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Abstract

The fixed-rate structured vector quantizer (SVQ) derived from a variable-length scalar
quantizer was originally proposed for quantizing stationary memoryless sources. In this
paper, the SVQ has been extended to a specific type of vector sources in which each com-
ponent is a stationary memoryless scalar subsource independent of the other components.
Algorithms for the design and implementation of the original SVQ are modified to apply
to this case. The resulting SVQ, referred to as the extended SVQ (ESVQ), is then used
to quantize stationary sources with memory (with known autocorrelation function). This
is done by first using a linear orthonormal block transformation, such as the Karhunen-
Loéve transform, to decorrelate a block of source samples. The transform output vectors,
which can be approximated as the output of an independent-component vector source,
are then quantized using the ESVQ. Numerical results are presented for the quantization
of first-order Gauss-Markov sources using this scheme. It is shown that the ESVQ-based
scheme performs very close to the entropy-coded transform quantization while maintaining
a fixed-rate output and outperforms the fixed-rate scheme which uses scalar Lloyd-Max
quantization of the transform coefficients. Finally, it is shown that this scheme also per-

forms better than implementable vector quantizers, specially at high rates.

Index Terms: Fixed-rate coding, structured vector quantization, independent-component

vector sources, correlated Gaussian sources.
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1. Introduction

A fixed-rate structured vector quantizer (SVQ) for quantizing stationary memoryless
scalar sources was introduced by Laroia and Farvardin in [1]. The SVQ is derived from
a variable-length scalar quantizer and bridges the gap between the performance of the
optimal entropy-constrained scalar quantizer [2]-[4] and the error-minimizing fixed-rate
Lloyd-Max quantizer (LMQ) [5],[6] while maintaining a fixed-rate output. The design
and implementation complexities of the SVQ are only polynomial in block-length and are
manageable even for relatively fine quantization (high bit-rates) at large block-lengths.
For memoryless sources, the SVQ is an attractive alternative to LBG vector quantizers
(LBGVQ) [7]. This is especially true at high rates where, for comparable performance,
the LBGVQ complexity (which grows exponentially with the rate-dimension product), is
significantly higher than the SVQ complexity.

In this paper, the SVQ has been extended to the quantization of a specific type of
vector sources and the resulting quantizer is referred to as the extended SVQ (ESVQ).
Each component of the vector source considered here is a stationary memoryless scalar
subsource independent of the other components; the scalar subsources can have distinct
probability distributions. Such sources are encountered in the transform coding of images,
speech and other signals. An algorithm for the suboptimal design of the ESVQ is developed

along with fast algorithms for codebook search and codevector encoding/decoding.

The ESVQ for independent-component vector sources is then used to quantize station-
ary sources with memory. This is done in the context of block transform quantization. The
idea of block transform quantization was introduced by Huang and Schultheiss in [8] for
quantizing stationary correlated Gaussian sources. They use the Karhunen-Loéve trans-
form, which is a decorrelating orthonormal linear transformation, to decorrelate a block
of source samples. Each transform output vector is quantized using a bank of fixed-rate
Lloyd-Max scalar quantizers. Farvardin and Lin in [9] have improved upon these results
(in the rate-distortion sense) by using a bank of variable-length encoded scalar quantizers
in place of LMQs. The price of this improvement is a variable-rate output which makes
the system difficult to implement because of the buffer overflow/underflow and error prop-
agation problems associated with variable-rate systems. Since the output vectors of the
decorrelating transform can be approximately modeled as the output of an independent-

component vector source of the kind described earlier, they can be quantized using the
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ESVQ. This results in an improvement over the HS scheme while maintaining a fixed-rate

output.

Since an ESVQ-based system enjoys the same structural properties as the SVQ, its
computational complexity is significantly lower than that of an LBGVQ for the same
codebook size. Therefore, with the ESVQ-based system dramatically larger codebooks can
be used before the complexity or memory requirements render it impractical. This means
that for a given encoding rate, the block-length of the ESVQ-based system can be much
larger than that of the LBGVQ and hence smaller distortions may be achieved (especially
if the source is heavily correlated). Specific examples given for stationary Gauss-Markov

sources will confirm this claim.

The rest of this paper is organized as follows. A brief description of the SVQ for
memoryless sources is provided in Section II. The extension of the SVQ to independent-
component vector sources (ESVQ) is considered in Section III. An algorithm for a sub-
optimal design of the ESVQ is presented in Section IV while Section V addresses the
implementation issues which include codebook search and codevector encoding. Quantiza-
tion of stationary sources with memory is considered in Section VI along with numerical
results for quantizing first-order Gauss-Markov sources and appropriate comparisons with
several other schemes. In Section VII, the ESVQ is compared with an SVQ-based system
for quantizing independent-component vector sources. Finally, a summary and conclusions

are presented in Section VIII.

II. The Structured Vector Quantizer

We present here a brief description of the SVQ along with a summary of some of
the important results. The basic idea behind the SV(Q is simple and can be qualitatively
described as follows. Consider an entropy-constrained scalar quantizer (ECSQ) the output
of which is encoded by a variable-length code in which the length of each codeword is given
by the negative logarithm of the probability of the corresponding quantization level. For
simplicity assume that this results in integer lengths. If such a variable-length encoded
ECSQ (VLE-ECSQ) is used to quantize a block of samples from a memoryless source, the
total length of the output reflects its probability — smaller length means higher probability.
When the block-length 1s large, with a high probability, the total length of the output is
close to the typical length (=block-length x ECSQ entropy). This suggests that if, for a large
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block-length, the output length of a VLE-ECSQ is forced to lie in a small neighborhood of
the typical length (possibly introducing additional distortion), then with a high probability
the quantizer outputs can be encoded without any additional distortion. Thus, if all
the possible VLE-ECSQ outputs that satisfy the total length constraint are counted and
encoded with fixed-length codewords, the system will result in an average distortion close
to that of the VLE-ECSQ. Although for large block-lengths, the performance of this system
approaches that of the VLE-ECSQ [1], for any fixed block-length it is preferable to encode
all the VLE-ECSQ outputs of total length equal to or less than the typical length. This is
because smaller length outputs are more probable. This idea provides the motivation for

the following structure of the SVQ.

