability seen using fMRI (Schönwiesner and Zatorre, 2009). This 

difference in separability reflects differences between the spectro-temporal tuning of 

individual neurons, spatially-synchronized activity and non-spatially-synchronized 

activity. MEG and fMRI recordings reflect the activity of large neural populations. 

Additionally MEG records only spatially synchronized components of the response (and 

in this study stimulus-synchronized neural activity), while fMRI measures the indirect 

hemodynamic response, which is influenced by both synchronized and asynchronous 

neural activity. Hence, MEG and fMRI demonstrate very different aspects of the 

population level distribution of the spectro-temporal tuning properties of neurons and are 

therefore naturally complementary. 

In summary, in this study we demonstrate the existence of a neural encoding of 

speech in human auditory cortex that can be measured extracranially and non-invasively. 

We have also demonstrated that this neural encoding is based on the acoustic 

modulations of the spectro-temporal features of speech. The encoding is quite faithful 

(perhaps even surprisingly so given that the neural signal is measured extracranially), and 

able to distinguish among hundreds of different stimuli in the course of only a few 

seconds. Additionally, on the one hand, the encoding strategy is very strongly tied to the 

physical properties of speech, which would normally imply a bottom-up encoding 

process. But on the other, the encoding strategy is also strongly modulated by the 
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attentional state of the listener, demonstrating that top-down processes directly modulate 

the neural representation of the fundamental acoustic features of speech. Finally, we have 

also developed a practical experimental paradigm that allows single-trial analysis of the 

auditory cortical encoding of continuous speech in an ecologically realistic manner. 
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Chapter 4 

Cortical representation of simultaneous speakers 

4.1 Introduction 

In a complex auditory scene, humans and other animal species can perceptually 

detect and recognize individual auditory objects or auditory streams, i.e. the sound arising 

from a single source, even if strongly overlapping acoustically with sounds from other 

sources. To accomplish this remarkably difficult task, it has been hypothesized that the 

auditory system first decomposes the complex auditory scene into separate acoustic 

features, and then binds the features, as appropriate, into auditory objects (Bregman, 

1990; Griffiths and Warren, 2002; Shamma et al., 2011; Shinn-Cunningham, 2008). The 

neural representations of auditory objects, each the collective representation of all the 

features belonging to the same auditory object, have been hypothesized to emerge in 

auditory cortex to become fundamental units for high-level cognitive processing 

(Fishman and Steinschneider, 2010; Nelken, 2008; Snyder et al., 2012). The process of 

parsing an auditory scene into auditory objects is computationally complex and cannot as 

yet be emulated by computer algorithms (Wang and Brown, 2006), but it occurs reliably, 

and often effortlessly, in the human auditory system. For example, in the classic “cocktail 

party problem”, where multiple speakers are talking at the same time (Cherry, 1953), 

human listeners can selectively attend to a chosen target speaker, even if the competing 

speakers are acoustically more salient, e.g. louder, or perceptually very similar, e.g. of the 

same gender (Brungart, 2001). 
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To demonstrate an object-based neural representation that could subserve the 

robust perception of an auditory object, several key pieces of evidence are needed. The 

first is to demonstrate neural activity that exclusively represents a single auditory object 

(Griffiths and Warren, 2004; Nelken and Bar-Yosef, 2008). In particular, such an object-

specific representation must be demonstrated in a range of auditory scenes with reliable 

perception of that auditory object, and especially in challenging scenarios where the 

auditory object cannot be easily segregated by any basic acoustic features, such as 

frequency or binaural cues. For this reason we investigate the existence of object-specific 

auditory representations by using an auditory scene consisting of a pair of concurrent 

speech streams mixed into a single acoustic channel. In this scenario, the two speech 

streams each form a distinct perceptual auditory object, but they overlap strongly in time 

and frequency, and are not separable using spatial cues. Therefore any neural 

representation of an auditory object, i.e. in this case, a single stream of speech, would not 

emerge without complex segregation and grouping processes. 

Secondly, the neural processing of an auditory object must also be adaptive and 

independent (Griffiths and Warren, 2004; Shinn-Cunningham, 2008). In particular, the 

neural processing of each auditory object should be modulated based on its own 

behavioral importance and acoustic properties, without being influenced by the properties 

of other auditory objects or the stimulus as a whole. Building on the well-established 

phenomena of feature-based top-down attentional modulation (Elhilali et al., 2009a; Fritz 

et al., 2003; Hillyard et al., 1973; Xiang et al., 2010) and feature-based bottom-up neural 

adaptation to sound intensity (Robinson and McAlpine, 2009), here, we investigate 

whether such top-down and bottom-up modulations occur separately for individual 
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auditory objects, i.e., in an object-based manner. Specifically, using this speech 

segregation paradigm, we ask the listeners to attend to one of the two speakers while 

manipulating separately the intensity of the attended and background speaker. If an 

observed neural representation is object-based: not only must it be enhanced by top-down 

attention, but it must also adapt to the intensity change of that speech stream alone, 

without being affected by the intensity change of the other stream or of the mixture as a 

whole. 

In this study, we investigate whether a robust neural representation of an auditory 

object can be observed in the brain, and when and where it might emerge. In the 

experiment, the subjects selectively listened to one of two concurrent spoken narratives 

mixed into a single acoustic channel, answering comprehension questions about the 

attended spoken narrative after each one-minute block. The neural recordings were 

obtained using magnetoencephalography (MEG), which is well suited to measure 

spatially-coherent neural activity synchronized to speech rhythms, i.e. the slow temporal 

modulations that define the speech envelope (Abrams et al., 2008; Ahissar et al., 2001; 

Koskinen et al., 2012; Luo and Poeppel, 2007). Such spatially-coherent phase-locked 

activity is strongly modulated by attention (Ding and Simon, 2012; Kerlin et al., 2010; 

Schroeder and Lakatos, 2009) and has been hypothesized to play a critical role in 

grouping acoustic features into auditory objects (Shamma et al., 2011). 
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Figure 4.1. Illustration of object-based neural representations. Here the auditory 

scene is illustrated using a mixture of two concurrent speech streams. (A) If a 

complex auditory scene is not neurally parsed into separate auditory objects, 

cortical activity (upper curve) phase locks to the temporal envelope of the physical 

stimulus, i.e. the acoustic mixture (lower waveform). (B) In contrast, using the 

identical stimulus (but illustrated here with the unmixed instances of speech in 

different colors), for a hypothetical neural representation of an individual auditory 

object, neural activity would instead selectively phase lock to the temporal 

envelope only of that auditory object. (C) The neural representation of an auditory 

object should, furthermore, neurally adapt to an intensity change of its own object 

(left) but should remain insensitive to intensity changes in another auditory object 

(right).  
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Specifically, we hypothesize that, in cortical areas with an object-based 

representation, neural activity should phase lock to the rhythm of a single auditory object, 

while in cortical areas where object-based representations are not yet formed, or formed 

only weakly, the neural response should phase lock to the envelope of the entire physical 

stimulus, i.e. the speech mixture (both examples are illustrated in Fig. 4.1A & B). In 

other words, whether a neural response is encoding one speech stream, the other speech 

stream, or the mixture, can be easily distinguished by which sound’s rhythm it is 

synchronized to. Critically, bottom-up neural adaptation to sound intensity is also 

investigated. Neural adaptation also determines whether a neural representation is object-

based based or not, based upon which sound stream (or mixture) the neural representation 

adapts to. We do this by analyzing the phase-locked neural activity when the intensity of 

the attended and the background speakers are manipulated separately (Fig. 4.1C). These 

hypothesized, object-specific, neural representations are investigated, and revealed, using 

single-trial neural recordings, and a novel neural decoding method that parallels state-of-

the-art analysis methods used in fMRI (Kay et al., 2008) and intracranial recording 

(Pasley et al., 2012). 

4.2 Methods 

4.2.1 Subject, stimuli and Procedures 

Subjects 
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Twenty normal hearing, right-handed, young adult native speakers of American 

English (between 18 and 26 years old) participated in the experiment in total. Eleven (5 

female) participated in the Equal-Loudness experiment, six (3 female) participated in the 

Varying-Loudness experiment, and three (2 female) participated in the Same-Gender 

experiment. All subjects were paid for their participation. The experimental procedures 

were approved by the University of Maryland institutional review board. Written 

informed consent form was obtained from each subject before the experiment. 

 

Stimuli and Procedures 

The stimuli contain three segments from the book A Child's History of England 

by Charles Dickens (http://librivox.org/a-childs-history-of-england-by-charles-dickens/), 

narrated by three different readers (2 female). All speaker pauses (periods of silence 

longer than 300 ms) were shortened to 300 ms, and then each chapter was divided into 

one-minute duration sections. The speech mixtures were constructed by mixing the two 

chapters digitally in a single channel. All stimuli were low-pass filtered below 4 kHz and 

delivered identically to both ears using tube phones plugged into the ear canals. The 

subjects were required to close their eyes when listening. Before each main experiment, 

100 repetitions of a 500-Hz tone pip were presented to each subject to elicit the M100 

response, which is a reliable auditory response measured 100 ms after the onset of a tone 

pip and whose neural source is easy to localize within auditory cortex (Lütkenhöner and 

Steinsträter, 1998). The three main experiments were conducted as follows. 

Equal-Loudness Experiment: In this and the Varying-Loudness experiment, two 

speakers of opposite gender were mixed. The average pitch of the two speakers was 
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separated by 5.5 semitones (de Cheveigné and Kawahara, 2002). The first 2 sections from 

each chapter were mixed with equal root mean square values (RMS) for sound amplitude. 

The subjects were instructed to focus on one speaker until the mix was finished, and then 

to switch focus to the other speaker while the same mix was played again. The same 

process was repeated 3 times, resulting in 3 trials with identical stimulus and attentional 

focus. Each trial contains 2 one-minute duration sections. To help the listeners attend to 

the correct speaker, the first second of each section was replaced by the clean recording 

from the target speaker. The speaker attended to first was counterbalanced across 

subjects. After each section, the subjects were asked to answer a question related to the 

comprehension of the passage they had just attended to. On average, 69% of the 

questions were correctly answered (not depending on the number of trials, P > 0.8, 

F(2,32) = 0.2, 1-way repeated measures ANOVA). After this part of the experiment, the 

unmixed stimuli (each speaker alone) were presented to the listeners, 4 times. 

Comprehension questions were interspersed occasionally to ensure the subjects were 

awake during the whole experiment. 

Varying-Loudness experiment: In this experiment, the intensity of Speaker Two 

was fixed at roughly 75 dB SPL and Speaker One was presented at either the same 

intensity, as evaluated by RMS value, or at intensity 5 dB or 8 dB lower. Therefore, the 

attended speaker had constant intensity while the background speaker was reduced, when 

Speaker One was attended. In contrast, the background speaker was kept constant while 

the attended speaker was damped, when Speaker Two was attended. The TMR varied 

overall from -8 dB to 8 dB. Each TMR condition contained 2 one-minute duration 

sections, after each of which a question was asked. The experiment was divided into 4 
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blocks. In each block, the listener focused on one speaker (balanced over subjects), and 

switched focus after every block. Each block started with 2 sections of clean speech from 

the target speaker and was followed by sections of speech mixtures with decreasing 

TMR. The story continued naturally throughout each block. Such an experimental design 

produces two trials, from alternative blocks, for each stimulus for each attentional 

condition. Five out of the six subjects in this experiment were asked to subjectively rate 

what percentage of words was correctly recognized after the first listening to each 

stimulus. 

 Same-Gender experiment: The two chapters read by female speakers were mixed 

digitally with equal intensity and then divided into 6 thirty-second duration sections. The 

average pitch of the two speakers differs by 3.2 semitones. The subjects were instructed 

to focus on one speaker throughout the 6 sections and then switch attention to the other 

speaker when all the sections were played again. This whole process was repeated again, 

resulting in two trials for each attentional state. To help the subjects to identify which 

speaker to listen to, the first 5 seconds of each section were replaced by clean speech 

from the target speaker. The neural recording during the first 5 seconds was therefore not 

included in any analysis. A comprehension question was asked after each session. 

