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Since the decoding of the first RNA virus in 1976, the field of viral genomics has 

exploded, first through the use of Sanger sequencing technologies and later with the 

use next-generation sequencing approaches.  With the development of these 

sequencing technologies, viral genomics has entered an era of big data.  New 

challenges for analyzing these data are now apparent.  Here, we describe novel 

methods to extend the current capabilities of viral comparative genomics.  Through 

the use of antigenic distancing techniques, we have examined the relationship 

between the antigenic phenotype and the genetic content of influenza virus to 

establish a more systematic approach to viral surveillance and vaccine selection.  

Distancing of Antigenicity by Sequence-based Hierarchical Clustering (DASH) was 

developed and used to perform a retrospective analysis of 22 influenza seasons.  Our 

methods produced vaccine candidates identical to or with a high concordance of 

antigenic similarity with those selected by the WHO.  In a second effort, we have 



  

developed VirComp and OrionPlot: two independent yet related tools.  These tools 

first generate gene-based genome constellations, or genotypes, of viral genomes, and 

second create visualizations of the resultant genome constellations.  VirComp utilizes 

sequence-clustering techniques to infer genome constellations and prepares genome 

constellation data matrices for visualization with OrionPlot.  OrionPlot is a java 

application for tailoring genome constellation figures for publication.  OrionPlot 

allows for color selection of gene cluster assignments, customized box sizes to enable 

the visualization of gene comparisons based on sequence length, and label coloring.  

We have provided five analyses designed as vignettes to illustrate the utility of our 

tools for performing viral comparative genomic analyses.  Study three focused on the 

analysis of respiratory syncytial virus (RSV) genomes circulating during the 2012-

2013 RSV season.  We discovered a correlation between a recent tandem duplication 

within the G gene of RSV-A and a decrease in severity of infection.  Our data 

suggests that this duplication is associated with a higher infection rate in female 

infants than is generally observed.  Through these studies, we have extended the state 

of the art of genotype analysis, phenotype/genotype studies and established 

correlations between clinical metadata and RSV sequence data. 

 

 

 

 

 

 
 



  

 
 
 
 
 
 
 
 
THE VIRAL GENOMICS REVOLUTION: BIG DATA APPROACHES TO BASIC 

VIRAL RESEARCH, SURVEILLANCE, AND VACCINE DEVELOPMENT 
 
 
 

By 
 
 

Seth Adam Micah Schobel 
 
 
 
 
 

Dissertation submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2015 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Professor Michael Cummings, Chair 
Professor Najib El-Sayed 
Professor John Glass 
Professor Sridhar Hannenhali 
Professor Steven Mount 
 
 
 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Seth Adam Micah Schobel 

2015 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 ii 
 

Preface 

 This work was supported in part by several awards as specified below.  Study 

One was supported by award HHSO100201000061C, The Biomedical Advanced 

Research and Development Authority (BARDA), within the Office of the Assistant 

Secretary for Preparedness and Response in the U.S. Department of Health and 

Human Services (HHS) and funds from the Novartis Foundation (NF) and Synthetic 

Genomics Vaccines, Inc (SGVI).  Study Two was supported in part by the National 

Institute of Allergy and Infectious Diseases, the National Institutes of Health 

(NIAID/NIH) Genomic Centers for Infectious Diseases (GCID) program, U19-AI-

110819 and NIAID Genomic Sequencing Centers for Infectious Diseases (GSCID) 

program, HHSN272200900007C.  Study Three was supported by three awards.  The 

clinical sample and data collection for this study was supported by NIAID grant AI 

U19-AI-095277 and a Vanderbilt Institute for Clinical and Translational Research 

grant, UL1 TR000445, from NCATS/NIH.  The sequencing work was generously 

supported by the NIAID/NIH Genomic Centers for Infectious Diseases (GCID) 

program, U19-AI-110819. 

 The opinions expressed herein are solely those of the authors and do not 

necessarily represent the views of the granting agencies, BARDA, HHS, NIAID, 

NIH, nor our corporate sponsors, NF or SGVI.   

 

 

 



 

 iii 
 

Dedication 

I dedicate this work to my loving and devoted husband, Robert, and our two 

wonderful children, Zoe and Asher.  Robert, without your support and dedication I 

would not be able to stand so high and reach so far.  Zoe and Asher, you inspire me 

everyday to work to change your world for the better and to be a responsible 

custodian.  I hope to always stand as a good example to each of you and help you to 

reach for the stars. 



 

 iv 
 

Acknowledgements 

This work would not be possible without the support of a vast network of 

colleagues, friends and family.  I would like to acknowledge these individuals for 

their efforts to support me in this process. 

I would first like to thank my colleagues at the J. Craig Venter Institute 

(JCVI) for their dedication to my education and support of my research.  I thank 

Karen Nelson for allowing me to pursue graduate research at JCVI and always 

showing interest in my development as a young scientist.  I would also like to thank 

the members of the Viral Genomics and Viral Informatics groups at JCVI: Susmita 

Shrivastava, Paolo Amedeo, Vishal Thovari, Shiliang Wang, Brian Bishop, Danny 

Katzel, Neha Gupta, Reed Shabman, Kari Dilly, Jyoti Shankar, and Yi Tan.  I would 

especially like to thank four individuals at JCVI who helped beyond measure: Kelvin 

Li, Karla Stucker, Suman Das, and Timothy Stockwell.  Kelvin I thank for his 

dedication to accuracy and precision and his willingness to explain statistical 

concepts.  I thank Karla for her words of encouragement, enthusiasm for science, and 

her constancy throughout this process.  Suman I thank for his willingness to take a 

chance on me, for sharing his data, and his mentoring as a scientist.  I thank Tim for 

countless time spent mentoring.  I also thank him constant critiques, novel insights, 

and new perspectives on my work. 

I wish to thank the members of my dissertation committee for their 

involvement in my research and willingness to shepherd me through the PhD process.  

Najib El-Sayed, Sridhar Hannenhalli, and Steve Mount, thank you for your service, 

interest, critiques and kind words.  I thank my JCVI advisor, John Glass, without 



 

 v 
  

whom I would still be attempting to piece together a dissertation proposal.  I thank 

you for your willingness to involve me in your lab and for starting me down the long 

road of research ahead of me.  I should also thank David Wentworth for his efforts on 

my committee in the past.  For his mentoring as a virologist and Influenza researcher 

and willingness to involve me in his projects at JCVI, I will be forever grateful. 

I wish to separately acknowledge my dissertation committee chair, Michael 

Cummings.  I cannot express the extent of my gratitude for his involvement in my 

graduate education.  Michael’s calm consistency has helped me through this process 

in more ways than one.  From advice on preparing for qualifying exams, to navigating 

disappointments and pitfalls, to keeping me focused and on schedule, Michael has 

been there and encouraged me though it all.  Perhaps the best decision I have made 

while pursuing my PhD was asking Michael to become my advisor.  Thank you, I am 

most grateful. 

I wish to thank the many members of my family whom have assisted in the 

process of completing this dissertation.  To my mom and dad, Penny and Steve 

Schobel, thank you for the encouragement and support.  Thank you for the countless 

hours of childcare and for allowing me to write for countless weekends in your home 

away from the distractions of family life with small children.  I also wish to thank my 

brother, sisters and their spouses, Brian Schobel, Lisa Porter, Sara Burke, Maggie 

Schobel and Eli Burke.  Thank you for helping with the kids while I wrote.  I also 

wish to thank my nieces and nephews for 

I wish to thank four friends who have encouraged and supported me through 

this process.  First I would like to thank Nikki Edworthy for your help and advice 



 

 vi 
 

with the scientific process and for help editing this dissertation.  I thank Erin Berman 

for countless hours on gchat discussing science and the PhD process.  Our research 

domains in science might not overlap, but our love for science does and that has 

helped to keep me focused.  I thank Erin for her constant interest and kind words of 

encouragement.  Joshua Boyle I thank for his willingness to house me during my 

writing mini-sabbatical.  I also thank Josh for all the runs that provided a 

counterbalance to my cerebral pursuits.  Lastly, I thank my dear friend Brianna Boyle 

for her constant support, her uplifting encouragement, and most importantly her 

friendship.  Thank you Brianna. 

Finally, I wish to acknowledge my husband Robert Schobel-McHugh.  I thank 

Robert for his unwavering devotion to our children, Zoe and Asher and me.  I thank 

Robert for countless hours of single parenthood while I performed research and wrote 

this dissertation.  I thank Robert for lifting me up when I was down, for being a 

sounding board for new ideas, and for being curious about my work.  I cannot express 

the extent of my gratitude for having you with me during this process.  Thank you. 

 



 

 vii 
 

Table of Contents 
 
 
Preface ........................................................................................................................... ii	  
Dedication .................................................................................................................... iii	  
Acknowledgements ...................................................................................................... iv	  
Table of Contents ........................................................................................................ vii	  
List of Tables ................................................................................................................ x	  
List of Figures .............................................................................................................. xi	  
List of Abbreviations ................................................................................................. xiv	  
Chapter 1: Introduction to Viral Genomics and Comparative Genomics ..................... 1	  

Viral Genomics ......................................................................................................... 2	  
Background ........................................................................................................... 2	  
Traditional Viral Sequencing Using the Sanger Method ...................................... 4	  
Viral Sequencing Using Next-Generation Technology ........................................ 5	  
Sequence-Independent Methods ........................................................................... 5	  
Sequence-Dependent Methods .............................................................................. 6	  
DNA Versus RNA Viruses ................................................................................... 6	  
Assembly............................................................................................................... 7	  
Annotation ............................................................................................................. 8	  
Viral Genomic Standards .................................................................................... 10	  

Viral Comparative Genomics ................................................................................. 11	  
Background ......................................................................................................... 11	  
Public Resource Databases ................................................................................. 12	  
Phylogenetics and Related Methods ................................................................... 13	  
Phylodynamics .................................................................................................... 17	  
Genome Constellation Analysis and Recombination Analysis .......................... 18	  
3-D Structural Analysis ....................................................................................... 20	  
Intrahost Variation Analysis ............................................................................... 20	  
Phenotype and Metadata Analysis ...................................................................... 21	  

Study One: DASH: A Novel Method for Influenza Virus Surveillance and Vaccine 
Candidate Evaluation .............................................................................................. 22	  

Overview ............................................................................................................. 22	  
State of the Art .................................................................................................... 23	  
Status of Work .................................................................................................... 24	  
Author Contributions .......................................................................................... 25	  

Study Two: VirComp: A Novel Method for Viral Comparative Analysis Using 
Cluster-Based Gene Constellations ......................................................................... 25	  

Overview ............................................................................................................. 25	  
State of the Art .................................................................................................... 27	  
Status of Work .................................................................................................... 27	  
Author Contributions .......................................................................................... 28	  

Study Three: Large-Scale Respiratory Syncytial Virus Whole-Genome Sequencing 
Identifies Sequence Duplication in G Gene Associated with Reduced Diseases 
Severity ................................................................................................................... 28	  



 

 viii 
 

Overview ............................................................................................................. 28	  
State of the Art .................................................................................................... 29	  
Status of Work .................................................................................................... 30	  
Author Contributions .......................................................................................... 30	  

Chapter 2: DASH: A Novel Method for Influenza Virus Surveillance and Vaccine 
Candidate Evaluation .................................................................................................. 31	  

Abstract ................................................................................................................... 31	  
Introduction ............................................................................................................. 32	  
Methods................................................................................................................... 35	  

Data Collection and Database ............................................................................. 35	  
Antigenic Distancing .......................................................................................... 38	  
Distancing of Antigenicity by Sequence-based Hierarchical Clustering (DASH)
............................................................................................................................. 41	  
Pipeline Details ................................................................................................... 43	  
Proportion Tracking Pipeline .............................................................................. 51	  
Retrospective Analysis ........................................................................................ 52	  
Analysis of Effect of JCVI HI Data .................................................................... 55	  

Results ..................................................................................................................... 56	  
Preliminary Data Analyses ................................................................................. 56	  
Retrospective Analyses Compared DASH Predictions with WHO Influenza 
Vaccine Strain Recommendations. ..................................................................... 60	  
DASH Identified Drift Variants for Additional Testing and Ranked Potential 
Vaccine Candidates ............................................................................................. 64	  
Additional HI Assay Data from DASH-Selected Synthetically Generated Viruses 
Improved DASH Vaccine Strain Prediction ....................................................... 67	  

Discussion ............................................................................................................... 73	  
Conclusion .............................................................................................................. 76	  

Chapter 3: VirComp: A Novel Method for Viral Comparative Analysis Using 
Cluster-Based Gene Constellations ............................................................................. 78	  

Abstract ................................................................................................................... 78	  
Introduction ............................................................................................................. 79	  
Methods................................................................................................................... 80	  

Data Collection and Preparation ......................................................................... 80	  
VirComp Constellation Analysis Pipeline .......................................................... 81	  
Maximum Likelihood Phylogenetics .................................................................. 84	  
Sequence Analysis .............................................................................................. 85	  
Constellation Visualization using OrionPlot ...................................................... 85	  

Results ..................................................................................................................... 85	  
Exhibition Swine Influenza Virus Analysis ........................................................ 86	  
Human H3N2 Influenza from Houston, Texas During the 2012-2013 Season .. 88	  
North American Avian H7 Influenza Diversity Leading to Highly Pathogenic 
Poultry Outbreaks ............................................................................................... 89	  
Identification of Respiratory Syncytial Virus Chimeras ..................................... 91	  
Diversity in Zaire Ebola Virus and Identification of Protein Variants ............... 94	  
Comparison of Constellation Clusters to Phylogenies ........................................ 95	  

Discussion ............................................................................................................... 96	  



 

 ix 
 

Detection of Genomic Rearrangements .............................................................. 97	  
Species Agnostic ................................................................................................. 98	  
Diversity and Visualization ................................................................................. 98	  
Variant Selection ................................................................................................. 98	  
Performance and Algorithms .............................................................................. 98	  
Drawbacks and Limitations ................................................................................ 99	  
Similar Methods ................................................................................................ 100	  

Conclusions ........................................................................................................... 101	  
Chapter 4: Large-Scale Respiratory Syncytial Virus Whole- Genome Sequencing 
Identifies Sequence Duplication in G Gene Associated with Reduced Diseases 
Severity ..................................................................................................................... 103	  

Abstract ................................................................................................................. 103	  
Introduction ........................................................................................................... 104	  
Methods................................................................................................................. 106	  

Study Population ............................................................................................... 106	  
RNA Extraction and RT-PCR ........................................................................... 107	  
RSV Whole-Genome Sequencing ..................................................................... 108	  
RSV Genome Assembly and Annotation ......................................................... 109	  
Phylogenetic Analyses ...................................................................................... 110	  
Glycosylation Prediction ................................................................................... 112	  
Statistical Analyses ........................................................................................... 112	  
BaTS Analysis for Detecting Global Versus Local Circulation Patterns with Tree 
Topologies ......................................................................................................... 113	  

Results ................................................................................................................... 113	  
Large-Scale RSV Whole-Genome Sequencing from Nashville, Tennessee 
During the 2012-2013 Season ........................................................................... 113	  
Maximum Likelihood Phylogenetic Analyses Demonstrate the Convergent 
Emergence of G Duplications ........................................................................... 115	  
Bayesian Phylogenetic Analysis Provides Estimates of RSV Evolutionary 
Dynamics .......................................................................................................... 118	  
Glycosylation Analysis Reveals Genotype Specific Glycosylation Patterns in the 
G Protein ........................................................................................................... 123	  
Gene Sequence Plasticity Contributes to Variability Between and Within RSV 
Groups ............................................................................................................... 125	  
Detection of Global and Local Circulation Patterns Ssing BaTS Analysis ...... 126	  
RSV-A 72-Nucleotide G Gene Duplication was Associated with Reduced 
Disease Severity in Infants ................................................................................ 126	  

Discussion ............................................................................................................. 128	  
Conclusions ........................................................................................................... 134	  

Chapter 5:  The Future of Viral Comparative Genomics .......................................... 135	  
Appendices ................................................................................................................ 141	  
Appendix A. Interim PTP and DASH report of Influenza activity from December 
2013........................................................................................................................... 141	  
Appendix B. Glycosylation and dN/dS data supporting the RSV Study .................. 159	  
Bibliography ............................................................................................................. 181	  



 

 x 
  

List of Tables 

Table 1 Select Web-Accessible Public Repositories of Viral Genomic Data. ........... 12	  
Table 2 Results of a Retrospective Analysis of DASH Candidate Predictions 
Compared to WHO Vaccine Selections for 22 Influenza Seasons Between 2002 and 
2013............................................................................................................................. 62	  
Table 3 WHO Influenza Vaccine Recommendations and Accepted Seeds Viruses 
Compared to Time Similar or Identical Viruses Were Identified as STICK Candidates 
by DASH. .................................................................................................................... 65	  
Table 4 Evaluation of The Impact of DASH Directed Antigenic Surveillance During 
the 2013 Southern Hemisphere Vaccine Selection. .................................................... 67	  
Table 5 Relative Shift in Observed Predicted Antigenic Coverage for Nine H3N2 
Viruses With and Without JCVI HI Data. .................................................................. 69	  
Table 6 Relative Shift in Observed Predicted Antigenic Coverage for Seven H1N1 
Viruses With and Without JCVI HI Data. .................................................................. 71	  
Table 7 Relative Shift in Observed Predicted Antigenic Coverage for Two IBV 
Victoria Lineage Viruses With and Without JCVI HI Data. ...................................... 72	  
Table 8 Relative Shift in Observed Predicted Antigenic Coverage for Three IBV 
Yamagata Lineage Viruses With and Without JCVI HI Data. ................................... 72	  
Table 9 Demographics and Clinical Characteristics of Enrolled Infants (n=99) ...... 114	  
Table 10 Mean Evolutionary Rates (substitutions/site/year) and Times to Most Recent 
Common Ancestor (tMRCA) as Inferred by Bayesian Analysis .............................. 120	  
Table 11 Observed Indels and Start and Stop Site Variants Within RSV-A, RSV-B 
and Between A and B groups. ................................................................................... 125	  
Table 12 Summary of MAR Candidates with Priority and Rationale. ..................... 141	  
Table 13 Predicted Antigenic Coverage of Influenza A H3N2 Candidate Viruses in 
DASH ........................................................................................................................ 147	  
Table 14 Analysis of Recent WHO Candidate Viruses. ........................................... 148	  
Table 15 Predicted Antigenic Coverage of Influenza A Pandemic H1N1 Candidate 
Viruses in DASH ...................................................................................................... 151	  
Table 16 Analysis of Recent WHO Candidate Viruses. ........................................... 151	  
Table 17 Predicted Antigenic Coverage of Influenza B Yamagata Candidate Viruses 
in DASH ................................................................................................................... 153	  
Table 18 Predicted Antigenic Coverage of Influenza B Victoria Candidate Viruses in 
DASH ........................................................................................................................ 156	  
Table 19 N-linked and O-linked Glycosylation Sites on the F Protein for 71 RSV 
Study Samples. .......................................................................................................... 159	  
Table 20 N-linked and O-linked Glycosylation Sites on the G Protein for 71 RSV 
Study Samples. .......................................................................................................... 161	  
Table 21 dN/dS Results for Positive or Diversifying Selection Sites Across All RSV 
Genes Categorized by RSV-A and RSV-B. .............................................................. 178	  



 

 xi 
 

List of Figures 

Figure 1 Comparison of Sanger and Next-Generation Sequencing Platforms (3). ....... 1	  
Figure 2 Generation of Infectious Virus Using a Reverse Genetics System (2). ......... 3	  
Figure 3 De Novo-Mapping-Mapping Assembly Method Using CLCbio (1). ............. 7	  
Figure 4 Example Genome Constellation Figure Depicting Avian Influenza H7 
Genomes. .................................................................................................................... 19	  
Figure 5 Computational Framework for Evaluating Influenza Vaccine Candidates. . 23	  
Figure 6 The Visualization of Viral Genome Constellations. ..................................... 26	  
Figure 7 Genetic Determinants for the Pathogenicity and Epidemiology of 
Respiratory Syncytial Virus. ....................................................................................... 29	  
Figure 8 Schema of Custom Influenza Sequence and HI Data Database. .................. 35	  
Figure 9 Comparison of RMSD Values for Various Antigenic Distancing Experiment 
Using Mixed Metric Space and Dimensionalities and Frequency of Use. ................. 40	  
Figure 10 Workflow of the DASH Pipeline.  Scripts responsible for various aspects of 
the computational pipeline are indicated next to category boxes in the diagram. ...... 41	  
Figure 11 Antigenic Distance Plot of Three HI Assays Performed for The 2012-2013 
Vaccine Strain Selection. ............................................................................................ 42	  
Figure 12 Influenza H3N2 3-D Protein Structure With Five Known Immunodominant 
B-Cell Epitopes Highlighted. ...................................................................................... 44	  
Figure 13 Phenotype Mapping Contingency Table for Leaf State Inheritance .......... 45	  
Figure 14 Inference Algorithm Utilized by DASH. .................................................... 46	  
Figure 15 Bootstrap Analysis Methodology Used to Assess Reliability of Antigenic 
Coverage Predictions. ................................................................................................. 48	  
Figure 16 Antigenic Distance Plot HI Data Collected for the 2012-2013 Vaccine 
Candidate Selection. ................................................................................................... 54	  
Figure 17 Protein Clusters of HA Sequences From Smith et. al. 2004. ..................... 56	  
Figure 18 Preliminary Analysis with DASH's Antigenic Coverage Prediction. ........ 58	  
Figure 19 Analysis of the 2003-2004 Vaccine Strain Selection. ................................ 59	  
Figure 20 DASH Diagrams Comparing Antigenic Coverage Prediction for A/S. 
Australia/3/2011 Without (A) and With (B) JCVI HI Data. ....................................... 69	  
Figure 21 DASH Diagrams Comparing Antigenic Coverage Prediction for 
A/Brisbane/299/2011 Without (A) and With (B) JCVI HI Data. ............................... 70	  
Figure 22 DASH Diagrams Comparing Antigenic Coverage Prediction for 
A/Victoria/361/2011 Cell (A) and Egg (B) Passaged Virus HI Data With AD 
Histogram Plots. .......................................................................................................... 70	  
Figure 23 DASH Diagrams Comparing Antigenic Coverage Prediction for 
A/Quebec/RV1432/2011 Without (A) and With (B) JCVI HI Data. .......................... 71	  
Figure 24 DASH Diagrams Comparing Antigenic Coverage Prediction for 
B/Wisconsin/1/2010 Without (A) and With (B) JCVI HI Data. ................................. 73	  
Figure 25 Workflow of The VirComp Constellation Analysis Pipeline. .................... 84	  
Figure 26 Influenza A H3N2 and H1N2 Genome Constellations Present in Exhibition 
Swine From Ohio Fairs Between 2009 and 2011. ...................................................... 87	  
Figure 27 Human Influenza A H3N2 Genome Constellation Analysis from Huston, 
Texas During the 2012-2013 Influenza Season. ......................................................... 88	  



 

 xii 
 

Figure 28 Influenza A H7 Genome Constellation Superimposed on A Bayesian 
Phylogeny of The HA Gene of Influenza Collected from North American Wild and 
Domestic Birds. ........................................................................................................... 90	  
Figure 29 Respiratory Syncytial Virus Genome Constellation Analysis Reveals 
Putative Recombinant. ................................................................................................ 92	  
Figure 30 Zaire Ebola Virus Protein Constellation Plot. ............................................ 94	  
Figure 31 Reanalysis of Putative RSV Recombinant Virus in the Context of Study 
Sequences Only and Lab-generated Amplicon Segments. ......................................... 97	  
Figure 32 Maximum Likelihood Phylogeny of 545 RSV Whole-Genome Sequences 
Including 474 Downloaded from GenBank on June 24 2014 and 71 Study Sequences.
................................................................................................................................... 115	  
Figure 33 Maximum Likelihood Phylogeny of RSV G Gene Sequences from a Pruned 
Whole-Genome Data Set. ......................................................................................... 116	  
Figure 34 Bayesian Maximum Clade Credibility Trees for RSV-A (A) and RSV-B 
(B) G Gene Sequences. ............................................................................................. 118	  
Figure 35 Times to Most Recent Common Ancestors (tMCRAs) and Mean 
Evolutionary Rate Estimates Inferred by Bayesian Analyses. .................................. 119	  
Figure 36 Bayesian Maximum Clade Credibility Trees for All Available Full G Gene 
Sequences Downloaded from GenBank and Down Sampled to Include Representative 
Centroid Sequences from 98% Sequence Identity Gene Clusters. ........................... 120	  
Figure 37 Divergence Time Estimates from a Bayesian Divergence Dating Analysis 
of the RSV-A G Gene Sequences. ............................................................................ 121	  
Figure 38 Bayesian SkyGrid Reconstruction of Population Dynamics for RSV-A (A) 
and RSV-B (B) G Gene Data Sets. ........................................................................... 122	  
Figure 39 Consensus N- and O-Linked Glycosylation Patterns for the Seven Study 
Genotypes. ................................................................................................................ 123	  
Figure 40 Comparison of Bronchiolitis Severity Scores (BSS2) with the Presence or 
Absence of the 72-nucleotide RSV-A G Gene Duplication. .................................... 126	  
Figure 41 Maximum Likelihood Phylogeny of a Pruned RSV Whole-Genome Data 
Set. ............................................................................................................................ 127	  
Figure 42 Proportional Sizes of H3N2 Clusters as Fraction of Total Sequences. .... 144	  
Figure 43 Sequence Counts Used for H3N2 Windowed Proportion Tracking. ........ 144	  
Figure 44 Proportional Sizes of H3N2 Clusters as Fraction of Total Sequences 
(Without Swine Origin Viruses). .............................................................................. 145	  
Figure 45 Sequence Counts Used for H3N2 Windowed Proportion Tracking (Without 
Swine Origin Viruses). .............................................................................................. 145	  
Figure 46 Proportional Sizes of H1N1 Clusters as Fraction of Total Sequences. .... 149	  
Figure 47 Sequence Counts Used for H1N1 Windowed Proportion Tracking. ........ 149	  
Figure 48 Proportional Sizes of Influenza B/Yamagata Clusters as Fraction of Total 
Sequences. ................................................................................................................. 152	  
Figure 49 Sequence Counts Used for Influenza B/Yamagata Windowed Proportion 
Tracking. ................................................................................................................... 152	  
Figure 50 Proportional Sizes of Influenza B/Victoria Clusters as Fraction of Total 
Sequences. ................................................................................................................. 154	  
Figure 51 Sequence Counts Used for Influenza B/Victoria Windowed Proportion 
Tracking. ................................................................................................................... 155	  



 

 xiii 
 

Figure 52 Proportional Sizes of Combined Influenza B Clusters as Fraction of Total 
Sequences. ................................................................................................................. 157	  
Figure 53 Sequence Counts Used for Influenza B Combined Windowed Proportion 
Tracking. ................................................................................................................... 157	  
 



 

 xiv 
 

List of Abbreviations 
 
AD - Antigenic Distancing 
ALRI - Acute lower respiratory tract infection 
AMOVA - Analysis of molecular variance 
API - Application program interface 
BLAST - Basic Local Alignment Search Tool 
BSS2 - Bronchiolitis Severity Score 2 
BaTS - Bayesian Tip-association Significance Testing 
CDS - Coding sequence 
CIPRES - Cyber Infrastructure of Phylogenetic Research 
DASH - Distancing of Antigenicity by Sequence-based Hierarchical Clustering 
F - Fusion 
FDA - Food and Drug Administration 
G - Glycoprotein 
GARD - Genetic Algorithm for Recombination Detection 
GSI - Geneological Sorting Index 
GTR-IG - General time reversible model with a nucleotide site-specific rate 
heterogeneity with four rate categories and invariant sites  
HA - Hemagglutinin 
HI - Hemagglutination inhibition assay 
HLA – Human leukocyte antigens 
HMM - Hidden Markov model 
HPD - Highest posterior density 
IAV - Influenza A virus 
IBV - Influenza B virus 
ILI - Influenza-like illness 
INDEL - Insertion/Deletion 
INSPIRE - Infant Susceptibility to Pulmonary Infections and Asthma Following RSV 
Exposure 
IRD - Influenza Research Database 
JCVI - J. Craig Venter Institute 
L - Polymerase 
M - Matrix 
M2-1 - Transcription regulator 1 
M2-2 - Transcription regulator 2 
MAR - Manufacturing at-risk 
MCC - Maximum clade credibility 
MCMC - Markov chain Monte Carlo 
MDS - Multi-dimensional scaling 
ML - Maximum likelihood 
MLST - Multi-locus sequence tags 
MetaCats - Metadata-driven comparative analysis tool for sequences 
N - Nucleocapsid  
NA - Neuraminidase 



 

 xv 
 

NGS - Next-generation sequencing 
NH - Northern Hemisphere 
NIGSP - NIAID Influenza Genome Sequencing Project 
NIMR - National Institute for Medical Research 
NJ - Neighbor joining 
NS1 - Non-structural protein 1 
NS2 - Non-structural protein 2 
OBO - Open Biomedical Ontologies 
ORF - Open reading frame 
P - Phosphoprotein 
PCA - Principal component analysis 
RDBMS - Relational database management system 
RDRP - Recombination Detection Program 
REST - Representational state transfer 
RMSD - Root-mean squared deviation 
RSV - Respiratory Syncytial Virus 
RT - Reverse transcription 
SBP - Single Breakpoint Recombination 
SH - Small hydrophobic protein 
SH - Southern Hemisphere 
TSV - Tab separated values 
URI - Upper respiratory infections 
VIGOR - Viral Genome ORF Reader 
VRBPAC - Vaccines and Related Biological Products Advisory Committee 
ViPR - Viral Pathogen Resource 
WHO - World Health Organization 
mAB - Mouse antibody 
tMRCA - Time to most recent common ancestor



 

 1 
 

Chapter 1: Introduction to Viral Genomics and Comparative 

Genomics 

Viral genomics began with the sequencing of the first RNA virus in 1976 (6) soon 

followed by the sequencing of the first DNA virus using the Sanger method of 

sequencing in 1977 (7).  Both of these viruses were relatively small bacteriophages, 

MS2 and Φ X174 respectively (6, 7).  Due to its amenability for use as a high-

throughput technique, Sanger’s method of DNA sequencing (8), using dideoxy chain-

terminating nucleotide analogues, was responsible for the great genomics revolution 

of the 1990’s and 2000’s.  Starting with radiolabeling and later with florescent 

labeling, this technology led to the sequencing of dozens of eukaryotic genomes, 

hundreds of 

bacterial 

genomes, and 

thousands of viral 

genomes.  

Recently, Sanger 

sequencing has 

been supplanted 

by several next-

generation 

sequencing techniques (NGS) that use massively parallel sequencing approaches to 

greatly accelerate the speed at which DNA sequences can be produced (Figure 1).  

Figure 1 Comparison of Sanger and Next-Generation Sequencing Platforms (3). 
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Viral genomics has benefited significantly from these technological advances, 

enabling sophisticated epidemiological and evolutionary analyses and providing 

novel insights into the pathogenicity, ecology, and epidemiologic nature of countless 

human and animal pathogens. 

Viral Genomics 

Background  

 Early viral surveillance, evolution, epidemiology, and molecular pathogenesis 

studies typically did not rely on whole genome sequencing.  Rather, small portions of 

viral genomes were sequenced to answer specific questions regarding the viruses in 

question.  For example, influenza virus surveillance largely relied on the sequencing 

of the hemagglutinin and neuraminidase genes due to fact that these genes could be 

used to genotype the virus.  Knowing these genetic types allowed researches to track 

the evolution of the virus and predict when the virus had drifted sufficiently to require 

a new vaccine.  Similarly, respiratory syncytial virus (RSV) researchers focused their 

sequencing efforts on the G and F proteins, as these genes could be used to 

discriminate between the circulating lineages of RSV.   

Whole genome approaches, as enabled by high-throughput sequencing 

technologies, allow a deeper understanding of viral evolutionary and epidemiological 

dynamics.  For instance, whole genome studies provide researchers with the ability to 

identify reassortment in segmented or recombination events in non-segmented 

viruses.  These types of genomic rearrangements give viruses a mechanism to 

increase their genetic diversity and hence increase their chances of acquiring a 

selective advantage.  Whole genome studies also provide researchers with insights 
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into the epistatic interactions between mutations.  These epistatic interactions could 

have implications for the molecular pathogenesis and epidemiology of the virus.  An 

example of this was published by Das et al showing that through monoclonal 

antibody challenge epistatic mutations could be elicited in influenza virus proteins to 

provide both an immune escape at one site and compensatory protein stabilization at a 

second and even third site (9).  The stabilization described could be structural or 

functional in nature (9).  This type of research is especially important to uncover 

possible mutational paths available at any given point in the evolution of human 

pathogens. 

Whole genome sequencing also enables a wide range of methods for 

performing viral research.  These methods include generating virus stocks from 

infectious clones for single-stranded positive-sense virus, or from a reverse genetics 

system for single-

stranded negative-sense 

and double-stranded 

viruses.  These systems 

are used to generate 

viruses in cell culture 

without the need for 

access to natural isolates 

(Figure 2).  Combined 

with synthetic 

technologies, viruses can Figure 2 Generation of Infectious Virus Using a Reverse Genetics 
System (2). 
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be generated simply from the digitally stored whole genome sequence of a virus, 

without the need for any of the starting DNA used with traditional molecular cloning 

techniques.  The ease of generation of viral stocks has accelerated a wide range of 

molecular studies, such as the antigenic testing of viruses, replacing the previous use 

of the hemagglutination inhibition assay to assess antigenic similarity of influenza 

viruses.  This has the potential to positively influence the process by which influenza 

virus vaccine candidates are selected.  Similarly, specific mutations of interest can be 

identified using whole genome sequencing, those mutations quickly synthesized into 

virus rescue systems and the viruses tested either in in vitro or in vivo testing models. 

Traditional Viral Sequencing Using the Sanger Method 

 Until the advent of next-generation sequencing technologies in the mid to late 

2000’s, viral genome sequencing was performed using traditional Sanger sequencing 

methodologies.  To prepare viral genomic materials, the viral class must first be 

determined.  The genetic material of DNA viruses can be sequenced directly, 

however RNA viruses must first undergo a reverse transcription (RT) step to convert 

the genomic material from RNA to DNA.  Sanger and next-generation sequencing 

can only be done on DNA.  Once the source material is prepared, Sanger sequencing 

using specific primers can be used.  Primers will differ depending on whether a 

sequence-dependent or sequence-independent method was used to generate source 

material. 
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Viral Sequencing Using Next-Generation Technology 

 Viral genomic sequencing using next-generation technology has enabled a 

rapid acceleration of the completion of the sequencing of viral genomes in recent 

years.  Platforms such as Roche 454, Illumina MiSeq and HiSeq, and Life 

Technologies Ion Torrent are a few used to generate genome sequences in a 

massively parallel fashion.  These technologies all produce huge amounts of sequence 

by sequencing in parallel small fragments of the source material.  Typically, the 

source material is first prepared for sequencing by constructing libraries with 

technology-specific adaptor sequences.  In the case of viral genomes, whole runs on 

next-generation devices for individual viruses are not necessary.  Multiplexing 

techniques are used to combine multiple viral genomes onto a single next-generation 

runs.  Multiplexing is also accomplished by attaching unique DNA barcode sequences 

(typically six to eight nucleotides in length) to the genome fragments.  This allows for 

the genomes from single runs to be de-multiplexed and binned per genome or 

genomic library after sequencing is complete.   

Sequence-Independent Methods 

 Sequence-independent viral sequencing methods are typically used for viral 

discovery or for when no close relatives of the target virus are available.  Sequence-

independent methods do not rely on the use of specific primers for the target genome.  

Instead, these methods use random priming, usually with tagged primers to amplify 

the source material prior to sequencing (10).  Random priming techniques will 

amplify both the target genome and any other genetic contamination present in the 

sample, therefore, enrichment techniques aimed at concentrating viral genetic 
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material and excluding host sequences are recommended (11).  Using Sanger 

methodology, sequencing is conducted with primers specific to the tag sequences on 

the random primers (10).  Using next-generation approaches, technology specific 

libraries are constructed with the enriched and amplified products (11). 

Sequence-Dependent Methods 

 Sequence-dependent viral genomic approaches require that close references of 

the target genomes are available in the public sequence repositories.  Target genomes 

are amplified prior to sequencing using primers specific to the genus or species of 

virus of interest.  Typically, genomes must contain 90% sequence identity for PCR 

primers to be designed and used to amplify target genomes (12).  Given adequate 

reference sequences, primers can be designed with automated computational pipelines 

and such computer generated primers have exceptionally high reaction success rates 

(12).  Once genomes are amplified, usually using several PCR reactions (one or more 

reaction per genomic segment for segmented viruses, or several for non-segmented 

genomes), sequencing can be performed.  For Sanger technologies, PCR products are 

sequenced directly, whereas with next-generation approaches the PCR products are 

fragmented and technology-specific sequencing libraries are produced prior to 

sequencing. 

