XSQ: Streaming XPath Queries

Feng Peng

Sudarshan S. Chawathe

Department of Computer Science
University of Maryland, College Park, Maryland 20742, U.S.A.
{pengfeng, chaw}@cs.umd.edu

1 Introduction

XML is becoming the de facto standard for information
exchange and the amount of XML data is growing rapidly.
Some of this data is accessible only in streaming form.
That is, data items are presented in a fixed serialization;
the application cannot seek forward or backward in the
data, nor can it revisit a data item encountered earlier
unless it is explicitly buffered. In addition to data that
occurs natively in streaming form (e.g., stock market up-
dates, real-time news feeds), it is useful to process large
XML datasets in streaming form because of the greater
efficiency of streaming systems (which use a sequential
scan instead of non-sequential data access on disk). In
the sequel, we use the term streaming XML to refer to
both data that occurs naturally in streaming form and
data that is best accessed in streaming form. We address
the problem of evaluating XPath queries on streaming
XML. (XPath is an emerging standard query language
that is useful by itself, and forms an important part of
more expressive languages such as XQuery.) A streaming
query engine or XPath cannot rely on any method that
requires instantiation of a large subset of the data. For ex-
ample, methods based on the DOM interface to XML do
not satisfy this requirement. Some of the distinguishing
features of our streaming XPath query processor, called
XSQ, are as follows:

e To the best of our knowledge, XSQ is the first system
for querying XML data streams that handles XPath
features such as closures, aggregations, and multiple
predicates. Recent work on querying XML streams
has addressed some of these issues separately, but
not in combination. For example, the XMLTK pro-
gram [ACRT02] allows retrieval of a portion of an
XML file specified using XPath. However, XMLTK
does not support predicates in XPath expressions.
The XSM system [LMPO02] handles predicates in the
query but it does not handle the closures and aggre-
gations. As discussed later, the combination of the
closures and multiple predicates introduces substan-
tial difficulties.

e XSQ is very efficient. For example, we duplicate
the DBLP dataset to generate a dataset of one gi-
gabyte in our experiments. Parsing the dataset
alone takes 297 seconds. Evaluating the query
//article[@key]//title/text () over this dataset
requires only 84 seconds of additional time to return
all the results. Initial results are produced within
one second of issuing the query. Another feature of

the system is that it is very efficient in its use of main
memory. Specifically, a data item is buffered by XSQ
only if its membership in the query result cannot be
decided based on the data seen so far. Such a data
item must therefore be buffered by any streaming
query processor that produces complete results.

e The XSQ system uses a clean design based on hierar-
chical pushdown transducers that consist of standard
transducers augmented with queues. The system is
easy to understand, implement, prove correct, and
expand to more complex queries.

2 The XSQ System

The basic idea of the XSQ system is to use a pushdown
transducer (PDT) to process the events that are gener-
ated by a SAX parser when it parses XML streams. A
PDT is a pushdown automaton (PDA) with actions de-
fined along with the transition arcs of the automaton. A
PDT is initialized in the start state. At each step, based
on the next input symbol and the symbols in the stack,
it changes state and operates the stack according to the
transition functions. The PDT also defines an output
operation which could generate output during the tran-
sition. In the XSQ system, the PDT is augmented with
a buffer so that the output operation could also be the
buffer operations.

An XPath query in the XSQ system consists of a
pattern expression, which is specified by a location
path, and an output expression. The location path
is a sequence of location steps that specify the path
to a desired element. The output expression speci-
fies what portions or functions of the element should
be outputted. Each location step has an axis, a
node test, and an optional predicate. For example,
in the query //publyear>2000]/book/name/text(),
//pub [year>2000] /book/name is the pattern expres-
sion. The output expression, text (), specifies that only
the text in the elements should be outputted. In the first
location step //publyear>2000], // is the axis denot-
ing closure, pub is the node test, and year>2000 is the
predicate.

Without predicates and the output expression, an
XPath query can be deemed as a filter pattern that could
be used to filter the XML documents in a collection,
returning only the documents that match the pattern.
Since these XPath queries are essentially regular expres-
sions, they could be converted directly to finite state au-
tomata (FSAs) which accept the same set of XML doc-

uments. Systems such as [AF00, CFGR02] use FSAs to
filter the XML streams and focus mainly on grouping
and indexing similar XPath expressions. With predi-
cates and output expressions in the XPath query, it is
not so straightforward to convert the XPath query into
an transducer that answers the query. When the query
includes aggregations and closures, the problem becomes
even more difficult. We briefly describe some of the diffi-
culties below:

e The sequence of elements in the data stream makes it
possible that some of the predicates cannot be evalu-
ated when the we encounter an element that satisfies
the pattern expression of the query. Thus we need
to buffer these elements until the data required to
evaluate the predicates is available. For example,
consider the query /book[year=2002]/name. In the
data stream, the year child of a book element may
come after the name child of the book. Thus when
we encounter the name child, we need to buffer it.
Only after we encounter the year child of the book
can we decide whether the name should be send to
output.