Additionally, each listener went through two initial training sessions before attending to 

each speaker. In the first session, the non-attended speaker was turned on gradually, using 

a sigmoidal ramp that saturated after 20 seconds. The second session used stimuli having 

the same intensity as the stimuli used in the experiment. The training sessions were 

repeated upon the subjects’ request, to make sure the subjects were able to identify and 

focus on the target speaker after the last training session. 
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4.2.2 Data recording and analysis 

Data Recording and Processing 

The neuromagnetic signal was recorded using a 157-channel whole-head MEG 

system (KIT, Kanazawa, Japan), in a magnetically shielded room, with 1 kHz sampling 

rate. A 200-Hz lowpass filter and a notch filter at 60 Hz were applied online. Three 

reference magnetic sensors and three vibrational sensors were used to measure the 

environmental magnetic field and vibrations, and were employed to denoise the MEG 

signals (de Cheveigné and Simon, 2007). Five electromagnetic coils were used to 

measure each subject’s head position inside the MEG machine. The ongoing neural 

response (excluding the first second) during each 1-min duration stimulus was filtered 

between 1 and 8 Hz (Ding and Simon, 2012) and then used for the decoding and STRF 

analysis. 

 

Speech Decoding 

A linear model was employed to decode the temporal envelope of each speaker in 

the stimulus by linearly integrating the spatial-temporal brain activity. The decoder was 

optimized using generalized eigen-decomposition so that the decoded envelope was 

maximally correlated with the speaker to decode and minimally correlated with the other 

speaker (mathematically formulated in the following paragraphs). All correlations in this 

study were measured by the absolute value of the Pearson's correlation coefficient. The 

decoder optimized this way was a discriminative model that reconstructed an envelope 

similar to one speaker but distinct from the other and was therefore employed to explore 

the neural code unique to each speaker. A 2-fold cross validation was employed to 
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evaluate the performance of decoders: half of the data in each experimental condition 

were used to train the decoder and the other half were used to calculate the correlations 

between the decoder output and the stimulus envelopes. The decoder was applied to 

individual trials, and the percent of trials where decoding was successful (decoded 

envelope being more correlated with the intended speaker) is always reported as the 

grand average. This decoding approach effectively explores both the spatial and temporal 

information in MEG and avoids the sometimes ill-posed problem of estimating the neural 

source locations. 

Mathematically, the decoding operation can be formulated as ENV(t) = 

ΣkΣτMk(t + τ)Dk(τ), where ENV(t) is the decoded envelope, Mk(t) is the MEG 

measurement from a single sensor k, and Dk(t) is the linear decoder for the same sensor k. 

In the following, we first discuss the case of a single MEG sensor and therefore drop the 

index k. In matrix form, the decoding is expressed as v = Md, where v = [ENV(0), 

ENV(Δt), ..., ENV(TMAX)]T, d = [D(0), D(Δt), ..., D(TD)]T, and the matrix M is [M(0), M(0 

+ Δt), ... , M(0 + TD); M(Δt), M(Δt + Δt), ... , M(Δt + TD); ... ; M(TMAX), M(TMAX + Δt), ... 

, M(TMAX + TD)]. TD, the maximal time delay considered by the decoder, is selected to be 

500 ms. 

Suppose the envelopes of the speech streams of the two speakers are s1 = [s1(0), 

s1(Δt), ..., s1(TMAX)] and s2 = [s2(0), s2(Δt), ..., s2(TMAX)] and they are normalized to have 

the same L2 norm, i.e. ||s1|| = ||s2||. The envelope was extracted by summing, over 

frequency, the spectro-temporal representation of the speech (Yang et al., 1992) with its 

amplitude expressed in logarithmic scale. The correlation between the decoded envelope 

and the envelopes of the two speech streams are c1 = α-1s1
Tv = α-1s1Md and c2 = α-1s2Md 
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respectively, where α-1 = ||s1||.||v|| = ||s2||.||v||. Let us denote r1 = s1M, and r2 = s2M, then 

(c1/c2)2 = (dr1r1
TdT)/(dr2r2

TdT). Denote R1=r1r1
T and R2=r2r2

T. Then it is known that the 

quantity (c1/c2)2 is maximized when d is the generalized eigen-vector of  R1 and R2 with 

the largest eigen-value (Fukunaga, 1972). 

The conclusion from this single MEG sensor case is easily generalized to the case 

for multiple MEG sensors by concatenating the recording from all the MEG sensors. For 

example, in the case of 100 MEG sensors, the first row of M becomes [M1(0), M1(0 + Δt), 

... , M1(0 + TD), M2(0), M2(0 + Δt), ... , M2(0 + TD), ..., M100(0), M100(0 + Δt), ... , M100(0 + 

TD)] after concatenation. In this study, to reduce the computational complexity, the 157 

MEG sensors were compressed into 3 virtual sensors using DSS in each hemisphere (de 

Cheveigné and Simon, 2008). Therefore, first the 6 virtual sensors were concatenated, 

then the two covariance matrices, R1 and R2, were calculated, and finally the decoder was 

obtained by generalized eigen-decomposition. 

The chance level performance of the decoders was simulated by independently 

shuffling the order of each one-minute long duration stimulus (independently between the 

two simultaneous speakers) and the order of all the responses 4096 times. At this chance 

level, obtained by reconstructing the stimulus based on unmatched responses, the 

reconstructed envelope is similarly correlated with the speech envelopes of both speakers 

(P > 0.8, paired t-test), and the 95th percentile of the correlation with each speech stream 

envelope is below 0.01, showing that the decoder does not show bias toward either 

speaker. 

 In the Varying-Loudness experiment, the same decoder was employed to decode 

the stimulus at every TMR. The stimulus and response in every TMR condition were 
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divided into a training and a testing set. All training sets are then pooled together to train 

the decoder. After training, the decoder was applied to individual TMR conditions to 

assess the neural encoding accuracy. Therefore, if the decoding results were consistent 

over TMR conditions, it would imply that not only is the encoding accuracy unaffected 

by the intensity change of a speaker but also the underlying spatial-temporal neural code. 

In Fig. 4.4B, the decoding accuracy for each speech stream is normalized separately. 

Specifically, the decoding accuracy for one speech stream, the first or the second, is 

divided by the decoding accuracy of that speech stream when presented individually, cs1 

or cs2, and then multiplied by the mean accuracy of decoding a speech stream presented 

individually, i.e. (cs1 + cs2)/2. 

 

STRF 

The STRF models how speech features are encoded in the MEG response (Ding 

and Simon, 2012), in contrast to how the decoders transform MEG activity (backwards) 

to speech features. A single STRF transforms the spectro-temporal features of speech to a 

single response waveform. Therefore, due to the multi-channel nature of MEG, a 

complete forward model is described as a 3-D spatial-STRF model (MEG sensor position 

× frequency × time). The MEG data was averaged over trials in the STRF analysis, for 

each stimulus and attentional condition. 

The mathematical formulation of the STRF analysis is as follows. The spectro-

temporal representations of the speech streams of the two speakers are denoted as SA(f, t) 

and SB(f, t) respectively, and the MEG response is denoted as r(t,k), where k is an index 

for MEG sensors. The linear STRF model can then be formulated as 
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r(t,k) = Σf Στ STRFA(f,τ,k)SA(f, t − t) + Σf Στ STRFB(f,τ,k)SB(f, t − t) + ε(t,k), 

where STRFA(f,t,k) and STRFB(f,t,k) are STRFs for the attended and background 

speech respectively for every MEG sensor, and ε(t,k) is the residual response waveform 

not explained by the STRF model. The spectro-temporal representations of the speech of 

the two speakers were calculated from unmixed speech using an auditory filterbank 

model (Yang et al., 1992). The amplitude of the stimulus, SA(f, t) and SB(f, t), is 

represented in logarithmic amplitude scale (i.e. in dB) and the mean amplitude is 

normalized to 0 dB. The mean amplitude of the envelope of each speech stream is 

normalized since, in a linear model such as the STRF, the mean of the stimulus is 

represented by the DC component of the neural response, which is not reliably 

measurable by MEG. The same model is used in all the three experiments, regardless of 

the actual intensity of either speech stream. Therefore, the amplitude of the STRFs should 

co-vary with the intensity of either speech stream, unless such the change of stimulus 

intensity is compensated by the auditory system in an object-based manner. 

The STRF model was applied separately to individual sensors. For the sake of 

computational efficiency, however, the 157-channel MEG dataset was dimensionally 

reduced to 30 channels when estimating the STRF, using denoising source separation 

(DSS) (de Cheveigné and Simon, 2008), but then transformed back to the MEG sensor 

space. 

The temporal profile of an STRF is extracted using singular value decomposition 

(SVD). For the STRF from a MEG sensor or a neural source location, the SVD of STRF 

is STRF(f,t) =Σp λpTRFp(t)SRFp(f). The temporal profile of the STRF, or the temporal 

response function, is defined as λ1TRF1(t) (Ding and Simon, 2012). 
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Extraction of the M50STRF and M100STRF magnetic fields 

The M50STRF and M100STRF were extracted from two time intervals: 10 - 100 ms 

and 50 - 200 ms, respectively. The approximate latency of each response peak was 

determined based on the temporal response function extracted from the spatial-STRF 

using singular value decompositions (SVD) (Ding and Simon, 2012). The M100STRF, also 

known as the M100STRF response, is known to have the same polarity as the M100 

response evoked by a tone pip(Ding and Simon, 2012), while the M50STRF has the 

opposite polarity. Therefore the M100STRF was determined by the strongest response peak 

with a magnetic field topology positively correlated with that of the M100, and similarly 

for the M50STRF but with a negative correlation. The magnetic field pattern extracted for 

each peak was averaged over speakers and attentional conditions, and then used for 

neural source localization. 

 

Source Space Analysis 

In the neural source analysis, subjects from the Equal-Loudness experiment and 

the Varying-Loudness experiment were pooled together, and the responses at different 

TMRs were also averaged. The neural source of each peak in the STRF was modeled by 

an equivalent-current dipole (ECD) in each hemisphere. A spherical head model was 

derived for each subject using MEG Laboratory software program v.2.001M (Yokogawa 

Electric, Eagle Technology, Kanazawa Institute of Technology). The position of the ECD 

was estimated using a global optimization approach (Uutela et al., 1998). The grand 

averaged correlation between the fitted ECD magnetic field and the measured magnetic 
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field is above 95% in both hemispheres and for both M50STRF and M100STRF. When 

comparing the ECD positions of different peaks in STRF, we included only ECDs 

successfully capturing the measured magnetic field, characterized by a higher than 85% 

correlation between the ECD magnetic field and the measured magnetic field. No more 

than 2 out of the 17 subjects were excluded this way, for each STRF peak. After the ECD 

positions were determined, the moment of the dipole was estimated using the generalized 

least squares method (Mosher et al., 2003). In the dipole analysis, the sign of the 

magnetic field of the M50STRF is flipped, in order to make the polarity of its moment 

consistent with that for the M100STRF, and the polarity of the M100STRF is defined as 

negative, to be consistent with the polarity of the N1 peak of EEG. 

In the analysis of the amplitude and latency of the M50STRF and the M100STRF, the 

STRFs are projected to the lead field of the dipole in each hemisphere. Mathematically, if 

the STRF is STRF(f,t,k) and the lead field is L(k), the projection is ΣkSTRF(f,t,k)L(k). 

 

Models of Gain Control  

The intensity of the stimulus or an auditory object is normalized in the auditory 

system by response gain control. The neural phenomena associated with different gain 

control models are simulated. In the simulation, the envelope of speech is assumed to be 

faithfully encoded in auditory cortex, and the imperfect decoding of speech envelope is 

assumed to be due to (stimulus-irrelevant) neural background activity. Therefore, the 

MEG measurement is modeled as a linear mixture of neural activity phase-locked to each 

speech stream and stimulus-irrelevant spontaneous activity. To simplify the simulation, 

but without loss of generality, we further assume that the neural encoding of each stream 
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instantaneously follows that speech stream, e.g. rA0(t) = sA(t) and rB0(t) = sB(t), where 

rA0(t) and rB0(t) are the raw neural response to the attended and background speech 

respectively and sA(t) and sB(t) are the corresponding speech envelopes. 

We model the intensity gain control of neural activity using two models. One 

model normalizes the MEG activity by the strength (measured by the root mean square 

(RMS)) of the envelope of the acoustic mixture, i.e. smix(t); the second model by the 

strength of each speaker individually. The two models are described as follows. 