Let S denote an n-level scalar quantizer with the set of quantization levels Q =
{¢1,92,...,9n} and the corresponding set of lengths £ = {¢1,£,,...,0,} where ¢; are
positive integers and could, for example, be (but are not restricted to) lengths of the
codewords if a variable-length code such as the Huffman code is used at the output of S. If
each component of an m-vector is separately quantized using S, the quantized vector is in
Q™. which is a rectangular grid of n™ points. Out of these n™ points only those that have
a total length (sum of the component lengths) no greater than a threshold L are chosen as
codevectors of the SVQ V. The threshold L is chosen such that the codebook contains no

more than 2™" codevectors where r is the desired rate of V in bits per sample. A formal

definition of the SVQ now follows [1].
Definition 1: An m-dimensional SVQ V derived from the scalar quantizer S = (Q,L£) is a

vector quantizer with a codebook Z given as,
Z={z=(z1,20,...,2m) € Q™ : ef(h) FLlgz)y + o L,y < L}, (1)

where the index function f: Q — J, = {1,2,...,n} is defined by, f(¢;) =1, i € J,.
From this definition it is apparent that any permutation of a codevector of the SVQ
is also a codevector (all permutations of a codevector have the same total length); the
SVQ can hence be considered as a modification of the permutation coder [4] where more
than one type! of codevectors are present in the codebook. The pyramid vector quantizer

introduced by Fischer in [10] for Laplacian sources is, in a loose sense, a special case of

1 Here the type of a codevector refers to the set of relative frequencies of occurrence of the quantization

levels of S in the codevector.



the SVQ when the quantization levels are uniformly spaced and ¢; = |¢;]| for all ¢ € J,,.
Similarly, Fischer’s spherical vector quantizer [10],[11] for Gaussian sources is a special case
of the SVQ when quantization levels are uniformly spaced and ¢; = ¢2. Fischer has shown
that in the limit of large block-length, the pyramid (spherical) vector quantizer performance
for a stationary memoryless Laplacian (Gaussian) source approaches that of the optimal
ECSQ at the same entropy (rate). For other sources, the ECSQ performs better than
both pyramid and spherical vector quantizers. Under certain assumptions, it is shown in
[1],{12] that the performance (signal-to-noise ratio) of the SVQ is also bounded above by
the performance of the optimal ECSQ at the same entropy, but the SVQ asymptotically
achieves the performance of the ECSQ as the block-length increases. Algorithms for the
design and efficient implementation of the SVQ are also presented in [1],[12]. Results on
the performance of the SVQ show that the SVQ effectively bridges the gap between the
performances of the optimal fixed- and variable-rate scalar quantizers [1]. At high rates
the SVQ also performs better than implementable vector quantizers, especially for sources
with a sharp-peaked, broad-tailed density. The SVQ is robust in the presence of channel
noise and outperforms both fixed and variable-rate scalar quantizers for a wide range of

channel bit-error probabilities [1].

IT1. Extension to Independent-Component Vector Sources (ESVQ)

In this section we extend the SVQ for memoryless sources to a specific type of vector
sources. The vector sources considered here are assumed to have independent components
and each component is assumed to be a stationary memoryless scalar subsource; each
scalar subsource can have a distinct probability distribution. In the special case when
all subsources are identically distributed, the ESVQ reduces to the SVQ for memoryless
scalar sources. Extension of the SVQ to independent-component vector sources paves the
way for the development of a scheme for the quantization of vector sources with dependent
components, as we will show later.

Since the various components of the above mentioned vector source can have different
distributions, an ESVQ for an m-dimensional vector source is derived from m different
variable-length scalar quantizers §1,8,,...,S8n — each tailored to the distribution of the
corresponding subsource. Let Q; = {q1:, 92i,- - -, qn;i} denote the set of quantization levels
of the ¢'" quantizer S; for ¢ € J,, and £; = {l1;,%2,...,€n,;} be the corresponding set of
positive integer lengths assigned to the quantization levels. Also,let @ = Q;UQ,U---UQ,,
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and £L = L1ULU---UL,, denote the set of all quantization levels and the set of all lengths,
respectively. The ESVQ is defined as follows.

Definition 2: An m-dimensional ESVQ V derived from scalar quantizers §;,8s,...,8, 1s

a vector quantizer with a codebook Z given as,
Z = {ZZ(Zl,Zz,...,Zm) € Ql X Qz X oo X Qup

Crin G2+ + L (s)m < LY, (2)

where the threshold L governs the rate mr (in bits per m-dimensional vector) of the

quantizer, and the index function f; : Q; — Jy, is defined by, fi(¢ji) =7, 7 € Jni, t € Im.

