
XSQ: Streaming XPath QueriesFeng Peng Sudarshan S. ChawatheDepartment of Computer S
ien
eUniversity of Maryland, College Park, Maryland 20742, U.S.A.fpengfeng,
hawg�
s.umd.edu1 Introdu
tionXML is be
oming the de fa
to standard for informationex
hange and the amount of XML data is growing rapidly.Some of this data is a

essible only in streaming form.That is, data items are presented in a �xed serialization;the appli
ation
annot seek forward or ba
kward in thedata, nor
an it revisit a data item en
ountered earlierunless it is expli
itly bu�ered. In addition to data thato

urs natively in streaming form (e.g., sto
k market up-dates, real-time news feeds), it is useful to pro
ess largeXML datasets in streaming form be
ause of the greatereÆ
ien
y of streaming systems (whi
h use a sequentials
an instead of non-sequential data a

ess on disk). Inthe sequel, we use the term streaming XML to refer toboth data that o

urs naturally in streaming form anddata that is best a

essed in streaming form. We addressthe problem of evaluating XPath queries on streamingXML. (XPath is an emerging standard query languagethat is useful by itself, and forms an important part ofmore expressive languages su
h as XQuery.) A streamingquery engine or XPath
annot rely on any method thatrequires instantiation of a large subset of the data. For ex-ample, methods based on the DOM interfa
e to XML donot satisfy this requirement. Some of the distinguishingfeatures of our streaming XPath query pro
essor,
alledXSQ, are as follows:� To the best of our knowledge, XSQ is the �rst systemfor querying XML data streams that handles XPathfeatures su
h as
losures, aggregations, and multiplepredi
ates. Re
ent work on querying XML streamshas addressed some of these issues separately, butnot in
ombination. For example, the XMLTK pro-gram [ACR+02℄ allows retrieval of a portion of anXML �le spe
i�ed using XPath. However, XMLTKdoes not support predi
ates in XPath expressions.The XSM system [LMP02℄ handles predi
ates in thequery but it does not handle the
losures and aggre-gations. As dis
ussed later, the
ombination of the
losures and multiple predi
ates introdu
es substan-tial diÆ
ulties.� XSQ is very eÆ
ient. For example, we dupli
atethe DBLP dataset to generate a dataset of one gi-gabyte in our experiments. Parsing the datasetalone takes 297 se
onds. Evaluating the query//arti
le[�key℄//title/text() over this datasetrequires only 84 se
onds of additional time to returnall the results. Initial results are produ
ed withinone se
ond of issuing the query. Another feature of

the system is that it is very eÆ
ient in its use of mainmemory. Spe
i�
ally, a data item is bu�ered by XSQonly if its membership in the query result
annot bede
ided based on the data seen so far. Su
h a dataitem must therefore be bu�ered by any streamingquery pro
essor that produ
es
omplete results.� The XSQ system uses a
lean design based on hierar-
hi
al pushdown transdu
ers that
onsist of standardtransdu
ers augmented with queues. The system iseasy to understand, implement, prove
orre
t, andexpand to more
omplex queries.2 The XSQ SystemThe basi
 idea of the XSQ system is to use a pushdowntransdu
er (PDT) to pro
ess the events that are gener-ated by a SAX parser when it parses XML streams. APDT is a pushdown automaton (PDA) with a
tions de-�ned along with the transition ar
s of the automaton. APDT is initialized in the start state. At ea
h step, basedon the next input symbol and the symbols in the sta
k,it
hanges state and operates the sta
k a

