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Chapter 2: The Role of Class Difficulty in College Grade Point Averages.
Grade Point Averages (GPAs) are widely used as a measure of college students’

ability. Low GPAs can remove a students from eligibility for scholarships, and even
continued enrollment at a university. However, GPAs are determined not only by
student ability but also by the difficulty of the classes the students take. When class
difficulty is correlated with student ability, GPAs are biased estimates of students’
abilities. Using a fixed effects model on eight years of transcript data from one
university with one fixed effect for student ability and another for class difficulty, I
decompose grades at the individual student-class level to find that GPAs are largely
not biased. Eighty percent of the variation in GPAs is explained by student ability,
while only three percent of the variation in GPAs is explained by class difficulty.
This estimation is carried out using an ordered logit estimator to account for the
ordered but non-cardinal nature of grades.

Chapter 3: Are Low Income Students Diamonds in the Rough?
Consider two students who earn the same SAT score, one from a lower-income

household and the other from a higher-income household. Since educational ex-
pense is a normal good, the lower income student will, on average, have had a
less well-resourced primary and secondary education. The lower income student
may therefore be stronger than their higher income counterpart because they have
earned an equally high SAT score despite a lower quality pre-collegiate environment.
If this is the case, once the two students start attending the same college—and school
spending becomes more similar—the lower income student’s in-college performance
should be relatively higher. I test this theory by using eight years of data from
one university to compare the grade point averages of students from various family
income levels. Results show that lower income students appear to be diamonds in



the rough: lower income students have surprisingly high outcomes, conditional on
their SAT scores. However, unconditional on SAT score, the lower income students
also outperform their higher income counterparts. This suggests that a single uni-
versity’s data is inappropriate for answering this question. I also develop how this
type of regression might give insight into the production function of human capital.
Specifically, a common assumption made in the economics of education literature is
that first differenced human capital accumulation rates are independent of ability
because ability is already represented in the test used as a base period. A “diamonds
in the rough” result would contradict that assumption, and show that SAT is not a
perfect measure of underlying ability.

Chapter 4: Estimation of Large Ordered Multinomial Models.
Decomposing grades data into class fixed effects and student fixed effects is

difficult and the estimator’s accuracy is unknown. I describe the successful applica-
tion of the L-BFGS algorithm for fitting these data and propose a new convergence
criterion. I also show that when the number of classes is about 32 (slightly fewer
than is typical at the University of Maryland), the estimator performs well at es-
timating correlations and the non-parametric statistics used in Chapter 2 of this
dissertation. Some issues with significance testing the sets of fixed effects are also
considered and I show that when the number of classes is 32, the significance tests
are not sufficiently protective against false rejection of the null hypothesis. The
jackknifed likelihood ratio test is shown to be only modestly biased towards false
rejection regardless of the number of classes per student.
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Chapter 1

Determinants of College GPAs

An enormous amount of human capital is developed in college with significant

implications for the labor market. One of the most agreed upon empirical results in

economics is that a year of education raises wages by about 7%, so that four years of

college cumulatively represent a approximately 30% increase in a person’s earning

ability. Yet there is surprisingly little known about how to measure human capital

development in college. The most obvious and typical measurement is the grade

point average (GPA), an average of grades assigned in each class. Since students

are enrolled in different classes and grading schemes may be subjective, it seems

prudent to wonder whether GPAs are a good measure of human capital.

In addition, college is often thought of as a single “treatment” or a shared

experience across students. If there are substantial differences in the average class

difficulty across student ability levels, that would imply that college offers not one

single treatment, but rather different treatments for different students. Intuitively,

higher ability students might be expected to take more difficult classes with more

rigorous grading schemes. One might also suspect that students in harder classes

develop more human capital, so that high ability students trade off higher human

capital accumulation for lower grades compared to what they would have earned in

easier classes. This fits into a “pricing” model developed by Freeman (1999) where

1



departments that imbue low human capital development pay for (attract) their

students with high grades.1 The marginal value (in terms of GPA) of a higher grade

earned in an easier class drops for students near the top of the GPA distribution;

students who typically get an ‘C’ or a ‘B’ have the possibility of getting an ‘A’,

while students who typically get an ‘A’ have no possibility of getting a higher grade.

The grade payoffs of easier classes are therefore of less value to these higher ability

students.2

If each department wants students and can select the difficulty of its classes,

and if students like easier classes, the Nash equilibrium is concerning: everyone gives

out high grades. This type of behavior has even been observed (Eaton & Eswaran,

2008).

There are proposals to standardize post-collegiate testing to allow for a shared

measure of college output. Similar to standardized testing at pre-collegiate levels,

such testing would be common across schools, and therefore more objective. But

this ignores that college is a time when students learn different things based on

their coursework. A student who does not demonstrate significant improvement in

a shared skill like critical thinking during college could have learned specific skills

orthogonal to this. For example, knowing accounting standards need not increase

one’s critical thinking ability but may still be valuable human capital to acquire.

The best test of what is taught in a class is the assessment of the faculty who know

1This model has been proposed by others as well (Drew, 2011).
2This model is like one that is often offered where STEM (science, technology, engineering

and math) classes are socially desirable but fail to attract a sufficient number of students. As an
example, President Obama has pushed for an increase in the number of STEM classes, presumably
with the belief that the human capital developed in these classes is more beneficial to society than
other classes.
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the class best, and the only measure we have of this is the grade. Simply put, grades

are the only quantitative measure of college performance that measure its diversity

of subject material, and are therefore always an important outcome to include in

analysis.

To make the most effective use of GPAs in research, one must ask: what

information is carried in a GPA and how can it be used? To answer this question I

decompose grades into a student fixed effect and a class fixed effect. This gives an

estimate of student ability controlling for the classes the students is enrolled in and

an estimate of class difficulty controlling for the ability of the students who enroll in

the class.3 Each student then has an estimated ability and it is easy to estimate the

average of the difficulty of the classes the student enrolled in (the students’ average

class difficulty).

As described earlier, one might suspect that higher ability students are taking

more difficult classes. One might also suspect that there is a grade “sweet spot”

which could lead to students of all ability levels taking classes that they expect will

lead to the same GPAs.

Chapter 2 of this dissertation measures the association between student abil-

ity and average class difficulty using correlations. These results show that student

ability and average class difficulty are not strongly associated. A second set of cor-

relations of student ability and class difficulty with GPAs shows that the correlation

between average class difficulty and GPA are small and the correlations between

3Student ability might be better thought of as student output and class difficulty might be
better thought of as anything that attenuates the function that maps the output of a student to
the grade the student receives.
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student ability and GPA are high. GPAs are driven by the ability of the student,

not the difficulty of the classes they take.

The association of these three variables is also measured by pooling students

with approximately equal ability levels and then graphing the average, within each

group, of students’ GPAs versus their average class difficulty. This gives a plot of the

typical association between average class difficulty and GPA for each ability level

and is allows any form of joint distribution and is more general than correlations,

which assumes that the joint distribution is bivariate normal. These plots also show

a weak association between student ability and class difficulty with most of the

positive association between the two variables coming from the top and bottom of

the ability distribution.

These results suggest that the basic intuition about grades being biased by

student ability is wrong; higher ability students do not, in general, take significantly

harder classes.

Based on the results of chapter 2, it is reasonable to wonder if an analysis

of student performance should be using GPAs themselves or if more insight can be

gained by using student fixed effects which net out average class difficulty. Aver-

age class difficulty is not the main driver of student grades, so it may simply be

unimportant. The difference between GPAs and student fixed effects are important;

GPAs are easier to calculate and are available on more datasets than the transcript

data required to calculate student fixed effects.

Chapter 3 considers whether family income plays a role in students’ GPAs,

conditional on SAT scores. The question this chapter asks is: If two students earn
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the same SAT score, does the environment where they achieved that score matter?

It could be that SAT fully captures the ability of these students to succeed in

college. An alternative theory is that students from lower income families have been

disadvantaged, had to work harder to achieve the same SAT, and will therefore

outperform their higher income counterparts when they arrive at college and the

playing field is leveled.4 Running this regression on the University of Maryland data,

I show that, conditional on SAT scores, higher income students receive lower grades

than lower income students at the University of Maryland. However, on the same

data, it is also true that unconditionally, higher income students receive lower grades

that lower income students. This suggests that the result is hardly surprising—low

income students at the University of Maryland are simply diamonds.

The analysis in chapter 3 is undertaken twice, once using GPAs themselves

as a measure of student output, and again using the estimated ability level of each

student from the decomposition of grades. Thus the analysis applies the question

of the distinction between GPAs and student ability to a real world problem and

answers the question of whether the student fixed effects give different results for an

analysis of grades data. The result is that GPA and student ability give the same

answer.

However, one specification in this chapter informs one of the larger questions

of this dissertation. A regression that breaks SAT down into math and verbal

components shows that a one point gain in SAT math is associated with a larger

4This thought is considered by Mankiw (2011) who suggests essentially the specification used
in chapter 3. He later added a note from Stinebrickner who references his own article as saying
the exact opposite occurs at a highly subsidized college (Stinebrickner & Stinebrickner, 2003).
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increase in student ability than a one point increase in SAT verbal. At the same

time a one point increase in SAT math is associated with the same increase in GPAs

as a one point increase in SAT verbal. For example, given a student with a total

SAT score of 1000, a breakdown of their SAT into math and verbal components

is irrelevant to a prediction of their GPA, but that breakdown would help predict

student ability. Another regression explains this–students who get higher SAT math

scores balance out their higher student ability by taking approximately equally more

difficult classes.

Chapter 4 addresses several econometric concerns regarding the decomposition

of grades into student and class fixed effects. Two estimators are considered, ordered

multinomial estimators (OME) and ordinary least squares (OLS). The OME has

the advantage of describing the data generating process in a satisfying way, but the

performance of the estimator is not well understood, while OLS does not describe

the grading process well but should be accurate conditional on its assumptions. A

simulation is used to show how these two estimators might perform when estimating

the type of statistic used in chapter 2. The simulation shows that both estimators

perform reasonably well.

Another issue is how to fit these fixed effects in a the non-linear model (the

OME). The problem is that the typical methods of solving these models involve

forming a huge matrix that must then be inverted. I apply the method of (Liu &

Nocedal, 1989). This method has the advantage that it scales linearly in the number

of regressors, both in terms of storage and computational intensity of an individual

step.
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Finally, chapter 4 considers the role of bias in estimating significance tests

on the fixed effects. Both the jackknife estimator for significance tests and the

traditional likelihood ratio test are shown to be reasonably accurate at performing

the significance tests when the number of observations per student is large. When

the number of observations per student is small, the jackknife remains reasonably

accurate.

Many previous papers have suggested that ideally one would estimate the

effect of class and student while controlling for the other (Grove & Wasserman,

2003; Eaton & Eswaran, 2008). This type of analysis has been undertaken before

on a smaller dataset using a linear model for grades (Arcidiacono et al., 2011), but

the relationships of student ability and class difficulty were not the focus. This

dissertation describes the results of such an analysis, shows that the analysis is

accurately estimated, describes the relationship between the class and student fixed

effects, and uses the student ability and class difficulty to investigate a question.

The results show that class difficulty matters less than one might think, but the

intuition that better students take harder classes was not entirely false. Students

with relatively higher math scores do take harder classes, though the same does not

hold for relatively higher verbal scores.
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Chapter 2

The Role of Class Difficulty in College Grade Point Averages

2.1 Introduction

Grade point averages (GPAs) are often used as a measure of college students’

ability, by the university awarding them and by others judging a student’s perfor-

mance while at the university. GPAs, however, are determined not only by student

ability but also by the difficulty of the classes the student takes, calling into ques-

tion its status as a measure of ability. While there are many ways that student

ability and class difficulty could be related, one that makes intuitive sense is that

high ability students take harder classes than low ability students, attenuating their

GPA gains. In principle, higher-ability students could even take such difficult classes

that their GPAs would be lower than those of lower-ability students. Under those

circumstances, GPA would be an extremely misleading measure of ability. Deter-

mining the role of class difficulty in college GPAs is therefore crucial to assessing

the use of GPAs as a measure of ability.

To find the answer to this question, I estimate a model with one set of fixed

effects for students and another set for classes using a large dataset of eight years

of transcript data from the University of Maryland.1 Using correlation coefficients

1I apply the term “ability” to student fixed effects and “difficulty” to class fixed effects. Inves-
tigating the exact nature of these variables is not a topic of this paper, so they are used despite
the semantic ambiguity. What I am calling “ability” might be a product of some innate capacity
to learn as well as student effort. Similarly, class difficulty could also be a measure of the quality
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on the fixed effects, I come to the perhaps surprising result that GPAs are a good

measure of student ability. In fact, class difficulty and student ability are only

slightly correlated. Moreover, student ability explains 80% of the variation in GPA

while the average difficulty of classes in which a student is enrolled explains only

3% of the variation in GPAs.

This result is unexpected because previous research showed that average grade

varies by department at other universities and colleges (Sabot & Wakeman-Linn,

1991; Freeman, 1999; Eaton & Eswaran, 2008), a finding I reproduce for the Uni-

versity of Maryland datat that I have (Figure 2.2). At the same time, Salbot and

Wakeman-Linn show that average SAT score does not vary by department. These

two facts suggest that there is both variation in each classes’ class difficulty as well

as variation in each student’s average class difficulty (the difficulty of classes a stu-

dent is enrolled in averaged over a student’s transcript ). I am able to quantify the

extend of this and find that variation in individual grades is approximately equally

predicted by the difficulty of the class as the ability of the student. However, for

GPA to be a biased estimate of student ability, it must also be the case that stu-

dents’ average class difficulty is correlated with the students’ ability—for example,

if higher-ability students are systematically enrolled in more difficult classes. I find

that, surprisingly, this third condition is not present at the University of Maryland

and, for this reason, GPAs are not very biased by student ability.

I account for grades being a limited dependent variable–an ‘A’ is better than

a ‘B’, but how much better is not obvious–by using an ordered logit estimator. The

of pedagogy in each class–more “difficult” classes would simply have poorer instruction.
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consistency/bias properties of the ordinal logit estimators are not well known for a

fixed effects model, so chapter 4 of this dissertation explores how these estimators

perform with grades data using simulations. The simulations show that the ordinal

multinomial estimators do a good job of estimating the statistics used in the results

of this paper and perform better than the OLS estimator.

Fitting such a fixed effects model requires large amounts of data because a

greater number of observations per student and class improves the estimator’s per-

formance. Because of this I chose a lengthy time frame of administrative data from

a large state university. In the fitted regression, an observation is a grade that a

student receives in a particular class. There are five hundred thousand observations

over eight years and nine thousand students with, on average, forty classes on their

transcript.

Because the correlations used to arrive at the main result assume a joint distri-

bution that is bivariate normal between the two variables being compared, I develop

the concept of an ability expansion path to describe the relationship between class

difficulty and student ability more thoroughly. Specifically, I group students by esti-

mated ability level and then plot their average GPA versus their estimated average

class difficulty (Figure 2.1 provides an example).

The ability expansion path graphically depicts any systematic differences be-

tween higher and lower ability students with regard to class difficulty. For example,

if higher and lower ability students take classes of the same difficulty level, the ex-

pansion path is vertical and GPAs are not biased (expansion path “a” in Figure

2.1). In contrast, if higher ability students systemically enroll in harder classes, dif-
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ferences in GPAs underrepresent the differences in ability and the expansion path is

positively sloped (expansion path “b”). When high ability students enroll in classes

that are even harder still, their increase in ability is entirely masked in GPAs and

the expansion path is horizontal (expansion path “c”).