DNA Versus RNA Viruses 

 Viruses come in a variety of classes according to the Baltimore classification 

system.  The most notable difference between the classes, as it applies to sequencing, 

is that there exist both RNA and DNA viruses.  DNA viruses can be largely 
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sequenced using the same basic methods as any higher order organism; however, 

RNA viruses must first undergo a RT step to convert the RNA into DNA prior to 

sequencing.  Several RT methods exist, most notably multiplexed reverse 

transcription polymerase chain reaction or mRT-PCR (13, 14).  In an mRT-PCR 

reaction on an influenza A virus genome, all eight genomic segments can 

simultaneously be reverse transcribed and amplified in a single reaction tube (13).  

This greatly accelerates the speed at which influenza viruses can be prepared for 

sequencing.  Not all viruses have an efficient mRT-PCR method developed for them.  

Rotavirus, for example, currently requires separate RT-PCR reactions for each 

genomic segment to adequately amplify the cDNA (11).   

Assembly 

 Whether 

sequenced using 

Sanger or next-

generation 

methodologies, the 

next step in data 

preparation for viral 

genomic sequences is 

assembly.  Initially, the NIAID Influenza Genome Sequencing Project (NIGSP) relied 

on a custom assembler called Minimus that was capable of assembling Sanger 

sequences with minimal overlaps (15).  This was possible due to the fairly constant 

genomic structures in closely related influenza virus genomes.  More variable 

Figure 3 De Novo-Mapping-Mapping Assembly Method Using CLCbio (1). 
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genomes require different methods for assembly.  Currently, the J. Craig Venter 

Institute (JCVI) employs a de novo-mapping-mapping assembly approach to genome 

assembly using next-generation sequences (Figure 3) (1).  In this method, genomic 

sequences are first assembled using CLCBio’s de novo assembler (16).  The resultant 

contigs are put into NCBI’s Basic Local Alignment Search Tool (BLAST) (17) 

against a reference database of genomes presumed to be similar to the subject.  The 

closest reference for each genomic structure is selected for a CLC mapping assembly 

(18).  The consensus of this first round of mapping assembly is then used as a 

reference for a second round of CLC mapping assembly.  This second mapping 

assembly pulls in sequences that are more distant from the original reference.  This de 

novo-mapping-mapping approach has been successfully used for a variety of viral 

genome species (1).  Drawbacks of this approach come up when dealing with 

genomes where no close reference sequence is available for mapping, or when the 

subject genome is recombined with respect to two or more reference genomes (1).  

Both of these scenarios require manual intervention in the assembly process, which in 

turn slows the pace of the assembly process (1). 

Annotation 

 Genome annotation is the process by which genes are located and protein 

sequences are assigned annotation data types (such as gene symbols, protein names, 

go terms, or enzyme commission numbers).  In higher order organisms, the discovery 

of open reading frames (ORFs) in nucleotide sequences is accomplished by 

statistically assessing each base pair in the genome in its context to determine if it is 

likely to be a coding or non-coding base (19, 20).  This assessment can be used to 
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string together many so-called coding bases to form ORFs.  In a second stage of 

annotation, the ORFs or resultant translated amino acid sequences can be used as a 

query in a database search with BLAST or run through hidden Markov model 

(HMM) search programs to assess similarity to proteins with a known function.  If 

adequate similarity is determined, functional assignments of the aforementioned 

annotation data types can be made.  Viral annotation requires a different approach 

compared to that used for other genomes due to the typically small genome sizes of 

many viral species.  Viruses rely on densely coded genomes to transmit their genetic 

material and carry out the functions of viral cellular infections.  Statistical approaches 

to ORF calling are not applicable, since very little non-coding sequence is available to 

build appropriate ORF calling models (21, 22).  Instead, successful viral genome 

annotation requires a homology-based approach to ORF calling and functional 

annotation.  Homology-based approaches require highly curated reference databases 

containing all the target proteins of interest needed to adequately annotate a viral 

species (21, 22).  Annotation programs, such as the Viral Genome ORF Reader 

(VIGOR), utilize the homology-based approach (21, 22).  VIGOR first performs a 

BLASTX (nucleotide query against a protein subject database) against the reference 

database.  High-scoring hits are clustered and merged according to genome location 

and the best hit(s) are selected.  For each hit, the start and stop codons are located.  If 

the complete coding sequence (CDS) for a given protein is identified, it can be 

assigned the full annotation from the reference database for the gene that the CDS 

represents.  If the start or stop codons are missing or are in less than ideal locations, 

the assignment of partial or pseudogene can be made to the CDS, indicating a lower 
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confidence for the structural annotation.  VIGOR can identify polyproteins and 

mature peptides in viral genomes that then translate all or several viral proteins in a 

pre-processed state; these proteins are later cleaved into smaller functional viral 

proteins (21, 22).  Approaches like VIGOR also allow for novel viral features, such as 

RNA editing or ribosomal slippage, to be identified and adjustments to the CDS and 

amino acid translations can be made accordingly (21, 22).  Despite the fact that 

homology-based methods are powerful tools for viral genome annotation, they do 

require the expert curation of an appropriate reference database, a potentially time-

consuming process that can necessitate consultation with experts on specific virus 

families. 

Viral Genomic Standards 

 The viral genomics revolution has brought together data from various smaller 

communities of researchers.  For this reason, special attention to viral genomic 

standards should be made as we expand our knowledge of the vast varieties of viral 

species that exist in our world.  Where once community or even researcher driven 

standards of annotation where sufficient to understand a particular virus, now 

common data types across viral species can be made abstract and applicable to all 

viral genomic studies.  A few features common to viral genomics projects amenable 

to standardization include viral strain names, protein names, and metadata types: such 

as passage medium and number for cultured viruses, host species designations, and 

collection methods or even collection locations.  Use of common data types across 

viral genome projects will serve to enable access to viral genomic research across 

species without the need for specific domain knowledge or expertise.  High-
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throughput computational analysis could also benefit from such standardization.  This 

need is apparent, for example, in the use of standardized strain names.  Influenza 

virus strain A/California/07/2009 could be written any number of ways (such as 

A/CA/07/09, or A/California/7/09).  To the human eye these names appear to 

describe the same virus; however, computers require explicit rules to be established in 

code to make the same associations.  Similarly, passage metadata for an influenza 

virus may be listed as “Siat2” or “E3”.  A human knowledgeable of influenza 

passaging techniques would know “Siat2” means passaged in siat cells (a cell line 

derived from canine kidney cells) twice, or that “E3” means passaged in embryonated 

eggs three times.  Again, such nomenclature requires computer code to enable 

automated use of such fields.  This is especially true of passaging information that is 

not standardized, such as when researches code information using synonymous texts 

like “S2”, “SIAT2”, “Siat 2”, “Siat-2” or other variants.  Similarly, standards for 

protein naming are essential.  NES and NS1 both refer to the same influenza virus 

protein.  If one is used, the synonym should also always be listed.  In short, some 

thought on genome standards should be given, and standards should be developed and 

enforced across all viral species for naming, annotation data types, and metadata in 

order to enable computer analysis of these data, and for the sake of accurate analysis. 

Viral Comparative Genomics 

Background 

 Preparation of viral genomic sequences is merely the first step in 

understanding the intricacies of viral ecology, evolution, molecular pathogenicity and 

epidemiology.  Once a single or group of viral genomes have been completed, they 
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then need to be placed in context of other viruses in order to glean insights about the 

virus of interest.  This can be done using a number of techniques and together these 

techniques form the basis for modern viral comparative genomics. 

Public Resource Databases 

 Public repositories of viral sequence, phenotype and related metadata are 

essential resources for any comparative viral genomics study.  Public databases can 

be categorized into two basic forms: those that simply enable data archiving and those 

that also allow for bioinformatics analysis.  Some public repositories of note are listed 

in Table 1.  Beyond the sequences generated from a study, the addition of context 

sequences is essential to perform useful analyses.   

Table 1 Select Web-Accessible Public Repositories of Viral Genomic Data. 

Resource Short Name Viral Taxa URL 

Viral Pathogen Resource (23) ViPR All http://www.viprbrc.org 

Viral Zone (24, 25) ViralZone All http://viralzone.expasy.org 

International Repository for Hepatitis B 
Virus Strain Data (26) HepSeq HBV 

http://www.hpa-
bioinformatics.org.uk/HepSEQ-
Research/Public/Web_Front/main.php 

Heptatitis C Virus Database (26) HCV Database HCV http://hcv.lanl.gov 

HIV Sequence Database (26) HIV Database HIV http://www.hiv.lanl.gov 

Influenza Research Database (27) IRD Influenza http://www.fludb.org 

Influenza Virus Resource (28) IVR Influenza 
http://www.ncbi.nlm.nih.gov/genomes/
FLU/FLU.html 

Global Initiative on Sharing Avian 
Influenza Data (29) GISAID EpiFlu Influenza http://platform.gisaid.org 

Network of Expertise on Animal Influenza OFFLU Influenza http://www.offlu.net 

 

In recent years, database resources that go beyond simple data archiving 

functionality have been engineered.  Viral comparative resources, such as the 

Influenza Research Database (IRD) and Viral Pathogen Resource (ViPR), aim to be 

complete bioinformatics platforms that can be used to launch comparative viral 
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genomic studies (23, 27).  These resources have had some notable successes and 

some drawbacks have been found.  Successes include the implementation of 

standards for viral genome annotation and metadata types (30, 31), metadata-driven 

sequence analysis (32), and implementation of maximum likelihood phylogenetic 

analysis (23).  Drawbacks include a limited set of analysis applications.  For instance, 

ViPR does not instantiate Bayesian phylogenetic tools for use with database-derived 

or user-supplied data sets; although, Bayesian tools have been implemented on other 

web-based resources, such as Cyberinfrastructure of Phylogenetic Research 

(CIPRES) (33).  Another limitation to a web-based approach to bioinformatics is that 

it limits the ability of advanced users to perform high-throughput or custom analyses. 

Phylogenetics and Related Methods 

 Phylogenetic analysis techniques are among the most important set of 

methods for performing viral comparative genomics.  Phylogenetics is the study of 

the evolutionary relatedness between species or other entities most often based on 

data for morphological characters or biological sequences (nucleotides or amino 

acid).  Early algorithms for performing phylogenetic analyses were extensions of 

hierarchical clustering algorithms; however, with the advent of more complex 

evolutionary models and modern computing technologies, the collection of 

phylogenetic methods available today extends the capabilities of performing 

evolutionary studies significantly.   

Due to the computational demands and availability of advanced phylogenetic 

methodologies, older viral comparative studies relied on methods such as neighbor 

joining (NJ) to perform evolutionary analyses.  NJ is a deterministic algorithm that 
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operates on distance data to perform a heuristic search of tree topologies (34).  Many 

have speculated on the precise nature of the NJ algorithm and the optimality criterion 

it aims to solve (34, 35).  Given the same input data and evolutionary assumptions it 

will give the same resultant tree each time the program is run, although this tree may 

not be the most optimal solution. 

With the development of more advanced algorithms and modern computer 

processing technology, phylogenetic methods such as maximum likelihood (ML) and 

Bayesian techniques have been applied to phylogenetics.  ML can be coupled with 

advanced substitution models, such as the general time reversible model, to infer 

evolutionary change between sequences. NJ is a deterministic algorithm, that given 

the same input and evolutionary model, will arrive at the same output tree (34, 36). In 

contrast ML searches for the tree that best fits a particular evolutionary model that 

satisfies the maximum likelihood criterion via a stochastic search of tree space (37) 

utilizing strict or non-strict hill climbing algorithms.  

ML algorithms aim to find the most likely phylogeny from a given a set of 

input characters.  ML methods are thought to be robust to violations in the 

substitution model because they are able to account for hidden evolutionary changes 

that were likely to occur over time, at some probability as determined by the model 

used to make the phylogenetic inferences.  Even with relatively few taxa, the space of 

all available tree topologies vastly dwarfs the number of trees the ML algorithms are 

capable of examining under reasonable time scales.  Tree space is also non-uniform.  

Strict hill climbing algorithms are more likely to get stuck in local maxima without 

finding the true ML tree.  This can also be true for non-strict hill climbing algorithms, 
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but to a lesser degree.  Ultimately the ML tree is just a point estimate, with a rational 

statistical methodology to support the evolutionary relationships it describes.  For 

these reasons, methods for assessing the quality of the ML tree are required.  Most 

notably, bootstrapping is typically performed to assess the reliability of specific node 

branching topologies found within the tree (36).  Similarly, multiple ML analyses can 

be run to increase confidence that the ML phylogeny has been well sampled.  

Together, these methods form the basis for best practices in ML phylogenetics.  It 

should be noted that bootstrapping is also routinely performed on NJ inferred 

phylogenies. 

Bayesian phylogenetic techniques are now frequently performed in viral 

phylogenetics and offer a framework for performing state-of-the-art spatiotemporal 

analyses of sequence data.  Bayesian statistics has the advantage of using prior 

knowledge of a problem of interest to help inform the analysis of the problem (36).  It 

is different from ML methods in that Bayesian methods aim to sample multiple 

possible phylogenetic hypotheses and use all of them to generate distributions of the 

various parameter statistics related to the inferred phylogenies (38).  These statistics 

range from probabilities for specific branch length and node topologies, to mutation 

rates or times to most recent common ancestors.  The distributions of these statistics 

can be used to infer credible intervals around various aspects of the phylogeny in 

question and thus provide confidence in the phylogenetic hypothesis.  These intervals 

are calculated on distributions collected primarily as part of the Markov chain Monte 

Carlo (MCMC) algorithm (36), as opposed to after-the-fact using bootstrapping in an 

ML context.  The difficulties of Bayesian approaches are the computational 
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complexity of the analyses and the selection of the priors.  Computation for a 

Bayesian analysis can take days to months on modern computers, although some 

analyses can be completed in much less time (minutes to hours).  It should be noted 

that the time to complete any particular analysis is largely dependent on the size of 

the data set and the complexity of the model being examined.  Additionally, the 

selection of priors can sometimes be difficult, necessitating the rerunning of analyses 

to find the right parameters to use for a given data set. 

Methods related to phylogentics allow researchers to measure the variability 

and the selective pressures seen in viral data sets.  These methods include entropy 

analysis, which simply calculates the variability seen at specific sites within the viral 

genome or within the viral gene of interest (39), and dN/dS analysis, which quantifies 

the proportion of non-synonymous substitutions at non-synonymous sites to 

synonymous substitutions at synonymous sites within the coding genes of a genome 

(40, 41).  The latter example is used to assess whether specific sites within a genome 

are undergoing positive, neutral (diversifying), or purifying selection.  Each type of 

selection has a specific, measurable signature that can be use to inform downstream 

analysis and future research activities.  For example, high numbers of positive 

selected sites in a protein tells us that the protein is likely to be experiencing some 

sort of selective pressure in its environment.  This pressure could be exerted by the 

immune response of the host or be seen as the mutations required for a pathogen to 

adapt to the biological environment of a new host species, in the case of an emerging 

pathogen.  Both examples can help direct future research, inform us about a vaccine’s 

efficacy, or make inferences about trends in global virus surveillance. 
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Regardless of the methodology used, phylogenetics is an essential tool for 

making important inferences about viral epidemiological and pathogenic features. 

Examining an influenza virus hemagglutinin gene tree, for instance, can suggest to 

researchers that the gene is under selective pressures, presumably host immune 

system pressures (42).  Close examination of a viral phylogeny with geographical 

data can reveal if local or global circulation is seen during an epidemic (43). Trees 

can put viral studies into an ecological context, such as identifying which bird species 

are involved in the spread of avian influenza virus across the North American flyways 

(44).  This information can give researchers insights into how highly pathogenic 

outbreaks of influenza virus originate.  These are just a few examples of the power of 

phylogenetics to draw important conclusions about viruses.   

Phylodynamics 

 Phylodynamics is a relatively new concept in phylogenetics.  It encompasses a 

set of methods related to Bayesian phylogenetics that enable researchers to look at the 

epidemiologic, immunologic and ecological factors that lead to specific viral 

phylogenies (45).  The most notable of these techniques is phylogeography.  

Phylogeography enables researchers to examine how viruses spread across 

geographic spaces (46).  This is especially useful in tracking emerging infections as 

they traverse geographic space from one host to the next, and enables researchers to 

make important inferences about the epidemiological characteristics of these 

pathogens.  Phylodynamics is, in essence, a merging of important viral metadata or 

phenotype information with phylogenetic analysis to make additional quantifiable 
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inferences about viral evolution and the notable characteristics of viral pathogens (45, 

47).   

Genome Constellation Analysis and Recombination Analysis 

 Although phylogenetics tells us a great deal about the nature of viral ecology, 

the complexity of phylogenies makes interpretation of the results challenging.  

Categorical assignments of specific viral strains or viral genes can simplify these 

complex relationships for ease of interpretation.  One such methodology of 

categorical assignment of viral genes is known as genome constellation analysis, 

sometimes referred to as genotype analysis.  Constellation analysis is simply a way of 

grouping specific genes between viral genomes together based on some sort of 

objective criterion.  These methods utilize simple percent identity or phylogenetic 

distances to establish categorical membership (48-52).  Once categories are assigned, 

constellations between viral strains can be compared to determine a number of 

characteristics.  These include: evidence of reassortment events in segmented viruses, 

recombination in non-segmented viruses, and overall genetic diversity.  Combined 

with other viral data types, this information can reveal relationships between the 

genotype and the phenotype.  
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Figure 4 Example Genome Constellation Figure Depicting Avian Influenza H7 Genomes.  The genome 
constellation analysis performs independent categorization of each gene per column.  Colors for individual genes 
are not related to identical colors in other columns and are assigned arbitrarily by gene cluster number. Viral 
strains are listed per row.  In this case highly pathogenic influenza strains are indicated with red dots by the name 
of the strain in a post analysis annotation step (4). 

 Although constellation analysis can reveal recombination events, other tools 

exist to identify probable recombination within viral data sets.  These tools include 

the Recombination Detection Program (RDP), Single Breakpoint Recombination 

(SBP), and the Genetic Algorithm for Recombination Detection (GARD).  RDP 

implements several recombination detection algorithms and provides a graphic that 

denotes the probable locations of the recombination events, as well as the probable 

donor of the recombinant subsequences (53).  Similarly, SBP and GARD (both 

methods implemented on the datamonkey.org website), are capable of detecting the 

presence of recombination events and identifying the locations of the recombination 
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events, respectively (54).  These algorithms are more statistically grounded than the 

detection through constellation analysis, and should be considered higher order 

evidence.  It is important to note, however, that recombination event detection should 

always be confirmed, as methodological errors in sequencing can lead to the artificial 

detection of recombination events.   

3-D Structural Analysis 

 Structural analysis of viral proteins is a key component of research aimed at 

determining the effects of mutation on viral phenotypes.  3-D structures of proteins 

can be compared between viruses to determine the structural changes with the 

potential to alter antigenic phenotype, viral attachment efficiency, or any number of 

other phenotypes associated with molecular pathogenicity and epidemiology.  For 

example, the hemagglutinin protein of influenza has been reported to alter its 

glycosylation pattern as part of its strategy to evade host immunity.  These types of 

changes can be modeled as 3-D structures for ease of visualization.  One drawback to 

3-D structural analysis is that it is relatively low-throughput compared to may of the 

other comparative techniques discussed here.  Additionally, solved 3-D structures of 

the exact subject protein or a close relative to the subject protein are typically 

required.   

Intrahost Variation Analysis 

 Next-generation sequencing technology has allowed for inexpensive deep 

sequencing analysis of individual viral infections.  Due to high mutation rates, 

especially in RNA viruses, infection of an individual host will typically involve a 
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swarm of evolutionarily related viruses (55).  The differences between intrahost 

variants are typically small, but with deep sequencing approaches they are identifiable 

(55, 56).  This type of analysis can give researchers insights into the mutations related 

to host adaptation and immune evasion, among others.  In one study of an RSV-

infected child with combined severe immune deficiency syndrome, samples were 

taken before and after a bone marrow transplant to establish adaptive immunity (57).  

It was demonstrated through deep sequencing analysis that post-transplantation 

immune pressures began acting on the intrahost viral populations, revealing mutations 

within the immune-facing surface glycoprotein (the G protein) (57).  This is just one 

example of the power of this type of analysis. 

Phenotype and Metadata Analysis 

 As large-scale viral genomic sequencing efforts have become commonplace, 

the potential for detailed metadata and phenotype analysis has become possible.  The 

practice of integrating detailed phenotype data with the genotype analyses is in its 

infancy.  Although antigenic phenotyping of influenza virus is performed on a regular 

basis, this data is not routinely integrated into phylogenetic or cluster-based 

comparisons of viral data sets.  Integration of metadata analysis into phylogenetic 

analysis is perhaps a bit more advanced.  These types of analyses would be best used 

to determine if metadata could be associated with genotypes in any way, and perhaps 

to establish new phenotypes for viral species.  Tools such as the Bayesian Tip-

association Significance Testing (BaTS) exist to determine if specific metadata values 

have relationships to parts of or entire phylogenetic reconstructions (58).  Similarly, 

the Geneological Sorting Index (GSI), as implemented on the molecularevolution.org 
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website, is another tool that is capable of examining the degree to which certain 

labeled metadata values group together within a specific set of phylogenies (59). 

Outside of a phylogenetic context, the Metadata-driven comparative analysis tool for 

sequences (MetaCATS) (32), as implemented on the IRD and ViPR bioinformatics 

resource websites, is capable of analyzing multiple sequence alignments to determine 

if specific amino acid or nucleotide variants can be statistically associated with 

particular metadata values.  In addition to these tools, custom analysis is always 

possible with the use of statistical packages such as R or Matlab.  As mentioned 

above, viral data standards are of the upmost importance.  A cross-study analysis of 

metadata sets is only possible if metadata standards are adhered to when designing 

and implementing viral cohort studies (30, 31). 

Study One: DASH: A Novel Method for Influenza Virus Surveillance and 

Vaccine Candidate Evaluation 

Overview 

 This study aims to provide a computational framework for evaluating 

influenza vaccine candidates and demonstrates a model for a sequence-first approach 

to influenza virus surveillance (Figure 5).  The data workflow described in this study 

provides a methodology for determining the specific viruses, based on virus 

sequence, which would provide the most information via hemagglutination inhibition 

(HI) assay experimentation in a hierarchical fashion.  Additionally, the vaccine 

candidate evaluation methodology provided in this study extends the abilities of 

conventional antigenic distancing (AD) by providing a statistically robust approach to 

the association of antigenic phenotypes with viral genetic information.   
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State of the Art 

 Viral surveillance and vaccine candidate selection for influenza A and B 

viruses is a complex internationally coordinated process.  Networks of clinical 

collection centers around the world take samples from patients presenting in their 

facilities with influenza-like illness (ILI).  These samples are tested using the HI 

assays to assess their similarity to viruses known to have circulated in the recent past.  

This HI assay testing process is quite time consuming.  Some of the viruses are fully 

sequences, but a subset of the viruses have only their HA and NA genes sequenced.  

The viruses selected for complete genome sequencing either demonstrate an 

irregularity with respect to the HI testing or are randomly selected from the cohort of 

HI tested viruses to provide genetic information for further characterization.  In 

addition to the sequencing and HI testing, the HI assay data is used in a computational 

process known as antigenic cartography or distancing (AD).  With AD, antigenic 

maps of viruses can be used to visualize and rudimentarily quantify the differences 

Figure 5 Computational Framework for Evaluating Influenza Vaccine Candidates. 
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between viruses.  Direct associations between the antigenic phenotypes and other 

genetic information have, up to this point, been somewhat sparse. 

 This study hopes to extend the current state of influenza virus surveillance and 

vaccine selection by providing a framework for performing surveillance using a 

sequence-based approach first, followed by an HI assay approach.  With this 

paradigm shift in surveillance methodologies we hope to extend the capabilities of 

current antigenic distancing technologies and reduce the latency between vaccine 

strain selection and the delivery of fully licensed vaccine products.  Since the advent 

of NGS technologies, sequencing has become fast and cheap.  All the genetic 

information from surveyed viruses can easily be captured using current approaches.  

From the genetic information, targeted HI testing plans can be developed using our 

methodology and can be used to enhance the antigenic information on currently 

circulating viruses.  This study also aims to extend the capabilities of AD by 

providing a rigorous statistical assessment of the antigenic phenotype of all potential 

vaccine candidates.  This statistical approach provides a more informed assessment of 

the antigenic relatedness of the viruses through a bootstrapping technique that 

accounts for the error in the AD methodologies. 

Status of Work 

 The scope of work within this study has been incorporated into a manuscript 

that is currently in the revision stages.  The findings of this study have been combined 

with the results from a novel complementary computational pipeline, known as 

proportion tracking.  All analysis related to this study and proportion tracking have 

been completed and await consensus for publication. 
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Author Contributions 

I developed the DASH pipeline, the grid-computing capabilities, early 

versions of uncovered cluster analysis R scripts and the antigenic coverage 

bootstrapping analysis.  I also performed all of the initial protein clustering analysis; 

evaluation of the agglomerative hierarchical clustering techniques; designed, ran, and 

performed the retrospective analysis; and designed, ran and performed the 

computational component of the JCVI HI data analysis.  I made minor suggestions for 

the improvement of the PTP pipeline, including use of the knee of the graph an 

appropriate height for cutting protein clusters.  I developed the production pipeline 

wrapper around the preexisting PTP pipeline for expedited automated computation.  I 

developed the name standardization methodology and the early database loading 

routines.  I, along with other team members, manually curated the HI assay data.  I, 

along with other team members, wrote and edited the relevant sections of the 

manuscript for publication. 

Study Two: VirComp: A Novel Method for Viral Comparative Analysis Using 

Cluster-Based Gene Constellations 

Overview 
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 This study aims to enhance the offerings of the constellation or genotype 

analysis packages available for viral researchers (Figure 6).  Viral genotype or 

constellation analysis is the systematic categorization of the entire genome content of 

one or more viruses based on 

predefined clustering criterion.  

The approach described here 

utilizes the farthest-neighbor 

clustering algorithm to build 

sequence dendrograms and clusters 

based on several predetermined 

percent identity cutoffs.  This 

study also describes a novel near-

publication ready figure generation 

application.  Even though it has 

been designed for the visualization 

of viral genome constellations, this 

application could also be used for 

the visualization of metadata, 

phenotypes or other data types 

associated with viral or other 

biological projects.   

Figure 6 The Visualization of Viral Genome Constellations. 
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State of the Art 

 Virus specific packages and websites exist for performing constellation 

analysis, as well as the methodologies describing the process.  Many of these 

applications rely on phylogenies to infer category membership and utilize 

phylogenetically derived criterion to cluster genes.  Some of the available tools 

provide categorization within the context of a specific set of well-curated viral 

constellation typing databases. 

 It is the aim of this study to extend the available constellation analysis toolsets 

with a virus-agnostic methodology and a set of associated tools for clustering and 

visualizing constellations.  This includes VirComp, a pipeline written in PERL that 

performs alignments, hierarchal clustering and cluster categorization of a set of viral 

genes, of a set of viral proteins, or of arbitrary subsequences within a genome of 

interest.  These constellations are generated systematically in a virus-agnostic, 

context-specific manner using a sequence-identity based criterion.  In addition to this 

novel methodology for identifying genome constellations, this study presents a novel 

tool for generating near-publication ready graphic visualizations of the constellation 

data using OrionPlot.  In many cases the images could be used directly in a 

publication; although, the examples presented herein have been enhanced with 

relatively minor annotations to maximize impact and information gain.  

Status of Work 

 The manuscript for this study has been completed and awaits final revisions 

before submission.  In addition to the methods paper described above, specific 
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analyses using VirComp and OrionPlot have been published in two separate papers 

(4, 5).  All code for VirComp and OrionPlot has been completed.  The code has been 

deposited on GitHub and has been tested on a number of Mac OSX and Linux 

devices to ensure compatibility, to derive system requirements and to derive software 

requirements.  All benchmark analyses have been completed. 

Author Contributions 

I, along with others, conceived of the VirComp constellation methodology.  I 

wrote and refined the VirComp pipeline.  I conceived of the OrionPlot program.  I, 

along with others, performed the analysis of the swine, human, and avian influenza 

data sets.  I performed the analysis of the RSV and Ebola data sets.  I performed the 

comparative analysis with phylogentic techniques.  I, along with others, wrote the 

manuscript. 

Study Three: Large-Scale Respiratory Syncytial Virus Whole-Genome 

Sequencing Identifies Sequence Duplication in G Gene Associated with Reduced 

Diseases Severity 

Overview 
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 Study three aims to examine genetic determinants for the pathogenicity and 

epidemiology of respiratory syncytial virus (RSV) (Figure 7).  Through an integration 

of phylogenetic methods and statistics, this study uncovers potential determinants for 

disease severity and transmission based on associations with clinical metadata.  These 

determinants range from the discovery of positive selected sites within several RSV 

genes, to glycosylation patterns on the G protein and examinations of large inserted 

repeat sequences. 

State of the Art 

 RSV epidemiological surveillance is currently in its infancy.  No globally-

coordinated whole-genome surveillance efforts are currently being implemented.  In 

the past few years, large numbers complete RSV genomes have become available.  

As of 2015, more than 600 genomes have been released to public data repositories.  

The deposition of large amounts of complete genomic information enables 

researchers, for the first time, to examine these data for molecular signatures of 

epidemiology and pathogenicity. 

 In an exploratory context, this study extends the current knowledge of RSV by 

integrating clinical metadata with phylogenetic analyses of whole RSV genomes, as 

Figure 7 Genetic Determinants for the Pathogenicity and Epidemiology of Respiratory Syncytial Virus. 
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well as individual RSV genes.  This study also aims to enrich the RSV research by 

making associations between the signatures of molecular evolution and the 

epidemiological or pathogenic phenotypes. 

Status of Work 

 The work from this study will be broken into two publications.  The first 

paper focuses on large-scale phylogenetic trends in RSV and the inferences that can 

be made between the genetic data and the clinical metadata.  The second paper will 

focus on the specific selective and mutational patterns in the various RSV genes, as 

well as an analysis of the glycosylation patterns in seen in the study data set.  The first 

paper has been drafted and is in the revision stage.  The second paper has been 

conceived of and exists in text only as Chapter 4 of this dissertation.  All analyses for 

these two papers have been completed. 

Author Contributions 

I, along with others, conceived of this study.  I, along with others, designed 

the phylogenetic experiments.  I performed neighbor joining, maximum likelihood 

and Bayesian analyses.  I performed selection and variation analysis.  I performed the 

glycosylation analysis.  I performed the clinical data statistical analysis and BaTS 

analysis.  I, along with others, wrote and edited the publication manuscript. 
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Chapter 2: DASH: A Novel Method for Influenza Virus 

Surveillance and Vaccine Candidate Evaluation 

Abstract 

The influenza virus poses a significant risk to human health.  Up to 500,000 

people are estimated to die annually during the influenza epidemics of the Northern 

and Southern Hemispheres.  The World Health Organization (WHO), and its related 

network of surveillance facilities, seasonally monitor the evolutionary and antigenic 

signatures of the viruses circulating in human populations around the globe.  This 

viral surveillance informs the semi-annual recommendations that are made to the 

public and pharmaceutical industry on the formulation of the seasonal influenza 

vaccine.  The data for this process takes months to collect, and it can take up to nine 

months for the pharmaceutical industry to turn the recommendations into a vaccine 

product ready for dissemination to the world population.  Here we have described a 

method, Distancing of Antigenicity by Sequence-based Hierarchical Clustering 

(DASH), which may alleviate some of the data analysis burden on those involved in 

viral surveillance.  DASH is capable of making statistically grounded choices for 

vaccine candidates based on a phenotype mapping algorithm and protein clustering.  

Each vaccine candidate can be evaluated for its suitability as a component of the 

influenza vaccine and compared against other antigens.  Similarly, through a close 

monitoring of available antigenic data derived from the hemagglutination inhibition 

(HI) assay, DASH can produce lists of viruses that would either enhance our 

surveillance of circulating influenza viruses or be used in a manufacturing at-risk 
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context for the pharmaceutical industry.  Coupled with reverse genetics, cell grown 

vaccine components, and synthetic biology, it is our belief that the DASH 

methodology will enhance preparedness for seasonal influenza epidemics and shorten 

the manufacturing latency between strain selection and vaccine administration.  

Introduction 

Influenza is a significant risk to human health.  It is estimated that hundreds of 

millions of people are infected annually, causing between 250,000 and 500,000 

deaths (60).  The virus is a negative-sense single-stranded RNA virus with eight 

genomic segments that code for 10-12 known proteins (61).  Of these proteins, the 

hemagglutinin (HA) and neuraminidase (NA) proteins are of most interest 

immunologically, as these proteins are on the surface of the virus and are directly 

accessible to the host immune system (61, 62).  Influenza A viruses (IAV) are 

currently categorized into 17 HA types and 9 NA types (61).  Combinations of the 

two proteins result in the virus subtypes that are commonly known, such as H3N2, 

H1N1 and H5N1.  Influenza in humans is primarily caused by two types of influenza 

viruses – influenza A virus (H3N2 and H1N1 subtypes) and the influenza B virus 

(IBV) (60).  In the case of IAV there is the potential for zoonotic transfer from an 

avian host reservoir to humans (63), as illustrated by H5N1 (64).  All human 

influenza viruses (H3N2, H1N1 and influenza B) are under constant selective 

pressure to evade the host immune response and therefore undergo constant antigenic 

(and genetic) drift (65) to form new variants – some with epidemic, and occasionally 

pandemic potential (60).  At the present time, the best way to combat influenza 

infections is by prevention through an extensive worldwide vaccination program (60, 
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64).  For these reasons, influenza surveillance must be two pronged (64).  First, to 

track the continual drift in the currently circulating strains, robust genome sequencing 

and antigenic tracking surveillance must be performed (64).  Secondly, to properly 

prepare for a pandemic of a previously zoonotic origin virus, such as H5N1, sequence 

and antigenic surveillance must also be performed in animal species known to carry 

and transmit influenza (66).   

With these surveillance data, it is possible to extensively analyze and, in some 

cases, build predictive models that aid in the production of multivalent influenza 

vaccines (42, 67-69).  Current methods for selecting vaccine candidate viruses have 

focused on a combination of techniques.  Phylogenetic analysis and tracking of co-

circulating viruses of different genetic lineages using the sequence surveillance data 

for the HA gene (and sometimes the NA gene) is part of the process (60).  

Additionally, antigenic distance (AD) mapping (42) (sometimes referred to as 

antigenic cartography) of select strains using the hemagglutination inhibition (HI) 

assay is also a major component of the selection process.  The latter does not rely on 

sequence data; however, for proper correlation of genetic lineages, or clades, to a 

particular antigenic group, some overlap in sequence and HI data sets is required (42).  

Once it is determined which virus clade is dominant and the antigenic characteristics 

of that clade during any given season, a recommendation to change or maintain the 

current viral components of the multivalent vaccine can be made.  This decision is 

further informed by the phenotypes of the virus related to growth and suitability for 

production in eggs (60, 70).  Although the general framework for this semi-annual 

decision is understood, the fine details of this process are not publically available.  By 
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this method, it can often take months to properly calibrate the reagents being used in 

the production process.  This method can prove to be too ineffectual during the course 

of a pandemic to prevent the spread of infection, as was seen in the H1N1 pandemic 

of 2009 (64). 

Bioinformatic techniques have previously have been used to study the 

evolution and antigenic traits of influenza.  These techniques have begun to make the 

selection of vaccine candidates easier; however, the current speed at which vaccine 

candidate reagents can be manufactured and calibrated is a limiting step in both 

pandemic responses and seasonal vaccine production (64).  Here we demonstrate 

modifications to the current methods that aim to speed the vaccine production process 

and allow better understanding of the nature of antigenic drift.  By tuning 

bioinformatic approaches to look for potential candidate viruses for manufacturing at-

risk (viruses that show some evidence for utility as a vaccine candidate, but not fully 

validated yet) and by further qualifying those candidates using computational 

inferences, we can greatly speed the selection of vaccine candidates for production.  

Coupled with synthetic biology and reverse genetics technologies (not discussed 

here), new vaccine reagents could be produced in days to weeks, rather than months 

(64). 



 

 35 
 

Methods 

Data Collection and 

Database 

We have created a 

database of all publically 

available human IAV 

H3N2, H1N1 HA 

sequences (seasonal and 

pandemic), and IBV HA 

sequences found at both 

the GenBank and EpiFlu 

(Figure 8).  The database 

is a relational database 

implemented using 

MySQL (version 5.6.25 

available from 

www.percona.com) 

relational database 

management system 

(RDBMS).  The HA 

sequences have been 

processed such that Figure 8 Schema of Custom Influenza Sequence and HI Data Database.  
The central entity in this schema is the strain table representing a viral strain.  
Each strain is linked to its associated sequence and HI data via foreign key 
relationships.  It is essential to properly recognize synonymous strain names to 
preform this link.   
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protein and nucleotide sequences from these databases have been paired together.  

We further categorized these sequences according to their completeness, full-length 

coding DNA sequence (CDS), full-length HA1 domain, or partial sequence.  

Metadata was collected on all sequences, as well as the passage number, passage type 

(cell or egg), and collection date.  Strain information and passage information were 

standardized to allow for more accurate matching of strain sequence and HI data.  

Standardization was performed on geographic locations, lab identifiers and collection 

years.  For example, A/CA/07/09 would be standardized to A/CALIFORNIA/7/2009.  