ording to thetransition fun
tions. The PDT also de�nes an outputoperation whi
h
ould generate output during the tran-sition. In the XSQ system, the PDT is augmented witha bu�er so that the output operation
ould also be thebu�er operations.An XPath query in the XSQ system
onsists of apattern expression, whi
h is spe
i�ed by a lo
ationpath, and an output expression. The lo
ation pathis a sequen
e of lo
ation steps that spe
ify the pathto a desired element. The output expression spe
i-�es what portions or fun
tions of the element shouldbe outputted. Ea
h lo
ation step has an axis, anode test, and an optional predi
ate. For example,in the query //pub[year>2000℄/book/name/text(),//pub [year>2000℄/book/name is the pattern expres-sion. The output expression, text(), spe
i�es that onlythe text in the elements should be outputted. In the �rstlo
ation step //pub[year>2000℄, // is the axis denot-ing
losure, pub is the node test, and year>2000 is thepredi
ate.Without predi
ates and the output expression, anXPath query
an be deemed as a �lter pattern that
ouldbe used to �lter the XML do
uments in a
olle
tion,returning only the do
uments that mat
h the pattern.Sin
e these XPath queries are essentially regular expres-sions, they
ould be
onverted dire
tly to �nite state au-tomata (FSAs) whi
h a

ept the same set of XML do
-1

uments. Systems su
h as [AF00, CFGR02℄ use FSAs to�lter the XML streams and fo
us mainly on groupingand indexing similar XPath expressions. With predi-
ates and output expressions in the XPath query, it isnot so straightforward to
onvert the XPath query intoan transdu
er that answers the query. When the queryin
ludes aggregations and
losures, the problem be
omeseven more diÆ
ult. We brie
y des
ribe some of the diÆ-
ulties below:� The sequen
e of elements in the data stream makes itpossible that some of the predi
ates
annot be evalu-ated when the we en
ounter an element that satis�esthe pattern expression of the query. Thus we needto bu�er these elements until the data required toevaluate the predi
ates is available. For example,
onsider the query /book[year=2002℄/name. In thedata stream, the year
hild of a book element may
ome after the name
hild of the book. Thus whenwe en
ounter the name
hild, we need to bu�er it.Only after we en
ounter the year
hild of the book
an we de
ide whether the name should be send tooutput.� The predi
ates, whi
h
ome in various forms, needto be asso
iated with di�erent SAX events. For ex-ample, for the query /book[author�age<25℄/name,the predi
ate is evaluated upon the begin event ofthe author
hild of the book element. If one of theauthors of the book is younger than 25, the nameof the book should be outputted. Thus we need tosee all the authors before we
an de
ide that thename is not in the result. In
ontrast, for the query/book[�id>25℄/name, we
an de
ide at the beginevent of the book element whether the name shouldbe outputted sin
e the attribute id always
omes inthe begin event of the book element in the stream.� When a predi
ate is evaluated, we need to �rst de
idewhat items in the bu�er are a�e
ted by the result ofthis predi
ate. If the predi
ate evaluates to false, weneed to remove all the items that are a�e
ted by itfrom the bu�er right away. If the predi
ate evaluatesto true, for ea
h item in the bu�er that is a�e
ted bythe predi
ate, we need to de
ide whether there areother predi
ates unevaluated required by the item.If not, the item now satis�es all its predi
ates andshould be send to the output immediately. Other-wise, we have to keep tra
k that the item has satis-�ed the
urrent predi
ate but is still waiting for theevaluation of other predi
ates.� When there are
losure axes \//" in XPath queriesdenoting \des
endant-or-self", the above problembe
omes more
ompli
ated. There may be severaldi�erent ways that the path to an element mat
hesthe pattern expression of the query. Ea
h mat
hgives a di�erent evaluation of the predi
ates. Some ofthese evaluations may be false. However, as long asthere is one mat
h for whi
h all predi
ates evaluate

