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Anaerobic digestion technology was coupled with a new forage radish cover 

cropping system in order to increase biogas production of a dairy manure digester. 

Specifically, this research investigated forage radish as a renewable source of energy 

in terms of methane (CH4) production, the effect of radish co-digestion on hydrogen 

sulfide (H2S) production, and the relationship between H2S production and 

methanogenesis limitations. Optimal substrate co-digestion ratios and inoculum to 

substrate ratios (ISR) were determined in the laboratory with biochemical methane 

potential assays (300 mL) and pilot-scale complete mix batch digesters (850 L) were 

constructed and operated to determine energy production potential at the farm-scale 

level.  



  

Laboratory results showed that forage radish had 1.5-fold higher CH4 potential 

than dairy manure on a volatile solids basis, with increasing the radish content of the 

co-digestion mixture significantly increasing CH4 production. Initial H2S production 

also increased as the radish content increased, but the sulfur-containing compounds 

were rapidly utilized, resulting in all treatments having similar H2S concentrations 

(0.10-0.14%) and higher CH4 content in the biogas (48-70% CH4) over time. The 

100% radish digester had the highest specific CH4 yield (372 ± 12 L CH4/kg VS). The 

co-digestion mixture containing 40% radish had a lower specific CH4 yield (345 ± 2 

L CH4/kg VS), but also showed significantly less H2S production at start-up and high 

quality biogas (58% CH4). Utilizing 40% radish as substrate, decreasing the ISR 

below 50% (wet weight) resulted in unstable digestion conditions with decreased CH4 

production and an accumulation of butyric and valeric acids.  

Pilot-scale experiments revealed that radish co-digestion increased CH4 

production by 39% and lowered the H2S concentration in the biogas (0.20%) beyond 

that of manure-only digestion (0.34% – 0.40%), although cumulative H2S production 

in the radish + manure digesters was higher than manure-only. Extrapolated to a 

farm-scale (200 cows) continuous mixed digester, co-digesting with a 13% radish 

mixture could generate 3150 m3 CH4/month, providing a farmer additional revenue 

up to $3125/month in electricity sales. These results suggest that dairy farmers could 

utilize forage radish, a substrate that does not compete with food production, to 

increase CH4 production of manure digesters.  
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Chapter 1: Introduction 
 

 

1.1  Background and Rationale for Conducting the Research 

Since the pre-industrial era, methane (CH4) emissions have increased globally by 

150% (IPCC, 2013).  In the United States, livestock manure management is responsible 

for 26% of the anthropogenic CH4 emissions related to agricultural activities, with dairy 

cattle listed as the highest emitter of all domestic animals (EPA, 2014a). Methane 

emissions associated with the dairy cattle industry have grown largely due to facilities 

shifting from solid to liquid manure storage systems in order to abide by nutrient 

management regulations that limit the application of solids to agricultural fields. The 

liquid handling of dairy manure creates anaerobic conditions, which lead to the 

production of CH4 (EPA, 2014a).  

In order to reduce CH4 emissions associated with the handling of liquid dairy 

manure, AgSTAR, an outreach program jointly sponsored by the U.S. Department of 

Agriculture, the U.S. Environmental Protection Agency, and the U.S. Department of 

Energy, promotes the use of anaerobic digestion (AD) technology as a mechanism of 

capturing the methane-enriched biogas generated from animal manures and utilizing it as 

an on-farm renewable fuel source. The biogas can be used to generate electricity, sold as 

a renewable natural gas source (Naja et al., 2011), or burned for heating and cooking, 

thus displacing the need for wood and/or charcoal (Lansing et al., 2008; Rahman et al., 

2014).  Burning of methane-enriched biogas releases carbon dioxide into the atmosphere, 

which has 1/28 of the greenhouse gas impact that CH4 has (IPCC, 2013), thus minimizing 

CH4 emissions.   
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Other benefits of AD technology include the reduction of pathogens (Cote et al., 

2006) and the production of a liquid fertilizer in which the nutrients are more biologically 

available to the crops, as organic nitrogen and phosphorus are converted to ammonium 

and orthophosphate during the digestion process (Maranon et al., 2011). Studies have 

also shown that AD reduces odor emissions associated with the handling of manures on 

farms between 70-95%, allowing for homes and farms to coexist (Masse et al., 2011).  

Currently, approximately 244 anaerobic digesters are operating in the United 

States at commercial livestock facilities, with the majority of these digesters at dairy 

facilities (AgSTAR, 2014a).  Worldwide, there are over 20,000 large scale anaerobic 

digesters, with China and Germany as leading countries, largely due to government 

credits and subsidy programs (Burns, 2009; Abbasi et al., 2012). In August 2014, the 

Obama Administration released the Biogas Opportunities Roadmap, a voluntary strategy 

designed to address climate change by reducing CH4 emissions in the agricultural sector 

by utilizing CH4 recovery systems such as anaerobic digesters. With the limited use of 

AD technology in the U.S., the roadmap seeks to identify ways to expand the use of the 

technology at U.S. livestock facilities as well as decreasing barriers that all too often 

thwart installation and successful operation. It was estimated that at full potential, the 

American biogas industry could produce enough energy to power 1 million homes, 

providing a win-win situation for farmers who would not only provide power to their own 

farms but also generate revenue by providing the supplemental energy to neighboring 

communities (EPA, 2014b).  

There are several common barriers associated with the adoption of AD 

technology in the United States. The lack of financial assistance and high capital costs 
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associated with the installation of current U.S. digestion systems limits the number of 

sites where such technology would be economically feasible (AgSTAR, 2014b). Many 

U.S. dairy facilities lack the herd size (≥500 cows) AgSTAR estimates for AD to be 

economically viable due to being limited by their animal waste capacity (AgSTAR, 

2011). In comparison to other digestion feedstocks, manure has relatively low 

biodegradability and biogas potential (Ward et al., 2008; Mata-Alvarez et al., 2014). 

Additionally, in order for current U.S. digestion systems to input generated electricity 

into U.S. infrastructure, connection to power grids with controls is required. The costs, 

maintenance, and logistics associated with updating infrastructure can outweigh the 

returns that would be generated from selling electricity due to the low price of electricity 

in the United States (AgSTAR, 2014b). 

Energy production investment returns reveal that dairy digesters are not always 

economically favorable when dairy manure is digested solely (Klavon et al., 2013). 

However, biogas production from dairy digesters can become more economically viable 

by adding additional biodegradable feedstock that is located within close proximity to the 

dairy facility (El-Mashad et al., 2010). Co-digesting manure with other substrates, such as 

agricultural waste (Abouelenien et al., 2014), fats, oil, and grease (Lansing et al., 2010), 

or energy crops (Yue et al., 2013) with higher biogas potential, have been shown to 

increase CH4 production up to 3.5-fold higher (Mata-Alvarez et al., 2014), thus 

increasing the feasibility of AD technology for the small to mid-sized dairy farmer. The 

Minnesota Project, a non-profit organization promoting sustainable energy production 

geared towards smaller dairy operations, reported that the addition of cheese whey to 

dairy manure digesters operating at Jer-Lindy Dairy (Brooten, MN) increased biogas 



 

 4 

 

production by 300% (Minnesota Project, 2010). Lansing et al. (2010) utilized plug flow 

digesters for co-digestion of swine manure and used cooking grease, resulting in a 124% 

increase in CH4 production with a 2.5% to 10% addition of grease (by volume). 

However, the percentage of CH4 in the biogas decreased with increasing grease additions, 

likely due to a build-up of volatile fatty acids (VFA), highlighting the importance of 

obtaining an optimal substrate co-digestion ratio in order to promote CH4 generation. 

Renewable energy production can be achieved by anaerobically digesting a 

variety of energy crops; however the most widely used energy crops consists of maize 

(195-402 L CH4/kg VS) (Gao et al., 2012; Golkowska and Greger, 2013), switchgrass 

(191-309 L CH4/kg VS) (Barbanti et al., 2014; Masse et al., 2010), sugar beets (236-381 

L CH4/kg VS) (Umetsu et al., 2006; Braun et al., 2009), sunflower grass (154-400 L 

CH4/kg VS), and Sudan grass (213-303 L CH4/kg VS) (Amon et al., 2007; Braun et al., 

2009). In order to obtain the maximum biogas yield from an energy crop, several key 

factors should be taken into consideration, including selecting the appropriate energy 

crop (i.e. variety; genotype), harvest time, pretreatment of the biomass prior to the 

digestion process, and nutrient/mineral composition of the energy crop (Amon et al., 

2007). Since plant chemical composition varies over time as the plant matures, harvest 

time can have an effect on the CH4 yield of the crop. Thus, in order to maximize the CH4 

yield, the ideal harvest time of the crop for AD should be determined. To date, 

inconsistent results have been found regarding the effect of harvest time on anaerobically 

digested energy crops (Lehtomaki et al., 2008), highlighting the need for further research 

on the effect of harvest time on digestion efficiency.  
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Popular winter cover crops grown in Maryland include winter rye, winter wheat, 

oats, forage radish, hairy vetch, and crimson clover. Similar to forage radish, oats will 

also winter-kill, while winter rye and hairy vetch are hardy plants that will continue 

growth in the spring (Traunfeld, 2009). Review of literature reveals that winter wheat and 

winter rye have been studied extensively as AD substrates, with CH4 potentials ranging 

from 228-360 L CH4/kg VS (Amon et al., 2007; Rincon et al., 2010) and  140-360 L 

CH4/kg VS (Amon et al., 2007; Petersson et al., 2007), respectively. However, there is 

limited information on utilizing forage radish as a renewable energy source. The CH4 

production potential of radish can greatly vary based on multiple factors such as plant 

variety, portion of plant digested, and soil characteristics. Carvalho et al. (2011) 

determined that oilseed radish (Raphanus sativus var. oleifera cv. Pegletta) was a good 

substrate for CH4 production (300 L CH4/kgVS). However, it should be noted that oilseed 

radish (pH 7.64) and forage radish (Raphanus sativus var. longipinnatus) (pH 4.3-5.5) are 

of different plant varieties and pH value, thus CH4 production levels may greatly differ. 

Furthermore, to our knowledge, no other studies have experimentally determined how the 

total sulfur content of radish contributes to hydrogen sulfide (H2S) production in the 

biogas, the influence of H2S production on CH4 production during radish digestion, or the 

effects of utilizing the radish as a co-substrate in dairy digesters to enhance biogas 

production. Thus, this research determined the optimal substrate co-digestion (radish and 

manure) ratio and inoculum level for enhanced methanogenesis while minimizing the 

H2S content of the biogas.  

Forage radish was selected as the co-digestion substrate to investigate since it is a 

readily available cover crop that has seen increased interest by corn silage-based dairy 
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farmers in the Northeast U.S. due to its multiple soil and environmental benefits. 

Typically, dairy farms in the NE region leave the land fallow after harvesting corn silage 

in August, therefore, the planting of forage radish immediately after corn harvest can be 

conducted without interfering with food production. Ideally, the winter cover crop is 

planted from August to mid-September.  This crop is attractive to farmers because it 

increases crop yield (Gruver et al., 2014), does not compete with other food crops (Weil 

et al., 2009), suppresses early spring weeds (Lawley et al., 2012), and is known as being a 

bio-driller. The radish roots can penetrate 6 feet or more down into the soil profile thus 

alleviating soil compaction (Chen and Weil, 2010 and 2011). The crop also reduces 

nitrogen leaching into the groundwater as the deep penetrating roots are able to capture 

the nitrogen and bring it to the surface thus increasing topsoil fertility. Additionally, as 

the crop rapidly decays, it also releases nitrogen early into the topsoil, thus reducing the 

need for fertilizer (Weil and Kremen, 2007; Weil et al., 2009). Typically, this crop would 

not be harvested by the farmer, as the crop winter kills and rapidly decays in late 

December, leaving behind a clean enhanced seedbed (Weil et al., 2009). However, in this 

research, the above-ground biomass of the radish cover crop was harvested before winter-

kill for digestion substrate. Harvesting could expand the use of the radish cover crop and 

previous research has shown that even when the crop is harvested, the soil benefits 

previously discussed are still realized (Lawley et al., 2012). Use of the radish as a co-

substrate in a dairy digester has the potential to enhance biogas production during the fall 

and winter months when the demand for fuel is particularly high in the United States.  
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1.2  Research Objectives and Hypotheses  

The overall goal of this research was to couple AD technology with forage radish 

cover cropping to increase biogas production of dairy manure-based digestion. 

Specifically, this research investigated forage radish as a renewable source of energy in 

terms of CH4 production, the effect of radish co-digestion on H2S production, and the 

relationship between H2S production and methanogenesis limitations. 

The main objectives of this research include the following: 

Objective 1: To determine the optimal co-digestion ratio of dairy manure and forage 

radish based on CH4 production (biogas quantity and % CH4 in biogas) and H2S 

concentration and determine if a synergistic effect on CH4 production is observed when 

co-digesting manure and radish cover crops. 

Hypotheses: Increasing the ratio of forage radish in dairy digesters will increase 

CH4 production until a certain threshold when H2S production begins to inhibit 

methanogenic activity. Co-digestion of forage radish in dairy digesters will result 

in higher CH4 production than the sum of each substrate digested individually, 

with forage radish having a higher biogas potential than dairy manure, and the 

combination having the highest CH4 production. 

 

Objective 2: To determine the effect of forage radish harvest date (early harvest in 

October vs. late harvest in December) on CH4 production. 

Hypothesis: The CH4 potential of the late-harvest radish crop will result in 50% 

more CH4 production than the early-harvest crop.  
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Objective 3: To determine the effect of the inoculum to substrate ratio (ISR) on CH4 

production during forage radish digestion and co-digestion with dairy manure. 

Hypothesis: An ISR of 1:1 (by wet weight) will have the greatest production of 

CH4 in the generated biogas, with significant decreases in CH4 production at 

lower ISRs and no statistically significant changes at higher ISRs. 

 

Objective 4: To determine the effect of VFA production and pH on CH4 production at 

varying ISRs. 

Hypothesis: Decreasing the ISR will result in an unstable digester with decreases 

in pH value and CH4 production and an accumulation of VFAs. 

 

Objective 5: To determine the difference in CH4 and H2S production when digesting only 

dairy manure versus co-digesting dairy manure with forage radish cover crops in batch 

pilot-scale complete mix digesters. 

Hypothesis: Co-digesting with radish will significantly increase CH4 and H2S 

production relative to manure-only digestion. 

 

Objective 6: To determine how the percentage of forage radish in the co-digestion 

mixture affects CH4 production in batch pilot-scale complete mix digesters. 

Hypothesis: Increasing the radish content in the co-digestion mixture will 

increase CH4 production. 
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Objective 7: To quantify the radish crop acreage required for co-digestion at the farm-

scale level and how inclusion of radish cover crops affects on-farm energy production 

potential. 

1.3  General Research Approach 

Forage radish cover crops (above-ground biomass) and dairy manure were used as 

digestion substrates. Several acres of forage radish were grown each year of this project 

at a USDA-ARS facility located in Beltsville, MD. The methane potential of the 

substrates was determined at two scales. To achieve Objectives 1-4, optimal substrate co-

digestion ratios and inoculum to substrate ratios were determined in the laboratory with 

biochemical methane potential experiments (300 mL). For laboratory experiments, the 

radish was harvested by hand from randomized 1 m2 quadrants. For Objectives 5-7, six 

pilot-scale batch complete mix digesters (850 L) were designed, constructed, and 

operated during two 33-day field trials. For the pilot-scale experiments, a rotary mower 

and forage chopper were used for radish harvesting and to determine biomass yields. 