Global gain control model:   rA(t) = rA0(t)/RMS(smix (t)) 

     rB(t) = rB0(t)/RMS(smix (t)) 

Object-based gain control model:  rA(t) = rA0(t)/RMS(sA(t)) 

     rB(t) = rB0(t)/RMS(sB(t)) 

The neural reconstruction of the attended speech, a linear combination of MEG 

activity, is modeled as ŝA(t) = rA(t) + λBrB(t) + λNn(t). In the reconstruction, rB(t) and n(t) 

are attenuated but not eliminated due to, e.g., the limited spatial resolution of MEG. The 

two free parameters λB and λN are fit based on the Equal-Loudness experiment, i.e. when 

sA(t) and sB(t) have equal intensity: λB and λN are adjusted so that the simulated decoding 

results, i.e. the correlation between rA(t) and sA(t) and the correlation between rA(t) and 

sB(t), match the experimental observations in the Equal-Loudness experiment (Fig. 4.2B). 

The model is then used to predict the decoding results in the Varying-Loudness 

experiment, where the intensity of two speakers are changed separately. The model 

predictions are generally insensitive to the values of λB and λN. 
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4.3 Results 

Deciphering the Spatial-Temporal Code for Individual Speakers 

In the first experiment, listeners selectively listened to one of two competing 

speakers of different gender, mixed into a single acoustic channel with equal intensity. To 

probe object-specific neural representations, we reconstructed the temporal envelope of 

each of the two simultaneous speech streams by optimally integrating MEG activity over 

time and space (i.e. sensors). Such a reconstruction of the envelope of each speech 

stream, not the physical stimulus, can be successful only if the stimulus mixture is 

neurally segregated (“unmixed”) and the speech of the two speakers are represented 

differentially. We first reconstructed the temporal envelope of the attended speech. 

Figure 4.2A shows representative segments of the different envelopes reconstructed by 

this decoder, from listeners hearing the identical speech mixture but attending to different 

speakers in it. The reconstructed envelope is clearly more correlated with the envelope of 

the attended speech than with that of the background one, despite the fact that the stimuli 

were identical in both cases. The higher correlation with the attended speech is 

statistically significant (P < 0.001, paired permutation test, Fig. 4.2B, left) and is seen in 

92% of trials (Fig. 4.2C). 
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Figure 4.2. Decoding the cortical representation specific to each speech stream. 

(A) Examples of the envelope reconstructed from neural activity (black), 

superimposed on the actual envelope of the attended speech (gray). Different 

envelopes (in the upper and lower panels) are decoded from neural responses to 

identical stimuli, depending on whether the listener attends to one or the other 

speaker in the speech mixture, with each resembling the envelope of the 

attended speech. Here, the signals, 5 seconds in duration, are averaged over 

three trials for illustrative purposes, but all results in the study are based on 
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single trial analysis. (B) Two separate decoders reconstruct the envelope of the 

attended and background speech respectively from their separate spatial-

temporal neural responses to the speech mixture. The correlation between the 

decoded envelope and the actual envelope of each speech stream is shown in the 

bar graph (averaged over trials and speakers), with each error bar denoting one 

SEM across subjects (** P < 0.005, paired permutation test). The separate 

envelopes reconstructed by the two decoders selectively resemble that of 

attended and background speech, demonstrating a separate neural code for each 

speech stream. (C) Decoding of the Speech Representations from Single Trials. 

Scatter plots of the correlation coefficients measured from individual trials and 

individual subjects, between the decoded envelope and the actual envelope. The 

attentional focus of listeners is denoted by marker color and the separate trials 

are denoted by marker shapes. Comparing the results of the two decoders, it can 

be seen that the speech of the attended and background speakers can be decoded 

separately from the same response, even on a single trial basis. 
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Figure 4.3. Decoding of the speech representations for two competing female 

speakers. The correlation between the decoded envelope and the actual envelope 

is shown by the bar graph (averaged over trials and subjects) and the scatter plot 

(each trial and subject separately). The attended speech can be decoded 

exclusively from the neural response to the mixture. 

 

We also reconstructed the temporal envelope of the background speech using a 

second decoder that integrates neural activity spatial-temporally in a different way. The 

result of this reconstruction is indeed more correlated with the envelope of the 

background speech rather than the attended speech (P < 0.005, paired permutation test, 

Fig. 4.2B, right). Therefore, by integrating the temporal and spatial neural responses in 

two distinct ways, the attended and background speech can be successfully decoded 

separately. On average, the reconstruction for the background speech is more correlated 

with the background speech in 73% of the trials from individual subjects (Fig. 4.2C; 

significantly above chance level, P < 0.002, binomial test). 
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In this experiment, the speakers are of opposite gender, but the neural 

representations of segregated speech streams can be similarly demonstrated even for the 

more challenging scenario where the two speakers are of the same gender. In the Same-

Gender experiment, after a training session, the subjects can successfully recognize and 

follow the target speaker and answer 74% of the comprehension questions asked during 

the experiment. From the neural response, the temporal envelope of the attended speaker 

is decoded (Fig. 4.3) and the decoded envelope is more correlated with the attended 

speaker than the unattended speaker (paired t-test based on individual trials from 

individual listeners, P < 0.01, for both speakers). Consequently, all these results (Fig. 4.2 

and Fig. 4.3) demonstrate that the neural representation in auditory cortex goes beyond 

encoding just the physically presented stimulus (the speech mixture) and shows selective 

phase-locking to auditory objects. 

 

Robustness to the Intensity of Either Speaker 

When the intensity of either of the two competing speaker changes, up to 10 dB, 

human listeners can still understand either speaker with more than 50% intelligibility 

(Brungart, 2001). Intensity gain control may contribute to this robustness in speech 

perception. Here, we address whether intensity gain control occurs globally for an 

auditory scene or separately for each auditory object.  

A second ‘Varying-Loudness’ experiment was carried out, where the intensity 

level of one speech stream, either the attended or the background, is kept constant while 

the other is reduced (up to 8 dB). Under this manipulation, the intensity ratio between the 

attended and background speaker, i.e. the target to masker ratio (TMR), ranges between -
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8 dB and 8 dB. The listeners correctly answered 71% of the questions asked after each 

minute of listening, which did not significantly vary with TMR (P > 0.7, one-way 

repeated measures ANOVA), indicating that the listeners understood the story without 

any obvious difficulty, even when the acoustics of stimulus changed dramatically. The 

averaged subjective speech intelligibility is 88%, 80%, 68%, 60%, and 48% at 8 dB, 5 

dB, 0 dB, -5 dB, and -8 dB TMR respectively, which varies significantly with TMR (P < 

10-4, F(4,24) = 12.6, 1-way repeated measures ANOVA). 
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Figure 4.4. Decoding the attended speech over a wide range of relative intensity 

between speakers. (A) Decoding results simulated using different gain control 

models. The x-axis shows the intensity of the attended speaker relative to the 

intensity of the background speaker. Object-based intensity gain control predicts 

a speaker intensity invariant neural representation while the global gain control 

mechanism does not. (B) Neural decoding results in the Varying-Loudness 

experiment. The cortical representation of the target speaker (red symbols) is 

insensitive to the change in physical dominance of the speech (dashed orange 
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curve). The acoustic envelope reconstructed from cortical activity is much more 

correlated with the attended speech (red symbols) than the background speech 

(gray symbols). Triangles and squares are results from the two speakers 

respectively. 

 

To distinguish how different intensity gain control mechanisms would affect the 

neural representation of each speech stream, we simulate possible decoding outcomes (SI 

Methods). The MEG activity is simulated by the sum of activity precisely phase-locked 

to each speech stream, and interfering stimulus-irrelevant background activity. The 

strength of the phase-locked activity is normalized by either the strength of whole 

stimulus, for a global gain control mechanism, or the strength of the encoding auditory 

object, for an object-based gain control mechanism. The simulated decoding outcomes 

under different gain control mechanisms are shown in Fig. 4.4A. 

The neural decoding from actual MEG measurements is shown in Fig. 4.4B. For 

the decoding of the attended speech, the decoded envelope is significantly more 

correlated with the envelope of the attended speech (P < 0.004, F(1,71) = 25.8, 

attentional focus × TMR 2-way repeated measures ANOVA), and this correlation is not 

affected by TMR. The result is consistent with the object-based gain control model, and 

not with the global gain control model. Similarly, the neural decoding of the background 

speech is also affected by the attentional focus (P < 0.02, F(1,71) = 14.65, higher 

correlation with the background speech, 2-way ANOVA), without interaction between 

attention and TMR. Consequently, the neural representation of a speech stream is stable 

both against the intensity change of that stream and also against the intensity change of 
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the other stream, consistent with the hypothesized object-specific gain control  (c.f. the 

examples shown in Fig. 4.1C). 

 

Spatial Spectro-temporal Response Function and Neural Sources 

The decoding analysis above integrates neural activity, spatial-temporally, to 

optimally reveal an object-specific neural representation. To characterize the neural code 

that the decoder extracts information from, we analyze the neural encoding process via 

the spectro-temporal response function (STRF), for each MEG sensor (deCharms et al., 

1998; Depireux et al., 2001). The linear STRF and the linear decoder are respectively the 

forward and backward models describing the same relationship between the stimulus and 

neural response. Nevertheless, only the forward STRF model can reveal the timing and 

spatial information of the neural encoding process. 

An STRF functionally describes how the spectro-temporal acoustic features of 

speech are transformed into cortical responses. It deconvolves the neural activity evoked 

by the continuous envelope of speech. In this STRF model, the encoding of each speech 

stream is modeled using the auditory spectrogram (Yang et al., 1992) of the “unmixed” 

speech signal with unit intensity. For any given frequency the horizontal cross-section of 

the STRF characterizes the time course of the neural response evoked by a unit power 

increase of the stimulus at that frequency, for one MEG sensor. 

 The MEG STRF contains two major response components (Fig. 4.5A & B): one 

with latency near 50 ms, here called the M50STRF, and the other with latency near 100 ms, 

here called the M100STRF. This indicates that two major neural response components 

continuously follow the temporal envelope of speech, with delays of 50 ms and 100 ms 
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respectively. Since an STRF is derived for each MEG sensor, the neural source locations 

of the M50STRF and M100STRF can be estimated based on the distribution over all sensors 

of the strength of each component, i.e. the topography of the magnetic fields at each 

latency (Fig. 4.5C). An equivalent current dipole (ECD) based neural source analysis 

reveals that the M50STRF and M100STRF responses arise from different neural sources, 

with the source of M100STRF being 5.5 ± 1.5 mm and 7.1 ± 2.0 mm more posterior in the 

left and right hemispheres respectively (Fig. 4.5D, P < 0.005 for both hemispheres, 

paired t-test). The ECD location of the neural source of the M100STRF peak is consistent 

with that observed for the M100 response to tone pips, localized to the superior temporal 

gyrus (STG) and roughly in the planum temporale (Lütkenhöner and Steinsträter, 1998). 

The amplitudes of the M50STRF and M100STRF are further analyzed in the neural 

source space, based on the STRF at the ECD location of each component. The amplitude 

of the M100STRF is much stronger for the attended speech than for the background speech 

(Fig. 4.5B, P < 0.007, F(1,87) = 11.85, attentional focus × hemisphere × speaker, 3-way 

repeated-measures ANOVA). The amplitude of the M50STRF is, in contrast, not 

significantly modulated by either attention or TMR. The latency of the M50STRF and 

M100STRF are also modulated by attention (P < 0.03, F(1,87) > 7 for both peaks, 3-way 

repeated-measures ANOVA) and are on average 11 and 13 ms shorter, respectively, 

when attended. 
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Figure 4.5. Cortical Encoding of the Spectral-temporal Features of Different 

Speech Streams. (A) The STRF power as function of frequency and time 

(summed over all sensors and subjects) for unmixed speech. It is dominated by 

two response components, M50STRF and M100STRF, with respective latencies 

near 50 ms and 100 ms. (B) The STRFs for the attended and background speech, 

at the neural source location of the M100STRF. Attention strongly enhances the 

response with latency near 100 ms. (C) The MEG topography of the M50STRF 

and M100STRF, averaged over subjects and experiments. (D) The neural source 
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locations for the M50STRF and M100STRF in each hemisphere, as estimated by 

dipole fitting. The location of neural source of the M50STRF is anterior and 

medial to that of the M100STRF and M100. The source location for each subject 

is aligned based on the source of the M100 response to tone pips, shown by the 

cross. The span of each ellipse is 2 SEM across subjects. The line from each 

dipole location illustrates the grand averaged orientation of each dipole. Each 

tick represents 5 mm. (E) The temporal profile of the STRF in the Varying-

Loudness Experiment for the attended speech. The M100STRF (averaged over 

TMR) is modulated by attention while the M50STRF is not. Neither response peak 

is affected by the intensity change of the two speakers. 