It was our practice to use full geographic locations wherever possible, to remove 

leading zeros from lab identifiers, and to expand two digit years to full four digit 

years.  This ensures that a sequence labeled A/California/7/09 would accurately be 

associated with HI data labeled A/CA/07/2009, since both standardized names would 

resolve to A/CALIFORNIA/7/2009.  Geographic standardizations were done using 

the Google Maps application program interface (API).  Ambiguous results were 

curated manually.  The database stored both the standardized and the original names 

to allow us to track possible errors in associations, if discovered.  Similarly, passage 

metadata was mapped to egg or cell passage type via a mapping file that was 

manually curated.  For example, SIAT1 was mapped to cell passage type, since SIAT 

is a cell culture line.  Conversely, E1E5 was mapped to egg passage type, since E 

represents an egg passage.  If a passage was ambiguous, such as SIAT1E5 (SIAT1 for 

cell and E5 for egg passages), we mapped it to egg – as even a single egg passage has 

been shown to be enough to shift a human virus toward avian adaptation, potentially 

altering its antigenicity. 
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In addition to the sequence data we populated our database with an extensive 

set of HI assays.  HI data was collected from both the CDC via annual Vaccines and 

Related Biological Products Advisory Committee (VRBPAC) reports to the Food and 

Drug Administration (FDA), and semi annual National Institute for Medical Research 

(NIMR) (in the UK) surveillance reports to the WHO.  These HI data tended to be 

highly variable in format, with numerous errors due to the likely manual method by 

which they were created for their respective reports.  We therefore manually reviewed 

these tables for consistency of format and content to minimize the errors loading into 

our database.  Once loaded, we stored the metadata on the HI run (such as the source 

and test date), as well as the metadata on the strains (such as passage and collection 

date information).  A combination of passage information, collection date, and strain 

names were used to associate specific HI assay distances with specific sequences 

obtained from GenBank and EpiFlu.  This step was critical, as passage differences 

often alter sequences and affect the HI assay distances for a particular virus. 

The final component of the database was the storage of AD data results from 

our antigenic distancing pipeline.  The AD pipeline will be described later; however, 

the results included the AD distance matrix data for 15 separate AD runs in various 

dimensional spaces, using various distance calculation methods. 

Access to the database was provided via a PERL API and command line 

scripts, and later incorporated directly into the DASH pipeline to ensure seamless 

automated computation.  PERL scripts were also used for the database loading 

process.  The current database includes 62790 strains, 57609 complete HA sequences, 

62914 HA1 sequences, and 33426 partial HA protein sequences.  Broken down by 
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subtype, there are 36778 H3N2 viruses, 8657 H1N1 viruses, 29484 H1N1pdm 

viruses, 7764 IBV Yamagata, and 8352 IBV Victoria sequences in the database 

collected between 1918 and January 12, 2015. Additionally, there are 670 HI assays 

for a total of 140262 pairwise antigenic distances. 

Antigenic Distancing 

We used a technique known as antigenic cartography, herein described as 

antigenic distancing (AD).  

Hemagglutination Inhibition Assay – Antigenic distance is measured using the HI 

assay.  In this assay, a solution containing red blood cells is combined with an 

influenza viral isolate and antiserum made in a mammal using a different virus.  First, 

the antisera are serially diluted and then a fixed amount of virus and blood cells are 

added to each sample (42).  If the antibodies in the sera do not bind the virus, the 

blood cells will bind the influenza virions and form a lattice, i.e. hemagglutinate.  

However, if the antibodies in the serum bind the virus, no hemagglutination takes 

place.  This inhibition of hemagglutination is dependent on both the intensity of the 

virus-antibody binding and the antibody concentration.  This test is repeated with the 

opposite combination of virus and antiserum.  These data are compared to determine 

the viral titer required to prevent red blood cell agglutination in the presence of 

antiserum.  Antigenically similar viruses will fail to agglutinate red blood cells at a 

similar titer (within 4-fold) (71) when in the presence of their inhibition partners’ 

antisera.  In addition to two-way titer assays, one-way assays are also performed to 

survey circulating strains to identify low antibody-antigen viral reactors that may 

indicate antigenic drift.   
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Homo and Heterologous Distance Calculation – Titer data from the above-described 

HI assay were converted into antigenic units using the following two formulas.  

(1) Two-way d2 = √( H11 H22/H21 H12) 

(2) One-way d1 = log2(H11/H21) (71)   

Antigenic Distancing via Multidimensional Scaling – Through antigenic 

cartography HI data can be plotted in 2-dimensional space to show the relative 

antigenic distances between multiple influenza strains.  Once the above distances 

were calculated from HI assays, the antigens were plotted in a multi-dimensional 

space and the two-way pairwise distances between all members were calculated using 

a process known as multi-dimensional scaling (MDS) (42).  We believe that 2-

dimensional distancing is an oversimplification of the data for the sake of 

visualization, and thus have used a modified version of antigenic cartography to 

calculate antigenic distance.  We have utilized several different distance methods to 

calculate pairwise distance in multi-dimensional space rather than the simple 2-

dimensional calculation used in traditional antigenic cartography (42).  We have 

chosen to employ multi-dimensional antigenic distancing because 2-dimensional 

calculations do not take into account the multi-dimensionality of the HI data.  With 

each new distinct antiserum that is introduced into an HI assay an additional 

dimension is added to the data.  There are several methods for calculating the distance 

between two points in a multi-dimensional space.  We utilized three methods: 

Euclidean, Manhattan, and Minkowski, and evaluated each for its overall 

effectiveness.  The dimensionality and distance method that provided the best fit, as 
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measured by root-mean squared deviation (RMSD), for a particular set of HI data was 

selected by DASH for the next step in our analysis procedure (Figure 9). 

Figure 9 Comparison of RMSD Values for Various Antigenic Distancing Experiment Using Mixed Metric 
Space and Dimensionalities and Frequency of Use.  (A) Box and whiskers plot showing the 25-75% 
interquartile range (box) and 2.5-97.5% range (whiskers) of the 580 AD runs of ferret antisera and 164 AD runs of 
sheep antisera HI assay data.  Statistically significant differences between the ferret 2-D to Best RMSD and 3-D to 
Best RMSD exist (p-values = 1.99e-09 and 4.761e-05 respectively) indicate our method of selecting the best of 15 
different distance metrics and dimensionalities produces better results than traditional 2-D or 3-D Euclidean 
methods.  (B) Histogram plot of ferret sera Best RMSD metric and dimensionality over 580 HI assay data sets.  
This result indicates higher dimensionality and often the Minkoswki metric space as a more accurate measure of 
antigenic distance via the RMSD of the AD plot. 
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Distancing of Antigenicity by Sequence-based Hierarchical Clustering 

(DASH) 

Pipeline architecture overview – The DASH computational pipeline consists of a 

series of PERL and R scripts (Figure 10).  Data is prepared and permuted using the 

various scripts. Then, together with the results of various analyses, the data is 

compiled for inspection by analysts familiar with the methodology.  The following 

will describe the pipeline architecture, based on three phases of computation. 

Figure 10 Workflow of the DASH Pipeline.  Scripts responsible for various aspects of the computational 
pipeline are indicated next to category boxes in the diagram. 

Data extraction and sanitation – The first step of the run_DASH.pl script is to 

extract all the relevant information needed to perform the DASH analysis.  The user 

provides the date ranges for which they wish to analyze data and run_DASH.pl will 

in turn run getHI.pl and getSequence.pl to extract the relevant sequence and AD data 

from the MySQL database.  Data sanitation is required to ensure AD data and 

sequence data is in a format necessary to link the data types together.  Specifically, 

egg and cell passage labeled sequence and AD data are properly tagged with this 

information, such that linking of the sequence and the AD data can occur during later 
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analysis steps.  If the passage data is ambiguous for either the AD or the sequence 

information, the passage information is stripped from the record.  The run_DASH.pl 

script also automatically creates lists of antigens to run vaccine coverage predictions 

on.  The criteria for inclusion in this analysis set is that there exist at least 40 pairwise 

AD across the subset of HI data included in the analysis, thus providing a  ≥ 95% 

prediction interval for 

its antigenic distances 

with respect to other 

strains in the same 

season.  We have 

specified 40 distances, 

as our cutoff, since 

smaller subsets of AD 

data tends to not give 

accurate estimations of 

predicted coverage because there are not enough viruses with both sequence and HI 

data available to anchor the phenotypic coverage predictions (Figure 11).  This cutoff 

requirement has not been rigorously evaluated; however, larger protein cluster 

dendrograms tend to require more HI AD data to make plausible inferences across the 

entirety of the clusters.  Similarly, unevenly tested antigens (antigens that have been 

tested heavily against viruses from one cluster, but with little or no testing against 

viruses from a different cluster) show more variability in the coverage prediction 

results. 

Figure 11 Antigenic Distance Plot of Three HI Assays Performed for 
The 2012-2013 Vaccine Strain Selection.  It should be noted that to 
generate representative distances during a given season, multiple HI 
assays should be performed.  The data points in green, for instance, do not 
necessarily represent the entire population of distances possible during the 
2012-2013 season. 
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ANDES scripts – After data extraction and sanitation is complete, run_DASH.pl 

invokes the main DASH script (run_sequence_mask_analysis.pl).  This script is 

responsible for running the majority of the preliminary analysis R and PERL scripts.  

The run_sequence_mask_analysis.pl script also runs the 

run_estimate_vaccine_coverage.pl script.  The run_estimate_vaccine_coverage.pl is 

responsible for running the individual coverage predictions for the set of antigens 

with sufficient pairwise HI AD data, as established by run_DASH.pl.  Each 

prediction takes several minutes and often there are tens to several hundred antigens 

to analyze; therefore, to speed up computation we have enhanced DASH with grid 

computation capabilities. 

GRID computing enhancements – The run_estimate_vaccine_coverage.pl is grid 

enabled and launches individual vaccine candidate coverage predictions, as well as 

the bootstrap analysis on the JCVI grid, supported by the SunGrid Engine.  The 

summarization of antigenic coverage predictions is dependent on all the grid 

computations being complete, thus run_estimate_vaccine_coverage.pl has grid-

monitoring capabilities built in.  Once summarization of all predictions is complete, 

DASH analysis has finished. 

Pipeline Details 

Alignment – An important step in the DASH computational pipeline is to create 

protein clusters.  To do this, proteins are aligned and the pairwise distances are 

calculated for them using the program MAFFT (set with default options) to create the 

multiple sequence alignments (72, 73).  MAFFT is a fast method for performing 
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sequence alignment.  With such highly similar sequences, as are seen in the various 

influenza types we have analyzed, the probability of misalignments is low.   

Modified BLOSUM62 – DASH uses BLOSUM62 to calculate distance between the 

subject protein sequences.  Although, technically not a distance matrix, we have 

derived a distance matrix from the 

BLOSUM62 scoring-matrix.  To 

make this derivation, similarity scores 

were rescaled between 0 and 1 and 

inverted to represent distances. 

Protein Masking – For the same 

reason as the choice to examine 

antigencity on protein clusters, as 

opposed to phylogenetic clades, it 

may be possible to find portions of the 

HA protein that are critical in 

determining the antigenic phenotype 

of the virus (62, 65, 67, 69).  DASH 

uses the concept of protein masking to 

eliminate from consideration certain 

non-relevant areas of the HA protein 

when calculating distance.  DASH 

implements protein masking in the 

following ways to ensure just the 

Figure 12 Influenza H3N2 3-D Protein Structure With 
Five Known Immunodominant B-Cell Epitopes 
Highlighted.  The known epitopes are colored according to 
site A, B, C, D, and E (green, blue, maroon, pink, and teal 
respectively). 
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relevant specified sequence is considered for the distance calculation: all HA, HA1 

domain, all known antibody epitopes, and specific known antibody epitopes (H3N2 

AB epitopes and H1N1 SaSb epitopes) (Figure 12).  The masks were developed 

through the curation of HA protein data using the literature citations that documented 

the antibody binding sites of the various influenza types. 

Hierarchical Protein 

Clustering – Clustering 

HA protein sequences is an 

essential part of the 

methods described here.  

DASH uses an 

agglomerative hierarchical 

clustering method that is 

deterministic.  This allowed 

for repeated clustering experiments on the same data with the same resulting 

dendrograms.  Specifically, DASH utilizes the Ward’s minimum variance method 

(74) as implemented in the R package of statistical software to cluster the protein 

sequence data.  

 

Figure	  13	  Phenotype	  Mapping	  Contingency	  Table	  for	  Leaf	  State	  
Inheritance 
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Phenotype Mapping – To predict the effectiveness of particular vaccine seed 

Figure 14 Inference Algorithm Utilized by DASH.  Each node in the dendrogram is assigned a state (In, Out, 
or Conflicted) based on whether or not its decedents contain leaves with HI data points and whether those 
leaves conflict.  If no conflicts exist all decedents from that node will inherit the parent nodes state.  If conflicts 
exist an unknown state will be assigned to all non-HI leaves descending from the common node marked as 
conflicted. 
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candidates, DASH uses a novel technique of mapping antigenic phenotype traits onto 

the protein clusters generated using the methods described above.  The mapping 

process focuses on one single viral antigen at a time and multiple candidates are 

evaluated in parallel using grid-computing technology.  Distances generating by the 

AD process are used as well as the protein cluster data.  If the reference antigen is 

determined to be antigenically similar to the candidate antigen it will be assigned to 

an “in” group.  If the reference antigen is determined to be antigenically variant it will 

be assigned to an “out” group.  Antigenic similarity, or “likeness”, is most commonly 

estimated to be ≤ 2 AD units.  DASH projects this “in”/“out” grouping onto the 

protein cluster dendrogram, and the leaf nodes will be colored according to a 

prediction associated with the “in” or “out” group (Figures 13 and 14).  For a leaf 

node to be colored it must be fit several criteria.  First, if it is an HI accomplice 
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sequence, meaning we have both sequence data and HI data for the leaf sequence, it 

will be colored according to the group to which it belongs.  Next, if a leaf node is 

between two accomplice leaves of the same group and there are no leaves of a 

conflicting group at the same level in the hierarchical cluster, it will be colored with 

the same group as the two accomplice nodes.  Lastly, if a terminal cluster (a cluster 

extended far off the trunk of the dendrogram with no additional branches) contains 

one accomplice and there are no conflicting nodes at the same level outside the 

terminal group, all nodes in 

the cluster will be colored 

with the group of the single 

accomplice in the cluster.  

These colored predicted 

antigenic coverage protein 

clusters form the basis of 

DASHs vaccine candidate 

selection algorithm 

described below.  

Bootstrap analysis – It is 

important to establish the 

statistical accuracy of the 

predicted vaccine seed 

candidate.  To do this, the 

phenotype-mapping 

Figure 15 Bootstrap Analysis Methodology Used to Assess Reliability 
of Antigenic Coverage Predictions.  (A) Bootstrap analysis uses random 
resampling with replacement from a sample population.  In the case of 
DASH the resampling is done on the set of Antigenic Distances (AD) 
available for a particular influenza season.  (B) Once the HI data point is 
sampled it is modified by the DASH algorithm.  DASH selects a new 
value for this data point randomly from a distribution with a mean equal 
to the original AD value and the standard deviation equal to the RMSD of 
the MDS computation where it was generated.  This RMSD approximates 
error associated with performing both HI assays and the AD algorithm. 
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algorithm includes a bootstrap analysis to measure the variance of the predictions.  

Bootstrapping is a process by which a population sample is resampled with 

replacement repeatedly (Figure 15A).  With each resampling, statistical measures are 

made (such as median or mean).  After several iterations confidence intervals around 

the original statistic can be generated from the bootstrap replicates.  DASH employs a 

modification of this technique.  After an initial phenotype mapping step, the 

population of pairwise antigenic distances is resampled with replacement.  Instead of 

taking the original distance value; however, DASH resamples the distance over a 

normal distribution where the mean is defined as the original distance and the 

standard deviation is the RMSD value of the AD computation used to generate that 

distance originally (Figure 15B).  It is this modified resampling that allows DASH to 

take into account the error associated with both the HI assay and the AD computation 

when making coverage predictions. 

Identification of Clusters without AD data – During the initial phase of DASH 

analysis, identify_clusters_without_accomplices.r identifies 10 clusters without 

protein sequence data but with AD data.  These clusters are of the utmost importance 

to surveillance because they represent newly emerging genetic variants.  Antigenic 

testing on these newly emerging clusters is key to maintaining high levels of 

phenotypic measurements across the entire diversity of circulating viruses.  These 

new uncovered protein clusters are then analyzed using the R script 

(Analyze_Variances_in_DistanceMatrix.r) to established the HA sequences at the 

center of the cluster (the centroid virus), or those viruses closest to the center of mass 

of the sequences being examined in the uncovered cluster.  We have dubbed these 
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centroid viruses DASH surveillance candidates, as further antigenic testing should be 

performed on these viruses for maximum gain of phenotypic information.  In a later 

experiment, DASH surveillance candidate viruses were constructed at JCVI with 

synthetic genomics technology and tested in HI assays, as a proof-of-concept that this 

methodology could be used to drive influenza virus surveillance in real time and 

positively influence and refine DASH predictions.  In certain instances, these centroid 

viruses show the antigenic characteristics of good vaccine candidates.  Retrospective 

analysis suggests that without running HI analysis on the centroid viruses, selecting 

these DASH surveillance candidates from several uncovered clusters often leads to 

the prediction of WHO vaccine or manufacturing candidates prior to the release 

vaccine recommendations. 

Identification of Vaccine Candidates – DASH uses grid-computing technology to 

generate candidate antigen centered phenotype maps.  Each antigen that has 

undergone antigenic distancing analysis and meets the DASH minimum distance 

requirement is evaluated as a potential vaccine seed in the phenotype mapping 

analysis.  A bootstrap analysis is also performed for each mapping run to further 

establish the predicted antigenic coverage of that antigen against similar, 

contemporary viruses.  An effective vaccine prediction maximizes the predicted 

antigenic coverage while simultaneously minimizing the variance in the prediction.  

During the retrospective and JCVI HI analysis experiments statistical analysis of all 

qualifying antigens and their bootstrap analyses were performed to establish the 

candidate seed viruses that fulfill these criteria. 
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Proportion Tracking Pipeline 

 In parallel to the development of DASH we developed a methodology to track 

the proportions of the subpopulations of influenza viruses circulating concurrently 

during any arbitrary time period.  We call this method the Proportion Tracking 

Pipeline (PTP).  These subpopulations are not inferred using phylogenetic methods 

and do not necessarily follow the standard clade designations provided by the CDC 

and the WHO.  Instead the subpopulation designations are generated using the 

Ward’s clustering method, as it is used in DASH.  This allows us a common 

clustering methodology between DASH and PTP that provides consistency when 

comparing PTP results to DASH predictions.  Knowing which groups of viruses are 

expanding or contracting allows us to put the DASH analysis into context and to 

determine which DASH predictions should be emphasized.  To perform the PTP 

analysis, first all HA1 domain sequences from a particular subtype or lineage of 

influenza viruses are partitioned into 18-month subsets of viral sequences.  Each 

partition overlaps by 12 months in a windowed fashion based on the collection date 

for the virus.  This results in 12 months of viruses seen in other partitions and 6 

months of novel viruses.  Next, we apply weighting to the viruses in each 18-month 

partition.  Viruses isolated in the oldest 6-month period are given a weight of 0.16, 

viruses from the middle 6-month period are given a weight of 0.33, and viruses from 

the most recent 6-month period are given a weight of 0.50.  Clustering is performed 

and a cutoff for the partition is calculated.  This cutoff is derived by calculating the 

sum of squares for the intra-cluster group distances at each possible height (k) and 

dividing it by the sum of squares for the distances for entire set of sequences.  Each 
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value is plotted; and the k value nearest the knee (or inflection point) of the resultant 

graph is selected and used to generate clusters for the partition of interest.  This 

process is repeated for all partitions over the time period being examined.  Once 

clustering is competed, the proportions for each cluster are calculated using the 

weighting scheme described above.  Clusters between partition periods are linked 

based on similarity, to show forward associations of past partitions’ clusters.  Both 

the weighting scheme and the linkages between partitions provide continuity in the 

analysis, showing clusters that continue to expand over successive partition periods 

versus those that shrink or die out altogether.  Clusters with the most of expansion 

during a given period are weighted accordingly, allowing for visualization of the 

importance of a particular viral subpopulation. 

Retrospective Analysis 

We performed a retrospective analysis over 11 years and 22 influenza seasons 

for IAV H3N2, IBV Yamagata, and IBV Victoria.  For the IAVs H1N1 and 

H1N1pdm, we analyzed seven years (15 seasons) and four years (seven seasons), 

respectively.  The retrospective analysis involved pulling sequence and precomputed 

AD data from a 12-month period for each influenza season examined.  For the 

Northern Hemisphere seasons, the dates ran roughly from March to March.  For the 

Southern Hemisphere seasons, the dates ran from September to September.  The 

month cutoffs for analysis corresponded with the WHO’s Northern and Southern 

Hemisphere vaccine selection meetings.  We are assuming the data we used for each 

season’s prediction we are assuming closely matches what the WHO had available at 

the time of their vaccine selections. 
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 Once the data ranges for the individual seasons were established, DASH was 

launched using the run_DASH.pl script.  Analysis of the results focused on the HA1 

region of HA, as this was the most commonly used subsequence for influenza 

surveillance used by the WHO.  DASH Surveillance candidates from the uncovered 

clusters were selected if at least three candidates existed in the cluster and the strains 

were different (often resequenced strains or egg/cell passage variants showed up in 

the same uncovered clusters).  The centroid virus from these clusters was always 

selected.  DASH vaccine candidates were selected from the summarized antigenic 

coverage prediction results at an antigenic distance cutoff of two (Demonstrated via 

an AD plot, Figure 16).  Antigenic coverage data were sorted by the “in” median 

results from bootstrapping, followed by the observed “in” from the initial phenotype 

mapping, then the number of available AD values, and finally by the lower bound of 

the “in” bootstrap confidence interval.  All values were sorted from largest to 

smallest.  Once the data were sorted, the top-scoring candidate was selected as the 

DASH candidate for each IAV subtype and IBV lineage examined during the season 

of interest.   
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Once DASH surveillance candidates and vaccine candidates were predicted 

we compared these results to the manufacturing and vaccine seeds recommended by 

the WHO for the subject season.  To determine concordance between prediction and 

recommendation, 

two antigens were 

considered 

antigenically like, if 

the antigenic 

distance between 

them is within two 

AD units.  To make 

this analysis more 

stringent, a more 

conservative cutoff 

using an antigenic 

distance of one was 

utilized to 

determine 

concordance.  If the 

DASH candidate 

and the WHO 

candidate were the 

same, the prediction 

Figure 16 Antigenic Distance Plot HI Data Collected for the 2012-2013 Vaccine 
Candidate Selection. (A) AD plot is centered on A/Perth/16/2009, all green points 
(within the circle) are viruses considered to be within an antigenic distance of two 
of this virus.  (B) Same AD plot except now we have centered the plot on A/S. 
Australia/3/2011.  Comparing these two graphs, A/S. Australia/3/2011 is within an 
antigenic distance of two of a greater proportion of circulating viruses. 
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was labeled as exact.  If the DASH candidate and the WHO candidate were ≤	 1 AD 

unit of each other, then they were labeled as concordant.  Finally, if the DASH and 

WHO candidate were > 1 AD unit of each other, then they were labeled as discordant.  

DASH surveillance candidates were examined to see if any of the candidates matched 

the manufacturing or vaccine seeds later recommended by the WHO.  If a WHO 

candidate appeared in an uncovered cluster, but not as the centroid, we evaluated how 

close said candidate was to our surveillance candidate by estimating the quartile rank 

of the pairwise sequence distance between the two candidates and the remaining 

distances available for the subject sequence.  This resulted in an estimate of how 

close our predictions were to the WHO candidate viruses.  These comparisons were 

repeated for all the seasons of interest and summary statistics were generated to 

indicate how successful DASH was at predicting the same or, in our estimation, better 

vaccine candidates. 

Analysis of Effect of JCVI HI Data 

For the 2013 Southern Hemisphere predictions we generated our own HI 

assay data with synthetically constructed viruses rescued using a reverse genetics 

system.  The synthetic viruses were compared using HI assays and AD data generated 

using our antigenic distancing pipeline.  DASH analyses (with and without additional 

in-house HI assay data) were performed for IAV H3N2 and H1N1pdm subtypes and 

for IBV Victoria and Yamagata lineages.  All sequences were kept identical, only the 

addition of JCVI HI data was changed between the DASH runs.  DASH dendrograms 

were cut to generate 10 uncovered protein clusters – that is protein clusters containing 

viral HA sequences but lacking any HI assay data.  To establish measurable 
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differences between the DASH runs with and without JCVI HI assay data, three 

measures were used.  The height in k of the dendrogram at which 10 uncovered 

clusters were identified was recorded.  The median and range of the uncovered cluster 

sizes were also recorded and compared. 

Results 

Preliminary Data Analyses 

Several preliminary experiments were conducted to establish the feasibility of 

later work.  These experiments included a reanalysis of the 2004 Smith et al. data set 

(42).  The 

results 

uncovered 

patterns in 

the data that 

refinements 

in the 

analysis 

methodology 

could potentially exploit, for example, the discovery of a close relationship between 

Ward’s protein clusters and the Smith et al. antigenic groups. 

Analysis of the Smith et al. 2004 Data set – Early trials with mapping antigenic traits 

onto dendrograms generated through protein clustering were conducted using a data 

set first described by Smith et al. in 2004 (42) when demonstrating antigenic 

Figure 17 Protein Clusters of HA Sequences From Smith et. al. 2004. (A) With no protein 
masking some sequences interdigitate into neighboring antigenic groups.  (B) Clustering on 
known epitopes A and B only, the mis-grouped viruses group together. 
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cartography was possible.  This data set includes antigenic groups from H3N2 viruses 

from 1968 until 2003.  The antigenic assignments from this paper were mapped onto 

dendrograms generated using the Ward’s algorithm (74), among others, although the 

coloring of the leaves of the dendrograms was done according to the antigenic group 

assignments laid out in the data set (Figure 17).  These analyses showed that it should 

be possible to cluster proteins and have fairly consistent clustering according to 

antigenic group.  The protein masking described above was also applied to these data 

to see if different treatments would increase the efficiency of clustering.  In most 

cases, clustering was improved using known epitope mask data; however, not all 

individual known epitopes cleaned up the cluster antigenic group assignments with 

the equal accuracy.  Two problems arose from these analyses.  First, some cluster 

assignments were confused by single amino acid changes in specific viruses across 

clusters.  A sequence could maintain the overall profile of its cluster, but could be 

colored with a neighboring antigenic group.  In nine cases where this was observed, 

the mis-grouping was the result of one amino acid change (Figure 17).  This problem 

was noted in the Smith et al. 2004 paper (42).  Our methods may be susceptible to 

clustering problems if single amino acid changes can alter the antigenicity of a 

protein and we are using a mask that does not heavily weight those positions.  The 

second issue we discovered was that it may be difficult to find a height cutoff that 

properly cuts all clusters accurately with respect to antigenicity.  This may be due to 

uneven rates of evolution in various protein clusters that lead to higher amounts of 

sequence variation with little antigenic change or vice versa.  Others have 



 

 58 
 

documented the tendency for antigenic drift to follow a punctuated pattern and 

sequence evolution to have a more uniform rate (42, 65).  

Development of Distancing of Antigenicity by Sequence-based Hierarchical Clustering 

(DASH) – As a natural extension of the work performed above, we developed a suite 

of software called Distancing of Antigenicity by Sequence-based Hierarchical 

Clustering (DASH).  Our early work with DASH was focused on contemporary 

sequence data from 2012, with one notable exception.  For the vaccine candidate 

virus selection for the 2012-2013 Northern Hemisphere (NH) influenza season, we 

have accurately predicted the need for, changes in the IAV H3N2 and the IBV virus 

vaccine seeds.  The H3N2 vaccine seed that we predicted is very close in sequence 

space to the actual candidate, and we were able to identify the protein cluster from 

which the H3N2 vaccine was selected.  Our centroid virus from that cluster was not 

the candidate selected, but it did match the vaccine seed we predicted as the best for 

covering the antigen using the phenotype mapping analysis of DASH.  It should be 

noted that the actual vaccine seed selected for the 2012-2013 vaccine was not 

Figure 18 Preliminary Analysis with DASH's Antigenic Coverage Prediction. A comparison of the top and 
bottom plots indicate that the H3N2 A/S. Australia/3/2011 virus is predicted to cover (green leaves in tree) a 
much higher percentage of viruses compared to the old vaccine strain A/Perth/16/2009. 
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analyzed in any HI experiment publically available; however, the antigen our 

algorithm predicted was the closest to the actual recommended virus of any for which 

HI data was available (Figure 18).  

 In addition to the analysis for 2012-2013 season, the first phase analysis 

(focusing on DASH surveillance candidates) was performed on H3N2 viruses 

circulating one year prior to the vaccine candidate selection of 2003 for the NH 

season 2003-

2004.  It should 

be noted that the 

2003-2004 

season is a 

known year 

where the 

selection and 

surveillance 

system did not 

accurately select the correct vaccine seed (70).  In this analysis we were able to 

identify MAR candidates from seven clusters, including one cluster which contained 

the antigen selection A/Fujian/411/2002.  This virus was not easily manufactured.  A 

centroid virus from another cluster, A/Wyoming/3/2003, was eventually used as the 

vaccine seed as a result of a subsequent selection meeting (Figure 19).  It is unclear at 

this time if the success in predicting this is due to having a more complete picture of 

the sequences circulating at the time, or if the success is based on the robustness of 

Figure 19 Analysis of the 2003-2004 Vaccine Strain Selection. This uncovered clusters 
plot suggests that DASH would have identified several MAR candidates similar to 
A/Fujian/411/2002, including A/Wyoming/3/2003, which was selected for the H3N2 
vaccine at a subsequent meeting. 
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the analyses presented here.  It is clear, however, that all viruses isolated from 

humans should be rapidly sequenced and those data released to the public (75), as the 

methods described here may be able to identify important variations in influenza far 

faster than current methods. 

Retrospective Analyses Compared DASH Predictions with WHO 

Influenza Vaccine Strain Recommendations.  

To evaluate the ability of DASH to predict vaccine strains, a retrospective 

analysis was performed for each human seasonal IAV subtype and IBV lineage 

beginning in 2002, except for pandemic H1N1 (H1N1pdm), which was analyzed 

since its introduction into humans in 2009.  For each NH and Southern Hemisphere 

(SH) influenza season, DASH was used to predict the vaccine strains that provided 

the greatest predicted percent antigenic coverage against circulating viruses.  If the 

DASH-predicted strain matched either the WHO-recommended vaccine strain or an 

antigenically similar strain (defined as ≤ 1 antigenic distance from the WHO-

recommended vaccine strain), then the concordance was considered exact.  For 

seasons where the vaccine strains were generally well-matched against circulating 

viruses based on post-season vaccine effectiveness data, we expected a high 

concordance between the DASH predictions and the WHO recommendations.  In 

seasons with a poorly matched vaccine strain, we evaluated whether our DASH-

predicted strain may have provided a better-matched vaccine than the WHO-

recommended strain.  Overall, the results of this retrospective comparison indicated a 

high level of concordance between the vaccine strain identified by DASH analysis 

and the WHO recommendation.  For IAVs H3N2, H1N1, H1N1pdm, IBV Yamagata, 
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and IBV Victoria, the overall concordance rates were 77.3% (17/22), 100% (15/15), 

100% (7/7), 100% (5/5) and 85.7% (12/14), respectively (Table 2).  However, using 

an antigenic distance of < 2 (the accepted upper bound for antigenic similarity) 

yielded a concordance of 95% (21/22) for H3N2.  

For the NH season of 2003-2004, the H3N2 DASH analysis selected 

A/Fujian/411/2002 as the vaccine candidate, which was in disagreement with the 

WHO recommendation of A/Moscow/10/1999 (Table 2).  During the 2003-2004 

season, H3N2 viruses predominated and caused a relatively severe influenza 

epidemic (76).  The WHO-recommended vaccine A/Moscow/10/1999 had only 

modest vaccine effectiveness, estimated to be 47% (77), and it was subsequently 

replaced with A/Fujian/411/2002 in the next season (Table 2).  This demonstrates that 

our DASH analysis was able to identify the need to change to A/Fujian/411/2002 one 

season in advance of the updated WHO recommendation.  The DASH analysis 

predicted A/Fujian/411/2002 because of its higher predicted coverage against 

circulating strains (“in” = 26.1%) compared with A/Moscow/1999 (estimated 

coverage of only 3.1%).  Because there were limited HI assay data available for that 

year’s circulating viruses, the majority of virus coverage (96.9%) was found to be 

“unknown” by DASH. 
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Table 2 Results of a Retrospective Analysis of DASH Candidate Predictions Compared to WHO Vaccine 
Selections for 22 Influenza Seasons Between 2002 and 2013. 

Hemisphere In Unknown In Unknown Concordance
2013 Southern A/Victoria/361/2011 47.4% 49.1% A/Brisbane/299/2011 84.4% 14.8% 0.40 Like

2012-2013 Northern A/Victoria/361/2011 59.5% 35.9% A/South_Australia/3/2011† -- -- -- Exact
2012 Southern A/Perth/16/2009 24.7% 53.4% A/Rhode_Island/1/2010 67.8% 30.7% 1.09 Discordant

2011-2012 Northern A/Perth/16/2009 30.9% 50.9% A/Perth/10/2010 73.4% 23.4% 1.18 Discordant
2011 Southern A/Perth/16/2009 45.3% 40.6% A/Hong_Kong/34430/2009 54.4% 36.2% 0.97 Like

2010-2011 Northern A/Perth/16/2009 55.4% 17.2% A/Hong_Kong/1985/2009 62.4% 11.9% 0.37 Like
2010 Southern A/Perth/16/2009 44.8% 11.3% A/Perth/16/2009 -- -- -- Exact

2009-2010 Northern A/Brisbane/10/2007 27.5% 62.8% A/Sweden/3/2008 82.9% 16.7% 0.39 Like
2009 Southern A/Brisbane/10/2007 32.2% 66.9% A/Texas/37/2007 53.5% 45.4% 0.21 Like

2008-2009 Northern A/Brisbane/10/2007 43.1% 55.0% A/Brisbane/10/2007 -- -- -- Exact
2008 Southern A/Brisbane/10/2007 37.0% 62.8% A/Wisconsin/3/2007‡ 34.6% 62.8% 1.38 Discordant

2007-2008 Northern A/Wisconsin/67/2005 3.9% 68.4% A/Hong_Kong/4443/2005 9.2% 84.6% 1.74 Discordant
2007 Southern A/Wisconsin/67/2005 4.8% 88.4% A/Wisconsin/67/2005 -- -- -- Exact

2006-2007 Northern A/Wisconsin/67/2005 98.5% 1.5% A/Wisconsin/67/2005 -- -- -- Exact
2006 Southern A/California/7/2004 51.6% 46.9% A/California/7/2004 -- -- -- Exact

2005-2006 Northern A/California/7/2004 81.2% 16.8% A/California/7/2004 -- -- -- Exact
2005 Southern A/Wellington/1/2004 14.8% 84.2% A/Wellington/1/2004 -- -- -- Exact

2004-2005 Northern A/Fujian/411/2002 96.5% 3.5% A/Fujian/411/2002 -- -- -- Exact
2004 Southern A/Fujian/411/2002 25.0% 73.1% A/Fujian/411/2002 -- -- -- Exact

2003-2004 Northern A/Moscow/10/1999 3.1% 96.9% A/Fujian/411/2002 26.1% 72.0% 3.34 Discordant
2003 Southern A/Moscow/10/1999 92.3% 7.7% A/Moscow/10/1999 -- -- -- Exact

2002-2003 Northern A/Moscow/10/1999 100.0% 0.0% A/Moscow/10/1999 -- -- -- Exact
Overall Concordance: 77.3%

‡ A/Brisbane/10/2007 was the DASH recommendation when the requirement for ≥ 40 antigenic distance measurements was relaxed.

WHO Recommendation DASH Recommendation
Influenza 
Season

Predicted Coverage Predicted Coverage Antigenic Distance from 
WHO Recommendation

† The sequence and HI assay data for A/Victoria/361/2011 was not publically released until after the vaccine recommendation was made. The  HA segment for 
A/South_Australia/3/2011 only differed from A/Victoria/361/2011 in the signal peptide.

Strain Name Strain Name

 

Due to the limited activity in past few years of the seasonal H1N1 to a large 

naïve population of hosts to H1N1pdm, these viruses have been found to have lower 

diversity compared with H3N2 and IBV.  This was reflected in our analyses.  DASH 

results had maximal concordances with WHO-selected vaccine strains for seasonal 

H1N1 (100%, 15/15) and H1N1pdm (100%, 7/7).  For H1N1pdm, the DASH-

selected strains were essentially antigenically identical to the WHO 

recommendations, with computed antigenic distances of < 0.1.  Differences in the 

predicted coverage of circulating strains between the WHO recommendations and the 

DASH predictions are likely due to the conservative inference rules of DASH.  The 

predicted coverage of DASH-recommended H1N1pdm strains against circulating 

viral strains was supported by more HI assay evidence than for the WHO 

recommendations; therefore, a larger proportion of circulating viral sequences were 

assigned to “unknown” coverage for the WHO vaccine strain recommendations. 
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DASH predictions had 100% (5/5) and 85.7% (12/14) concordances with 

WHO vaccine strains for the IBV Yamagata and Victoria lineages, respectively.  