Digestion efficiency and stability were evaluated by analyzing biogas samples for CH4 

and H2S and liquid samples for pH, total and volatile solids, soluble chemical oxygen 

demand, volatile fatty acids, total Kjeldahl nitrogen, total Kjeldahl phosphorus, and total 

sulfur.  
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Chapter 2: Methane and Hydrogen Sulfide Production during 

Co-digestion of Forage Radish and Dairy Manure 

 

 

2.1  Abstract 

Forage radish, a winter cover crop, was investigated as a co-substrate to increase biogas 

production from dairy manure-based anaerobic digestion. Lab-scale batch digesters (300 

mL) were operated under mesophilic conditions (35°C) during two experiments (BMP1; 

BMP2). In BMP1, the optimal co-digestion ratio for radish and dairy manure based on 

CH4 production and H2S concentration was determined by increasing the radish content 

(above-ground biomass) from 0–100% (wet weight). Results showed that forage radish 

had 1.5-fold higher CH4 potential than dairy manure on a volatile solids basis. While no 

synergistic effect on CH4 production resulted from co-digestion, increasing the radish 

content of the co-digestion mixture significantly increased CH4 production. Initial H2S 

production increased as the radish content increased, but the sulfur-containing 

compounds were rapidly utilized, resulting in all treatments having similar H2S 

concentrations (0.10-0.14%) and higher CH4 content in the biogas (48-70% CH4) over 

time. The 100% radish digester had the highest specific CH4 yield (372 ± 12 L CH4/kg 

VS). The co-digestion mixture containing 40% radish had a lower specific CH4 yield 

(345 ± 2 L CH4/kg VS) but also showed significantly less H2S production at start-up and 

high quality biogas (58% CH4). Results from BMP2 showed that the radish harvest date 

(October versus December) did not significantly influence radish C:N ratios or CH4 

production during co-digestion with dairy manure. These results suggest that dairy 

farmers could utilize forage radish, a readily available substrate that does not compete 

with food supply, to increase CH4 production of manure digesters in the fall/winter. 
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2.2  Introduction 

The economics of dairy manure-based digesters are not always favorable due to 

the relatively low biodegradability and biogas yield of dairy manure compared to other 

organic wastes (El-Mashad and Zhang, 2010; Klavon et al., 2013; Wang et al., 2011). To 

increase methane (CH4) production from manure-based digesters, appropriate co-

digestion substrates can be used. Determining the appropriate substrate ratios is a key 

factor in creating an optimized anaerobic digestion (AD) environment, as the composition 

of each substrate can vary greatly in characteristics such as alkalinity, pH, organic 

content, nutrient composition, and microbial population (Ward et al., 2008; Pages-Diaz et 

al., 2014; Al Seadi et al., 2008). Umetsu et al. (2006) showed that increasing the 

percentage of sugar beet tops (10% - 40%, by volume) in dairy manure digesters 

increased CH4 production up to 45%. However, while increasing the proportion of sugar 

beet roots from 5% - 12% increased CH4 production by 11%, inhibitory effects were 

observed for mixtures containing 15% beet roots. Zhang et al. (2013) showed that the 

CH4 yield decreased as the ratio of food waste to cattle manure increased from 2:1 – 4:1 

(VS basis), whereas Bah et al. (2014) demonstrated that as the ratio of palm pressed fiber 

to cattle manure increased from 1:3 to 3:1 (VS basis), CH4 yield significantly increased.  

Co-digestion has also been shown to have synergistic and antagonistic effects on 

CH4 production. A synergistic effect results in increased CH4 production from the 

substrates beyond what is achieved from digestion of each individual component, while 

an antagonistic effect negatively influences CH4 production likely due to inhibitory 

substances or toxicants present in the mixture components (Pages-Diaz et al., 2014; 

Navaneethan et al., 2011). A synergistic effect was observed when co-digesting equal 
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fractions (wet weight (ww) basis) of municipal solid waste, slaughterhouse waste, 

manure, and various crops. Due to the mixture satisfying more of the nutritional demands 

of the microbial community, co-digestion increased CH4 production by 31% compared to 

the CH4 production value of each individual fraction (Pages-Diaz et al., 2014). Li et al 

(2013) observed that co-digesting corn stover and chicken manure at a 3:1 ratio (VS 

basis) had a greater synergistic effect (14% increase) on CH4 production compared to a 

1:1 ratio (4% increase). Antagonistic effects were observed co-digesting calcium acetate 

with boiler cleaning waste, with large reductions in CH4 production as the proportion of 

boiler cleaning waste increased, likely due to inhibitory concentrations of copper and 

chromium present in the cleaning wastewater (Navaneethan et al., 2011). 

The chemical composition of plant tissue commonly varies over time as the plant 

matures, which can potentially affect the CH4 yield when utilizing plant material as co-

digestion substrate. Lehtomaki et al. (2008) found no significant change in CH4 yield 

when a vetch-oat mixture was digested after harvest at the vegetative or flowering stages. 

However, the same study showed that while reed canary grass and giant knotweed 

produced the most CH4 if harvested during the late flowering stage, rhubarb and lupine 

produced the most CH4 if harvested during the vegetative stage. Masse et al. (2010) 

determined that the CH4 yield of switchgrass decreased with advancing stages of 

development, and Ragaglini et al. (2014) found that the juvenile crop stages of giant reed 

had the highest CH4 production. In contrast, Bruni et al. (2010) found that fresh maize at 

late harvest had the highest CH4 yield. These inconsistent results highlight the need for 

further research on the effect of harvest time on digestion efficiency and led Lehtomaki et 

al. (2008) to conclude that the effect of harvest time on AD was crop specific.  
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This study investigated coupling AD technology with a new forage radish cover 

cropping system in order to increase biogas production during the fall and winter months. 

With over 80% of the U.S. agricultural AD systems operating on commercial dairies 

(AgSTAR, 2014), this co-digestion research was designed to assist small to mid-sized 

corn-silage based dairy farmers in overcoming limitations of low biogas production from 

dairy manure by providing a readily available co-digestion substrate that does not 

compete with food production. Radish cover crops have not been studied extensively as a 

potential bioenergy feedstock for AD. To our knowledge, there are only a few studies that 

have utilized radish crops in mono-digestion studies, while co-digestion studies are 

limited to one report utilizing radish fodder (whole plant) and pig slurry at one substrate 

mixture ratio (75% pig slurry & 25% radish, by ww) (Peu et al., 2013). Review of 

previous mono-digestion studies revealed that the CH4 potential of radish varied greatly 

(237-450 L CH4/kg VS) depending on plant variety, soil characteristics, climatic 

conditions, the portion of the plant digested, and pretreatment methods (Gunaseelan, 

2004; Peu et al., 2012; Carvalho et al., 2011; Nielsen and Feilberg, 2012; Molinuevo-

Salces et al., 2013). 

If the proportions of co-digestion mixtures are arbitrarily selected, the full CH4 

potential from the combination of substrates may not be realized (Pages-Diaz et al., 

2014). The aim of this research was to determine the optimal substrate ratio for co-

digesting the above-ground biomass of fresh forage radish cover crops and dairy manure 

(0 to 100%, by ww). Utilizing only the above-ground radish biomass allows for easier 

harvesting of the cover crops using typical farming machinery, such as a mower and 

forage chopper, and the nitrogen taken up in the roots will remain in the field and become 
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available for the subsequent corn crop as the below-ground root decays (Weil and 

Kremen, 2007; Weil et al., 2009). The transformation of sulfur-containing compounds in 

the radish to hydrogen sulfide (H2S) in the produced biogas was also determined across 

the entire range of co-digestion ratios as forage radish is a sulfur-rich crop and H2S can 

corrode biogas utilization systems. The specific research objectives were to: (1) 

determine the optimal co-digestion ratio of dairy manure and forage radish above-ground 

biomass based on CH4 production and H2S concentration, (2) determine whether 

inclusion of forage radish to dairy manure has a synergistic effect on CH4 production, and 

(3) determine the effect of forage radish harvest date on CH4 production. Utilizing forage 

radish, a cover crop that would otherwise winter-kill, could potentially enable dairy 

farmers to produce additional renewable energy without losing the benefits of the cover 

crop. Even if the above-ground radish biomass is harvested for AD, the benefits of 

increased topsoil fertility, compaction alleviation, and weed suppression will remain 

(Chen and Weil, 2010; Chen and Weil, 2011; Lawley et al., 2012). 

2.3  Materials and Methods 

2.3.1  Feedstocks 

Forage radish cover crops (Raphanus sativus var. longipinnatus) and dairy 

manure (both scraped manure and the liquid fraction of solids-separated manure) were 

used as digestion substrates. The above-ground biomass of the forage radish cover crop 

was harvested from a USDA facility located in Beltsville, MD (39.03°, -76.89°). Planting 

of the radish cover crop occurred in August immediately after corn silage harvest. The 

radish was harvested by hand prior to winter-kill from randomized 1 m2 quadrants. A 
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stainless steel knife was used to harvest the above-ground biomass, which consisted of 

the leafy shoots plus a small portion of the fleshy root that extended above the soil 

surface. Each radish was cut approximately 3 to 5 cm from the soil surface and frozen in 

heavy-duty plastic bags until use. After thawing, a food processor was used to chop the 

radish into a semi-slurry material in order to emulate harvesting the radish utilizing a 

rotary mower and forage chopper.  

Dairy manure was obtained from the 120-cow USDA research dairy facility. The 

dairy manure was scraped and stored in a manure pit prior to solids separation with a 

FAN separator, which removes roughly 80% of the solids. The liquid fraction of the 

separated manure is treated in a mesophilic (25-35°C) complete-mix anaerobic digester 

(540 m3). Inoculum from this digester was obtained from a sampling port located inside 

the digester and was utilized to accelerate biogas production in the batch studies.  

2.3.2  BMP1: Optimal co-digestion ratio experimental design 

Biochemical methane potential (BMP) assays were conducted to determine the 

CH4 potential of each substrate individually and the optimal co-digestion ratio. The BMP 

assay determines the relative biodegradability of an organic material by a consortium of 

anaerobic microbes under batch conditions. BMP1 assays were based on a modified 

method of Moody et al. (2011) using 21 glass serum bottles (300 mL), with three 

replications of seven treatment groups: manure only (0% radish), radish only (100% 

radish), and co-digestion mixtures containing radish and dairy manure (the liquid fraction 

of solids-separated manure)  with 20, 40, 50, 60, and 80% radish addition. All substrates 

were added on a ww basis (Table 2.1). BMP1 was conducted for 30-days, the time period 
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in which biogas production had largely ceased, with daily biogas production contributing 

< 1% of the cumulative biogas production. 

An equal quantity of inoculum was added to each BMP bottle, resulting in the 

inoculum to substrate ratios (ISR) ranging from 3.3:1 – 1.5:1 by g VS, which was similar 

to Raposo et al. (2006) where the ISR ranged from 3:1 – 1:1 by g VS and showed little 

variability in the CH4 yield coefficient. Three additional BMP bottles containing 

inoculum-only served as seed blanks. The inoculum had an average pH of 7.53, and total 

solids (TS) and volatile solids (VS) concentration of 19.4 and 11.9 mg/g, respectively. 

Nutrient media was not utilized as dairy manure has been shown to contain the necessary 

micronutrients for digestion (Al Seadi et al., 2008).  

The bottles were purged with N2:CO2 gas (70:30 vv) to displace residual oxygen 

and capped with a rubber septum to create an anaerobic environment. The bottles were 

placed on a continuous orbital shaker (New Brunswick Scientific; Edison, NJ USA; 

model Innova 2300) at 117 RPM and incubated in a darkened environmental chamber at 

35oC.  

2.3.3  BMP2: Effect of harvest date experimental design  

In order to determine the effect of the harvest date on CH4 production potential of 

forage radish cover crops, an additional BMP experiment (BMP2) was conducted. BMP2 

was conducted for 60-days in batch mode with three replications of two treatment groups: 

23% early-harvested radish and 23% late-harvested radish (by ww) as co-substrate with 

scraped dairy manure (77%, by ww). The early-harvested radish was collected on 

October 22 and had an average TS and VS concentration of 98.5 and 89.3 mg/g, 

respectively, while the late-harvested radish was obtained prior to winter-kill on 
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December 15 and had an average TS and VS concentration of 103 and 90.7 mg/g, 

respectively. The VS concentrations of the radish substrates were found to not be 

significantly different (p-value= 0.112). All treatments contained an equal amount of 

manure (38.7 and 28.7 mg/g TS and VS, respectively) and inoculum (14.7 and 9.30 mg/g 

TS and VS, respectively) (Table 2.2). Three additional BMP bottles containing inoculum 

only served as seed blanks. The bottles were anaerobically incubated as described in 

Section 2.2. 

2.3.4  Biogas analysis  

The biogas production and CH4 and H2S content of the produced biogas were 

measured daily for the first week, every other day during the second week of the study, 

bi-weekly, and weekly, with the frequency of biogas measurement based on the quantity 

of biogas produced. The produced biogas was quantified by volumetric displacement 

using a wetted glass gas-tight graduated syringe (50 mL) (Popper & Sons, Inc.; New 

York USA) inserted through the rubber septum of the BMP bottle into the gas headspace 

with pressure displacing the syringe plunger until equilibrium. The biogas was analyzed 

for CH4 and H2S content using a gas chromatograph (Agilent Technologies, Inc.; 

Shanghai China; model 7890 A) with a thermal conductivity detector at 250°C, an HP-

Plot Q capillary column (Agilent J&W; USA), and He as the carrier gas at 8.6 ml/min. 

The oven operated at 60°C for 2 min and subsequently ramped at 30°C/min to 240°C. To 

account for biogas production from residual biodegradable material in the digester 

inoculum, triplicate controls containing only inoculum were incubated and sampled 

simultaneously to allow subtraction of biogas production not attributed to the substrates. 
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Table 2.1 Feedstock loading for BMP1: Optimal co-digestion ratio study. 

  
Inoculum 

(gww) 
Radish 

(gww) 
Manure 

(gww) 
Total 

(gww) 
Inoculum 

(g VS) 
Radish 

(g VS) 
Manure 

(g VS) 
Total 

(g VS) 
ISRa 

0% Radish 100 0 10 110 1.19 0.00 0.36 1.55 3.32 

20% Radish 100 2 8 110 1.19 0.16 0.29 1.64 2.68 

40% Radish 100 4 6 110 1.19 0.32 0.22 1.72 2.24 

50% Radish 100 5 5 110 1.19 0.39 0.18 1.77 2.08 

60% Radish 100 6 4 110 1.19 0.47 0.14 1.81 1.93 

80% Radish 100 8 2 110 1.19 0.63 0.07 1.90 1.69 

100% Radish 100 10 0 110 1.19 0.79 0.00 1.98 1.51 

 a Inoculum to substrate ratio (ISR) calculated on a VS basis. 

 

 

      Table 2.2 Feedstock loading for BMP2: Effect of harvest date study. 

  
Inoculum 

(gww) 
Radish 

(gww) 
Manure 

(gww) 
Total 

(gww) 
Inoculum 

(g VS) 
Radish 

(g VS) 
Manure 

(g VS) 
Total 

(g VS) 
ISRa 

Early Harvest Radish 125 6 20 151 1.16 0.535 0.57 2.27 1.05 

Late Harvest Radish 125 6 20 151 1.16 0.544 0.57 2.28 1.04 
         a Inoculum to substrate ratio (ISR) calculated on a VS basis.
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2.3.5  Feedstock characterization 

The forage radish and dairy manure for BMP1 were characterized for crude 

protein, acid detergent fiber, neutral detergent fiber, lignin, crude fat, sugar, starch, and 

sulfur (Cumberland Valley Analytical Services, Hagerstown, MD) (Table 2.3). Co-

digestion mixtures were analyzed before and after digestion at the University of 

Maryland for pH, TS, and VS. The pH was determined with a glass electrode and an 

Accumet AB 15 pH meter. Standard Methods for the Examination of Water and 

Wastewater (APHA, 2005) were used to determine TS (Method 2540B) and VS (Method 

2540 E). In addition for BMP2, the carbon to nitrogen (C:N) ratio of the radish shoots 

and roots were determined by combustion utilizing a CHN Analyzer (LECO Corporation; 

St. Joseph, Michigan; CHN-2000). 

Table 2.3 Substrate characteristics for BMP1. 

Property 

Dairy 

Manure 

Forage 

Radish 

pH 8.07 (0.01)   5.62 (0.01) 

TS (mg/g) 47.5 (0.08) 91.6 (1.56) 

VS (mg/g) 35.9 (0.13) 79.0 (1.46) 

Ash (mg/g) 11.6 (0.05) 12.7 (0.10) 

Crude Protein (mg/g) 7.78 12.7 

Acid Detergent Fiber (mg/g) 16.0 15.3 

Neutral Detergent Fiber (mg/g) 24.1 18.5 

Lignin (mg/g) 4.37 1.74 

Crude Fat (mg/g) 1.23 3.02 

Sugar (mg/g) 0.85 31.3 

Starch (mg/g) 3.42 1.28 

Sulfur (mg/g) 0.14 0.55 
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Mechanical harvesting of the above-ground radish biomass transforms the radish 

into a semi-slurry material. The semi-slurry material was dewatered with a French press 

and the liquid was captured, resulting in 98% recovery of the radish biomass for VS 

analyses. The VS content was determined for the following fractions of harvested radish 

(above-ground biomass):  semi-slurry, dewatered, and liquid. 

2.3.6  Statistical analysis 

The experimental design for BMP1 was a completely randomized design with 21 

experimental units (BMP bottles) and seven treatment levels (percentage of radish in co-

digestion mixture) with three replicates of each treatment. Significance of differences 

were determined using a single factor ANOVA followed by Tukey-Kramer’s post hoc 

tests for average CH4 yields, H2S yields, and VS concentrations using SAS 9.3 (SAS, 

Cary, NC). Simple linear regressions were also conducted with percent radish in the co-

digestion mixture being the explanatory variable. CH4 yields, H2S yields, TS and VS 

reductions were the response variables studied. For BMP2, two treatment levels (harvest 

date) with three replicates each were utilized with significant differences in CH4 yields, 

C:N ratios, TS, and VS determined by t-tests. The level of significance was held at 0.05 

for all statistical analyses. Reported values are given as means with standard errors. 

2.4  Results and Discussion 

2.4.1  BMP1: Optimal co-digestion ratio 

2.4.1.1  Methane production 

Methane production increased as the radish content increased from 0% to 100% 

(Figure 2.1), revealing that co-digestion with radish does increase CH4 production from 



 

 21 

 

dairy manure-based digesters. Utilizing 0% radish (manure-only) and 100% radish as 

substrates individually, produced 8.7 ± 0.2 and 29.4 ± 0.9 L CH4/kg substrate, 

respectively. Co-digesting the same amounts of radish and manure from the individual 

treatments produced 19.6 ± 1.4 L CH4/kg substrate, which was only 2.7% different than 

the combined total from individual digestion (19.0 L CH4/kg substrate), revealing no 

synergistic effect when co-digesting the substrates. 