to true, the element should be in
luded in the result.At the same time, dupli
ates should be avoided ifmultiple mat
hes have true evaluation for all predi-
ates.Our solution uses a hierar
hi
ally stru
tured PDT,
alledHPDT, that
onsists of smaller PDTs that have their ownbu�ers. Ea
h small PDT,
alled a basi
 PDT (BPDT), isgenerated using templates based on the kinds of lo
ationsteps in XPath queries. The templates are based on thefollowing
ategorization of lo
ation steps:1. Test whether the
urrent element has a spe
i�ed at-tribute, or whether the attribute satis�es some
on-dition, (e.g., /book[�id℄, /book[�id � 10℄).2. Test whether the
urrent element
ontains some text,or whether the text value satis�es some
ondition,(e.g., /year[text() = 2000℄).3. Test whether the
urrent element has a spe
i�ed typeof
hild, (e.g., /book[author℄).4. Test whether the the
urrent element's spe
i�ed
hild
ontains an attribute, or whether the value of the at-tribute satis�es some
ondition, (e.g., /pub[book�id� 10℄) .5. Test whether the spe
i�ed
hild of the
urrent ele-ment has a value that satis�es some
ondition, (e.g.,/book[year � 2000℄).
$3

$1

$2

$5

<
ta

g>

<
/ta

g>

</child>

<child>

{q
ue

ue
.c

le
ar

()
}

<c
hi

ld
.te

xt
()

[te
xt

()
 !=

 v
al

]

</child>

$4
</child> {queue.upload()}

[text() == val]
<child.text()>

$5

Start State

NA StateTRUE State

<
/ta

g>
{q

ue
ue

.u
pl

oa
d(

)}

Figure 1: Template of BPDT for a lo
ation step of theform /tag[
hild=val℄Figure 1 depi
ts a BPDT that pro
esses a single lo-
ation step with a predi
ate testing the text of a
hild.In ea
h BPDT, there is a TRUE state that indi
ates thepredi
ate in this lo
ation step has been evaluated to betrue and an NA state that indi
ates the predi
ate hasnot been evaluated yet. Ea
h BPDT also has its ownbu�er whi
h is organized as a queue. In Figure 1, noti
ethat only when all
hildren have failed the test and the
urrent element rea
hes its end event will the automaton
lear the
ontent of its bu�er, whi
h exa
tly expresses thelogi
 of the predi
ate. Due to the spa
e limit, the graphsof other templates are omitted here. Details appears inour te
hni
al report.11Available at http://www.
s.umd.edu/~pengfeng/xsq/2

$8 $9 $10

</year>

<year>

</year>

<pub> </pub>
{queue.clear()}

[te
xt

()
<=

20
00

]

<y
ea

r.t
ex

t()
>

$2

$3$4

$5

$6

////

$7
{queue.flush()} {queue.flush()}

[text()>2000]
<year.text()>

</year>

</pub>

$11

{queue.clear()}
</book> <book></book>

$12

<author>
{queue.flush()} <author>

{queue.clear()}
</book><book>

{queue.upload()}

</book>

<root> </root>

bpdt(1,1)

$1
bpdt(0,0)

</author>

<name><name>

$13
</author>

bpdt(2,3)

HPDT for query:

//pub[year>2000]//book[author]/name/text()

$14

</name> <name> <name> </name>
{queue.upload()}

<name.text()>

$15

<name.text()>
{queue.enqueue(name.text()}

$16

<name.text()>
{queue.enqueue(name.text()}

$17

<name.text()>
{output(name.text())}

bpdt(3,5) bpdt(3,4)bpdt(3,6)

bpdt(2,2)

bpdt(3,7)