Since the 2002-2003 Northern Hemisphere season, the WHO recommendation has 

essentially alternated lineages from Victoria to Yamagata and back twice, and 

recommendations have only changed when the lineage has changed.  That means that, 

within each lineage's succession, the WHO's recommendation has remained constant.  

This suggests the anticipation of lineage swapping and the aim to not burden the 

manufacturers with a new strain that would only be utilized for one season.  This may 

explain the discordant prediction in the 2007-2008 Northern Hemisphere season, 

where the predicted coverage by the WHO-recommended Victoria strain 

(B/Malaysia/2506/2004) was only 27.5%, whereas the predicted coverage by the 

DASH-recommended Victoria strain (B/Victoria/304/2006) was 100%.  The 

relatively low prevalence of waning IBV lineages (29% on average for all IBV (78)) 

in human population is likely a mitigating factor for not matching the most dominant 

genotypes. 

For the cases where the predicted coverage for DASH-recommended strains 

exceeded that for WHO-recommended strains, it is difficult to evaluate whether the 

DASH candidate would have had a better vaccine efficacy without controlled 

experiments.  Even correlating the predicted coverage of the WHO recommendations 

with vaccine effectiveness data is difficult despite a number of reports on vaccine 

effectiveness (77, 79-81).  These reports have largely been inconsistent in their goals 

and methodologies, leading to variations in their criteria for determining vaccine 

effectiveness and efficacy.  Furthermore, point estimates for effectiveness are also 
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buttressed with wide and overlapping confidence intervals and may be estimated 

based on models with inconsistent covariates controlled between analyses.  

DASH Identified Drift Variants for Additional Testing and Ranked 

Potential Vaccine Candidates  

In addition to predicting coverage and selecting a vaccine strain, DASH 

identifies circulating drift variants for which there is no, minimal, or conflicting 

antigenic data.  DASH chooses candidates from among these variants with the aim of 

increasing coverage knowledge.  These DASH surveillance candidates can then be 

rescued using synthetic genomics and reverse genetics, used to generate ferret anti-

sera, and analyzed further using the HI assay and the newly generated anti-sera.  This 

data can be fed back into DASH to refine its vaccine prediction.  In many cases, 

DASH-selected candidates, or very closely related strains, have become the WHO-

recommended vaccine strains or vaccine seed stocks in upcoming seasons (as 

explained below and shown in Table 3). 
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Table 3 WHO Influenza Vaccine Recommendations and Accepted Seeds Viruses Compared to Time 
Similar or Identical Viruses Were Identified as DASH Surveillance Candidates.  

DASH
Hemisphere Vaccine Strains Accepted Seed Stocks STICK Candidates

2013-2014 Northern A/Victoria/361/2011 (cell propagated) A/Texas/50/2012
2013 Southern A/Victoria/361/2011 A/Ohio/2/2012 

A/Maryland/2/2012 
A/South_Australia/30/2012 
A/Brisbane/1/2012 
A/Brisbane/6/2012

2012-2013 Northern A/Victoria/361/2011 A/Almaty/3277/2012 α

2012 Southern A/Perth/16/2009
2011-2012 Northern A/Perth/16/2009

2011 Southern A/Perth/16/2009 A/Wisconsin/15/2009 
A/Victoria/210/2009 

2010-2011 Northern A/Perth/16/2009 A/Wisconsin/15/2009 
2010 Southern A/Perth/16/2009

2009-2010 Northern A/Brisbane/10/2007 A/Uruguay/716/2007 A/Victoria/210/2009 
A/New_York/3148/2009 β

2009 Southern A/Brisbane/10/2007 A/Uruguay/716/2007
2008-2009 Northern A/Brisbane/10/2007

2008 Southern A/Brisbane/10/2007
2007-2008 Northern A/Wisconsin/67/2005 A/Hiroshima/52/2005 A/Brisbane/10/2007 

A/Uruguay/716/2007
2007 Southern A/Wisconsin/67/2005 A/Hiroshima/52/2005

2006-2007 Northern A/Wisconsin/67/2005 A/Hiroshima/52/2005
2006 Southern A/California/7/2004 A/New_York/55/2004 A/Wisconsin/67/2005

2005-2006 Northern A/California/7/2004 A/New_York/55/2004 A/Wisconsin/67/2005
2005 Southern A/Wellington/1/2004 A/New_York/55/2004 

A/Waikato/1/2004 γ

2004-2005 Northern A/Fujian/411/2002 A/Wyoming/3/2003 
A/Kumamoto/102/2002

2004 Southern A/Fujian/411/2002 A/Wyoming/3/2003 
A/Kumamoto/102/2002

2003-2004 Northern A/Moscow/10/1999 A/Panama/2007/1999
2003 Southern A/Moscow/10/1999 A/Panama/2007/1999

2002-2003 Northern A/Moscow/10/1999 A/Panama/2007/1999 A/Fujian/411/2002

WHO Recommendations

α Shared cluster with A/Texas/50/2012 (0.10 percentile) and A/Brisbane/1/2012 (13.30 percentile)
β Shared cluster with A/Wisconsin/15/2009 (0.62 percentile)
γ
 Shared cluster with A/California/7/2004 (0.51 percentile)

Influenza 
Season

 

DASH-selected candidates for additional testing and analysis are identified for 

each IAV subtype and IBV lineage by first deciding the maximum number of viral 

strains to select (nVS) and then iteratively cutting the tree towards the leaves until the 

number of clusters without any antigenic information equals nVS.  Clusters with only 1 

member are not selected because they are considered spurious.  A strain closest to the 

centroid of each identified cluster is selected based on an analysis of molecular 

variance (AMOVA) (82).  In the H3N2 analysis presented here, nVS was set a priori 

to 10.  
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A DASH analysis of H3N2 viruses identified A/Fujian/411/2002 as a DASH-

selected candidate during the 2002-2003 NH season, three seasons before it became 

the WHO-recommended vaccine strain in the 2004 SH season (Table 3).  During the 

2005-2006 NH season, A/Wisconsin/67/2005 was identified two seasons before the 

WHO recommended it as a vaccine strain.  Importantly, by the second time 

A/Wisconsin/67/2005 was chosen as a DASH-selected candidate for the 2006 SH 

season, HI assay data for this strain and its anti-sera were still not available in the 

public databases, despite its significant difference from the majority of the sampled 

strains.  Three DASH-selected candidates (A/Almaty/3277/2012, A/New 

York/3148/2009, and A/Waikato/1/2004) shared the same cluster with a WHO-

recommended vaccine strain or accepted vaccine seed stock.  Although these isolates 

were different than the WHO-recommended strains, their sequence similarity was 

high enough to consider them as antigenically similar strains.  

However, in hierarchical clustering, the number of members sharing the same 

cluster depends on the height at which the tree is cut.  Thus, it is misleading to simply 

claim that a DASH vaccine candidate is in the same cluster as a WHO-recommended 

strain.  In order to evaluate the probability of randomly choosing a strain by chance 

that was more similar to the targeted strain, we sorted all the strains available in the 

season of interest by decreasing sequence similarity relative to the target strain and 

then computed the percentile of the strains that had been chosen based on that 

ordering.  For example, A/Almaty/3277/2012 shared a cluster with A/Texas/50/2012 

and was in the top 0.1 percentile of all strains in the 2012-2013 season.  In other 

words, of all the strains analyzed in the given season, 100 - 0.1% = 99.9% of strains 
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were less similar and therefore were less preferred proxies for A/Texas/50/2012 than 

was A/Almaty/3277/2012.  Equally, highly similar DASH-selected candidates (in the 

top 1 percentile) were also identified for A/Wisconsin/15/2009 (in the top 0.62 

percentile) and A/California/7/2004 (in the top 0.51 percentile). 

Additional HI Assay Data from DASH-Selected Synthetically Generated 

Viruses Improved DASH Vaccine Strain Prediction 

The evaluation of the impact of DASH-directed surveillance showed that ,in 

all cases, JCVI HI assay data increased the proportion of circulating viruses with 

antigenic coverage (Table 4). 

Table 4 Evaluation of The Impact of DASH Directed Antigenic Surveillance During the 2013 Southern 
Hemisphere Vaccine Selection. 

  Predicted 

antigenic 

coverage of 

surveillance 

sequences for 

H3N2 was 

improved by 

0.93% with the 

inclusion of JCVI HI assay data.  The tree height required to identify 10 uncovered 

clusters increased by one (meaning a deeper cut into the tree), and the median 

uncovered cluster size decreased by two.  The predicted antigenic coverage for 

H1N1pdm improved by 10.00% with the inclusion of JCVI HI assay data.  The tree 

height required to identify 10 uncovered clusters increased by six, and the median 

Type Data set Tree 
Height 

Median 
(Range) % Uncovered 

H3N2 
w/JCVI 36 7.5 (2,17) 9.44% (81/858) 
w/out 35 9.5 (2,17) 10.37% (89/858) 
Difference -1 2 0.93% 

H1N1pd
m 

w/JCVI 25 7.5 (4,29) 21.60% (108/500) 
w/out 19 12.5 (1,50) 31.60% (158/500) 
Difference -6 5 10.00% 

IBV Vic 
w/JCVI 23 4.5 (1,18) 23.83% (66/277) 
w/out 17 5 (1,18) 28.52% (79/277) 
Difference -6 0.5 4.69% 

IBV Yam 
w/JCVI 24 2.5 (1,6) 17.71% (31/175) 
w/out 18 2.5 (1,11) 23.43% (41/175) 
Difference -6 0 5.71% 
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uncovered cluster size decreased by five.  The predicted antigenic coverage by the 

Victoria and Yamagata lineages of IBV improved 4.69% and 5.71%, respectively, 

with the inclusion of JCVI HI assay data.  The tree height required to identify 10 

uncovered clusters increased by six in both cases, and the median uncovered cluster 

size decreased by 0.5 for the Victoria lineage.  The median uncovered cluster size for 

the Yamagata lineage did not change, although the range noticeably shifted toward 

smaller cluster sizes. 

The overall impact of these analyses on potential vaccine candidate viruses 

depends in part on how many antigens overlap between HI assays and how many new 

DASH-selected candidate viruses are tested, as well as on the overall distribution of 

tested viruses across the protein cluster dendrogram.  This analysis is best viewed as a 

method for increasing the overall knowledge about a particular antigen and about 

circulating viruses in general.  A candidate may look more or less desirable as a 

vaccine strain, but the net gain is an improved resolution of the antigenic phenotype 

across all circulating viruses.  The results described below demonstrate that targeted 

antigenic analysis through HI assay testing of DASH-selected candidates can have a 

significant impact on the resolution of the antigenic phenotype.  This information is 

highly relevant for vaccine production. 

A total of 81 viruses were tested in the two CDC H3N2 HI assays.  JCVI HI 

assay testing of DASH-selected candidates provided data for an additional 10 viruses, 

as well as providing additional HI assay data for nine CDC-tested viruses.  Changes 

in the percentage of “in” predictions after including the additional JCVI HI assay data 

ranged from -16.89% to 25.32%, whereas changes in the percentage of “out” 
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predictions ranged from -46.12% to 2.64%, and the percentage of “unknown” 

predictions ranged from -10.90% to 30.86% (Table 5 and Figures 20 and 21).  

Table 5 Relative Shift in Observed Predicted Antigenic Coverage for Nine H3N2 Viruses With and Without 
JCVI HI Data. 

 

 

Figure 20 DASH Diagrams Comparing Antigenic Coverage Prediction for A/S. Australia/3/2011 Without 
(A) and With (B) JCVI HI Data.  The relationship between circulating viruses over the collected between 
August 2011 and August 2012 is depicted in the dendrogram at the top of each panel.  The green bars in the center 
of each plot indicate the ratio of “in” (green), “out” (red), and “unknown” (grey) predictions for each virus in the 
dendrogram over 80 bootstrap replicates.  The green and red bars in the bottom row of each plot indicate which 
viruses in the dedrogram also had HI assay data.  Overall these diagrams are very similar.  A/S. Australia/3/2011 
is indicated with the blue star.  Phylogenetic clades as defined by phylogenetic analysis and comparisons to WHO 
nomenclature are indicated with colored boxes and labels at the bottom of the second panel.  These diagrams can 
be considered to be very similar, however (B) shows slightly more predicted coverage around viruses with new HI 
data in clades 3c and 1.  These differences move A/S. Australia/3/2011 up in rank from six to one of all viruses 
tested. 

 

Virus Shift In Shift Out Shift 
Conflicted 

Additional 
In 

Additional 
Out 

Original 
Rank 

New 
Rank 

Rank 
Change 

A/Hong Kong/4913/2011 25.32% -14.42% -10.90% 17 3 47 2 45 

A/Victoria/208/2009 15.26% -46.12% 30.86% 18 2 80 75 5 

A/Bangladesh/5071/2011 8.47% -0.53% -7.93% 17 3 72 72 0 

A/Perth/16/2009 5.65% -2.21% -3.43% 16 4 77 76 1 

A/Berlin/3/2012 2.64% -2.65% 0.01% 17 3 60 56 4 

A/Alabama/5/2010 2.64% -2.65% 0.01% 17 3 63 57 6 

A/South Australia/3/2011 2.38% 0.04% -2.41% 16 4 6 1 5 

A/Hong Kong/3969/2011 -1.99% -2.61% 4.60% 17 3 22 23 -1 

A/Brisbane/299/2011 Egg -16.89% 2.64% 14.25% 6 14 5 22 -17 
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Figure 21 DASH Diagrams Comparing Antigenic Coverage Prediction for A/Brisbane/299/2011 Without 
(A) and With (B) JCVI HI Data.  The differences between these two diagrams show a large drop in predicted 
antigenic coverage of this virus against the 3c clade.  Phylogenetic and historical analyses reveal clade 6 to be 
older than clade 3c.  This may indicate the waning protective influence of clade 6 viruses versus clade 3c viruses.  
PTP analysis reveals clade 3c to be growing.  Taken together this indicates A/s. Australia/3/2011 to be a better 
potential vaccine candidate than /Brisbane/299/2011. 

During the 2012-2013 season, it was widely reported that the chosen vaccine 

strain (A/Victoria/361/2011) underwent significant antigenic changes during its 

adaptation to growth in eggs (Figure 22).  Although no A/Victoria/361/2011 virus in 

any propagation media was included in the publically available data at the time of its 

selection as a vaccine recommendation, our data support an antigenic difference 

between egg- and cell-propagated H3N2 vaccine strains as early as August 2012, 

which likely contributed to the reduced vaccine effectiveness. 

 

Figure 22 DASH Diagrams Comparing Antigenic Coverage Prediction for A/Victoria/361/2011 Cell (A) and 
Egg (B) Passaged Virus HI Data With AD Histogram Plots.  A comparison of the antigenic coverage 
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prediction of the cell- and egg-passaged A/Victoria/361/2011 virus reveals different coverage prediction patterns 
on the various circulating clades.  The cell-passaged virus matches well against clades 3A, 3B, 3C, and 1, whereas 
the egg-passaged virus shows decreased coverage against all clades with particularly poor coverage predictions on 
clades 1, 5 and 6.  The histogram plots on the right of each DASH plot indicate the overall distribution of the AD 
values used for each prediction.  The shift of median AD value toward the antigenic cutoff of 2 for the egg-
passaged virus explains this discrepancy in coverage predictions. 

A total of 32 H1N1pdm viruses were tested in the CDC HI assay.  JCVI HI 

assay testing of DASH-selected candidates provided data for an additional 16 viruses 

and added additional HI assay data for seven CDC-tested viruses.  Shift in “in” 

predictions ranged from -2.71% to 37.66%.  Shift in “out” predictions ranged from -

8.68% to 0.56%.  Shift in “unknown” predictions ranged from -34.95% to 3.72% 

(Table 6 and Figure 23).   

Table 6 Relative Shift in Observed Predicted Antigenic Coverage for Seven H1N1 Viruses With and 
Without JCVI HI Data. 

Virus Shift In Shift Out Shift 
Conflicted 

Additional 
In 

Additional 
Out 

Original 
Rank 

New 
Rank 

Rank 
Change 

A/Quebec/RV1432/2011 37.66% -2.71% -34.95% 54 4 30 9 21 
A/Voronezh/1/2011 6.31% 0.34% -6.65% 49 9 31 31 0 

A/St Petersburg/100/2011 6.20% 0.45% -6.65% 46 12 29 29 0 

A/New York/21/2011 4.96% -8.68% 3.72% 44 14 33 33 0 
A/California/52/2011 0.23% 0.23% -0.45% 52 6 10 10 0 
A/Valparaiso/17275/2011 -2.14% 0.23% 1.92% 53 5 4 8 -4 
A/California/7/2009 -2.71% 0.56% 2.14% 49 9 11 28 -17 

 

 

Figure 23 DASH Diagrams Comparing Antigenic Coverage Prediction for A/Quebec/RV1432/2011 Without 
(A) and With (B) JCVI HI Data.  These two DASH diagrams show an increase in predicted antigenic coverage 
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of circulating H1N1pdm viruses by A/Quebec/RV1432/2011 with the addition of JCVI HI data.  Predicted 
antigenic coverage increased for clades 5, 6 and 7, whereas part of the cluster representing clades 1 through 4 
showed decreased predicted antigenic coverage.  This virus moved from rank 30 without JCVI HI data to rank 
nine with JCVI data.  This result indicates this virus could be a viable vaccine candidate.   

A total of 33 IBV Victoria lineage viruses were tested in the CDC HI assay. 

JCVI HI assay testing of DASH-selected candidates provided data for an additional 

eight viruses and added further HI assay data for two CDC-tested viruses.  Shift in 

“in” predictions ranged from 0.45% to 0.59%.  Shift in “out” predictions ranged from 

0.30% to 0.45%.  Shift in “unknown” predictions were measured at -0.89% (Table 7).  

Table 7 Relative Shift in Observed Predicted Antigenic Coverage for Two IBV Victoria Lineage Viruses 
With and Without JCVI HI Data. 

Virus Shift In Shift Out Shift 
Unknown 

Additional 
In 

Additional 
Out 

Original 
Rank 

New 
Rank 

Rank 
Change 

B/Nevada/3/2011 Egg 0.59% 0.30% -0.89% 10 12 9 2 7 

B/Kansas/1/2012 0.45% 0.45% -0.89% 9 13 25 22 3 

 

A total of 27 IBV Yamagata lineage viruses were tested in the CDC HI assay.  

JCVI HI assay testing of DASH-selected candidates provided data for an additional 

nine viruses and added further HI assay data for three CDC-tested viruses.  Shift in 

“in” predictions ranged from -14.76% to 19.75%.  Shift in “out” predictions ranged 

from 0.42% to 1.25%.  Shift in “unknown” predictions ranged from -20.17% to 

13.51% (Table 8 and Figure 24).   

Table 8 Relative Shift in Observed Predicted Antigenic Coverage for Three IBV Yamagata Lineage Viruses 
With and Without JCVI HI Data. 

Virus Shift In Shift Out Shift 
Unknown 

Additional 
In 

Additional 
Out 

Original 
Rank 

New 
Rank 

Rank 
Change 

B/New Hampshire/1/2012 19.75% 0.42% -20.17% 9 13 26 25 1 

B/Wisconsin/1/2010 8.52% 0.62% -9.15% 10 12 24 9 15 

B/Finland/39/2010 -14.76% 1.25% 13.51% 8 14 2 10 -8 
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Figure 24 DASH Diagrams Comparing Antigenic Coverage Prediction for B/Wisconsin/1/2010 Without (A) 
and With (B) JCVI HI Data.  These two DASH diagrams show an increase in predicted antigenic coverage of 
circulating IBV Yamagata lineage viruses by B/Wisconsin/1/2010 with the addition of JCVI HI data, although this 
change does not seem exceptional in the depiction above.  The green double-sided arrow points to one new virus 
tested by JCVI HI assay.  This particular virus contained a HA sequence that was identical to 27 other viruses that 
were circulating during this time period.  DASH applies weights to viruses that are highly represented in the data 
set.  This weighting accounted for an 8.52% increase in predicted antigenic coverage of B/Wisconsin/1/2010 over 
IBV Yamagata lineage viruses. 

Discussion 

The goal of this study was to put forth a method to improve the viral 

surveillance of influenza virus, with the hope of expediting the vaccine selection 

process while simultaneously making improvements to its accuracy.  Although we 

believe these methods achieve that goal, a shift in focus is likely necessary.  Next-

generation sequencing is a key component of that shift, where an unbiased 

sequencing-first approach to surveillance should be used.  It is only through an 

unbiased sequencing philosophy that the epidemiological dynamics of circulating 

influenza viruses becomes most accurate.  This is especially true in light of the high 

variability of the HI assay data (and related computations), and the accuracy achieved 

in modern sequencing techniques.  The assumption of reliability of these data as an 

unbiased surveillance resource is a key underpinning of the methods described here. 
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This study supports the notion that targeted antigenic surveillance after the 

sequencing of influenza genomes, rather than large-scale HI assay testing prior to 

sequencing, is a viable alternative.  This method would have advantages over the 

current method in cost and timesaving.  A sequencing-first methodology would give 

researchers the ability to plan HI experiments in targeted areas of the viral protein 

space, and hence to maximize the increase of phenotypic information gained through 

HI testing.  Furthermore, these methods provide a strong statistical basis for selecting 

viruses as potential vaccine candidates based on antigenicity alone.  We have also 

provided evidence of the ability of these methods to resolve and visualize differences 

in antigenicity in egg- versus cell-propagated viruses, as was the case for 

A/Victoria/361/2011.  This capability may allow for smarter selection of vaccine 

candidates in the future, as poorly matched egg/cell pairs could be screened out as 

potential vaccine seeds.  Similarly, relatively small differences in antigenic distance 

(0.5-1.5 AD) can be shown to have large impacts on the predicted viability of one 

candidate virus over another especially in context of newly emerging clades.  These 

differences only become apparent through our bootstrapping techniques and the use 

of DASH visualizations (See A/Victoria/361/2011 egg/cell example, Figure 23). 

DASH and a related methodology, the PTP, have aided in determining the 

direction that antigenic assays should be taken.  These methods thus enable the 

sequence-first approach discussed above.  PTP is capable of tracking which genetic 

groups are growing or shrinking in prevalence during a given influenza season.  As 

we described earlier, DASH is able to identify gaps in antigenic information.  Taken 

together, these methods can help researchers direct antigenic characterization to the 
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clusters of viruses where data is limited and to prioritize the study of those influenza 

viruses that are seen to have high rates of expansion in prevalence.  Although smaller 

proportion groups are still of interest, since emerging antigenic variant influenza 

viruses can evolve from any sub population – the relative proportion should be taken 

into account.  It can be assumed that genetic groups that show little sign of expansion 

have likely not yet acquired the mutations required for immune evasion.  In designing 

HI experiments, sera panels should be derived from the breadth of recently circulating 

genetic groups, although antigens can be focused on areas with limited antigenic data. 

 HI experiments (and thus the AD calculation) itself are subject to a high 

degree of variability.  This variability is likely derived from the differences in 

methodology between labs.  These include: the use of regents (such as blood cells) 

from differing donor species (e.g. turkey, guinea pig, etc.), the use of additives (such 

as oseltamivir) to aid in NA normalization, and the various polyclonal sera used to 

inhibit hemagglutination.  Not only are polyclonal sera derived from different host 

species (most commonly ferret or sheep), but the use of outbred animals to generate 

these sera will likely lead to qualitative differences in results.  This is because the 

genetic background of the host can influence the specific antibodies produced when 

challenged with a novel pathogen.  During the AD computation, the serial dilution 

processes of the HI experiment can lead to quantization errors where larger distances 

will become increasingly error prone, as small differences in antibody titer will 

become large differences after many dilutions.  For this reason, we believe AD is 

most accurate at ≤ 2 AD units or 4-fold dilutions in an HI assay.  Similarly, low titer 

values will also affect the reliability of the results as the dynamic range of the assay is 
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shortened.  Although it is our belief that these sorts of errors can be somewhat 

ameliorated by centralization of the assays and performing technical replicates of 

each antigen of interest, HI assays will likely not be scalable to the extent that high-

throughput sequencing techniques have become. 

The methods described herein should be seen as an enhancement to current 

viral surveillance and vaccine selection methodologies.  It is through the rigorous 

statistical treatment described above that human biases in the vaccine selection 

process may be eliminated.  It is also our belief that the use of synthetic genomics 

when coupled with computation, will speed the production of selected candidates, 

enhance the evaluation of new candidates, and allow for the manufacturing at-risk 

and stockpiling of viruses in real-time during viral epidemics – ready for later 

production if similar viruses are chosen as the vaccine candidates. 

Conclusion 

We have described methods for performing viral genotype and phenotype 

surveillance, as well as for the mapping of antigenic data on protein dendrograms, for 

the purpose of evaluating novel viruses for use as vaccine components in the annual 

influenza vaccine.  Through an 11-year retrospective analysis we have demonstrated 

the ability of these methods to accurately select the same or similar viruses as the 

WHO-recommended components.  In some cases, our methods have predicted the 

necessary changes in the vaccine seed choice by the WHO, and by our computational 

estimations have selected more suitable vaccine component viruses.  DASH has also 

a demonstrated ability to identify novel antigenic groups through sequence analysis, 

and could be used as a surveillance technique to identify manufacturing at-risk 
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vaccine component candidates for the pharmaceutical industry.  Finally, we have 

demonstrated, through the use of JCVI generated HI assay data, that DASH could be 

used to enhance antigenic surveillance by facilitating directed HI assays of novel 

viruses, by reducing redundancy in the surveillance process, and by ensuring the 

maximum information gain and the lowest investment of labor and reagents.   
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Chapter 3: VirComp: A Novel Method for Viral Comparative 

Analysis Using Cluster-Based Gene Constellations 

Abstract 

Emerging and endemic viral pathogens carry an enormous disease burden on 

human and animal populations.  Morbidity, mortality, and economic losses are just a 

few ways in which disease burden can be calculated.  From the recent reemergence of 

Ebola in West Africa to the annual epidemics of respiratory diseases such as 

influenza and respiratory syncytial virus (RSV), research into viral diseases is of 

utmost importance.  Next-generation sequencing technologies have altered our ability 

to perform viral surveillance and directed research into epidemiological and 

pathogenic phenomenon related to these pathogens.  However, handling of these 

increasingly large data sets is key to making important inferences about viral 

epidemiological dynamics.  Here we describe a novel method, VirComp, for 

performing genome constellation analysis in a context specific manner.  VirComp 

when paired with OrionPlot (a new visualization application) enables detailed 

comparative viral genomics.  We show the utility of this method for understanding 

the reassortment and evolutionary processes in influenza virus, for investigating 

recombination and performing sequencing validation in RSV, and for carrying out 

variant screening in Ebola virus.  This method will aid in the enormous task of 

describing new viral data sets in light of large-scale genomic sequencing efforts. 
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Introduction 

Emerging and endemic viral diseases are a great threat to human and animal 

populations around the world.  Pathogens such as influenza and RSV cause large 

disease burdens during their annual epidemic seasons (83, 84).  Influenza virus is 

thought to cause between 250,000 and 500,000 deaths annually with 3 to 5 million 

cases (84).  Similarly, RSV causes 199,000 deaths in children under the age of 5 

worldwide and 10,000 deaths in the US in the 65 plus community (85, 86).  The vast 

majority of RSVs disease burden is felt in developing countries (87).  The recent 

reemergence of Ebola virus has caused widespread death and economic calamity 

throughout West Africa since early 2014 (88).  As of this writing the 2014 Ebola 

virus epidemic has killed 11,261 people in six countries with laboratory confirmed 

cases in 10 countries on three continents (89).  A total of 27,609 cases are suspected 

(89).  With the current pace of genomics and the introduction of new technologies to 

expedite viral genome sequencing, new methods for effective viral comparative 

genomics are increasingly needed.  Novel methods for analyzing this onslaught of 

new data will no doubt enhance our understanding of these and other endemic and 

emerging pathogens. 

The most robust method for comparing viral genomes is to perform 

phylogenetic analysis.  However, comparing viral genomes, taking into account 

variations across multiple constituent genes, becomes intractable with large data sets 

across several to dozens of gene-specific phylogenies (90).  Methods for quickly 

categorizing and visualizing categorical assignments are useful in solving the 

difficulty of making tree based comparisons of genes and genomes (91).  This type of 
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analysis is commonly known as genome constellation analysis, or sometimes 

genotype analysis (49, 91).  Constellation analysis has been used extensively in 

influenza virus and rotavirus studies to uncover and examine the nature of genomic 

reassortments in segmented viruses (48, 50, 52, 92).  In principle these techniques 

could just as easily be used to study recombination in non-segmented viruses. 

Constellation analysis comes in two basic forms.  The first method relies on 

distance metrics based on sequence similarity alone to categorize differences in the 

genomic content of the viruses.  These approaches can be further categorized as one-

to-many comparisons (where one subject is compared against many references) (50), 

and many-to-many comparisons (where an all-versus-all comparison strategy is 

employed) (51).  The second method utilizes phylogenentic reconstructions as the 

basis for categorizing the viral genes (48, 91).  Distance methods tend to be less 

computationally rigorous and less time consuming than the phylogenetic approaches, 

especially if maximum likelihood or Bayesian inferences are made.  Furthermore 

many of the methods described in the literature, including the phylogenetic methods, 

involve less straightforward approaches to making cutoffs between categories (91).  

These approaches can make it difficult at times to discern, in a quantifiable way, what 

the differences are between the genotypes or constellations being examined. 

Methods 

Data Collection and Preparation 

All viral sequence data was collected either from GenBank or GISAID’s 

EpiFlu databases.  Viral genomes were selected for analysis according to their 

complete or near completeness.  Influenza virus sequence data were separated by 
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genomic segment into multifasta files, and labeled according to segment name.  RSV 

and Ebola virus genomes were first annotated with VIGOR 3.0 (22).  The resultant 

CDS file was then separated into gene specific multifasta files, and labeled according 

to gene name.  All sequences were identified by their database accession number.  

Additional accession number to viral strain name mapping files were generated as a 

way to associate unique sequence identifiers in the gene-specific sequence fasta files 

to specific viruses during a later step used to aggregate results.  Viral strain names 

were manually reviewed to ensure consistency in species-specific nomenclature, and 

to enable exact string matches to be made by the constellation processing scripts.   

VirComp Constellation Analysis Pipeline 

The VirComp (https://github.com/sschobel/vir-comp) constellation analysis 

pipeline was implemented in the PERL programming language (Figure 25).  The 

pipeline includes a main workflow wrapper script called run_constellation.pl.  The 

input for the pipeline is a two column tab delimited file (tsv) with the segment or gene 

names in the first column (matching the fasta files prepared previously) and in the 

order by which that segment or gene-specific clusters should appear from left to right 

in the resultant visualization.  The second column of the tsv file should include a sort 

order for the resultant pipeline output.  This allows a user to specify both the order of 

the gene columns and the order by which the columns should be sorted.  For example, 

a useful method is to order the columns by gene synteny in the genome, and sort the 

columns from genes with the most to least diversity.  The pipeline auto-detects the 

fasta files of the segments (or genes), so long as the names in the first column of the 

input file matches the gene or segment names of the fasta files and the fasta file 
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names are suffixed with fasta.  This script in turn executes six additional data 

processing applications.  The first of these is MAFFT (93).  MAFFT is responsible 

for generating multiple sequence alignments and was selected due to its speed and 

accuracy.  Multiple sequence alignments were output in the ClustalW format (an 

interleaved multiple sequence alignment file).  After MAFFT, run_constellation.pl 

executes ClustalALN_to_RDistancematrix.pl, which transforms the gene or segment 

specific multiple sequence alignments into pairwise distance matrices (39).  This 

script is available through the ANDES suite of deep sequencing analysis software 

(39).  The distance between sequence pairs is calculated using the Hamming distance 

method for nucleotide and protein alignments (94).  These distance matrices are then 

used multiple times to generate gene clusters using farthest neighbor hierarchical 

clustering and a set of predefined percent identity cutoffs (100%, 99%, 98%, 97.5%, 

95% and 90%).  The gene clusters are constructed using 

Partition_Members_byDistanceMatrix.pl, another member of the ANDES suite (39).  

Once the gene clusters are generated for all segments or genes at a particular cutoff 

level the pipeline then executes merge_constellations.pl.  This script is responsible for 

utilizing the accession to strain name maps to match gene cluster assignments for 

each gene or segment to their respective viral strains.  The program then outputs a 

genome constellation of each gene in the viral genome for every viral strain in the 

map files.  The output tsv file is sorted according to gene-specific columns specified 

in the original pipeline input.  For instance if the user specifies a desire to sort on the 

HA gene first, then the NA gene, then all of the rest of the genes in order of segment 

number for an influenza virus, then the output will begin with HA and NA cluster 1 
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viruses.  This would be followed by HA cluster 1 and NA cluster 2 viruses if such 

combinations existed, and this step is repeated until all viral strains have been output.  

A second constellation tsv file is also outputted by merge_constellations.pl.  This 

output consists of only the set of unique constellations labeled with the count of 

observations of that constellation in the input data set.  This output can be useful to 

assess the abundance of a particular constellation and makes it easier to summarize 

especially large constellation analyses.  The constellation analysis pipeline produces 

two additional files as supplementary annotations for the constellation tsv files, 

produced by merge_constellations.pl.  The first is a list of the viral strain names in 

each of the unique constellations that have been derived from the input set (at the 

cutoff being examined).  The second is the mapping of the viral strain name to the 

constellation number.  Constellations are numbered according to the sort order 

specified by the user in the gene order input tsv file.  These annotation files are 

generated using annotate_constellations.pl and annotate_constellation_map.pl 

respectively.  Once run_constellation.pl has completed the generation of the gene 

clusters, the aggregation of the constellations and the annotation of the constellations 

at a particular cutoff, the pipeline moves on to the next predetermined cutoff until all 

cutoffs have been examined. 

To reduce redundant computational steps the pipeline is designed to run the 

alignment and the distance matrix generation steps only once per gene, as these will 

not change when examining the different percent identity cutoffs.  However, the 

cluster generation, the aggregation of the constellation information, and the 

annotation of constellations must be performed independently for each cutoff.  The 



 

 84 
 

pipeline simply passes these files on to the later processing steps as it iterates over the 

various cutoffs.  The run_constellation_analysis.pl script is also capable of detecting 

the presence of pre-generated alignments and/or distance matrices.  The purpose of 

this feature is twofold.  First, this allows the pipeline to skip the computational 

expense of producing these files if the user already generated them – for example if 

the user merely wanted to update a viral strain name in a map file.  Second, it allows 

the user to provide edited alignments or pairwise distances calculated according to a 

different algorithm. 

Maximum Likelihood Phylogenetics 

The H3N2 and RSV data sets were used to generate phylogenies of each viral 

gene for comparison to the gene-based clustering technique used in this method.  The 

phylogenies were inferred using GARLI Web 2.0 (95) using the general time 

Figure 25 Workflow of The VirComp Constellation Analysis Pipeline.  Scripts responsible for various aspects 
of the computational pipeline are listed next to the processing step.  Inputs and outputs of each step of the analysis 
are also indicated. 
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reversible substitution model using a discretized gamma distributed site-specific 

variation model, with four rate categories, and an invariant site parameter. 

Sequence Analysis 

Sequence analysis for RSV recombination analysis was performed using 

MAFFT (73) for sequence alignment and CLCBio (96) for alignment visualization.  

Recombination analysis for confirmation of VirComp results was performed using 

RDP3 (53).   

Constellation Visualization using OrionPlot 

OrionPlot (https://github.com/sschobel/orion-plot) is a Java application that 

processes categorical matrix data sets and generates a concise visual representation 

from them.  The final output is provided in SVG and PNG formats.   

The tool provides a multi-platform GUI front-end.  This desktop application 

displays a preview of the output image and allows the user to modify the visualization 

parameters in real time before generating the final output.  A command-line interface 

is also provided. 

Results 

During the development of the VirComp constellation analysis software five 

separate analyses were performed to assess the utility of this method and to further 

develop functionality for the software.  These analyses consisted of a swine influenza 

data set, a human seasonal influenza data set, an avian influenza data set, a human 

RSV data set, and an Ebola virus data set.  The former three data sets represent a 

segmented virus where reassortment of the genomic segments is presumed to be 
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possible if not commonplace.  The RSV data set represents a single-segmented viral 

genome where reassortment does not occur; however, genomic recombination should 

be assessed, especially prior to performing any in-depth phylogenetic or other 

evolutionary based analyses.  Finally, the Ebola data set represents a low-variation 

genome, where the screening of the protein variants can provide support for the 

design of in vitro assays. 