Radish content and CH4 production had a linear relationship (R2 = 0.97) equating 

to CH4 production (L CH4/kg substrate) equaling 0.20x + 9.51, with “x” being percent 

radish in the co-digestion mixture (Figure 2.2). Even with a small quantity of radish 

added to the co-digestion mixture (20%), CH4 production increased by 61% compared to 

manure-only digestion (p-value = 0.001). The CH4 production of the 40% radish mixture 

was significantly greater than 20% radish and 60% radish was greater than 40% radish 

(Figure 2.1; Tables 2.4, C.1). Increasing the radish content from 60 to 80% radish 

resulted in CH4 production values that were not significantly different (p-value = 0.261). 

However, it should be noted that 80% radish (24.3 ± 1.3 L CH4/kg substrate) had the 

most variability among the treatments. Based on the linear regression equation, the 80% 

radish mixture should have had a higher average CH4 production value (25.5 L CH4/kg 

substrate) than what was experimentally determined.   
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Figure 2.1 Average (± standard error) cumulative CH4 production during digestion of forage radish and dairy manure mixtures. (A) L 

CH4/kg substrate added, (B) L CH4/kg VS of substrate added, and (C) CH4 content in the biogas. 
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Figure 2.2 Relationship between radish content and CH4 and H2S production, respectively. Data normalized by (A) kilograms of 

substrate added and (B) kilograms of volatile solids of substrate added. 
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Table 2.4 Average (± standard error) cumulative CH4 and H2S production for BMP1.* 

  L CH4/kg substrate L H2S/kg substrate L CH4/kg VS L H2S/kg VS 

0% Radish 8.69 (0.21)a 0.03 (0.002)a 242 (6)a 0.76 (0.07)a 

20% Radish 14.0 (0.2)b 0.04 (0.004)ab 315 (4)b 0.94 (0.10)ab 

40% Radish 18.3 (0.1)c 0.07 (0.0001)bc 345 (2)bc 1.41 (0.001)bc 

50% Radish 19.4 (0.3)cd 0.09 (0.002)c 337 (5)bc 1.64 (0.04)c 

60% Radish 22.0 (0.3)de 0.10 (0.01)cd 357 (5)bc 1.63 (0.10)c 

80% Radish 24.3 (1.3)e 0.13 (0.01)d 345 (18)bc 1.84 (0.20)cd 

100% Radish 29.4 (0.9)f 0.18 (0.01)e 372 (12)c 2.23 (0.06)d 
        * Superscripts denote significant differences within column. 
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Normalized by VS addition (specific methane yield), 100% radish had 1.5-fold 

higher CH4 potential than 100% dairy manure (Figure 2.1).  The addition of radish (20%) 

to dairy manure significantly improved the conversion of VS into CH4 by 30% (73 L 

CH4/kg VS) (p-value = 0.002). The 100% radish mixture had the highest CH4 conversion 

efficiency (372 L CH4/kg VS), with no significant differences between the specific 

methane yields of 20-80% radish. However, the conversion efficiency of 100% radish 

was significantly greater than 20% radish. The similar conversion efficiencies with the 

inclusion of the radish substrate illustrates that the additional VS from the radish was able 

to be converted into CH4. 

Hidalgo and Martin-Marroquin (2014) demonstrated that on a VS basis the most 

CH4 production also occurred when digesting waste vegetable oil (WVO) and pig manure 

at a ratio of 1:0, followed by 3:1, 1:1, and 1:3. Dias et al. (2014) also showed that with 

co-digestion of pear waste with liquid dairy cattle manure that CH4 production increased 

from 112.5 to 472.0 L CH4/kg VS as the percentage of pear waste increased (0 to 100%, 

by volume) in the mixture. They did note that as pear waste increased, the pH of the 

digesters decreased (8.60 - 6.44) illustrating acidification could lead to digester 

instability. However in the radish digestion studies, pH values remained relatively stable, 

even at higher loadings of forage radish, likely due to the large amount of inoculum 

utilized to ensure adequate buffering capacity. 

2.4.1.2  Hydrogen sulfide production 

On a VS basis, 100% forage radish produced significantly more cumulative H2S 

than dairy manure (2.23 ± 0.06 and 0.76 ± 0.07 L H2S/kg VS, respectively) (p-value = < 

0.0001) (Figure 2.3; Tables 2.4, C.2). While the addition of a small quantity of radish 
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(20%) significantly increased CH4 production, there was no significant increase in H2S 

production compared to manure-only digestion (p-value = 0.725). A positive linear 

relationship (R2 = 0.94) was observed between radish content and H2S production 

equating to H2S production (L H2S/kg substrate) equaling 0.00148x + 0.0183, with “x” 

being percent radish in the co-digestion mixture (Figure 2.2). Increasing radish content in 

20% intervals from 20 to 40% radish or 40 to 60% radish, there were no significant 

differences in H2S production (p-values = 0.093 and 0.250, respectively). However, 60% 

radish had significantly higher H2S production than 20% radish (p-value = 0.001), with 

100% radish having the highest H2S production (0.18 ± 0.01 L H2S/kg substrate). While 

the co-digestion mixtures containing a larger proportion of radish (80 and 60% radish) 

had significantly higher H2S production values (L/kg substrate) initially, by Day 6, the 

H2S concentration (0.10 – 0.14%) of all treatments was not significantly different. 

 On Day 1, digesters containing a larger radish proportion (≥ 60% radish) had a 

lower quality of biogas (22 – 25% CH4) and H2S concentrations in the biogas being 

greater than 0.26%. The 100% radish digester had the highest H2S concentration at 0.37% 

on Day 1, while the manure-only digester had only 0.17% H2S (Figure 2.3). As the 

sulfur-containing compounds in the radish were rapidly utilized and reduced to H2S, large 

volumes of H2S was produced initially. However by Day 6, H2S production decreased 

and the CH4 concentration of the biogas increased, with the CH4 concentration in all 

radish digesters being greater than 50%, surpassing the CH4 concentration of the manure-

only digester (46%) (Figure 2.1). As the total sulfur concentration increased with 

increasing radish addition, the metabolic activity of the sulfate reducing bacteria (SRB) 

likely also increased, resulting in greater H2S production initially with the digesters 
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containing a larger radish proportion. As the sulfur was rapidly utilized, the metabolic 

activity of the SRB declined, resulting in all digesters having similar biogas H2S 

concentrations by Day 6. Allen et al. (2014) demonstrated that increasing the content of 

fresh Ulva lactuca, a sulfur-rich green seaweed, from 25 to 75% inclusion with dairy 

manure (VS basis) decreased the percentage of CH4 in the biogas from 51 to 25%, with 

the 25% Ulva co-digestion mixture  having the lowest H2S concentration. A large 

inhibitory effect on CH4 production with increased radish addition was not found in our 

study considering cumulative CH4 production values and CH4 concentration during peak 

production. 

Overall, methanogenesis was not suppressed by the sulfur content of the forage 

radish as large amounts of CH4 were produced (315 – 372 L CH4/kg VS) relative to 

manure-only digestion (242 L CH4/kg VS). After the initial period of CH4 suppression, as 

radish content increased the quality of the biogas increased illustrating that co-digesting 

also improved overall gas quality. At peak CH4 production (Day 5-15), the CH4 

concentration of the radish digesters ranged from 53 – 70%, with 100% radish having the 

highest CH4 concentration. The H2S concentration ranged from 0.10 – 0.14% for all 

digesters. These levels exceeded the recommended H2S concentration for boilers (< 

0.10%) (Persson and Wellinger, 2006) and combined heat and power units (< 0.01-

0.05%) (Deublein and Steinhauser, 2011) during peak CH4 production.   However the 

H2S concentrations of the radish digesters were not significantly different (p-value= 

0.056) than the manure-only digester during peak CH4 production, thus suggesting that 

no further biogas treatment measures will be required as a result of radish inclusion 

beyond that which is needed for manure-only digestion.  
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Figure 2.3 Average (± standard error) cumulative H2S production during digestion of forage radish and dairy manure mixtures. (A) L 

H2S/kg substrate added, (B) L H2S/kg VS of substrate added, and (C) H2S content in the biogas. 
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Based solely on highest CH4 production, 100% radish was the optimal digestion 

ratio. The VS to CH4 conversion efficiency was similar with 40-100% radish. A typical 

field-scale digester (i.e. plug-flow; complete-mixed) may not be designed to 

accommodate the high solids content of the radish (9.2% TS) nor may a dairy farm 

digester be available solely for winter-time digestion of radish cover crops. Thus, having 

a co-digestion mixture containing a smaller proportion of radish may be more conducive 

to digester maintenance and operation. Since no differences in CH4 production efficiency 

(VS basis) were observed from 40 to 100% radish nor between 20 and 40% radish, with 

40% radish producing more CH4 than 20% radish, in real-world operating conditions, it is 

likely that 40% radish would be a more feasible co-digestion ratio. Utilizing a 40% radish 

co-digestion mixture would optimize CH4 production of a dairy manure-based digester, 

yield high quality biogas (58% CH4), and have significantly lower H2S production at 

start-up. Considering a large amount of inoculum (ISR 10:1, by ww) was utilized in this 

experiment for radish digestion, future work will consist of determining the minimal 

amount of inoculum required. While inoculum provides alkalinity and the necessary 

microorganisms to accelerate biogas production, the biogas potential of inoculum is low 

because the material has been previously digested. Thus, it is desirable to reduce the 

inoculum level, particularly in a batch-loaded digester, in order to save space for 

substrate that has higher biogas potential. 

2.4.1.3  pH, organic matter transformations, and radish 

fractionation 

While the radish substrate had a pH of 5.6, the addition of inoculum and/or 

manure provided a well buffered system in which no pH adjustments were required. The 
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pH of all treatments before and after digestion were within the optimal range for 

mesophilic AD (6.5 to 8.0) (Al Seadi et al., 2008). Although radish addition to dairy 

manure was shown to significantly increase CH4 production, the total VS reductions 

observed were low (24-40%) (Table 2.5), as this included the inoculum VS as well. This 

could be attributed to utilizing such a small amount of substrate in comparison to the 

largely recalcitrant inoculum.  

Forage radish was found to have higher biodegradability than dairy manure. 

While the efficiency in converting VS to CH4 were similar as radish content increased in 

the co-digestion mixture, the VS reductions increased as radish content increased (R2 = 

0.95) (Figure 2.4) likely due to the treatments containing larger radish additions had more 

VS initially and the VS of the radish was more readily degradable than the manure. 

However, the final VS concentrations for all treatments were similar (10.3 – 11.5 mg/g). 

The VS results of the fractionated radish showed that dewatered radish had the 

highest VS content (130 ± 0.5 mg/g) followed by the semi-slurry material (75.7 ± 2.5 

mg/g) and the liquid component, which was significantly lower at 39.5 ± 0.1 mg/g (p-

value = < 0.0001). As expected, dewatering the radish concentrated the VS, but also 

required additional energy to remove water from the radish substrate and reduced the 

quantity of readily available dissolved VS in the substrate. The semi-slurry material, as 

harvested from the field, contained 58% of the total VS concentration of the dewatered 

radish. The CH4 production potential of the dewatered and liquid radish fractions would 

reveal if pretreatment was beneficial. The energy required for dewatering could 

potentially negate any energy gains from digestion. 
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Table 2.5 Characteristics of BMP1 before and after digestion, showing averages (± standard error). 

  pH TS (mg/g)   VS (mg/g)   

  Initial Final Initial* Final TS Reduction, % Initial* Final VS Reduction, % 

0% Radish 7.55 (0.01) 

7.41 

(0.03) 22.0 18.8 (0.03) 14.2 14.1 11.1 (0.03) 21.3 

20% Radish 7.50 (0.01) 

7.35 

(0.003) 22.8 18.7 (0.2) 17.9 14.9 11.3 (0.1) 24.1 

40% Radish 7.52 (0.01) 

7.35 

(0.004) 23.6 19.3 (0.1) 18.3 15.7 11.5 (0.1) 26.7 

50% Radish 7.56 (0.01) 

7.36 

(0.003) 24.0 18.8 (0.1) 21.4 16.1 11.1 (0.1) 30.8 

60% Radish 7.50 (0.02) 

7.36 

(0.003) 24.4 18.0 (0.1) 26.1 16.5 10.4 (0.1) 36.5 

80% Radish 7.48 (0.02) 

7.38 

(0.01) 25.2 17.9 (0.04) 28.7 17.2 10.4 (0.1) 39.7 

100% Radish 7.44 (0.01) 

7.39 

(0.01) 26.0 18.0 (0.1) 30.6 18.0 10.3 (0.1) 42.6 

*Initial TS and VS values were calculated from the individual feedstock values and therefore no standard error values are given. 
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Figure 2.4 Relationship between radish content and TS and VS reduction, respectively. 

2.4.2  BMP2: Effect of harvest date 

C:N ratios were determined for the radish shoots and roots separately throughout 

the growing season. As a result of fertilizer being injected into every other corn row in 

June and inefficient nitrogen uptake by the corn crop preceding the radish cover crop 

planting, bands of residual fertilizer remained in the soil approximately 150 cm apart. 

The forage radish growing directly over the residual fertilizer bands (high N zone) was 

distinctly larger and greener than the forage radish growing over the un-fertilized corn 

rows (low N zone). As the crop matured, the C:N ratio generally increased (Figure 2.5). 

There was a greater increase in the C:N ratio of the roots during the growing season 

compared to the shoots. The above-ground radish biomass, consisting of primarily shoots 

from the high and low nitrogen zones, were harvested, homogenized, and utilized as the 

co-digestion substrate. The C:N ratios of the above-ground radish substrates did not 

change significantly over time (p-value = 0.09), with the early-harvested shoots C:N ratio 

being 13.3 ± 0.9 and the late-harvested shoots being  15.3 ± 0.5. Although the C:N ratio 
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of the roots (24 – 28:1) was found to be closer to the optimal AD C:N ratio (25-30:1) 

(Ward et al., 2008), the above-ground biomass was selected for ease of harvesting and to 

retain nutrient benefits from the root upon decay into the top soil. 

 

Figure 2.5 Carbon to nitrogen (C:N) ratios for the  forage radish cover crops roots and 

shoots. High N and Low N correspond to the level of nitrogen amendment present in the 

field during growth of the radish. 

 

The BMP results revealed that forage radish harvest date did not affect CH4 

production during co-digestion with dairy manure. Co-digestion experiments utilizing 

early harvest (October) and late harvest (December) radish substrate yielded cumulative 

(during 60 days) CH4 production values of 15.1 ± 0.01 L CH4/kg substrate and 14.9 ± 0.3 

L CH4/kg substrate, respectively (Table C.3), with approximately 66% CH4 in the biogas.  

Since harvest date was shown not to influence CH4 production, dairy farmers have the 

opportunity to incorporate forage radish into their dairy digesters as early as October 

when the ambient air temperature begins to decline and maintain enhanced CH4 

production throughout the crop’s growing season.  
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2.5  Conclusions 

Forage radish cover crops are a suitable co-substrate for optimizing CH4 

production in dairy manure digesters. Increasing the percentage of radish in the co-

digestion mixture increased CH4 production and digestion efficiency in converting VS 

into CH4 was similar for the co-digestion mixtures. As radish content increased, initial 

H2S production significantly increased. However, H2S production rapidly declined over 

time allowing for the CH4 content of the biogas to greatly increase compared to manure-

only. No synergistic effect on CH4 production was observed during co-digestion. Harvest 

date of the cover crop did not influence CH4 production suggesting that the radish can be 

harvested and added to a dairy manure-based digester from October until winter-kill to 

increase CH4 production. Co-digestion with radish cover crops has the potential to 

increase the economic viability of AD technology, as forage radish was found to have 1.5 

times more CH4 potential than dairy manure on a VS basis. 
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Chapter 3: The Effect of Inoculum to Substrate Ratio on 

Forage Radish Cover Crop Digestion and Co-digestion with 

Dairy Manure 
 

 

3.1  Abstract 

Biochemical methane potential experiments were conducted to determine the effect of 

inoculum to substrate ratio (ISR) on CH4 production. Two substrates, 100% forage radish 

and a co-digestion mixture containing 40% radish (by wet weight) and dairy manure, 

were tested. Results revealed that the ISR and substrate composition strongly influenced 

CH4 production, with higher ISRs and higher radish content increasing CH4 production. 

At an ISR containing 65% inoculum, co-digestion of radish with manure yielded high 

CH4 production (284 ± 0.4 L CH4/kg VS), while the 100% radish produced only 6 ± 0.9 

L CH4/kg VS. However, increasing the ISR to 91% inoculum, specific CH4 yields 

significantly increased to 345 ± 2 L CH4/kg VS and 372 ± 12 L CH4/kg VS for 40% and 

100% radish, respectively. Regardless of the substrate type utilized, digestion instability 

was observed at ISRs containing ≤ 35% inoculum, resulting in an accumulation of butyric 

and valeric acids, low pH values (≤ 5.64), and negligible CH4 production. 