e The predicates, which come in various forms, need
to be associated with different SAX events. For ex-
ample, for the query /book [author@age<25]/name,
the predicate is evaluated upon the begin event of
the author child of the book element. If one of the
authors of the book is younger than 25, the name
of the book should be outputted. Thus we need to
see all the authors before we can decide that the
name is not in the result. In contrast, for the query
/book [@id>25] /name, we can decide at the begin
event of the book element whether the name should
be outputted since the attribute id always comes in
the begin event of the book element in the stream.

e When a predicate is evaluated, we need to first decide
what items in the buffer are affected by the result of
this predicate. If the predicate evaluates to false, we
need to remove all the items that are affected by it
from the buffer right away. If the predicate evaluates
to true, for each item in the buffer that is affected by
the predicate, we need to decide whether there are
other predicates unevaluated required by the item.
If not, the item now satisfies all its predicates and
should be send to the output immediately. Other-
wise, we have to keep track that the item has satis-
fied the current predicate but is still waiting for the
evaluation of other predicates.

e When there are closure axes “//” in XPath queries
denoting “descendant-or-self”, the above problem
becomes more complicated. There may be several
different ways that the path to an element matches
the pattern expression of the query. Each match
gives a different evaluation of the predicates. Some of
these evaluations may be false. However, as long as
there is one match for which all predicates evaluate

to true, the element should be included in the result.
At the same time, duplicates should be avoided if
multiple matches have true evaluation for all predi-
cates.

Our solution uses a hierarchically structured PDT, called
HPDT, that consists of smaller PDTs that have their own
buffers. Each small PDT, called a basic PDT (BPDT), is
generated using templates based on the kinds of location
steps in XPath queries. The templates are based on the
following categorization of location steps:

1. Test whether the current element has a specified at-
tribute, or whether the attribute satisfies some con-
dition, (e.g., /book[@id], /book[@id < 101).

2. Test whether the current element contains some text,
or whether the text value satisfies some condition,
(e.g., /year[text () = 2000]).

3. Test whether the current element has a specified type
of child, (e.g., /book [author]).

4. Test whether the the current element’s specified child
contains an attribute, or whether the value of the at-
tribute satisfies some condition, (e.g., /pub[book@id
< 10]) .

5. Test whether the specified child of the current ele-
ment has a value that satisfies some condition, (e.g.,
/book[year < 20001]).

Start State
$1

3 -

_Q —

vE iy
o

- <child.text()> < 2

[text() == val] hild ~

@ </child> @{queue.upload()} <chila> @
</child> NA State

TRUE State

Figure 1: Template of BPDT for a location step of the
form /taglchild=vall

Figure 1 depicts a BPDT that processes a single lo-
cation step with a predicate testing the text of a child.
In each BPDT, there is a TRUFE state that indicates the
predicate in this location step has been evaluated to be
true and an NA state that indicates the predicate has
not been evaluated yet. Each BPDT also has its own
buffer which is organized as a queue. In Figure 1, notice
that only when all children have failed the test and the
current element reaches its end event will the automaton
clear the content of its buffer, which exactly expresses the
logic of the predicate. Due to the space limit, the graphs
of other templates are omitted here. Details appears in
our technical report.!

lAvailable at http://www.cs.umd.edu/ pengfeng/xsq/

HPDT for query:
//pub[year>2000]//book[author]/name/text()

bpdt(0,0)

</root>

1l
gz%

<root>

bpdt(1,1)
</pub> </pub>
{queue.clear()}
<year.text()>
/ <lyear> [text()>2000] I
ueue.flush ueue.flush DR Al
<Aa 0} oo, 1 0} $3<
bpdt(2,3) bpdt(2,2)
</book> </book> W<book> <book> i </book> </book>
{queve.clear()} queue.clear()}
<author> <author>
</author> {queue flusn(} éﬁ - {quwe?urpload()} </author> @
- @ﬂ J———— 510)
bpdi(3,7) bpdt(3,6) bpdt(3,5) bpdt(3.4)
</name>| | <name> </name> <name> </name> <name>| | cnames)
|\ {queue.upload()} |\ { queue.upload()} <name> { queue.upload()} |
17, 16, @
nametext() <name.text()> t > <name.text()>
{ output(name é@‘t())} {queve. enqueue(name text(} {queue. enque.]e(namé)text()} { queJe.enqueJe(nameﬁ)ext()}