Exhibition Swine Influenza Virus Analysis 

The swine data set included a set of viral samples from collected from pigs at 

several county and state fairs in Ohio during the summers of 2009-2011.  In addition 

to the viruses from this study, our analysis included North American swine sequence 

from the same period, human vaccine virus and H1N1, H1N2, and H3N2 variant 

viruses (collected as a result of human infections).  The cutoff used for this data set 

was 97.5% (Figure 26).  The results of the constellation analysis show a relatively 

static set of viruses circulating within the Ohio fairs during 2009 and 2010; however, 

during 2011, a much more dynamic viral landscape emerged.  During 2009, two viral 

constellations were circulating in pigs, one from the H3N2 subtype and one the H1N2 

subtype.  Similarly, in 2010 just one H3N2 viral constellation was present.  In 2011, 

however fair sampling showed nine distinct viral constellations circulating from both 

the H3N2 and H1N2 subtypes.  Single fairs in 2011 showed the presence of multiple 

constellations and subtypes.  During one fair in particular, sampling showed the 

presence pigs co-infected with more than one subtype, the hallmark of the 

reassortment process.  During 2011 and 2012, reassorted variant H3N2 virus was 

found to have infected humans, primarily in the Midwest and associated with the state 
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fairs.  The constellation analysis shows a close relationship between the H3N2 variant 

sequences found in human children who visited or were in contact with those who 

had visited county and state fairs.  This suggests that swine viruses were being 

transmitted to humans at these events, and possibly, vice versa.  One other interesting 

feature of the constellation analysis for this study was the switch over from the 

classical matrix to the pandemic matrix gene (a signature sequence from the 2009 

H1N1 pandemic) during the 2011 fair sampling.  This suggests a continual mixing of 

various human and avian origin gene segments within the swine population. 

Figure 26 Influenza A H3N2 and H1N2 Genome Constellations Present in Exhibition Swine From Ohio 
Fairs Between 2009 and 2011.  The constellation analysis shows the presence of numerous distinct genome 
constellations at the 97.5% cutoff in exhibition swine during the time period specified.  2009 and 2010 
constellations show no mixed infections or reassortment events.  2011 constellations do show evidence of mixed 
infections (indicated by squares shaded with two different colors) and reassortment within and between fairs (5).   
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Human H3N2 Influenza from Houston, Texas During the 2012-2013 Season 

A.
PB

2

PB
1

PA HA NP NA M NS

HA                     
Clade

Study 
Samples

EpiFlu 
Samples

98% nucleotide             
identity clusters*:

1 1 0 1            Cluster 1 

2 3A 17 3            Cluster 2

3 3B 0 11            Cluster 3

4 3A 1 0            Cluster 4

5 6 1 2            Cluster 5

6 6 0 6

7 5a 3 0

8 5 0 3

9 6 1 1

10 5 18 1

11 3C.1, 3C.2, 3C.3, 
3C-2012/13 106 16

12 3C.2b 7 0

B.

PB
2

PB
1

PA HA NP NA M NS

HA                     
Clade

Study 
Samples

EpiFlu 
Samples

99% nucleotide               
identity clusters*:

1 3C.1 1 1            Cluster 1 

2 3C.1 1 2           Cluster 2

3 3C.1 0 1           Cluster 3

4 3C.3 1 2          Cluster 4

5 3C.3, 3C.2c 12 3          Cluster 5

6 3C.3d 5 1          Cluster 6

7 3C.2 20 1

8 3C-2012/13 5 1

9 3C-2012/13 61 0

10 3C.2b 7 0
aThese study samples form their own HA monophyly within clade 5.
bThese study samples form their own HA monophyly within clade 3C.2.

dThese study samples form their own HA monophyly within clade 3C.3.

The authors gratefully acknowledge the 32 originating and submitting laboratories who directly contributed sequences used in the constellation
analysis to GISAID: Alaska State Virology Lab; Arizona Department of Health Services; Austin Health, Australia; California Department of
Health Services; Canterbury Health Services, New Zealand; US Centers for Disease Control and Prevention; Institute of Medical and
Veterinary Science (IMVS), Australia; Institut Pasteur New Caledonia; Iowa State Hygienic Laboratory; John Hunter Hospital, Virology Unit,
Clinical Microbiology, Australia; Kentucky Division of Laboratory Services; Melbourne Pathology, Australia; Michigan Department of
Community Health; New Mexico Department of Health; New York State Department of Health; Papua New Guinea Institute of Medical
Research; Pathwest QE II Medical Centre, Australia; Pennsylvania Department of Health; Puerto Rico Department of Health; Queensland
Health Scientific Services, Australia; Research Institute of Tropical Medicine, Philippines; Rhode Island Department of Health; Royal Hobart
Hospital, Australia; Southern Nevada Public Health Lab; Spokane Regional Health District, Washington; State of Hawaii Department of Health;
Texas Department of State Health Services-Laboratory Services; USAMC-AFRIMS Department of Virology, Cambodia; Utah Department of
Health; Victorian Infectious Diseases Reference Laboratory, Australia; WHO Collaborating Centre for Reference and Research on Influenza,
Australia; and WHO National Influenza Centre, National Institute of Medical Research (NIMR), United Kingdom.

cOf the 13 strains in this constellation that are also in the HA phylogeny, conly 
one strain falls within clade 3C.2.

Genome Constellation Count

Genome Constellation Count

* Please note that each column               
is evaluated independently and 
cluster numbering is arbitrary.

* Please note that each column             
is evaluated independently and 
cluster numbering is arbitrary.

Figure 27 Human Influenza A H3N2 Genome Constellation Analysis from Huston, Texas During the 
2012-2013 Influenza Season.  Constellation analysis was conducted at the 98% cutoff for the whole data set in 
panel (A).  Panel (B) depicts a 99% cutoff constellation analysis conducted on clade 3 viruses only.  
Reassortments are visible in both panels (4). 
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The human H3N2 influenza data set included a set of viruses collected during 

the 2012-2013 North American influenza season in Huston, Texas.  In addition to 

these viruses the analysis also included vaccine viruses as well as manufacturing 

seeds, a set of viruses used as references in the HA phylogenies of the NIMR 

September 2012 report and in the CDCs VIRPAC report to the FDA in February of 

2012 (97).  A sample of sequences from the 2012-2013 season outside Texas was also 

included as context for the analysis.  This data set was examined at the 98 and 99% 

identity cutoffs (Figure 27).  The complete set of genomes was examined at a 98% 

cutoff, and the predominant circulating clade (3C)  (in influenza, phylogenetic clades 

are defined by the HA gene) and its subclades was examined at 99% for finer 

resolution of variation.  At the 98% cutoff our analysis revealed intrasubtypic 

reassortment, especially between HA clades 5 and 6.  This pattern was confirmed 

through a comparison of the HA clades and a NA ML tree.  Several long-branch-

length monophylies were apparent in the NA tree, interleaved with opposite clade NA 

sequences.  Interleaving was also apparent within the 3C clade and subclades.  These 

reassortments were visible in our constellation analysis at a cutoff of 99%.  In 

addition to reassortment, the constellation analysis allows for the visualization of the 

variability in circulating viruses.  During one season, we saw nine distinct viral 

genotypes at the 98% cutoff level circulating in the Houston area.  The ability of 

influenza to reassort is a key component to its epidemiological success (98). 

North American Avian H7 Influenza Diversity Leading to Highly Pathogenic 

Poultry Outbreaks 
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The 

avian H7 

influenza data 

set included 

several 

collections of 

H7 avian 

influenza virus 

genomes from 

across North and 

South America, 

focusing on 

Anseriformes, 

Charidraformes 

and Galliformes 

(4).  In addition 

to these 

collections, all 

available 

complete 

genomes from 

North America 

were included 

Figure 28 Influenza A H7 Genome Constellation Superimposed on A Bayesian 
Phylogeny of The HA Gene of Influenza Collected from North American Wild and 
Domestic Birds.   In this figure shore bird, duck, and poultry species are indicated with 
light blue, dark blue and green strain labels respectively.  Divergence date estimates for 
North and South American H7 lineages are indicated with arrows, as are American and 
European lineages of H7.  H7N3 outbreaks in poultry are indicated with red boxes.  
Highly pathogenic (HP) H7 outbreaks are indicated with red dots.  Each outbreak of HP 
was revealed to have originated from a different genome constellation (4). 
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for context, as well as several important reference sequences known to have produced 

highly pathogenic outbreaks of avian H7 influenza in poultry and humans.  Although 

few, if any, complete genomes were available from South America, several nearly 

complete genomes were included for this analysis. 

The constellation analysis was examined at 90 and 95% cluster sequence 

identity.  At both cutoff levels, unique constellations were seen for all highly 

pathogenic outbreaks (as well as the related low pathogenic poultry viruses) (Figure 

28).  The wild bird viruses with the HA gene most similar to that of the poultry 

outbreak viruses were often highly reassorted in comparison to the outbreak viral 

constellations.  This suggests that highly pathogenic outbreaks occur through 

convergent evolutionary processes (Figure 28 red boxes), and that there are no 

lineage-specific genes required for this convergent evolution to occur.  Although 

small numbers of surveillance sequences from the time and location of the outbreaks 

are available, the sequence analysis suggests that these viruses evolve highly 

pathogenic influenza features once they have infected domestic birds rather than 

evolving in the wild birds first.  Also, Anseriformes appear to be the reservoir host for 

the poultry outbreaks examined here.  The constellation diagrams highlight how much 

missing surveillance data there is about avian influenza as it circulates in wild 

populations, and how increased avian surveillance will help to fill in these gaps. 

Identification of Respiratory Syncytial Virus Chimeras 

The RSV data set included a set of viruses collected from children in the US 

during the 2012-2013 RSV season.  In addition to these viral sequences all available 

complete human RSV genomes were included in this analysis, as the total 
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complement of full RSV genomes in GenBank is fairly small (as of this writing, 

approximately five hundred total genomes).  After phylogenetic analysis the data set 

was reduced to 245 genomes including 72 study sequences with complete gene 

counts. 

The RSV genome constellations were examined at 95 and 97.5% cluster 

sequence identity.  At 95% 22 constellations were inferred in the RSV data set 

(Figure 29).  The study sequences fell into five genome constellations: four RSV-A 

constellations and one RSV-B constellation.  All but one constellation with study 

sequences contained multiple genomes, including non-study genomes.  On closer 

examination of constellation 2, containing just one genome, it was noted that the M2-

2 gene more closely matched the M2-2 gene from constellation 14.  This pattern 

continued when examining the genomes at 97.5%; however, the mismatched genomic 

region expanded to include the M2-1 gene.  These results suggest a putative 

recombination event between the genomes derived from the two separate RSV-A 

Figure 29 Respiratory Syncytial Virus Genome Constellation Analysis Reveals Putative Recombinant.  The 
genome constellation analysis of RSV highlights the ability of OrionPlot to expand column widths according to 
markup contained within the matrix tsv file.  In this case column widths have been scaled to relative gene lengths.  
This depiction highlights study sequences with red boxes.  A constellation cutoff of 95% was used here.  The 
genome constellations of our study genomes show a potential recombinant depicted with a purple box around the 
M2-2 gene of constellations 2 and 14. 
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linages.  An examination of the SNPs of this potential recombinant comparing the 

two parent lineages further supported a recombination event, as did the results from 

using the RDP3 recombination detection software.  Taken together these results 

strongly support the hypothesis that recombination occurred between these two RSV-

A lineages to form the virus in constellation 2.  

To confirm the recombination hypothesis, the sequencing methodology for 

this genome project was reviewed.  The study viruses were sequenced by first making 

four PCR amplicons tiled across the genome.  The PCR amplicons are then pooled 

and sequenced using the IonTorrent platform.  The PCR primers used for the 

amplification were compared to the coordinates of the putative recombination event.  

The coordinates for the primers for amplicon 3 were within 100 nucleotides outside 

the location of the putative recombination site.  As part of the assembly process, a 

deep sequence analysis of the assembly was produced.  Variant sites were detected in 

the assembly within these same regions where ampicon 3 overlapped with amplicon 2 

and amplicon 4.  These results suggest the putative recombinant was derived 

artificially as a result of an error in the sequencing methodology, specifically at the 

amplicon pooling step.  To confirm this, PCR primers were designed flanking the 

putative recombination site.  PCR products were obtained for the amplicon 3 and 4 

junction and were Sanger sequenced.  The resultant sequences were aligned to the 

major parent, the minor parent and the putative recombinant using MAFFT (73) and 

visualized using CLCbio (96).  All PCR product derived sequences matched the 

major parent, demonstrating the likelihood of a methodologically derived error in the 

sequencing process resulted in a false positive detection of recombination. 
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Diversity in Zaire Ebola Virus and Identification of Protein Variants 

The Ebola virus 

data set includes all 

complete Zaire Ebola 

virus genomes 

available as of 

September 2014.  The 

majority of the 

genomes available 

were from the recent 

Ebola virus outbreak in 

West Africa (99).  

Ebola virus has a 

relatively low mutation 

rate compared to many 

RNA viruses (100).  

Few non-synonymous 

mutations were 

observed in the 

majority of the Ebola 

genes during the early 

outbreak sampling.  The 

goal with this analysis 

Figure 30 Zaire Ebola Virus Protein Constellation Plot.  (A) Protein 
constellation at a 100% cutoff.  Variability in the each gene is apparent. (B) 
At the 98% cutoff no within outbreak constellation differences are present for 
all known Zaire Ebola outbreaks.  It is worthy to note how little variation 
occurs in Ebola within and between outbreaks.  The Zaire outbreak genomes 
include several of the same strain that have been resequenced with variable 
results. (C) The genome structure has been included for reference.  Thanks to 
Reed Shabman for providing this genome diagram. 
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was to screen the variant viruses that had some level of detectable mutation, so that 

assays could be performed to assess the effect of the mutations on the viral protein 

phenotypes in vitro.  The available Ebola virus genomes were annotated with VIGOR 

3.0 (22) and the protein sequences were binned by gene product into amino acid fasta 

files.  Here we used the amino acid sequence since we were primarily interested in 

screening protein variants for further study.  We set the cutoff at 100% identity, 

meaning sequences with only one amino acid change would establish a new protein 

cluster and thus new constellation.  The results of this clustering revealed just 32 

distinct Ebola virus constellations in all the known Zaire Ebola virus genomes 

available in GenBank at that time (September 2014) (Figure 30).  Twenty L protein, 

fifteen NP protein, fourteen GP protein, ten sGP protein, nine SsGP protein, nine 

VP24 protein, four VP30 protein, eight VP35 protein, and six VP40 protein variants 

defined these constellations.  The 2014 outbreak showed 15 distinct constellations, 

with more than two variants observed in just five of the nine Ebola virus proteins we 

used to generate the constellations.  Of the proteins with mutations, three variants 

were uncovered in the GP, sGP, and SsGP proteins, five in the NP protein, and six in 

the L protein.  This low level of variation is consistent with previous studies on Ebola 

virus evolutionary rates (99, 100). 

Comparison of Constellation Clusters to Phylogenies 

A comparison of constellation clusters to phylogenetic trees generated using 

the maximum likelihood estimation method revealed cluster dendrograms with 

similar overall topologies to the respective phylogenetic trees – with a couple notable 

exceptions.  First, as seen in the RSV example, percent identity distances derived 
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from indels in the sequence alignments were calculated differently in the VirComp 

pipeline as compared to phylogenetic methods.  This can been seen when comparing 

the phylogenetic placement (Figure 33, Chapter 4) of the four RSV strains (LA2_27, 

LA2_39, LA2_45, and LA2_78) in the lower group (TN1) of viruses to their 

placement in the constellation clustering (Figure 29) (where they are placed with the 

top group of viruses, constellation 1).  A closer examination shows that these viruses 

have a variation pattern more similar to the group of viruses they are placed with in 

the phylogeny.  A closer examination of the alignments shows a large indel of 72 

nucleotides within the G protein.  The G protein is the only gene that has a different 

cluster assignment between constellations 1 and 3.  In constellation 3 the insertion 

does not appear, whereas constellation 1 the insert does appear.  The strains that 

matched the lower phylogenetic group (but are placed with constellation 1 strains) 

have the insert.  It would appear that the added distance calculated from the mismatch 

(derived from gap to insertion sequence) is enough to group these strains in 

constellation 1, even though evolutionarily they appear to be closer relatives to the 

constellation 3 viruses. 

Second, at times, members of constellation clusters on the edge of 

phylogenetic clades sometimes appeared to have questionable cluster assignments.  

This assignment disparity may be due to the differences in the way that the 

phylogenetic methods evaluate evolutionary distances compared to the strict 

accounting of percent identity used by the VirComp software.   

Discussion 
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Detection of Genomic Rearrangements 

The VirComp method for 

constellation analysis of viral genomes 

provides a useful framework for generating 

publication worthy visualizations of genome 

constellations.  These visualizations allow 

users to establish evidence of reassortment 

in segmented viruses and can also be used 

to demonstrate recombination in non-

segmented genomes.  By creating 

visualizations at several cutoff levels, the 

relative age of these reassortment events can 

be established as well.  Although it may be 

important to verify these findings with one 

of the more rigorous reassortment detectors, 

such as GiRaF (101), VirComp provides a 

fast and context-specific approach to 

constellation analysis.  As demonstrated 

from the RSV example, the detection of 

genomic rearrangements is not limited to naturally derived rearrangements.  As such, 

this method could be coupled with the genome assembly process to detect errors in 

sequence production and to confirm (or rule out) true genome rearrangements (Figure 

31). 

Figure 31 Reanalysis of Putative RSV 
Recombinant Virus in the Context of Study 
Sequences Only and Lab-generated Amplicon 
Segments. (A) Study samples examined by 
amplicon at 98% cutoff (B) The same data set at 
the 99% cutoff.  These plots show RSV 
recombinant over laps with the region of the third 
amplicon we used to amplify and sequence the 
genomes.  This finding suggests in the 
constellation with the amplicon in the purple box 
was mispooled into the genome with the red box 
prior to sequencing. 
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Species Agnostic 

VirComp has been demonstrated to be a species agnostic method, in that any 

viral species gene complement can be compared with this methodology and the code 

base is not specific to either influenza or RSV.  This fact suggests that comparisons in 

other domains of life could be performed, such as analyses on the pathogenicity of 

specific genes across several bacterial strains.  RNA virus genomes especially lend 

themselves to this type of comparative analysis, due to their small genome size.   

Diversity and Visualization 

Biological relevance and ease of visualization can be balanced with the 

context specific diversity in the data sets being analyzed by selecting a meaningful 

cutoff.  Furthermore, cutoffs can be adjusted recursively to look more closely at 

specific subsets of the diversity being surveyed, as evidenced by the analysis of H3N2 

viruses described herein.  This allows for the examination of data sets at various 

levels of diversity, and of the timing of specific diversifying events (such as genomic 

recombination and reassortment). 

Variant Selection 

As evidenced by the Ebola example, with strict cutoffs (100%) in amino acid 

space, protein sequence variants can be quickly screened and analyzed for further 

study in lab-based assays.   

Performance and Algorithms 

VirComp uses fast, deterministic algorithms for its comparisons.  Farthest 

neighbor is a deterministic distance-based hierarchical clustering algorithm that will 
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produce only one result for a given input data set (102).  This allows for 

reproducibility.  These types of hierarchical clustering algorithms are fast, especially 

then compared to maximum likelihood or Bayesian phylogenetic approaches (which 

are also non-deterministic).  An analysis of several hundred viruses with eight genes 

may take on the order of 30 minutes with VirComp.  A similar Bayesian or maximum 

likelihood analysis could take hours or days depending on the complexity of the 

evolutionary model used and the size of the data set.  Furthermore, farthest neighbor 

coupled with the use of Hamming distances as implemented by the ANDES software 

(39) provides a distance metric (percent identity) which is easy to measure and 

therefore provides a consistent mode for establishing clusters that is more readily 

understandable across analyses. 

Drawbacks and Limitations 

It should be noted that there are a couple of drawbacks to the approach 

VirComp uses.  First even though simple distance-based calculations are fast, they do 

not always provide the best reconstruction for the evolutionary history of the 

sequences being examined.  This fact could lead to localized miscategorizations of 

genes made by using sequence similarities that could have derived from convergent 

evolutionary events.  Our analysis suggests the main differences seen between the 

VirComp and the phylogenetic-based methods are seen at the boundaries of clades.  A 

second drawback is that the distance method used is incapable of calculating distance 

differently when a difference between two genomes is derived from a single 

evolutionary event or several events.  An example of this was seen with in our RSV 

data set.  Four genomes in constellation 1 should have been assigned to constellation 
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3.  Our method calculated more distance between these four viruses and their correct 

constellation 3 because of a 72bp insertion in the G gene of the four genomes in 

question.  This insertion matched one seen in all the genomes of constellation 1.  This 

similarity in duplication status was enough to miscategorize the four genomes with 

constellation 1, despite having more similarity to constellation 3 at all other sites 

within G.  Essentially, the distance only approach treats each additional base as a 

separate evolutionary event, and thus calculates more distance than would be inferred 

using an evolutionary model that can score indels appropriately, or simply treat them 

as missing data. 

Similar Methods 

The literature highlights a few similar methods to this type of constellation 

analysis.  An example of this is a heat map style approach to compare a single 

reference strain to a small collection of viruses of interest, such as presented in 

Gonzalez-Reiche et al (50).  This type of approach is only useful when the context of 

the question of similarity is 2-dimensional, i.e. a single subject compared to a small 

set of references.  This type of comparison establishes a one-to-many relationship 

centered on the reference in question.  This methodology does not provide 

comparisons of the various comparators, and thus these analyses are prone to miss 

important relationships between those comparators.   

Another method highlighted in the literature is that of RotaC (91) and 

FluGenome (51).  These methods, although on a more firm methodological footing, 

in that they do the necessary all-versus-all comparison of genome components, they 

do require a more rigorous computation and maintenance of the genomic 
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constellation categories inferred over time.  Although this is highly useful for putting 

a particular set of virus constellations into the context of all the known viral strains of 

a particular species, this type of analysis will become increasingly complex as the 

databases of viral sequences expand.  It also requires the adherence to an established 

nomenclature for genotypes that may be difficult to establish, especially in large viral 

research communities.  VirComp mitigates that issue simply by providing only a 

study specific analysis and does not aim to integrate its constellation results with 

established or yet to be established nomenclatures.  Once such nomenclatures have 

been established it should be a goal to extend those standards to the constellation 

annotation features of VirComp.  Additionally, the RotaC approach applies differing 

cutoffs for the various genes.  This makes it difficult understand quantitatively how 

much mutation has occurred between defined genotypes.  

Conclusions 

In summary, here we describe a novel constellation analysis method and 

visualization software useful in performing viral comparative genomics analyses.  

This method is a distance-based approach that utilizes several preselected cutoffs to 

create genome constellations at various levels of resolution.  Although, this method 

does not perform phylogenetic reconstructions (and therefore does not provide 

evolutionary clade-based genotypes), it does employ a straightforward percent 

identity metric that is systematic and not arbitrary.  We have also provided five 

examples of using this method to perform viral surveillance, reassortment analysis, 

protein variant screening, and recombination and sequencing chimera screening.  The 

ease of use and fast runtime of VirComp and OrionPlot make this methodology an 
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important advancement in viral comparative genomics – especially in light of the 

certain expansion of viral genomics using next-generation sequencing technologies. 
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Chapter 4: Large-Scale Respiratory Syncytial Virus Whole- 

Genome Sequencing Identifies Sequence Duplication in G Gene 

Associated with Reduced Diseases Severity 

Abstract 

Respiratory syncytial virus (RSV) is the most important respiratory pathogen 

for children under the age of five.  RSV is responsible for considerable morbidity and 

mortality worldwide.  Variability within and between RSV group A and B viruses and 

the ability of multiple strains of RSV to co-circulate are likely mechanisms for the 

evasion of herd immunity.  Detailed studies following the whole-genome variability 

of RSV over time are required to understand these dynamics and to understand the 

phenotypes these variants possess.  In this study, we performed complete-genome 

next-generation sequencing of 71 RSV isolates from infants in central Tennessee 

during the 2012-2013 RSV season.  We identified multiple co-circulating clades of 

RSV from both the A and B groups.  Each clade is defined by signature N- and O-

linked glycosylation patterns.  A detailed look at specific RSV genes revealed high 

rates of positive selection in the attachment (G) gene.  Furthermore, we identified 

RSV-A viruses in circulation with and without the recent 72-nucleotide G gene 

duplication.  In our study, this duplication appears to be associated with less severe 

RSV infections.  Pairing of high-throughput next-generation sequencing with a large 

cohort study of RSV-infected infants enabled a detailed look at both molecular 

evolutionary dynamics and exploratory clinical phenotype analyses looking for 

sequence-based signatures of disease. 
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Introduction 

Respiratory syncytial virus (RSV) was first isolated in 1955 (83, 103) and has 

been associated with mild to severe acute lower respiratory infections (ALRIs), 

especially in infants, premature babies, the elderly and immunocompromised 

individuals (85, 104-106).  In 2005, RSV caused an estimated 33.8 million new 

episodes of ALRIs in children under five worldwide, with 3.4 million cases requiring 

hospitalization due to severe illness (83, 85, 86).  Global estimates of disease burden 

show RSV to account for 30 million ALRIs and 50,000 annual deaths of children < 

five years of age (83, 85, 86).  Nearly all children have had at least one RSV infection 

by two years of age (85).  However, a recent study has established that RSV 

infections during infancy (less than six months of age) are associated with an 

increased incidence of subsequent childhood wheezing and asthma (43). Despite its 

global public health impact, no licensed vaccines or effective medications for young 

children infected with RSV are currently available (43).  The only approved 

prophylaxis is passive immunization with palivizumab (Synagis from MedImmune), a 

humanized mouse antibody (mAb) against the RSV F protein (107, 108).  The 

original clinical trial of palivizumab indicated a 39-78% decrease in hospitalization 

rates for RSV in premature infants and children with chronic lung disease, although 

subsequent analyses have suggested lower affectivity (107). 

RSV is an enveloped virus with a negative-sense, single-stranded, non-

segmented RNA genome belonging to the Paramyxoviridae family.  The 11 RSV 

proteins are: the polymerase (L) protein, the nucleocapsid (N) protein, the 

phosphoprotein (P), the transcriptional regulators (M2-1 and M2-2) proteins, matrix 
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(M) protein, the small hydrophobic (SH) protein, the non-structural proteins (NS1 and 

NS2) proteins, and two major surface glycoproteins (F and G).  The F and G proteins 

are responsible for virus entry and are the major target of human immune responses.  

The F protein is responsible for the fusion of the viral envelop with the host cell 

membrane.  The G protein is responsible for cellular attachment and has an immune 

decoy function in its soluble, extracellular, secreted form.  The G protein is organized 

from N to C terminal as follows: cytoplasmic domain, transmembrane domain, 

mucin-like domain, conserved domain, attachment domain, and finally a second 

mucin-like domain.  

RSV has an epidemic seasonality, with increased cases during the winter in 

temperate climates and during the monsoon season in tropical climates (43, 83, 109).  

RSV can be classified into two antigenic groups (A and B), each containing several 

distinct subgroups based on antigenic and genomic sequence differences, especially 

in the G glycoprotein (110, 111).  Studies suggest group A viruses cause more severe 

disease and transmit more readily than group B viruses in infants (43).  These two 

groups tend to alternate in prevalence between RSV seasons.  There is also evidence 

of multiple co-circulating intra-group viral genotypes, or clades, during any given 

season (109, 111), resulting in a diverse set of circulating viruses that can adapt to 

herd immunity.  It is unclear if this represents a gradual evolution of the viral 

genomes or stochastic differences in infection rates by co-circulating strains. 

Previous RSV sequencing studies have largely focused on sequencing 

complete or partial G gene sequences because the C-terminal (the second 

hypervariable portion of G) is sufficient and required for distinguishing the two RSV 
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groups and the various genotypes within each group (109, 112).  In 1999, a G gene 

variant was identified in RSV-B that contained a 60-nucleotide (20 amino acid) 

duplication in the C-terminal third of the G gene, within the second mucin-like 

domain (113, 114).  This genotype has now spread globally (115).  In 2011, a similar 

G gene variant was identified in RSV-A from several locations around the globe that 

contained a 72-nucleotide (24 amino acid) duplication in the second mucin-like 

domain (110, 115, 116).  

To better understand RSV evolutionary dynamics, we sequenced RSV 

genomes from acutely infected infants from middle Tennessee who were enrolled as 

part of the Infant Susceptibility to Pulmonary Infections and Asthma Following RSV 

Exposure (INSPIRE) study.  The objective of our sequencing efforts was to identify 

new variants in these RSV genomes and investigate any correlations with clinical 

aspects of RSV-associated upper respiratory infections (URIs). 

Methods 

Study Population 

INSPIRE is an observational, population-based, longitudinal study of 

previously healthy, full-term infants enrolled near birth, which conducts surveillance 

for respiratory illnesses during their first winter viral season.  Eligible infants were 

born between June and December and were on average 6 months of age or older 

during sampling for this study.  Informed consent was obtained from the legal 

guardians of each infant.  All procedures were in accordance with the ethical 

standards of the Vanderbilt University Institutional Review Board.  Demographic 
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data – including age, sex, race and ethnicity – were recorded at the time of 

enrollment. 

RNA Extraction and RT-PCR 

 Extraction of the viral RNA was performed at the J. Craig Venter Institute 

(JCVI) in Rockville, MD with 140 µl of nasal wash sample using the ZR 96 Viral 

RNA kit (Zymo Research Corporation, Irvine, CA, USA).  Four forward reverse 

transcription (RT) primers were designed and four sets of PCR primers were 

manually picked from primers designed across a consensus of complete RSV genome 

sequences using JCVI's automated primer design tool (12).  The four forward reverse 

transcription (RT) primers were diluted to 2 µM and pooled in equal volumes.  cDNA 

was generated from 4 µl undiluted RNA, using the pooled forward primers and 

SuperScript III Reverse Transcriptase (Thermo Fisher Scientific, Waltham, MA, 

USA).  Four independent PCR reactions were performed on 2 µl of cDNA template, 

using either AccuPrime Taq DNA Polymerase (Thermo Fisher Scientific) or Phusion 

High Fidelity DNA Polymerase (New England Biolabs, Ipswich, MA, USA) to 

generate four overlapping amplicons (approximately 4-kb each) across the genome.  

Amplicons were verified on 1% agarose gels, and excess primers and dNTPs were 

removed by treatment with Exonuclease I (New England Biolabs) and shrimp 

alkaline phosphatase (Affymetrix, Santa Clara, CA, USA) for 37°C for 60 min, 

followed by incubation at 72°C for 15 min.  Amplicons were quantitated using a 

SYBR Green dsDNA detection assay (SYBR Green I Nucleic Acid Gel Stain, 

Thermo Fisher Scientific), and all four amplicons per genome were pooled in equal 

volumes. 
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RSV Whole-Genome Sequencing  

 For samples sequenced using the Ion Torrent PGM (Thermo Fisher 

Scientific), 100 ng of pooled DNA amplicons were sheared for 7 min, and Ion-

Torrent-compatible barcoded adapters were ligated to the sheared DNA using the Ion 

Xpress Plus Fragment Library Kit (Thermo Fisher Scientific) to create 400-bp 

libraries.  Libraries were pooled in equal volumes and cleaned with Ampure XP 

reagent (Beckman Coulter, Inc., Brea, CA, USA).  Quantitative PCR was performed 

on the pooled, barcoded libraries to assess the quality of the pool and to determine the 

template dilution factor for the emulsion PCR.  The pool was diluted appropriately 

and amplified on Ion Sphere Particles (ISPs) during emulsion PCR on the Ion One 

Touch 2 instrument (Thermo Fisher Scientific).  The emulsion was broken, and the 

pool was cleaned and enriched for template-positive ISPs on the Ion One Touch ES 

instrument (Thermo Fisher Scientific).  Sequencing was performed on the Ion Torrent 

PGM using 316v2 or 318v2 chips (Thermo Fisher Scientific). 

 For samples requiring extra coverage, in addition to Ion Torrent sequencing, 

Illumina libraries were prepared using the Nextera DNA Sample Preparation Kit 

(Illumina, Inc., San Diego, CA, USA) with half reaction volumes.  Briefly, 25 ng of 

pooled DNA amplicons were tagmented at 55°C for 5 min.  Tagmented DNA was 

cleaned with the ZR-96 DNA Clean & Concentrator Kit (Zymo Research 

Corporation) and eluted with 25 µl of resuspension buffer.  Illumina sequencing 

adapters and barcodes were added to tagmented DNA via PCR amplification, where 

20 µl of tagmented DNA was combined with 7.5 µl of Nextera PCR Master Mix, 2.5 

µl of Nextera PCR Primer Cocktail and 2.5 µl of each of index primer (Integrated 
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DNA Technologies, Coralville, IA, USA) for a total volume of 35 µl per reaction.  

Thermocycling was performed with 5 cycles of PCR, as per the Nextera DNA Sample 

Preparation Kit protocol (3 min at 72°C, denaturation for 10 sec at 98°C, annealing 

for 30 sec at 63°C and extension for 3 min at 72°C) to create a dual-indexed library 

for each sample.  After PCR amplification, 10 µl of each library was pooled into a 1.5 

mL tube, and the pool was cleaned twice with Ampure XP reagent (Beckman Coulter, 

Inc.) to remove all leftover primers and small DNA fragments.  The first cleaning 

used a 1.2x volume of the Ampure reagent, whereas the second cleaning used a 0.6x 

volume of the Ampure reagent.  The cleaned pool was sequenced on the Illumina 

MiSeq v2 instrument (Illumina, Inc.) with 300-bp paired-end reads. 

RSV Genome Assembly and Annotation 

Sequence reads were sorted by barcode, trimmed, and de novo assembled 

using CLC Bio’s clc_novo_assemble program (16).  The resulting contigs were 

searched against custom, full-length RSV nucleotide databases to find the closest 

reference sequence.  All sequence reads were then mapped to the selected reference 

RSV sequence using CLC Bio’s clc_ref_assemble_long program (18).  At loci where 

both Ion Torrent and Illumina sequence data agreed on a variation (compared with the 

reference sequence), the reference sequence was updated to reflect the difference.  A 

final mapping of all next-generation sequences to the updated reference sequences 

was performed with CLC Bio’s clc_ref_assemble_long program (18).  Curated 

assemblies were validated and annotated with the viral annotation software called 

Viral Genome ORF Reader, (VIGOR) 3.0 (22), before submission to GenBank.  

VIGOR was used to predict genes, perform alignments, ensure the fidelity of open 
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reading frames, correlate nucleotide polymorphisms with amino acid changes, and 

detect any potential sequencing errors.  The annotation was subjected to manual 

inspection and quality control before submission to GenBank.  All sequences 

generated as part of this study were submitted to GenBank as part of the Bioproject 

ID PRJNA225816. 

Phylogenetic Analyses 

Sequence collection – All available full-length human RSV-A and RSV-B genomes 

were downloaded from GenBank on June 24, 2014.  Any viral isolates that contained 

“mutant” or other key words indicating in vitro modifications were removed from the 

data set after an initial ML phylogenetic analysis.  The remaining public genomes 

were then combined with the 71 RSV genomes from the study samples collected 

during the 2012-2013 winter RSV season.  Full genomes were then annotated using 

VIGOR 3.0 (22) to ensure consistent gene annotations across all genomes.  Each of 

the 11 RSV genes were separated into gene-specific fasta files for gene-based 

phylogenetic analyses.  Although in principal this data set should have included only 

complete gene sets, genomes without complete gene counts or containing partial gene 

annotations after processing with VIGOR were excluded from further analysis. 

Maximum likelihood analyses of whole-genome and G-gene-specific RSV 

sequences – The nucleotide substitution model used for all phylogenetic analyses was 

a general time reversible model with a nucleotide site-specific rate heterogeneity with 

four rate categories, and invariant sites (GTR-IG, as determined by jModelTest2.4) 

(117).  MAFFT (93) was used to create whole-genome and G-gene-specific 

alignments, and all alignments were checked and edited as appropriate.  Maximum 
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likelihood phylogenies were inferred using an adaptive best tree search on the GARLI 

Web Service 2.0 (95) to statistically ensure the best tree (as measured by log 

likelihood scores) was found over 1000 replicates.  The resultant tree was labeled 

with the viral strain names, and colored using in-house PERL scripts.  Clade 

designations for the study sequences were defined using the reduced G gene 

phylogeny (S2) by examining boostrap support on branches leading to clades with 

study sequences.  All branches leading to the study sequences were supported by 

boostrap values > 70. 

Bayesian phylogenetic analyses of RSV-A and RSV-B genomes – The whole-

genome maximum likelihood tree was used as a guide to select a subset of viral 

genomes for Bayesian phylogenetic analyses, including genomes with unique 

phylogenetic histories and commonly used reference genomes.  To determine if our 

data exhibited temporal qualities, we performed an exploratory analysis with Path-O-

Gen (available at http://tree.bio.ed.ac.uk/software/pathogen/).  Neighbor joining trees 

generated with RSV-A-only and RSV-B-only genomes were used to measure root-to-

tip divergence using Path-O-Gen, which showed that both RSV data sets contained 

enough temporal signal to proceed with time-based Bayesian analyses.  All Bayesian 

analyses were performed using BEAST v1.8 (38, 118) on the CIPRES Science 

Gateway (33).  Whole-genome and gene-specific phylogenies were inferred using 

Markov chain Monte Carlo sampling chains (100 million to one billion in length), 

with parameters and trees recorded to ensure 10,000 samples per run.  The GTR-IG 

substitution model was used and tip dating with precision to the sampling year was 

employed for all trees.  All genes were analyzed using a lognormal relaxed clock.  
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We utilized the SkyGrid (119) coalescent model, with 50 partitions over 50 years.  

Default priors were used for each analysis – except for the ucld.mean prior for which 

we used the CTMC rate reference prior (120).  For the G gene analysis, we performed 

divergence dating on RSV-A by constraining the four clades and genotypes most 

closely related to two separate lineages of viruses with G-gene duplications present.  