I observe an estimated expansion path that is largely vertical, with some devi-

ations from this at the top and bottom of the ability distribution. This is consistent

with my general finding that GPAs are not very biased. At the top of the distribu-

tion, GPAs are positively correlated with average class difficulty. Specifically, the

top students (those with GPA> 3.8) are systematically enrolled in harder classes.

At the bottom of the distribution (students with GPAs< 2.5), GPAs are again posi-

tively correlated with average class difficulty when looking at students who are on a

path to graduate, but are uncorrelated when including students who are dropouts.

Thus, for graduates, the positive correlation at the bottom of the ability distribution

is induced by the university’s GPA minimum, which eliminates those lower-ability

students who were enrolled in more difficult classes at entrance.

Knowing the role of class difficulty in grades is important because low GPAs

can remove a student from eligibility for scholarships and even continued enrollment

at a university; GPAs are also used for graduate admissions and potentially influence

labor market outcomes (Loury & Garman, 1995; Jones & Jackson, 1990). While one

might initially suspect that the importance of GPAs represent a misplaced faith in

their value as a measure of ability, there is an irreducible reason to use this less

than transparent measure of ability–there is no substitute quantitative measure of

ability in college. Because of this, and despite the real possibility that grades may
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be biased, they are frequently used as outcomes (Angrist et al., 2009; Klopfenstein

& Thomas, 2009; DeSimone, 2008; Betts & Morell, 1998) and as regressors (Loury

& Garman, 1995; Jones & Jackson, 1990).2 In primary and secondary schools, stan-

dardized tests are specifically designed to provide a comparison external to grades.

However, the diversity of students’ educational experiences at college prevents this

type of comparison–what standardized test could capture the material learned by

a student majoring in computer science and simultaneously capture the material

learned by a student majoring in music? Therefore, despite their flaws, grades re-

main the best available summary measure of student ability. Understanding the

factors that influence GPAs is critical to their effective use both in research and

practical applications.

The following section of this paper describes challenges with using correlation

coefficients for discrete data, such as student grades. Sections three and four describe

the data and the results. A final section concludes.

2.2 Correlations

Grade performance is described by a student ability contribution (a) and a

class difficulty contribution (d). Typically, when reporting regression results, the

main results of interest involve a small number of estimated regression coefficients.

In the case of a fixed effect model there are thousands of regression coefficients

and interpretation of all coefficients is neither possible nor desirable. The impor-

2In some of these papers, dropout rate is another important measure of college performance,
but it is only useful when looking at students close to the margin of dropout.
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tance of the regression coefficients in determining grades is measured instead by the

correlation between the fixed effects estimates and the grades.

The Pearson correlation coefficient is not an appropriate measure of the cor-

relation between student performance (a), class grading difficulty (d), and grades

(G), The Goodman-Kruskal gamma is appropriate for reasons that are described in

this section.

The Pearson correlation coefficient for two variables (A and B) has three

salient properties that give it currency as a statistic: it is invariant to scale so

that Cor(A, cB) = Cor(A,B) for any scalar c; second it is invariant to location

so that Cor(A + c, B + d) = Cor(A,B); third, it takes on values in [−1, 1] with

zero indicating no covariance between A and B and larger absolute value numbers

indicating stronger covariance. In the extreme, a value of 1 or −1 indicates a linear

relationship of the form

A = c0 + c1B. (2.1)

For discrete data, which can be represented on a two-way table, the Pearson type

properties cannot be preserved. Other properties are more appropriate for discrete

data. For grades, operations like multiplying or adding an arbitrary constant to

the data do not make sense,3 so the first two properties of the Pearson correlation

coefficient are not relevant. However, the concept that a correlation should be able to

take on values on all of the values in [−1, 1], does remain sensible and is maintained

3Adding one to a ‘B’ might appear to make sense, but adding π to ‘B’ is more difficult to
interpret.
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by some rank correlation coefficients. Additionally, a correlation coefficient of 1

is associated not with a linear relationship but instead with a weakly-monotonic

relationship (Ghent, 1984).

Rank type correlations can be represented as operating on a two-way table

so that there are cells potentially above, below, to the right, and left as well as

diagonals from any given cell (X), i.e.

variable A

variable B

. . . . . . . . .

. . . X . . .

. . . . . . . . .

For data tabled this way, the Goodman-Kruskal statistic uses all possible pairs of

data and defines concordance between a reference cell value and another value when,

relative to the reference cell, it is above and to the right or down and to the left.

These relationships suggest A and B are associated because larger values of A are

associated with larger values of B. Discordance is the name given to cells above

and to the left or below and to the right. These relationships suggest A and B

covary negatively. The table below shows these two types of cells labeled C and D

for concordance and discordance with cell X, respectively for grade data and SAT

scores.
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Grade

F B A

SAT score

high D . . . C

mid . . . X . . .

low C . . . D

The remaining relationship is those cells that are in the same row or column as X

and are not included in the calculation of the Goodman-Kruskal statistic because

they are uninformative. They are ties where the data provide no information.

Using these definitions, the Goodman-Kruskal correlation coefficient is

τ −G =
C −D
C +D

. (2.2)

In the case of two variables A and B being bivariate normally distributed,

when the Pearson correlation coefficient is c, then A can be said to explain c2 of the

variation in B. This results from a maximum sum of squares for Pearson correlations

of a multivariate normal distribution being one. This means that if Cor(A,B) = c

and Cor(B,C) = 0 then the largest possible value of Cor(A,C) is
√

1− c2. However,

for rank correlation coefficients, there is no such hard and fast rule and thus the

correlation coefficients cannot be interpreted with the same “percent explained”

interpretation.
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2.3 Data

The primary data used in this paper is transcript data from the University of

Maryland from the years 2003 to 2010. Each individual observation consists of a

class identifier, an anonymized student identifier, and the grade the student received

in that class. In addition, students’ application information is linked and used for

baseline characteristics. These variables are summarized Table 2.1.

The data were provided by the the University’s Institutional Research Planning

and Assessment group as two files, one with transcript entries and another with

application information.4 Because the data were used to produce transcripts and for

applications, it arrived relatively “clean” with few missing values. The transcript file

itself would be sufficient for constructing most of the variables necessary to run the

regressions in this paper. However, some cleaning was necessary. More information

on the data is given in the Data Appendix.

Some of the variables included in the results for an individual student are

derived from more than one transcript entry. Information was aggregated to the

following levels:

Individual class level this is the transcript (one student in a single class who re-

ceives a grade) and represents no aggregation; regressions were run at this

level;

Semester level the total number of courses completed to date, and number of credits

4In compliance with our IRB application, student identification numbers were scrubbed from
the file, but a new version that was not related to the actual student identification number was
placed on the new file so that a transcript could be built. For the purpose of this paper, these new
identification numbers serve all of the purposes of a student identification number.

16



enrolled was calculated by aggregating data to the semester level;

Student level the GPA and demographic information from the application were cal-

culated by aggregating each student’s entire transcript.

Students who receive GPAs of exactly 4.0 or very low GPAs are excluded from

analysis. Students receiving 4.0s represent about 100 total observations in the sam-

ple, and low GPAs are those where the student never earned more than a ‘C’. This

is done because the simulation results (section 4.1) show that the estimated statis-

tics are unchanged or improve when boundary cases are removed. A few percent of

the students meet these criteria, almost all of them because they never passed any

classes.

In addition, internships and classes in which fewer than five students enrolled

over the seven years studied are not included–these classes are not shared experiences

in the same way that most other classes are. This restriction represents a small

number of total credits, but a substantial number of classes.5

The remaining data used is filtered to include only those students who are

between ages 18 and 25 when they entered college, started in 2003 to 2005, were

matriculated at some point,6 and stayed enrolled for at least eight semesters or

completed 120 credits (the minimum for graduation) by 2010. I call this the “degree”

sample (n = 9, 410) because these are the students who completed or are likely on

the road to completing a degree at the University. The entry and exit profile for

5When these classes are dropped, GPAs calculated based on the remaining classes need not meet
the minimum for graduation, even for graduating students. Some of the figures include students
who apparently received lower than 2.0 GPAs, but this is just for the non-excluded classes.

6Matriculated is the status of a student who was enrolled as a degree-seeking student.
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these students is shown in Table 2.2.

For robustness checks, two expanded samples are considered. One is all stu-

dents who entered between 2003 and 2005, as long as they completed at least five

classes since enrolling and were matriculated at some point. This sample is called

the “enter” sample (n = 18, 400) because this is the entering cohort of the “degree”

sample. The robustness of the results to the inclusion of students that eventually

left the program is tested using this sample. The entry and exit profile for students

in the “enter” sample is shown in Table 2.3.

The final expanded sample includes all students who have at least five tran-

script entries, regardless of when (within 2003-2010) they entered the university

or whether they matriculated. This is called the “full” sample because it contains

almost all of the students at the university during this time range.

The “degree” and “enter” samples are similar in their covariates. Of those

who took the SAT, the “degree” sample’s average was higher by only seven points

on the verbal and seven points on the math test. This represents an approximately

two percentile difference in test scores. Relative to the “degree” sample, the “enter”

sample had a lower average GPA by 0.14, five percentage points fewer took the SAT

test, twelve percentage points more transferred. By definition, every person in both

the “degree” and “enter” samples was a matriculated student.

The “full” sample includes students who did not have sufficient time to com-

plete a degree because they enrolled in the last 5 years. The only qualification to be

in the sample is to have entered the University of Maryland, but the time range is

longer and the potential tenure shorter. Because of that, they more closely resemble
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the “enter” sample but have completed fewer classes and credits.

Histograms show the distribution of average grade points for departments,

students, and classes. For each of these

ḠP =
1

ni

∑
GPi

whereGPi is the grade points for grade i associated with the unit (department/student/class),

and are taken from the typical GPA calculation (‘A’ = 4.0, ‘B’ = 3.0, etc.), and ni

is the total number of observations associated with the unit.

Previous studies have found substantial variability in average grade by depart-

ment (Sabot & Wakeman-Linn, 1991; Freeman, 1999; Eaton & Eswaran, 2008); this

is also the case with this sample (Figure 2.2). In addition, student and class average

grades show substantial and similar variation (Figures 2.3 and 2.4, respectively).

Note that peak is nearly flat over an entire grade point.

2.4 Results

The decomposition of grades into a set of fixed effects for student and another

set for classes is first estimated with the OME, with no additional regressors, on the

“degree” sample using the equation

y∗ij = ai − dj + εij . (2.3)
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Where i indexes students, j indexes classes, and each class in which a student

receives a grade is an observation. Robustness of the results is then tested to the

addition of time dependent student specific regressors, the estimator used (ordered

logit, probit, and OLS), and the selection criteria for the sample.

2.4.1 Decomposing grades using the ordered multinomial estimator

Using the fitted values from the main regression equation (eq. 2.3), correlations

are then calculated between the fitted ability (ai), GPA, and a student’s average class

difficulty (d̄i), where a student’s average class difficulty is simply the average of the

class difficulties of the classes in which they are enrolled. This is given only the

third by

d̄i =
1

ni

∑
j∈{i′s classes}

dj , (2.4)

where the set {i’s classes} is the classes in which student i is enrolled, and ni is the

number of classes in which the ith student is enrolled.

GPAs are only slightly biased. The correlation between student ability and

class difficulty is only 0.16. This is a small correlation, student ability and class

difficulty are only slightly related. GPA and class difficulty are also not strongly

related with a correlation coefficient −0.19; squaring the correlation coefficient gives

0.036, or 3.6% of the variation in GPA is explained by class difficulty. Higher ability

students are taking only slightly harder classes. The main driver of GPAs is ability,

with a correlation coefficient of 0.90, meaning that about 80% of the variation in
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GPA is explained by student ability alone (Table 2.4).

The ordered multinomial estimator generates “intercepts” for each grade bound-

ary. These are useful for interpreting the magnitude of the effects shown above,

which are on a logistic scale. These values show that the “width” of a grade in-

creases with the grade, so that ‘B’ is 2.47 units wide (Table 2.5, far right column)

and encompasses a larger range of observed ability than ‘C’ (1.65 units wide) or

‘D’ (0.59 units wide). These can be used to judge the magnitude of values in these

units. For example, a ‘B’ grade is about 2.47 wide in these units, so a student

whose ability places them at the lower edge of ‘B’s (receiving about 1/2 grades ‘B’

or higher and 1/2 grades ‘C’ and lower) has 2.47 lower ability ceteris paribus than

a student whose ability places them at the upper edge of ‘B’s (receiving about 1/2

‘A’s and 1/2 grades ‘B’ and lower). Because grades have a maximum and minimum

value, the GPA of these students would be expected to be less than 1.0 apart.

2.4.2 The ability expansion path

The correlation coefficients between student ability, GPA, and average class

difficulty are parametric tests and assume that the two variables being correlated are

bivariate normally distributed. The ability expansion path makes no such assump-

tion and shows the relationship between all three of these variables most clearly

(Figure 2.5). This plot shows that for the vast majority of students with GPAs

between about 2.5 and 3.8, the ability expansion path is essentially vertical and

there is no GPA bias. However, for the highest ability students (those with GPA
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> 3.9), the average class difficulty is substantially harder, and for students with

GPAs below about 2.5, GPA and average class difficulty are positively associated.

This suggests that what little bias there is in GPAs is focused in these two groups.

To graphically demonstrate the tradeoff between grades and difficulty level,

each student’s individual estimated average difficulty and observed GPA are plotted

in 20 color bands where each band represents students with approximately similar

fitted values of ai (Figure 2.6). This shows that students with a common level

of student ability (sharing a single color) are, in fact, trading off between difficult

classes and higher grades.

Having described the properties of the fitted ai and dj regressors, it is impor-

tant to know that the estimated coefficients are statistically significant. The LR

test for the fixed effects in eq. 2.3 shows that addition of class and students fixed

effect in any possible order is highly significant (Table 2.6).

2.4.3 Variation in class difficulty

Earlier in this chapter I mentioned that there are three conditions for grades to

be biased: (1) there must be variation in class difficulty, (2) there must be variation

in average class difficulty, and (3) the variation in average class difficulty must be

correlated with student ability. The results so far raise the question of which of

the three conditions for bias in grades actually hold, since grades are only very

slightly biased. A skeptic might wonder if the graph of average grade points by

department was misleading and was actually the result of random variation and
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not fundamental dispersion in grades. But this is not the case. The graph gives an

accurate impression, because only the third condition for bias is not present; student

ability and average class difficulty are not correlated. This occurs even though there

is substantial variation in class difficulty and average class difficulty.

The first condition holds. There is substantial variation in difficulty across

classes. The standard deviation of class fixed effects (dj) is 1.79 (Table 2.7, col-

umn A), or about 3/4 of the width of the ‘B’ range. The standard deviation of

student fixed effects is approximately equal at 1.76. Both of these ways of inter-

preting the variation in class difficulty show that the variation in class difficulty is

large.

Another way to look at the variation in class difficulty is to calculate raw

correlations between class difficulty, student ability, and grades awarded in each

class. The Goodman-Kruskal correlation coefficient between grades and student

fixed effect (τ -Gg,a) is 0.43 while the correlation coefficient between grades and class

fixed effect (τ -Gg,d) is 0.34 (Table 2.8).7 These two coefficients are of approximately

the same magnitude, meaning that the ability of the student taking a class and the

difficulty of the class are approximately equally important in predicting the awarded

grade.

The substantial variation in class fixed effect and the relative size of the

Goodman-Kruskal correlation coefficient between classes and grades shows that

classes vary in difficulty about as much or slightly less than students vary in ability.

7The remaining correlation coefficient τ -Ga,d = −0.06 simply mirrors the low Pearson corre-
lation coefficient between average class difficulty and grade—ability and class difficulty are not
strongly related.
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Results from these ways of viewing the difficulty show that the first condition is

readily met; students have a very wide selection of class difficulty levels to chose

from, and do so.