Remarks

1. According to the above definition, the ESVQ is unchanged if: (i) an integer k; is
added to all the lengths in £;, ¢ € J,,,, (assuming that the resulting lengths are still
positive) and k = >_" | k; is added to the threshold L; and (ii) all the lengths in
L(=LyULyU---UL,y,) are multiplied by a positive rational s (assuming that the
resulting lengths are still integers) and the threshold L is also multiplied by s.

2. It is interesting to note that in the case of ESVQ, a permutation of any codevector
in general does not result in a codevector. This is because the different components
of the codevector belong to different alphabets. Hence the idea of structured vector
quantization can be extended to sources for which permutation coding does not work
well.

3. Weighted pyramid and elliptical vector quantizers [11] are extensions of the pyra-
mid and spherical vector quantizers, respectively, to independent-component vector
sources. The scalar subsources of the vector source in this case have different variances
but same distributions (Laplacian for weighted pyramid and Gaussian for elliptical vec-
tor quantizers). The weighted pyramid vector quantizer is essentially a special case of
the ESVQ when all the scalar quantizers are uniform and £;; = w;|gji|, J € Jn;,t € Jm.
Here w; is the weight associated with the ¢** subsource. The elliptical vector quan-
tizer is similarly a special case of the ESV(Q when all scalar quantizers are uniform
and ¢;; = wiq?i.

A procedure for the design of the ESVQ is presented in the next section. Some of the
steps in this case are straightforward extensions of the SVQ [1] but are presented here for

the sake of completeness.



IV. Design of the ESVQ

Designing a rate r bits/sample ESVQ for a given m-dimensional independent-
component vector source amounts to determining the quantization levels Q, the lengths
L and the threshold L. As in the case of the SVQ [1], this can be done by a two-step
iterative process. The first step (Step A) determines the quantization levels Q given £
and L. The second step (Step B) determines the lengths £ and threshold L given Q. If
both these steps are optimal with respect to some distortion measure, then each iteration
reduces the average distortion and convergence to a locally optimal design is guaranteed.
While Step A can be optimally performed for some important distortion metrics, the op-
timal solution of Step B is not known and a suboptimal solution is presented here. This
does not guarantee the convergence of the design algorithm but results in good suboptimal
designs. The performance of the ESVQ designed using this algorithm 1s sensitive to the
initial choice of @, £ and L in the iterative process. For the quantizers designed here,
we started with uniformly spaced quantization levels for each Q;, ¢+ € J,,. The spacing
between the levels was chosen such that the sum of the output entropies of §1,S52,...,5n,
(assuming quantization thresholds to be midway between the levels) equals the rate mr
bits/vector. For this choice of Q the initial values of £ and L were assigned in accordance

with Step B.

1. Step A

In this step, we determine Q for a given £ and L. The procedure used here is a simple
extension of that for the SVQ [1] and is itself performed iteratively. The non-negative,
single-letter distortion measure between the source output z and its reproduction y is
denoted by d(z,y). A long training set of N source vectors is generated and this set is
used to characterize the m-dimensional probability density function (pdf ) of the vector

source. Let X = {x;, j € Jn} denote this set where x; = (z1j,Z25,...; Tmj).

Algorithm
0. For given £, L, the training sequence X and stopping threshold € > 0, select the initial

set of quantization levels Q° = QYU Q5 U --- U @Y, as the optimal solution for Q in
the previous visit to Step A, and set the iteration index k¥ = 0. The procedure for
choosing Q° for the first visit to Step A has already been described above.

1. Quantize each vector in X using the ESVQ defined by (Q*, £, L). Let Vi, = {yf, J €

Jn} represent the resulting set of quantized vectors where yf = (yfj, yé‘"j, e yﬁlj) €
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Q¥ x QF x ... x QF for j € Jy. The average per-vector distortion D¥ associated with

this quantization operation can be expressed as,

N m m n;
.1 1 -
Dr= Y du) =5 Y. Y daid) @
j=1 i=1 =1 =1 ik =gk
cJij i3
JEJIN

2. Update the set of quantization levels to QF*1 where

q,ki“ = argmin Z d(zi5,q), L € Jnyy t € . (4.a)
g
].fy.lcj =91k.'
JEJIN
It is straightforward to show that Q*t! minimizes D* and hence reduces distortion
over @F. In the important special case of squared-error distortion (d(z,y) = (z —y)?),

it is easily shown that (4.a) reduces to

-1

gt=] ) 1 > wijly 1€ Jnyy i € Tm. (4.b)
Jul=af Jvl=af;
JEJIN JeJIN

Thus, for the squared-error distortion measure, the above equation corresponds to tak-
ing all the input samples that quantize to ¢ (using the ESVQ defined by (QF, £, L))
and updating this quantization level to q,kl-‘H which is the mean of all those samples.
Similarly, for the absolute-error distortion (d(z,y) = |z — y|), each quantization level
gF is updated to the median of all the input samples that are quantized to it.

3. Set k = k + 1 and quantize each vector in X’ using the SVQ defined by (Q%, £, L) and
compute the corresponding average distortion D*. If (D¥~1 — D¥)/D*~1 < ¢, stop
with Q = QF; else go to Step 2.

Since the updating in Step 2 above can only reduce the average distortion, the above

algorithm converges for a given (£, L) resulting in Q°P*(L, L).

2. Step B
In this step, we determine £ and L for a given Q. As mentioned before, the optimal

solution for this step is not known. In what follows we present a suboptimal solution for
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determining £. After obtaining £, the threshold L can be chosen such that the ESVQ has

the desired output rate.