3.2  Introduction 

Researchers are increasingly co-digesting with energy crops and agricultural 

residues to increase the economic viability and biogas production from manure-based 

anaerobic digestion (AD) (Abouelenien et al., 2014; Mata-Alvarez et al., 2014; Wei et al., 

2014; Yue et al., 2013). Energy crops, such as maize (195 – 402 L CH4/kg VS) (Gao et 

al., 2012; Golkowska and Greger, 2013), sorghum (260 – 390 L CH4/kg VS) (Chynoweth 

et al., 2001), and switchgrass (191 – 309 L CH4/kg VS) (Barbanti et al., 2014; Masse et 
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al., 2010), and agricultural residues, such as fruit and vegetable wastes (290 – 472 L 

CH4/kg VS) (Dias et al., 2014; Zuo et al., 2014), have been shown to have higher 

methane (CH4) production potential than dairy manure (150 – 190 L CH4/kg VS) (Belle 

et al., 2015). However, the introduction of co-substrates into a manure-based digester 

could potentially disrupt digestion stability if the system does not have adequate 

buffering capacity to maintain the circumneutral pH (6.5 – 8.0) necessary for 

methanogenic microorganisms. During mesophilic digestion (30 – 42oC), pH values 

below 6.0 or above 8.3 can be inhibitory (Al Seadi et al., 2008). 

Anaerobic digestion is a microbial-based process, which involves four major 

stages: hydrolysis, acidogenesis, acetogenesis, and methanogenesis. In hydrolysis, 

complex organic matter such as carbohydrates, proteins, and lipids are degraded by 

hydrolytic bacteria into simple soluble organic molecules. Through acidogenesis, volatile 

fatty acids (VFA) are formed from simple soluble organic molecules by acidogenic 

bacteria. In acetogenesis, VFAs and alcohols are converted by acetogens into acetate, 

hydrogen, and carbon dioxide, which are substrates for methanogenesis, which creates 

CH4-enriched biogas. With the AD process being sequential, the products of one stage 

are utilized as substrates in the subsequent stage. Thus in order to maintain a stable 

digester, the metabolic activity of the consortium of bacteria must be relatively balanced. 

Utilizing a readily degradable substrate can result in rapid hydrolysis and VFA 

production, which can lower the pH of the digester if the buffering capacity of the system 

is exceeded. Acidic conditions adversely affect the metabolic functions of methanogens, 

resulting in suppressed CH4 production (Gerardi, 2003; Bouallagui et al., 2005; Ward et 

al., 2008). 
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A key factor to consider for operating a stable digester with optimized CH4 

production is determining the appropriate inoculum to substrate ratio (ISR) particularly 

during start-up and in batch-loaded systems (Motte et al., 2013; Zhou et al., 2011). 

Inoculum provides acclimated anaerobic microorganisms to accelerate biogas production 

as well as alkalinity for improved buffering capacity (Gu et al., 2014). However, 

inoculum has low biogas potential due to its recalcitrance and previous digestion. 

Therefore, reducing the inoculum level in the digester will allow for the addition of more 

substrates that have higher biogas potential, but ample inoculum volume is needed for 

stable CH4 production.  

To date, results cited in the literature on the influence of the ISR on CH4 

production are highly variable. Dechrugsa et al. (2013) observed that increasing the ISR 

(g VS basis) of rubber latex digester inoculum and para-grass from 1.0 to 4.0 increased 

CH4 production by 26% (from 370 to 466 L CH4/kg TS added). Similarly, Wei et al. 

(2014) showed that increasing the ISR from 0.5 to 2.0, significantly increased biogas 

production for mono-digestion of barley straw, pig manure, and cattle manure. In 

contrast, Eskicioglu and Ghorbani (2011) determined that increasing the ISR of sewage 

treatment plant sludge inoculum and whole stillage from 0.46 to 3.67 decreased CH4 

production by 12% (from 458 to 401 L CH4/kg VS). Similarly, Slimane et al. (2014) 

observed that with WWTP sludge inoculum and slaughterhouse waste that increasing the 

ISR from 0.3 to 1.0 decreased biogas production by more than 40% (from 864 to 504 

mL).  Zhou et al. (2011) observed that optimal CH4 production occurred within a narrow 

range of ISRs, with the highest specific CH4 yield for digestion of municipal WWTP 

sludge inoculum and fresh okara occurring at an ISR (VS basis) of 1.67 (495 L CH4/kg 



 

 38 

 

VS), which was also found to be similar to the specific CH4 yields observed at ISRs 1.11 

– 1.43 (478 – 490 L CH4/kg VS). However, increasing the ISR from 1.67 to 10, 

decreased CH4 production to 183 L CH4/kg VS, while decreasing the ISR from 1.11 to 

0.33 significantly reduced the CH4 yield to 8 L CH4/kg VS (Zhou et al., 2011). The 

review of literature suggests that the effect of the ISR on CH4 production varies 

depending on the substrate and inoculum source. 

Dairy farmers are increasingly growing cover crops (Bryant et al., 2013), such as 

forage radish, to achieve multiple soil and environmental benefits (Chen and Weil, 2010; 

Chen and Weil, 2011; Lawley et al., 2012; Weil et al., 2009). Forage radish cover crops, 

which would otherwise winter-kill, have the potential to be utilized as an AD co-substrate 

to increase biogas production of a manure-based digester during the fall and winter 

months, when the demand for supplemental heating is the highest. The benefits of the 

cover crop on the field for increased topsoil fertility and soil compaction alleviation are 

retained, as only the above-ground radish biomass is harvested for digestion. Our 

previous research has shown that utilizing the above-ground radish biomass as a co-

substrate significantly increased CH4 production of a dairy manure-based digester (Belle 

et al., 2015). As a positive linear relationship was observed between radish content in the 

co-digestion mixture and CH4 production when inoculum was not a limiting factor, the 

goal of this research was to investigate the influence of the ISR on CH4 production as the 

inoculum level was reduced. To our knowledge, no literature is available regarding this 

effect when utilizing radish cover crops as a co-digestion substrate with dairy manure or 

when digested alone. The specific objectives of this research were to: (1) determine the 

effect of the ISR on CH4 production when digesting only forage radish cover crops and 
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when co-digesting radish with dairy manure, (2) determine the effect of substrate 

composition on CH4 production, and (3) determine the effect of VFA production and pH 

on CH4 production at varying ISRs. 

3.3  Materials and Methods 

3.3.1  Feedstocks 

Forage radish cover crops (Raphanus sativus var. longipinnatus) and dairy 

manure (liquid fraction of solids-separated manure) were used as digestion substrates. 

The above-ground biomass of the forage radish cover crop was harvested from a USDA 

facility located in Beltsville, MD (39.03°, -76.89°). Planting of the radish cover crop 

occurred in August immediately after corn silage harvest. The radish was harvested by 

hand prior to winter-kill from randomized 1 m2 quadrants. A stainless steel knife was 

used to harvest the above-ground biomass, which consisted of the leafy shoots plus a 

small portion of the fleshy root that extended above the soil surface. Each radish was cut 

approximately 3 to 5 cm from the soil surface and frozen in heavy-duty plastic bags until 

use. After thawing, a food processor was used to chop the radish into a semi-slurry 

material in order to simulate harvesting the radish in the field utilizing a rotary mower 

and forage chopper (Belle et al., 2015).  

Dairy manure was obtained from the 120-cow USDA research dairy facility. The 

dairy manure was scraped and stored in a manure pit prior to solids separation with a 

FAN separator, which removes roughly 80% of the solids. The liquid fraction of the 

separated manure is treated in a mesophilic (25-35°C) complete-mix anaerobic digester 
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(540 m3). Inoculum from this digester was obtained from a sampling port located inside 

the digester and was utilized in this batch study.  

3.3.2  Experimental design 

To determine the influence of the ISR on CH4 production, a biochemical methane 

potential (BMP) experiment was conducted based on a modified method of Moody et al. 

(2011). Two substrates were utilized, radish cover crops only and a co-digestion mixture 

containing 40% radish and 60% dairy manure, by wet weight (ww). The BMP 

experiment was conducted using 36 glass serum bottles (300 mL), with three replicates of 

12 treatment groups. All feedstocks were added on a ww basis. The amount of substrate 

added to each bottle was kept constant. The inoculum was added at varying ratios, 

resulting in ISRs containing inoculum additions of 65%, 50%, 35%, 20%, 10%, and 0% 

(ww basis) for each substrate (Table 3.1). The ISRs ranged from 0 – 0.48 on a gram VS 

basis, with treatments containing the 40% radish co-digestion mixture as substrate having 

higher ISR values due to the substrate having lower VS content. The results were 

compared to our previous radish co-digestion study using an ISR containing 91% 

inoculum (ww), which was determined to be a non-limiting quantity of inoculum (data 

unpublished).  

To account for biogas production from residual biodegradable material in the 

digester inoculum, triplicate controls containing only inoculum were incubated and 

sampled simultaneously to allow subtraction of biogas production not attributed to the 

substrates. Nutrient media was not utilized as dairy manure has been shown to contain the 

necessary micronutrients for digestion (Al Seadi et al., 2008).  
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The bottles were purged with N2:CO2 gas (70:30 vv) to displace residual oxygen 

and capped with a rubber septum to create an anaerobic environment. The bottles were 

placed on a continuous orbital shaker (New Brunswick Scientific; Edison, NJ USA; 

model Innova 2300) at 117 RPM and incubated in a darkened environmental chamber at 

35oC. The BMP was conducted for 60-days, which equaled the time period in which 

biogas production had largely ceased, with daily biogas production in the final 7 days of 

incubation contributing < 1% of the cumulative biogas production. 

3.3.3  Biogas analysis 

Biogas production and CH4 content of the produced biogas were measured 

approximately daily for the first week, every other day during the second week of the 

study, bi-weekly, and weekly, with the frequency of biogas measurement based on the 

quantity of biogas produced. The produced biogas was quantified by volumetric 

displacement using a wetted glass gas-tight graduated syringe (50 mL) (Popper & Sons, 

Inc.; New York USA) inserted through the rubber septum of the BMP bottle into the gas 

headspace with pressure displacing the syringe plunger until equilibrium. The biogas was 

analyzed for CH4 content using a gas chromatograph (Agilent Technologies, Inc.; 

Shanghai China; model 7890 A) with a thermal conductivity detector (TCD) at 250°C, an 

HP-Plot Q capillary column (Agilent J&W; USA), and He as the carrier gas at 8.6 

ml/min. The oven operated at 60°C for 2 min and subsequently ramped at 30°C/min to 

240°C. 
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     Table 3.1 Feedstock loading for the inoculum to substrate ratio (ISR) study. 

  

Inoculum 

(gww) 
Radish 

(gww) 
Manure 

(gww) 
Inoculum 

(g VS) 
Radish 

(g VS) 
Manure 

(g VS) 
Total 

(g VS) 

Substrate: 100% Radish               

ISR 65 37.14 20.00 0.00 0.52 1.66 0.00 2.18 

ISR 50 20.00 20.00 0.00 0.28 1.66 0.00 1.94 

ISR 35 10.77 20.00 0.00 0.15 1.66 0.00 1.81 

ISR 20 5.00 20.00 0.00 0.07 1.66 0.00 1.73 

ISR 10 2.22 20.00 0.00 0.03 1.66 0.00 1.69 

ISR 0 0.00 20.00 0.00 0.00 1.66 0.00 1.66 

        Substrate: 40% Radish/60% Manure 

     ISR 65 37.14 8.00 12.00 0.52 0.66 0.42 1.61 

ISR 50 20.00 8.00 12.00 0.28 0.66 0.42 1.37 

ISR 35 10.77 8.00 12.00 0.15 0.66 0.42 1.24 

ISR 20 5.00 8.00 12.00 0.07 0.66 0.42 1.16 

ISR 10 2.22 8.00 12.00 0.03 0.66 0.42 1.12 

ISR 0 0.00 8.00 12.00 0.00 0.66 0.42 1.09 
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3.3.4  Feedstock characterization 

The inoculum, dairy manure, and forage radish were characterized for pH, total 

solids (TS), and volatile solids (VS) (Table 3.2). The pH was determined with a glass 

electrode and an Accumet AB 15 pH meter. Standard Methods for the Examination of 

Water and Wastewater (APHA, 2005) were used to determine TS (Method 2540B) and 

VS (Method 2540 E). Each treatment was analyzed before and after digestion for pH and 

VFAs. For VFA determination, acidified (pH 2.0) samples were centrifuged for 20 min at 

5,000 RPM and the supernatant filtered stepwise to 0.22 µm. The liquid filtrate was 

analyzed for VFA concentration using a gas chromatograph (Agilent Technologies, Inc.; 

Shanghai China; model 7890 A) with a flame ionization detector (FID) at 300°C, a DB-

FFAP capillary column (Agilent J&W; USA), and He as the carrier gas at 1.80 ml/min. 

The injection temperature was held at 250°C and the oven operated at 100°C for 2 min 

and subsequently ramped at 10°C/min for a total run time of 10 min. The GC was 

equipped with an Agilent Technologies 7693 autosampler. Total volatile fatty acid 

(TVFA) concentrations are expressed as acetic acid. 

Table 3.2 Characteristics of feedstocks. 

  Inoculum Dairy Manure Forage Radish 

pH 7.94 (0.01) 7.82 (0.01) 5.60 (0.01) 

TS (mg/g) 22.5 (0.4) 46.6 (0.03) 94.4 (0.2) 

VS (mg/g) 14.0 (0.1) 35.3 (0.03) 82.8 (0.1) 
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3.3.5  Statistical analysis 

The experimental design was a completely randomized design. The 6x2 factorial 

treatment structure contained 2 factors, ISR and substrate composition, resulting in 12 

replicated treatment combinations. A multi-way ANOVA was conducted using SAS 9.3 

(SAS, Cary, NC) to determine significant differences for average CH4 yields. Due to a 

significant interaction between the two factors, contrast statements were conducted on 

simple effect means to make comparisons. The level of significance was held at 0.05 for 

all statistical analyses. Reported values are given as means with standard errors.   

3.4  Results and Discussion 

3.4.1  Methane production for the 40% radish co-digestion mixture 

The highest specific CH4 yield for a 40% radish co-digestion mixture was 

observed at an ISR containing 65% inoculum (284 ± 0.4 L CH4/kg VS) followed by 50% 

inoculum (239 ± 4 L CH4/kg VS) (Figure 3.1; Table D.1). Although a large volume of 

CH4 was produced, reducing the inoculum from 65% to 50% (ww basis), significantly 

decreased CH4 production (p-value < 0.001). These findings are comparable to those 

reported by Dechrugsa et al. (2013) where para-grass and pig manure co-digestion 

mixtures resulted in higher CH4 production occurring at higher ISRs. An ISR containing 

65% and 50% inoculum (ww basis) corresponded to an ISR of 0.48 and 0.26, 

respectively, on a VS basis (Table 3.3). Similar to results from Kawai et al. (2014), 

increasing the ISR (VS basis) from 0.25 to 0.50, increased CH4 production (162 – 236 L 

CH4/kg VS). However in their study utilizing food waste (low labile organic fraction) as 

substrate and sewage sludge inoculum produced 17% – 32% less CH4 than observed with 
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radish co-digestion. Overall, with a 40% radish co-digestion mixture, decreasing the ISR 

below 50% inoculum adversely effected CH4 production, with zero to negligible CH4 

production observed at ISRs containing ≤ 35% inoculum. The ISRs containing ≤ 35% 

inoculum corresponded to an ISR of ≤ 0.14 on a VS basis and comparisons of CH4 yields 

could not be made to other studies as ISRs (VS basis) were ≥ 0.25 in the literature. 

With an ISR containing 65% inoculum, 91% of the cumulative CH4 production 

occurred the first 28 days of the 60-day incubation period (Figure 3.1). Methane 

production occurred immediately on Day 1, reaching a maximum CH4 production rate on 

Day 5, followed by a steady decrease in the production rate throughout the remaining 

incubation period. The CH4 production rate was lower as the ISR was reduced to 50% 

inoculum. Similarly, Kawai et al. (2014) observed that the lag in CH4 yield increased as 

the ISR decreased. For an ISR containing 50% inoculum, the maximum CH4 production 

rate was not observed until Day 21 (Figure 3.1). After Day 21, the CH4 production rate 

remained relatively stable until after Day 46, when production began to taper off. In 

addition, the ISR containing 50% inoculum had the most variability during the period of 

high CH4 production, suggesting that within each triplicate bottle there may have been 

digestion conditions that affected CH4 production at varying rates among the bottles. 

However cumulative CH4 production values of the triplicate bottles were similar by Day 

60.  

The CH4 concentration of the biogas (61 ± 0.5%) was stable after Day 11 

digesting with an ISR containing 65% inoculum. However for 50% inoculum, the CH4 

concentration gradually increased over time, surpassing the CH4 concentration of the 
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65% inoculum treatment by Day 39, averaging 65 ± 0.7% from Days 39 – 60 (Figure 

3.1).  

         Table 3.3 Average cumulative CH4 production at varying ISRs. 