The second condition also holds. There is substantial variation in students’

average class difficulty (d̄i). The observed standard deviation in average class dif-

ficulty (σd̄i) is 0.66. Because it is an average, the standard deviation of d̄i has to

be smaller than the standard deviation of dj, but how much smaller is an empirical

question.8 One way to put this value into context is to compare it to what would

happen if the values of dj were random draws from the available classes. If this

were the case, then the central limit theorem says that, given that each student in

the sample takes about ni ≈ 40 (Table 2.1) classes, then the standard deviation

of average class difficulty (d̄i) should be 1.79/
√

40 = 0.28. Thus 0.28 can be used

as a yardstick for measuring the observed variation in d̄i. Values higher or lower

than 0.28 indicate that something is raising or lowering the variation in average class

difficulty relative to random assignment to classes. The observed standard devia-

tion of 0.66 is over twice the random assignment value of 0.28–there is substantial

variation in average class difficulty.

Putting these two together, only the final condition for bias in grades does not

hold–ability and average class difficulty are not strongly correlated with each other.

In other words, essentially all students are enrolled in an equivalent mix of hard and

easy classes.

8This result follows from the mild assumption of finite support for dj .
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2.4.4 Robustness to other regressors

These results so far are based on the decomposition of grades into a student

and a class fixed effect (eq. 2.3). But other things also change within students’

careers at a university. I conduct a robustness check of these results to additional

regressors of the form

y∗ijt = ai − dj + xitβ + εijt (2.5)

where xit are student and semester specific regressors and β are the associated

regression coefficients.

Previous studies have observed grade inflation, so year fixed effects are added

(Sabot & Wakeman-Linn, 1991). This model also includes semester of the year

(Spring, Summer I, Summer II, Fall, and Winter) fixed effects to account for possi-

ble time of year variation in grading. These are statistically significant (Table 2.7,

column B) and trend in the right direction (Table 2.9, column B). Fall and Spring

are 15 week semesters and the other three terms are shorter terms where students

often focus on a single class. Grades are substantially higher in the shorter terms;

this could be because of changes in faculty posture towards grades or students’ con-

centration or interest level when taking one class at a time. Despite the improvement

in the fit when these regressors were added, the main results do not change when

adding these regressors (Table 2.7).

Another possible issue is that student fixed effects (ai) might not be so fixed
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and might change through time.9 Adding fixed effects for class year is statistically

significant (Table 2.7, column C) and does not change the correlation coefficients

appreciably. However, despite the theoretical reasons to believe that there should

be a positive trend in class year, there is a clear negative trend (Table 2.9).

One might suspect that students taking more or fewer classes could do better or

worse, so registered (graded) credits and total (graded + ungraded) credits regressors

are added (Table 2.7, column D). The addition is statistically significant. From

this table it is apparent that the correlations of interest are unaffected by this

addition. The coefficients are very small; adding a typical graded class with three

credits (registered and total) decreases the estimated value of the (latent) prediction

by 0.0097, about a third of a percent of the distance between the cutoff between

a ‘C+’ and ‘B-’ and the cutoff between ‘B+’ and ‘A-’. This could be because

students are at the optimum number of classes for their allocation of time to studying

college material, or because additional classes do not tend to have negative overflows,

perhaps because time spent studying in college is very low so that students’ effort

is not constrained by time (Babcock & Marks, 2010).

The ability expansion path is very robust to inclusion of these controls with

almost no change as they are added (Figure 2.7).

Finally, the intercepts for the grade boundaries are very stable across specifi-

cation (Table 2.5).

9For example, students might be accumulating human capital.
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2.4.5 Robustness to estimator

The OME describes many possible estimators. Ordered logit is the name for

the OME when the error term is drawn from the extreme value distribution, while

ordered probit is the name for the OME when the error term is normally distributed.

Which one to use is sometimes resolved a priori based on the data generating process.

Another way to decide which estimator to use is to treat it as an empirical question

by adding a parameter that adjusts between zero and one when the error term

is extreme value distributed or normally distributed, respectively (McCullagh &

Nelder, 1989). A LR test on this parameter tests whether logit is better than

probit. For this sample, the logit is a substantially better fit than probit, with a

chi-squared of 240 on 1 degree of freedom. The associated p-value is essentially zero.

Because of this, I use the ordered logit exclusively when estimating the OME.10

An alternative to the OME estimator is the OLS estimator, which assumes

that the residual in the fixed effects estimate are normally distributed. When using

the OLS estimator, the main specification changes from (eq. 2.3) to,

GPij = ai − dj + εi,j,

where GPij is the grade points awarded to student i in class j.

The stylized facts of the results do not change with the OLS estimator. In

the OLS fit, the standard deviation of the class fixed effects is 0.48 and the stan-

10Other alternatives to the ordered probit and ordered logit that were tested include the asym-
metric error terms from log-log and complementary log-log link functions described in McCullagh
& Nelder (1989). Both were extremely poor fits for these data.
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dard deviation of student fixed effects is 0.62. Similar to the OME estimate, these

two standard deviations are of about the same magnitude. Qualitatively, the re-

gression coefficients on the models with additional controls are similar (not shown).

The correlations between student fixed effect, class fixed effect, and grade are also

qualitatively similar (Table 2.10, first column).

The ability expansion path for the OLS results have a different interpretation

than in the OME results, because the x-axis is a latent variable in the OME and it is

not when using OLS. However, the resulting curves are remarkably similar nonethe-

less (Figure 2.8). The principal difference is at the top of the grade distribution

where the simulation in chapter 4 shows that OLS performs poorly.

2.4.6 Robustness to sample selection criteria

Looking across samples, the results are qualitatively similar. The correlations

coefficients for these three samples are shown in Table 2.10. These results suggest

that the sample selection criteria does not change the conclusions.

The ability expansion path for these groups is qualitatively similar at every

level except at the bottom (Figure 2.9). This suggests that, for students in the

“Degree” sample, the lower tail’s leftward shift is the result of removal of lower-

ability students who were enrolled in more difficult classes at entrance.
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2.5 Conclusion

GPAs and student ability are strongly correlated, and the GPA is not strongly

biased. A GPA is therefore a reasonable proxy for student ability. An interesting

result of this chapter is that although a student’s GPA strongly reflects their ability,

the same cannot be said of any particular grade a single student receives in an

individual class. In fact, student ability and class difficulty contribute equally to

any individual grade. However, because students of varying ability are enrolled in

very similar mixes of easy and difficult classes, the influence of class difficulty on

individual grades disappears in the overall GPA.

A necessary condition for GPAs to be biased is that individual classes must

vary in difficulty. This condition holds–the variation in individual class difficulty

(class fixed effects) is so large that ability (student fixed effects) and class difficulty

are approximately equally important in determining any individual grade. Individ-

ual grades, even conditional on the class, are dominated by noise. Unconditionally,

individual grades are not comparable; ability is not strongly predictive of the grade.

Thus there is a strong distinction between the influence a student has on their overall

GPA and their grade in each individual class.

Bias in GPA also requires that within-student-average class difficulty (average

class difficulty) varies. This condition also holds–variation in average class difficulty

by student is substantial.

Finally, bias in GPA requires that the variation in average class difficulty is

associated with student ability. This condition does not hold–average class difficulty
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and student ability are only slightly correlated. Therefore, GPAs are largely not

biased at the University of Maryland. Student ability predicts 80% of the variation

in GPAs and the empirical ability expansion path is nearly vertical.

The shape of the ability expansion path also informs the mechanism by which

human capital or ability is increasing human capital production–students with higher

ability are taking classes of the same difficulty level as the low ability students.

There are two exceptions to the vertical expansion paths–students at the top

and at the bottom of the ability distribution, where ability and difficulty are posi-

tively associated.

Students at the top of the ability distribution appear to enroll in harder classes

and get mostly ‘A’s in these classes. Because of this, the difference between a student

who earns a 3.9 GPA versus a 3.91 is much larger than the difference between a

student who earns a GPA of 3.0 versus 3.01.

At the bottom of the ability distribution, students who are continuously en-

rolled take easier classes. This appears to be a mechanical effect of a minimum GPA

for graduation.

When using grades as a measure of ability, especially for students who are in

the middle of the GPA distribution, GPAs are a good predictor of ability. Average

class difficulty (the variation in class difficulty by student) explains little (about

3%) of the variation in GPAs. There is also 17% residual variation, so one cannot

rule out that some other confounding factor could affect grades. When studying

students that are near the 2.0 GPA cutoff, the difficulty of the classes that they

take is important, and an indicator for dropping out could be a better measure of
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outcomes than GPA, which is kept near the minimum grade by university policy.

Because these results are from only one university, they might be observed as

“local” to one portion of the ability distribution–that observed at a top state uni-

versity. But two facts suggest that the results are relatively broad: consistent with

universities studied in other research, there is substantial variation in average grade

by department, and the range of SAT scores observed is quite wide. Nevertheless,

reproducing (at other universities) the main results of this paper–that GPAs are a

good measure of student ability–would be valuable.
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Table 2.1: Descriptive statistics of student transcript data

Rect Enter Full

GPA 2.94(0.599) 2.80(0.747) 2.82(0.717)
SAT verbal 599(85.5) 592(88.7) 594(89.2)
SAT math 632(85.7) 625(87.7) 623(87.4)
took SAT 0.683 0.635 0.475
HS GPA 3.80(0.493) 3.75(0.508) 3.75(0.491)

has HS GPA 0.881 0.790 0.785
trans. GPA 3.13(0.464) 3.14(0.461) 3.15(0.458)

has trans. GPA 0.202 0.325 0.300
female 0.485 0.494 0.483
white 0.569 0.565 0.575

age at entry 18.4(1.31) 18.8(1.64) 19.1(1.72)
n terms 9.94(2.11) 8.25(3.14) 6.23(3.19)
n classes 41.6(7.91) 34.7(12.7) 26.2(12.9)

total credits 121(20.1) 101(35.6) 76.4(37.0)
degree seeking 1.000 1.000 0.992

n 12,995 19,489 63,875

Note: Standard deviations are in parentheses for all non-binomial vari-

ables.
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Table 2.2: Entry/exit for “degree” data

2003 2004 2005

n 3,909 4,528 4,558

2004 1 — —
2005 118 9 —
2006 476 218 14
2007 2,738 740 212
2008 410 2,916 800
2009 116 497 3,007
2010 50 148 525

Note: Each entry shows the number of stu-
dents in “degree” data (see text) who enter in
2003-2005 (columns) and who exit in 2004-2010
(rows). The total number of entrants for each
year is listed in the first row.

Table 2.3: Entry/exit for “enter” data

2003 2004 2005

n 5,709 6,819 6,961

2003 60 — —
2004 512 183 —
2005 741 626 165
2006 913 1,071 650
2007 2,881 1,174 1,095
2008 417 3,080 1,282
2009 123 520 3,215
2010 62 165 554

Note: Each entry shows the number of stu-
dents in “enter” data (see text) who enter in
2003-2005 (columns) and who exit in 2004-2010
(rows). The total number of entrants for each
year is listed in the first row.

Table 2.4: Main results

GPAi d̄i ai

GPAi — −0.19 0.90
d̄i −0.19 — 0.16
ai 0.90 0.16 —

Note: Pearson correlation coefficients

(ρ) between column and row quantities.

The quantity d̄i is the average class dif-

ficulty level (dj) aggregated to the stu-

dent level.
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Table 2.5: Grade boundary cut points from regressions

Model

A B C D Grade width

F/D 0.00 0.00 0.00 0.00}0.59 D }0.59 D
D/C- 0.59 0.59 0.59 0.59}0.36 C-
C-/C 0.94 0.95 0.95 0.95}0.99 C

}
1.65 C

C/C+ 1.94 1.95 1.95 1.94}0.33 C+
C+/B- 2.25 2.27 2.27 2.27}0.54 B-
B-/B 2.79 2.81 2.81 2.81}1.35 B

}
2.47 B

B/B+ 4.13 4.16 4.16 4.16}0.60 B+
B+/A- 4.73 4.76 4.76 4.76}0.97 A-
A-/A 5.69 5.73 5.73 5.73

Note: Grade widths (last column) are based on model D. Because

the ‘F’ and ‘A’ ranges are unbounded, the total width of the bins

is always infinite.
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Table 2.6: Likelihood ratio tests for addition of class and student fixed
effects

Small Large k LR test statistic Jackknife LR

intercept class 4,809 193,578 342,195
intercept student 12,994 143,692 262,861
intercept class + student 17,803 369,029 661,791

class class + student 12,994 225,336 398,929
student class + student 4,809 175,450 319,596

Note: All p-values are indistinguishable from zero. See chapter 4 for a description

of the jackknife method applied.
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Table 2.7: Standard deviations, correlation coefficients, and signifi-
cance tests for various specifications, estimated with the OME

Model

A B C D

student + class X X X X
year + semster – X X X

class year – – X X
semester credits

registered and total – – – X

σa 1.60 1.63 1.65 1.66
σd 1.70 1.68 1.61 1.62
σd̄i 0.63 0.63 0.62 0.62

τ -Gd,g 0.33 0.33 0.35 0.33
τ -Ga,g 0.41 0.44 0.39 0.42
τ -Ga,d −0.07 −0.06 −0.05 −0.05

ρai,GPAi
0.902 0.905 0.906 0.907

ρd̄i,GPAi
0.161 0.165 0.164 0.164

ρai,d̄i −0.185 −0.176 −0.176 −0.175

additional controls − 11 3 2
LR test stat. − 5, 461 329 75
χ2 p-value − < 10−4 < 10−4 < 10−4

observations 523, 151 523, 151 523, 151 523, 151
students 12, 995 12, 995 12, 995 12, 995

Note: The top block shows the regressors included in the columns. The sec-

ond block shows correlation coefficients for classes (measured with the Goodman-

Kruskal correlation coefficient τ -G) and transcripts (measured with ρ). Subscripts

indicate ability (a), class difficulty (d), average class difficulty (d̄i), and grade g.

The final block shows likelihood ratio tests for inclusion of the additional regressors.
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Table 2.8: Goodman-Kruskal
correlation coefficients

gij ai dj

gij — 0.43 0.34
ai 0.43 — −0.06
dj 0.34 −0.06 —

Note: Each Goodman-Kruskal

correlation coefficient (τ -G) is be-

tween column and row quantities,

grades gij , student fixed effect (ai);

and class difficulty (dj).
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Table 2.9: Ancillary regression coefficients

Model

A B C D

year=2003 – −0.15 −0.63 −0.60
2004 – −0.23 −0.65 −0.62
2005 – −0.20 −0.56 −0.54
2006 – −0.15 −0.42 −0.41
2007 – −0.16 −0.32 −0.31
2008 – −0.17 −0.24 −0.24
2009 – −0.05 −0.08 −0.08
2010 – – – –

term=Spring – −0.04 −0.08 −0.07
Summer I – 0.86 0.84 0.84
Summer II – 0.84 0.84 0.83
Fall – – – –
Winter – 1.01 1.05 1.04

freshman – – – –
sophomore – – −0.08 −0.06
junior – – −0.20 −0.19
senior – – −0.36 −0.34

registered credits – – – 5.9×10−4

total credits – – – −38.2×10−4

Note: A dash indicates a regressor is the omitted level, or that

the whole set was was not included in the specification.
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Table 2.10: Robustness of results to sample selection

“Degree” “Enter” “Full”

OME

σa 1.76 2.41 2.95
σd 1.80 1.67 1.61
σd̄i 0.66 0.66 0.71

τ -Ga,g 0.43 0.45 0.47
τ -Gd,g 0.33 0.32 0.30
τ -Ga,d −0.05 −0.04 −0.05

ρai,GPAi
0.86 0.87 0.79

ρd̄i,GPAi
0.19 0.23 0.20

ρai,d̄i −0.10 −0.02 −0.04

OLS

σa 1.61 0.81 0.79
σd 0.46 0.46 0.45
σd̄i 0.21 0.22 0.24

τ -Ga,g 0.43 0.45 0.45
τ -Gd,g 0.31 0.31 0.30
τ -Ga,d −0.06 −0.06 −0.04

ρai,GPAi
0.94 0.96 0.95

ρd̄i,GPAi
0.09 0.18 0.16

ρai,d̄i −0.24 −0.08 −0.11

observations 537, 606 677, 634 1, 699, 053

Note: This table shows the standard deviation of student ability (a),

class difficulty (d), and average class difficulty (d̄i); Goodman-Kruskal

(τ -G) type correlations at the transcript entry level between student

ability (a), class difficulty (d), and grade (g); and Pearson type correla-

tions between GPA, ability, and the average of all class difficulties (d̄i)

for OME and OLS estimators.
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Figure 2.1: Ability expansion path
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Note: see text.