2.a. Determination of L

For the SVQ design, two methods for determining £ given Q are described in [1].
While the first method (Method 1) performs well for the SVQ, there is an important
reason for not using a similar method for the ESVQ. The lengths in [1], for a given Q,
are assigned based on probabilities of quantization to the nearest level using the scalar
quantizer §. This corresponds to the quantization thresholds being placed midway between
the quantization levels of §. A similar procedure for ESVQ will result in a set of lengths
L; of the quantizer S; that is determined only by the probability distribution of the ‘"
source component. Hence the lengths associated with one quantizer are not dependent
upon those of any other quantizer. This implies that there is no way of placing greater
importance on the quantization of some (possibly larger variance) components of the vector
source over the others. As an example consider a two-dimensional source having zero
mean Gaussian components with variances 1 and 100. Also let @1 = {q1,92,-..,¢n} and
Qy = {10¢1,10g2,...,10¢,}. This will result in identical sets of lengths £ and L. Clearly,
a more desirable length assignment is one in which most length values in £; are relatively
large. To overcome this problem we use the following algorithm that is a generalization of

the asymptotically optimal (for large m) solution of £ for the SVQ (Method 2 in [1]).

First we determine the set of quantization thresholds 7; = {t¢i,t14,...,tn;i} for each
scalar quantizer S; (¢ € Jy,) with quantization levels Q;, such that the expected distortion
is minimized given that the sum of the output entropies of the quantizers is no greater than
the rate mr bits/vector. As described later, the probabilities of the quantization regions
defined by these thresholds are used to determine the lengths in £. Hence, the problem
here is to determine the set of quantization thresholds 7 = 7, U 75 U --- U 7T, such that
the distortion

D(T) = ZZ / (z,q;i)pi(z)de, (5.a)
=1 j=1 t -1y
is minimized subject to the constraint on the output entropy

H(T) = Zzpﬂlogz pji < mr, (5.b)

i=1 j=1



tii

where p;(z) is the pdf of the i** scalar subsource and p;; = ft(, i pi(x)dz is the probability
j—1)¢

of quantizing to the j* level of S; when scalar quantization of the :'* scalar subsource is
performed. This is similar to the design of an ECSQ [3] and there are several ways to solve
for 7 including the one given in Section II1.B.2 of [1]. If the source pdfs are not known, a
training sequence based approach can be adopted and the integrals in (5) can be replaced
by the corresponding sums over the training sequence. As in the case of the SVQ, once

the quantization thresholds are determined the lengths £;; are evaluated as,
Cji = [blogy(1/pji)l, j € Jnis i € T, (6)

where the square brackets denote rounding off to the nearest integer and b is a real number
that determines the effective round-off error. Larger b implies a smaller effective error but

a higher implementation complexity. The effect of b on the complexity and performance

of the SVQ is discussed in [1] and similar arguments hold for the ESVQ.

Even though the ESVQ does not explicitly allocate bits among the various components
of the vector source, the bit (entropy) allocation in the above algorithm is implicit in the

way the lengths are assigned to the quantization levels of the different scalar quantizers.

2.b. Determination of the threshold L

Now that £ has been determined, the threshold L is obtained by counting the grid-
points (starting with the ones that have the smallest total length) until 2™" points are
counted; the largest total length for which all grid-points of that length are included in
this collection will determine the value of L. An algorithm to accomplish this is described
below.

Let Nij represent the number of distinct i-vectors (v, va,...,v;) € Qp X Q2 X -+ X Q;
such that their total length £4 (y,)1 + £f,(vp)2 + -+ + £fi(vi)i = J- Then N;j satisfies the
recursive equation Nl] =S Nz-j:lf” , Vi € J, where Nl-j =0 for j < 0 and NJ = 1.
The number C}, of grid-points with a total length less than or equal to j is now given by
CJ = i:l NE . The threshold L can therefore be evaluated as, L = max{j : CJ < 2m7},
This choice of L guarantees that there will be at most 2™ vectors in the codebook and

hence each codevector can be encoded by an mr-bit binary codeword.

3. ESVQ design algorithm

The ESVQ design consists of successive updating of Q and (£, L) by applying Steps A

and B, respectively. As noted before, the convergence of this algorithm is not guaranteed
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because of the suboptimality of Step B. For cases where the solution does not converge, a
fixed number of iterations are performed from which the best quantizer is chosen. As with
the SVQ, for those cases where the solution converged, the convergence does not imply
any optimality or local optimality and can be attributed to the discrete (integer) nature

of the lengths in £. The design algorithm for the ESV(Q is presented below.

Algorithm
0. Let € > 0, kmax and kpin denote the stopping threshold, the maximum and the
minimum number of iterations. For a given training sequence X design an initial
ESVQ consisting of @°, £% and L° as explained in the beginning of this section; set

the iteration index k = 0; set initial average distortion D’ = oc.

1. For fixed £* and L¥, use Step A (with QF as initial set of quantization levels) to obtain
QL = Qort(Lk LK), Compute the average distortion D*+! associated with the
triple (QF+!, £* L*). If (D* — D**')/D* < € and k > kmin, stop with (Q*+!, £* L*)
defining the ESVQ), else if £ = kpax, stop and select the ESVQ as that which resulted

in the smallest average distortion among all iterations up to kmax; €else, set k = k + 1.

2. For Q% determine from Step B, the set of lengths £* and the threshold L*. Go to
Step 1.

V. Implementation of the ESVQ

The implementation of the ESVQ defined by @, £ and L essentially involves two
steps: (i) finding the vector in the codebook closest to the input vector (codebook search)
and (ii) assignment of a binary codeword to the selected codevector at the transmitter and
finding the codevector corresponding to the received codeword at the receiver (codevector
encoding/decoding). Given the special structure of the ESV(Q codebook, both these steps

can be efficiently performed as described below.