{queue.enqueue(name.text()}

{queue.upload()}
</name></name>

{queue.upload()}

//

Figure 2: HPDT generated for query: //pub[year>2000℄//book[author℄/name/text()Next we use an example HPDT shown in Figure 2 toillustrate how to build the HPDT. Ea
h BPDT has anunique id
onsisting of the level and the id inside thelevel. We �rst generate the single bpdt(0,0) for the rootaxis in level 0, whi
h exists in all XPath queries. Thenthe TRUE state of bpdt(0,0) is used as the start stateof bpdt(1,1) in level 1, whi
h is generated for the �rstlo
ation step. For both TRUE state $7 and NA state$3 of bpdt(1,1), we generate a BPDT in level 2 for these
ond lo
ation step. The di�eren
e between them is theoperations on the transition ar
s. In bpdt(2,3), whi
h is
onne
ted to the TRUE state, we
ush the
ontent inthe queue to the output if
urrent predi
ate is satis�ed.In the
ontrast, sin
e bpdt(2,3) is
onne
ted to the NAstate, whi
h indi
ates that the predi
ate in the upperlevel has not been evaluated yet, we have to upload the
ontent in the queue to the upper level BPDT after the
urrent predi
ate evaluates to true. In both BPDTs, thequeue will be
leared if the predi
ate evaluates to falseat the end of the element. In the BPDT in the lowestlayer, the
ontent of the potential result is put into thequeue unless we know that all the previous predi
ates aretrue, in whi
h
ase we should output the data dire
tly.Thus we
an see that only in bpdt(3,7) do we output thedata dire
tly, and in all the other BPDTs in the lowestlevel, we enqueue the data into the queue.There are 3 lo
ation steps in the query. Instead of gen-erating 24� 1 = 15 BPDTs, whi
h is the maximum num-ber of BPDTs a 4-level HPDT
ould have, there are a
-tually only 8 BPDTs in the system be
ause only BPDTs

with predi
ates have two
hildren. Thus the number ofthe states in the HPDT is redu
ed signi�
antly. More-over, in the implementations, be
ause of the similaritiesof the BPDTs in the same level, we a
tually do not needto instantiate all the BPDTs. It suÆ
es to only
reateone BPDT for ea
h layer and use bitmap
ags to keeptra
k of the operations. As to the memory usage, fromFigure 2 we
an see that the HPDT only puts the itemsinto the bu�er when they satisfy the pattern expressionbut have predi
ates that
annot be evaluated yet. Assoon as one of the predi
ates evaluates to false, the
on-tent in the bu�er of the
urrent BPDT will be
learedright away. Meanwhile, if all the predi
ates have beenevaluated true, the
ontent will be
ushed to the outputimmediately. Thus the system only bu�ers data that anystreaming system must bu�er.In order to pro
ess
losures and aggregations, we makesome extensions to the basi
 ideas presented above. Foraggregations, the HPDT is augmented with a statisti
sbu�er. It uses templates for the possible aggregationfun
tions in the lowest level BPDTs. For
losures, thebasi
 idea is to keep tra
k of all the possible paths to-ward the
urrent element that mat
h the pattern expres-sion. Unless all the paths have failed the predi
ates, the
ontent will be kept in the queue. Due to spa
e limita-tion, the details to handle the
losures and aggregationsare omitted here. Our experiments show that both fea-tures are handled without any signi�
ant degradation ofperforman
e.3

3 Demonstration

Figure 3: S
reenshot of the XSQ interfa
eWe have implemented the XSQ system using Sun JavaSDK version 1.4 and Xer
es 1.0 parser for Java. The ex-periments use the Redhat 7.2 distribution of GNU/Linux(kernel 2.4.9-34) on a Pentium III 900MHZ ma
hine with1GB of main memory.For the demonstration, we use large XML �les (20MBto 2GB) to simulate XML streams. One dataset is syn-theti
 data generated using IBM XMLGen. Anotherdataset is generated by dupli
ating the DBLP datasetof size 119MB, whi
h is
ommonly used as the test setfor XML query systems. Other real life datasets, su
h asNASA ADC XML repository of size 24MB and Swiss-PortProtein knowledgebase of size 114MB , are also part ofthe demonstration. (Any well formed XML data stream
an be used as input data.)We use queries su
h as the one in Figure 2 to demon-strate various features of the system:
losures, predi
ateson the text of a
hild, and multiple predi
ates in a query.Even if the data is heavily nested and there are multiple
losures in the query, we demonstrate that the amountof memory used to pro
ess the query is still small. Wealso demonstrate that the XSQ system generates outputwhile the SAX parser is still parsing the XML �le. Inthe graphi
al interfa
e shown in Figure 3, we also displaythe stru
ture of the HPDT (similar to the graph in Fig-ure 2). (Users
an pose other XPath queries to test theperforman
e of the system.)In our experiments, the XSQ system is faster thanother
urrently available systems that we tested, su
h asGalax [FS02℄, Joost [BCN02℄, and XALAN. For example,it took the Galax system, whi
h is DOM-based, about 47se
onds to evaluate the query Q4 in Figure 4 while XSQonly uses 10.4 se
onds. Further, in our experiments withthese, and some other similar systems, the DBLP andSwiss-Port datasets exhausted available main memory.An ex
eption is the XMLTK [ACR+02℄ program whi
his about 50% faster than XSQ. XMLTK is eÆ
ient sin
eit uses a simpler automaton without bu�ers. Be
ause