Substrate 40% Radish/60% Manure 100% Radish 

  ISRb  L CH4/kg VS ISRb L CH4/kg VS 

ISR 65a 0.48 284 (0.4) 0.31 6.15 (0.91) 

ISR 50 0.26 239 (4) 0.17 0.67 (0.05) 

ISR 35 0.14 2.46 (0.03) 0.09 0.02 (0.02) 

ISR 20 0.06 0.86 (0.08) 0.04 0 (0) 

ISR 10 0.03 0.48 (0.03) 0.02 0 (0) 

ISR 0 0 0.03 (0.01) 0 0 (0) 
     a Inoculum to substrate ratio (ISR) containing 0-65% inoculum (ww basis). 
     b VS basis 

   Values are means (± standard error) from triplicate samples. 
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Figure 3.1 Average (± standard error) CH4 production from 40% radish (ww) co-digested with dairy manure at different inoculum to 

substrate ratios (ISR, by ww). (A) L CH4/kg VS of substrate added, (B) daily CH4 production rate, and (C) CH4 content in the biogas.
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3.4.2  Methane production for 100% radish 

Increasing the ISR also increased CH4 production when utilizing 100% radish as 

substrate (Figure 3.2). However, the specific CH4 yield for 100% radish at an ISR 

containing 65% inoculum (6.15 ± 0.91 L CH4/kg VS) was 98% lower compared to 40% 

radish as substrate.  

With 65% inoculum, CH4 production started immediately on Day 1, with the 

maximum CH4 production rate occurring on Day 2 followed by a rapid decline in CH4 

production. By Day 4, the daily rate of CH4 production was < 1 L CH4/kg VS.day. The 

CH4 concentration of the biogas was also 46% lower than with co-digestion, averaging 15 

± 0.2% during incubation (Figure 3.2). Below an ISR containing 65% inoculum, the 

specific CH4 yields were < 1 L CH4/kg VS. Utilizing 65% inoculum and 100% radish as 

substrate, on a VS basis the ISR (0.31) was in the ISR range of 0.26 and 0.48 (ISRs 

containing 50 and 65% inoculum, respectively, with 40% radish as substrate).  However 

CH4 yields were drastically lower utilizing 100% radish as substrate, further highlighting 

that substrate composition as well as the quantity of inoculum affects CH4 production 

(Table 3.3).  
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Figure 3.2 Average (± standard error) CH4 production from 100% radish at different inoculum to substrate ratios (ISR, by ww). (A) L 

CH4/kg VS of substrate added, (B) daily CH4 production rate, and (C) CH4 content in the biogas. 
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Overall, the statistical output reveals that there was a significant interaction 

between ISR and substrate composition (p-value < 0.001). There was a significant 

difference in CH4 production, with higher inoculum additions producing more CH4. 

However, the magnitude of increase in CH4 production was dependent on substrate 

composition, with the 40% radish co-digestion mixture producing significantly more CH4 

than 100% radish at an ISR containing 65% inoculum (p-value < 0.001). Thus, in order to 

obtain enhanced CH4 production, it is recommended to not reduce the ISR below 65% 

inoculum when digesting 40% radish in a dairy manure-based digester. 

3.4.3  Co-digestion and 100% radish at an ISR with 91% inoculum 

In a prior study, it was determined that increasing the radish content of a dairy 

manure co-digestion mixture increased CH4 production when utilizing an ISR containing 

91% inoculum. In that study, the highest specific CH4 yield was observed with 100% 

radish (372 ± 12 L CH4/kg VS), while the 40% radish co-digestion mixture produced 345 

± 2 L CH4/kg VS (data unpublished). These CH4 yields for 100% and 40% radish were 

greater than the CH4 yields observed when digesting with an ISR containing 65% 

inoculum, the highest ISR tested in the current study. This finding suggests that 

increasing the ISR beyond 65% inoculum continues to increase CH4 production (Figure 

3.3). With 100% radish, increasing the ISR from 65% to 91% inoculum had a greater 

effect on CH4 production (366 L CH4/kg VS) than what was observed utilizing the 40% 

radish co-digestion mixture as substrate (61 L CH4/kg VS).  

For 40% radish, between the ISRs containing 50% and 91% inoculum, there 

appears to be a strong positive linear relationship (R2= 0.996) between inoculum quantity 

and CH4 production. A similar relationship could not be determined for 100% radish as 



 

 51 

 

substrate, but the data does suggest that a large amount of inoculum > 65% is required for 

enhanced CH4 production, especially when operated in batch mode. Overall, although 

there was a significant difference in CH4 yields for 40% radish and 100% radish when 

utilizing an ISR containing 65% inoculum, increasing the ISR to 91% inoculum, CH4 

production was found to be statistically similar. These results are similar to those reported 

by Dechrugsa et al. (2013), where combining higher ISRs with higher para-grass mix 

ratios yielded higher CH4 production.  Pig farm digestate inoculum and 100% para-grass 

had the highest CH4 yield, with increasing the ISR from 1.0 to 4.0 increasing CH4 yield 

from 332 to 522 L/kg TS, with the optimal ISR occurring between 3.0 and 4.0. 

 

Figure 3.3 Relationship between inoculum to substrate ratio (ISR) and CH4 production. 

Data points at an ISR containing 91% inoculum obtained from a prior study, with 

regression data from inside the dashed lines of 50 to 91% ISR. 

3.4.4  Effect of volatile fatty acids and pH on methane production 

The 40% radish co-digestion mixtures had an average influent TVFA 

concentration of 5.23 ± 0.30 g/L pre-digestion, while the 100% radish mixtures had a 

lower average TVFA concentration (0.55 ± 0.09 g/L) pre-digestion. The difference in 
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TVFA concentrations is due to the liquid manure contributing soluble VFAs while the 

solid radish substrate was not solubilized pre-digestion. 

The pH values of the 40% radish co-digestion treatments pre-digestion ranged 

from 6.82 – 7.55, with treatments containing a larger quantity of inoculum having higher 

pH values (Figure 3.4). The 100% radish treatments had lower pH values, ranging from 

5.60 – 7.15 (Figure 3.5), due to inclusion of more radish substrate, which has an average 

pH of 5.6. The additional buffering capacity of the manure also likely contributed to the 

higher pH values of the 40% radish co-digestion treatments. No pH or alkalinity 

adjustments were made prior to digestion. The optimal pH range for mesophilic digestion 

is 6.5 – 8.0. All treatments were within the optimal pH range pre-digestion, except the 

100% radish treatments at an ISR containing less than 20% inoculum, where pH values 

were below the desired pH range (pH ≤ 6.25). 

Post-digestion, VFAs were not detected in the 40% radish treatments when the 

ISR contained ≥ 50% inoculum (Figure 3.4), indicating that the VFAs were consumed by 

the methanogens, as high volumes of CH4 were produced (239 – 284 L CH4/kg VS) and 

pH values remained within the optimal range. However, the 40% radish treatments post-

digestion with an ISR containing ≤ 35% inoculum had an accumulation of  VFA 

production (13.0 – 15.6 g TVFA/L), with pH values dropping below 6.0 and negligible 

CH4 production (< 3 L CH4/kg VS). The ISRs containing ≤ 35% inoculum had on 

average an acetic to propionic acid ratio of 1.5, with a decrease in the inoculum 

proportion leading to an increase in butyric (1.77 – 3.27 g/L) and valeric acid (1.17 – 2.24 

g/L) production. 
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Figure 3.4 Characteristics of 40% radish (ww) co-digested with dairy manure at different inoculum to substrate ratios (ISR). Panels 

represent: (A) pre-digestion VFA concentrations, (B) post-digestion VFA concentrations, and (C) pH values. 
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Figure 3.5 Characteristics of 100% radish at different inoculum to substrate ratios (ISR). Panels represent: (A) pre-digestion VFA 

concentrations, (B) post-digestion VFA concentrations, and (C) pH values. 
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For the 100% radish treatments post-digestion, all ISRs had an accumulation of 

VFA production, averaging 13.5 ± 0.1 g TVFA/L (Figure 3.5). The ISRs containing ≤ 

10% inoculum were not included in this assessment due to the small volume of liquid 

sample obtained for VFA determination, which may not have been representative of the 

treatment. The pH values of the 100% radish treatments post-digestion ranged from 3.69 

– 5.27, with CH4 production being adversely effected (< 7 L CH4/kg VS) at each ISR. 

There was also an accumulation of butyric acid (5.99 – 7.26 g/L), with a decrease in the 

proportion of inoculum increasing valeric acid production post-digestion. 

Comparing post-digestion VFA production utilizing a 40% radish co-digestion 

mixture and 100% radish as substrates at ISRs containing 35% and 20% inoculum, the 

acetic acid concentrations were similar (7.25 – 8.4 g/L). However, the 100% radish 

treatments had a larger increase in acetic acid production during digestion, likely due to 

the rapid hydrolysis of the radish substrate. Post-digestion, the acetic to propionic acid 

ratio was higher (4.47) in the 100% radish treatments, with three times more butyric acid 

production, but less valeric acid production than the 40% radish co-digestion treatments. 

Overall, the data suggests that increased ISRs and utilizing manure as a co-

substrate for radish digestion aids in buffering the digestion environment from changes in 

pH and circumvents souring of the digester as evidenced by the accumulation of VFAs. 

Butyric and valeric acid accumulation strongly corresponded with digester failure, with a 

butyric to valeric acid ratio > 1 (g/L basis) resulting in negligible CH4 production (< 7 L 

CH4/kg VS). Similarly, Zhang et al. (2013) observed that CH4 production was more 

favorable when acidic substrates were co-digested with cattle manure and suggested that 

the alkalinity of cattle manure may help to buffer the system when pH adjustments are 



 

 56 

 

not utilized in the batch system. Furthermore, Jiang et al. (2012) demonstrated that the 

addition of cattle slurry to vegetable waste (pH 5.77) improved digester performance, 

with accumulated VFAs consumed over time. 

There are several possible reasons for CH4 suppression as the quantity of 

inoculum was reduced in the batch system. By reducing the inoculum quantity, the 

quantity of methanogens present may not have been sufficient. Methanogens have a slow 

generation time (Wellinger et al., 2013). As the population increases over time, the rate of 

CH4 production increases. When the ISR was reduced from 65% to 50% inoculum in the 

radish co-digestion mixture, there appeared to be adequate consumption of VFAs and H2 

initially, although at a slower rate, which prevented the accumulation of acids and low 

pH.  However, when the ISR was reduced below 50% inoculum, even with co-digestion, 

VFAs accumulated in excess of the buffering capacity of the system, as pH values 

declined with suppressed methanogen metabolic activity observed. 

While the methanogen population could have been abundant initially in the 100% 

radish treatment at an ISR containing 65% inoculum, rapid hydrolysis of the readily 

degradable radish substrate and subsequent VFA production could have occurred at a 

faster rate than the methanogens were able to utilize the substrates. If acetate and H2 

accumulated in the digester, the rate of acetogenesis would likely decrease due to 

acetogenic bacteria favoring a low hydrogen partial pressure (Wellinger et al., 2013). 

With suppressed acetogenesis, an accumulation of longer chain fatty acids, such as 

butyric and valeric acids, could occur as VFA conversion into acetate diminishes. As 

methanogens were unable to directly utilize these longer chain fatty acids prior to 
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conversion into acetate, the buffering capacity of the system was likely exceeded 

(Gerardi, 2003).  

3.5  Conclusions 

Anaerobic digestion of two substrates, 100% forage radish and 40% radish co-

digested with dairy manure, was investigated at varying ISRs. A key finding from this 

research was that as the quantity of radish was increased in the digester, a larger quantity 

of inoculum was required during batch digestion to achieve enhanced CH4 production. 

This trend was verified using VFA analyses. However, by co-digesting the forage radish 

with a substrate such as dairy manure, which also has methanogens and alkalinity, the 

quantity of inoculum added to the digestion system could be greatly reduced. Digestion 

instability was observed for each substrate at ISRs containing ≤ 35% inoculum, resulting 

in an accumulation of VFAs, low pH values (≤ 5.64), and negligible CH4 production. 
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4.1  Abstract  

Pilot-scale digesters (850 L) were used to quantify CH4 and H2S production when using 

forage radish cover crops as a co-digestion feedstock in dairy manure-based digesters. 

During two trials, triplicate mixed digesters were operated in batch mode with manure-

only or radish + manure (27% and 13% radish by wet weight in Trial 1 and 2, 

respectively). Co-digestion increased CH4 production by 11% and 39% in Trial 1 and 2, 

respectively. As H2S production rapidly declined in the radish + manure digesters, CH4 

production increased reaching high levels of CH4 (≥ 67%) in the biogas. Over time, 

radish co-digestion lowered the H2S concentration in the biogas (0.20%) beyond that of 

manure-only digestion (0.34 – 0.40%), although cumulative H2S production in the radish 

+ manure digesters was higher than manure-only. Extrapolated to a farm-scale (200 

cows) continuous mixed digester, co-digesting with radish could generate 3150 m3 

CH4/month, providing a farmer additional revenue up to $3125/month in electricity sales. 

4.2  Introduction 

Dairy manure has a low energy density in comparison to other anaerobic digestion 

(AD) feedstocks and economic returns from manure-only digestion are often low to 

negative (Klavon et al., 2013; Wang et al., 2011). However, biogas production from dairy 

digesters can become a more economically viable practice by using additional 

biodegradable feedstocks located in close proximity to the dairy facility (El-Mashad and 

Zhang, 2010). Co-digesting dairy manure with other substrates, such as fats, oils, and 

grease (Lansing et al., 2010), slaughterhouse waste (Alvarez and Linden, 2008), or 

energy crops (Amon et al., 2007) with higher biogas potential have been shown to 
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increase biogas production by 100 – 500% (El-Mashad and Zhang, 2007; Lansing et al., 

2010), thus increasing the feasibility of AD technology, especially for small to mid-sized 

dairy farmers (Klavon et al., 2013). Energy crop digestion is increasingly utilized due to 

the higher methane (CH4) yield relative to animal manure (120 – 300 L CH4/kg VS) (Al 

Seadi et al., 2008; Lansing et al., 2010). Some of the most widely used energy crops are 

maize (205 – 450 L CH4/kg VS) (Bruni et al., 2010; Braun et al., 2009), switchgrass (298 

– 467 L CH4/kg VS) (Masse et al., 2010; Braun et al., 2009), sugar beets (236 – 381 L 

CH4/kg VS) (Umetsu et al., 2006; Braun et al., 2009), sunflower grass (154 – 400 L 

CH4/kg VS), and Sudan grass (213 – 303 L CH4/kg VS) (Amon et al., 2007; Braun et al., 

2009).  

Forage radish is listed as a top cover crop species for the Northeast and Mid-

Atlantic regions of the United States (SARE, 2007), with over 15,000 acres planted in 

Winter 2012 in the state of Maryland alone. Traditionally, corn-silage based dairy 

farmers leave the land fallow after harvesting corn silage in August. Planting forage 

radish as a winter cover crop immediately after corn harvest will not interfere with food 

supply. After several consecutive nights with temperatures below -6°C, the radish cover 

crop winter-kills and rapidly decays, leaving behind a clean and enhanced seedbed. 

Utilizing radish as a winter cover crop results in multiple soil and environmental benefits, 

such as erosion control, improved soil fertility, and the alleviation of soil compaction 

(Gruver et al., 2014). 

Forage radish is a Brassica crop and has a relatively high sulfur content (7.8 – 8.2 

g/kg dry matter in the shoots) (Lounsbury, 2013). During AD, organic sulfur 

decomposition leads to hydrogen sulfide (H2S) production, as sulfate reducing bacteria 



 

 61 

 

(SRB) utilize acetate to reduce SO4
2- to H2S. The most common pathway for CH4 

production is the acetoclastic pathway, where methanogens split acetate to form CH4 and 

CO2. Since SRB and methanogens both utilize acetate and H2 as primary substrates, 

competition for available resources can occur during AD (Liu and Whitman, 2008). As 

sulfate reduction is more energetically favorable (-152 kJ/mol) than methanogenesis (CO2 

reduction: -131 kJ/mol; acetoclastic pathway: -37 kJ/mol) (Madigan et al., 2012), CH4 

production can be suppressed when H2S production is high due to substrate limitation 

(Liu and Whitman, 2008). For example, Khanal and Huang (2003) found that during 

anaerobic treatment of high-sulfate wastewater, increasing sulfate concentration from 

1,000 to 5,000 mg/L significantly increased H2S production and decreased CH4 

production by 50%.  