 

The temporal profile of the STRF in the Varying-Loudness experiment is shown 

in Fig. 4.5E, which is extracted by applying a singular value decomposition to the STRF. 

The M100STRF is modulated by attention (P < 0.03, F(1,143) = 9.4, attentional focus × 

hemisphere × speaker × TMR, 4-way repeated-measures ANOVA) while the M50STRF is 

not. Neither response component is affected by TMR (c.f. the examples shown in Fig. 

4.1C). The invariance of the M50STRF and M100STRF to the intensity of both the attended 

and background speech streams provides further evidence for the hypothesized object-

specific gain control. 
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4.4 Discussion 

This study investigates whether a multi-source auditory scene, perceptually 

represented in terms of auditory objects, is neurally represented in terms of auditory 

objects as well. From subjects selectively listening to one of two spectro-temporally 

overlapping speech streams, we do observe neural activity selectively synchronized to the 

speech of a single speaker (as was illustrated in Fig. 4.1B). Furthermore, in an 

ecologically valid listening setting, this selective representation of an individual speech 

stream is both modulated by top-down attention, and normalized by the intensity of that 

sound stream alone (as was illustrated in Fig. 4.1C). In sum, this meets all the criteria of 

an object-based representation, e.g. those specified by Griffiths and Warren (Griffiths and 

Warren, 2004): the observed neural representation is selective to the sound from a single 

physical source, is minimally affected by competing sound sources, and is insensitive to 

perceptually unimportant acoustic variations of the stimulus, e.g. changes in intensity. 

 

Temporal Coherence, Attention and Object-based Representations 

The object-specific representations seen here are precisely synchronized to the 

temporal envelope of speech. In speech and natural sounds in general, the temporal 

envelope gates on and off, and therefore synchronizes, various acoustic features, 

including pitch and formant structures. Therefore, they provide important cues for 

perceptual auditory grouping (Sheft, 2007) and are critical for robust speech recognition. 

For example, acoustic cues that can be used to segregate concurrent speech streams are 

dominantly content-independent voice features of each speaker, e.g. the pitch, which are 

not sufficient for the recognition of speech. At the same time, it is difficult to extract the 
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acoustic features necessary for speech recognition, e.g. the spectro-temporal envelope of 

speech, from a speech mixture, in the absence of strong speech segregation cues (such as 

pitch) (Stickney et al., 2004). A solution to this dilemma would be to group acoustic 

features belonging to the same auditory object, both speech segregation and 

intelligibility-relevant cues, through temporal coherence analysis, and then selectively 

process the attended auditory object as a whole (Shamma et al., 2011). In other words, 

the auditory cortex selects the attended speech stream by amplifying neural activity 

synchronized to the coherent acoustic variations of speech, i.e. the envelope. This idea is 

highly consistent with the large-scale synchronized and object-specific activity seen in 

this study. 

At the neuronal mechanistic level, it is plausible that the low frequency phase-

locked neural activity binds features belonging to the same object by regulating the 

excitability of neurons, so that a given neural network will be more responsive when 

processing features from the corresponding auditory object (Schroeder and Lakatos, 

2009). Furthermore, such a rhythmic regulation of neuronal excitability may also 

contribute to the segmentation of continuous speech into perceptual units, e.g. syllables 

(Luo and Poeppel, 2007). 

In the current experiment, the auditory scene consists of only two auditory objects 

and we demonstrate that the attended object and the background object are represented 

differentially. For the case of more than two auditory objects in an auditory scene, 

whether the neural system divides the scene into multiple objects, or only the attended 

object and the background, must be determined by future experiments. 
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Hierarchical Processing of Auditory Objects Auditory Cortex 

Of the two major neural response components that track the speech envelope, the 

M100STRF is significantly modulated by attention but the M50STRF is not. These two 

neural response components track the speech envelope with different latencies and are 

generated from distinct neural sources. Based on their positions relative to the neural 

source of the M100 (Lütkenhöner and Steinsträter, 1998), the M50STRF and M100STRF 

arise roughly from Heschl's gyrus and the planum temporale, respectively. The latency 

and source location of the two components demonstrate a hierarchy of auditory 

processing (Hickok and Poeppel, 2007; Rauschecker and Scott, 2009), and the 

representation of the attended object become dominant from shorter- to longer-latency 

activity and from core to posterior auditory cortex. Therefore, although auditory object 

representations may start to emerge as early as primary auditory cortex (Nelken and Bar-

Yosef, 2008), the substantial top-down attentional modulation of the large-scale object 

neural representation measured here only emerges with later processing. 

The routing of the neural processing of the attended auditory object into posterior 

auditory cortex may generally underlie the selection of auditory information when there 

are competing spectro-temporally complex auditory objects. MEG studies have shown 

that selectively listening to sound embedded in a complex auditory scene modulates 

longer latency (~100 – 250 ms) responses in association auditory cortex but not the 

shorter latency (~50 ms) steady state response in core auditory cortex (Ding and Simon, 

2012; Gutschalk et al., 2008; Okamoto et al., 2011). The specific latency (whether ~100 

ms (Hillyard et al., 1973; Rif et al., 1991) or longer (Ahveninen et al., 2011; Hari et al., 

1988; Ross et al., 2010)) of the attentional modulation in association auditory cortex 
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shows evidence of variation with the rhythm of the stimulus. The attentional modulation 

near 100 ms seen here, therefore, might only occur for some dynamic stimuli, e.g. those 

with a speech-like rhythm. PET studies also indicate that the areas posterior to core 

auditory cortex are more activated when speech is interfered by temporally modulated 

noise than stationary noise (Scott et al., 2009; Scott et al., 2004), since modulated noise 

contains speech-like features and requires additional processes of information selection. 

Furthermore, a recent fMRI study has also shown that, in a multi-talker environment, the 

planum temporale is increasingly activated when the number of information sources, i.e. 

speakers, increases (Smith et al., 2010). Taken together, these results support the idea that 

posterior auditory cortex plays a major role in the generation of auditory objects 

(Griffiths and Warren, 2002; Zatorre et al., 2002) and the selection of information based 

on the listener’s interest. 

 

Neural Adaptation to the Intensity of Individual Auditory Object 

The recognition of speech relies on the shape of its spectro-temporal modulations 

and not its mean intensity. This study demonstrates that cortical activity is precisely 

phase locked to the temporal modulations, but insensitive to the mean intensity of the 

speech streams, and therefore is effectively encoding the only shape of the modulations. 

Intensity gain control has been demonstrated in multiple stages of the auditory system 

(Robinson and McAlpine, 2009; Watkins and Barbour, 2009) and constitutes an auditory 

example of neural normalization, which has been suggested as a canonical neural 

computation (Carandini and Heeger, 2012). For example, in the cochlear nucleus, 
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neurons encode the shape of the spectral modulation of speech, e.g. a vowel, invariantly 

to its mean intensity (Young, 2008). 

Critically different from these previous studies, however, the encoding of 

temporal modulations seen here is invariant to the intensity of each speech stream rather 

than the overall intensity of the mixture. In the Varying-Loudness experiment, the 

intensity of one speaker changes while the other is kept constant. Maintaining a stable 

representation despite the altered speech requires the observed neural adaptation to the 

sound intensity of the specific speech stream. The stable representation of the constant 

speaker, in contrast, requires the observed lack of adaptation to the overall intensity of the 

sound mixture, which co-varies with the intensity of the altered speech. These both 

contrast with the simpler mechanism of global intensity gain control, which would 

require the neural representation of both speech streams to be modulated in the same way 

based on the overall intensity of the acoustic stimulus. Therefore, the data strongly 

suggest the existence of an object-specific intensity gain control, which normalizes the 

strength of neural activity based on the intensity of individual auditory objects. 

In sum, this study demonstrates the key signatures of an object-specific neural 

representation arising from the analysis of a complex auditory scene. Such object-specific 

neural representations are phase-locked to the slow rhythms (<10 Hz) of the encoded 

auditory object, and adapt to the intensity of that object alone. Under the modulation of 

top-down attention, the auditory response in posterior auditory cortex (latency near 100 

ms) dominantly represents the attended speech, even if the competing speech stream is 

physically more intense. This object-specific auditory representation provides a bridge 
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between feature-based, precisely phase-locked sensory responses, and interference-

resilient cognitive processing and recognition of auditory objects. 
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Chapter 5 

Cortical representation of speech in noise 

5.1 Introduction 

Normal hearing human listeners are remarkably good at understanding speech in 

complex listening environments (Brungart, 2001; Festen and Plomp, 1990). The 

recognition of speech relies on the spectro-temporal modulations of speech (Chi et al., 

1999; Elliott and Theunissen, 2009), including the important component of slow temporal 

modulations (< 16 Hz). These slow temporal modulations, which constitute the envelope 

of speech (Rosen, 1992), contribute to robust speech recognition in two ways. First, they 

reflect the syllabic and phrasal rhythm of speech (Greenberg et al., 2003; Poeppel et al., 

2008) and, in quiet listening environments, lead to high intelligibility even with only very 

coarse spectral information (Shannon et al., 1995). Second, in complex auditory scenes, 

they provide primary cues to group together features belonging to the same sound stream 

and therefore play a critical role in extracting a target speech stream from the acoustic 

background (Shamma et al., 2011). 

The functional importance of the slow temporal modulations makes it a plausible 

hypothesis that noise-robust speech recognition relies on stable neural synchronization to 

the speech envelope. Specifically, it has been proposed that cortical activity synchronized 

to the speech envelope underlies the parsing of continuous speech into basic processing 

units, e.g. syllables, and regulates the allocation of neural resources to the processing of 

each unit (Giraud and Poeppel, 2012; Schroeder and Lakatos, 2009). Furthermore, 
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selective neural synchronization to a speech stream embedded in a complex auditory 

scene has been hypothesized as the mechanism to segregate the speech stream from the 

acoustic background (Shamma et al., 2011). Both the segregation of speech from 

background and the parsing of speech into perceptual units are prerequisites for robust 

speech recognition. Therefore, if cortical activity synchronized to the speech envelope is 

truly involved in these processes, it must reliably occur in the presence of any acoustic 

background that does not eliminate speech intelligibility. This critical prediction is tested 

in this study.  

The acoustic background interferes with speech in two ways, energetic masking 

and information masking. Energetic masking is caused by the physical, acoustic overlap 

between the speech and the background. It causes strong degradation to the neural 

representation of speech in the auditory periphery, though how the degraded peripheral 

representation is further processed in the central auditory system is not yet well 

understood. Energetic masking is exemplified by speech masked by spectrally matched 

stationary noise (Festen and Plomp, 1990), the scenario investigated here. Informational 

masking refers to any speech background interaction that is not caused by acoustic 

overlap, but instead by the perceptual similarity between the speech and background. It is 

exemplified by speech masked by another stream of speech (Brungart, 2001), the 

scenario for which evidence of reliably neural synchronization to speech has very 

recently been demonstrated (e.g. Chapter 3-4). In this study, we demonstrate how 

energetic masking affects neural synchronization to the speech envelope, and test the link 

between this neural synchronization and noise-robust recognition of speech.  
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Figure 5.1. Speech embedded in spectrally matched stationary noise. (A) The 

auditory spectrogram (upper panel) and the temporal envelope (lower panel) of 

speech embedded in noise, at 4 SNRs. The background noise causes severely 

degradation to the spectro-temporal features of speech. (B) The contrast index 

characterizes the spectro-temporal contrast of the stimulus at each SNR. The 

shaded blue area covers the 5th to 95th percentile of the contrast index calculated 

for stationary noise alone, and the SNR condition Q indicates a quiet 

background. The intensity contrast of the stimulus decreases continuously with 

SNR. In this illustration, though not in the experiment, the same speech segment 

is used in every SNR condition. (C) Subjectively rated intelligibility of speech 

(bars), and percent of comprehension questions correctly answered (stars). The 

intelligibility remains unaffected by SNR until -3 dB SNR. 

 

Spectrally matched stationary noise causes severe acoustic degradation to speech. 

It reduces the intensity contrast of the speech and distorts its spectro-temporal 

modulations (Fig. 5.1A & B). Speech intelligibility, however, is robust to such acoustic 
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degradations until the noise is about 3 dB stronger than speech (Fig. 5.1C). 