Figure 2.2: Histogram of average grade awarded by departments
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the histogram is not weighted by enroll-
ment. Only departments with average
graded awarded of 2.0 and higher are shown.
This figure uses the “Degree” sample.
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Figure 2.3: Histogram of student GPAs
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Figure 2.4: Histogram of average grade
awarded by class
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Figure 2.5: Observed ability expansion path
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Note: Each point is a single vigentile (twentieth), showing the average class difficulty (as a
deviation from the grand mean) on the x-axis and the average GPA on the y-axis.
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Figure 2.6: Raw GPA versus average class difficulty
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Note: Individual students’ GPA vs average class difficulty, with color used to indicate student
ability (student fixed effect) by vigentile (twentieth).
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Figure 2.7: Ability expansion path with various additional regressors
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Figure 2.8: Ability expansion path from
OME and OLS estimators
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Figure 2.9: Ability expansion path from
the three datasets
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Chapter 3

Are Low Income Students Diamonds in the Rough?

3.1 Introduction

Consider two students who receive the same SAT score, one from a lower

income family and another from a higher income family. If investment in schooling

is a normal good, then the student from the higher income family is the product

of a higher investment education than the student from the lower income family.1

Because of this one might suspect the individual from the lower income family has a

higher “innate ability” while the individual from a higher income family has been the

benefactor of a higher investment/higher output educational environment.2 When

these two students enroll at the same university and the difference in their family

investment inputs into education are reduced or eliminated, who will perform better?

This question is important for college admission, where a debate continues3

as to whether low income students with lower observable ability at the time of

application should nonetheless be granted entrance, because their past has included

fewer opportunities and “held them back.” In this view, students from low income

1Note that investment could be pecuniary, or time. The mechanism is not important or inves-
tigated in this chapter.

2Here family income is measured using the median income by zip code.
3See, for example popular press pieces such as Leonhardt (2011) and the response of Mankiw

(2011). Others have focused on simply measuring collegiate performance as a function of prior
inputs, with many authors focusing on the predictive power of standardized tests as an ends
(Betts & Morell, 1998; Cohn et al., 2004; Grove & Wasserman, 2003; Bettinger et al., 2011; Geiser
& Studley, 2001; Rothstein, 2004).
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families are diamonds in the rough.

Because I am using administrative data from one school (the University of

Maryland) the students in the sample are not a random sample of college students.

The college admissions process has multiple steps that make each university’s stu-

dents a mutually selected group and thus using data from a single school turns out

to be problematic for this research design. A model that focuses on family income

and SAT score (as a measure of student ability) at one university is not sufficient

to explore the “diamonds in the rough” hypothesis.

In addition, at the University of Maryland, high income students perform

slightly worse than their lower income counter parts unconditionally. When the same

regression is conditioned on SAT score, low income students continue to outperform

their higher income counterparts, but by a lower margin.

According to the traditional model for human capital development, at any

given time an individual has a particular level of human capital that determines how

quickly he or she can accumulate new human capital. In the canonical example,

Ben-Porath describes human capital accumulation as a product of innate ability

and current human capital (Ben-Porath, 1967), but ability and accumulated human

capital are essentially identical since they always appear multiplied by one another.

In a stylized form, production functions based on the Ben-Porath model could be

written

dHCt
dt

= f(HCt, It), (3.1)
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where HCt is accumulated human capital for an individual at time t, It is inputs

applied to accumulating additional human capital, dHCt

dt
is the accumulation rate of

human capital, and f(·, ·) is a function that has positive partial derivatives every-

where in both arguments. Here the concept of ability manifests as initial levels of

human capital and is otherwise not present. In this type of model, a measure of

aptitude/ability is a sufficient statistic to explain future performance. Two students

with similar test scores are expected to be equally productive regardless of whether

one was initially (at birth) high ability but saw low productivity increases before

the test and the other was initially low ability but saw large productivity increases

before the test.

Education research uses this type of model for value added modeling, with

human capital accumulation functions of the form (Hanushek, 2006)

E(ĤCt − ĤCt−1) = f(It), (3.2)

where E(·) is the expected value operator, ̂HCt−1 is a pre-test score, taken before

the time period of interest, ĤCt is a post-test score taken after the time period

of interest, and It is inputs of interest during the time period of interest.4 The

underlying assumption is that by subtracting a measure of human capital from the

previous time period, all inputs to human capital that occurred before the time of

interest are captured in the measure of human capital measure taken in the pre-

time-period, t− 1.

4This is a stylized version of the model presented by Hanusheck.
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An alternative to the assumptions of these models is that ability is always

important to production. Regardless of the current level of human capital accumu-

lated, there is an innate ability to learn that varies among individuals. In this view,

a test of aptitude will not capture ability to learn and so is inadequate for predicting

output once at college. Human capital accumulates according to

dHCt
dt

= f(HCt, It, α0), (3.3)

where α0 is innate ability.5 6 In this model, greater innate ability can compensate

for lower prior investment. Students with lower pre-collegiate educational invest-

ments who are able to acquire the same degree of human capital as students with

higher pre-collegiate educational investments achieved this by virtue of greater in-

nate ability. Once enrolled at the same university, these lower-investment (i.e., lower

income) students will outperform their higher-investment (i.e., higher income) peers,

conditional on having the same level of human capital upon entrance.

Finally, one might suspect that non-cognitive skills play a role in human capital

formation in a way that is not completely captured in test scores. It would also make

sense that higher income families imbue their children not only with higher cognitive

skills but also higher non-cognitive skills so that family income will be positively

correlated with college output, even when conditioning on test scores.

Because the sampled population is college students at the University of Mary-

5A subscript zero is used on alpha to distinguish it from the later use of a constant in regressions.
6The Ben-Porath model fits into this specification, but is multiplicatively not identified for the

first and third arguments so that f(λ ·HCt, It, α0) = f(HCt, It, λ · α0).
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land, students must have been admitted to the University and then have chosen the

University of Maryland for college.7 To understand the role of the selection process,

it is important to know that the main specification is a regression of the form

[student output] = α + β1 · [SAT] + β2 · [family income] + ε . (3.4)

I make the assumptions that SAT is an ability measure and that the the SAT score

is the only measure of pre-collegiate human capital observable to the admissions

office. Making these strong assumptions, β2 is interpretable as an effect from ability

itself. The source of these assumptions is a null hypothesis that the model described

by Hanusheck’s (eq. 3.2) is correct, with the SAT treated as a pre-test (Hanushek,

2006).

Surprisingly, running a bivariate regression of GPA on family income yields a

larger negative coefficient than one gets in equation 3.4 suggesting that low income

students at the University of Maryland are unconditionally stronger applicants—

they are simply diamonds. Adding in the SAT, per equation 3.4, mitigates the

negative coefficient on family income. This is not what the diamonds in the rough

hypothesis would predict. The negative coefficient on family income, which would

have been surprising if the unconditional regression coefficient on β2 were positive,

is not surprising when low income students are unconditionally outperforming their

high income peers.

7Dale & Krueger (2002) identify three steps of selection where students select schools to which
they apply, schools admit students, and then students select schools from those they were admitted.
Because I am not modeling the selection process, its exact form is less important here.
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In the the main specification (eq. 3.4) the outcome variable (student output) is

measured in two different ways: GPA and student ability. Student ability should not

be confused with innate ability (α0); it is measured as the student fixed effect in a

decomposition of grades into student and class effects and best interpreted as exactly

that. In chapter 2, I found that GPA and student ability are highly correlated,

with a correlation coefficient of 0.90, suggesting that both measures should tell a

similar story in this chapter. The main results of this chapter are approximately the

same across the two specifications, consistent with my previous chapter’s findings.

However, I find that there is a difference between GPA and student ability. in one

specification check, I find that a one point higher SAT math score is associated with

higher student ability than a one point higher SAT verbal score. At the same time,

a one point higher SAT math score is associated with the same GPA as a one point

higher SAT verbal. Because SAT math and SAT verbal are approximately Z-scores,

this implies that for students with higher SAT math scores, GPA underestimates

actual ability.

The next section describes the data used in this chapter, the sample selection

criteria applied and its impact on the covariates. The third section presents the

results and the final section concludes.

3.2 Data

The data for this chapter, like those described in section 2.3 are drawn from

transcripts of University of Maryland college students between 2003 and 2010. The
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main sample is a subset of the “enter” sample, which focuses on matriculated stu-

dents who entered between 2003 and 2005 and thus had five years in which to com-

plete their degree–though it is not a requirement that the students in the sample

did, in fact, complete a degree. Later specification checks use the “degree” sam-

ple, which adds a requirement that the student appears to have graduated, and the

“full” sample which removes the admission year requirement of 2003 through 2005.

In contrast with the previous chapter, an observation in this chapter is a student.

Student performance is measured by GPA and by student ability (ai) as measured

from the decomposition in the chapter 2 of the form

Gij = ai − dj +Xβ + εij (3.5)

where Gij is the grade student i received in class j, ai is a fixed effect for the ith

student and dj is a fixed effect for the jth class, and there are some other variables

such as year fixed effects in X. The exact specification used is specification D from

chapter 2 (Table 2.7), which includes controls for semester, class year, and number

of classes the student is signed up for in the semester.

Two methods are used to fit this decomposition in chapter 2, ordered multi-

nomial logit and OLS; in this chapter I use the OLS results because they are readily

interpreted as changes to GPA while the ordered logit results are in terms of a la-

tent parameter. For example, when using the OLS results, a student with an ability

that is 1.0 higher than another student would be expected to get one letter grade

higher when he or she takes the same class. In contrast, when using the ordered
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logit results, a similar statement cannot be constructed for a student with an ability

1.0 higher than another student.

Another statistic used to describe student’s college career is the average class

difficulty (d̄i) defined as

d̄i =
1

ni

∑
student i

dk (3.6)

where the sum is over the classes student i enrolled in, of which there are ni. Each

student has his or her own average class difficulty, and it is the average of the

difficulty of the classes the student took. In eq. 3.5, the difficulty enters with a

negative in front of it so that more difficult classes are associated with lower grades.

The median income of the zip code listed as a permanent address is used as a

proxy for the student’s family income (and this variable is called called family income

throughout this chapter). This measure can be thought of as typical family income

in the community the student is from. In addition, while school boundaries and

zip code boundaries are not identical, they are both based on geographic proximity

and so membership in a community may not represent identical incomes, but does

represent access to a similar level of public primary and secondary school.8

The main specification includes GPA, SAT score, student ability, and zip code

with a published median income on the 2000 Census standard file 3 (U.S. Census

Bureau, 2001). Only students for which all these variables are present are included

8See, for example, Oates (2005) for an excellent review of the concept of the market for local
government goods. One example is Hamilton, who argues that zoning and property taxes can
homogenize communities with respect to public service demand (Hamilton, 1975).
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in the sample. From a baseline of all students who qualify for the “enter” sample

(n0=19,500), removing students with zip codes that are not tabulated (presum-

ably to maintain the privacy of those living at the address) removes about 1,000

individuals; removing students without a valid SAT score removes 7,300 students

(n=10,621). The other requirements do not remove any students because they are

derived from the transcript data itself.

Students selected into the sample are similar to the entire “enter” sample.

A comparison of the raw and selected groups is shown in Table 3.1 (columns 1

and 2) and shows that the two groups are approximately balanced on race and

gender. The academic achievement variables are slightly higher for the selected

sample–for example, GPA is 0.03 higher and student ability is 0.05 higher–reflecting

a small increase in typical student quality. The exception to the increase in academic

achievement is that the students in the sample have a slightly lower average high

school GPA. Without controlling for the high school the student attended, it is not

possible to know if this represents increased difficulty at their particular high schools

or a lower level of achievement. In any case, the difference is small.

Not all of the students on the sample have taken the SAT. Some of the stu-

dents who did not take the SAT took the ACT instead. It is possible to use a

conversion factor to estimate an SAT score from an ACT score. Wainer (1986) ob-

serves that while such conversion is possible, it is inaccurate for individuals, even if

accurate when averaged over large groups. Wainer published his conversion factors

but since the publication date Educational Testing Service (the owner of the SAT)

decided to “recenter” the SAT periodically, essentially updating the scores to be
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normally distributed with a relatively invariant mean and standard deviation by

applying periodic adjustments to the raw score on the SAT scale (Dorans, 2002).9

This recentering renders conversion factors based on pre-recentering data (such as

Wainer’s) inappropriate. Using a subsample of the students who took both the

SAT and the ACT and ignoring possible selection bias associated with using this

self-selected group, it is possible to develop a conversion factor based on a linear

model (Table 3.2). These conversion factors are not ideal. The R2 is about 0.7 for

the math and verbal imputation scheme so only about 70% of the variation in SAT

scores explained by the ACT scores.

The observable academic measures (including their SAT imputed from ACT

scores) are different from the selected group (Table 3.1, column 3). The students

who took only the ACT have lower (imputed) SAT scores, higher family income, and

higher ability than the students who took the SAT. In light of this, an additional

regression is run with these students included as a specification check.

Subsamples of the “degree” and “full” samples are also used as a specification

check. The subsamples are created using the same sample selection as the “enter”

group described above. The “degree” sample is created in a similar way to the “en-

ter” sample except that an attempt is made to winnow it to students who probably

graduated by limiting the sample to students who were continuously enrolled for

the entire sample or who completed over 120 credits.10 Even more than the “enter”

sample, the “degree” sample and the selected “degree” sample are very similar to

9The scores are centered so the mean is about 500 and the standard deviation is about 110 for
each test.

10A full description appears in chapter 2.
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each other (Table 3.3).

The “full” sample is similar to the “enter” sample but removes the requirement

that the student started taking classes by 2005. For the “full” sample there is a non-

trivial increase in student ability (ai) in the selected sample, with an increase of 0.10,

this is much larger than in the other samples (Table 3.4). While larger than the

other changes, it is still not very large, and has no obvious effect on the regression

results shown.

3.3 Results

The main regression is

Y = α + β1 · [SAT] + β2 · [family income] + ε (3.7)

where Y is the outcome of interest (GPA or student ability). The regression asks

whether, controlling for SAT scores, family income is associated with higher or lower

GPA or student ability. The family income coefficient from this regression shows

that higher incomes are associated with slightly lower GPAs and student ability

(Table 3.5). The estimated change in GPAs from a $10,000 higher family income

is −0.013. The estimated change in student ability from a $10,000 higher family

income is −0.012.

As an example, consider two students, one with average family income, the

other with a two standard deviation higher income family ($27,000 higher) and

both students have combined SAT scores of 1210. The lower income student will
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be expected to earn 0.035 higher GPA, or have an estimated 0.032 higher ability.