1. Codebook search

Let D{ be the minimum squared-error distortion that results when the first ¢ com-
ponents of the input m-vector x = (21, 22,...,2Zm) are quantized to any of the i-vectors
z; = (21,22,..., zi) € @1 X Q3 X --- X Q; such that the total length of z; is j, that is,
Lr izt T (a2 + o H gz = 7. Also, let z{ represent the i-vector that results in the
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minimum distortion D}. The distortion D! 41 is then recursively given as,

1 . )~ L .
Df+1 = min Df- KD 4 (2 — qk(i+1))2 , 1 €{0}U Ty, (7)

K€y

whereDf:ooforjSOoriSObutDO=0.

If the above is minimized for k& = k', then the corresponding minimum distortion

. _ - 0,
vector z],, is given by the recursive equation z] , = (zf KO ki (i41)). We can solve
(7) using a dynamic programming algorithm [13] similar to the Viterbi algorithm [14] and

determine Df'n, V 3 € Jr. The minimum distortion Dy, is then given as, Dy = mijn D{;l.
J1€JL

If 5 = ' minimizes this distortion, then zf;; gives the desired codevector.

Although the order in which indices are assigned to the scalar subsources to form a
vector source does not affect the performance of the ESVQ), it does make a difference on
its implementation complexity. From an implementation standpoint, it is advantageous
to label the subsources so that their variances are in a decreasing order, i.e., the first
component of the vector has the largest variance, the second component has the next
largest variance and so on. This is because a large variance subsource (i**) typically has a
large number n;, of quantization levels associated with it. If such a subsource is assigned
a smaller index, (7) for this source will have to be computed for a smaller range of values
" of j, resulting in reduced implementation complexity.

The codebook search algorithm described above has a considerably higher complexity
than simple component-by-component scalar quantization of the source m-vector using the
scalar quantizer bank 87,82, ...,8n. The overall search complexity can hence be reduced
by first performing this simple component-by-component quantization and checking the
total length of the resulting vector (grid-point). If the total length is no greater than the
threshold L, this is the required codevector; if not, the codebook search algorithm can be

used.

2. Encoding of codevectors

There are 2™" codevectors in the codebook Z of the ESVQ and the encoder is a
mapping that assigns mr-bit binary numbers to the codevectors in a one-to-one manner.

The following algorithm implements one such mapping.
To every codevector z = (21, 22,..., zn) € Z is assigned a unique m-tuple N (z) =

(fm(zm), fm=1(Zm=1), ..., fi(z1)). All the possible m-tuples can now be ordered in a

11



dictionary order. That is, one m-tuple is smaller than the other if either its first component
is smaller than the first component of the other, or if their first components are equal, the
second component is smaller than the second component of the other and so on. The
encoder function E : Z — {0} U Jomr_; is defined as, E(z) = 3, c 5z Xow, Where X,y =1
if N(w) < NM(z) and 0 otherwise. In other words, F(z) is the number of codevectors in
Z that are “smaller” than z (smaller in the sense N(w) < N(z)). We can also write
E(z) =Y 1, Ek, where Ej is the number of codevectors w such that the m-tuples A'(w)
and N(z) are equal in their first (k — 1) components while the k** component of A (w) is
smaller than that of A'(z). The mr-bit binary codeword associated with the codevector z

is then the binary representation of F(z).

Let Cij represent the number of distinct ¢-vectors (21, 22,..., 2;,) € Q1 X Q2 X+ X Q;
with total length no greater than j. Also, define Cg = 01if y < 0 and 1 otherwise. It is
now easy to see that Ey = Ef’“(z’“) ! :1 ik'1~€jk for £k € Jp,, where Ly = 0 and

Li =30 e iv1 U5 iis © € Jm. Now we can write E(z) as,

m Jre(zk)—1
L—Lp—y—¢
=), D>, CalTh (8)
k=1

j=1

Note that C’ij can be evaluated for ¢ € J,,, and j > 0 by expressing it in terms of Nij
(Section IV) as, Cz-j = {:l NE. For a fast implementation of this algorithm the C? can

be evaluated once and stored in memory.

The decoder mapping is the inverse of the encoder mapping. The decoding algorithm

1s not described here but can easily be determined from the encoding algorithm.

The complexity of implementation of the ESVQ is similar to that of the SVQ, and as
shown in [1], both the storage and the worst-case computational requirements are expo-
nential in 7 but only polynomial in m. This makes the structured vector quantizers much
easier to implement than LBG vector quantizers [7] where the complexity is exponential

in mr.

In the next section, it is shown that the ESVQ can be used in conjunction with certain

block transformations to quantize sources with memory.
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VI. Quantization of Sources with Memory

Quantization of correlated sources using block transforms has been studied in the past
and is a popular technique for image and speech coding [8],[9],[15]. The transformations
used for this purpose (such as the Karhunen-Loéve transform and the discrete cosine trans-
form) have correlation removing property and the output vectors of these transformations
approximately fit the model of the independent-component vector source described here.
The ESVQ is hence a good candidate for the efficient quantization of the transformation

output vector.