Psychoacoustic studies suggest that this robustness is maintained by insensitivity to the 

intensity contrast of speech (Stone et al., 2011) and by selectively processing the 

temporal modulations at those modulation rates less corrupted by noise (Jorgensen and 

Dau, 2011). Although it is still unclear whether these computational strategies suggested 

by psychophysical studies are indeed implemented in the human brain, their possible 

neural underpinnings have been suggested by animal studies: Insensitivity to stimulus 

contrast can be achieved by neural adaptation to the mean and variance of stimulus 

intensity (Dean et al., 2005; Nagel and Doupe, 2006; Rabinowitz et al., 2011), and the 

selective encoding of temporal modulations can result from stimulus-dependent spectro-

temporal tuning of neurons (Escabí et al., 2003; Lesica and Grothe, 2008; Woolley et al., 

2005; Woolley et al., 2006)  

In this study, subjects listened to a spoken narrative, mixed with spectrally 

matched stationary noise, at different signal-to-noise ratios (SNR). We hypothesize that 

cortical synchronization to the speech envelope is robust against the acoustic 

degradations caused by noise, at least when speech intelligibility remains high. In other 

words, it is hypothesized that the severe acoustic degradations caused by noise are 

compensated for neurally. To test the hypothesis, we record from subjects using 

magnetoencephalography (MEG), which can directly measure cortical activity 

synchronized to the envelope of speech (Ding and Simon, 2012; Luo and Poeppel, 2007). 

The neural computations underlying the hypothesized stable neural representation are 

also investigated with particular attention to how the brain overcomes, or compensates 

for, the loss of stimulus dynamic range and distortions of the stimulus temporal 
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modulations. Furthermore, we investigate the specific relationship between the cortical 

encoding of slow temporal modulations and individual subjects’ ability to recognize 

speech in noise.  

5.2 Methods 

5.2.1 Subject, stimuli and Procedures 

Subjects 

Eleven normal hearing, right-handed, young adults (7 females, all between 20 and 

31 years old) participated in the experiment. One subject was excluded due to the lack of 

auditory responses to both tones and speech. Subjects were paid for their participation. 

The experimental procedures were approved by the University of Maryland institutional 

review board. Written informed consent form was obtained from each subject before the 

experiment.  

 

Stimuli and Procedure 

The stimuli were taken from the beginning of a narration of the story Alice's 

Adventures in Wonderland (http://librivox.org/alices-adventures-in-wonderland-by-lewis-

carroll-4/). The sound recording was low-pass filtered below 4 kHz and divided into 

twelve 50-second duration sections, after long speaker pauses (> 300 ms) were shortened 

to 300 ms. A spectrally matched stationary noise was generated based on a 12-order 

linear predictive model estimated from the speech recording, and mixed into speech with 

one of six SNRs, i.e. quiet (no noise added in), +6 dB, +2 dB, -3 dB, -6 dB, and -9 dB. 
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The intensity of speech, measured by RMS, was the same for all sections and the 

intensity of noise was varied to create different SNRs. All the sections were presented 

sequentially and then repeated twice. The subjects were asked a comprehension question 

after each section, and also rated intelligibility of speech (in percentage) during the first 

presentation of each section.  

The SNR decreased or increased every two sections. For the decreasing SNR 

order (applied to five subjects), no noise was added to the first two sections; noise 6 dB 

weaker than speech was added to the following two sections, and then the noise level 

kept increasing over sections. The increasing SNR order, in contrast, started with the 

lowest SNR, i.e. -9 dB, and finished with a quiet condition. The SNR order affects neither 

speech intelligibility (SNR × Order, 2-way repeated measures ANOVA) nor the neural 

reconstruction of speech (SNR × Order × Trial, 3-way repeated measures ANOVA), and 

therefore was not distinguished in the analysis.  

All stimuli were presented identically to both ears and the subjects were required 

to close their eyes when listening. Before the main experiment, 100 repetitions of a 500-

Hz tone pip were presented to elicit the M100 response, which is a reliable auditory 

response measured 100 ms after the onset of a tone pip and whose neural source is easy 

to localize within auditory cortex. The neuromagnetic signal was recorded using a 157-

channel whole-head MEG system (KIT, Kanazawa, Japan), with 1 kHz sampling rate. A 

200-Hz lowpass filter and a notch filter at 60 Hz were applied online and environmental 

noise was removed offline. Details of the recording procedure were described in Ding & 

Simon (2012).  
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Stimulus Characterization 

The auditory spectrogram of the stimulus was calculated using a sub-cortical 

auditory model (Yang et al., 1992) and expressed in linear amplitude scale. The 

broadband envelope of stimulus was defined the as the sum of the auditory spectrogram 

over frequency. The spectro-temporal contrast of a stimulus was characterized using a 

contrast index, the coefficient of variation of the auditory spectrogram, an extension of 

the fluctuation index (Nelken et al., 1999). The coefficient of variation is the standard 

deviation of the amplitude of the auditory spectrogram divided by the mean. It is zero for 

a sound with its energy being constant over time and frequency and grows as the contrast, 

i.e. depth, of the spectro-temporal modulations increases.  

 

5.2.2 Data recording and analysis 

Neural Reconstruction of Stimulus 

The temporal envelope of the actual stimulus (the speech-noise mixture) or the 

speech only (embedded in the stimulus) was reconstructed by linearly integrating MEG 

activity over time and sensors. The reconstructed speech envelope, E(t), is expressed as 

Ê(t) = ΣkΣ1 ≤ τ ≤ T Mk(t + τ)Dk(τ), where Mk(t) is the MEG signal from a sensor k and Dk(t) 

is the linear decoder for the same sensor. The envelope to reconstruct, E(t), is either the 

envelope of the actual stimulus or the envelope of the underlying speech. The decoder 

Dk(t) was optimized using boosting with 10-fold cross-validation (David et al., 2007) to 

maximize the correlation between Ê(t) and E(t). To reduce computational complexity, the 

MEG sensors in each hemisphere were compressed into 3 components using denoising 
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source separation (DSS) (de Cheveigné and Simon, 2008). Both hemispheres were used 

unless otherwise specified.  

The decoder Dk(t) integrates MEG activity over a time period T, which is set to 

500 ms when not specified. This assumes that the information of the stimulus at time t is 

encoded in the neural response in a time window between t and t + T. This time window 

is parametrically adjusted between 50 ms and 1000 ms to investigate which time interval 

carries more information. During this varying integration window analysis, however, the 

auto-correlation of the speech envelope must be taken into consideration. For example, 

the response at time t – 50 ms, M(t – 50), should contain no information of the stimulus at 

a future time t, E(t). Nevertheless, if M(t – 50) encodes information of the stimulus at 

time t – 100 ms, which is heavily correlated with E(t), then, apparently, from M(t – 50) 

some information about E(t) can be reconstructed, implicitly through E(t – 100). 

Therefore, in the integration window analysis, we partialed out the auto-correlation of the 

envelope using an extended model E(t) = ΣkΣ1 ≤ τ ≤ T Mk(t + τ)Dk(τ) + Σ1 ≤ τ ≤ T* E(t – τ)DA(τ) 

+ ε(t), where ε(t) is the unexplained residual. Dk(t) and DA(t), the decoder and the 

regressor for speech autocorrelation, are estimated together using boosting (David et al., 

2007). T*, the maximal time range where the autocorrelation of speech is considered, is 

set to 500 ms. In this case, the reconstructed neural response, Ê*(t) = ΣkΣ1 ≤ τ ≤ T 

Mk(t + τ)Dk(τ), is a reconstruction of the component in speech envelope that cannot be 

predicted by its own history due to the rhythm of speech, i.e. the innovation information 

at a given moment.  
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Amplitude-Intensity Function 

To systematically characterize the gain of cortical responses, the relationship 

between the stimulus and response is further modeled using a linear-nonlinear model: 

E(t) = Γ(ΣkΣ1 ≤ τ ≤ T Mk(t + τ)Dk(τ)) + ε(t), where E(t) is the envelope of the actual stimulus 

and the decoder Dk(t) is subject to the constraint that ΣkΣ1 ≤ τ ≤ T (Dk(τ))2 = 1. Since the 

decoder Dk(t) is normalized, the response gain is only reflected in the amplitude-intensity 

function Γ. The nonlinear function Γ is obtained by fitting the stimulus envelope E(t) as a 

function of the linearly reconstructed envelope Ê(t) = ΣkΣ1 ≤ τ ≤ T Mk(t + τ)Dk(τ) using the 

following procedure. For stimulus intensity I0, the corresponding response amplitude A0 

is estimated by averaging the reconstructed envelope at time moments when the stimulus 

intensity is close to I0, i.e.    T0 = {t | I0 – ΔI < E(t) < I0 + ΔI}. ΔI is one 10th of the range 

between the 5th and 95th percentiles of E(t). The estimated AIF is smoothed using a 

Gaussian function with SD as ΔI.  

 

Phase-locking Spectrum 

The phase locking of the neural response was investigated in narrow frequency 

bands (2-Hz wide), by calculating the inter-trial correlation of the neural response. The 

major component of MEG response was extracted using the first DSS component (de 

Cheveigné and Simon, 2008) and applied to this analysis. The phase-locking spectrum of 

the neural response to speech has a low-pass shape. To estimate the low-pass cutoff 

frequency, the phase-locking spectrum is modeled using a sigmoidal function 1 – 1/exp(-

α(f – fT)). The slope parameter α and location parameter fT are fitted in the least squares 

sense. In this modeling, since a sigmoidal function is bounded between 0 and 1, the inter-
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trial correlation as a function of frequency is normalized so that the maximal value is 1 

and the minimal value is 0.  

 

TRF 

The TRF deconvolves the continuous neural response evoked by the continuous 

speech stream, and obtains a response waveform due to a unit power increase of the 

stimulus (Ding and Simon, 2012). A TRF was estimated based on each MEG sensor, and 

the MEG data was averaged over trials in the TRF analysis. To estimate the TRF, an 

spectro-temporal response function (STRF) is first estimated using boosting with 10-fold 

cross validation (David et al., 2007), using the procedure described in Ding & Simon 

(2012). The TRF is obtained by summing the STRF over frequency. The M50STRF was 

determined as the response peak between 0 and 140 ms, which has a magnetic field 

topography negatively correlated with that of the M100. The M100STRF was determined 

as the response peak between 80 and 180 ms, which has a magnetic field positively 

correlated with that of M100 (detailed procedures described in Chapter 4).  

 

Neural Source Analysis 

The neural sources of the M50STRF and M100STRF were modeled by an equivalent-

current dipole (ECD) in each hemisphere, based on a spherical head model (Ding and 

Simon, 2012). The M50STRF and M100STRF magnetic fields were well fitted by the ECD 

model. The median correlation between the fitted ECD magnetic field and the measured 

magnetic field is above 90% in both hemispheres and for both the M50STRF and 

M100STRF. When comparing the ECD positions of different peaks in TRF, we included 
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only ECDs successfully capturing the measured magnetic field, characterized by a higher 

than 80% correlation between the ECD magnetic field and the measured magnetic field. 

Only one subject was excluded this way. After the ECD positions were determined, the 

moment of the dipole was estimated using the generalized least squares method (Mosher 

et al., 2003). For the dipole moment, the polarity of the M100STRF is defined as negative, 

to be consistent with the polarity of the N1 peak of EEG. The TRF projected to the ECD 

location was employed to analyze the amplitude and latency of the M50STRF and 

M100STRF (see Chapter 4).  

5.3 Results 

Noise Robust Cortical Reconstruction of Speech 

The stimulus consists of a narrated story that is divided into six 100-second 

duration sessions. Each is presented either in quiet (alone) or with spectrally matched 

stationary noise (SNR ranging from -9 to +6 dB). A contrast index is used to characterize 

how the background noise reduces the intensity contrast, i.e. the depth of the spectro-

temporal modulations, of the stimulus. As shown in Fig. 5.1B, the intensity contrast of 

the speech-noise mixture decreases monotonically with decreasing SNR, until finally 

reaching the intensity contrast of stationary noise alone, at -9 dB SNR.  

To investigate how the cortical representation of speech is affected by noise, we 

attempted to reconstruct the temporal envelope of the underlying speech (as opposed to 

the actual stimulus including noise), from the cortical response to the noisy stimuli (Fig. 