A third student from the same lower income family but with 24 points lower SAT

score (a 1186) would be expected to match the GPA of the higher income student.11

Running this regression by fitting just the family income regressor (dropping

SAT) reveals a simpler explanation for the negative coefficient on β2: lower income

students are also unconditionally higher performing (Table 3.6). The regression

coefficient of family income unconditionally is −0.021 when GPA is the outcome and

−0.022 when student fixed effect is the outcome. The R-squared on this regression

is almost exactly zero, suggesting that family income is not a strong determinant of

grades.

When similarly running the regression with just SAT the regression coefficients

are almost unchanged relative to the results when including family income.

An apparent reason for this negative coefficient on β2 when SAT is dropped

might be that while nationally SAT and family income are positively correlated

(College Board, 2009), at the University of Maryland, the family income and SAT

scores are almost uncorrelated. In fact, there is a small negatively correlation co-

efficient (−0.04). This means that lower income students have higher SAT scores.

This raises the possibility that they also have higher unobservable quality and this

is what drives the negative coefficient on family income when conditioning on SAT.

In specification 3.7, I lumped together SAT math and SAT verbal scores as if

they test two skills that are equally useful for increasing student output. However,

11Differences in SAT scores can only be denominated in units of 10, so a technically correct
statement would be that a group of students from the same lower income family with average SAT
scores of 1186 would be expected to perform the same as this hypothetical third student.
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they might be different and this is tested by separating out the SAT scores in the

regression

Y = α + β1v · [SAT verbal] + β1m[SAT math] + β2 · [family income] + ε (3.8)

Adding in SAT math and verbal scores separately does not change the results in a

statistically significant way for the GPA estimates, meaning that the simper model

with the two tests lumped together cannot be rejected as less explanatory. The best

estimates from regression equation 3.8 suggests that an increase of 100 points in

SAT verbal scores increases GPAs by 0.155 while a 100 point increase in SAT math

scores increases GPA by 0.139 (Table 3.7). The insignificant t-test on the contrast

between the two regressors indicates that SAT math and SAT verbal do not have

different effects on GPA.

In the same specification, using student ability as the outcome variable, the

addition of SAT math is statistically significant and has a much stronger association

with student ability than SAT verbal scores. An increase of 100 points in SAT verbal

scores is associated with an increase in ability of 0.421 while an increase of 100 points

in SAT math scores is associated with an increase of 0.580 in student ability (Table

3.7).

This result is striking. Despite the previous chapter’s result that GPAs are

a good measure of student ability, GPAs are not affected differently by SAT math

and SAT verbal scores, but student ability is.

For both possible outcome variables, the main results—changes in GPA based
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on family income—is not affected by breaking SAT down into math and verbal

scores.

The most obvious explanation for why these two differ is that the difficulty of

the classes that students take varies by family income and SAT math score. To verify

that, I regressed students’ average class difficulty (d̄i) on the same regressors using

the same specifications (Table 3.8). These results show that average class difficulty

matters. Students with relatively higher SAT math scores are taking harder classes

than their counterparts with lower SAT math scores. An increase of 100 points

in SAT math increases average class difficulty by 0.093.12 Higher total SAT verbal

scores are associated with a slight decrease the average class difficulty of 0.023. Both

the coefficients on SAT math and SAT verbal are statistically significant at the 1%

level, as is the contrast between the two.

An increase in family income increases difficulty, if very slightly, by 0.003,

regardless of the specification and this result becomes statistically significant at

the 10% level when including SAT math and SAT verbal separately. This suggests

that it is possible that higher income students are taking more difficult classes, on

average, even if just slightly.

To test the robustness of the main results, I performed additional checks.

First, family income might not enter entirely linearly, for example, if the effect ac-

crues largely at the top or bottom of the income distribution. I ran a regression

with the family income binned by quintile, and the bins are included as dummy

12Note that one might have hoped that the increase in ability minus the increase in difficulty
might exactly equal the decreased GPA but it does not. However, a null hypothesis that they are
equal cannot be rejected.
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variables in lieu of the linear estimator (Table 3.9). When this is done, the effects

are approximately linear for GPA and noisy but still approximately linear for abil-

ity. In the case of GPA the estimated change in GPA by income quintile decrease

monotonically with an average decrease of 0.014 from bin to bin. When using stu-

dent ability as an outcome, the estimated effects decrease monotonically, with only

one exception at the lowest income group. Overall, the non-linearities appear to be

relatively subtle, making an assumption of linearity reasonable.

In the previous chapter, I used ordered logit as well as OLS to estimate the

decomposition in equation 3.5 but there are theoretical reasons to prefer the ordered

multinomial logit to the OLS results even though they were very similar in final fit.

Running the regression on the ability measure shows slightly different results. The

estimated regression coefficient is still negative at −0.019 but is not statistically

significant, with an associate t-statistic of 1.6. Note that the different absolute

value of the estimated coefficient between the OLS-based student ability and ordered

multinomial logit-based student ability is not itself interpretable because the two

ability measures are not measured on the same scale.

Students who did not take the SAT but did take the ACT are not in the

sample, despite the fact that it is possible to impute their SAT scores using the ACT.

Imputed SAT scores are more imprecise and that can bias a regression coefficient

towards zero. However, there is a competing concern that these students were not

matched exactly on their baseline characteristics. Running the regression including

these students not only does not move the estimate closer to zero; instead it decreases

it slightly to −0.013, and it becomes significant at the 1% level (Table 3.10). This
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suggests that removing these students did not bias the sample towards negative and

more significant results.13

The “enter” sample includes most students who started college at the Univer-

sity of Maryland in 2003 through 2005 regardless whether they ultimately graduated.

Running the regressions using just those who graduate gives very similar results (the

“degree” sample), except that when GPA is the outcome, the estimate for family

income increases slightly in absolute terms to −0.015 and remains significant (at

the 1% significance level) when predicting the student fixed effect (Table 3.14). Us-

ing the “full” sample, which includes students who entered after 2005 also shows a

nearly identical result as the “enter” sample, with an estimated coefficient on family

income of −0.012, a result that is again statistically significant at the 1% level.

The loss of significance using the ordered logit-based estimate of ability may

have been a result of marginal significance of the original regression coefficient.

Rerunning the regressions on the “degree” and “full” samples using the logit shows

that both have a statistically significant estimate of family income (Tables 3.14 and

3.15, respectively).

3.4 Discussion and Conclusion

These results show that, at the University of Maryland, conditional on SAT

scores, lower income is associated with higher college output. However the same is

also true unconditional on SAT scores. In any case, the result is relatively modest;

13When a noisy measure of a regressor is used in place of a true value the regression coefficient
is biased towards zero. What is worse, as other regressors are added, the bias increases (Griliches,
1977).
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a $10,000 increase in household income (approximately one standard deviation) is

associated with a decrease of about 0.01 in GPA–suggesting that the family income

effect identified here, even if causal, would not dominate students’ college perfor-

mances.

Methodologically, this result holds when college output is measured directly

via GPA and ability, which controls for the difficulty of the classes in which students

enroll. This suggests that GPA and ability could have been used interchangeably

to get the same results in this chapter. However, in one specification, a weakness

of measuring collegiate output with GPA was revealed. An increase in SAT math

is associated with an increase in class difficulty and an approximately balancing

increase in student ability. In contrast, an increase in SAT verbal is associated with

a smaller increase in student ability and a slightly negative change in average class

difficulty. For this chapter, this asymmetry was irrelevant to the conclusion, but

one could imagine a case where it is important. Because of this, using GPA as a

proxy for ability still may make sense, but additional consideration should be given

as to whether relative math ability might play a role in the particular question being

asked.

At the beginning of this chapter I posited two students who received the same

SAT scores, one from a lower income family and another for a higher income fam-

ily. I then asked if innate ability, previously unrealized, would shine through at the

University of Maryland. However, data from the University of Maryland proved

inappropriate for answering this question because of the non-random nature of en-

rollment.
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Table 3.1: Sample description

Enter Enter sample Enter ACT

GPA 2.80(0.747) 2.83(0.731) 2.90(0.716)
SAT verbal 5.91(0.864) 5.91(0.873) 5.71(0.617)
SAT math 6.24(0.878) 6.18(0.892) 6.05(0.837)

family income
/$10,000 4.13(1.35) 4.13(1.30) 4.19(1.43)

ai -1.17(0.748) -1.12(0.733) -1.11(0.698)
d̄i -0.198(0.221) -0.199(0.218) -0.170(0.215)

took SAT 0.599 1.000 0.000
HS GPA 3.75(0.508) 3.72(0.512) 3.79(0.481)

has HS GPA 0.790 0.950 1.000
transfer 0.407 0.319 0.189

female 0.494 0.488 0.652
white 0.565 0.574 0.545

n terms 8.25(3.14) 8.60(3.15) 8.77(2.86)
n classes 34.7(12.7) 36.4(12.4) 39.1(11.2)

total credits 101(35.6) 107(34.6) 113(30.9)
degree seeking 1.000 1.000 1.000

n 19,489 11,183 514

Note: The first column is the entire “Enter” sample, before sample selection

criteria for this chapter are applied. The second column is the main sample

for this chapter. The third sample is the students who have an ACT score

but no SAT score. Their imputed SAT scores are reported. Each entry in

the table is an average of a variables, named in the row, followed by standard

deviations in parentheses for non-binomial variables. Some of the sample

selection criteria force a variable to be exactly 0 or 1.
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Table 3.2: Predicting SAT with ACT scores

SAT verbal SAT math

(1) (2)

Intercept 234∗∗∗ 203∗∗∗

(5) (3)
ACT reading 6.82∗∗∗ —

(0.25)
ACT English 7.16∗∗∗ —

(0.29)
ACT math — 15.7∗∗∗

(0.1)

R2 0.67 0.73
obs 2,657 6,402

Note: Standard errors appear in parentheses below

each regression coefficient. Stars indicate signifi-

cance at the 1% (***), 5% (**), or 10% (*) levels. The

first column shows regressions of SAT verbal scores

with various ACT tests. The second two columns

show regressions of SAT math scores on ACT tests.
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Table 3.3: Sample description: degree dataset

Degree Degree sample

GPA 2.94(0.599) 2.96(0.583)
SAT verbal 5.97(0.831) 5.98(0.838)
SAT math 6.32(0.858) 6.26(0.871)

family income
/$10,000 4.12(1.32) 4.12(1.27)

ai -1.03(0.635) -0.988(0.620)
d̄i -0.221(0.213) -0.219(0.212)

took SAT 0.643 1.000
HS GPA 3.80(0.493) 3.78(0.495)

has HS GPA 0.881 0.972
transfer 0.289 0.239

female 0.485 0.482
white 0.569 0.571

n terms 9.94(2.11) 10.1(2.19)
n classes 41.6(7.91) 42.3(7.48)

total credits 121(20.1) 123(19.0)
degree seeking 1.000 1.000

n 12,995 8,017

Note: Means and standard deviations are in parenthesis for

non-binary variables. This table shows the degree sample

before and after sample selection criteria are applied.
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Table 3.4: Sample description: full dataset

Full Full sample

GPA 2.82(0.717) 2.85(0.693)
SAT verbal 5.89(0.833) 5.91(0.864)
SAT math 6.22(0.873) 6.18(0.882)

family income
/$10,000 4.15(1.35) 4.12(1.30)

ai 1.55(0.727) 1.67(0.709)
d̄i -0.111(0.241) -0.0792(0.238)

took SAT 0.399 1.000
HS GPA 3.75(0.491) 3.69(0.502)

has HS GPA 0.785 0.945
transfer 0.396 0.284

female 0.483 0.479
white 0.575 0.588

n terms 6.23(3.19) 7.07(3.29)
n classes 26.2(12.9) 28.7(13.2)

total credits 76.4(37.0) 84.4(37.8)
degree seeking 0.992 0.997

n 63,875 24,435

Note: Means and standard deviations are in parenthesis

for non-binary variables. This table shows the full sample

before and after sample selection criteria are applied.
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Table 3.5: Predicting outcomes with SAT and
income

I

GPA ai

SAT/100 0.147∗∗∗ 0.187∗∗∗

(0.005) (0.005)
family income −0.013∗∗ −0.012∗∗

/$10,000 (0.005) (0.005)

R2 0.10 0.16
obs 11,183 11,183

Note: The standard errors in parentheses reflect

clustering at the zip code level. Stars indicate sig-

nificance at the 1% (***), 5% (**), or 10% (*) levels.

These are predictions of GPA and student fixed ef-

fect (described in body) using a the sum of verbal and

math SAT and median income by zip code and are fit

on the “enter” dataset (see text).
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Table 3.6: Predicting outcomes with SAT or income

GPA ai GPA ai

SAT/100 0.148∗∗∗ 0.187∗∗∗ — —
(0.005) (0.005)

family income — — −0.021∗∗∗ −0.022∗∗

/$10,000 (0.008) (0.008)

R2 0.10 0.19 0.00 0.00
obs 11,183 11,183 11,183 11,183

Note: The standard errors in parentheses reflect clustering at the zip code level. Stars

indicate significance at the 1% (***), 5% (**), or 10% (*) levels. These are predictions of

GPA and student fixed effect (described in body) using a the sum of verbal and math SAT

or median income by zip code and are fit on the “enter” dataset (see text).
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Table 3.7: Predicting outcomes with SAT math and verbal separately

I II

GPA ai GPA ai

SAT/100 0.147∗∗∗ 0.187∗∗∗ — —
(0.005) (0.005)

SAT verbal/100 — — 0.155∗∗∗ 0.143∗∗∗

(0.009) (0.009)
SAT math/100 — — 0.139∗∗∗ 0.229∗∗∗

(0.009) (0.009)
faimly income −0.013∗∗ −0.012∗∗ −0.013∗∗ −0.011∗∗

/$10,000 (0.005) (0.005) (0.005) (0.005)

contrasts

SAT math/100 — — −0.016 0.086∗∗∗

− SAT verbal/100 (0.018) (0.018)

R2 0.10 0.16 0.10 0.16
obs 11,183 11,183 11,183 11,183

Note: The standard errors in parentheses reflect clustering at the zip code level. Stars indicate

significance at the 1% (***), 5% (**), or 10% (*) levels. Specification I is reproduced here for

easy comparison to specification II.
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Table 3.8: Predicting average class difficulty

I II

d̄i d̄i

SAT/100 0.036∗∗∗ —
(0.001)

SAT verbal/100 — −0.023∗∗∗

(0.003)
SAT math/100 — 0.093∗∗∗

(0.003)
family income 0.003 0.003∗

/$10,000 (0.002) (0.002)

contrasts

SAT math/100 — 0.116∗∗∗

− SAT verbal/100 (0.005)

R2 0.07 0.11
obs 11,183 11,183

Note: The standard errors in parentheses reflect clustering at

the zip code level. Stars indicate significance at the 1% (***),

5% (**), or 10% (*) levels. This table estimates the first three

specifications (previous two tables) to explain average class

difficulty for each student.
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Table 3.9: Predicting outcomes with SAT: linearity of income

I IV

GPA ai GPA ai

SAT/100 0.147∗∗∗ 0.187∗∗∗ 0.147∗∗∗ 0.187∗∗∗

(0.005) (0.005) (0.005) (0.005)
family income −0.013∗∗ −0.012∗∗ — —
/$10,000 (0.005) (0.005)
family income lowest — — 0.020 0.006

(0.027) (0.025)
family income low — — 0.012 0.011

(0.029) (0.027)
family income middle — — — —

family income high — — −0.013 −0.008
(0.035) (0.030)

family income highest — — −0.038 −0.044∗

(0.026) (0.024)

R2 0.10 0.16 0.10 0.16
obs 11,183 11,183 11,183 11,183

Note: The standard errors in parentheses reflect clustering at the zip code level. Stars indicate

significance at the 1% (***), 5% (**), or 10% (*) levels. This shows a test of the linearity of the

zip code median income by breaking it down into five bins (the middle bin is the omitted group).