Figure 2: HPDT generated for query: //pub[year>2000]//book [author]/name/text ()

Next we use an example HPDT shown in Figure 2 to
illustrate how to build the HPDT. Each BPDT has an
unique id consisting of the level and the id inside the
level. We first generate the single bpdt(0,0) for the root
axis in level 0, which exists in all XPath queries. Then
the TRUE state of bpdt(0,0) is used as the start state
of bpdt(1,1) in level 1, which is generated for the first
location step. For both TRUE state $7 and NA state
$3 of bpdt(1,1), we generate a BPDT in level 2 for the
second location step. The difference between them is the
operations on the transition arcs. In bpdt(2,3), which is
connected to the TRUE state, we flush the content in
the queue to the output if current predicate is satisfied.
In the contrast, since bpdt(2,3) is connected to the NA
state, which indicates that the predicate in the upper
level has not been evaluated yet, we have to upload the
content in the queue to the upper level BPDT after the
current predicate evaluates to true. In both BPDTs, the
queue will be cleared if the predicate evaluates to false
at the end of the element. In the BPDT in the lowest
layer, the content of the potential result is put into the
queue unless we know that all the previous predicates are
true, in which case we should output the data directly.
Thus we can see that only in bpdt(3,7) do we output the
data directly, and in all the other BPDTs in the lowest
level, we enqueue the data into the queue.

There are 3 location steps in the query. Instead of gen-
erating 2 — 1 = 15 BPDTs, which is the maximum num-
ber of BPDTs a 4-level HPDT could have, there are ac-
tually only 8 BPDTs in the system because only BPDTs

with predicates have two children. Thus the number of
the states in the HPDT is reduced significantly. More-
over, in the implementations, because of the similarities
of the BPDTs in the same level, we actually do not need
to instantiate all the BPDTs. It suffices to only create
one BPDT for each layer and use bitmap flags to keep
track of the operations. As to the memory usage, from
Figure 2 we can see that the HPDT only puts the items
into the buffer when they satisfy the pattern expression
but have predicates that cannot be evaluated yet. As
soon as one of the predicates evaluates to false, the con-
tent in the buffer of the current BPDT will be cleared
right away. Meanwhile, if all the predicates have been
evaluated true, the content will be flushed to the output
immediately. Thus the system only buffers data that any
streaming system must buffer.

In order to process closures and aggregations, we make
some extensions to the basic ideas presented above. For
aggregations, the HPDT is augmented with a statistics
buffer. It uses templates for the possible aggregation
functions in the lowest level BPDTs. For closures, the
basic idea is to keep track of all the possible paths to-
ward the current element that match the pattern expres-
sion. Unless all the paths have failed the predicates, the
content will be kept in the queue. Due to space limita-
tion, the details to handle the closures and aggregations
are omitted here. Our experiments show that both fea-
tures are handled without any significant degradation of
performance.

3 Demonstration

< =r¥SQ version 1.0 -
File Help

|| File.
Input XPath quen: |j,idataset[@subject:astron0mv],i,freference[source]fjtitlejtexto | Execute
|| Reset

Target filename: |adc.xm\

Root Tag: [datasets

[Query result [[File [PDT | Samiple Ouery [HPDT Figure |
Lick Morthern Proper Motion Program: NPM 1 Catalog
Lick Morthern Proper Maotion Prograrm: NPM1 Reference Galaxies

7 Caralog of Zodiacal Stars

[The FES Extension an the Fk4 System

Catalogue of Proper Motions, UBY-Photometry and Spectral Classification of theregion of NGC 7082
[The Bright Stars Supglement to the PPM and PPM South Catalogue, Revised Edition

L& preliminary list of stars from Tycho observations

[The 90000 Stars Supplement 1o the PPM Star Catalogue

Catalogue of the Components of Double, Multiple stars (CCDM) first edition

Catalogue of Proper Motions in the region of NCGC 2680 I
':L:ick Northern Proper Motion Prograrm: NPM 1 Caralog Cross-ldentifications andappendices ||

ables of membership for 42 open clusters (15594 Yersion
Positions, proper motions, and magnitudes in the area of the open Cluster Tr 10,
he Magellanic Catalogue of Stars - MACS -

e

i >

Figure 3: Screenshot of the XSQ interface

We have implemented the XSQ system using Sun Java
SDK version 1.4 and Xerces 1.0 parser for Java. The ex-
periments use the Redhat 7.2 distribution of GNU /Linux
(kernel 2.4.9-34) on a Pentium III 900MHZ machine with
1GB of main memory.