5.2A). The accuracy of the reconstruction reflects how precisely cortical activity is 
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synchronized to the speech envelope, even in the presence of background noise, and is a 

lower bound to how accurately the bare speech (with the background noise removed) is 

encoded in cortex.  
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Figure 5.2. Neural Reconstruction of the Temporal Envelope of Speech. (A) The 

red and orange waveforms are the envelopes reconstructed from the neural 

responses in two SNR conditions. The dashed gray waveform is the envelope of 

the underlying speech in each stimulus. The neural construction matches the 

speech envelope well at both SNRs. The neural reconstructions illustrated are 

averaged over trials and subjects. (B) Correlation between the single-trial neural 

reconstruction and the envelope of either the underlying speech (black) or the 

actual stimulus (white). The correlation is averaged over trials and the error bar 

is 1 SEM over subjects. The reconstruction of the underlying speech is more 

accurate than the reconstruction of the actual noisy stimulus (** P < 0.01, * P < 

0.05, paired t-test). (C) Relationship between the neural reconstruction accuracy 

and speech intelligibility, at -3 dB SNR. Each subject is shown by a red cross. 

The neural and behavioral results are highly correlated, with the regression line 

shown by the dashed line. 
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At the intermediate SNR of -3 dB, the subjectively rated speech score varies 

broadly over subjects, with a median of 55%. At this SNR, individual speech score is 

strongly correlated with the accuracy of neural reconstruction (Fig. 5.2C). The correlation 

coefficient is 0.79 ± 0.15 (Mean ± SEM, the SEM is consistently used in the paper to 

describe subject variations and is calculated using bootstrap), significantly positive (P < 

0.005, bootstrap). When the two hemispheres are analyzed separately, the reconstruction 

in each hemisphere is correlated with speech intelligibility (mean correlation coefficient: 

0.81, no significant difference between hemispheres, P = 0.41, bootstrap).  

At other SNR conditions the speech scores clump near ceiling (median > 90%) or 

floor (≤ 10%) values (Fig. 5.1C), precluding the computation of analogous correlations. 

In other words, the transition from an intelligible stimulus to unintelligible stimulus 

typically occurs near -3 dB SNR. To better characterize this transition SNR for 

individuals, we identify the SNR for which the speech score drops to 50% (the speech 

recognition threshold, SRT) by fitting the relationship between individual’s speech score 

and SNR as a sigmoidal function. The SRT is negatively correlated with neural 

reconstruction accuracy (correlation coefficient -0.67 ± 0.17; significantly negative, P < 

0.005, bootstrap). This correlation indicates that subjects with more accurate neural 

synchronization to speech can recognize speech more robustly at lower SNRs.  

To investigate whether the neural encoding of the underlying clean speech is a 

result of the neural encoding of the actual stimulus, we also reconstructed the envelope of 

the actual noisy stimulus from cortical activity. This decoding, although seemingly more 

straightforward, is less accurate than the decoding of the underlying speech for SNRs 

between +6 dB and -6 dB (Fig. 5.2B). Therefore, auditory cortex predominantly 
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synchronizes to the underlying speech rather than the physically presented sound mixture. 

The mechanisms underlying this robust neural representation are analyzed in following 

sections.  

 

Contrast Gain Control 

Background noise reduces the intensity contrast of the stimulus but not the 

accuracy of the neural representation of speech. This indicates that the loss of stimulus 

contrast is compensated for neurally through contrast gain control. To test this hypothesis 

explicitly, we analyze the relationship between the instantaneous intensity of the stimulus 

and the instantaneous amplitude of the neural response (Fig. 5.3A). This relationship, 

referred to as the amplitude-intensity function (AIF), analogous to a single neuron’s spike 

rate-intensity function, strongly depends on the SNR and the slope of the AIF increases 

with decreasing SNR until SNR reaches -9 dB. The slope of the AIF reflects how quickly 

the amplitude of neural activity increases with the intensity of the stimulus. It is steeper 

for lower SNRs, indicating that the neural response is more sensitive to subtle intensity 

changes in the stimulus when the overall contrast of the stimulus is low. The slope of the 

AIF, extracted by a linear regression, increases 16 ± 2 dB (Mean ± SE) as SNR decreases 

from infinity (quiet) to -6 dB (Fig. 5.3A). To test how much this increase of response 

gain compensates the noise-induced loss of stimulus contrast, we use a modified AIF to 

describe the relationship between neural response amplitude and the instantaneous 

intensity of the underlying speech (not the actual stimulus). This modified AIF is SNR 

independent until -9 dB SNR (Fig. 5.3B), indicating that the amplitude of cortical activity 

encodes the intensity of the underlying speech rather than the intensity of the actual 
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stimulus. In other words, the noise-induced change of stimulus contrast is completely 

compensated for by response gain control in this SNR range. 

30 dB

Neural  Representation  of  the  Stimulus

Q +6 +2

Slope

SNR  (dB)

6 dB

stimulus  intensity

re
sp
on
se

am
pl
itu
de

A B
Amplitude-­Intensity  Function

Neural  Representation
of  the  Underlying  Speech

30 dB
speech  intensity

re
sp
on
se

am
pl
itu
de

 

Figure 5.3. Neural Encoding of Stimulus Intensity. (A) The amplitude of neural 

response is plotted as a function of the instantaneous intensity of stimulus, for 

each SNR (left, color code the same as the bar graph on the right). The AIF 

strongly depends on SNR, as is characterized by the slope of the AIF (right). 

The stimulus dependent AIF indicates contrast gain control (cf. the stimulus 

contrast index illustrated in Fig. 5.1B). The error bar is 1 SEM over subjects 

(bootstrap). (B) The amplitude of neural response is plotted as a function of the 

instantaneous intensity of the underlying speech. This modified AIF shows 

invariance to SNR, except for -9 dB SNR, indicating noise-invariant neural 

encoding of speech intensity. 

 

Modulation Sensitivity 

Speech and noise each have a distinct modulation spectrum (the power spectrum 

of the temporal envelope), with the noise possessing more energy at higher modulation 

rates. Therefore, when noise is introduced, the energy of the stimulus envelope spreads 
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into higher modulation rates (Fig. 5.4A). Consequently, if cortical activity were simply 

following the temporal modulations of the stimulus, it would also spread into higher 

frequencies. This conjecture, however, can be ruled out (Fig. 5.4B). In fact, at the higher 

frequencies (e.g. near 7 Hz), the most reliable phase locking, measured by inter-trial 

response correlation, is seen with a quiet acoustic background, and the phase-locking 

spectrum of the cortical response progressively shifts towards low frequency as more 

noise is introduced.  
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Figure 5.4. Neural Encoding of Temporal Modulations. The color code is the 

same in all panels and is specified in (C). (A) The power spectrum of the 

stimulus envelope, at different SNRs. Each spectrum is normalized based on its 

power density at 0.1 Hz, to emphasize changes in shape. The modulation 

spectrum of speech in quiet background (yellow) has the sharpest low-pass 

shape, and background noise increases the proportion of the stimulus power in 

higher modulation rates. (B) The phase-locking spectrum of the cortical 

response. It is consistently low-pass in shape but with a cutoff frequency that 

decreases with poorer SNR. (C) The cutoff frequency of the phase-locking 
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spectrum (not reliably estimable at -9 dB SNR) decreases with SNR. Error bar is 

1 SEM over subjects. 

The cutoff frequency of phase-locking spectrum (Fig. 5.4C, estimated by fitting 

the spectrum as a sigmoidal function) decreases significantly and monotonically from 8.7 

± 0.4 Hz to 7.0 ± 0.5 Hz when the SNR decreases from infinity (quiet background) to -6 

dB (P < 0.005, bootstrap). Between +6 dB and -6 dB, the cutoff frequency decreases 0.72 

± 0.29 Hz every 6 dB (linear regression). Therefore, as the noise level rises, the auditory 

system reduces its sensitivity to fast temporal modulations, so that it does not respond to 

the increasingly stronger fast modulations introduced by the noise. 

 

Temporal Integration 

A separate measure of how phase locking of the response depends on SNR and 

frequency is to analyze the phase locking as a function SNR, at each frequency (Fig. 

5.5A). At very low frequencies (e.g. 2 Hz), the response phase locking is not affected by 

noise until the poorest SNR of -9 dB. At higher frequencies (e.g. 6 and 8 Hz), however, 

phase locking decreases continuously with SNR. Specifically, the lowest SNR that does 

not affect neural phase locking is -6 dB, +2 dB, and +6 dB, for neural activity at 2 Hz, 4 

Hz, and 6 Hz (P > 0.5, one-way repeated-measures ANOVA for the neural phase locking 

at each frequency, including the conditions between quiet and the lowest SNR; P < 0.01 

if the SNR range is broadened). The stability of neural phase locking at lower, but not 

higher, frequencies suggests that the long-term temporal integration is important in 

maintaining a noise-robust neural representation.  
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To confirm the role of long-term integration in encoding the speech envelope, we 

again applied the neural reconstruction analysis, but with varying time integration 

windows. In the analysis shown in Fig. 5.2, the reconstruction of the stimulus at each 

time moment is based on the response in a 500-ms time window starting from that 

moment. When this window size is allowed to vary, the reconstruction results show a 

strong dependency on the integration time (Fig. 5.5B). At the poorer SNRs, e.g. -3 to -9 

dB, the decoding results improve substantially when the window of integration is allowed 

to increase in size from 100 ms to 200 ms. This demonstrating the importance of long-

term (> 100 ms) integration in encoding speech in a strong noise background.  

Q +6 +2
0

0.1

0.2

50  ms

100  ms

200  ms

500  ms

SNR  (dB)

C
o
rr
e
la
ti
o
n

Reconstruction  Accuracy  by

Window  Integration  Time

0

0.1

0.2

Q +6 +2

SNR  (dB)

2  Hz
4  Hz

6  Hz

8  Hz

10  Hz

Neural  Phase-­locking  by

Response  Frequency

In
te
r-­
T
ri
a
l  
C
o
rr
e
la
ti
o
n

A B

 

Figure 5.5. Neural Reconstruction with Various Temporal Integration Duration. 

(A) The phase locking of neural activity as a function of SNR. When SNR 

decreases from +6 to -6 dB, the neural phase locking at 2 Hz is stable but the 

neural phase locking at 8 Hz continuously decreases, with intermediate trends of 

decrease at intermediate frequencies. (B) The ability to reconstruct the speech 

envelope from the neural response depends on the temporal integration window. 

Each color-coded curve is the reconstruction accuracy for a different integration 
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window. The strongest window-dependent change in reconstruction accuracy is 

observed near -6 dB (marked by a star), where the decoding results improves 

substantially when the window of integration is allowed to increase in size from 

100 ms to 200 ms. 

Temporal Response Function 

To explicitly characterize how the spectro-temporal features of the stimulus are 

encoded cortically as a function of time, and by cortical area, for each MEG sensor we 

estimate the temporal response function (TRF), which characterizes the time course of 

neural activity evoked by a unit power increase of the stimulus (Ding & Simon, 2012). 

While the neural reconstruction integrates responses over a specified duration, the TRF 

describes the neural response at each time moment, i.e. each time lag between the 

stimulus and the response, through deconvolution. In the TRF analysis, the stimulus 

amplitude is normalized in each SNR condition by z-score. With the stimulus thus 

normalized, an SNR-independent TRF amplitude would demonstrate a neural 

representation independent of the mean and variance (i.e. contrast) of the stimulus 

intensity. 

The instantaneous TRF power, averaged over all MEG sensors, is shown in Fig. 

5.6A, upper panel. The TRF is clearly delayed as the noise level increases. The onset 

latency of TRF (the earliest time point when the TRF amplitude passes the 99th percentile 

of the pre-stimulus TRF amplitude) is continuously delayed as the noise level rises (Fig. 

5.6A, lower panel). This latency elongation is statistically significant, since the 

relationship between onset latency and SNR, when fitted by a line, has a significantly 

negative slope (P < 0.001, bootstrap). The earliest two components of the TRF, called the 
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M50STRF and M100STRF are extracted and further analyzed. These two components are 

generated bilaterally in auditory cortex (Ding & Simon, 2012).  
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Figure 5.6. SNR dependent temporal response function. (A) The instantaneous 

TRF power, summed over sensors. The TRFs from all SNR conditions are 

stacked vertically. The latency at which the TRF amplitude surpasses the noise 

floor is shown in the lower panel. The TRF onset is significant delayed by noise. 

(B) The TRFs at the neural sources of the M50STRF and M100STRF (upper 

panels). The amplitude of the M50STRF decreases when the level of noise 

increases (c.f. the stimulus contrast index illustrated in Fig. 5.1B), while the 

amplitude of the M100STRF remains stable until -9 dB SNR. 