Specification II is reproduced here for easy comparison with specification IV.
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Table 3.10: Predicting outcomes with SAT in-
cluding SATs imputed from ACT scores

I

GPA ai

SAT/100 0.148∗∗∗ 0.188∗∗∗

(0.005) (0.005)
family income −0.014∗∗∗ −0.013∗∗∗

/$10,000 (0.005) (0.005)

R2 0.10 0.16
obs 11,753 11,753

Note: The standard errors in parentheses reflect

clustering at the zip code level. Stars indicate sig-

nificance at the 1% (***), 5% (**), or 10% (*) levels.

This shows results when including those students who

took the ACT and not the SAT but had their SAT im-

puted based on their ACT score.
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Table 3.11: Predicting outcomes with SAT
and income, ordered multinomial logit based
ability estimate

I

GPA ai

SAT/100 0.147∗∗∗ 0.502∗∗∗

(0.005) (0.011)
family income −0.013∗∗ −0.019
/$10,000 (0.005) (0.012)

R2 0.10 0.19
obs 11,183 11,183

Note: The standard errors in parentheses reflect

clustering at the zip code level. Stars indicate sig-

nificance at the 1% (***), 5% (**), or 10% (*) levels.

Predictions of GPA and student fixed effect (described

in body) using the sum of verbal and math SAT and

median income by zip code. Fit on the “enter” dataset

(see text).
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Table 3.12: Predicting outcomes with SAT
and income, degree dataset

I

GPA ai

SAT/100 0.140∗∗∗ 0.189∗∗∗

(0.004) (0.004)
family income −0.015∗∗∗ −0.013∗∗∗

/$10,000 (0.005) (0.005)

R2 0.13 0.21
obs 8,017 8,017

Note: The standard errors in parentheses reflect

clustering at the zip code level. Stars indicate sig-

nificance at the 1% (***), 5% (**), or 10% (*) levels.

This is the same model as was fit in Table 3.5 but it

is fit on the smaller “degree” dataset (see text).
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Table 3.13: Predicting outcomes with SAT
and income, full dataset

I

GPA ai

SAT/100 0.123∗∗∗ 0.171∗∗∗

(0.003) (0.003)
family income −0.012∗∗∗ −0.012∗∗∗

/$10,000 (0.004) (0.004)

R2 0.08 0.14
obs 24,435 24,435

Note: The standard errors in parentheses reflect

clustering at the zip code level. Stars indicate sig-

nificance at the 1% (***), 5% (**), or 10% (*) levels.

This is the same model as was fit in Table 3.5 but it

is fit on the larger “full” dataset (see text).
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Table 3.14: Predicting outcomes with SAT
and income, degree dataset, ordered multino-
mial logit ability

I

GPA ai

SAT/100 0.140∗∗∗ 0.525∗∗∗

(0.004) (0.011)
family income −0.015∗∗∗ −0.025∗

/$10,000 (0.005) (0.013)

R2 0.13 0.23
obs 8,017 8,017

Note: The standard errors in parentheses reflect

clustering at the zip code level. Stars indicate sig-

nificance at the 1% (***), 5% (**), or 10% (*) levels.

This is the same model as was fit in Table 3.5 but it is

fit on the smaller “degree” dataset (see text) and the

fixed effects taken from the ordered multinomial fit.
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Table 3.15: Predicting outcomes with SAT
and income, full dataset, ordered multinomial
logit ability

I

GPA ai

SAT/100 0.123∗∗∗ 0.469∗∗∗

(0.003) (0.007)
family income −0.012∗∗∗ −0.018∗∗

/$10,000 (0.004) (0.009)

R2 0.08 0.17
obs 24,435 24,435

Note: The standard errors in parentheses reflect

clustering at the zip code level. Stars indicate sig-

nificance at the 1% (***), 5% (**), or 10% (*) levels.

This is the same model as was fit in Table 3.5 but it is

fit on the larger “full” dataset (see text) and the fixed

effects taken from the ordered multinomial fit.
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Chapter 4

Estimation of Large Ordered Multinomial Models

When estimating an equation with grades on the left hand side there are

theoretical reasons to think an ordered multinomial estimator (OME) is preferable

to the simpler ordinary least squares (OLS) estimator. An OME acknowledges that

there is a maximum grade, so when a good students takes an easy class the prediction

will not be higher than the an ‘A’ grade (an ‘F’ is treated in the same way for low

predictions). At the same time, an OME acknowledges that spacing between grades

need not be identical, so that the range of performance encompassed by ‘B’ grades

need not be the same as ‘C’ grades. This is in contrast with OLS using the awarded

grade points as the outcome variable which can, for example, predict that a student’s

grade be worth 5 grade points on a 4 point scale, and cannot accommodate different

widths of grades.

I assume grades are generated as follows. Each student has a true ability (ai).

This ability level is then observed in an individual class as a noisy signal

ãij = ai + εij, (4.1)

where εij accounts for noise introduced into the observation in the grading process.

The observed ability is not a grade but can be thought of as either a number in

a ledger or possibly a yet unquantified assessment of a final paper. This is then
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mapped to a grade using “cutoffs” that separate observed ability levels (ãij) into

grades. For example, the ‘A’/‘B’ cutoff is the location where students with observed

ability above the cutoff will receive ‘A’s and student just below the cutoff will receive

a ‘B’s or lower grades.

Imagine two students, named 1 and 2, with ability levels a1 and a2, respectively

(Figure 4.1, top scale). In a class c their observed ability level is given by a1c and

a2c (Figure 4.1, middle scale). Based on their observed ability levels, these students

are then assigned grades ‘F’ and ‘A’, respectively (Figure 4.1, bottom scale).

Theoretically, each class could have its own cutoffs for each grade–one class

might have a small cutoff for each grade while another might allow a large range of

observed ability to fall into an individual grade. However, the concept of difficulty

is cleanest if all the classes share the size of the ranges for the values for each grade,

but all the ranges move up and down together (Figure 4.2), and for tractability I

will assume that this is true. Intuitively, this model allows for a university wide

agreement on the size of the ‘B’ range as well as changes in the exact position of

each of the grades.

Given their locations, one would expect student 1 to receive mainly ‘D’ grades

and student 2 to receive mainly ‘B’ grades. The likelihood function for student 1

is given by the location of a1, the distribution of ε, and the location of the grade

boundaries. To illustrate this, Figure 4.3 shows the distribution of a1, shading the

area that is proportional to the probability of student 1 receiving a ‘D’ grade.

The OME estimates the model by maximizing the likelihood function where
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the probability of each grade is given by:

L (G|a, d)ij = Pr (grade Gij observed, conditional on ai, dj) (4.2)

=
∫
Gij

Pr (ãij − dj = z) f(z)dz (4.3)

=
∫
Gij

Pr (ai + εij − dj = z) f(z)dz (4.4)

=
∫
Gij

Pr (εij = z − ai + dj) f(z)dz (4.5)

where the bounds of the integral are the cutoffs for the actual grade assigned to

student i in class j, and f(z) is the density function of the distribution of ε (Figure

4.3).1 This leads to a regression of the form

Gij = ai − dj + εij (4.6)

where Gij is the grade, ai is the ability of the student, dj is the difficulty of the

class, i indexes the student and j indexes the class.

When the grading is more “difficult,” the observed ability level required to

get each grade is higher. This corresponds to a rightward movement of the bottom

scale in Figure 4.2. In the figure, class B is more difficult than class A because, for

example, some observed performance levels that are assigned a ‘D’ in class A are

assigned a ‘F’ in class B.

The terms “ability” and “difficulty” are used somewhat loosely here, because

1The models that describe these models are the ordered multinomial probit when ε is normally
distributed and ordered multinomial logit when ε is Weibull distributed. To create a general term,
I call these estimators ordered multinomial estimators (OME) and, treat the distribution of ε as a
fitted parameter as in McCullagh & Nelder (1989).
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so many factors play into them. For example, a class with good pedagogy might

improve every student’s output and thus would appear as a less difficult class ceritis

paribus. Similarly, a student who spent more time on school work could potentially

improve his or her “ability.”2

Despite the advantage that this model describes the data generating process

in a satisfying way, the OME can have biased estimates in the fixed effects context if

the number of observations per unit (student) is not “large” (McCullagh & Nelder,

1989). However, the number of observations required to meet the threshold of being

“large” is not well known.3 Because of this, the OME is not obviously the best

estimator.

Both the OLS and OME estimators have theoretical problems—OLS incor-

rectly models the grading process as continuous, which it is not, while the OME

does not have an applicable consistency proof—so how exactly to proceed when

estimating a grade decomposition is not obvious. The remainder of this chapter

explores questions surrounding bias of the estimators in simulations (section 2), and

the role of bias in significance tests for the OME (section 3), and the difficulty in

estimation of the OME (section 4). A final section concludes.

4.1 Simulation of estimators

It is well known that a regression of the form (eq. 4.6) need not be consistent

when there are fixed effects that increase the sample size. A literature has devel-

2This is something that appears to be possible given the low time investment made in college
(Babcock & Marks, 2010).

3See Green (2002) for a review.
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oped around estimating this type of problem (Ferrer-i-Carbonell & Frijters, 2004;

Chamberlain, 1980). One related estimator is described by Chamberlain (1980).

His method is intended for estimating parameters of interest in the presence of fixed

effects for binomial and multinomial estimators, treating the fixed effects as nui-

sance parameters.4 The method substitutes a term for each fixed effect by unit with

conditioning on the margins/totals of the outcomes by unit.5 A problem with this

approach is that the conditional term involves calculating 106 to 1032 of terms per

fixed effect–an infeasible task.6 Substantial work has been done to minimize the

computational effort while allowing for very relaxed assumptions about the data

generating process by Ferrer-i-Carbonell & Frijters (2004). Even the least intensive

of the non-linear methods described by Ferrer-i-Carbonell and Frijters requires far

too much computation for problems with as many observations as a typical student

in this data (circa 40 observations)

Another complicating factor is that unlike in the existing literature, the results

herein are not regression parameters themselves, but relationships between them.

The main results of interest include correlations between all possible pairs of GPA,

ability, and difficulty, and the ability expansion path. Since the correlations are

location and scale invariant, a bias in the estimator that doubled one set of fixed

4An issue that hampers but does not exclude the method from consideration, as described
below.

5Chamberlain shows that the resulting estimator is consistent for the remaining parameters.
However, herein, the fixed effects are the parameters of interest. Nonetheless, the method described
by Chamberlain could be used to estimate the student fixed effect netting out the class fixed effects
and then estimate the class fixed effects netting out the student fixed effects.

6A second method discussed by Chamberlain (1980) is a probit with random effects. While the
model does not assume that the fixed effects are uncorrelated, it does treats the main results of
this thesis (the relationship between the fixed effects) as a nuisance parameter problem in a way
that is integral to its nature.
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effects would not change the correlations. Because of this the exact properties of the

estimator of the statistics I use are not well known. When faced with an estimator

that is known to not have all the desirable properties, one possible way of quantifying

its performance is simulation (Heckman, 1981; Green, 2002).

To investigate the properties of the OME and OLS, three cases are simulated

by generating student and class fixed effects randomly using the OME model de-

scribed above. Estimates of the fixed effects â and d̂ using the OME and OLS

estimators and statistics later calculated in the results are compared to their true

value (in the simulation). The exact simulations are chosen to show how well these

estimators perform at identifying bias in grades in simulations where there is and

is not bias. The three different cases test these estimators in different situations

(Table 4.1). In the first simulation, student ability and class difficulty are uncor-

related (“uncor”); in the second simulation, student ability and class difficulty are

strongly correlated (“cor”); in the third simulation, the first simulation parameters

are modified so that a large number of students receive 4.0 GPAs (“high GPA”).

The parameters used to generate these simulations are also shown in Table 4.1.

An individual class’s grade can be described by its Grade Points (GP ) and the

average of GP is determined by the difference in E(a) and E(d),7 and because of

upper and lower limit effects, to a lesser extent by the variance covariance matrix of

a and d. The cutoffs between grades are kept linear–the space between the b values

are always exactly one–so the effect of unequal spacing in grades is not investigated.8

7Here expectations are taken over the population of transcript entries.
8Some investigation of the importance of non-linearities showed little difference between OLS

and the OME in estimating when they were present.
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In the results, I summarize the data with Pearson correlation coefficients be-

tween student ability (ai) and average class difficulty (d̄i); the performance expansion

path (a plot of GPA versus average class difficulty); and Goodman-Kruskal correla-

tion coefficients (τ−G) between class difficulty (dj) and student ability (ai). The re-

lationship between estimated derived statistics (i.e., Pearson correlation coefficients,

performance expansion path, and the Goodman-Kruskal correlation coefficients) and

the true (simulated) values is used to judge the estimators.

Looking at the simulated results, both the Pearson type correlation coefficients

(ρ) and the Goodman-Kruskal (τ−G) are reliably estimated in almost every instance

(Table 4.2). When the correlation between ability and GPA is high, the estimated

correlation is high, and the converse is also true.

However, the standard deviations of ability and class difficulty are not as

reliably estimated. For the “uncor” and “cor” simulations, the OME estimates of

the standard deviation on student ability (ai) are slightly high while none of the

OLS estimates are accurate, with all of them being too small.

Removing the approximately 2,000 students (∼6%) with 4.0s (Table 4.3) does

not negatively impact the estimates in the “uncor” and “cor” cases, but does improve

the OME estimates of the parametric standard deviation and Pearson correlation.

Another summary of the data used in the results is the performance expan-

sion path. The estimated and true performance expansion paths are plotted for the

“uncor” simulation (Figure 4.4), the “cor” simulation (Figure 4.5), and the “High

GPA” simulation (Figure 4.6). These figures are generated by separating the stu-

dents into vigentiles (equally spaced twentieths) by true/estimated student ability
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(ai / âi) and the average GPA and average class difficulty (d̄i) are calculated within

each bin. The 4.0s are always segregated into a single bin, so that there are 21 total

bins.

These figures show that when grades are unbiased (“uncor”) the estimated

ability expansion path is vertical and that when the grades are biased by higher

ability students taking harder classes (“cor”), the estimated ability expansion path

is slanted to the right. In the results, these shapes indicate these outcomes.

In the “uncor” and “cor” simulation, both estimators find the true vertical

line when uncorrelated (Figure 4.4) and the slanted line when correlated (Figure

4.5). The only exception is the high estimate from the OLS estimator near 4.0 for

the “uncor” simulation and a mild attenuation of the slope in the correlated case.

In the case of the “High GPA”, similar to “uncor”, both estimators again

perform well, correctly identifying the vertical performance expansion path (Figure

4.6). However, both estimators overestimate the size of a hook to the left, near 4.0.

Interestingly, the OME then accurately estimates the average difficulty of classes for

those with 4.0s.

These simulations show that both estimators are reliable, though there are

situations where the OME is accurate while the OLS estimator is not. Removing

4.0s from the analysis is required to get accurate Pearson type correlation coefficients

and standard deviation estimates, though a sufficiently large number will also bias

the estimated performance expansion path near the top of the GPA scale.
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4.2 Significance testing

Typical significance tests for multiple regressors rely on an F-test. This is not

possible for the OME. Instead, a likelihood-ratio test (LR) can be used

LR = 2 ∗ (`l − `s) (4.7)

where ` is the log-likelihood of the fitted models, and subscripts l and s are for a

larger and a nested smaller model, respectively. Under the null hypothesis that the

k additional variables in a larger model are all equal to zero,9 the likelihood-ratio

(LR) test statistic is chi-square distributed with k degrees of freedom under the mild

assumption that there are many observations for each of the k variables being tested

(McCullagh & Nelder, 1989). Unfortunately, the term many is not well defined.