All analyses were evaluated with Tracer v1.6 (available at 

http://tree.bio.ed.ac.uk/software/tracer/) to determine the success of the chain 

sampling based on effective sample size values for each parameter, and additional 

chains were run as needed.  For each analysis, we constructed a maximum clade 

credibility tree using TreeAnnotator v1.8.1, available for download with BEAST. 

Glycosylation Prediction  

Two surface glycoproteins, F and G, were analyzed using NetNGlyc (121) 

and NetOGlyc (122) software.  Multifasta files were loaded into the web interface and 

the output was saved, and then parsed with custom PERL scripts to produce a 

spreadsheet of glycosylation sequons and amino acid coordinates for the N-linked 

glycans and amino acid coordinates for the O-linked glycans.  The coordinates were 

then used to produce visualizations in R, using the ggplot2 package (123), of the 

overall consensus glycosylation patterns on the G protein for the various clades and 

genotypes identified in this study. 

Statistical Analyses  

The distribution of categorical clinical characteristics was compared across 

RSV sequence characteristics using the chi-squared test, whereas continuous 
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covariables were compared using the Wilcoxon rank-sum test.  The BSS2 metric was 

used to compare against genetic data, since several study samples were missing 

values using the BSS metric, which requires clinicians to use a pulse oximeter during 

site visits.  All statistical tests were performed in R (124), and visualizations were 

done with the R package, ggplot2 (123). 

BaTS Analysis for Detecting Global Versus Local Circulation Patterns with Tree 

Topologies 

The Bayesian RSV-A G gene phylogeny data set was used to analyze signals 

of global versus local circulation within our data set.  Local versus global circulation 

status was assigned to each G gene sequence.  BaTS analysis (58) was performed 

using a total of 9001 Bayesian phylogenies of RSV-A G gene sequences from the 

previous analysis.  The BaTS analysis was run in single mode with 100 replicates 

using two states (local and global).  

Results 

Large-Scale RSV Whole-Genome Sequencing from Nashville, Tennessee During 

the 2012-2013 Season 

The INSPIRE study was designed to collect samples from study participants 

to identify any respiratory viral infections during the RSV season in an unbiased 

manner.  A selection of nasal wash samples from patients with acute respiratory tract 

infections was screened for RSV using qRT-PCR.  One hundred six samples from 99 

patients were selected for whole-genome sequencing based on the sampling season 
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and positive RSV serology results.  Characteristics of these study subjects are listed in 

Table 9.  

Table 9 Demographics and Clinical Characteristics of Enrolled Infants (n=99) 

ARTIs = acute respiratory tract infections; RSV = Respiratory Syncytial Virus 
*Data are presented as the number (%) for binary variables or median (interquartile 
range) for continuous variables. 
†Percentage calculated for children with complete data. 
§Category includes subjects of mixed race. 

 Six patients were shown to be RSV-positive twice and one patient was RSV-

positive three times during the 2012-2013 season.  However, in only four patients 

were we able to obtain consensus sequences.  For one of those infants, sequence data 

was obtained for both samples and the consensus sequences were identical.  The 

clinical data from the second isolation case was excluded from the statistical analysis, 

but was included in the phylogenetic analyses.  Infants were evenly enrolled in the 

study by sex; most were non-Hispanic, white, and were between one and seven 

months old at the time of sample collection, with a mean age of 2.97 months 

(standard deviation = 1.62).  

Demographics and Clinical 
Characteristics 

Infants with RSV ARTIs 
(n=99)*† 

Age (months) 2.97 (1-7) 
Female 42 (42.42%) 
Male 57 (57.57%) 
Race 
 Black 
 White 
 Other§ 

 
15 (15.15%) 
72 (72.73%) 
12 (12.12%) 

Hispanic ethnicity 11 (11.11%) 
Gestational age (weeks) 39 (39-40) 
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Of the 106 RSV-positive 

study samples, 71 whole-genome 

sequences were obtained, annotated 

and submitted to GenBank.  Partial 

genome sequences were obtained 

for three additional samples that 

contained gaps, lower coverage 

areas, or otherwise did not meet 

quality standards, because these 

incomplete genome sequences 

prevented accurate gene-specific 

analysis, they were removed from 

the data set.   

Maximum Likelihood 

Phylogenetic Analyses 

Demonstrate the Convergent 

Emergence of G Duplications  

Figure 32 Maximum Likelihood Phylogeny 
of 545 RSV Whole-Genome Sequences 
Including 474 Downloaded from GenBank 
on June 24 2014 and 71 Study Sequences.  
Whole-genomes sequences include mutant and 
lab-constructed strains.  RSV-A study isolates 
are depicted in purple, whereas RSV-B study 
isolates are depicted in green.  Co-circulating 
strains from multiple clades were present 
during the 2012-2013 RSV season in central 
Tennessee. 



 

 116 
 

A maximum likelihood phylogeny that combined the RSV-A and RSV-B 

lineages was generated using whole-genome sequences from 474 publicly available 

Figure 33 Maximum Likelihood Phylogeny of RSV G Gene Sequences from a Pruned Whole-Genome Data 
Set.  Lab mutants, redundantly sequenced strains, and over-represented branches in the whole-genome phylogeny 
were removed or thinned out for subsequent analysis of the G gene coding region.  RSV-A study isolates are 
depicted in purple, whereas RSV-B study isolates are depicted in green.  Bootstrap support was included for nodes 
that were important for establishing the clades and genotypes in the Bayesian divergence dating analysis.  Bootstrap 
support on these nodes was > 80% in all cases. 
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sequences and the 71 study genomes from the 2012-2013 season (Figure 32).  A 

subset of these samples was used to infer a maximum likelihood phylogeny using 

only the G gene coding sequence, and a similar topology was obtained (Figure 33).  

The 71 study genomes were aligned to three separate clades: BA RSV-B (seven 

genomes), GA5 RSV-A (five genomes) and GA2 RSV-A (59 genomes).  The RSV-A 

clade GA2.1 (a continuation of the GA2 clade) recent isolates were further divided 

into three monophilies, representing genotype ON1 with 35 genomes.  These 

genomes are a new group of viruses, specific to the study samples from Tennessee, 

that we are calling genotype TN1.  The TN1 genotype has 22 sequences, and has two 

genome sequences proximal to the divergence point of GA2.1 that we have named 

genotype TN2 for this study.  This confirmed the co-circulation of multiple RSV 

clades and genotypes in one season and in the same geographical location.  

Interestingly, seven RSV-B and 39 RSV-A study sample genomes contained a 

previously reported (110, 113, 115) insertion within the C-terminal third of the G 

gene coding sequence.  The insertion is present as an exact, tandem, in-frame 

duplication of the same gene region in both the RSV-B and RSV-A genomes, but is 

60 nucleotides in length in RSV-B and 72 nucleotides in RSV-A. 

Phylogenetic and sequence analyses of the G gene duplications suggest that 

the duplication occurred convergently at separate times in the RSV-A GA2.1 

genotypes (ON1 and TN1), as well as in the RSV-B group (Figure 32).  All 35 strains 

from genotype ON1 contained the G gene duplication, whereas only four out of 22 

TN1 genomes contained the G gene duplication.  All seven RSV-B genomes 
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contained the G gene duplication, whereas none of the RSV-A GA5 genomes had the 

G gene duplication.  

Bayesian Phylogenetic Analysis Provides Estimates of RSV Evolutionary 

Dynamics 

Maximum clade credibility (MCC) trees were constructed using the G gene 

analyses for both RSV-A and RSV-B (Figure 34).  Bayesian analyses of each 

individual gene, as well as the whole genome, provided mutation rates similar to 

those reported in previous studies (43, 106) for all RSV genes (Figure 35).  We also 

observed a high rate and Bayesian highest posterior density interval (HPD) of 

mutation within the SH gene of RSV-B, similar to previous reports (43, 106).  The 

Bayesian time to most recent common ancestor (tMRCA) mean estimates for the 

Figure 34 Bayesian Maximum Clade Credibility Trees for RSV-A (A) and RSV-B (B) G Gene Sequences.  
Strain names are colored by the presence (red) or absence (blue) of the large G gene duplication, with study 
samples in darker shades of red and blue.  Multiple co-circulating lineages of RSV are observed during the 2012-
2013 RSV season.  These phylogenies and related analyses suggest that the G gene duplication occurred 
convergently in two separate genotypes of RSV-A.   
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whole-genome data set suggests circulating and historical RSV-A share a common 

ancestor from 1951, whereas available whole-genome RSV-B sequences likely 

diverged in 1967 (Table 10). Comparison of the RSV-B whole-genome phylogenies 

to the G gene phylogenies that contain more extensive sampling of all the available 

GenBank full G gene sequences (Figure 36) indicates that the whole-genome data set 

is missing the diversity that exists within several RSV-B G clades. 

 

 

Figure 35 Times to Most Recent Common Ancestors (tMCRAs) and Mean Evolutionary Rate Estimates 
Inferred by Bayesian Analyses.  Estimates are provided for RSV-A (purple) and RSV-B (green) for the whole 
genome (WG) and each individual gene.  (A) Mean tMRCAs for RSV-A and RSV-B data sets and (B) 
evolutionary rates (substitutions/site/year) for RSV-A and RSV-B data sets are provided with 95% HPD intervals 
indicated over the box and whisker plots.  The whiskers in each plot extend to the full 95% interval, the boxes 
indicate the 25-75% interquartile range of the posterior distribution, thus describing its central tendency.  Mean 
whole-genome tMRCA estimates are indicated with arrows: 1951 for RSV-A and 1967 for RSV-B. 
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Table 10 Mean Evolutionary Rates (substitutions/site/year) and Times to Most Recent Common Ancestor 
(tMRCA), as Inferred by Bayesian Analysis   

  tMRCA (95% HPD) MeanRate (95% HPD) 
RSV-A WG 1951 (1937-1964) 5.68 × 10-4 (6.55 × 10-4 to 4.87 × 10-4) 
RSV-B WG 1967 (1964-1970) 7.47 × 10-4 (8.22 × 10-4 to 6.64 × 10-4) 
RSV-A G 1949 (1928-1966) 1.35 × 10-3 (1.60 × 10-3 to 1.10 × 10-3) 
RSV-B G 1972 (1966-1978) 2.59 × 10-3 (3.28 × 10-3 to 1.98 × 10-3) 
WG = whole genome; G = G gene; HPD = highest posterior density 

The Bayesian analysis of the G gene MCC phylogeny of RSV-A also 

supported the hypothesis that the G gene duplication occurred at least twice in a 

convergent manner within the RSV-A genotypes ON1 and TN1 (Figure 34A). This is 

Figure 36 Bayesian Maximum Clade Credibility Trees for All Available Full G Gene Sequences 
Downloaded from GenBank and Down Sampled to Include Representative Centroid Sequences from 98% 
Sequence Identity Gene Clusters.  (A) The RSV-A G gene phylogeny shows that relatively little new diversity is 
added compared with the whole-genome analyses.  However, the RSV-B G gene phylogeny (B) shows that 
additional diversity is being sampled by including additional G gene sequences compared with the whole-genome 
analyses.  This indicates better surveillance of RSV-B from G gene sequences than from whole-genome data set. 
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evident from the interleaving of the RSV-A G sequence duplicated genomes with the 

non-duplicated genomes within these genotypes in the G gene phylogeny, as well as 

by the divergence dating estimates for the recent GA2.1 strains and the genotypes 

contained within it: ON1, TN1, and TN2 (Figure 37).  These results suggest that 

genotype ON1 diverged first in late 2009, followed by genotype TN1 in early 2011 (a 

local Tennessee clade), and finally by genotype TN2 in late 2011.  Because the latter 

two genotypes appear to have evolved from a non-duplicated ancestral G gene 

sequence, genotype TN1 most likely acquired the duplication convergently.  This 

hypothesis is also supported by the minimal overlap in the 95% HPD interval of the 

divergence time estimates for genotypes ON1 and TN1. 

Figure 37 Divergence Time Estimates from a Bayesian Divergence Dating Analysis of the RSV-A G Gene 
Sequences.  The GA2.1 clade consists of genotypes ON1 containing only sequences with the G gene duplication, 
TN1 containing sequences with mostly non-duplicated G genes and four interleaved G gene duplication sequences 
and TN2 containing only sequences lacking the G gene duplication.  Divergence estimates suggest clade GA2.1 
originated from a non-duplicated ancestor, with the duplication being convergently gained first in genotypes ON1 
and then TN1.  This hypothesis of convergent G gene duplications is supported by divergence estimates that 
largely do not overlap between genotypes ON1 and TN1. 
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Bayesian SkyGrid analyses indicate a change in population dynamics for both  

the RSV-A and the RSV-B viruses during the introduction and global spread of their 

respective G gene duplications (Figure 38).  There is a population size reduction in 

2004 for 

RSV-A and 

2011 for 

RSV-B 

(Figure 38, 

purple and 

green arrows, 

respectively) 

followed by 

exponential 

growth, which 

can be seen in 

both the 

whole-

genome and 

the G gene 

phylogenetic 

analyses.   

 

 

 

Figure 38 Bayesian SkyGrid Reconstruction of Population Dynamics for RSV-A (A) and 
RSV-B (B) G Gene Data Sets.  The purple arrow indicates a bottleneck event in RSV-A 
corresponding to the G gene duplication entering global circulation and undergoing a 
subsequent population expansion.  Similarly, the green arrow indicates the same phenomenon 
occurring around the time that the RSV-B G gene duplication reached global predominance.  
These data suggest that the G gene duplication provided RSV-A and RSV-B with selective 
advantages that allowed them to spread globally and replace previously circulating lineages. 
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Glycosylation Analysis Reveals Genotype Specific Glycosylation Patterns in the 

G Protein 

Results of NetNGlyc across all study samples showed that the N-linked 

glycosylation in the F gene was relatively conserved.  Nearly all of the RSV-A and 

RSV-B samples had the same N-linked sites (27, 70, 116, 120 and 126) within the F2 

domain.  N-linked glycosylation on the G gene appeared to follow a genotype specific 

pattern, with multiple glycosylation patterns co-circulating simultaneously.  Genotype 

ON1 had three predicted N-linked glycosylation sites, clade TN1 had five sites, clade 

TN2 had four sites, and our study viruses from GA5 had five sites (Figure 39).  RSV-

B genomes showed two different glycosylation patterns.  Genotype BA.1 had four 

glycosylation sites, three of which were consistent with the majority of circulating 

Figure 39 Consensus N- and O-Linked Glycosylation Patterns for the Seven Study Genotypes.  The seven 
genotype specific consensus glycosylation patterns for O and N-linked (bars and dots respectively) glycans are 
displayed in rows.  RSV-A and RSV-B genotypes are indicated with purple and green bars to the right.  Each 
genotype displays a unique glycosylation pattern and duplication status 
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RSV-B genomes.  Genotype BA.2 showed a novel RSV-B glycosylation pattern with 

just one glycosylation site present toward the C-terminal end of the G protein after the 

G duplication.  Similarly, NetOGlyc showed that the O-linked glycosylation patterns 

for the G protein followed a genotype specific pattern as well.  Seven distinct O-

linked patterns were observed in the G protein sequences from our study cohort.  

Genotype ON1 showed 85 predicted O-linked glycosylation sites, whereas genotype 

TN1 had 74 and 83 sites (in non-duplicated and duplicated genomes, respectively), 

genotype TN2 had 74 sites, and genotype GA5 had 72 sites.  The RSV-B genomes 

showed two different glycosylation patterns: 82 sites for genotype BA.1 and 85 sites 

for genotype BA.2.  There were no significant numbers of O-linked glycans predicted 

for the F protein. Consensus genotype specific glycosylation patterns were plotted for 

visual analysis for the G protein (Figure 39). 
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Table 11 Observed Indels and Start and Stop site Variants within RSV-A, RSV-B and Between A and B 
Groups.  More indels are observed within the RSV-B group, particularly in the G gene suggesting greater 
plasticity of G in RSV-B.  Additionally, RSV-A -B differences, especially in L suggest the potential for functional 
difference in the polymerase that may lead to this apparent greater rate of indels in -B. 

	  

Gene Sequence Plasticity 

Contributes to Variability 

Between and Within RSV 

Groups 

Analysis of gene 

alignments within and between 

RSV groups showed various 

indels (especially in the G gene) as 

well as various start site and stop 

site variant sequences (Table 11).  

In RSV-A, we observed one indel 

each in the G and L genes, and 

two start site variants in the M2-2 

gene.  There were also two stop 

site variants in the G gene data set.  

Within the RSV-B data set we 

observed four indels in the G gene with three stop site variants.  We also observed 

two start site variants in the M2-2 gene.  Comparing RSV-A to RSVB we observed an 

additional seven indels: two in the G gene, four in the L gene, and one in the SH 

gene.  In addition to these intergroup indels, there were two variant stop sites found in 

Group Gene Indel 

RSV-
A 

F none 
G 780-852, 966-stop, 969-stop 
L 400-406 
M none 
M2-1 none 
M2-2 1-start, 7-start 
N none 
NS1 none 
NS2 none 
P none 
SH none 

RSV-
B 

F none 
G 471-477, 673-685, 704-707, 793-

853, 954-stop, 963-stop, 975-stop 
L none 
M none 
M2-1 none 
M2-2 1-start, 10-start 
N none 
NS1 none 
NS2 none 
P none 
SH none 

Inter 
Group 

F none 
G 471-477, 634-637, 673-685, 704-

707, 793-853, 857-929, 1003-1008, 
1029-stop, 1038-stop, 1042-stop, 
1045-stop, 1050-stop 

L 400-406, 5193-5196, 5280-5283, 
6504-stop, 6507-stop 

M none 
M2-1 582-stop, 585-stop 
M2-2 1-start, 10-start, 16-start 
N none 
NS1 none 
NS2 none 
P none 
SH 180-183 
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the M2-1 gene between groups.  Interestingly, one M2-2 start site variant was shared 

between subtypes, whereas one each was unique in RSV-A and RSV-B, leading to 

only three sites 

observed in the 

intergroup comparison, 

although none were 

novel observations.   

Detection of Global 

and Local Circulation 

Patterns Ssing BaTS 

Analysis 

Bayesian Tip-

association Significance (BaTS) testing of the RSV-A G gene phylogeny resulted in 

AI and PS scores of 0.0, and MC scores of 0.009 for the global and local state 

assignments.  These results are indicative of strong evidence for these states being 

topologically associated with the Bayesian phylogenies. 

RSV-A 72-Nucleotide G Gene Duplication was Associated with Reduced Disease 

Severity in Infants 

Figure 40 Comparison of Bronchiolitis Severity Scores (BSS2) with the 
Presence or Absence of the 72-nucleotide RSV-A G Gene Duplication.  A 
violin plot of severity scores by duplication status shows lower median BSS2 
(indicated with grey dots) in patients with the G gene duplication.  The shape of 
the violin plot shows this effect is mainly observed for lower BSS range, 
suggesting that other factors (e.g., host immune response or microbiome) also 
contribute significant roles in overall disease severity. 
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We assessed 

the relationship 

between the C-

terminal of the G 

sequence duplications 

and the clinical 

severity data via the 

bronchiolitis severity 

score 2 (BSS2) 

metric, using Wilcox-

rank sum test.  The 

BSS2 score measures 

the severity of lung 

involvement with 

RSV infections by 

assessing infants on 

the following criteria: 

respiratory rate, pulse 

rate, retractions, 

dyspnea, and 

auscultation (125).  

Within infants whose samples had the RSV-A strain, those without C-terminal G 

sequence duplication had significantly higher BSS2 values (p=0.2094) when 

Figure 41 Maximum Likelihood Phylogeny of a Pruned RSV Whole-Genome 
Data Set.  The data set for this phylogeny is the same as for Figure 29, with the 
addition of 20 genomes collected during the INSPIRE study in Tennessee during 
the 2013-2014 RSV season.  RSV-A study isolates are depicted in purple, 
whereas RSV-B study isolates are depicted in green; the 2013-2014 genomes are 
depicted in orange.  The 2013-2014 season in Tennessee witnessed a switch to 
RSV-B dominance, as well as the continued circulation of RSV-A genomes 
containing the G gene duplication (6 out of 6 RSV-A 2013-2014 study strains). 
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compared with infants with the duplication (Figure 40).  These results suggest that 

there is a difference in mean severity between the disease caused by the viruses with 

the duplication and those without – severity is higher in the older viruses without the 

duplication.  Also, a difference was seen between the proportion of male and female 

hosts infected with viruses with and without the G gene duplication, however this 

result was not significant.  

We performed a whole-genome phylogenetic analysis using the 2012-2013 

data set along with a limited number of 2013-2014 genome sequences.  The resulting 

maximum likelihood phylogeny (Figure 41) showed a switch from RSV-A to RSV-B 

predominance.  We also noted the continued exclusive circulation of RSV-A ON1 

genotype viruses, all of which contain the G gene duplication.  

Discussion 

Here, we have identified multiple co-circulating RSV variants infecting 

infants within the central Tennessee region during the 2012-2013 season.  Substantial 

RSV genetic diversity was observed during the 2012-2013 RSV season in central 

Tennessee, both between and within the RSV-A and -B groups.  This diversity was 

especially evident within the G gene, although additional evidence was present in the 

F and select regions of the L gene.   We observed seven distinct G gene genetic 

variants in our data set, as defined by both G gene duplication and glycosylation 

status.  This observed diversity is likely part of the mechanism RSV uses to evolve 

and evade host adaptive immune responses (126-128).  We have also described a 

possible phenotype for the recent G gene duplications seen in RSV-A and RSV-B.  A 

previous study made and association between the RSV-B G gene duplication and 
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enhanced viral attachment (129).  Our data suggests an association between the G 

gene duplication in RSV-A and lowered disease severity, as measured through BSS2. 

These data demonstrate that during the 2012-2013 RSV season, three distinct 

lineages of RSV (each containing multiple genomes) were co-circulating within the 

central Tennessee region.  This supports previous reports of multiple RSV types co-

circulating (109, 111, 130).  Furthermore, RSV-A clade GA2.1 appears to have 

predominated, accounting for 83.1% of the observed infections in our study cohort.  

In this study, we observed a local subgroup of RSV-A within clade GA2.1 that 

appears to be circulating only in central Tennessee (genotype TN1). The continued 

circulation of the ON1 genotype viruses during the 2013-2014 season supports the 

hypothesis that the 72-nucleotide duplication within the G gene is moving toward 

fixation in the RSV-A population.  Missing sequence diversity in the RSV-B whole-

genome data set may explain the relatively large ranges obtained for the Bayesian 

substitution rate estimates for many of the genes compared with those for RSV-A.  

The population dynamic analyses using Bayesian SkyGrid plots indicate that the 

introduction of the G gene duplication into RSV genomes reduced viral genetic 

variability (shown as a bottleneck event), which was quickly followed by an 

exponential expansion of the population size, suggesting a fitness advantage for the 

duplication variants.  

Comparing publicly available whole-genome RSV sequences to all available 

full-length G gene sequences indicated that, although whole RSV-A genomes are 

largely representative of known RSV-A diversity, the corresponding RSV-B whole-

genome data set is missing diversity within the RSV-B BA clade.  This finding 
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suggests that additional whole-genome sequencing of historical samples would 

greatly improve our understanding of RSV-B diversity.  Similarly, a comparison of 

RSV-A and RSV-B whole-genome sequences shows that RSV-B contains more 

insertions and deletions (indels) within the G gene, suggesting that different selection 

pressures exist between these groups.  Overall higher mutation rates in RSV-B and 

specifically the difference in the SH gene mutation rates between RSV-B and RSV-A 

further support this, although this could also be a result of poor RSV-B surveillance.  

The fact that intergroup indels occur in genomic regions other than the G gene 

supports the need to adopt a whole-genome sequencing approach for future RSV 

studies. 

In this study, we observed tree topologies with little or no temporal and or 

geographic patterns and others with strong geographic and temporal patterns.  Over 

the long-term, most genetic diversity within both RSV-A and RSV-B appears to 

circulate globally on relatively short time scales.  However, in our study and other 

studies, such as Agoti et al. (43), localized RSV evolution is sometimes apparent.  

Genotype TN1 appears to be a central Tennessee RSV-A cluster, whereas several 

groups of RSV-B that were noted to be local to Kilifi, Kenya in the Agoti study (43).  

We tested the assumption of localized clades using BaTS with a significant result, 

suggesting that genotype TN1 and Tennessee GA5 viruses were being locally 

transmitted during the 2012-2013 season.  With broader genomic surveillance of 

RSV, these epidemiological patterns can be studied more closely and the origins of 

various lineages could be determined.  
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With the addition of 7 new RSV-B whole-genomes (11% of total publicly 

available RSV-B whole-genome sequences), our tMRCA estimate for RSV-B is 

likely improved over previous estimates (106); however, the estimate would likely be 

improved with additional whole-genome sequences of historical RSV-B genomes 

since RSV-B was first identified in 1960. 

The convergent appearances of large G gene duplications in the same genome 

location for multiple RSV lineages suggest that the G protein is highly permissive for 

these types of insertions and that a specific replication mechanism is responsible for 

their generation.  These duplications demonstrate the plasticity of the G protein and 

its tolerance for insertions, and they potentially indicate a mechanism for the 

development of novel immune evasion strategies.  We observed just one large 72nt 

duplication in the G protein of RSV-A, as well as two stop-variants, and four indels 

of various sizes with three stop-variants in the RSV-B G protein data set.  The 

existence of two major duplications may also indicate that the duplications imparts 

some level of selective advantage for the virus, because the duplication appears to 

have reached fixation in RSV-B genomes and may be moving toward fixation in 

RSV-A, although improved RSV surveillance/sampling is required to know this for 

sure.  A recent study by Hotard et al. showed an association between the 60nt G gene 

duplication in RSV-B and an enhancement of the attachment function of the G 

protein (129).  It is possible that the 72nt duplication in RSV-A similarly enhances 

the G protein, thus providing a selective advantage to duplicated viruses.  As 

previously reported, there may be a mutation in the G gene that primes duplication to 

occur (113-115), making it more likely to happen repeatedly.  It has been proposed 
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that stem loop structures form in the replicating RNA strand, causing the polymerase 

to pause and reinitiate replication further back on the template (110).  The apparent 

observation of this duplication occurring repeatedly in RSV-A, and the duplication 

being of the same length and location, supports this proposed mechanism as an 

explanation for the duplication events.  From an evolutionary perspective, coalescent 

theory suggest that most currently observed genomes arose for a relative few 

ancestral sequences.  Similarly, most contemporary genomes will not continue on to 

become ancestors of future viruses.  Any given transmission chain is likely to die out; 

thus, repeated introductions of the same mutation makes it more likely that 

advantageous mutationss such as the G gene duplications will begin to circulate 

globally.  The observation that the local Tennessee genotype, TN1, didn’t reach 

global circulation supports this notion, although poor global surveillance of RSV is an 

alternative explanation.  Similarly, at least one RSV-B duplicated genome exists in 

our data set from 1996, earlier than the previous first observation in 1999 of a 60nt 

duplication in the G gene of RSV-B (114).  It should be noted that the 1996 genome 

was located in a separate clade from the BA clade where RSV-B duplicated genomes 

originate, supporting convergence as a mechanism for the increased probability of the 

success of these mutations in reaching global circulation. 

Our results suggest that, although the G gene duplication does appear to 

influence disease severity, it is likely a relatively small effect.  RSV severity, as has 

been reported elsewhere (85, 104-106), is largely influenced by known risk factors, 

such as prematurity, gender, chronic lung and heart diseases, and immune 

deficiencies.  Furthermore, it is likely that additional, less well-characterized host 
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genetic factors, nasopharyngeal and upper respiratory microbiomes and viral genetic 

characteristics all play significant roles in the development of severe RSV disease.  

Future studies that incorporate either genome-wide host genetic associations or 

targeted genetic analysis (e.g., of the HLA region) with microbiome and viral genetic 

information will be important in developing models that elucidate the interplay 

between the host, the microbiome and the pathogen in severe RSV disease 

progression.  

In general, glycosylation patterns in the RSV-B data set appear more varied 

than in the RSV-A dataset (data not shown), which is supported by the idea that RSV-

B seems to have more G gene plasticity than RSV-A.  These results reveal a relatively 

static F protein, in terms of glycosylation, compared to a dynamically glycosylated G 

protein that swaps in and out different glycosylation sites relatively quickly.  These 

differences in G glycosylation may help the virus spread and overcome herd 

immunity, in addition to the other differences noted in the G protein.   

The high degree of conservation in the F1 domain likely is required to 

maintain a functional fusion mechanism, as this protein undergoes a complex 

conformational change once attachment triggers fusion (131).  This function would 

likely be greatly hindered by variability within F1, possibly due to steric hindrance 

(131).   The F protein has a conserved glycosylation pattern across RSV-A and RSV-

B viruses and appears to only permit N-linked glycans in the F2 domain.  Again, this 

may be due to the need for F1 to be sterically free to change confirmation to perform 

its fusion function.  The overall conservation of the F gene juxtaposed against the 
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variability of the G gene suggests that the F gene is a more suitable target for 

universal therapeutics and vaccines (132). 

One major limitation of this study was the lack of extensive historical and 

contemporary sampling to place our whole-genome sequences in context.  For 

instance, without a robust surveillance network for RSV, it is hard to know for sure if 

the TN1 genotype was truly geographically isolated to Tennessee during the 2012-

2013 season.  Another notable limitation is the relatively small sample sizes with 

which to perform the statistical associations of clinical and genetic data.  Both point 

toward the need for expanded surveillance and coordination of clinical data 

collection. 

Conclusions 

Here we have identified several co-circulating RSV variants infecting infants 

within the central Tennessee region during the 2012-2013 infectivity season.  

Differing selective pressures and variation patterns were apparent in our data set 

suggesting epidemiological and evolutionary mechanisms for immune evasion.  For 

the first time, possible phenotypes for the recent G gene duplications seen in RSV-A 

have been described.  We have associated the G gene duplication in RSV-A with a 

trend toward decreased pathogenicity.  Further investigation of these patterns and 

surveillance of RSV is called for.  Additionally, studies that aid the identification of 

further therapeutic and vaccine targets would be beneficial. 
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Chapter 5:  The Future of Viral Comparative Genomics 

 The work described above is an example of a new approach to data-driven 

bioinformatic research that aims to integrate experimental results, from sequencing to 

phenotype analyses, with metadata describing those data in a new and meaningful 

way.  In study one, we have described a novel method that extends the current 

capabilities of antigenic distancing techniques by directly connecting sequence-based 

hierarchical clusters with phenotypic measurements.  We have incorporated bootstrap 

analysis into these phenotype/genotype correlations to take into account the 

variability in the antigenic measurement, and hence to provide a more robust 

estimation of the reliability of our predictions than has previously been possible.  By 

cross-referencing our results with the established phylogenetically defined clades, this 

technique establishes an even more powerful method for conducting viral sequence 

and antigenic surveillance – in addition its valuable vaccine selection function.  

Consequently, our methods point toward a future of antigenic surveillance where all 

the viral samples collected are first sequenced and then this sequence data is used to 

determine which viruses to perform antigenic characterization on.  One notable 

extension to the analysis described here would be to perform similar predictions on 

especially important avian influenza subtypes with human pandemic potential, such 

as H5N1 and H7N9.  Additionally, the methods described in this study could 

conceivably be applied to other viral species for which antigenic characterization is 

needed.  Similarly, assays that generate data pertaining to other phenotypes could 

potentially be used to predict the extent in sequence space that those phenotypes 

extend. 
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 In our second study, we extended the current offerings of methods for 

performing viral genome constellation analysis.  We described VirComp and 

OrionPlot as two separate, but related, pieces of software for performing constellation 

analysis based on gene clusters and providing publication ready figures.  The creation 

of OrionPlot greatly extends the abilities of researchers to publish this type of 

genotype analysis, as no similar tools currently exist for generating constellation 

figures so quickly.  We described one application of VirComp and OrionPlot outside 

gene-based constellation analysis: it was used to uncover methodological errors in the 

amplicon-based sequencing approach that lead to the discovery of a recombinant 

virus false positive.  This establishes these tools as excellent candidates for 

incorporation into sequencing quality control analysis pipelines for viral or other 

amplicon-based sequencing projects.  In addition to this use, VirComp and OrionPlot 

could easily be incorporated into the viral the BRCs, ViPR and IRD, as a novel 

comparative genomics tool.  The methodology could be used to perform analysis on 

non-viral genes as well.  It would be most useful on small groups of related genes, 

possibly in metabolic pathways, or perhaps multi-locus sequence type (MLST) genes.  

OrionPlot could conceivable be used as a stand-alone analysis program to generate 

visualizations of categorical metadata.  Although the current implementation of 

OrionPlot requires a data matrix with numerical categories, an adjustment to the code 

to allow for character data instead of numerical data would allow OrionPlot figures to 

be made for various categorical metadata.  Plots of metadata could then be combined 

with phylogenies to provide powerful visuals showing the associations of the 

metadata to the sequence analyses. 
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 In study three, we directly examined the relationship between genetic variants 

and phylogenies with clinical metadata gathered from infants infected with RSV.  We 

showed that multiple lineages of RSV-A and -B co-circulated in central Tennessee 

during the 2012-2013 RSV season.  These co-circulating lineages are defined by 

distinct O and N-linked glycosylation patterns on the G protein.  Some of the lineages 

appeared to be locally transmitting within our study region, whereas others were 

globally circulating.  One lineage in particular was shown to contain a duplication 

within the G protein.  This duplication appears to have arisen in a convergent fashion 

within its global lineage and with four members of a locally circulating lineage.  

Through statistical associations with the clinical metadata collected for this study, we 

have shown an increased number of infections of infant females with viruses having 

genomes containing the G duplication, as compared to those without the G 

duplication.  Similarly, we have shown a decrease in the severity of the disease, as 

measured via BSS2, in hosts infected with the G gene duplicated genomes.  Although 

the overall effect of this virus-derived genetic signature of severity was small, it 

suggests avenues of research to examine specific mutations that may be associated 

with particular viral phenotypes.  Additionally, expanding the scope of this study to 

integrate heterogeneous data types beyond viral genetic data and clinical metadata 

could provide further insights into the interplay between host, pathogen and 

environment that determine the course and outcome of an infection. 

 Viral whole-genome studies will undoubtedly play a large role in the future of 

viral research, from basic research into viral pathology and epidemiology, to novel 

global viral surveillance, and the development of vaccines and other viral therapeutic 
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drugs.  The proliferation of large-scale sequencing efforts in viral cohort studies is of 

the utmost importance in transforming viral research into a science capable of 

benefiting from the enhancements of big data.  To that end the near term requires the 

development of both tools and standards in practice for conducting viral research in 

an age of big data.  Efforts to standardize metadata, such as those by the GSCID-BRC 

Metadata Working Group (31), are key first steps in achieving data integration.  An 

example of the type of data standard that is necessary is controlled vocabularies (or 

ontologies), such as those available from the Open Biomedical Ontologies Foundry 

(OBO) (133).  It should be noted that resources such as the OBO Foundry require 

ongoing curation as new data types come into use and older ones are retired or 

refined.  Similarly, use of these ontologies requires data expertise.  Tools for 

expanding viral genomics into an age of big data could include technologies such as 

representational state transfer (RESTful) web services.  Through RESTful interfaces 

labs across a spectrum of biological or clinical settings could expose and integrate 

their experimental data types (134) in near-real time, and to gain access to 

computational resources (135).  This would have applications for expediting the 

processing of viral outbreak surveillance data, emergency management, and the 

development of vaccines and therapeutics. 

 The integration of viral sequence data with, host sequence data (either whole 

genome or targeted to specific host-pathogen interfaces), and environmental sequence 

data (such as microbiome or metagenomic data) is on the cusp of becoming 

commonplace.  Integrating these disparate data sources in meaningful ways will 

require the novel application of advanced statistical approaches and the development 
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of visualization and algorithmic tools (136, 137).  For instance, sequencing the host 

HLA region of RSV-infected subjects has the potential to establish immune related 

host factors that may determine the severity of infection (132).  Similarly, the 

metagenomic characterization of RSV-infected individuals would provide an 

additional dimension to the understanding the pathogenesis of the virus.  

Understanding the interplay between host, environment (microbiome or metadata), 

and pathogen will require novel applications of statistical models to adequately assess 

these relationships.  We have described a data exploration technique above known as 

MDS, which falls into a class of exploratory techniques known as ordination (138).  

Ordination techniques also include principal component analysis (PCA) (138).  We 

have also described hierarchical clustering techniques for performing sequence 

analysis, such as Wards’s or farthest neighbor clustering (74, 102).  Other methods of 

clustering, such as k-means, will also continue to be a useful data exploration 

technique for heterogeneous data (138).  In the recent NCI-DREAM experiment, 

candidate chemotherapies were assessed using a variety of statistical prediction 

models (139).  These models included: support vector machines, linear and non-linear 

regression models, and ensemble models (the use of multiple models composited 

together for a more informative result) (139).  Many of these techniques fall into the 

category of machine learning algorithms that are used to make predictive 

associations.  Needless to say, there are countless approaches to modeling that could 

be applied to viral comparative genomics using big data.  These types of approaches 

will hopefully produce novel insights into the pathogenic and epidemiologic 

processes in viral research using mixed data. 
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 Public health policy has and will continue to be influenced by heterogeneous 

data.  For instance, as described above, the WHO utilizes both antigenic 

characterizations and sequence data to determine the selection of vaccine candidates 

for the annual influenza vaccine.  Our methods will certainly enhance the integration 

of these data to establish a more informative vaccine selection process.  