 

A bilateral equivalent current dipole (ECD) model shows that the ECD position of 

the M50STRF is on average 10 (13) mm more anterior than that of the M100STRF in the left 
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(right) hemisphere (statistically significant in the right hemisphere; paired t-test, t8>6, P < 

0.02). The TRF at the ECD position of M50STRF and M100STRF are shown in Fig. 5.6B. 

The TRF is averaged over the two hemispheres since very similar results are seen in each 

of them. The amplitude of the M50STRF decreases continuously with SNR, while the 

amplitude of the M100STRF is insensitive to SNR until the SNR decreases to -9 dB. A 

linear regression analysis shows that, in between -6 dB and 6 dB SNR, the amplitude of 

the M50STRF decreases 1.0 ± 0.2 dB (significantly negative, P < 0.001, bootstrap) while 

the amplitude of the M100STRF changes 0.0 ± 0.2 dB (N.S.) each 1 dB SNR change. The 

same regression analysis reveals that the latency of the M50STRF increases with SNR, 

with a change of 3.0 ± 0.6 ms/dB. 

 

5.4 Discussion 

By recording from human subjects listening to continuous speech embedded in 

noise, this study demonstrates that the temporal modulations of speech are reliably 

represented in auditory cortex, at least until the noise is more than twice as strong as the 

speech  (-6 dB SNR). Two distinct types of acoustic degradation caused by noise, i.e. the 

compression of stimulus dynamic range and the severe distortion at fast temporal 

modulations, are separately compensated for in the auditory system by contrast gain 

control and a shift in modulation sensitivity. The noise-robust neural representation of 

slow temporal modulations provides a plausible neural basis for noise-robust recognition 



  

 127 

of speech and is directly correlated with individual subjects’ ability to recognize speech 

in noise. 

 

 

Reliable Neural Encoding of Slow Temporal Modulations of Speech 

The slow temporal modulations of the speech reflect the syllabic structure of 

speech (Greenberg et al., 2003), and, in complex auditory scenes, serve as primary cues 

to bind acoustic features belonging to the same speech stream (Sheft, 2007). In parallel to 

the functional importance of the slow temporal modulations, neural activity synchronized 

to them has been hypothesized as a marker for the formation of a coherent neural 

representation of an auditory stream (Shamma et al., 2011), and also the neural basis for 

segmenting continuous speech into basic processing units, e.g. syllables, and allocating 

neural resources to the processing of each perceptual unit (Giraud and Poeppel, 2012; 

Schroeder and Lakatos, 2009).  

A key prediction for these hypotheses is that neural synchronization to the speech 

envelope, i.e., spectrally coherent temporal modulations, is robust against any acoustic 

degradation that does not eliminate speech intelligibility, since the segregation of speech 

from acoustic background and the parsing of speech into perceptual units are both 

prerequisites for speech recognition. Consistent with this prediction, we demonstrate that 

the neural synchronization to slow modulations of speech is indeed resilient to the strong 

energetic masking of the background noise. Previous studies have demonstrated that the 

neural synchronization is also resilient to the strong informational masking of a 

competing speech stream. Taken together, therefore, it is now demonstrated that cortical 
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encoding of temporal modulations is robust to both energetic and informational masking, 

at least for those cases where speech remains partly intelligible. This reliable neural 

encoding of slow temporal modulations is likely a key step in transforming the variable 

acoustic properties of an auditory scene into a stable perception of a speech stream.  

The robust neural encoding of slow temporal modulations is only achievable by 

complex neural computations, including what can be characterized as contrast gain 

control and long-term temporal integration, as will be discussed in the following.  

 

Contrast Gain Control in Auditory Cortex 

The dynamic range of speech is severely compressed by acoustic degradation 

such as background noise and reverberation. Therefore, to achieve robust speech 

recognition, an adaptive neural coding scheme for sound intensity is unavoidable. Indeed, 

in single unit studies with non-speech stimuli, neural adaptation to the mean and/or 

variance of sound intensity has been observed and the gain control effect enhances along 

the ascending auditory pathway (Dean et al., 2005; Robinson and McAlpine, 2009; Wen 

et al., 2009) (Rabinowitz et al., 2011; Watkins and Barbour, 2009; Zilany et al., 2009).  

In this study, a hierarchy of contrast gain control is seen in auditory cortex. The 

early M50STRF component, localized to an area consistent with core auditory cortex 

(Chapter 4), is significantly weakened as the dynamic range of the stimulus is 

compressed by background noise, reflecting incomplete contrast gain control. Similar 

phenomena have been seen for the MEG auditory steady state response (aSSR) to 40-Hz 

amplitude modulations, which also has short latency and localizes to core auditory cortex 

(Ross et al., 2000). The aSSR is substantially weakened by a reduction of the stimulus 
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modulation depth (Ross et al., 2000) or an increase of the level of background noise, 

regardless of the subjects’ attentional state (Okamoto et al., 2011). These MEG results are 

also consistent animal studies which demonstrate that neurons in core auditory cortex 

show contrast gain control but are still sensitive to the modulation depth of the stimulus 

(Malone et al., 2010; Rabinowitz et al., 2011).  

In contrast, almost complete contrast gain control is seen in the long latency 

M100STRF component, localized to posterior association auditory cortex (Chapter 4). 

When the subjects actively listen to noise-corrupted speech, the amplitude of the 

M100STRF remains unaffected for all SNRs higher than -6 dB. Similarly, for subjects 

engaged in a syllable discrimination task, the EEG N1 response to isolated syllables 

(latency near 100 ms) is also stable to background noise, at least for positive SNRs 

(Kaplan-Neeman et al., 2006; Whiting et al., 1998). This robustness, however, is not 

observed during passive listening and therefore may require attention. The EEG N1 

response to isolated syllables (Cunningham et al., 2001) or pure tones (Billings et al., 

2009) is significantly weakened by background noise during passive listening. Similarly, 

the aSSR evoked by slow amplitude modulations (e.g. at 4 Hz), which has latency near 

100 ms, also diminishes when the stimulus modulation depth decreases, during passive 

listening (Rees et al., 1986). In sum, neural adaptation to the dynamic range of stimulus 

enhances along the ascending auditory pathway, even from the shorter latency (~50 ms) 

response from core auditory cortex to the longer latency (> 100 ms) response from 

association auditory cortex.  

 

Encoding of Slow Temporal Modulations and Long-term Integration 
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Noise-robust neural synchronization to speech is only observed in low frequency 

(< 4 Hz) neural activity (Fig. 5.5A). The precision of higher frequency neural 

synchronization (4-8 Hz) decreases continuously as the level of noise increases. This 

suggests that, in noisy environments, the stress information of speech, reflected by very 

slow (< 4 Hz) temporal modulations (Greenberg, 1999), is more reliably encoded in 

cortex than faster linguistic structures such as unstressed syllables and phonemes. This 

phenomenon may also be related to the intrinsic properties of cortical neural circuits, as 

delta (1-4 Hz) and theta (4-8 Hz) have been classified as two distinct frequency bands for 

cortical oscillations. The current results is highly consistent with the hypothesis that delta 

band cortical activity is a more fundamental rhythm regulating the excitability of 

neurons, while theta band activity is more closely tied to the physical properties of the 

sensory stimulus (Schroeder and Lakatos, 2009).  

The robust neural synchronization to slow but not fast rhythms of speech reflects 

a change in the modulation transfer function (MTF), i.e. the cortical sensitivity to 

temporal modulations at different modulation rates. The cutoff frequency of the MEG 

measured MTF shifts towards low frequency as the level of noise increases (Fig. 5.4C). 

Similar plasticity of the modulation transfer function has also been demonstrated in 

individual neurons (Woolley et al., 2005; Woolley et al., 2006). Neurons in the midbrain 

also lose sensitivity to fast modulations when encoding animal vocalization in noise 

(Lesica and Grothe, 2008), and due to their anesthetized condition, this suggests a 

bottom-up contribution of the plasticity. Top-down attention, however, can also modulate 

the temporal properties of neurons, e.g. response latency and duration (Fritz et al., 2007). 
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Therefore, both bottom-up and top-down modulations may contribute to the noise-

induced low-frequency shift of the MTF.  

A decrease of the MTF cutoff frequency suggests a longer-term temporal 

integration in the auditory system. The involvement of long-term integration can also be 

seen from the elongation of neural response latency (Fig. 5.6A) and that the neural 

reconstruction of speech requires a temporal integration window over 100 ms at low 

SNRs (Fig. 5.5B). Noise-induced latency elongation has been commonly seen for 

EEG/MEG responses to sound onsets (Billings et al., 2009; Kaplan-Neeman et al., 2006). 

Moreover, such as delay in neural response is associated with an elongation in reaction 

time to discriminate syllables in noise (Whiting et al., 1998). The elongation of neural 

response latency and behavioral reaction time suggest the detection of sound target in 

noise requires integrating information over a longer time window in a noisy environment 

than in quiet condition. This is consistent with the optimal signal detection theory, which 

states that an accurate decision can only be made when enough information is cumulated, 

a process that will take longer if the less information can be extracted at each time 

moment due to noise (Gold and Shadlen, 2007).  

 

Parsing of Continuous Speech and Intelligibility 

The very slow temporal modulations of speech are accurately encoded in human 

auditory cortex until the SNR is as low as -6 dB. The intelligibility of speech, however, 

starts to decrease at +2 dB SNR. Therefore, the robustness of neural synchronization to 

speech is more likely to reflect the perception of the syllabic structure of speech rather 

than, for example, the decoding of lexical information. Parsing continuous speech into 
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syllables or phrases is a prerequisite for speech intelligibility and is more robust to noise 

than speech intelligibility. For example, listeners can reliably make use of stress cues to 

detect word boundaries, even at very low SNRs that allow little intelligibility (Woodfield 

and Akeroyd, 2010).  

Although the grand averaged neural encoding accuracy does not predict speech 

intelligibility as a function of SNR, individual decoding accuracy does predict how well a 

subject can recognize speech in noise (Fig. 5.2C). This suggests that, in noise, the 

recognition of speech is limited by the neural processing in auditory cortex. More precise 

neural synchronization to speech is likely a marker of auditory system’s success in 

extracting speech information, e.g. syllables, from the noisy stimulus.  

 In summary, this study demonstrates noise-robust neural synchronization to the 

slow temporal modulations of speech, even under the difficult condition of energetic 

masking. This neural synchronization is correlated with speech intelligibility in noise, 

and acts as a marker of the segregation of speech from the acoustic background.  
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Chapter 6  

Summary and Future Work 

6.1 Summary and general discussions 

Cortical Restoration of Speech Embedded in a Complex Auditory Scene 

Based on the three studies described in Chapter 3-5, it is well demonstrated that 

large-scale cortical activity measured by MEG is reliably synchronized to the temporal 

envelope of speech. In other words, the rhythm of auditory cortex, temporally coherent 

current flux in millions of neurons, is synchronized to the rhythm of speech, the 

temporally coherent variations of spectro-temporal features. Critically, this 

synchronization occurs robustly even in the presence of acoustic interference, which 

affects speech intelligibility through two distinct mechanisms, i.e. informational masking 

and energetic masking (Brungart, 2001; Durlach et al., 2003; Moore, 2003; Stone et al., 

2011), both of which are addressed in this dissertation. Informational masking is caused 

the perceptual similarity between the competing auditory objects. For example, for the 

auditory scene studied in Chapters 3 and 4, where the two competing auditory objects are 

both audible and intelligible speech streams. In this scenario, the difficulty of speech 

recognition is to correctly select the auditory features belonging to the target speech 

stream. Energetic masking, in contrast, is caused by the physical, acoustic overlapping 

between auditory objects. For example, for the auditory scene studied in Chapter 5, the 

two auditory objects, speech and noise, are perceptually very distinct sounds. 

Nevertheless, the stationary noise causes strong masking effects since its energy strongly 
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overlaps with the energy of speech and therefore reduces the audibility of speech. Taking 

together the results from Chapter 3-5, it is clear that cortical synchronization to speech is 

robust to both informational and energetic masking (Fig. 6.1), and therefore is likely a 

general phenomenon underlying speech listening in complex auditory scenes. 

Furthermore, all experiments described in the dissertation use ecologically relevant 

paradigms, where the subjects are only instructed to listen to narrated stories and answer 

comprehension questions. Therefore, the results obtained here probably underlie the 

neural processing during everyday listening. 