A linear transformation represented by an m X m matrix A can be used to transform
a block of m samples (or an m-vector) xT = (z,29,..., %) from a stationary correlated
source. The transformation applied to x results in the output vector ¢ = Ax. If B is the
inverse transformation matrix, then x = Bc. The transformation A is called orthonormal
if A=' = AT. An orthonormal transformation A corresponds to a rotation of the coor-
dinate system such that: (i) the Euclidean distance between points (vectors) is preserved,
1.e., for two vectors x;, X, and the corresponding transformation output vectors ¢y, ca,
respectively, (¢; — c2)T(c1 —c2) =(x1 — xz)T(xl — X2), and (i1) the sum of the variances
is preserved, i.e., 30, 02 = >, 02, where 02 and o are the variances of the i

transform coefficient and the input sample, respectively.

In block transform coding, the transformation output vector ¢ is quantized to obtain
c’. At the receiver, the inverse transformation B is performed on ¢’ to obtain the recon-
structed version x’ of x. The transformation chosen for this purpose is usually orthonormal
and represents the source vector in a special coordinate system — one in which the result-
ing components are uncorrelated and can therefore be efficiently quantized using scalar
quantizers. Thus, the decorrelating transformation reduces the redundancy present in the
source vector and offers the possibility to use scalar quantizers making the scheme simple to
implement. Because of the Euclidean distance preserving nature of these transformations,
for the squared-error distortion measure, the reconstruction error of each source vector is
the same as the quantization error of the transformed vector and therefore the quantizers

can be designed to minimize the expected value of the latter.

It is shown in [15] that for Gaussian input (in the limit of fine quantization) the
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transform coding gain? ™Gr¢ realized by an m!* order orthonormal transformation over

direct scalar quantization of the source output is given as,

1 2
N UC;

mGro = —=t— . ©)
jigd

N
The coding gain therefore is the ratio of the arithmetic mean to the geometric mean of the

i

transform coefficient variances.

b order transformation for stationary Gaussian sources is the

The optimal m!
Karhunen-Loéve transform (KLT) which maximizes the coding gain ™Gr¢ over all pos-
sible linear transformations [8]. The KLT results in a diagonal autocovariance matrix
Ree = E[CCT] = ARXXAT, where Ryx is the m** order symmetric positive-definite
source autocovariance matrix. Let \;, ¢ = 1,2,...,m, be the m distinct eigenvalues of
Rxx and I, i = 1,2,...,m, be the corresponding eigenvectors scaled such that I7T; = §;;.
The KLT matrix has as its :** row the eigenvector I;, 2 € Jp,, of Rxx and the resulting

diagonal matrix Rec has as its diagonal elements the eigenvalues A;, ¢ = 1,2,...,m, of

Ry«x. The coding gain ™G k1 of the transformation is given as,

2=

I
-

A
mGKLT = l—z%f . (10)
i
=1

For the KLT, the diagonal nature of the R.. matrix implies that the transformation out-
put vector has uncorrelated components. This is intuitively satisfying because it says
that the optimal transformation is the one that decorrelates the source vector (remov-
ing redundancy) before quantizing. For Gaussian samples, uncorrelatedness also implies
independence and hence the output vector ¢ has independent components that can be

efficiently quantized using the ESVQ.

Although the KLT is the optimal transformation in terms of coding gain, it is an input-

dependent transformation and requires the knowledge of the source autocovariance matrix

2 The gain here refers to the factor by which the quantization error variance is reduced. The corre-

sponding gain in the signal-to-noise ratio is given as 10 loglo(mGTc) in dB.
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which may not be available. For such cases one can use suboptimal source-independent
transformations provided the source is stationary. One such transformation is the discrete

cosine transform (DCT) which for sources such as speech and imagery has coding gains
very close to that of the KLT [15].

Several researchers have studied block transform coding for the quantization of sta-
tionary sources with known correlation properties. Huang and Schultheiss in [8] have
applied the KLT to correlated Gaussian sources. The transformation output vector is then
quantized using a bank of fixed-length scalar LMQs. The rate of each quantizer in the bank
is determined optimally by a bit allocation algorithm. The vector components with larger
variances receive more bits while some coefficients with small variances may not receive
any bits. Farvardin and Lin have studied entropy-constrained quantization of the KLT co-
efficients for quantizing correlated Gaussian sources [9]. Since optimal entropy-constrained
quantizers are hard to design, they have used entropy-coded uniform-threshold quantizers
which are known to perform close to the optimum [3]. An optimal entropy allocation
algorithm is used to allocate entropy among the various components of the vector. This
results in improved performance over the scheme of Huang and Schultheiss but at the cost

of a variable-rate output.

We have studied the fixed-rate quantization of correlated Gaussian sources by using
the ESVQ to quantize the KLT transformed vectors. This scheme is hereafter referred to
as the KLT-ESVQ) scheme. If the source being considered is Gaussian, the equiprobability
density surfaces in the m-dimensional space are (concentric) generalized ellipses [11]. The
KLT then corresponds to a rotation of the coordinate system so as to align it to the axes

of these m-dimensional ellipses. Consider the following ESVQ for quantizing the KLT

output vectors for a Gaussian source: (i) the scalar quantizers S;,8,,...,S,, are uniform
quantizers with equal step sizes, and (ii) the lengths ¢;; (for j = 1,2,...,n;) associated
with the i** quantizer S;, ¢ € Jp,, are given by, Ly = wiq?i, where w; is the reciprocal

of the variance of the i'* component of the KLT output vector. This ESVQ is similar in
spirit to the elliptical vector quantizer in [11] and for an appropriate value of the threshold
L, places the codevectors (on a cubic lattice) inside and on the surface of the nearly unit
probability (for large m) m-dimensional generalized ellipse. This is however not necessarily
the best ESVQ that can be designed for quantizing such sources, especially when m is not

large. An improvement in performance could result if this quantizer is used as the initial
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choice in the design algorithm of Section IV.