Hydrogen sulfide reacts with water vapor present in the biogas producing sulfuric 

acid, which can corrode piping and engine units. The H2S content of biogas generated 

from animal manure ranges from 1000 to 3000 ppm (0.10 – 0.30%) (Al Seadi et al., 

2008). The end use of the biogas dictates the extent to which the H2S must be removed 

prior to usage. In combined heat and power (CHP) engines, the H2S concentration should 

not exceed 100-500 ppm (0.01 – 0.05%) to prevent corrosion (Deublein and Steinhauser, 

2011). Considering that biogas engines are often the largest cost associated with AD 

systems (Klavon et al., 2013) and that the majority of AD systems in the U.S. use the 

produced biogas for CHP or sole electricity production (AgSTAR, 2013), it is imperative 

that the H2S concentration is not drastically increased when digesting sulfur-rich 

feedstocks, such as forage radish. 
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A major barrier to AD installation in the U.S. has been the lack of data on biogas 

potential in the literature, especially at the field-scale level. The data that is available in 

the literature focuses primarily on CH4 production, with less attention to the effect of 

feedstock selection on H2S production. This research investigates forage radish cover 

crops as a renewable source of energy in terms of CH4 production, the effect of radish co-

digestion on H2S production, and the relationship between H2S production and 

methanogenesis limitations. Specifically, this research seeks to determine if additional 

benefits can be obtained from the forage radish by harvesting the above-ground material 

prior to winter kill and utilizing it as a co-substrate in dairy digesters to increase CH4 

production. The overall objectives of this research were: (1) to determine potential CH4 

and H2S production when co-digesting forage radish cover crops with dairy manure in 

batch pilot-scale complete mix digesters, (2) to determine how the percentage of forage 

radish in the co-digestion mixture affects CH4 production, and (3) to quantify the radish 

crop acreage required for co-digestion at the farm-scale level and how inclusion of radish 

cover crops affects on-farm energy production potential. The results can be used by dairy 

farmers to maximize CH4 production in digesters during the winter when the demand for 

supplemental heating is the greatest.  

4.3  Materials and Methods 

Pilot-scale complete mix anaerobic digesters were designed and constructed to 

evaluate the anaerobic co-digestion of forage radish (Raphanus sativus var. 

longipinnatus) and the liquid fraction of solids-separated dairy manure under field 

conditions. The research was conducted at the USDA Beltsville Agricultural Research 

Center (BARC) dairy farm (39.03°, -76.89°) located in Beltsville, Maryland. 
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4.3.1  Feedstocks 

Forage radish was grown as a cover crop immediately after corn silage harvest, 

sown in August and harvested in early December prior to a predicted hard freeze. To 

harvest, the cover crop was first mowed with a rotary mower as close to ground level as 

practical (3 – 5 cm). This mow cut the leafy shoots plus a portion of the fleshy root that 

extended above ground into a windrow. A forage chopper then passed over the windrow 

to harvest the above-ground biomass and the chopped material was blown into an 

adjacent wagon for collection. During this process, the radish biomass was transformed 

into a semi-slurry state. The harvested forage radish biomass was stored in sealed plastic 

buckets and frozen until use. Due to the heterogeneity of the harvested radish particle size 

(up to 10 cm), an industrial vertical cutter (Hobart Corporation; Troy, Ohio USA; model 

VCM-40) was used to further reduce the radish particle size to less than 3 cm to prevent 

damaging the pumping system and clogging the digester piping during digester loading. 

Solids-separated dairy manure was obtained from BARC’s dairy research unit. 

This 120-cow dairy uses a scrape system to collect raw manure and a FAN separator 

(0.64 cm mesh screen) to remove roughly 80% of the solids prior to treatment in a 

mesophillic complete mix digester (540 m3). The solids-separated dairy manure was 

collected from the holding pit on three different dates for the experiments. Total solids 

content of three sampling events varied 2 – 4%, primarily due to differences in water 

usage in the barn. Inoculum used in the batch digesters to accelerate biogas production 

was obtained from a sampling port located inside the BARC complete mix digester. The 

BARC digester is fed daily with the liquid fraction of solids-separated dairy manure and 

operates at 25 – 35°C. The inoculum substrate from inside the BARC digester had an 
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average pH of 7.5, and total solids (TS) and volatile solids (VS) concentration of 24 and 

15 mg/g, respectively (Table 4.1). 

4.3.2  Experimental design 

Six pilot-scale complete mix anaerobic digesters were fabricated from 850 L 

(working volume) high-density polyethylene conical tanks (Ace Roto-Mold; Hospers, 

Iowa USA) equipped with silicone adhesive rubber heating blankets (BriskHeat; 

Columbus, Ohio USA; model SRP series) and radiant foil shells to maintain a 35°C 

digestion temperature. Custom made top-mounted stirrers (using 1/15 hp Dayton right 

angle gear motors driving 25 cm diameter beveled mixing blades at 22 rpm) were used to 

agitate the contents twice daily for 15-minute periods. Two field trials were conducted 

using six digesters operating in batch mode for 33 days, which corresponded to the time 

period in which large decreases in daily biogas production were observed, with < 1% of 

the cumulative biogas production being produced daily. After the first 33-day trial, the 

six digesters were emptied and cleaned before being refilled for the second trial. For each 

trial, all digesters were loaded on the same day with the exception of the manure-only 

controls in Trial 1, which were loaded the following day. The digesters were operated in 

batch mode. All digesters contained 776 kg of total feedstock (Table 4.2). The dairy’s 

truck scale (± 20 lbs) was used to weigh all feedstocks into a secondary container. 

Previous experiments demonstrated that the radish had a tendency to settle out of the 

manure. Therefore, the feedstocks were manually stirred in the secondary container while 

being transferred with a 1.5 hp centrifugal pump (Dayton; China) into each digester.  
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 Table 4.1 Feedstock characterization represented by average (± standard error). 

  M1 RM1 (27% radish:73% manure) M2 and RM2 (13% radish:87% manure) 

 

Inoculum Manure Inoculum Manure Radish Inoculum Manure Radish 

pH 7.5 (0.03) 6.9 (0.02) 7.5 (0.02) 6.9 (0) 4.6 (0.1) 7.5 (0.01) 7.2 (0.01) 4.3 (0.01) 

sCOD (g/L) 3.95 (0.01) 11.9 (0.03) 4.08 (0.07) 12.8 (0.03) 51.9 (0.3) 3.15 (0.05) 8.03 (0.14) 51.2 (0.1) 

TS (mg/g) 25.7 (0.1) 30.8 (0.4) 25.6 (0.02) 35.2 (0.02) 112 (4) 20.6 (0.1) 23.6 (0.1) 106 (0.4) 

VS (mg/g) 16.0 (0.1) 22.3 (0.3) 16.0 (0.01) 26.1 (0.1) 89.6 (3.2) 12.7 (0.1) 17.2 (0.1) 81.4 (0.3) 

 

 

 

     Table 4.2 Feedstock loading.   

 
M1 

RM1 (27% radish:73% 

manure) M2 

RM2 (13% radish:87% 

manure) 

Inoculum, kgww 411 411 411 411 

Manure, kgww 365 268 365 317 

Radish, kgww 0 97 0 49 

Total, kgww 776 776 776 776 

Inoculum, kgVS 6.58 6.58 5.34 5.34 

Manure, kgVS 8.04 6.98 6.21 5.39 

Radish, kgVS 0 8.74 0 3.98 

Total, kgVS 14.6 22.3 11.6 14.7 

ISRa 1:1.2 1:2.4 1:1.2 1:1.8 
      a Inoculum to substrate ratio (ISR) calculated on a VS basis. 
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Results from previous laboratory-scale co-digestion experiments using dairy 

manure and forage radish mixtures showed that the optimal inoculum to substrate ratio 

(ISR) for radish and manure digestion was 65:35 on a wet weight (ww) basis (data 

unpublished). Due to differences in the VS content of the feedstocks during the 

laboratory and field trials, the ISR was adjusted for the pilot-scale experiment. All 

complete mix digesters were loaded in each field trial with 53% inoculum and 47% 

substrate (ww basis), with the substrate consisting of manure-only (control) or radish + 

manure (Table 4.2). Since the VS content of forage radish is over three times greater than 

dairy manure, the total amount of substrate (ww basis) added to each digester was kept 

constant to avoid substrate quantity being a confounding variable in the comparative 

study. As a result, the digesters had different VS contents. To make comparisons between 

treatments, the biogas data was normalized by the amount of VS added. 

For Trials 1 and 2, three digesters contained manure-only (M1 and M2, 

respectively) and had an ISR of 1:1.2 (VS basis). For Trial 1, three radish + manure 

digesters contained 27% radish and 73% dairy manure (ww) (RM1), which corresponded 

to an ISR of 1:2.4. For Trial 2, the three radish + manure digesters (RM2) contained 13% 

radish and 87% dairy manure (ww), which corresponded to an ISR of 1:1.8 (Table 4.2).  

4.3.3  Biogas analysis 

The biogas generated was quantified with gas flow meters (EKM Metering Inc.; 

Santa Cruz, California USA; model EKM-PGM.75). Biogas samples were taken at least 

weekly from each digester with a syringe, placed into pre-evacuated foil gas bags, and 

analyzed for CH4 and H2S content using a gas chromatograph (Agilent Technologies, 

Inc.; Shanghai China; model 7890 A) with a thermal conductivity detector at 250°C with 
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an HP-Plot Q capillary column (Agilent J&W; USA) and He as the carrier gas at 8.6 

ml/min. The oven operated at 60°C for 2 minutes and subsequently ramped at 30°C/min to 

240°C.  

4.3.4  Feedstock characterization 

The digester feedstocks were characterized prior to digestion (Table 4.1). Liquid 

digester samples were collected weekly and before and after each trial. Samples were 

analyzed for pH, soluble chemical oxygen demand (sCOD), total and volatile solids (TS, 

VS), total Kjeldahl nitrogen (TKN), total Kjeldahl phosphorus (TKP), and total sulfur. 

The pH was determined with an Accumet AB 15 pH meter. Standard Methods for the 

Examination of Water and Wastewater (APHA, 2005) were used to determine TS 

(Method 2540B) and VS (Method 2540E). The reactor COD digestion method was 

adapted by HACH Method 8000 for sCOD with 1.5 µm filtrate used for the analysis. A 

Lachat (QuickChem 8500 Series 2 FIA Automated Ion Analyzer) was used to determine 

TKN and TKP after Kjeldhal digestion with concentrated H2SO4 and CuSO4*5H20 and 

filtration through 0.45 µm membranes (QuikChem Method 13-107-06-2-D for TKN and 

13-115-01-1-B for TKP). Composite samples from each digester type (manure-only or 

radish + manure) were submitted to Cumberland Valley Analytical Services 

(Hagerstown, MD) for total sulfur analysis and analyzed according to Standard Methods.  

4.3.5  Statistical analysis 

The experimental design for the two independent trials was a complete 

randomized design with six experimental units (digesters) and two treatment levels 

(presence or absence of radish) with three replicates each. A single factor ANOVA 
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followed by Tukey-Kramer’s post hoc test showed a significant difference between the 

CH4 yields in the manure-only digesters (controls) in Trials 1 and 2. Therefore, statistical 

comparisons were only made within each trial. Significant differences within each trial 

were determined with t-tests for average CH4 yields, H2S yields, sCOD, TKN, and TKP 

using SAS 9.3 (SAS, Cary, NC) with an alpha of 0.05. Reported values are given as 

means with standard errors. 

4.4  Results and Discussion 

4.4.1  CH4 production 

Co-digestion of forage radish cover crops in dairy manure complete mix batch 

digesters increased CH4 production relative to that from digesters containing only dairy 

manure. The average CH4 production value for RM1 (12.81 L CH4/kg substrate) was 

68% greater than M1 (7.61 L CH4/kg substrate) (p-value = 0.003) and RM2 (8.38 L 

CH4/kg substrate) was 77% greater than M2 (4.74 L CH4/kg substrate) (p-value = 0.001) 

when normalized by kilograms of substrate added (Figure 4.1; Table 4.3). RM2 (13% 

radish) contained half the radish content of RM1 (27% radish), thus having a reduced VS 

load in comparison to RM1.  

Table 4.3 Cumulative CH4 and H2S production represented by average (± standard error). 

 
M1 RM1 M2 RM2 

L CH4/kg VS 190 (9) 210 (7) 150 (10) 208 (7) 

L H2S/kg VS 1.71 (0.06) 2.21 (0.05) 0.91 (0.04) 1.68 (0.02) 

L CH4/kg substrateww 7.61 (0.35) 12.8 (0.4) 4.74 (0.32) 8.38 (0.28) 

L H2S/kg substrateww 0.07 (0.002) 0.14 (0.003) 0.03 (0.001) 0.07 (0.0008) 
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Figure 4.1 Average (± standard error) CH4 and H2S production for the manure-only (M1; M2) and radish + manure digesters (RM1: 

27%; RM2: 13% radish, by ww). (A) L CH4/kg substrate added, (B) L CH4/kg VS added, (C) percent CH4, and (D) percent H2S. 
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The radish + manure digesters initially experienced a lag in CH4 production 

compared to the manure-only digesters. Normalized by VS addition, RM1 and RM2 

required approximately 15 and 7 days, respectively, to equal the CH4 production of M1 

and M2, respectively (Figure 4.1). Additionally, in Days 1 – 3, RM1 and RM2 had < 50% 

CH4 in the biogas. However, by the time the digesters reached peak CH4 production, the 

CH4 concentration of RM1 and RM2 had increased to 76% and 67%, respectively. 

Overall, the CH4 concentration of the biogas for RM1 and RM2 was significantly higher 

than the respective manure-only digesters: M1 and M2 (p-value = 0.012 and 0.045, 

respectively).  

Although the dairy manure obtained for Trial 2 was more dilute due to increased 

use of misting units in the dairy barn, we expected that the CH4 production values for M1 

and M2 would be similar when normalized by VS added considering that each contained 

the same quantity of inoculum and manure (Figure 4.1; Table 4.2). In contrast to our 

expectations, average CH4 production values from M1 (190 L CH4/kg VS) and M2 (150 

L CH4/kg VS) were significantly different (p-value = 0.002). For this reason, differences 

in CH4 production between the two trials could not be attributed only to changes in radish 

content and statistical comparisons could only be conducted within each trial. Although 

we cannot explain the basis for the differences in CH4 production between M1 and M2, 

the more dilute manure in Trial 2 could have resulted in substrate limitations, or other 

factors such as nutrient availability or toxicity could have affected the digestion process. 

When normalizing CH4 production by VS, the CH4 production values for M1 and 

RM1 differed by only 11% and were not statistically different (190 and 210 L CH4/kg 

VS, respectively; p-value = 0.21). In Trial 2, there was a statistically significant 
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difference between M2 and RM2, with a 39% increase in CH4 production with radish 

(150 and 208 L CH4/kg VS, respectively; p-value = 0.009) (Figure 4.1; Table 4.3). 

Although the effect of forage radish content (13% vs 27% radish) on CH4 production was 

not statistically compared due to differences in manure between trials, the results show 

that even a small quantity of radish (13% radish) added to a dairy digester results in 

enhanced CH4 production.  

While co-digesting forage radish cover crops in dairy digesters increased CH4 

production, the CH4 potential was lower than values from other energy crop digestion 

studies (i.e maize) but was similar to values from other sulfur-rich feedstocks. Amon et 

al. (2007) observed CH4 production levels of 398 L CH4/kg VS with maize, while Masse 

et al. (2010) observed 309 L CH4/kg VS with switchgrass. Lower CH4 production in our 

study (210 and 208 L CH4/kg VS for RM1, RM2) is likely mostly due to co-digestion 

with manure, but could also be related to the higher sulfur content of the radish (0.6% 

DM) compared to the other energy crops utilized in these studies. The CH4 potential of 

forage radish co-digestion was similar to other sulfur-rich biomass: seaweed (Ulva sp.) 

(148 L CH4/kg VS), camelina (234 L CH4/kg VS), and white mustard (223 L CH4/kg VS) 

(Peu et al., 2011, 2012). Extrapolating from the pilot-scale studies, assuming no 

synergistic effects from co-digesting forage radish with dairy manure, digestion of 100% 

radish substrate would produce 515 L CH4/kg VS. However, it is very likely that this 

value is overestimated, as our previous laboratory studies have shown that inoculum level 

(alkalinity) plays a major role in the digestion process as radish content increases (data 

unpublished). 
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4.4.2  Total sulfur content and H2S production 

During the first three days of incubation, there were elevated H2S concentrations 

in the biogas produced in RM1 (1.2%), RM2 (0.8%), and M1 (0.9%), and a lower initial 

H2S concentration in M2 (0.4%) (Figure 4.1). H2S production rapidly declined during 

incubation as CH4 production increased, likely due to the rapid utilization of the sulfur 

substrate over the first 14 days. By Days 9 and 7 respectively, RM1 and RM2 had lower 

H2S concentrations (0.28% and 0.23%) compared to M1 and M2 (0.43% and 0.32%), and 

remained below the manure-only digesters throughout the rest of the 33-day digestion 

period. 

The sulfur content of the radish used in this study was 0.65 mg S/g radish (ww 

basis). Our previous laboratory experiments showed the forage radish had twice the total 

sulfur content of dairy manure. The range for liquid dairy manure has been cited as 0.10 – 

0.48 mg S/g manure (ww basis) (Page et al., 2014; Bao et al., 2010). The results show 

that there was no difference initially in total sulfur concentration between the manure-

only and radish + manure digesters (Figure 4.2). It is likely that the sulfur concentrations 

were similar due to the relatively small proportion of radish (13% and 6% of total volume 

for RM1 and RM2, respectively) added to the radish + manure digesters in comparison to 

the proportion of inoculum and manure.  
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Figure 4.2 Characteristics of the manure-only and radish + manure digesters during 33 days of incubation. (A) mg S/g feedstock 

added, (B) pH, (C) g sCOD/L feedstock added, and (D) mg VS/g feedstock added. 
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Sulfur concentrations in the digesters followed a similar pattern during both trials. 