The reliable neural synchronization to the speech envelope implies several 

important computational properties of the auditory cortex. First, the human auditory 

cortex is sensitive to slow temporal modulations below 10 Hz (cf. Ding & Simon, 2009; 

Wang et al., 2012). The modulation transfer function (MTF) has a low-pass shape 

(Chapter 3) and the cut-off frequency shifts towards lower frequencies when the speech is 

corrupted by stationary noise (Chapter 5). Second, posterior association auditory cortex 

carries out object-based analysis. It selectively encodes the auditory object of the 

listener’s interest rather than the raw acoustic scene (Chapter 4). Furthermore, the 

strength of the neural response to an auditory object is normalized: It is independent of 

the intensity of the encoded auditory object and the intensity of the interfering auditory 

objects, when the stimulus is comfortably loud (Chapter 4-5). 
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Figure 6.1. Illustrations of interfere-resilient neural synchronization to speech. 

Left panel: A speech signal (red) is presented either alone, or together with 

another speech signal (blue) or stationary noise (gray). Middle panels: When 

speech is mixed with other sounds, its spectro-temporal features are severely 

degraded. Right panel: Top, cortical activity is synchronized to the temporal 

envelope of speech, when it is presented alone (Chapter 3). Middle and bottom, 

cortical activity is selectively synchronized to the temporal envelope of the 

speech stream the listener attends to, in the presence of either a competing 

speech stream (Chapter 4) or a stationary noise (Chapter 5). In sum, cortical 

activity is reliably synchronized to the attended speech stream, even in complex 

listening environments. 
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Hierarchical Processing in Auditory Cortex 

In Chapter 4 and 5, it is demonstrated that the M50STRF and M100STRF show 

differential behavior in tracking the speech envelope. In the two-speaker auditory scene, 

the M50STRF is not modulated by selective attention but the M100STRF is. Neither is 

affected by the level of the interfering speaker. In contrast, for speech embedded in noise, 

the M50STRF is weakened as the level of noise increases, while the M100STRF is not. These 

facts clearly distinguish the roles of the M50STRF and M100STRF. The M50STRF probably 

reflect the audibility of a sound stream and does not reflect the selection of audible sound 

streams. Therefore, it is likely to be a neural representation of the physical properties of 

an acoustic scene. The M100STRF, however, is robust to acoustic degradations and is 

involved in the top-down driven selection of auditory streams. Therefore, it is likely to 

represent the perceptually dominant auditory stream. Moreover, in Chapter 5, as the level 

of noise increases, the weakening of the M50STRF is accompanied by a lowering of the 

cutoff frequency of the MTF. Therefore, it is possible that the neural source of the 

M50STRF has a higher cutoff frequency than the neural source of the M100STRF. This 

hypothesis, if true, provides further evidence for the hierarchical relationship between the 

M50STRF and M100STRF, since the cut-off frequency of the MTF generally decreases 

along the ascending auditory pathway (Giraud et al., 2000; Lerner et al., 2011). 

Consistent with their functional hierarchy, the M50STRF has shorter latency and is 

localized to roughly core auditory cortex, and the M100STRF has longer latency and is 

localized to posterior auditory cortex. These results suggest that, in between shorter 

latency (~50 ms) activity in core auditory cortex and longer latency (~100 ms) activity in 
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posterior auditory cortex, the neural representation of an acoustic scene is transformed 

into a neural representation of the attended auditory stream. 

 

Cortical Synchronization to Speech and Speech Recognition 

Chapter 4 and 5 demonstrate that cortical synchronization to the speech envelope 

is robust to acoustic maskers, whether speech or noise, at least when the target-to-masker 

ratio (TMR) is above -6 dB. At -6 dB TMR, however, speech intelligibility drops to about 

50% for a speech masker, and only about 10% for a noise masker. Therefore, cortical 

synchronization to speech is even more robust to acoustic interference than speech 

intelligibility, which is already known for its robustness. This is especially remarkable 

since speech-synchronized activity is precisely phase-locked and is generated form the 

auditory cortex, which is commonly supposed to encode the raw acoustics of the 

stimulus. 

The robustness of speech-synchronized neural activity gives new insights into 

how speech is recognized in the human brain. In short, I would argue that speech 

recognition involves two fundamental processes, the detection of auditory elements form 

the target speech stream and the recognition of them, and that speech-synchronized 

cortical activity reflects the first process. According to this hypothesis, the robustness of 

speech-synchronized cortical activity suggests that, in adverse listening environments, the 

listeners can detect auditory elements from the target speech stream but may have 

difficulty retrieving linguistic information, e.g. phonetic categories, from them. This idea 

is further elaborated below. 
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First, I discuss the importance of parsing continuous speech into auditory 

elements that occur at a rate of a few Hertz, in line with the rhythm of speech-

synchronized cortical activity. The recognition of speech converts a continuous sound 

signal into a string of discrete symbols. Such a process is not trivial, and the decoding of 

each symbol or each string of symbols requires integration of acoustic information over 

time, or, in other words, packaging acoustic features into auditory elements. The auditory 

element I propose here is the elementary unit that the auditory system analyzes integrally 

and interfaces with the language and memory systems to retrieve the linguistic 

information from (cf. Poeppel et al., 2008). The auditory element is an intermediate 

representation between the continuous acoustic stream of speech and the discrete symbols 

the brain decodes. It is not necessarily a discrete representation but it varies slowly, at the 

rate that discrete, categorical linguistic information is decoded. 

The auditory elements must have the appropriate temporal granularity. On the one 

hand, they cannot be too long, to be processed by the physical circuitry of auditory 

cortex, which integrates information over hundreds of milliseconds (Eggermont, 2002; 

Wang et al., 2012). On the other hand they cannot be too short, to correspond to reliable 

linguistic information (Greenberg et al., 2003; Plomp, 2002). Because of these 

constraints, the auditory element should have a length of a few hundred milliseconds, or 

equivalently, a rate few hertz (Plomp, 2002; Poeppel, 2003). This time scale may 

ultimately originate from the rhythmic open-close alternation of the mouth and reflect the 

physical properties of human articulators (MacNeilage, 1998). Acoustically, this time 

scale corresponds to the slow temporal modulations of speech (Chi et al., 1999; Elliott 
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and Theunissen, 2009) and, linguistically, it corresponds to syllables or short phrases 

centered with a stressed syllable (Greenberg et al., 2003).  

Second, I discuss the dissociation between the detection of auditory elements 

from the target speech stream and the recognition of them. The detection of auditory 

elements from only the target speech stream requires correctly identifying the sound 

source of a potential auditory element, i.e. whether it is from the target speech stream or 

the interfering streams. This identification of sound sources is distinctive from, and 

precedes the recognition, e.g. the decoding of phonetic information, of speech. 

Whereupon an auditory element from the target speech stream is detected, large 

populations of neurons are activated and devoted to the subsequent processing of that 

element, which gives rise to speech-synchronized MEG activity (cf. Chait et al., 2007 for 

MEG evidence of the detection of non-speech auditory elements). The subsequent 

processing of an element, including the decoding of phonemic information, however, 

may not be successful even if it consumes activity from millions of neurons, since it may 

require a high-fidelity spectro-temporal representation that is lost due to acoustic 

degradations. The distinction between auditory element detection and recognition has 

also been supported by psychoacoustical studies. It has been shown that in very 

challenging listening conditions, listeners maintain the ability to detect the boundaries 

between words in a sentence, but have difficulty correctly recognizing the words 

(Woodfield and Akeroyd, 2010). 

Furthermore, from an ecological perspective, the detection and recognition of 

auditory elements are also distinct processes. Animals always need to detect meaningful 

auditory elements in their environments, and identify whether they are from a predator, a 
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prey, or a mate. (The time scale of the auditory element might be species dependent.) 

Although the detection of auditory elements and identification of the sound sources are 

critical for an animal’s survival, fine-grained decoding of spectro-temporal information is 

seldom necessary until sophisticated vocalizations or speech is evolved. Most human 

languages have tens of phonemes and speech carries tens of phonemes per second. 

Therefore, the decoding of phonemic categories requires very fine spectro-temporal 

information and is naturally much more challenging than the detection of auditory 

elements from the target sound stream. 

Last, I give a conceptual model of the generation of MEG activity: Individual 

neurons in the midbrain, thalamus, and possibly primary auditory cortex encode acoustic 

features (Nelken, 2008). Based on these microscopic, feature-based neural 

representations, a collective, mesoscopic neural representation specific to the attended 

speech stream is constructed. The construction of the mesoscopic representation is 

strongly influenced by top-down attention, bottom-up neural adaptation, and probably the 

context of the auditory stream (Holt, 2005; Jones et al., 2002), as well as the intrinsic 

oscillations of neuronal excitability (Schroeder and Lakatos, 2009). One computational 

strategy for the neural construction of such a stream-specific representation is the 

following. The auditory system keeps track of the neuronal representations of the 

acoustic features unique to the target speech stream, e.g. pitch, and then selectively routes 

neural activity temporally coherent with those neuronal representations (in the range of a 

few Hertz) into higher-level cortical networks (Shamma et al., 2011). This way, in the 

higher-level cortical networks, the spatial-temporal dynamics encode uniquely and 

collectively the attended speech stream. At each moment, the spatial activation pattern of 
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the neural networks encodes all available attributes of an auditory element, which is the 

basis for the recognition of that element (Chang et al., 2010; Formisano et al., 2008). The 

temporal dynamics of the spatial activation pattern, on the other hand, reflects the rate of 

the auditory elements being processed. This mesoscopic, spatial-temporal neural 

representation, when integrated over space, gives rise to the macroscopic speech-

synchronized response measured by MEG. This model is summarized in Fig. 6.2. 
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Figure 6.2. A model for human speech recognition and the generation of MEG 

activity. (A) Top row: In sub-cortical nuclei and possibly core auditory cortex, 

the spectro-temporal features of the stimulus are faithfully represented. In the 

figure, each row can be viewed as the time course of the response of a neuron. 

Second row: In the superior temporal gyrus (STG), which includes association 
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auditory cortex, auditory elements from the target speech stream are represented 

by a spatial-temporal code. Each plot in this row represents the activation 

pattern of a patch of auditory cortex, and the series of plots show the time 

evolution of the spatial cortical activation pattern. Third row: Linguistic content 

decoded from the auditory elements. Last row: MEG is sensitive to the neural 

representation of auditory elements. Nevertheless, attributable to the low spatial 

resolution of MEG, what is measured is the neural representation integrated over 

a large cortical volume and therefore only reflects the temporal dynamics of the 

neural representation. (B) The neural processing of noise-corrupted speech. The 

feature-based neural representation is strongly corrupted by noise (top row). The 

spatial but not the temporal pattern of the neural representations of auditory 

elements is corrupted by noise (second row). The syllabic structure of the speech 

stimulus is correctly identified, but, in this illustration, one syllable is not 

successfully recognized. The decoded message is therefore “applied ?self” (third 

row). The MEG response, which reflects the temporal dynamics of the neural 

representation of auditory elements, is not affected by the background noise and 

is a neural correlate to the robust perception of the syllabic and phrasal structure 

of speech (last row). 

6.2 Future Work 

The work in this dissertation provides a new paradigm to investigate cortical 

processing of speech. It reveals that cortical synchronization to speech is robust to 

acoustic interference in normal hearing human subjects. A future direction is to 
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investigate the cortical processing in hearing impaired listeners and elderly listeners, who 

have difficulty understanding speech in adverse listening environments (Bernstein and 

Grant, 2009; Pichora-Fuller and Souza, 2003), and to diagnose the possible central 

deficits of these listeners. Another future direction is to investigate the neural origin of 

MEG activity synchronized to speech. This requires ideally simultaneous MEG and high-

density intracranial recording. Nevertheless, it could also be probed using ordinary single 

unit recording, by investigating what kind of neural measures, form which part of the 

cortex, show properties similar to those of the MEG response (Ding et al., 2012). 

 

A distinct but also interesting future direction is to use the phenomena observed 

here to develop a brain-computer-interface (BCI) system, which has broad applications. 

For example, current hearing aid devices cannot recover the listeners’ ability to recognize 

speech in complex auditory scenes (Bernstein and Grant, 2009). One way to facilitate 

speech/sound recognition in complex auditory scenes is to segregate the speech stream of 

the listener’s interest and enhance it. To some extent, the segregation of concurrent sound 

sources can be achieved by directional microphone arrays. Nevertheless, it is not yet 

possible to determine which sound source is of the listener’s interest and should be 

enhanced. One promising solution to this is to develop an EEG-based BCI system that 

decodes the listener’s attentional focus, which is feasible as shown by this dissertation, 

and use it to guide a directional microphone array to selectively amplify the attended 

sound source. 
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