The results of the KLT-ESVQ scheme on first-order Gauss-Markov sources with cor-
relation coeflicients 0.8 and 0.9 are presented in Tables 1 and 2, respectively. The corre-
sponding ESVQs were designed using the algorithm of Section IV with lengths effectively
quantized to multiples of a quarter of a bit (corresponding to b = 4). A total of 50000
source samples were used in the simulations. The performance results for the Huang and
Schultheiss (HS) scheme, Farvardin and Lin (FL) scheme, optimum entropy coded predic-
tive quantizer (ECPQ) [16] (where available) and LBGVQ [7],[17] are also included in the
tables for comparison. Due to the design complexity, the LBGVQ results reported here
are for a codebook of size 1024 vectors except at the rate of 3 bits/sample in which case

the codebook size is 512 vectors.

These tables show that as expected, the performance of the KLT-ESVQ scheme im-
proves with block-length. This is due to two reasons: (i) the performance of the ESVQ
itself improves with block-length because the SVQ idea is based on the law of large num-
bers, and (ii) the coding gain of the KLT improves with block-length [15]. The latter is also
responsible for the better performance of the HS and FL schemes at larger block-lengths.
As expected, the KLT-ESVQ scheme for a given encoding rate and block-length, performs
better than the fixed-rate HS scheme and close to the variable-rate FL scheme. For a fixed
block-length, the gap between the KLT-ESVQ and the FL scheme is larger at higher rates.
This is consistent with the observation in [1] that at higher rates the SVQ requires a larger
block-length to perform close to the optimal ECSQ.

From Table 1 it can be seen that at high rates (fine quantization), the performance
of the variable-rate ECPQ is slightly better than the KLT-ESVQ scheme, while at low
rates the latter does considerably better. This is because the ECPQ is known not to
perform well at low rates but at high rates it performs close to (only 1.53 dB below) the
rate-distortion limit [16]. Though for the same block-length and rate, vector quantizers
perform better than the KLT-ESVQ scheme, the block-length of the KLT-ESVQ can be
increased to get performance better than LBGV(Q at the same rate. For example in Table 2,
the KLT-ESVQ scheme at 1 bit/sample and block-length 32 performs 0.53 dB better than
the 10-dimensional LBGVQ at the same rate. Note that the design and/or implementation
of a rate 1 bit/sample LBGVQ with block-length 32 (having 23? codevectors) is practically
impossible. In addition, for the KLT-ESV() it is possible to operate at higher bit-rates with
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a manageable complexity. We have reported in Tables 1 and 2 results up to 3 bits/sample
with a block-length as large as 32, implying an effective codebook size of 2°¢; for such a

high bit-rate, the VQ block-length cannot exceed 5.

For Gauss-Markov sources, the gap between the performances of the HS and FL
schemes is not much, leaving only a limited room for improvement. The ESVQ-based
block transform coding scheme on other sources for which this gap is larger should result
in higher gains over the HS scheme. It is well known [15],[18] that the two-dimensional
discrete cosine transformation of image data results in close-to-Laplacian distribution of the
transform coefficients (except for the “d¢” coefficient). Since for Laplacian sources there is
a significant gap between the performances of fixed- and variable-length scalar quantizers,
the ESVQ offers a potential for significant improvement over fixed-length quantization of

the transform coefficients.

VII. ESVQ versus SVQ

So far we have considered the quantization of independent-component vector sources
with the ESVQ. However, these sources can also be quantized using a bank of SVQs (for
scalar memoryless sources) as follows. Since the i** component of the source m-vector can
be assumed to come from a memoryless scalar subsource X;, ¢« € J,,, an appropriately
designed SVQ can be used to efficiently quantize a block of m! output samples from this
source. Given the block-size of the SVQ for each subsource, its rate-distortion performance
can be determined and used for optimal rate allocation among the m subsources of the
vector source. We now compare the ESV(Q with this SVQ-based scheme, especially in the

context of block transform quantization.

One obvious drawback of the SVQ-based system is the delay it introduces. If m s

;nax i
the largest of the block-lengths of the m SVQs, then there is at least an m/ , vector coding
delay introduced into the system. In contrast, the ESVQ introduces no such delay. Further,

if the source vector is obtained by using a decorrelating m-dimensional transformation on

!

a source with memory, the coding delay is m x m; .,

samples. While this delay may not
be of any consequence in still image coding (where the vectors do not form a sequence in
time), it can be important in some other applications and will limit the SVQ block-length

and hence the performance.

In the absence of any constraints on delay or complexity, the asymptotic perfor-
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mances (for large block-lengths) of the ESVQ- and SVQ-based block transform quanti-
zation schemes are expected to be the same. However, as explained below, for practical
systems that place a limit on the complexity, the ESVQ-based system has an edge. In many
practical schemes that use the KLT or DCT, the low frequency components (subsources) of
the transform vectors have variances significantly larger than those of the high frequency
components. Thus, some subsources must be encoded with significantly higher rates than
the average rate. Since the complexity of implementation of the SVQ is exponential in
rate, the block-length of SVQs designed for these sources is usually small and limited by
the allowed complexity. This is particularly undesirable because at a high rate the SVQ re-
quires a larger block-length to perform close to the optimal variable-length encoded scalar
quantizer [1]. For the ESVQ on the other hand, the larger variance subsources are quan-
tized together with the smaller variance sources allowing larger block-lengths (than the
SVQ) for a similar complexity. This means that for the ESVQ, even the large variance
subsources can enjoy the benefits of a large block-length. For a given limit on complex-
ity, in our experience, the ESVQ-based scheme usually outperforms the SVQ-based block

transform coding scheme.