When there are not sufficient observations the likelihood ratio test statistic

will not produce accurate p-values. This is because panel data analysis generates

biased estimates of β when there are individual fixed effects and the outcome is

discretized (Hahn & Newey, 2004). For estimates of the type

Y ∗it = Xitβ + FEi + εit, (4.8)

where i subscripts are used to indicate individuals in the panel and t subscripts

indicate the time variable, FEi is a fixed effect for each unit, and the observed

outcome Yit is a discretized version of Y ∗it . This bias is often described in a Taylor

9It is also possible to test a hypothesis that the values are not equal to zero, but I use the simple
(and applicable) example of zero here.
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series of the form

β̂ = β +
B

T
+ o

(
1

T 2

)
(4.9)

For related non-linear models, methods of removing the first order bias term
(
B
T

)
exist, for example Hahn & Newey (2004).

The correlation coefficients between fixed effects are not biased by first order

bias terms in the estimates of β. However, for looking at significance tests, this

issue cannot be dismissed. Bias of the form in eq. 4.9 makes the likelihood ratio

test non-central χ2 distributed instead of central χ2 distribution and the associated

tests would be biased towards rejection. This would make the actual type I error

rate higher than intended.

The remainder of this section details existing methods in the literature and

their applicability to testing grades data.

One method for estimating a statistic of unknown distribution is to use the

bootstrap (Efron, 1982) resampling scheme to estimate a confidence interval for

any statistic, largely free of assumptions about the distribution of the error term

in equation 4.8. In particular one might bootstrap the test statistic for the joint

hypothesis that a set of fixed effects are all zero (Fox, 2008).

There are a few problems when using the bootstrap. First, the sample must

be redrawn to represent the original sampling scheme–but when there is a census, as

in this dissertation, it is not obvious how this can be done. Another problem with

using the bootstrap is that it requires refitting the data about one hundred times,

86



compounding the already difficult task of fitting the regressions.

Because of these difficulties, I did not use the bootstrap to attempt to perform

the likelihood ratio (significance) tests.

Another method for constructing confidence intervals is empirical likelihood

(Owen, 2001) which does not use normal theory in developing confidence intervals.

However, this method requires solving a number of linear equations that increases

with the sample size (Jing et al., 2009) and is therefore infeasible for a large dataset.10

There are also analytic methods of removing the bias in equation 4.9 (Hahn

& Newey, 2004; Fernandez-Val, 2009), but these authors do not propose a method

of testing joint significance of several parameters.

Finally, the jackknife is a well known method of removing the bias term from

the estimates. There is very little theory for the jackknife for non-linear estimators,

but as Wolter (1985) points out, since most non-linear systems behave like linear

systems in the neighborhood of the solution, presumably the theorems regarding

linear estimators suggest that the jackknife will still be helpful for non-linear esti-

mators. In addition, both of the analytic methods papers also include simulations

where the jackknife is included. In once case the jackknife estimator has lower bias

than any other estimator but a higher standard deviation (Fernandez-Val, 2009). In

another, the jackknife estimator always has the lowest bias and standard deviation

(Hahn & Newey, 2004). While simulations of this type are only suggestive, certainly

the jackknife is not an obviously inferior choice.

10The method presented in Jing et al. (2009) need not apply to the question at hand without
additional proofs and so is not as useful for estimating a potentially misspecified model.
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Using a block jackknife reduces the number of times that the statistic must

be recalculated, and speeds calculation further. The test statistic is analogous to a

ANOVA analysis where the variance-covariance matrix for the estimated values is

used to test the joint hypothesis that several variables are simultaneously equal to

zero (Duncan, 1978; Matloff, 1980). Constructing this test statistic is problematic in

this context because they variance-covariance matrix would be very large and dense,

and therefore require massive amounts of memory to store and use when there are

many observations.

Instead, the suggestion of Fox (2008), presented in the context of bootstrap-

ping, is to use each resample to generate the test statistic instead of the fitted values,

and this idea can also be used for jackknife estimators.

The traditional jackknife estimator, applied to a maximum likelihood estima-

tor for a statistic θ, is

θ̂JK = nθ̂MLE +
(n− 1)

n

n∑
i=1

θ̃(i) (4.10)

where the subscript MLE is used to indicate the maximum likelihood estimator,

and the subscript (i) indicates θ̂MLE estimated with the ith jackknife replicate.11

In the context of this thesis, the “ith jackknife replicate” is the entire sample,

but with one of the school years (indexed by i) of data removed. Thus one jackknife

replicate would remove the 2004-2005 school year and reestimate the regression as

if that year never occurred.

11For a more complete description of the jackknife, see Efron (1982).
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The jackknife estimator for the likelihood ratio test is

L̂RJK = nL̂RMLE +
(n− 1)

n

n∑
i=1

L̃R(i) (4.11)

L̃R(i) = 2(`l(i) − `s(i)) (4.12)

where `l(i) and `s(i) are the likelihoods of the large and small models with the ith

jackknife replicate removed.

The issue of how to choose blocks persists since, similar to the bootstrap,

blocks should be drawn according to the sampling scheme. The most defensible

choice is to use an academic class year as a block. This also has the desirable

property of leading to a small number of jackknife replicates.

4.2.1 Simulation

The theoretical critiques of the use of the likelihood ratio statistic state that

there is a problem with the test but not the importantance nor magnitude of the

problem. The question remains how poor the p-values will be for actual testing.

To answer this, I use a simulation. In the simulation data is generated accord-

ing to

Y ∗ij = εij (4.13)

where the observed εij is independently and identically normally distributed with
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mean zero and standard deviation 1, Y is a discretized version of

Y = f(Y ∗) =



F if Y ∗ ≤ −1

C if − 1 < Y ∗ ≤ 0

B if 0 < Y ∗ ≤ 1

A if 1 < Y ∗

(4.14)

I then perform two hypothesis tests, sharing a null but with different alternatives

H0 : Y ∗ij = εij

HA1 : Y ∗ij = xi + εij

HA2 : Y ∗ij = zj + εij

Thus, in this simulation, the null hypothesis is true. There are I values of i and

J values of j, and the parameter I is varied between eight and thirty-two while J

is fixed at 500. In the simulation I test the hypothesis that all of the xs are zero

jointly using the likelihood ratio test

LR1 = 2 ∗ (`1 − `0) (4.15)

LR2 = 2 ∗ (`2 − `0) (4.16)

where `0 is the likelihood when the fit take the form

Y ∗ij = εij, (4.17)
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`1 is the likelihood when the fit take the form

Y ∗ij = xi + εij, (4.18)

and `2 is the likelihood when the fit take the form

Y ∗ij = zj + εij. (4.19)

The cutoffs for the discretization are fit in each model as well.

Under the null, this test statistic should be χ2 distributed with I or J degrees

of freedom. These tests are run using the likelihood ratio test based on the maximum

likelihood estimator (eq. 4.7) and the same statistic jackknifed (eq. 4.11).

Usually, a simulation can be criticized because the specific form of the simula-

tion affects the outcomes. However, in this case the idea is to test the Type I error

rate of an estimator, so the simulation generates data where the null hypothesis is

true and finds the rate at which the significance test rejects the null hypothesis.

There is only one way for the null hypothesis to be true, so the simulation captures

this situation completely.

In the simulation, one thousand runs are done where data are generated and

then the tests performed with a significance level of 0.1. I then tabulate the fraction

of the time that the test was rejected. Ideally, this would be 10% of the time, or a 0.1

in the table. Values larger than this indicate a test that rejects the null hypothesis

too often, that is, the test is not sufficiently conservative. A value smaller than this
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indicates a test that does not reject the null hypothesis often enough, the test is too

conservative.

Because there are one thousand replicates, if the true value were 0.1, the

standard error on the mean would be about 0.01, so values between 0.08 and 0.12

would be in a 95% confidence interval built around the null hypothesis. Thus values

outside of this can be considered to not agree with an ideal value of 0.1.

The results of the simulation show that the likelihood ratio test behaves as

one might suspect, it is too large (not appropriately protective against Type I error)

while I is small, but then as I increases, it does work correctly as I becomes “large”

and even becomes too conservative at I = 32. In contrast, the bias corrected

jackknife tests generally reject about 10% of the time (Table 4.4), but this is rarely

within the confidence interval, which extends about 0.02 above and below every

value in the table.12 The jackknife test statistics are close but probably not exactly

distributed as described in the test-statistic, however they provide much more robust

protection for small values of I.

4.3 Computation

Estimating fixed effects in a non-linear framework poses a computational chal-

lenge (Green, 2002; Heckman, 1981). The basic problem is to find the maximum

12The confidence interval extends 0.02 above and below 0.10 when the actual value is 0.10. In
other cases on the table, this value is approximately correct.
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likelihood estimator using the log-likelihood function for the OME

`(β;Y,X) =
∑
mn

= Ymn log(µmn(β;X)) (4.20)

where m indexes the observations13 and n indexes the possible grades; β is the

regression coefficients (including the fixed effects); Ymn is 1 if a student received the

grade indexed by n in the observation indexed by m and is 0 otherwise; X are the

regressors (such as the class and student fixed effects); and µ(β;X) is the probability

of observing a particular grade, given X and β.

The algorithm used to maximize the likelihood is a Newton method optimizer.

The basic algorithm finds roots (zeros) in f(·) by iteratively solving

βk+1 = βk − [f ′(βk)]
−1f(βk), (4.21)

where k is the iteration index, f(β) = ∂`(β)
∂β

, the vector of first derivatives of the

likelihood with respect to the regression coefficients14 and f ′(β) = ∂2`(β)
∂β2 = H(β),

the Hessian matrix of second derivatives of the likelihood function with respect

to the regression coefficients. This equation is easily verified as solving OLS in a

single step by plugging in the first and second derivatives f(β) = XT (y −Xβ) and

f ′(β) = −(XTX).

In the case of the OME, assuming information equality (Nelder & Wedderburn,

1972), the Hessian matrix is a function of β, and so no such simplifications occur to

13An observation is a student taking a class and receiving a grade.
14Also called the first order conditions.
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eq. 4.21

f ′(β) = XT [Ω(β)]X, (4.22)

where Ω(·) is a block diagonal weighting matrix that varies with β.15

The typical method of maximizing this equation, essentially due to Fisher

(Bliss, 1935), is to calculate the Hessian H(βk) at every step (Nelder & Wedderburn,

1972). However, this method requires calculating and inverting the Hessian matrix,

a tasks that grows cubicly with the number of regressors. For the majority of the

problems presented in this dissertation, a sparse matrix package provided with the R

programing language makes this a tractable task. There are two ways this package

improves performance, by decreasing storage space for a matrix from o(m2) to o(k)

where k is the number of non-zero entries, and secondly by using automated methods

to ideally row reduce the Hessian matrix. However, some fits are too large for even

these methods to handle. Storage of the inverse Hessian is an issue not improved

by using sparse matrix methods because it is a dense matrix (there is no entry that

is necessarily zero). For the largest problems in this paper this is not feasible so an

alternative method must be used.

There are several methods proposed to get around this. Green proposes a

method based on the binomial matrix inversion theorem that does not require in-

version of or storage of a large matrix (Green, 2002). Both of these apply to a

single set of fixed effects. Green’s method cannot be readily extended to multiple

15The exact form of Ω(·) appears in McCullagh & Nelder (1989).
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sets of fixed effects. Another method proposed by Heckman estimates the equation

in two steps (Heckman, 1981). In one step the likelihood function is maximized

with respect to the fixed effects, and in the other the fixed effects are maximized

with respect to all other parameters. Heckman’s method has been successfully ex-

tended to a multiple fixed effects problem by Arcidiacono et al. with linear grades

(Arcidiacono et al., 2011).

A third alternative is used by Abowd et al. who invert the Hessian matrix

using graph theory (Abowd et al., 2002). While there is no general theory of the

complexity of this problem, this method is too memory intensive for this application,

perhaps because classes and students weave a denser interrelationship web than

workers and firms.16

The L-BFGS17 both avoids constructing the full inverse Hessian and keeps

only a local approximation the the Hessian (Liu & Nocedal, 1989; Zhu et al., 1997).

It does this by storing only the most recent updates to the Hessian, dropping those

that are over a pre-determined number of steps old. Because results from many prior

steps are thrown out, the Hessian approximation is always local to the current best

guess solution, an advantage when the system in question is only locally quadratic.

Also, because a rank two update is the outer product of two vectors, the vectors can

be stored instead of the matrix and the storage requirement is only O(n) instead of

the O(n2) required for a Hessian matrix.18

16An automated version of this is used in the R Matrix package and it does not sufficiently speed
up row reduction/inversion (Bates & Maechler, 2011).

17L-BFGS is a modified version of BFGS, so named because it was separately simultaneously
discovered by four authors (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970).

18See Liu & Nocedal (1989); Zhu et al. (1997) for a description of the method of efficiently
storing and using the approximate Hessian matrix.
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4.3.1 Convergence

Identifying when an accurate fit has been achieved is difficult because, while it

is true that the gradient goes to zero, finding this exact likelihood maximizer is not

possible. Knowing that one is sufficiently close to a peak in the likelihood function

is very difficult. Because of this I use two methods to confirm the maximization is

complete.

Typically numerical methods are considered to have converged when

||βk+1 − βk|| < ε, (4.23)

for some small value of ε. When used in this thesis, even extremely small values

of ε were found to not be sufficient for this to be a valid criterion. Refitting the

data many times from different starting locations resulted in large differences in β

and `(β) between the fits. A different convergence criteria is needed to assure the

likelihood function is maximized.

Instead, the criterion that the gradient be very small is much more useful. I

require

∣∣∣∣∣
∣∣∣∣∣∂`(βk)∂β

∣∣∣∣∣
∣∣∣∣∣
1

=
∑
m

∣∣∣∣∣∂`(βk)∂βm

∣∣∣∣∣ < υ (4.24)

where the value of υ is set to a small value, and a subscript k is used to indicate

the iteration number on the estimated value of β. However, the value of ||∂`(βk)
∂β
||1

does not decrease monotonically, so while I found this works , it does not guarantee
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convergence.

That this criterion was sufficient was checked by solving several of the op-

timization from five distinct starting points to verify that the results were nearly

identical. In every case, it was observed that decreasing the value of υ forced the

values of β closer together with a typical mean difference between β estimates being

0.01 for a relatively large value of υ of 100 . That is

1

n

∑
i

|βi − β′i| < 0.01 (4.25)

where β ∈ IRn, βi is the ith value of β for one estimate and β′i is the ith value of β

for an estimate solved from a separate starting location.

4.4 Discussion and Conclusion

When estimating a decomposition of grades into student and class fixed effects,

the best estimator is not a priori obvious. The OLS estimator, conditional on its

assumptions, should produce accurate estimates. The OMM has more palatable

assumptions but may not be an accurate estimator. Despite their shortcomings,

simulations showed that the OMM and OLS do a good job of estimating grades

decomposition for cases similar to those in the data considered herein.

One additional issue is that consistency of the likelihood ratio tests assumes

that the number of fixed effects does not grow with the number of observations.

This is not true in the case of student and class fixed effects where a first order bias

is induced. The jackknife has the appealing properties of removing first order bias
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in estimates and being estimable relatively quickly. A second simulation regarding

significance testing shows that when the number of observations per student is large,

the likelihood ratio tests are not biased towards rejection but that regardless of the

number of classes per student, the jackknifed likelihood ratio test is approximately

correct but slightly biased towards rejection. The advantage of the jackknife esti-

mate of the likelihood ratio test is that it provides equal levels of protection for large

and small numbers of observations per student and is thus robust to small numbers

of observations per student in a way that the non-jackknife likelihood ratio test is

not.