In the first trial, the total sulfur content of RM1 remained constant at ~ 0.45 mg S/g 

feedstock during the first six days of incubation, decreased by nearly 50% to 0.24 mg/g 

between Days 6 and 14, and then remained relatively constant for the remainder of the 

incubation period. For M1, RM2, and M2, sulfur concentrations decreased slightly during 

the first six days of digestion, decreased more steeply between Days 6 and 14, and 

remained stable thereafter. By Day 14, all digesters had similar total sulfur concentrations 

(0.18 – 0.22 mg S/g feedstock). 

Although initial total sulfur concentrations were similar between M1 and RM1 

and between M2 and RM2, the radish + manure digesters produced significantly more 

H2S than the respective manure-only digesters (p-values = 0.009 and < 0.0001 for Trial 1 

and 2, respectively). This suggests that the radish substrate was more readily degradable 

than the manure, allowing for the sulfur substrate in the radish + manure digesters to be 

rapidly converted to H2S. RM1 produced 2.21 L H2S/kg VS in comparison to M1 (1.71 L 

H2S/kg VS), while RM2 produced 1.68 L H2S/kg VS compared to M2 (0.91 L H2S/kg 

VS). With more H2S being produced in the radish + manure digesters, CH4 production 

was suppressed initially. A similar result was shown during the digestion of apple waste. 

In those experiments, elevated H2S concentrations and slow increases in CH4 production 

during the initial incubation illustrated that SRB activity was greater than methanogenic 

activity (Kafle and Kim, 2013). In that study, the authors predicted that acidification of 

the apple waste may have contributed to the low methanogenic activity during the initial 

incubation. However, in the present study, no significant acidification of the forage radish 

was observed as pH remained relatively constant over the entire incubation period 



 

 75 

 

(Figure 4.2). Our results suggest that it was the sulfur content of the radish and its rapid 

degradation that lead to significantly higher H2S production which suppressed CH4 

production initially rather than pH causing CH4 suppression. Similarly Kafle et al. (2014) 

demonstrated that the AD of another Brassica crop, Chinese cabbage waste, produced 

biogas with less than 50% CH4 content during the initial days (<21 days) of incubation, 

with H2S concentrations exceeding 5000 ppm. However after 21 days, the H2S 

concentration gradually declined and the CH4 concentration increased to ~80%. 

The initial lag in CH4 production observed in the radish + manure digesters could 

be due to a longer period of acclimatization required for digesting the radish cover crop 

or methanogenic inhibition by SRB. Brassica cover crops (i.e. camelina, radish fodder, 

mustard) have high levels of sulfur-containing glucosinolates. 30.3% of the total sulfur 

content in radish cover crops are glucosinolates (Peu et al., 2013). Although glucosinolate 

content is highly dependent on species, variety, and cultivar, radish was found to contain 

the highest concentration of glucosinolates (64 – 332 mg/100g) relative to other crucifers 

such as cabbage, turnip, and kale (20 – 151 mg/100g) (Ciska et al., 2000). Future studies 

should include a full sulfur analyses in the liquid and gas phase to further elucidate the 

lag phase observed. Additionally, the lag phase seen during batch digestion may not be 

present during continuous operation. 

Although H2S can have a corrosive effect on digestion systems, this research 

suggests that at peak CH4 production co-digestion with the forage radish crop generates 

biogas that would not require any additional desulfurization beyond the standard practice 

of scrubbing the biogas from digestion of dairy manure prior to use in a CHP system. All 

digesters in the study had H2S in the biogas above 0.05% (target concentration for CHP 
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engines). On average, RM1 and RM2 had a H2S concentration of approximately 0.20% 

(2000 ppm) during peak CH4 production, with the manure-only digesters being slightly 

higher at 0.40% (4000 ppm) and 0.34% (3400 ppm) for M1 and M2, respectively (Figure 

4.1). During peak CH4 production, the radish co-substrate lowered the H2S concentration 

of the biogas below the manure-only digesters by Days 9 and 7 for Trial 1 and Trial 2, 

respectively, although cumulatively the radish + manure digesters produced a larger 

quantity of H2S when normalized by VS addition.  

Overall, CH4 production was not severely suppressed by radish addition during 

this batch process and was able to reach high concentrations of CH4 after the initial lag 

phase. Similarly, Peu et al. (2013) demonstrated that the digestion of Brassica crops was 

not severely inhibited by glucosinolate content, but H2S production in the biogas was not 

directly measured in their study. Peu et al. (2012) predicted that based on total sulfur 

content and biogas production that digestion of radish cover crops would produce biogas 

containing H2S concentration ≤ 1.0% (v:v). Although the radish species and variety were 

not specified and the whole plant was used as substrate, the predicted value is similar to 

our findings in which only the radish above-ground biomass was used for co-digestion in 

order to maintain the soil nutrient benefits of the cover crop and reduce harvesting labor.  

4.4.3  pH, nutrients, and organic matter transformations 

 Use of forage radish as a co-digestion substrate at an ISR of 53:47 required no pH 

adjustments during the incubation period. All digesters remained within the optimal pH 

range (6.5 – 8.0) for mesophilic AD (Figure 4.2; Table 4.4). Although the forage radish 

had an initial pH of ~4.5, adequate buffering capacity was maintained in this study for a 

circum-neutral digestion environment.  
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Table 4.4 Characteristics of the manure-only and radish + manure mixtures before and after digestion. 

 

 
M1 RM1 M2 RM2 

 

Initial Final Initial Final Initial Final Initial Final 

pH 7.5 (0.02) 7.6 (0.02) 7.3 (0.01) 7.7 (0.02) 7.6 (0.00) 7.6 (0.01) 7.4 (0.00) 7.7 (0.02) 

sCOD (g/L) 8.83 (0.05) 3.69 (0.18) 10.6 (0.1) 3.46 (0.02) 5.34 (0.46) 2.76 (0.03) 7.87 (0.64) 2.64 (0.01) 

TS (mg/g) 27.6 (0.1) 22.3 (0.4) 36.9 (0.2) 22.5 (0.1) 21.4 (0.1) 16.7 (1.5) 26.1 (0.2) 21.1 (1.5) 

VS (mg/g) 18.7 (0.1) 13.4 (0.3) 26.5 (0.2) 12.3 (0.1) 14.5 (0.04) 9.7 (1.1) 18.1 (0.2) 12.2 (1.0) 

Sulfur (mg/g) 0.41 0.18 0.43 0.21 0.44 0.22 0.41 0.19 
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The addition of forage radish as a co-substrate also did not diminish the fertilizer 

value of the digester effluents (Table 4.5). TKN values for the manure-only and radish + 

manure digester effluents were not statistically different at 1695 ± 100 and 1764 ± 118 

mg/L respectively, while TKP values were also not statistically different at 269 ± 16 and 

278 ± 20 mg/L, respectively. This resulted in the digester effluents having an average N:P 

ratio of 6.3:1, which is close to the N:P ratio required by corn grain (6:1) (Paschold et al., 

2008). The effluent of both digestion systems with and without radish would be an 

advantageous liquid fertilizer for corn-silage based dairy farmers. 

The sCOD values increased in RM1 and RM2 during the first two days of 

digestion, likely due to the initial hydrolysis of the forage radish into simple soluble 

compounds (Figure 4.2). After the initial spike, sCOD for RM1 decreased by 10.2 g/L 

during the 33-day incubation period, with 90% of the reduction occurring during the first 

14 days. In RM2, sCOD values were reduced by 5.9 g/L. There was less sCOD total 

destruction in the M1 and M2 digesters (5.1 and 2.6 g/L, respectively) due to the lower 

initial values. However by the end of the incubation period, the sCOD concentrations 

were similar between RM1 and M1, as well as between RM2 and M2, illustrating the 

ability of the radish + manure digesters to utilize the additional sCOD input from the 

radish substrate. VS reductions were similar, with 14.2 and 5.9 mg of VS removed per 

gram of feedstock addition for RM1 and RM2, respectively, and 5.2 and 4.8 mg/g for M1 

and M2, respectively (Figure 4.2). 
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Table 4.5 Nitrogen and phosphorus characteristics of the digester effluents after 33 days 

of incubation. 

 

  M1 RM1 M2 RM2 

TKN (mg/L) 1750 (220) 1800 (260) 1640 (40) 1720 (40) 

TKP (mg/L) 278 (32) 274 (44) 259 (10) 283 (9) 

N:P 6.3:1 6.6:1 6.3:1 6.1:1 

4.4.4  Farm-scale analysis 

Harvesting the above-ground biomass of forage radish using a rotary mower and 

forage chopper, yielded 7,340 ± 1,050 kg/acre (fresh weight) of radish shoots and above-

ground roots. Based on the pilot-scale CH4 production results for RM2 (13% radish and 

87% liquid dairy manure (ww basis)) and an ISR of 53% inoculum, a 200-dairy cow farm 

would require a 32 m3 batch digestion system, assuming a 15% biogas headspace (Table 

4.6). Operating the batch digester with a 30-day retention time would require the 

following substrates: 1630 kg (ww) of radish (corresponding to the yield from 1/4 acre) 

and 10,890 kg (ww) of manure, which is equivalent to the daily manure production from 

200 dairy cows, assuming a daily manure production rate of 120 lbs/dairy cow (ASAE, 

2003). The calculated CH4 production from this batch system would be 105 m3/month, 

which corresponds to a monthly energy yield of 3.65*106 BTU or 1070 kWh, and is 77% 

greater than digesting 100% dairy manure.  

Due to the low pH of forage radish (4.5) and volatile fatty acid production during 

digestion, adequate buffering capacity is required for optimal CH4 production when 

digesting radish. A high volume of inoculum and/or manure would likely be required, 

especially if operating in batch mode. Other studies have shown that high 

inoculum/manure loads enhanced CH4 production when digesting Brassica crops. Peu et 

al. (2013) utilized pig slurry for radish fodder (whole plant) co-digestion (75:25, ww), 
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whereas Carvalho et al. (2011) used previously digested wastewater treatment plant 

sludge as inoculum for oilseed radish (whole plant silage) digestion (91:9, ww), with both 

being higher than the ISR used in this study (53:47).  

Extrapolating from the batch digestion studies to a continuously operated 

digestion system would require a 460 m3 digester for a 30-day retention time with manure 

loaded from 200 dairy cows and 1630 kg of radish daily, corresponding to seven acres of 

harvested radish per month. This assumes a one-time loading of 53% inoculum at start-up 

(Table 4.6). The CH4 production from this system was calculated to be 3150 m3/month, 

assuming the CH4 production rate of the batch system. The CH4 production value 

assumes that the pH would remain the same in a continuous system when inoculum was 

only added at start-up. However, this may not occur. If fluctuations in pH occurred, the 

radish content could be lowered for continuous operation. 

For field-scale operation, the entire daily manure load of the farm could be treated 

and the amount of radish harvested and added to the digester would be based on the daily 

manure production rate. For a new digester operation, the additional digester capacity 

required for radish co-digestion could be taken into account at the design phase. For an 

existing system, the operator has several options including decreasing in-vessel gas 

storage space or retention time, or storing the radish and adding a smaller percentage of 

radish daily in order to accommodate the existing digester size.  

 

 

 

 



 

 81 

 

Table 4.6 Energy and revenue per month for a 200-dairy cow farm operating a complete 

mix digestion system. 

 

  
Batch 

Digester 

Continuous 

Digester 

Retention time (days) 30 30 

Feedstocks 

  Forage radisha (kgww) 1,630 48,800 

Dairy manureb (kgww) 10,890 326,590 

Inoculum (kgww) 14,110 14,110 

Total (kgww) 26,620 389,500 

Digester sizec (m3) 32 460 

CH4 productiond (m3) 105 3,150 

Energy yield (BTU) 3.65E+06 1.09E+08 

Energy yield (kJ) 3.85E+06 1.15E+08 

Energy yield (kWh) 1,070 32,050 

Cover crop cost-sharee (US$/acre) 80 80 

Radish Substrate Value (US$) 20 560 

Natural gasf (US$/m3) 0.43 0.43 

Electricityg (US$/kWh) 0.10 0.10 

Co-digestion Revenue 

  Gas (US$) 45 1,350 

Electricity (US$) 105 3,125 

Total Revenue 

  Gas (US$) 65 1,910 

Electricity (US$) 125 3,685 
a Based on 7,340 kg of above-ground radish biomass/acre. 
b Assumes a daily manure production rate of 120 lbs/dairy cow. 
c Assumes a 15% volumetric headspace. 
d Based on 8.38 L CH4/kg substrate. 
e Assumes a base payment, plus add-on incentives: cover crop planted by October 

1 on a farm located in a targeted watershed on fields that previously grew corn 

and were fertilized in Spring with manure. 
f Based on the average price of natural gas (2013 US$).  
g Based on average price of electricity (2013 US$). 
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On a practical standpoint, our experience showed that utilizing a reduced radish 

loading resulted in more favorable digester operation and maintenance conditions. 

Reducing the radish content minimized clogging in the digester pumping system and 

allowed for the mechanical mixers to adequately agitate substrates without increased 

strain, thus reducing stratification of substrates in the digester. The smaller radish 

addition could also be more advantageous to the dairy farmer since less land would need 

to be harvested for the digestion co-substrate, resulting in reduced fuel costs associated 

with harvesting and transportation and less labor and energy would be required for 

harvesting and mechanically reducing the particle size of the radish. 

A possible scenario for a corn-silage based dairy farmer utilizing a continuous 

complete mix digester would consist of the following. The forage radish cover crop 

would be planted in August immediately after corn harvest. Starting November, the 

forage radish cover crop would be harvested for co-digestion substrate weekly. Due to the 

consistency of the above-ground radish biomass after mowing and forage chopping, it is 

more ideal to harvest the radish in small batches. The colder temperatures should allow 

for the harvested radish to be stored outdoors. The ambient temperature will dictate if 

weekly radish harvesting can continue through December and how many additional acres 

could be harvested for continual loading in December and January. Typically in 

December or January, the forage radish cover crop will winter-kill after several 

consecutive nights with temperatures below - 6°C. The forage radish cover crop that will 

be utilized as co-substrate should be harvested prior to any predicted hard frost.  

Through cost-share programs, farmers can receive grants for planting cover crops. 

Depending upon the farming practice, the average base payment is $45/acre. Using 
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highly valued planting practices, such as planting in fields that previously grew corn or 

were fertilized with manure in the springtime can increase the payment to $80/acre 

(MDA, 2014). Utilizing the above-ground radish biomass as co-substrate could also 

increase farm revenue through biogas and electrical generation. Based on CH4 production 

values from the batch and continuous digestion systems on a 200-dairy cow farm and the 

2013 average price of natural gas (0.43 US$/m3) and electricity (0.10 US$/kWh) (EIA, 

2014), co-digesting with radish could provide additional revenue up to $45 and 

$1350/month, respectively, for natural gas and $105 and $3125/month, respectively, for 

electricity.  

4.5 Conclusions 

Increased renewable energy production can be realized through co-digestion with 

forage radish cover crops in dairy manure digesters. Although cumulative H2S production 

in the radish + manure digesters was significantly higher than the respective manure-only 

digester, H2S production in the radish + manure digesters rapidly declined, resulting in 

higher levels of CH4 (≥ 67%) and lower levels of H2S (0.20%) in the biogas compared to 

the manure-only digesters during peak biogas production. For a 200-dairy cow farm, a 

continuous complete mix digester (30-day retention time) would require seven acres of 

radish and has the potential to produce 3150 m3 CH4/month through co-digestion. 
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Appendix E contains supplementary tables for Chapter 4 detailing cumulative 

biogas, CH4, and H2S production values for the triplicate complete mix batch 

digesters.  
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Chapter 5:  Forage Radish Cover Crops: Cultivation, Harvest, 

and Energy Yield 
 

5.1  Cultivation 

Forage radish is listed among the cover crops that the Maryland Agricultural 

Water Quality Cost-Share (MACS) Program provides farmers incentive payments for if 

planted by mid-September (Figure 5.1). According to Maryland’s 2014-2015 cover crop 

program, the traditional cover crop (i.e. crop not harvested; crop grazed or chopped for 

on-farm livestock feed) base payment for planting radish is $45/acre. Add-on incentives 

are also available up to $90/acre for using highly valued farming practices. Farmers can 

also participate in the harvested cover crop program, which receives $25/acre (MDA, 

2015a; 2015b).  

The planting period in Maryland for forage radish is August 15-Septemeber 15. A 

minimum of five acres must be planted to participate in the cost-share. The seeding rate 

for forage radish required by MACS is 10 lbs/acre, although the rate should be increased 

by 25% for aerial application (MDA, 2015a; 2015b). However, if precisely planted or 

drilled, 6 to 10 lbs/acre is generally recommended (Gruver et al., 2014). 