Epidemiological modeling has been suggested as a target for further integration of 

data types to aid in developing public policy around specific infectious disease agents 

(140).  An example of this is the integration of social media reports of disease with 

public data relating to the epidemiological progress to create real-time risk maps of 

infections based on geographical location (137).  These integrated data will certainly 

aid in development of the public policies surrounding viral pathogens. 

 The work described in this dissertation and the directions laid out above are 

but a few of the myriad of efforts to integrate data, compare viral pathogens, and 

make inferences about pathogenesis and epidemiology.  These efforts aim to glean 

new insights into the world of infectious disease and to better understand the interplay 

between the host, the pathogen, and the environment.  Through this research, novel 

vaccine targets and therapeutics will undoubtedly be identified.  Big data approaches 

to biological research are certainly the future of the science and the need for data 

integration and visualization tools is clear. 
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Appendices 
 

Appendix A. Interim PTP and DASH report of Influenza 

activity from December 2013 

 
December 1, 2013 Interim Manufacturing-at-Risk (MAR) 

Candidate Selection Report 

JCVI NFLU Team 

January 22, 2014 

Summary of MAR Candidates 

The following is a summary of MAR candidate viruses based on DASH and PTP 

analysis.  A detailed report of the analyses that produced these results follows Table 

12 and is broken down by Influenza A subtype and Influenza B lineage 

Table 12 Summary of MAR Candidates with Priority and Rationale. 

Strain Name Type Priority Rationale 
A/Almaty/2958/2013 H3N2 High WHO candidate virus 
A/Estonia/76676/2013 H3N2 High High scoring DASH vaccine 

candidate 
A/Norway/2255/2013 H3N2 High High scoring DASH vaccine 

candidate 
A/Estonia/76614/2013 H3N2 Medium High scoring DASH vaccine 

candidate 
A/Cameroon/12V-5136/2012 H3N2 Medium High scoring DASH vaccine 

candidate 
A/England/358/2013 H1N1pdm High High scoring DASH vaccine 

candidate 
A/Bolivia/559/2013  H1N1pdm High WHO candidate virus 
A/Estonia/74816/2013 H1N1pdm Medium High scoring DASH vaccine 

candidate 
A/Dominican Republic/7293/2013  H1N1pdm Medium WHO candidate virus 

B/Massachusetts/2/2012* Influenza B Yam High High scoring DASH vaccine 
candidate 

B/Lithuania/6942/2013 Influenza B Yam Low High scoring DASH vaccine 
candidate 
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B/Belgium/G886/2012 Influenza B Vic High High scoring DASH vaccine 
candidate 

B/Texas/2/2013 Influenza B Vic High High scoring DASH vaccine 
candidate 

B/Formosa Province/V2367/2012 Influenza B Vic High High scoring DASH vaccine 
candidate 

A/Colorado/21/2012 H3N2 Low DASH gap filling MAR 
candidate 

A/Wisconsin/6/2013 H3N2 Low DASH gap filling MAR 
candidate 

A/New York/3214/2013 H3N2 Low DASH gap filling MAR 
candidate 

A/Helsinki/823/2013 H3N2 Low DASH gap filling MAR 
candidate 

A/Puerto Rico/1/2013 H1N1pdm Low DASH gap filling MAR 
candidate 

A/Florida/43/2013 H1N1pdm Low DASH gap filling MAR 
candidate 

A/New Hampshire/4/2013 H1N1pdm Low DASH gap filling MAR 
candidate 

A/Minnesota/26/2012 H1N1pdm Low DASH gap filling MAR 
candidate 

A/Nizhny Novgorod/RII02/2013 H1N1pdm Low DASH gap filling MAR 
candidate 

B/Iowa/4/2013 Influenza B Vic Low DASH gap filling MAR 
candidate 

B/Sao Paulo/2-22035/2013 Influenza B Vic Low DASH gap filling MAR 
candidate 

B/Indonesia/Nihrd-Buas704/2013 Influenza B Vic Low DASH gap filling MAR 
candidate 

*Current Vaccine Seed 

Proportion Tracking Pipeline (PTP) Analysis 

The proportion tracking graphs depict bars that represent partitions windowed across 

three seasons.  Each partition is weighted for the three seasons, e.g., the windowed 

partition “2012_11” represents data from three seasons viz. from November 2012 

through April 2013, from May 2012 through October 2012, and from November 2011 

through April 2012, with weighting factors of 0.50, 0.33, and 0.16, respectively.  

Thus, we achieve a sliding window (spanning 3 seasons) that slides across the seasons 

at the rate of one season per partition.  Each partition is split into its component 

clusters based on sequence similarity and the arrows across partitions indicate 

similarity between the clusters they connect.  A strong (bolder) arrow suggests a 

stronger sequence similarity between the clusters. 
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The clusters with colored circles contain and track the vaccine seed recommendations 

across partitions.  A green circle indicates that the vaccine seed recommendation 

remained unchanged from the previous partition; a red circle represents a change in 

vaccine seed recommendation during the most recent time slice represented within 

that partition.   

Distancing of Antigenicity by Sequence-based Hierarchical 

Clustering (DASH) Analysis 

DASH analysis was performed using sequence data from strains collected during the 

period between December 2, 2012 and December 1, 2013.  The HI data used was 

collected between December 2, 2012 and December 1, 2013.  This selection of HI 

data includes February 2013 tables from NIMR, as well as February 2013 tables from 

CDC presented at the VRBPAC meeting on February 27, 2013.  September 2013 

NIMR HI tables have also been processed and included in the analysis for this 

reporting period. 

H3N2 Analyses 

H3N2 Proportion Tracking 

Windowed proportion tracking analysis was performed on H3N2 sequences isolated 

between January 1, 2001 and December 1, 2013 using the HA1 domain.  The current 

vaccine recommendation, A/Texas/50/2012), falls in the smaller diminishing portion 

(cluster 3) for the current partition (2013_11).  The cluster that the current vaccine 

was in the last report, accounting for 93% of the sequences, has split into three 

different clusters with 45% in cluster 1, 40% in cluster 2 and only 13% in cluster 3, 
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which has the current vaccine recommendation.  Cluster 4, which accounts for only 

2% of the sequences, is composed of H3N2v viruses (Swine Origin Influenza Viruses 

– SOIV). 

 

Figure 42 Proportional Sizes of H3N2 Clusters as Fraction of Total Sequences. 

 

 

Figure 43 Sequence Counts Used for H3N2 Windowed Proportion Tracking. 

 
H3N2 Proportion Tracking without Swine Origin Viruses 

Windowed proportion tracking analysis was performed on all non-swine origin H3N2 

sequences isolated between Jan 1, 2001 and December 1, 2013 using the HA1 

domain.  As shown in Figure 3, the current vaccine recommendation, 
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A/Texas/50/2012, falls in the smallest cluster (3) for the current partition (2013_11) 

accounting for only 10.6% of the circulating sequences of the total H3N2 sequences. 

 

Figure 44 Proportional Sizes of H3N2 Clusters as Fraction of Total Sequences (Without Swine Origin 

Viruses). 

 
 

 

Figure 45 Sequence Counts Used for H3N2 Windowed Proportion Tracking (Without Swine Origin 

Viruses). 

 
DASH – MAR Candidate Selection 
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Analysis of DASH results for both clusters without HI cohorts and candidate 

antigenic coverage prediction produced the following list of antigens that should be 

constructed as vaccine candidates or viruses to fill holes in HI antigen data. 

PTP cluster 1 candidates (Clade 3C-3): 

A/Almaty/2958/2013 (WHO candidate virus) 

A/Estonia/76676/2013 

A/Norway/2255/2013 

PTP cluster 2 candidates (Clade 3C-2): 

A/Estonia/76614/2013 

A/Cameroon/12V-5136/2012 

DASH gap filling viruses: 

A/Colorado/21/2012 

A/Wisconsin/6/2013 

A/New York/3214/2013 

A/Helsinki/823/2013 

 

At an antigenic distance of 2, A/Victoria/361/2012 cell-propagated virus has a 

predicted coverage of circulating viruses of 46.0%.  In our analysis, the 

A/Texas/50/2012 cell-propagated virus is predicted to cover 10.8% of circulating 

viruses.  The Victoria/361 and Texas/50 egg-propagated viruses are predicted to 

cover 45.8% and 16.7% of circulating viruses respectively.  This is a rather poor 

result for both Texas/50 viruses and suggests the WHO recommendation of the 

Texas/50 vaccine seed may not produce a noticeable difference in vaccine 
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effectiveness.  It should be noted that the predicted antigenic coverage for all four 

viruses remains rather poor.  Furthermore, the best vaccine candidates available, 

listed above, are only predicted to cover currently circulating viruses at around 70-

85%.  The apparent reason for the poor showing by the current vaccine candidates is 

that they poorly cover viruses from two of the subclades with the highest expansion 

rate; 3C-2 and 3C-3, while maintaining adequate coverage of their own clade 3C-1 as 

well as clade 5, 6, and 3A viruses.  Conversely, A/Estonia/76676/2013 and 

A/Norway/2255/2013, both clade 3C -3 viruses, cover 3C-2 and 3C-3 quite well 

while maintaining adequate predicted coverage of clades 5, 6 and 3A.  Furthermore 

A/Estonia/76614/2013 shows good predicted coverage of 3C-2, and 3C-3, as well as 

clades 3A, 5 and 6, while not covering clade 3C-1 as well.  This lends credence to the 

prospect of a switch from the current clade 3C-1 vaccine candidates to a candidate 

from clade 3C-3 or 3C-2.  Of the recently WHO approved manufacturing seeds, the 

3C-3 viruses perform slightly better with A/Almaty/2958/2013 performing the best.  

We believe a 3C-3 vaccine candidate is possible as the next vaccine selection. 

Table 13 Predicted Antigenic Coverage of Influenza A H3N2 Candidate Viruses in DASH 

Antigen InMedian InLB InUB ObsIn ObsOut ObsUnk DistIn DistOut Seqs 
A/Cameroon/12V-
5136/2012 85.6% 16.4% 100.0% 89.2% 0.4% 10.4% 45 2 1715 
A/Estonia/76676/2013 77.2% 35.4% 100.0% 79.9% 0.4% 19.6% 42 2 1715 
A/Estonia/76614/2013 75.6% 38.4% 89.2% 79.9% 0.4% 19.6% 42 2 1715 
A/Norway/2255/2013 75.6% 35.1% 89.2% 77.1% 3.3% 19.6% 41 3 1715 
A/Hong Kong/1036/2013 74.7% 37.1% 100.0% 76.6% 3.8% 19.6% 39 5 1715 
A/Minsk/1262/2013 70.9% 31.5% 100.0% 77.1% 3.3% 19.6% 41 3 1715 
A/Belgium/G1034/2013 70.6% 21.5% 85.9% 76.6% 3.8% 19.6% 39 5 1715 
A/Cameroon/12V-
5507/2012 70.1% 7.6% 100.0% 89.2% 0.4% 10.4% 45 2 1715 
A/Latvia/1-32593/2013 70.1% 11.1% 85.7% 75.9% 3.0% 21.1% 42 6 1715 
A/Slovenia/709/2013 70.0% 30.3% 94.1% 77.1% 0.6% 22.3% 45 3 1715 
A/Almaty/2958/2013 60.0% 24.0% 75.9% 68.3% 3.8% 27.9% 43 5 1715 
A/Victoria/361/2011 Cell 46.0% 38.7% 54.6% 66.7% 6.6% 26.7% 727 74 1715 
A/Victoria/361/2011* 
Egg 45.8% 38.1% 51.9% 65.6% 8.2% 26.2% 727 74 1715 
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A/Texas/50/2012* Egg 16.7% 12.1% 22.1% 18.2% 51.2% 30.6% 398 403 1715 
A/Texas/50/2012 Cell 10.8% 3.4% 94.1% 14.6% 3.5% 81.8% 38 6 1715 
A/Perth/16/2009‡ 5.8% 3.6% 8.7% 3.9% 69.3% 26.8% 134 650 1715 

*Vaccine candidate 

‡Previous vaccine candidate 

Table 14 Analysis of Recent WHO Candidate Viruses. 

Antigen InMedian InLB InUB ObsIn ObsOut ObsUnk DistIn DistOut Seqs 
A/Almaty/2958/2013 60.0% 24.0% 75.9% 68.3% 3.8% 27.9% 43 5 1715 
A/New York/39/2012 
Egg 42.7% 9.9% 85.3% 52.7% 0.5% 46.7% 25 3 1715 
A/Serbia/NS-210/2013 42.0% 3.3% 79.4% 79.6% 3.9% 16.5% 31 6 1715 
A/New York39/2012 Cell 38.0% 8.6% 85.3% 40.0% 3.4% 56.6% 24 4 1715 
A/American 
Samoa/4768/2013 Egg 33.7% 18.2% 77.4% 43.4% 27.9% 28.6% 23 5 1715 
A/American 
Samoa/4768/2013 Cell 25.2% 1.0% 48.9% 25.9% 4.5% 69.5% 18 10 1715 

 

Results of simulations of antigenic coverage of circulating viruses are reported for 

each subtype and lineage in Tables 13 and 14.  The table columns list antigen name 

followed by several performance statistics.  InMedian means from 80 bootstrap 

replicates an average of X% of circulating viruses were predicted to be covered by the 

tested antigen.  InLB and InUB are the lower and upper bounds of the bootstrap 

results for predicted coverage at a 95% confidence cutoff.  ObsIn, ObsOut, and 

ObsUkn are the actual observed coverage predictions for circulating viruses when all 

the HI derived antigenic distance cohort measurements are used.  DistIn and DistOut 

are the number of HI derived antigenic distance cohort measurements that were 

observed to fall in and out with respect to the test antigen at an antigenic distance of 

2.  Seqs is the weight-adjusted number of sequences determined to be circulating 

during the test period.  These results were ordered by InMedian, followed by ObsIn, 

and finally DistIn. 

H1N1 Analyses 
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H1N1 proportion tracking 

Windowed proportion tracking analysis was performed on H1N1 sequences isolated 

between Jan 1, 2009 and December 1, 2013 using the HA1 domain.  The analysis was 

conducted on the HA1 domain using a windowed partitioning scheme as described 

above.  The current vaccine strain, A/California/7/2009, falls in the largest cluster of 

the final partition (2013_11), accounting for 59% of the total H1N1pdm sequences.   

 

Figure 46 Proportional Sizes of H1N1 Clusters as Fraction of Total Sequences. 

 

 

Figure 47 Sequence Counts Used for H1N1 Windowed Proportion Tracking. 

 

DASH – MAR candidate selection 
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Analysis of DASH results for clusters without HI cohorts and candidate antigenic 

coverage prediction produced the following list of antigens that should be constructed 

as vaccine candidates or viruses to fill holes in HI antigen data. 

PTP Cluster 2 candidates (Clade 6B): 

A/England/358/2013 

A/Bolivia/559/2013 (WHO candidate virus) 

PTP Cluster 1 candidates (Clade 6C): 

A/Estonia/74816/2013 

A/Dominican Republic/7293/2013 (WHO candidate virus) 

DASH gap filling viruses: 

A/Puerto Rico/1/2013 

A/Florida/43/2013 

A/New Hampshire/4/2013 

A/Minnesota/26/2012 

A/Nizhny Novgorod/RII02/2013 

 

It should be noted that in our analysis A/California/7/2009 is frequently surpassed in 

predicted coverage by a number of other viruses (only the top 4 candidates are shown 

in table 15).  At an antigenic distance of 2, a vaccine containing the current 

recommendation as its H1N1 component is predicted to cover only 71.5% of 

circulating viruses.  In contrast, an A/Estonia/74816/2013 containing vaccine is 

predicted to cover 100% of circulating viruses.  A/England/358/2013 is predicted to 

cover 100% of circulating viruses as well.  An analysis of the antigenic distance data 
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alone indicates that A/California/7/2009 is still within an antigenic distance of 2 of 

96% of the viruses that it was tested against.  While the performance of 

A/California/7/2009 has dipped in the DASH analysis, there is currently no evidence 

of a new antigenic group emerging to take its place.  A closer look at the 

manufacturing seed A/Christchurch/16/2010, however shows poor performance 

against the currently circulating viruses.  It is our opinion that 

A/Christchurch/16/2010 should be replaced, if it is currently being used in the 

formulation of vaccines, and replaced with a clade 6B virus such as 

A/Bolivia/559/2013 or A/England/358/2013. 

Table 15 Predicted Antigenic Coverage of Influenza A Pandemic H1N1 Candidate Viruses in DASH 

Antigen InMedian InLB InUB ObsIn ObsOut ObsUnk DistIn DistOut Seqs 
A/Estonia/74816/2013 100.0% 60.6% 100.0% 100.0% 0.0% 0.0% 56 0 1341 
A/Luxembourg/80/2013 100.0% 59.4% 100.0% 100.0% 0.0% 0.0% 56 0 1341 
A/England/358/2013 100.0% 31.8% 100.0% 100.0% 0.0% 0.0% 54 1 1341 
A/Luxembourg/13/2013 100.0% 60.5% 100.0% 75.5% 0.1% 24.4% 55 1 1341 
A/California/7/2009* 71.5% 54.7% 79.5% 85.2% 2.5% 12.3% 810 36 1341 
A/Christchurch/16/2010 9.9% 6.7% 16.6% 7.7% 57.1% 35.2% 193 585 1341 

*Vaccine Candidate 

Table 16 Analysis of Recent WHO Candidate Viruses. 

Antigen InMedian InLB InUB ObsIn ObsOut ObsUnk DistIn DistOut Seqs 
A/Bolivia/559/2013 Egg 70.1% 16.9% 100.0% 83.7% 0.1% 16.2% 16 1 1341 
A/Dominican 
Republic/7293/2013 
Cell 

70.0% 10.2% 100.0% 83.7% 0.1% 16.2% 16 1 1341 

A/Bolivia/559/2013 
Cell 

68.6% 15.5% 100.0% 83.7% 0.1% 16.2% 16 1 1341 

A/Dominican 
Republic/7293/2013 
Egg 

68.0% 2.4% 100.0% 83.7% 0.1% 16.2% 16 1 1341 

 

Influenza B/Yamagata Analyses 

Influenza B/Yamagata Proportion Tracking 
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Proportion tracking analysis was conducted on all Influenza B/Yamagata lineage 

sequences isolated from January 1, 2001 until December 1, 2013.  The analysis was 

conducted on the HA1 domain using a windowed partitioning scheme as described 

above.  The current recommended vaccine seed, B/Massachusetts/2/2012 is seen in 

the largest cluster 1 of the current partition (2013_05) accounting for 86% of the total 

Influenza B Yamagata virus. 

 

Figure 48 Proportional Sizes of Influenza B/Yamagata Clusters as Fraction of Total Sequences.  Partition 
2013_05 cluster 1 represents Yamagata Group 2 viruses. 

 

 

Figure 49 Sequence Counts Used for Influenza B/Yamagata Windowed Proportion Tracking. 

 
DASH – MAR candidate selection 
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Analysis of DASH results for candidate antigenic coverage prediction produced the 

following list of antigens that should be constructed as vaccine candidates or viruses 

to fill holes in HI antigen data. 

PTP cluster 1 (Group 2) candidates: 

B/Massachusetts/2/2012* 

PTP cluster 2 (Group 3) candidates: 

B/Lithuania/6942/2013 

DASH gap filling viruses: 

None 

 

It should be noted that group 2 of the Yamagata lineage shows the majority of new 

infections, and the current vaccine seed, B/Massachusetts/ 2/2012, performs quite 

well.  This suggests that a new vaccine seed is probably not needed at this time, 

however the best high performing vaccine seed candidate from group 3 has been 

suggested above.   

Table 17 Predicted Antigenic Coverage of Influenza B Yamagata Candidate Viruses in DASH 

Antigen InMedian InLB InUB ObsIn ObsOut ObsUnk DistIn DistOut Seqs 
B/Massachusetts/2/2012
* 100.0% 8.0% 100.0% 100.0% 0.0% 0.0% 42 11 834 
B/Novosibirsk/13/2013 92.9% 49.7% 100.0% 100.0% 0.0% 0.0% 59 2 834 
B/Poland/8/2013 92.7% 58.3% 100.0% 100.0% 0.0% 0.0% 66 3 834 
B/Omsk/35/2013 89.5% 42.0% 100.0% 100.0% 0.0% 0.0% 59 2 834 
B/Ostrava/59/2013 87.7% 46.6% 100.0% 100.0% 0.0% 0.0% 58 3 834 
B/Lithuania/6942/2013 86.9% 20.0% 100.0% 100.0% 0.0% 0.0% 60 1 834 
B/Wisconsin/1/2010‡ 35.2% 28.0% 40.5% 42.3% 40.4% 17.3% 824 597 834 

*Vaccine candidate 

‡Previous vaccine candidate 

Influenza B/Victoria Analyses 
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Influenza B/Victoria Proportion Tracking 

Proportion tracking analysis was conducted on all Influenza B/Victoria lineage 

sequences isolated from January 1, 2001 until December 1, 2013.  The analysis was 

conducted on the HA1 domain using a windowed partitioning scheme as described 

above.  The current recommended strain for the quadrivalent vaccine includes an 

additional Victoria lineage B/Brisbane/60/2008-like virus along with the 

recommended Yamagata lineage B/Massachusetts/2/2012-like virus. 

B/Brisbane/60/2008 is seen in the largest cluster 1 in the current partition (2013_05) 

accounting for 67% of the total Influenza B Yamagata virus circulating. 

 

Figure 50 Proportional Sizes of Influenza B/Victoria Clusters as Fraction of Total Sequences. 
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Figure 51 Sequence Counts Used for Influenza B/Victoria Windowed Proportion Tracking. 

 
DASH – MAR candidate selection 

Analysis of DASH results for candidate antigenic coverage prediction produced the 

following list of antigens that should be constructed as vaccine candidates or viruses 

to fill holes in HI antigen data. 

PTP cluster 1 candidates: 

B/Belgium/G886/2012 

PTP cluster 2 candidates: 

B/Texas/2/2013 

PTP cluster 3 candidates: 

B/ Formosa Province/V2367/2012 

DASH gap filling viruses: 

B/Iowa/4/2013 

B/Sao Paulo/2-22035/2013 

B/Indonesia/Nihrd-Buas704/2013 
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It should be noted that the current quadrivalent vaccine candidate for the Victoria 

lineage, B/Brisbane/60/2008, shows rather poor predicted coverage of currently 

circulating viruses.  Better performing vaccine candidates, as listed above, exist for 

this lineage.  Of these, a priority should be given to candidates from the larger PTP 

cluster 1, as the vast majority of new infections are members of this cluster.  In PTP 

cluster 2, the recently announced WHO candidate B/Texas/2/2013 performs better 

than Brisbane/60 and appears to be egg stable.  The overall prediction for Texas/2 

was not great compared to other potential candidates.  B/Texas/2/2013 was tested 

against a limited number of viruses, thus the supporting data for this analysis is not 

abundant.  

Table 18 Predicted Antigenic Coverage of Influenza B Victoria Candidate Viruses in DASH 

*Vaccine candidate 
Combined Influenza B Analyses 

Influenza B Combined Proportion Tracking 

Proportion tracking for combined Influenza B lineages was performed for sequences 

isolated from January 1, 2001 until December 1, 2013.  The analysis was conducted 

on the HA1 domain using a windowed partitioning scheme.  The combined 

proportion tracking for both Influenza B lineages shows that the Yamagata lineage 

Antigen InMedian InLB InUB ObsIn ObsOut ObsUnk DistIn DistOut Seqs 
B/Formosa 
Province/V2367/20
12 

61.3% 36.8% 76.7% 70.9% 7.7% 21.5% 220 41 377 

B/Belgium/G886/20
12 

45.2% 12.7% 100.0% 47.3% 1.1% 51.6% 30 5 377 

B/Finland/310/2013 36.7% 12.4% 100.0% 47.3% 1.1% 51.6% 30 5 377 
A/Texas/2/2013 Egg 32.3% 3.7% 72.8% 34.1% 1.3% 64.6% 33 2 377 
B/Texas/2/2013 Cell 31.9% 19.5% 84.1% 32.5% 34.5% 33.0% 30 5 377 
B/Dakar/18/2013 31.6% 2.7% 75.9% 32.5% 34.5% 33.0% 30 5 377 
B/Dakar/10/2013 31.2% 2.1% 84.1% 32.2% 34.7% 33.0% 29 6 377 
B/Brisbane/60/2008
* 

25.1% 15.9% 34.9% 29.9% 44.7% 25.5% 156 182 377 



 

 157 
 

has continued to be the dominant lineage (cluster 1) in this current season accounting 

for 64% of the total Influenza B virus in circulation.  

 

Figure 52 Proportional Sizes of Combined Influenza B Clusters as Fraction of Total Sequences.  Partition 
2013_05 cluster 1 are Yamagata lineage viruses, Partition 2013_05 cluster 2 are Victoria lineage viruses. 

 

	  

Figure 53 Sequence Counts Used for Influenza B Combined Windowed Proportion Tracking. 

 
This provides evidence for continuing with a Yamagata lineage recommendation in 

the trivalent vaccine composition.  However, since the Victoria lineage still accounts 

for 36% of the total virus in circulation, the recommendation to include a virus from 

the Victoria lineage along with the recommended B/Massachusetts/2/2012-like virus 
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from the Yamagata lineage in the quadrivalent vaccine should cover both of the 

lineages circulating in the population.  
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Appendix B. Glycosylation and dN/dS data supporting the 
RSV Study 
Table 19 N-linked and O-linked Glycosylation Sites on the F Protein for 71 RSV Study Samples.  Colored 
backgrounds reflect clade and/or genotype membership (green = GA5, purple = ON1, light blue = TN1, blue = 
TN2, red = BA.1, orange = BA.2). 

lineage accession strain 244 27 70 116 120 126 clade subclade g_duplication constellation_95

RSVA KJ672479.1 RSVA/Homo_sapiens/USA/LA2_18/2013 NITE NGTD NYTL NNTK NVTL 2 2 0 15

RSVA KJ672483.1 RSVA/Homo_sapiens/USA/LA2_19/2013 NITE NGTD NYTL NNTK NVTL 2 2 0 15

RSVA KJ672474.1 RSVA/Homo_sapiens/USA/LA2_38/2012 NITE NGTD NYTL NNTK NVTL 2 2 0 15

RSVA KJ672447.1 RSVA/Homo_sapiens/USA/LA2_67/2013 NITE NGTD NYTL NNTK NVTL 2 2 0 15

RSVA KJ672462.1 RSVA/Homo_sapiens/USA/LA2_84/2013 NITE NGTD NYTL NNTK NVTL 2 2 0 15

RSVA KJ672464.1 RSVA/Homo_sapiens/USA/LA2_04/2012 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672468.1 RSVA/Homo_sapiens/USA/LA2_07/2012 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672466.1 RSVA/Homo_sapiens/USA/LA2_08/2012 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA 45567-MAIN RSVA/Homo_sapiens/USA/LA2_10/2012 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672457.1 RSVA/Homo_sapiens/USA/LA2_100/2013 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672451.1 RSVA/Homo_sapiens/USA/LA2_103/2012 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672461.1 RSVA/Homo_sapiens/USA/LA2_105/2012 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672424.1 RSVA/Homo_sapiens/USA/LA2_106/2012 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672444.1 RSVA/Homo_sapiens/USA/LA2_11/2012 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672465.1 RSVA/Homo_sapiens/USA/LA2_13/2012 + NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672472.1 RSVA/Homo_sapiens/USA/LA2_15/2012 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672475.1 RSVA/Homo_sapiens/USA/LA2_17/2013 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672440.1 RSVA/Homo_sapiens/USA/LA2_22/2012 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672449.1 RSVA/Homo_sapiens/USA/LA2_28/2012 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672470.1 RSVA/Homo_sapiens/USA/LA2_34/2012 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672469.1 RSVA/Homo_sapiens/USA/LA2_44/2013 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA 45606-MAIN RSVA/Homo_sapiens/USA/LA2_49/2013 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672428.1 RSVA/Homo_sapiens/USA/LA2_55/2013 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA 45613-MAIN RSVA/Homo_sapiens/USA/LA2_56/2013 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672480.1 RSVA/Homo_sapiens/USA/LA2_62/2013 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672429.1 RSVA/Homo_sapiens/USA/LA2_69/2013 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672432.1 RSVA/Homo_sapiens/USA/LA2_72/2013 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672454.1 RSVA/Homo_sapiens/USA/LA2_73/2013 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672448.1 RSVA/Homo_sapiens/USA/LA2_74/2013 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672458.1 RSVA/Homo_sapiens/USA/LA2_77/2013 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA 45640-MAIN RSVA/Homo_sapiens/USA/LA2_83/2013 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672471.1 RSVA/Homo_sapiens/USA/LA2_85/2013 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672441.1 RSVA/Homo_sapiens/USA/LA2_87/2013 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA 45646-MAIN RSVA/Homo_sapiens/USA/LA2_90/2012 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672452.1 RSVA/Homo_sapiens/USA/LA2_91/2013 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA 45650-MAIN RSVA/Homo_sapiens/USA/LA2_94/2013 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672433.1 RSVA/Homo_sapiens/USA/LA2_95/2013 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672467.1 RSVA/Homo_sapiens/USA/LA2_97/2013 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA 45654-MAIN RSVA/Homo_sapiens/USA/LA2_98/2013 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672437.1 RSVA/Homo_sapiens/USA/LA2_99/2013 NITE NGTD NYTL NNTK NVTL 1 1a 1 1

RSVA KJ672484.1 RSVA/Homo_sapiens/USA/LA2_01/2012 NITE NGTD NYTL NNTK NVTL 1 1b 0 3

RSVA KJ672439.1 RSVA/Homo_sapiens/USA/LA2_02/2012 NITE NGTD NYTL NNTK NVTL 1 1b 0 3

RSVA KJ672455.1 RSVA/Homo_sapiens/USA/LA2_05/2012 NITE NGTD NYTL NNTK NVTL 1 1b 0 3

RSVA KJ672427.1 RSVA/Homo_sapiens/USA/LA2_09/2012 + NITE NGTD NYTL NNTK 1 1b 0 3

RSVA KJ672431.1 RSVA/Homo_sapiens/USA/LA2_14/2012 NITE NGTD NYTL NNTK NVTL 1 1b 0 3

RSVA KJ672443.1 RSVA/Homo_sapiens/USA/LA2_21/2013 NITE NGTD NYTL NNTK NVTL 1 1b 0 3

RSVA KJ672456.1 RSVA/Homo_sapiens/USA/LA2_26/2012 NITE NGTD NYTL NNTK NVTL 1 1b 0 3
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lineage accession strain 244 27 70 116 120 126 clade subclade g_duplication constellation_95

RSVA KJ672478.1 RSVA/Homo_sapiens/USA/LA2_29/2013 + NITE NGTD NYTL NVTL 1 1b 0 3

RSVA KJ672463.1 RSVA/Homo_sapiens/USA/LA2_31/2013 NITE NGTD NYTL NNTK NVTL 1 1b 0 3

RSVA KJ672477.1 RSVA/Homo_sapiens/USA/LA2_33/2012 NITE NGTD NYTL NNTK NVTL 1 1b 0 3

RSVA KJ672426.1 RSVA/Homo_sapiens/USA/LA2_36/2013 NITE NGTD NYTL NNTK NVTL 1 1b 0 3

RSVA KJ672435.1 RSVA/Homo_sapiens/USA/LA2_37/2012 NITE NGTD NYTL NNTK NVTL 1 1b 0 3

RSVA KJ672460.1 RSVA/Homo_sapiens/USA/LA2_40/2013 NITE NGTD NYTL NNTK NVTL 1 1b 0 3

RSVA KJ672482.1 RSVA/Homo_sapiens/USA/LA2_41/2012 NITE NGTD NYTL NNTK NVTL 1 1b 0 3

RSVA KJ672450.1 RSVA/Homo_sapiens/USA/LA2_46/2013 NITE NGTD NYTL NNTK NVTL 1 1b 0 3

RSVA KJ672453.1 RSVA/Homo_sapiens/USA/LA2_48/2013 NITE NGTD NYTL NNTK NVTL 1 1b 0 3

RSVA KJ672434.1 RSVA/Homo_sapiens/USA/LA2_53/2013 NITE NGTD NYTL NNTK NVTL 1 1b 0 3

RSVA 45648-MAIN RSVA/Homo_sapiens/USA/LA2_92/2013 NITE NGTD NYTL NNTK NVTL 1 1b 0 3

RSVA KJ672446.1 RSVA/Homo_sapiens/USA/LA2_27/2012 NITE NGTD NYTL NNTK NVTL 1 1b 1 1

RSVA 45596-MAIN RSVA/Homo_sapiens/USA/LA2_39/2013 NITE NGTD NYTL NNTK NVTL 1 1b 1 1

RSVA KJ672442.1 RSVA/Homo_sapiens/USA/LA2_45/2013 NITE NGTD NYTL NNTK NVTL 1 1b 1 1

RSVA 45635-MAIN RSVA/Homo_sapiens/USA/LA2_78/2013 NITE NGTD NYTL NNTK NVTL 1 1b 1 1

RSVA KJ672436.1 RSVA/Homo_sapiens/USA/LA2_30/2012 NITE NGTD NYTL NNTK NVTL 1 1c 0 3

RSVA KJ672459.1 RSVA/Homo_sapiens/USA/LA2_60/2013 NITE NGTD NYTL NNTK NVTL 1 1c 0 3

RSVB KJ672476.1 RSVB/Homo_sapiens/USA/LA2_42/2013 NITE NGTD NYTI NTTK NVSI 3 3a 1 22

RSVB 45573-MAIN RSVB/Homo_sapiens/USA/LA2_16/2012 NITE NGTD NYTI NTTK NVSI 3 3b 1 19

RSVB KJ672473.1 RSVB/Homo_sapiens/USA/LA2_24/2012 NITE NGTD NYTI NTTK NVSI 3 3b 1 19

RSVB KJ672425.1 RSVB/Homo_sapiens/USA/LA2_25/2013 NITE NGTD NYTI NVSI 3 3b 1 19

RSVB KJ672438.1 RSVB/Homo_sapiens/USA/LA2_50/2013 NITE NGTD NYTI NTTK NVSI 3 3b 1 19

RSVB KJ672430.1 RSVB/Homo_sapiens/USA/LA2_51/2013 NITE NGTD NYTI NTTK NVSI 3 3b 1 19

RSVB KJ672481.1 RSVB/Homo_sapiens/USA/LA2_82/2013 NITE NGTD NYTI NTTK NVSI 3 3b 1 19
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Table 20 N-linked and O-linked Glycosylation Sites on the G Protein for 71 RSV Study Samples.  Colored 
backgrounds reflect clade and/or genotype membership (green = GA5, purple = ON1, light blue = TN1, blue = 
TN2, red = BA.1, orange = BA.2). 