Table 3 compares the performance results (SNR in dB) of the 32-dimensional KLT-
ESVQ scheme to the corresponding results of the SVQ-based system for a Gauss-Markov
source with coefficient of correlation 0.9 . For these results, the maximum SV(Q dimension
was taken to be m, . = 32. Also, to place a limit on the complexity, the total rate of
the SVQ was limited to 96 bits/block. Under the above constraints, SVQs with maximum
possible block-lengths were designed. This table confirms the claim that for comparable
complexities, the ESV(Q-based block transform quantizer performs better than the SVQ-

based scheme; the ESVQ also introduces a significantly smaller coding delay.

VIII. Summary and Conclusions

This paper extends the fixed-rate structured vector quantizer to vector sources for
which each component is a stationary memoryless scalar subsource independent of the
other components. A suboptimal design algorithm for the ESVQ was presented along with
fast algorithms for codebook search and codevector encoding. It is shown that the ESVQ
can be applied to the quantization of stationary sources with memory. This is done by
first using the KLT or DCT to decorrelate a block of source data. The transform output

vector is then quantized using the ESVQ. Numerical results were presented for first-order
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Gauss-Markov sources and it was shown that the KLT-ESVQ scheme improves upon the

performance of the fixed-rate HS scheme and performs close to the variable-rate FL scheme.

It was also shown that the KLT-ESVQ scheme performs better than implementable vector

quantizers (especially at high rates). Because of the large gap in the performances of fixed-

and variable-length scalar quantizers for Laplacian sources, the suboptimal scheme that

uses the ESVQ to quantize the DCT output vectors can potentially be used for the efficient

quantization of image data [18].
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Table 1: Performance results (SNR in dB) for the quantization of a first-order Gauss-
Markov source with coeflicient of correlation 0.8 . The rate is in bits/sample. Here HS
refers to the Huang-Schultheiss scheme [8] and FL refers to the Farvardin-Lin scheme [9].
The LBGVQ codebook size is 1024 vectors for r = 1, 2 bits/sample and 512 vectors for
r = 3 bits/sample. The performance of the entropy-coded predictive quantizer (ECPQ)

and the source distortion-rate function are also given.
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Rate Block-Length ECPQ | LBGVQ | D(R)
1 4 8 16 24 32
KLT-ESVQ
1 440 | 817 | 866 | 9.13 | 9.36 | 9.41 7.66 9.20 10.46
2 9.30 | 13.15 | 13.60 | 1448 | 14.64 | 14.73 | 14.44 14.01 16.48
3 14.62 | 18.47 | 19.40 | 20.00 | 20.27 | 20.40 | 20.96 18.70 22.50
HS
1 440 | 790 | 839 | 869 | 8.81 | 885
2 9.30 | 12.64 | 13.20 | 13.48 | 13.57 | 13.62
3 14.62 | 17.78 | 18.44 | 18.69 | 18.77 | 18.81
FL
1 4.58 | 847 | 9.02 | 930 | 9.39 | 9.44
2 10.55 | 13.86 | 14.41 | 14.68 | 14.75 | 14.83
3 16.56 | 19.84 | 20.42 | 20.69 | 20.78 | 20.84




Table 2: Performance results (SNR in dB) for the quantization of a first-order Gauss-
Markov source with coefficient of correlation 0.9 . The rate is in bits/sample. Here HS
refers to the Huang-Schultheiss scheme [8] and FL refers to the Farvardin-Lin scheme [9].
The LBGVQ codebook size is 1024 vectors for r = 1, 2 bits/sample and 512 vectors for
r = 3 bits/sample. The performance of the entropy-coded predictive quantizer (ECPQ)

and the source distortion-rate function are also given.
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Rate Block-Length ECPQ | LBGVQ | D(R)
1 4 8 16 24 32
KLT-ESVQ
1 4.40 | 10.04 | 11.21 | 11.84 | 12.05 | 12.17 | 10.01 11.64 | 13.23
2 9.30 | 15.16 | 16.54 | 17.23 | 17.42 | 17.50 | NA 16.27 | 19.25
3 14.62 | 20.70 | 21.77 | 22.61 | 22.93 | 23.11 | NA 20.59 | 25.27
HS
4.40 |10.02 | 10.89 | 11.33 | 11.52 | 11.60
9.30 | 14.90 | 15.69 | 16.14 | 16.29 | 16.37
14.62 | 20.14 | 20.87 | 21.35 | 21.47 | 21.56
FL
1 4.58 | 10.60 | 11.53 | 11.98 | 12.13 | 12.20
2 10.55 | 15.98 | 16.85 | 17.30 | 17.46 | 17.53
3 16.56 | 21.94 | 22.84 | 23.30 | 23.45 | 23.52




Rate | ESVQ | SVQ
1 12.17 | 12.01
2 17.51 | 17.18
3 23.11 | 22.79

Table 3: Comparison of the ESVQ and SVQ-based block transform (KLT) quantization of
a first-order Gauss-Markov source with correlation coefficient 0.9 . The numbers indicate
SNR in dB and the rate is given in bits/sample. The KLT block-size is 32 and the ESVQ
block-length is also 32 (m = 32). The SVQ-based scheme uses 32 different SVQs as

described in Section VII.
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