These models are also difficulty to estimate. Sparse matrix techniques did not

provide sufficient simplification but L-BFGS appears to be able to readily estimate

these models when there are a large number of fixed effects for students and classes.

I also found that a new criterion must be used for convergence–the total gradient,

not the length of the last update, must be small. When this criterion is used,

convergence is confirmed much more readily.

This class of model is estimable, the correlations can be trusted from OLS or

OMM estimators, and likelihood ratio tests can be trusted when using the jackknife

(knowing it is consistently somewhat under-conservative) or when there are more

than about thirty observations per student.
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Table 4.1: Simulation inputs.

Variable “Uncor” “Cor” “High GPA”

avg. student GPA 3.02 3.10 3.82
E(a)− E(d) 2.67 2.67 4.29

Var(a) 1.0 1.0 1.0
Var(d) 1.0 1.0 1.0

Cov(a, d) 0 0.7 0

bA/B 3 3 3
bB/C 2 2 2
bC/D 1 1 1
bD/F 0 0 0

nstud 32,000 32,000 32,000
classes per student 40 40 40
students per class 32 32 32

observations 1,280,000 1,280,000 1,280,000

Note: a and d are bivariate normally distributed, and the parameters of

their distribution is a sufficient statistic for the average student GPA.
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Table 4.2: Results of simulations.

“Uncor” “Cor” “High GPA”

True OME OLS True OME OLS True OME OLS

σai 1.00 1.13 0.66 1.01 1.04 0.80 1.00 1.96 0.33
σdj 0.79 0.81 0.51 0.73 0.74 0.57 0.79 0.84 0.23
σd̄i 0.12 0.13 0.08 0.67 0.68 0.52 0.12 0.13 0.04

τ −Ga,G 0.51 0.52 0.51 0.24 0.27 0.27 0.59 0.62 0.62
τ −Gd,G 0.42 0.42 0.42 −0.14 −0.14 −0.14 0.48 0.48 0.48
τ −Ga,d 0.00 −0.01 −0.01 −0.74 −0.72 −0.72 0.00 −0.02 −0.02

ρai,GPAi
0.95 0.91 0.99 0.87 0.93 0.93 0.85 0.65 0.99

ρd̄i,GPAi
0.12 0.12 0.12 −0.83 −0.83 −0.84 0.10 0.10 0.11

ρai,d̄i 0.00 0.01 0.00 −0.99 −0.98 −0.98 0.00 0.04 0.00

Note: Top panel shows standard deviations of student ability (ai), class difficulty (dj), and average class

difficulty for students (d̄j); the middle panel shows the Goodman-Kruskal correlation coefficients (τ −G)

between student ability ai, grade (G) and student average class difficulty d̄i; the bottom panel shows the

Pearson correlation between student GPA (GPAi), student ability, and student average class difficulty.

Table 4.3: Results of simulations, 4.0s removed.

“Uncor” “Cor” “High GPA”

True OME OLS True OME OLS True OME OLS

σai 0.98 1.02 0.66 1.00 1.04 0.80 0.86 0.87 0.34
σdj 0.79 0.81 0.51 0.73 0.74 0.57 0.79 0.84 0.23
σd̄i 0.12 0.13 0.08 0.67 0.68 0.52 0.12 0.13 0.04

ρai,GPAi
0.95 0.96 0.99 0.87 0.93 0.93 0.88 0.92 0.99

ρd̄i,GPAi
0.12 0.12 0.12 −0.83 −0.83 −0.84 0.10 0.09 0.10

ρai,d̄i 0.00 0.00 0.00 −0.99 −0.98 −0.98 −0.03 −0.04 −0.01

Note: For a description of the statistics, see Table 4.2.
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Table 4.4: Fraction of simulations with p-values smaller
than 0.10 for a χ2 test for inclusion of fixed effects.

LR test Jackknife LR test

Individual (i) FEs

I n =1,000 2,000 4,000 1,000 2,000 4,000
8 0.694 0.625 0.586 0.076 0.072 0.028
16 0.150 0.101 0.058 0.105 0.083 0.068
32 0.076 0.021 0.011 0.134 0.095 0.050

Class (j) FEs

I n =1,000 2,000 4,000 1,000 2,000 4,000
8 0.728 0.653 0.564 0.126 0.167 0.155
16 0.242 0.198 0.178 0.175 0.163 0.168
32 0.075 0.097 0.072 0.142 0.194 0.155

Note: For any cell, an ideal result is 0.10. Results higher than this

indicate too many rejections of the null hypothesis while results

lower than this indicate too few rejections of the null hypothesis.

This is based on a model Yij = ai + dj + εij analyzed using the

ordered logit. In every case, the null hypothesis is true, that is

there is no effect of ai nor dj on Yij . Because of this, p-values

smaller than 0.10 should happen about 10% of the time, and an

ideal value on this table is 0.10. The top portion shows results for

removing fixed effects for n individuals when there are T (left most

column) samples taken for each individual. The bottom portion

shows results for removing 500 fixed effects for the classes (dj).

Both tests show substantial bias for low T with increases in n only

slightly mitigating this effect. However, once T is as large as 32,

there is little bias. In these cases the p-value is small so the test is

actually conservative. For the jackknife, the test is often slightly

positively biased, but the result does not systematically depend on

T or n.
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Figure 4.1: The relationship between ability, observed ability, and grades.

ability

a1 a2

observed
ability

a1c a2c

ε1 ε2

grade F D C B A

Note: Two students with ability a1 and a2 (top scale) have their ability observed plus an
error term (a1c = ε1c, a2c = ε2c; middle scale) and are awarded discrete letter grades based
on this observation (‘F’ and ‘A’, respectively; bottom scale).

Figure 4.2: Type of variation the estimator allows between classes.

observed
ability

F D C B Aclass A
F D C B Aclass B

Note: The estimator used allows grades to vary by allowing each class to shift every letter
grade up (or down) by the same amount. Here class B is slightly harder and so shifts every
grade to the right by the same amount (represented by the arrows).

Figure 4.3: An example of the likelihood of a particular grade given observed ability.

ability

a1

density of
observed
ability

grade F D C B A

Note: The probability that a student with ability a1 will receive a ‘D’ grade is proportional
to the shaded area.
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Figure 4.4: Simulated performance expan-
sion path for the “uncor” simulation.
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Note: Shows the “true” simulated results
(black plusses), OME (red circles), and OLS
(green triangles). Students with perfect 4.0
GPAs are separated into their own group (top
left most point).

Figure 4.5: Simulated performance expan-
sion path for the “cor” simulation.
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Note: Shows the “true” simulated results
(black plusses), OME (red circles), and OLS
(green triangles). Students with perfect 4.0
GPAs are separated into their own group (top
right most point).

Figure 4.6: Simulated performance expansion path for the “High GPA” simulation.
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Note: Shows the “true” simulated results (black plusses), OME (red circles), and OLS (green
triangles). Students with perfect 4.0 GPAs are separated into their own group (top left most
point).

103



Appendix A

Data

The data for this thesis were provided by the Office of Institutional Research,

Planning and Assessment (OIRPA) as two files: a transcript file and a application

demographics file. On the transcript file, an observation is a single class that a

single student took. So, for example, a student who enrolled in 24 classes would

have 24 observations in the transcript file, each of which would contain the student’s

identifier, the class identifier and the resulting grade as well as several other variables

(Table A.1). The file includes all undergraduate transcripts from the University of

Maryland from Summer 2003 to Fall 2010. The transcript file is based on data taken

from the registrar’s office two weeks after the end of the semester and so these are

not necessarily the grades that would appear on students’ transcript because grades

can change after this point.1

The demographic data has columns shown on Table A.3. There were some

duplicates of newid but this was a technical problem because the values on the

file were always identical. When duplicate records exist all of the records do not

necessarily contain all of the information for the student, for example, an individual

might have columns missing or null on some rows regarding that individual that are

not missing on other rows regarding that individual. However, when data is present

1While I have no method of confirming this, the registrar’s office said in an interview that
grades do change after this point but it is not the common.
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on two rows, that data is always identical. Because of this, all of the data from all

rows is copied onto a single row and all other rows are removed.

The transcript and demographics files can be linked by students using the

newid variable. This is an identifier generated by OIRPA for the purpose of this

work, unique to a student and distinct from the social security number and university

ID for the purpose of maintaining student anonymity.

The grades are not used exactly as they appear on the file. The letter grades

are mapped to grade points per the University of Maryland standard (which does

not use the plusses and minuses). Since the OME needs only assume that the values

are ordinal, they are included in this specification. In addition, there are several

things that can happen besides of award of a letter grade. All possible values of

crs grade are shown in Table A.2 along with how they are used.

Construction of degree, enter, and full samples

The data contains three extracts: “degree”, “enter”, and “full” which represent

different levels of filtering the students. Some criteria were applied to all three

datasets.

The following describes these criteria and the order in which they were applied,

which impacts the final sample. Graduate classes (course number above 500) were

removed because they are not typical college classes. Internships (course number 386

and 387) were removed because they are not typical college classes. Transcript ob-

servations where there is no letter grade were removed (as described above). Classes

that did not award two “interior” grades (‘B+’ or lower and ‘C-’ or higher) were

also excluded because they were essentially uninformative. Most of these classes
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awarded only the ‘A’s or ‘F’s but a small number awarded both ‘A’s and ‘F’s but

not grades between the two. These classes appear to use a version of pass fail that

is inconsistent with the model used for grades. Students who earned fewer than two

interior grades were removed from the data. This was done because non-interior

grades carry very little information and so these students fixed effects were not well

estimated. Because the information content of their grades is low, the effect of

removing them on other students or classes is small or zero. Courses that had a

total of 5 students or fewer over the eight year sample were also removed because

of their unusual nature. In addition, students with fewer than five courses on the

data set were removed. Finally, students who were under about 18 or over about

25 at entrance were removed.2 Students in both of these groups (under 18 and over

25) were observed to take substantially different courses than students within this

age range. In particular, the students in the age extremes tended to be much more

focused on a particular department than students between 18 and 25. The number

of transcript observations removed by each of these criteria is shown in Table A.4.

After applying these filters, an observation would be counted as part of the “full”

sample.

The “enter” sample is the “full” sample after dropping students who entered

after August of 2005 (and thus had fewer than five years to complete their degree)

and dropping those who entered in the first observed term (Summer of 2003) with

initial credits. Finally, students must have been degree seeking at some point in

their career to be in the “enter” sample.

2These ages are approximate because the age variable is simply an integer with no “as of” date.
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The “degree” sample is the “enter” sample with the additional criterion that

student must appear to have graduated. In particular, the student must have 120

total credits (enrolled plus otherwise appearing on the transcript), or have enrolled

for at least 8 terms. These criteria probably include a larger set than those students

who graduated because students might enroll in 8 terms or 120 credits but still not

complete a degree.

Construction of derived variables

Several derived variables are used from these dataset and the following de-

scribes their construction.

Each student’s GPA is calculated as follows:

GPAi =

∑
Ai
GPij × crij∑
Ai
crij

where GPij is the grade points (from Table A.2) for student i in class j, and crij is

the number of credits student i was enrolled in for class j, and Ai is the set of all

classes student i received a non-dropped grade in. The set Ai thus excludes classes

that did not meet the selection criteria for the “full” sample (see above), even if a

valid student enrolled in that class.

The following demographic variables were extracted from the transcript data

by extracting the first (chronologically) time the student appears on the transcript

data: the first term of enrollment, the number of previous credits at the time of

enrollment, the age at entry. From the last term of enrollment, the final major and

final term of enrollment are captured and recorded as demographic data.
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The following demographic variables were extracted from the transcript data

using all of the transcript data for an individual student: the number of terms (the

sum of terms where the student is enrolled), the number of classes (the sum of the

number of classes the student was enrolled in), if the student was ever listed as

degree seeking (if any of the ever deg seek values were TRUE), if the student was

ever enrolled (if any of the ever enrolled values were TRUE).

Class year is calculated each semester using the total number of credits at

the beginning of the semester (last cum cr earn ug, but called cr in the following

equation):

class year =



freshman if cr < 30

sophomore if 30 ≤ cr < 60

junior if 60 ≤ cr < 90

senior if 90 ≤ cr

(A.1)

For the regressions, total credits is the sum of crs credits on the full dataset

by semester. Registered credits is the sum of crs credits where the grading method

is “Regular,” meaning that the outcome was intended to be a grade. Examples where

the outcome is not a grade for a class for which the grading method is“regular” are

shown in Table A.2. Every value in that table except “audit” is possible when the

grading method is “Regular.”
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Table A.1: Transcript columns.

Variable name Description

newid student ID generated by OIRPA
term numeric term (ex: “200508” for Spring of 2005)
term transl a textual term description (ex: “Spring 2005”)
course UMD course number (ex: “ENGL101”)
section section number
crs grade the grade awarded in the course
crs credit number of course credits
matric entry stat ug matriculation status
crs grd meth cd the course grading method code (ex: “R” for regular)
race citz cd race / citizen status code
race citz text description of race /citizen code
last cum cr earn ug college cumulative credits before the term in question
stu campus code the student’s campus code
ug gr lev undergraduate level
official enrolled ind indicator for if the student is officially enrolled
major the first major of the student when taking this class
student type an indicator of participation in certain programs
deg seeking ind indicator of if the student is degree seeking (matricu-

lated)
cls stand prior unknown
coll adv the college (ex: “BSOS”, the college the Economics de-

partment is in.)
last cum gpa ug the cumulative GPA prior to enrollment
age the student’s age
gender cd the gender of the student

Note: Some of these variables are not used, such as student type and section.
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Table A.2: Transcript columns.

Grade GP value OME value

A+ 4 A/A+
A 4 A/A+
A- 4 A-
B+ 3 B+
B 3 B
B- 3 B-
C+ 2 C+
C 2 C
C- 2 C-
D+ 1 D
D 1 D
D- 1 D
F 0 F

withdraw completely 0 F
withdraw 0 F
academic dishonesty 0 F

pass (when taken pass/fail) observation dropped
satisfactory (when taken satisfactory/fail) “
fail (when taken pass/fail or satisfactory/fail) “
missing “
incomplete “
audit “

Note: Withdraw completely means that a student withdrew from all his or her classes.

Withdraw means that a student withdrew from a single class.
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Table A.3: Application / demographic columns.

Variable name Description

newid a student ID generated by OIRPA
zip5 the zip code from the student’s permanent address
sat high verbal SAT verbal score
sat high math SAT math score
act high englsih ACT english score
act high math ACT math score
act high reading ACT reading score
act high science ACT science score
act high composite ACT composite score
sat recentered if the SAT score is recentered (all are)
sat recentered cd numeric code for previous
hs acad gpa high school academic GPA
weighted gpa ind unknown
high school name of the high school attended
high school cd numeric code for previous
hs class rank pct high school class rank as a percentage
transfer gpa GPA at transfer institution
last trans inst name of the last institution
last trans inst cd numeric code for previous

Note: All variables are as of application.
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Table A.4: Observations removed by sample selection criteria.

Criteria n remaining n removed

no filters 1,840,212 —
graduate classes 1,836,364 3,848
internships 1,831,622 4,742
no grade 1,789,063 42,559
course awarded interior grades 1,776,799 12,264
student earned interior grades 1,685,971 90,828
course ever had more than five enrollees 1,685,345 626
student ever enrolled in five classes 1,675,859 9,486
age 18 to 25 1,621,707 54,152

“full” sample 1,621,707 —
“enter” sample 655,570 966,137
“degree” sample 523,151 132,419

Note: An observation is an individual transcript entry (ex: Sam takes organic chem-

istry and gets a ‘B’). The bottom section shows the number of observations in each of

the samples. The number removed column is the difference between the n remaining

column from that line and the one above it.
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