lineage accession strain_name 64 70 72 73 75 78 80 81 83 86 87 88 89 92 95 10
0

10
1

10
2

10
5

10
6

10
7

RSVA KJ672479.1 RSVA/Homo_sapiens/USA/LA2_18/2013 + + + + + + + + + + + + +

RSVA KJ672483.1 RSVA/Homo_sapiens/USA/LA2_19/2013 + + + + + + + + + + + +

RSVA KJ672474.1 RSVA/Homo_sapiens/USA/LA2_38/2012 + + + + + + + + + + + + +

RSVA KJ672447.1 RSVA/Homo_sapiens/USA/LA2_67/2013 + + + + + + + + + + + + +

RSVA KJ672462.1 RSVA/Homo_sapiens/USA/LA2_84/2013 + + + + + + + + + + + + +

RSVA KJ672464.1 RSVA/Homo_sapiens/USA/LA2_04/2012 + + + + + + + + + + + +

RSVA KJ672468.1 RSVA/Homo_sapiens/USA/LA2_07/2012 + + + + + + + + + + + + +

RSVA KJ672466.1 RSVA/Homo_sapiens/USA/LA2_08/2012 + + + + + + + + + + + +

RSVA 45567-MAIN RSVA/Homo_sapiens/USA/LA2_10/2012 + + + + + + + + + + + + +

RSVA KJ672457.1 RSVA/Homo_sapiens/USA/LA2_100/2013 + + + + + + + + + + + +

RSVA KJ672451.1 RSVA/Homo_sapiens/USA/LA2_103/2012 + + + + + + + + + + + +

RSVA KJ672461.1 RSVA/Homo_sapiens/USA/LA2_105/2012 + + + + + + + + + + + +

RSVA KJ672424.1 RSVA/Homo_sapiens/USA/LA2_106/2012 + + + + + + + + + + + +

RSVA KJ672444.1 RSVA/Homo_sapiens/USA/LA2_11/2012 + + + + + + + + + + + + +

RSVA KJ672465.1 RSVA/Homo_sapiens/USA/LA2_13/2012 + + + + + + + + + + + +

RSVA KJ672472.1 RSVA/Homo_sapiens/USA/LA2_15/2012 + + + + + + + + + + + + +

RSVA KJ672475.1 RSVA/Homo_sapiens/USA/LA2_17/2013 + + + + + + + + + + + + +

RSVA KJ672440.1 RSVA/Homo_sapiens/USA/LA2_22/2012 + + + + + + + + + + + + +

RSVA KJ672449.1 RSVA/Homo_sapiens/USA/LA2_28/2012 + + + + + + + + + + + + +

RSVA KJ672470.1 RSVA/Homo_sapiens/USA/LA2_34/2012 + + + + + + + + + + + +

RSVA KJ672469.1 RSVA/Homo_sapiens/USA/LA2_44/2013 + + + + + + + + + + + + +

RSVA 45606-MAIN RSVA/Homo_sapiens/USA/LA2_49/2013 + + + + + + + + + + + + +

RSVA KJ672428.1 RSVA/Homo_sapiens/USA/LA2_55/2013 + + + + + + + + + + + +

RSVA 45613-MAIN RSVA/Homo_sapiens/USA/LA2_56/2013 + + + + + + + + + + + + +

RSVA KJ672480.1 RSVA/Homo_sapiens/USA/LA2_62/2013 + + + + + + + + + + + + +

RSVA KJ672429.1 RSVA/Homo_sapiens/USA/LA2_69/2013 + + + + + + + + + + + + +

RSVA KJ672432.1 RSVA/Homo_sapiens/USA/LA2_72/2013 + + + + + + + + + + + + +

RSVA KJ672454.1 RSVA/Homo_sapiens/USA/LA2_73/2013 + + + + + + + + + + + + +

RSVA KJ672448.1 RSVA/Homo_sapiens/USA/LA2_74/2013 + + + + + + + + + + + + +

RSVA KJ672458.1 RSVA/Homo_sapiens/USA/LA2_77/2013 + + + + + + + + + + + + +

RSVA 45640-MAIN RSVA/Homo_sapiens/USA/LA2_83/2013 + + + + + + + + + + + +

RSVA KJ672471.1 RSVA/Homo_sapiens/USA/LA2_85/2013 + + + + + + + + + + + + +

RSVA KJ672441.1 RSVA/Homo_sapiens/USA/LA2_87/2013 + + + + + + + + + + + + +

RSVA 45646-MAIN RSVA/Homo_sapiens/USA/LA2_90/2012 + + + + + + + + + + + +

RSVA KJ672452.1 RSVA/Homo_sapiens/USA/LA2_91/2013 + + + + + + + + + + + +

RSVA 45650-MAIN RSVA/Homo_sapiens/USA/LA2_94/2013 + + + + + + + + + + + + +

RSVA KJ672433.1 RSVA/Homo_sapiens/USA/LA2_95/2013 + + + + + + + + + + + + + +

RSVA KJ672467.1 RSVA/Homo_sapiens/USA/LA2_97/2013 + + + + + + + + + + + + +

RSVA 45654-MAIN RSVA/Homo_sapiens/USA/LA2_98/2013 + + + + + + + + + + + + +

RSVA KJ672437.1 RSVA/Homo_sapiens/USA/LA2_99/2013 + + + + + + + + + + + +

RSVA KJ672484.1 RSVA/Homo_sapiens/USA/LA2_01/2012 + + + + + + + + + + + +

RSVA KJ672439.1 RSVA/Homo_sapiens/USA/LA2_02/2012 + + + + + + + + + + + +

RSVA KJ672455.1 RSVA/Homo_sapiens/USA/LA2_05/2012 + + + + + + + + + + + +

RSVA KJ672427.1 RSVA/Homo_sapiens/USA/LA2_09/2012 + + + + + + + + + + + +

RSVA KJ672431.1 RSVA/Homo_sapiens/USA/LA2_14/2012 + + + + + + + + + + + +

RSVA KJ672443.1 RSVA/Homo_sapiens/USA/LA2_21/2013 + + + + + + + + + + + +

RSVA KJ672456.1 RSVA/Homo_sapiens/USA/LA2_26/2012 + + + + + + + + + + + +
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lineage accession strain_name 64 70 72 73 75 78 80 81 83 86 87 88 89 92 95 10
0

10
1

10
2

10
5

10
6

10
7

RSVA KJ672478.1 RSVA/Homo_sapiens/USA/LA2_29/2013 + + + + + + + + + + + +

RSVA KJ672463.1 RSVA/Homo_sapiens/USA/LA2_31/2013 + + + + + + + + + + +

RSVA KJ672477.1 RSVA/Homo_sapiens/USA/LA2_33/2012 + + + + + + + + + + + +

RSVA KJ672426.1 RSVA/Homo_sapiens/USA/LA2_36/2013 + + + + + + + + + + + +

RSVA KJ672435.1 RSVA/Homo_sapiens/USA/LA2_37/2012 + + + + + + + + + + + +

RSVA KJ672460.1 RSVA/Homo_sapiens/USA/LA2_40/2013 + + + + + + + + + + + +

RSVA KJ672482.1 RSVA/Homo_sapiens/USA/LA2_41/2012 + + + + + + + + + + + +

RSVA KJ672450.1 RSVA/Homo_sapiens/USA/LA2_46/2013 + + + + + + + + + + + +

RSVA KJ672453.1 RSVA/Homo_sapiens/USA/LA2_48/2013 + + + + + + + + + + + +

RSVA KJ672434.1 RSVA/Homo_sapiens/USA/LA2_53/2013 + + + + + + + + + + + +

RSVA 45648-MAIN RSVA/Homo_sapiens/USA/LA2_92/2013 + + + + + + + + + + + +

RSVA KJ672446.1 RSVA/Homo_sapiens/USA/LA2_27/2012 + + + + + + + + + + + +

RSVA 45596-MAIN RSVA/Homo_sapiens/USA/LA2_39/2013 + + + + + + + + + + + +

RSVA KJ672442.1 RSVA/Homo_sapiens/USA/LA2_45/2013 + + + + + + + + + + + +

RSVA 45635-MAIN RSVA/Homo_sapiens/USA/LA2_78/2013 + + + + + + + + + + + +

RSVA KJ672436.1 RSVA/Homo_sapiens/USA/LA2_30/2012 + + + + + + + + + + + +

RSVA KJ672459.1 RSVA/Homo_sapiens/USA/LA2_60/2013 + + + + + + + + + + + +

RSVB KJ672476.1 RSVB/Homo_sapiens/USA/LA2_42/2013 + + + + + + + + + + + + + + + +

RSVB 45573-MAIN RSVB/Homo_sapiens/USA/LA2_16/2012 + + + + + + + + + + + + + + +

RSVB KJ672473.1 RSVB/Homo_sapiens/USA/LA2_24/2012 + + + + + + + + + + + + + +

RSVB KJ672425.1 RSVB/Homo_sapiens/USA/LA2_25/2013 + + + + + + + + + + + + + + +

RSVB KJ672438.1 RSVB/Homo_sapiens/USA/LA2_50/2013 + + + + + + + + + + + + + + +

RSVB KJ672430.1 RSVB/Homo_sapiens/USA/LA2_51/2013 + + + + + + + + + + + + + + +

RSVB KJ672481.1 RSVB/Homo_sapiens/USA/LA2_82/2013 + + + + + + + + + + + + + + +
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strain_name

RSVA/Homo_sapiens/USA/LA2_18/2013

RSVA/Homo_sapiens/USA/LA2_19/2013

RSVA/Homo_sapiens/USA/LA2_38/2012

RSVA/Homo_sapiens/USA/LA2_67/2013

RSVA/Homo_sapiens/USA/LA2_84/2013

RSVA/Homo_sapiens/USA/LA2_04/2012

RSVA/Homo_sapiens/USA/LA2_07/2012

RSVA/Homo_sapiens/USA/LA2_08/2012

RSVA/Homo_sapiens/USA/LA2_10/2012

RSVA/Homo_sapiens/USA/LA2_100/2013

RSVA/Homo_sapiens/USA/LA2_103/2012

RSVA/Homo_sapiens/USA/LA2_105/2012

RSVA/Homo_sapiens/USA/LA2_106/2012

RSVA/Homo_sapiens/USA/LA2_11/2012

RSVA/Homo_sapiens/USA/LA2_13/2012

RSVA/Homo_sapiens/USA/LA2_15/2012

RSVA/Homo_sapiens/USA/LA2_17/2013

RSVA/Homo_sapiens/USA/LA2_22/2012

RSVA/Homo_sapiens/USA/LA2_28/2012

RSVA/Homo_sapiens/USA/LA2_34/2012

RSVA/Homo_sapiens/USA/LA2_44/2013

RSVA/Homo_sapiens/USA/LA2_49/2013

RSVA/Homo_sapiens/USA/LA2_55/2013

RSVA/Homo_sapiens/USA/LA2_56/2013

RSVA/Homo_sapiens/USA/LA2_62/2013

RSVA/Homo_sapiens/USA/LA2_69/2013

RSVA/Homo_sapiens/USA/LA2_72/2013

RSVA/Homo_sapiens/USA/LA2_73/2013

RSVA/Homo_sapiens/USA/LA2_74/2013

RSVA/Homo_sapiens/USA/LA2_77/2013

RSVA/Homo_sapiens/USA/LA2_83/2013

RSVA/Homo_sapiens/USA/LA2_85/2013

RSVA/Homo_sapiens/USA/LA2_87/2013

RSVA/Homo_sapiens/USA/LA2_90/2012

RSVA/Homo_sapiens/USA/LA2_91/2013

RSVA/Homo_sapiens/USA/LA2_94/2013

RSVA/Homo_sapiens/USA/LA2_95/2013

RSVA/Homo_sapiens/USA/LA2_97/2013

RSVA/Homo_sapiens/USA/LA2_98/2013

RSVA/Homo_sapiens/USA/LA2_99/2013

RSVA/Homo_sapiens/USA/LA2_01/2012

RSVA/Homo_sapiens/USA/LA2_02/2012

RSVA/Homo_sapiens/USA/LA2_05/2012

RSVA/Homo_sapiens/USA/LA2_09/2012

RSVA/Homo_sapiens/USA/LA2_14/2012

RSVA/Homo_sapiens/USA/LA2_21/2013

RSVA/Homo_sapiens/USA/LA2_26/2012
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strain_name

RSVA/Homo_sapiens/USA/LA2_18/2013RSVA/Homo_sapiens/USA/LA2_29/2013

RSVA/Homo_sapiens/USA/LA2_31/2013

RSVA/Homo_sapiens/USA/LA2_33/2012

RSVA/Homo_sapiens/USA/LA2_36/2013

RSVA/Homo_sapiens/USA/LA2_37/2012

RSVA/Homo_sapiens/USA/LA2_40/2013

RSVA/Homo_sapiens/USA/LA2_41/2012

RSVA/Homo_sapiens/USA/LA2_46/2013

RSVA/Homo_sapiens/USA/LA2_48/2013

RSVA/Homo_sapiens/USA/LA2_53/2013

RSVA/Homo_sapiens/USA/LA2_92/2013

RSVA/Homo_sapiens/USA/LA2_27/2012

RSVA/Homo_sapiens/USA/LA2_39/2013

RSVA/Homo_sapiens/USA/LA2_45/2013

RSVA/Homo_sapiens/USA/LA2_78/2013

RSVA/Homo_sapiens/USA/LA2_30/2012

RSVA/Homo_sapiens/USA/LA2_60/2013

RSVB/Homo_sapiens/USA/LA2_42/2013

RSVB/Homo_sapiens/USA/LA2_16/2012

RSVB/Homo_sapiens/USA/LA2_24/2012

RSVB/Homo_sapiens/USA/LA2_25/2013

RSVB/Homo_sapiens/USA/LA2_50/2013

RSVB/Homo_sapiens/USA/LA2_51/2013

RSVB/Homo_sapiens/USA/LA2_82/2013
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strain_name

RSVA/Homo_sapiens/USA/LA2_18/2013

RSVA/Homo_sapiens/USA/LA2_19/2013

RSVA/Homo_sapiens/USA/LA2_38/2012

RSVA/Homo_sapiens/USA/LA2_67/2013

RSVA/Homo_sapiens/USA/LA2_84/2013

RSVA/Homo_sapiens/USA/LA2_04/2012

RSVA/Homo_sapiens/USA/LA2_07/2012

RSVA/Homo_sapiens/USA/LA2_08/2012

RSVA/Homo_sapiens/USA/LA2_10/2012

RSVA/Homo_sapiens/USA/LA2_100/2013

RSVA/Homo_sapiens/USA/LA2_103/2012

RSVA/Homo_sapiens/USA/LA2_105/2012

RSVA/Homo_sapiens/USA/LA2_106/2012

RSVA/Homo_sapiens/USA/LA2_11/2012

RSVA/Homo_sapiens/USA/LA2_13/2012

RSVA/Homo_sapiens/USA/LA2_15/2012

RSVA/Homo_sapiens/USA/LA2_17/2013

RSVA/Homo_sapiens/USA/LA2_22/2012

RSVA/Homo_sapiens/USA/LA2_28/2012

RSVA/Homo_sapiens/USA/LA2_34/2012

RSVA/Homo_sapiens/USA/LA2_44/2013

RSVA/Homo_sapiens/USA/LA2_49/2013

RSVA/Homo_sapiens/USA/LA2_55/2013

RSVA/Homo_sapiens/USA/LA2_56/2013

RSVA/Homo_sapiens/USA/LA2_62/2013

RSVA/Homo_sapiens/USA/LA2_69/2013

RSVA/Homo_sapiens/USA/LA2_72/2013

RSVA/Homo_sapiens/USA/LA2_73/2013

RSVA/Homo_sapiens/USA/LA2_74/2013

RSVA/Homo_sapiens/USA/LA2_77/2013

RSVA/Homo_sapiens/USA/LA2_83/2013

RSVA/Homo_sapiens/USA/LA2_85/2013

RSVA/Homo_sapiens/USA/LA2_87/2013

RSVA/Homo_sapiens/USA/LA2_90/2012

RSVA/Homo_sapiens/USA/LA2_91/2013

RSVA/Homo_sapiens/USA/LA2_94/2013

RSVA/Homo_sapiens/USA/LA2_95/2013

RSVA/Homo_sapiens/USA/LA2_97/2013

RSVA/Homo_sapiens/USA/LA2_98/2013

RSVA/Homo_sapiens/USA/LA2_99/2013

RSVA/Homo_sapiens/USA/LA2_01/2012

RSVA/Homo_sapiens/USA/LA2_02/2012

RSVA/Homo_sapiens/USA/LA2_05/2012

RSVA/Homo_sapiens/USA/LA2_09/2012

RSVA/Homo_sapiens/USA/LA2_14/2012

RSVA/Homo_sapiens/USA/LA2_21/2013

RSVA/Homo_sapiens/USA/LA2_26/2012
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RSVA/Homo_sapiens/USA/LA2_21/2013

RSVA/Homo_sapiens/USA/LA2_26/2012
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strain_name

RSVA/Homo_sapiens/USA/LA2_18/2013

RSVA/Homo_sapiens/USA/LA2_19/2013

RSVA/Homo_sapiens/USA/LA2_38/2012

RSVA/Homo_sapiens/USA/LA2_67/2013

RSVA/Homo_sapiens/USA/LA2_84/2013

RSVA/Homo_sapiens/USA/LA2_04/2012

RSVA/Homo_sapiens/USA/LA2_07/2012

RSVA/Homo_sapiens/USA/LA2_08/2012

RSVA/Homo_sapiens/USA/LA2_10/2012

RSVA/Homo_sapiens/USA/LA2_100/2013

RSVA/Homo_sapiens/USA/LA2_103/2012

RSVA/Homo_sapiens/USA/LA2_105/2012

RSVA/Homo_sapiens/USA/LA2_106/2012

RSVA/Homo_sapiens/USA/LA2_11/2012

RSVA/Homo_sapiens/USA/LA2_13/2012

RSVA/Homo_sapiens/USA/LA2_15/2012

RSVA/Homo_sapiens/USA/LA2_17/2013

RSVA/Homo_sapiens/USA/LA2_22/2012

RSVA/Homo_sapiens/USA/LA2_28/2012

RSVA/Homo_sapiens/USA/LA2_34/2012

RSVA/Homo_sapiens/USA/LA2_44/2013

RSVA/Homo_sapiens/USA/LA2_49/2013

RSVA/Homo_sapiens/USA/LA2_55/2013

RSVA/Homo_sapiens/USA/LA2_56/2013

RSVA/Homo_sapiens/USA/LA2_62/2013

RSVA/Homo_sapiens/USA/LA2_69/2013

RSVA/Homo_sapiens/USA/LA2_72/2013

RSVA/Homo_sapiens/USA/LA2_73/2013

RSVA/Homo_sapiens/USA/LA2_74/2013

RSVA/Homo_sapiens/USA/LA2_77/2013

RSVA/Homo_sapiens/USA/LA2_83/2013

RSVA/Homo_sapiens/USA/LA2_85/2013

RSVA/Homo_sapiens/USA/LA2_87/2013

RSVA/Homo_sapiens/USA/LA2_90/2012

RSVA/Homo_sapiens/USA/LA2_91/2013

RSVA/Homo_sapiens/USA/LA2_94/2013

RSVA/Homo_sapiens/USA/LA2_95/2013

RSVA/Homo_sapiens/USA/LA2_97/2013

RSVA/Homo_sapiens/USA/LA2_98/2013

RSVA/Homo_sapiens/USA/LA2_99/2013

RSVA/Homo_sapiens/USA/LA2_01/2012

RSVA/Homo_sapiens/USA/LA2_02/2012

RSVA/Homo_sapiens/USA/LA2_05/2012

RSVA/Homo_sapiens/USA/LA2_09/2012

RSVA/Homo_sapiens/USA/LA2_14/2012

RSVA/Homo_sapiens/USA/LA2_21/2013

RSVA/Homo_sapiens/USA/LA2_26/2012
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NLSG NTTT NITK NSTT NITD 2 2

NLSG NTTT NITK NSTT NITD 2 2

NLSG NTTT NITK NSTT NITD 2 2

NLSG NTTT NITK NSTT NITD 2 2

NLSG NTTT NITK NSTT NITD 2 2

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTI NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK NITK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK NTTR 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b



 

 173 
 

strain_name

RSVA/Homo_sapiens/USA/LA2_18/2013RSVA/Homo_sapiens/USA/LA2_29/2013

RSVA/Homo_sapiens/USA/LA2_31/2013

RSVA/Homo_sapiens/USA/LA2_33/2012

RSVA/Homo_sapiens/USA/LA2_36/2013

RSVA/Homo_sapiens/USA/LA2_37/2012

RSVA/Homo_sapiens/USA/LA2_40/2013

RSVA/Homo_sapiens/USA/LA2_41/2012

RSVA/Homo_sapiens/USA/LA2_46/2013

RSVA/Homo_sapiens/USA/LA2_48/2013

RSVA/Homo_sapiens/USA/LA2_53/2013

RSVA/Homo_sapiens/USA/LA2_92/2013

RSVA/Homo_sapiens/USA/LA2_27/2012

RSVA/Homo_sapiens/USA/LA2_39/2013

RSVA/Homo_sapiens/USA/LA2_45/2013

RSVA/Homo_sapiens/USA/LA2_78/2013

RSVA/Homo_sapiens/USA/LA2_30/2012

RSVA/Homo_sapiens/USA/LA2_60/2013

RSVB/Homo_sapiens/USA/LA2_42/2013

RSVB/Homo_sapiens/USA/LA2_16/2012

RSVB/Homo_sapiens/USA/LA2_24/2012

RSVB/Homo_sapiens/USA/LA2_25/2013

RSVB/Homo_sapiens/USA/LA2_50/2013

RSVB/Homo_sapiens/USA/LA2_51/2013

RSVB/Homo_sapiens/USA/LA2_82/2013
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strain_name

RSVA/Homo_sapiens/USA/LA2_18/2013

RSVA/Homo_sapiens/USA/LA2_19/2013

RSVA/Homo_sapiens/USA/LA2_38/2012

RSVA/Homo_sapiens/USA/LA2_67/2013

RSVA/Homo_sapiens/USA/LA2_84/2013

RSVA/Homo_sapiens/USA/LA2_04/2012

RSVA/Homo_sapiens/USA/LA2_07/2012

RSVA/Homo_sapiens/USA/LA2_08/2012

RSVA/Homo_sapiens/USA/LA2_10/2012

RSVA/Homo_sapiens/USA/LA2_100/2013

RSVA/Homo_sapiens/USA/LA2_103/2012

RSVA/Homo_sapiens/USA/LA2_105/2012

RSVA/Homo_sapiens/USA/LA2_106/2012

RSVA/Homo_sapiens/USA/LA2_11/2012

RSVA/Homo_sapiens/USA/LA2_13/2012

RSVA/Homo_sapiens/USA/LA2_15/2012

RSVA/Homo_sapiens/USA/LA2_17/2013

RSVA/Homo_sapiens/USA/LA2_22/2012

RSVA/Homo_sapiens/USA/LA2_28/2012

RSVA/Homo_sapiens/USA/LA2_34/2012

RSVA/Homo_sapiens/USA/LA2_44/2013

RSVA/Homo_sapiens/USA/LA2_49/2013

RSVA/Homo_sapiens/USA/LA2_55/2013

RSVA/Homo_sapiens/USA/LA2_56/2013

RSVA/Homo_sapiens/USA/LA2_62/2013

RSVA/Homo_sapiens/USA/LA2_69/2013

RSVA/Homo_sapiens/USA/LA2_72/2013

RSVA/Homo_sapiens/USA/LA2_73/2013

RSVA/Homo_sapiens/USA/LA2_74/2013

RSVA/Homo_sapiens/USA/LA2_77/2013

RSVA/Homo_sapiens/USA/LA2_83/2013

RSVA/Homo_sapiens/USA/LA2_85/2013

RSVA/Homo_sapiens/USA/LA2_87/2013

RSVA/Homo_sapiens/USA/LA2_90/2012

RSVA/Homo_sapiens/USA/LA2_91/2013

RSVA/Homo_sapiens/USA/LA2_94/2013

RSVA/Homo_sapiens/USA/LA2_95/2013

RSVA/Homo_sapiens/USA/LA2_97/2013

RSVA/Homo_sapiens/USA/LA2_98/2013

RSVA/Homo_sapiens/USA/LA2_99/2013

RSVA/Homo_sapiens/USA/LA2_01/2012

RSVA/Homo_sapiens/USA/LA2_02/2012

RSVA/Homo_sapiens/USA/LA2_05/2012

RSVA/Homo_sapiens/USA/LA2_09/2012

RSVA/Homo_sapiens/USA/LA2_14/2012

RSVA/Homo_sapiens/USA/LA2_21/2013

RSVA/Homo_sapiens/USA/LA2_26/2012
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NLSG NTTT NTTK 1 1a
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NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTI NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a
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NLSG NTTT NTTK 1 1a
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NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK 1 1a

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b
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strain_name

RSVA/Homo_sapiens/USA/LA2_18/2013RSVA/Homo_sapiens/USA/LA2_29/2013

RSVA/Homo_sapiens/USA/LA2_31/2013

RSVA/Homo_sapiens/USA/LA2_33/2012

RSVA/Homo_sapiens/USA/LA2_36/2013

RSVA/Homo_sapiens/USA/LA2_37/2012

RSVA/Homo_sapiens/USA/LA2_40/2013

RSVA/Homo_sapiens/USA/LA2_41/2012

RSVA/Homo_sapiens/USA/LA2_46/2013

RSVA/Homo_sapiens/USA/LA2_48/2013

RSVA/Homo_sapiens/USA/LA2_53/2013

RSVA/Homo_sapiens/USA/LA2_92/2013

RSVA/Homo_sapiens/USA/LA2_27/2012

RSVA/Homo_sapiens/USA/LA2_39/2013

RSVA/Homo_sapiens/USA/LA2_45/2013

RSVA/Homo_sapiens/USA/LA2_78/2013

RSVA/Homo_sapiens/USA/LA2_30/2012

RSVA/Homo_sapiens/USA/LA2_60/2013

RSVB/Homo_sapiens/USA/LA2_42/2013

RSVB/Homo_sapiens/USA/LA2_16/2012

RSVB/Homo_sapiens/USA/LA2_24/2012

RSVB/Homo_sapiens/USA/LA2_25/2013

RSVB/Homo_sapiens/USA/LA2_50/2013

RSVB/Homo_sapiens/USA/LA2_51/2013

RSVB/Homo_sapiens/USA/LA2_82/2013
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NLSG NTTT NTTK NTTG NTTK 1 1b

NLTG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG NTTK 1 1b

NLSG NTTT NTTK NTTG 1 1c

NLSG NTTT NTTK NTTG 1 1c

NITT NQTT NPTK NSTQ 3 3a

NSTQ 3 3b

NSTQ 3 3b

NSTQ 3 3b

NHTE NSTQ 3 3b

NSTQ 3 3b

NSTQ 3 3b
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strain_name

RSVA/Homo_sapiens/USA/LA2_18/2013

RSVA/Homo_sapiens/USA/LA2_19/2013

RSVA/Homo_sapiens/USA/LA2_38/2012

RSVA/Homo_sapiens/USA/LA2_67/2013

RSVA/Homo_sapiens/USA/LA2_84/2013

RSVA/Homo_sapiens/USA/LA2_04/2012

RSVA/Homo_sapiens/USA/LA2_07/2012

RSVA/Homo_sapiens/USA/LA2_08/2012

RSVA/Homo_sapiens/USA/LA2_10/2012

RSVA/Homo_sapiens/USA/LA2_100/2013

RSVA/Homo_sapiens/USA/LA2_103/2012

RSVA/Homo_sapiens/USA/LA2_105/2012

RSVA/Homo_sapiens/USA/LA2_106/2012

RSVA/Homo_sapiens/USA/LA2_11/2012

RSVA/Homo_sapiens/USA/LA2_13/2012

RSVA/Homo_sapiens/USA/LA2_15/2012

RSVA/Homo_sapiens/USA/LA2_17/2013

RSVA/Homo_sapiens/USA/LA2_22/2012

RSVA/Homo_sapiens/USA/LA2_28/2012

RSVA/Homo_sapiens/USA/LA2_34/2012

RSVA/Homo_sapiens/USA/LA2_44/2013

RSVA/Homo_sapiens/USA/LA2_49/2013

RSVA/Homo_sapiens/USA/LA2_55/2013

RSVA/Homo_sapiens/USA/LA2_56/2013

RSVA/Homo_sapiens/USA/LA2_62/2013

RSVA/Homo_sapiens/USA/LA2_69/2013

RSVA/Homo_sapiens/USA/LA2_72/2013

RSVA/Homo_sapiens/USA/LA2_73/2013

RSVA/Homo_sapiens/USA/LA2_74/2013

RSVA/Homo_sapiens/USA/LA2_77/2013

RSVA/Homo_sapiens/USA/LA2_83/2013

RSVA/Homo_sapiens/USA/LA2_85/2013

RSVA/Homo_sapiens/USA/LA2_87/2013

RSVA/Homo_sapiens/USA/LA2_90/2012

RSVA/Homo_sapiens/USA/LA2_91/2013

RSVA/Homo_sapiens/USA/LA2_94/2013

RSVA/Homo_sapiens/USA/LA2_95/2013

RSVA/Homo_sapiens/USA/LA2_97/2013

RSVA/Homo_sapiens/USA/LA2_98/2013

RSVA/Homo_sapiens/USA/LA2_99/2013

RSVA/Homo_sapiens/USA/LA2_01/2012

RSVA/Homo_sapiens/USA/LA2_02/2012

RSVA/Homo_sapiens/USA/LA2_05/2012

RSVA/Homo_sapiens/USA/LA2_09/2012

RSVA/Homo_sapiens/USA/LA2_14/2012

RSVA/Homo_sapiens/USA/LA2_21/2013

RSVA/Homo_sapiens/USA/LA2_26/2012

g_duplication constellation_95

0 15

0 15

0 15

0 15

0 15

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

0 3

0 3

0 3

0 3

0 3

0 3

0 3
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strain_name

RSVA/Homo_sapiens/USA/LA2_18/2013RSVA/Homo_sapiens/USA/LA2_29/2013

RSVA/Homo_sapiens/USA/LA2_31/2013

RSVA/Homo_sapiens/USA/LA2_33/2012

RSVA/Homo_sapiens/USA/LA2_36/2013

RSVA/Homo_sapiens/USA/LA2_37/2012

RSVA/Homo_sapiens/USA/LA2_40/2013

RSVA/Homo_sapiens/USA/LA2_41/2012

RSVA/Homo_sapiens/USA/LA2_46/2013

RSVA/Homo_sapiens/USA/LA2_48/2013

RSVA/Homo_sapiens/USA/LA2_53/2013

RSVA/Homo_sapiens/USA/LA2_92/2013

RSVA/Homo_sapiens/USA/LA2_27/2012

RSVA/Homo_sapiens/USA/LA2_39/2013

RSVA/Homo_sapiens/USA/LA2_45/2013

RSVA/Homo_sapiens/USA/LA2_78/2013

RSVA/Homo_sapiens/USA/LA2_30/2012

RSVA/Homo_sapiens/USA/LA2_60/2013

RSVB/Homo_sapiens/USA/LA2_42/2013

RSVB/Homo_sapiens/USA/LA2_16/2012

RSVB/Homo_sapiens/USA/LA2_24/2012

RSVB/Homo_sapiens/USA/LA2_25/2013

RSVB/Homo_sapiens/USA/LA2_50/2013

RSVB/Homo_sapiens/USA/LA2_51/2013

RSVB/Homo_sapiens/USA/LA2_82/2013

g_duplication constellation_95

0 3

0 3

0 3

0 3

0 3

0 3

0 3

0 3

0 3

0 3

0 3

1 1

1 1

1 1

1 1

0 3

0 3

1 22

1 19

1 19

1 19

1 19

1 19

1 19
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Table 21 dN/dS Results for Positive or Diversifying Selection Sites Across All RSV Genes Categorized by 
RSV-A and RSV-B.  Orange shading indicates statistically significant results at default thresholds of 0.1. 
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23 10.64 0.059 3.942 0.027 >100 0.072 0.619 0.937 

117 6.071 0.233 4.39 0.04 >100 0.098 0.499 0.874 

518 7.6 0.132 3.038 0.054 >100 0.119 0.317 0.859 

560 -12.241 0.986 -4.579 0.154 >100 0.01 -1.091 0.03 

563 4.151 0.467 2.928 0.345 >100 0.004 0.071 0.606 

574 3.596 0.447 3.979 0.098 2.668 0.326 0.565 0.854 

F RSV-B 

12 4.279 0.342 4.372 0.063 >100 0.093 0.232 0.79 

15 -0.011 0.742 0.372 0.906 29.882 0.091 -0.064 0.381 

45 6.132 0.183 7.358 0.065 >100 0.088 0.516 0.848 

292 2.277 0.768 3.377 0.429 >100 0.096 -0.013 0.545 

516 2.991 0.445 3.106 0.305 >100 0.017 0.054 0.585 

G RSV-A 

15 2.258 0.252 1.161 0.052 >100 0.075 0.188 0.855 

71 4.335 0.035 0.947 0.067 >100 0.07 0.172 0.862 

94 3.131 0.229 1.929 0.005 >100 0.019 0.436 0.961 

101 5.909 0.046 1.463 0.053 >100 0.022 0.266 0.905 

117 5.929 0.057 2.115 0.089 >100 0.025 0.569 0.933 

126 5.224 0.048 1.311 0.116 5.904 0.062 0.292 0.874 

132 2.212 0.3 1.401 0.041 >100 0.02 0.237 0.873 

142 -0.156 0.764 -0.276 0.838 >100 0.035 -0.087 0.409 

161 1.252 0.554 0.682 0.087 >100 0.161 0.135 0.81 

196 2.957 0.199 1.961 0.016 >100 0.022 0.399 0.929 

206 2.147 0.303 0.786 0.248 >100 0.068 0.068 0.668 

215 4.196 0.088 1.307 0.054 >100 0.069 0.197 0.868 

231 -0.699 0.889 -0.706 0.412 >100 0.008 -0.162 0.231 

241 4.912 0.057 2.124 0.055 >100 0.049 0.511 0.931 

244 6.76 0.041 3.218 0.046 >100 0.065 0.824 0.976 

250 1.788 0.426 0.629 0.618 >100 0.041 0.236 0.697 

255 1.879 0.413 1.168 0.028 >100 0.069 0.21 0.89 

256 5.836 0.019 1.826 0.031 >100 0.029 0.39 0.931 

258 4.576 0.095 2.101 0.027 >100 0.057 0.45 0.932 

284 27.952 0 -0.274 0.343 0 0.67 -0.094 0.211 

286 5.094 0.127 2.393 0.043 14.108 0.044 0.763 0.983 

293 -2.099 0.855 -1.181 0.335 >100 0.019 -0.401 0.155 

298 7.731 0.014 2.424 0.088 24.998 0.053 0.758 0.969 

299 -1.376 0.861 -0.565 0.615 >100 0.001 -0.169 0.309 
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310 10.06 0 2.192 0.005 >100 0.005 0.701 0.99 

314 7.833 0.006 2.619 0.014 >100 0.011 0.77 0.988 

321 4.579 0.183 2.661 0.142 33.497 0.047 0.83 0.937 

322 8.797 0.206 7.919 0.01 49.085 0.001 3.288 0.997 

G RSV-B 

121 -0.346 0.801 2.167 0.502 23.176 0.082 0.116 0.594 

133 2.984 0.198 6.951 0.048 >100 0.074 0.398 0.84 

138 -1.492 0.889 -1.283 0.706 >100 0.002 -0.146 0.33 

154 1.393 0.51 3.998 0.076 >100 0.12 0.235 0.791 

159 11.482 0.006 0 1 0 0.67 -0.085 0.343 

207 2.984 0.198 5.871 0.064 >100 0.088 0.501 0.888 

219 3.735 0.08 5.317 0.121 >100 0.137 0.403 0.856 

223 1.348 0.472 4.418 0.245 26.301 0.041 -0.089 0.336 

236 14.023 0 0 1 0 0.67 1.808 0.959 

272 6.114 0.241 13.155 0.101 >100 0.078 0.413 0.847 

275 5.409 0.299 5.827 0.077 >100 0.111 0.429 0.796 

283 2.719 0.324 8.765 0.194 >100 0.029 1.394 0.976 

292 4.343 0.128 10.214 0.026 >100 0.053 0.052 0.592 

302 2.965 0.203 4.593 0.094 >100 0.122 0.385 0.862 

323 8.764 0.345 14.761 0.081 >100 0.116 1.478 0.856 

L RSV-A 

171 -5.405 0.963 -4.598 0.115 >100 0.035 -0.828 0.06 

218 5.187 0.335 3.83 0.036 >100 0.1 0.313 0.8 

400 -9.989 0.975 -8.375 0.247 >100 0.085 -1.027 0.181 

746 1.425 0.631 1.958 0.395 >100 0 0.067 0.546 

1049 3.458 0.483 2.218 0.104 >100 0.034 0.154 0.679 

1161 3.109 0.442 3.659 0.289 >100 0.008 -0.014 0.468 

1168 3.603 0.444 1.798 0.281 >100 0.012 0.023 0.535 

1313 -3.308 0.938 -5.002 0.253 >100 0.049 -0.686 0.126 

1490 -10.399 0.992 -9.509 0.056 >100 0.033 -1.847 0.021 

1592 3.603 0.47 2.908 0.074 >100 0 0.207 0.716 

1724 3.468 0.547 2.956 0.356 >100 0.004 0.008 0.539 

1725 13.929 0.056 8.718 0.035 >100 0.105 1.499 0.957 

1874 -0.871 0.8 -3.307 0.49 >100 0.08 -0.508 0.24 

1948 -6.352 0.974 -5.264 0.133 >100 0.089 -0.962 0.058 

1967 -1.802 0.889 -1.605 0.508 >100 0.088 -0.385 0.165 

2039 3.595 0.446 2.524 0.082 >100 0.136 0.19 0.712 

L RSV-B 
102 7.131 0.41 35.665 0.256 >100 0.001 1.115 0.718 

376 4.577 0.483 18.206 0.08 >100 0.182 0.411 0.72 

1733 85.758 0 -20.487 0.706 0 0.67 -0.76 0.053 
M RSV-A NONE                 
M RSV-B NONE 

        M2-1 117 4.042 0.241 7.118 0.026 >100 0.12 0.531 0.919 
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RSV-A 
170 2 0.501 2.718 0.1 >100 0.258 0.114 0.747 

M2-1 
RSV-B 

120 3.844 0.444 9.803 0.147 >100 0.092 0.117 0.723 

142 3.729 0.472 22.741 0.055 >100 0.223 0.498 0.826 
M2-2 

RSV-A 69 4.196 0.137 6.029 0.067 >100 0.08 0.411 0.92 
M2-2 

RSV-B 52 8.421 0.255 25.323 0.211 >100 0.214 0.629 0.905 
N RSV-A 216 7.614 0.107 6.968 0.018 >100 0.069 0.804 0.966 
N RSV-B NONE                 
NS1 RSV-

A NONE                 
NS1 RSV-

B NONE       
 

        
NS2 RSV-

A 6 2.459 0.274 6.483 0.047 >100 0.07 0.442 0.9 
NS2 RSV-

B NONE                 
P RSV-A 73 4.562 0.027 6.157 0.107 >100 0.082 0.713 0.965 
P RSV-B NONE                 
SH RSV-

A 49 8.459 0.136 4.427 0.18 >100 0.091 0.196 0.848 
SH RSV-

B 49 9.116 0.132 26.073 0.167 >100 0.144 1.061 0.955 
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