Dataset Size Query Query Time Parse TimeDBLP 119MB Q1 20.9s 48.3sDBLP-1GB 1024MB Q2 84s 298sSYN-2GB 2135MB Q3 224s 774sNASA 25MB Q4 2.6s 7.88sSwiss-Port 114MB Q5 11.7s 49.6sQ1: //inpro
eedings[year>1995℄/
ount()Q2: //arti
le[�key℄//title/text()Q3: /pub[year℄/book[�id=a3℄/author/name/first/text()Q4: /dataset[�subje
t=astronomy℄/referen
e/sour
e/other[date℄/nameQ5: /Entry/Ref/CiteFigure 4: Representative experimental resultsXMLTK does not handle predi
ates and aggregations, italways outputs the result dire
tly. Moreover, bu�er oper-ations, whi
h are essential to pro
ess predi
ates and ag-gregations, introdu
e signi�
antly larger amount of stringoperations. Sin
e parsing a

ounts for a signi�
ant fra
-tion of query pro
essing time, another fa
tor that a�e
tsthe performan
e is the di�erent SAX parsers used in thesystems XSQ uses Xer
es for Java that is slower thanExpat parser written in C that is used by XMLTK. Todemonstrate the eÆ
ien
y of the XSQ system, we also
ompare the speed of the XSQ system with a pure parserwhi
h parses the XML �le and does nothing else. Thepure parser gives an lower bound on the time of a stream-ing pro
essing system needs to pro
ess the streams. Somesample queries and experimental results are shown in theFigure 4. The query times refer to the times for
omput-ing the entire result sets. In all
ases, initial (streaming)results are available within 1 se
ond.Referen
es[ACR+02℄ I. Avila-Campillo, D. Raven, et al. An XMLtoolkit for light-weight XML stream pro
essing, 2002.http://www.
s.washington.edu/homes/su
iu/XMLTK/ .[AF00℄ M. Altinel and M. J. Franklin. EÆ
ient �lteringof XML do
uments for sele
tive dissemination of infor-mation. In Pro
eedings of 26th International Conferen
eon Very Large Data Bases, pages 53{64, Cairo, Egypt,2000.[BCN02℄ O. Be
ker, P. Cimpri
h, and C. Nen-twi
h. Streaming transformations for XML, 2002.http://www.gingerall.
z/stx.[CFGR02℄ C. Y. Chan, P. Felber, M. N. Garofalakis, andR. Rastogi. EÆ
ient �ltering of XML do
uments withXPath expressions. In 18th Intl. Conf. on Data Engineer-ing(ICDE), pages 235{244, San Jose, February 2002.[FS02℄ M. Fernndez and J. Simon. Galax, 2002.http://db.bell-labs.
om/galax/.[LMP02℄ B. Ludas
her, P. Mukhopadhayn, and Y. Pa-pakonstantinou. A transdu
er-based XML query pro-
essor. In Pro
eedings of 28th International Conferen
e onVery Large Data Bases, Hongkong, August 2002.4