For the demonstration, we use large XML files (20MB
to 2GB) to simulate XML streams. One dataset is syn-
thetic data generated using IBM XMLGen. Another
dataset is generated by duplicating the DBLP dataset
of size 119MB, which is commonly used as the test set
for XML query systems. Other real life datasets, such as
NASA ADC XML repository of size 24MB and Swiss-Port
Protein knowledgebase of size 114MB | are also part of
the demonstration. (Any well formed XML data stream
can be used as input data.)

We use queries such as the one in Figure 2 to demon-
strate various features of the system: closures, predicates
on the text of a child, and multiple predicates in a query.
Even if the data is heavily nested and there are multiple
closures in the query, we demonstrate that the amount
of memory used to process the query is still small. We
also demonstrate that the XSQ system generates output
while the SAX parser is still parsing the XML file. In
the graphical interface shown in Figure 3, we also display
the structure of the HPDT (similar to the graph in Fig-
ure 2). (Users can pose other XPath queries to test the
performance of the system.)

In our experiments, the XSQ system is faster than
other currently available systems that we tested, such as
Galax [FS02], Joost [BCNO02], and XALAN. For example,
it took the Galax system, which is DOM-based, about 47
seconds to evaluate the query Q4 in Figure 4 while XSQ
only uses 10.4 seconds. Further, in our experiments with
these, and some other similar systems, the DBLP and
Swiss-Port datasets exhausted available main memory.
An exception is the XMLTK [ACR'02] program which
is about 50% faster than XSQ. XMLTK is efficient since
it uses a simpler automaton without buffers. Because

Dataset Size | Query | Query Time | Parse Time
DBLP 119MB Q1 20.9s 48.3s
DBLP-1GB | 1024MB Q2 84s 298s
SYN-2GB | 2135MB Q3 224s 774s
NASA 25MB Q4 2.6s 7.88s
Swiss-Port 114MB Q5 11.7s 49.6s
Q1l: //inproceedings[year>1995]/count ()
Q2: //article[@keyl//title/text()
Q3: /publyear]/book[@id=a3]/author/name/first/text ()
Q4: /dataset[@subject=astronomy]/reference/source/
other[date] /name
Q5: /Entry/Ref/Cite

Figure 4: Representative experimental results

XMLTK does not handle predicates and aggregations, it
always outputs the result directly. Moreover, buffer oper-
ations, which are essential to process predicates and ag-
gregations, introduce significantly larger amount of string
operations. Since parsing accounts for a significant frac-
tion of query processing time, another factor that affects
the performance is the different SAX parsers used in the
systems XS(Q uses Xerces for Java that is slower than
Expat parser written in C that is used by XMLTK. To
demonstrate the efficiency of the XSQ system, we also
compare the speed of the XSQ system with a pure parser
which parses the XML file and does nothing else. The
pure parser gives an lower bound on the time of a stream-
ing processing system needs to process the streams. Some
sample queries and experimental results are shown in the
Figure 4. The query times refer to the times for comput-
ing the entire result sets. In all cases, initial (streaming)
results are available within 1 second.

References

[ACR'02] I. Avila-Campillo, D. Raven, et al. An XML
toolkit for light-weight XML stream processing, 2002.
http://www.cs.washington.edu/homes/suciu/XMLTK/ .

[AF00] M. Altinel and M. J. Franklin. Efficient filtering
of XML documents for selective dissemination of infor-
mation. In Proceedings of 26th International Conference
on Very Large Data Bases, pages 53—64, Cairo, Egypt,
2000.

[BCN02] O. Becker, P. Cimprich, and C. Nen-
twich. Streaming transformations for XML, 2002.
http://www.gingerall.cz/stx.

[CFGRO2] C.Y. Chan, P. Felber, M. N. Garofalakis, and
R. Rastogi. Efficient filtering of XML documents with
XPath expressions. In 18th Intl. Conf. on Data Engineer-
ing(ICDE), pages 235244, San Jose, February 2002.

[FS02] M. Fernndez and J. Simon. 2002.
http://db.bell-labs.com/galax/.

[LMPO02] B. Ludascher, P. Mukhopadhayn, and Y. Pa-
pakonstantinou. A transducer-based XML query pro-
cessor. In Proceedings of 28th International Conference on
Very Large Data Bases, Hongkong, August 2002.

Galax,