Although vegetable radish seeds can be cost-prohibitively expensive, there are 

several other varieties (i.e. GroundHog Radish; NitroRadish; Tillage Radish) of radish 

commonly marketed for cover cropping (Gruver et al., 2014). Survey of current seed 

prices in 50 lb bag lots revealed that radish seeds ranged from $2.40 to $3.45 per pound 

(Forage Seeds, 2015; Best Forage, 2015; Hancock Seed, 2015). If five acres of land were 

sown at a seeding rate of 10 lbs/acre and $3/lb for seeds, 50 lbs of seeds would be 

required costing $150 dollars ($30/acre) in total.  
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5.2  Harvesting 

Forage radish (Raphanus sativus var. longipinnatus) cover crops were sown in 

August in Beltsville, MD after corn-silage harvesting. The radish was grown on residual 

nutrients, with no additional fertilizer or manure applied other than that which was used 

for the preceding corn silage crop. In early December, before winter-kill, radish biomass 

yields were determined. To quantify the whole radish biomass yield, shovels were used to 

extract the shoots and below-ground fleshy roots from 1m2 quadrants in the field (Figure 

5.2). Harvesting the whole radish resulted in a fresh weight yield of 24,807 ± 1,274 

kg/acre (Table 5.1). A rotary mower was used to separate the above-ground radish 

biomass (shoots plus a small portion of the root that extended above the soil surface) 

from the below ground root (Figures 5.3 & 5.4). Mowing the radish resulted in an above-

ground biomass yield of 11,139 ± 1,144 kg/acre. This harvesting method left the below 

ground root intact in the soil. It is estimated that at least 55% of the whole plant (below-

ground root) remained in the field for decomposition.  

Table 5.1 Biomass yields (± standard error) of forage radish cover crops. 

 

  Fresh Biomass yield, kg/acre 

Whole radish 24,807 (1,274) 

Mowed radish (above-ground crop) 11,139 (1,144) 

Mowed and chopped radish (above-ground crop) 7,344 (525) 

 

In order to harvest the radish for use as an anaerobic digestion substrate, the 

radish was mowed and windrowed, followed by harvesting with a forage chopper. The 

chopped material was blown into an adjacent wagon for collection and weighed (Figures 

5.5 & 5.6). This resulted in a biomass wet weight yield of 7,344 ± 525 kg/acre.  

Observation of the field after harvesting revealed that some of the above-ground biomass 
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material was not collected as the forage chopper passed over the mowed windrow. Based 

on ‘mowed’ and ‘mowed and chopped’ biomass yields, it is estimated that over 30% of 

the above-ground material was left on the field as ground cover. Considering that only 

the above-ground radish biomass was forage chopped and utilized on-farm as anaerobic 

digestion substrate, it is not entirely clear whether MACS would classify the radish as a 

traditional or harvested cover crop. However, harvesting a portion of the forage radish 

cover crop would actually promote the environmental goals of the MACS program by 

removing nitrogen and phosphorus from the field. 

Logistics for harvesting the forage radish could be improved to allow for more of 

the above-ground biomass to be collected per square meter as well as controlling the 

significant volume of liquid that is released during harvesting. High performance farming 

machinery, such as a sealed self-loading/unloading forage wagon, may allow for a 

cleaner gathering of the crop from the field and conservation of the liquid portion which 

may have a high energy content. Utilizing this type of wagon could also result in faster 

radish harvesting and reducing the amount of farm labor and machinery required.  

For anaerobic digestion, fresh radish material was only utilized as substrate and 

therefore is only available until winter-kill (up to 4 months October-January). To increase 

availability of the radish year-round, storage options such as ensiling could be explored. 

However, the moisture content of the radish crop is high (90%), and thus might require a 

drier co-silage substrate to produce optimal silage. Additionally, the CH4 yield of the 

silage should be determined before utilizing the material as a feedstock. 
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5.3  Processing 

To determine the most suitable procedure for loading the radish into the complete 

mix digesters, several digester loading trials were conducted. Initially, the forage chopped 

radish was homogenized with dairy manure and loaded into the digester using a 

centrifugal pump. However due to the long fibrous radish strands ( up to 10 cm), residual 

corn stalks, and other field debris, the pump’s impeller and volute would clog resulting in 

the pump shutting off. To avoid damaging the pump and minimizing clogging, a Hobart 

industrial vertical cutter was used to further reduce the particle size of the forage chopped 

radish to less than 3 cm (Figure 5.7). 

 Logistics for processing the radish for anaerobic digestion could also be 

improved. To minimize energy consumption and labor, it would be ideal to have a 

harvesting method in the field that could simultaneously reduce the particle size of the 

radish during forage chopping into a form that was more suitable for conveyance into the 

digester. For farm-scale operation, it is recommended for all plumbing to be greater than 

2 inches and to utilize a grinder pump to minimize clogging. Additionally, it is not 

recommended to utilize radish as a co-digestion substrate in dairy manure-based gravity 

fed plug flow digesters due to the radish separating from the manure during conveyance 

and clogging the plumbing. 

5.4  Energy Yield 

Utilizing forage radish cover crops as an anaerobic digestion substrate produced 

energy without land use competition. Biochemical methane potential (BMP) experiments 

conducted in the laboratory revealed that digestion of the above-ground radish biomass at 

an inoculum to substrate ratio of 91:9 (wet weight) had a specific CH4 yield of 337 m3/t 
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VS. Considering the biomass yield of 20 t/ha (7,344 kg/acre) and the specific CH4 yield, 

the calculated CH4 yield of the above-ground radish biomass was 532 m3/ha. Since the 

specific CH4 yield for radish was determined in small BMP vessels (300 mL), a more 

accurate reflection of CH4 potential should be determined using larger-scale digesters for 

real-world radish only applications. 

In comparison to other energy crops, the calculated CH4 yield per hectare for 

radish was low (Table 5.2). It should be noted that common energy crops such as maize 

and wheat have over 4 times more VS content than forage radish, while red clover and 

oilseed rape have 2 to 3 times higher VS, respectively (Cropgen, 2008). Additionally, the 

Brassica crops, oilseed rape and forage radish had lower CH4 yields per hectare. With 

maize having higher biomass yields and VS content, it was expected for the CH4 yields 

per hectare to be higher than forage radish as shown. Additionally, although the biomass 

yields for oilseed rape were lower in comparison to radish, with 3 times more VS content 

in the oilseed rape, it is reasonable for the oilseed rape to also have higher CH4 

production as shown. Although, the calculated CH4 yield per hectare was low for forage 

radish, its use as an anaerobic digestion substrate is still promising considering its readily 

available, does not compete with food production, provides multiple soil and 

environmental benefits, receives crop-share payments, and optimizes CH4 production of a 

manure digester. To determine the sustainability of digesting forage radish and to access 

the energy return on energy invested, a cost benefit and energy analysis should be 

conducted. 
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Table 5.2 Biomass and energy yields of crops. 

 

  
Biomass 

yield, t/ha 

Specific 

methane yield, 

m3/t VS 

Calculated 

methane yield, 

m3/ha 

Maize (whole crop)* 9 - 30 397 - 618 3,573 - 18,540 

Wheat (grain)* 3.6 - 11.75 384 - 426 1,382 - 5,005 

Red clover* 5 - 19 300 - 350 1,500 - 6,650 

Oilseed rape*  2.5 -7.8 240 - 340 600 - 2,652 

Radish (above-ground crop) 20 337 532 
*Values obtained from Braun et al., 2009 

 

 

 

Figure 5.1 A stand of forage radish cover crops in Beltsville, MD. 
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Figure 5.2 Extracting radish (whole crop) from 1m2 quadrants to determine biomass 

yield. 

 

    

Figure 5.3 The above-ground radish biomass. 
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Figure 5.4 A rotary mower during radish harvesting. 

 

 

 
 

Figure 5.5 A forage chopper and adjacent collection wagon during radish harvesting. 
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Figure 5.6 Forage chopped radish in collection wagon. 

 

 

 

 

 
 

Figure 5.7 Foraged chopped radish in Hobart industrial vertical cutter. 
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Chapter 6: Conclusions 
 

 

6.1  Results Summary 

Forage radish cover crops are a suitable co-substrate for increasing methane 

(CH4) production of a dairy manure-based digester. The cover crop had 1.5 fold higher 

CH4 potential than dairy manure on a volatile solids basis. A farmer could harvest the 

above-ground biomass for anaerobic digestion co-substrate from October until December 

(winter-kill), as harvest date of the radish cover crop did not influence CH4 production. 

Increasing the radish content of the co-digestion mixture and the inoculum to substrate 

ratio, significantly increased CH4 production. Due to the low pH and rapid 

biodegradability of radish, adequate buffering capacity with the use of inoculum and/or 

dairy manure was required to prevent volatile fatty acid accumulation, which severely 

suppressed CH4 production. 

Initial H2S production increased as the radish content of the co-digestion mixture 

increased, but the sulfur-containing compounds were rapidly utilized. Overall, the sulfur 

content of the radish did not suppress CH4 production after an initial lag phase. Pilot-

scale experiments revealed that co-digesting with radish increased CH4 production by 

39% relative to manure-only digestion. Additionally, the results suggest that at peak CH4 

production co-digestion with the forage radish crop generates biogas that would not 

require any additional desulfurization beyond the standard practice of scrubbing the 

biogas from digestion of dairy manure prior to use in a combined heat and power system. 

Extrapolated to a farm-scale (200 cows) continuous mixed digester, co-digesting with a 

13% radish mixture could generate 3150 m3 CH4/month, providing a farmer additional 

revenue up to $3125/month in electricity sales. 
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Through cost-share programs, farmers can receive incentive payments for 

planting forage radish cover crops. Utilizing the radish as anaerobic digestion substrate 

produced energy without land use competition, thus expanding the use of the cover crop 

beyond improving topsoil fertility and alleviating soil compaction. Harvesting of the 

radish with a rotary mower and forage chopper yielded 20 t/ha of above-ground biomass, 

which has a calculated energy yield of 532 m3 CH4/ha.  

6.2  Broader Impacts 

It is expected that this co-digestion research will provide dairy farmers the tools 

needed to enhance CH4 production in digesters during the fall and winter months by 

utilizing optimal co-digestion and inoculum to substrate ratios. Utilizing forage radish 

cover crops will provide multiple benefits to the farmer through soil nutrient 

management, water quality improvement, as well as the enhanced production of 

renewable energy. Through anaerobic digestion, not only is it expected to reduce CH4 

emissions associated with the handling of dairy manures, but it is also hopeful to provide 

farmers with a potential source of revenue (biogas), odor control, and the creation of an 

optimized fertilizer.  

The funding provided by the Northeast Sun Grant and the University of Maryland 

has allowed many opportunities to educate diverse audiences locally, nationally, and 

internationally about advances in anaerobic digestion.  This research has been presented 

to industry and the scientific community in poster and oral presentations at venues such 

as the American Ecological Engineering Society Conference, the American Society of 

Agricultural and Biological Engineering Annual International Meeting, and the Science 

for Biomass Feedstock Production and Utilization National Conference. Workshop 
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presentations include the Clark School Engineering Sustainability Workshop, Bioscience 

Research and Technology Review Days, and the Northeast Sun Grant Anaerobic 

Digestion Workshops. A peer-reviewed journal article on this research has also been 

published in Bioresource Technology’s Special Issue on Thermo-chemical Conversion of 

Biomass. 

6.3  Future Work 

Before farm-scale application, it is recommended to determine how inclusion of 

radish cover crops influence CH4 and H2S production utilizing a pilot-scale continuous 

digestion system. It should be determined whether optimized CH4 production is 

maintained when the inoculum is added only during digester start-up and alkalinity 

monitoring should be simultaneously conducted. A cost benefit and energy analyses 

would also determine the sustainability of utilizing this co-digestion practice on farm. 

Additionally, it is suggested to improve radish harvesting and processing logistics which 

are discussed further in Chapter 5. 
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Appendices 

Appendix A: Pilot-Scale Complete Mix Anaerobic Digester 

Design 
 

Six pilot-scale complete mix anaerobic digesters were designed and constructed at 

the USDA’s Beltsville Agricultural Research Center (BARC).  The digesters were 

constructed from 850 L conical high-density polyethylene tanks (Ace Roto-Mold; 

Hospers, Iowa USA). Additional valves, ports, and pipes were primarily constructed from 

EPDM rubber, PVC piping, and stainless steel. The digesters were equipped with silicone 

adhesive rubber heating blankets to maintain mesophilic (35oC) digestion conditions.  To 

encapsulate heat surrounding the digester, foil reflective frames were installed. The 

reflective frames were constructed from PVC, plastic fencing, and industrial strength 

aluminum foil. The temperature control panel was wired to continuously monitor and 

simultaneously control the digester’s internal and external temperatures.  Protective 

casings (temperature sensing wells) were also fabricated to house the internal temperature 

probes in order to prevent direct contact with liquid contents. Top-mounted digester 

stirrers were constructed using 1/15 hp Dayton right angle gear motors and custom-made 

steel stir rods (25 cm diameter beveled mixing blades). The digester stirrers were 

simultaneously controlled by an electronic timer. Each digester was leak tested prior to 

operation. Detected leaks were sealed with an additional layer of 100% silicon. The 

digester lids were air-tight when silicone sealed. However, it was noted that the digesters 

could not tolerate anything beyond slight pressurization, therefore biogas was 

continuously collected in biogas bags to avoid breaking the digester lid seals. The biogas 

collection system was designed using ~1000 L plastic bags (~7 mil thickness), which 
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were equipped with custom-made gas collection ports. The biogas bags were heat sealed 

and tested for leakage with pressure gauges and a combustible gas leak detector. To 

prevent excess water vapor from entering the biogas bags, moisture traps and desiccant 

traps were designed and installed on each digester. 

 

 

Figure A.1 Diagram of 850 L complete mix anaerobic digester. 
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Figure A.2 View of complete mix digesters under construction at USDA BARC. 

 

        
                                          (A)                                                            (B) 

Figure A.3 View of complete mix digester equipped with (A) silicone adhesive rubber 

heating blankets and (B) a foil reflective frame to encapsulate heat. 
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Figure A.4 View of temperature control panel. 

 

 

 

 
 

Figure A.5 View of internal temperature probe enclosed in protective sensing well. 
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Figure A.6 View of top-mounted digester stirrers constructed using 1/15 hp Dayton right 

angle gear motors. 

 

 

 

  
 

Figure A.7 View of beveled blade (25 cm diameter) steel stir rods. 
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Figure A.8 View of biogas bags equipped with gas collection ports. 

 

 

 

 

       
                                   (A)                                                                (B) 

 

Figure A.9 View of (A) moisture trap and (B) desiccant trap. 
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Figure A.10 Birdseye view of the complete mix digestion system. 

 

 

 

 
 

Figure A.11 View of pilot-scale operational complete mix anaerobic digester. 
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Figure A.12 View of biogas bags in use. 
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Appendix B: Standard Operating Procedures for Complete 

Mix Digesters 
 

B1.  Biogas sampling 

Materials 

 Evacuated Tedlar gas bags (0.5 L) 

 Graduated syringe with needle 

 Small tube of silicone 

 

Figure B.1 View of gas port with septum inserted. 

 

Procedure 

1. Evacuate Tedlar bags by vacuum pump.  

2. Flush the graduated syringe several times with ambient air. 

3. Biogas samples are obtained from the gas port.   

4. Gently insert syringe needle into the gas port septum and withdraw 100 mL of 

biogas  
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5. Immediately expel biogas into a pre-evacuated Tedlar bag.  

6. Apply a small amount of silicone to punctured septum. 

7. Ensure that the syringe is flushed with ambient air in between sampling digesters.   

8. The biogas samples are taken to the University of Maryland Water Quality 

Laboratory for analysis utilizing the gas chromatograph for CH4 and H2S content. 

B2.  Water sampling 

Materials 

 Buckets 

 Sample bottles 

 Ice packs 

 Cooler 

Procedure 

1. Water samples are collected from the water sampling port. 

2. Ensure that the stir rod is agitating throughout the sampling event.   

3. Carefully open water sampling port and release about 100 mL of liquid and close 

valve. Discard liquid. Note that the liquid flow rate will be rapid.  

4. Carefully open water sampling port valve again and discharge liquid into a clean 

bucket. Close valve. Divide the contents of the bucket into duplicate sample bottles. 

5. Transport sample bottles on ice to the University of Maryland Water Quality 

Laboratory for analysis. 
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B3.  Biogas metering  

Materials 

 Flathead screwdriver 

 Foam insulation boards 

 Small vacuum pumps rated at 2.5 m3/h (Caution: Be gentle. Handle with care!  

Pumps are made with glass canisters.)  

 Gas meters 

 Logbook  

Procedure 

1. In warehouse breezeway, lay down 2 foam insulation boards per biogas bag. 

2. Place small vacuum pump outdoors. 

3. Plug in the small vacuum pump to an extension cord. 

4. Connect the vacuum pump outflow tubing to the gas meter inflow. Ensure that the 

gas meter is always in an upright position. 

5. Connect the gas meter output to tubing and place the end of the tubing outdoors as 

far away from the warehouse as possible. 

6. Close gas ports on digester and biogas bag. 

7. Carefully remove biogas tubing from bag gas port by using a flathead screwdriver 

to loosen hose clamp. Use a rotating motion to gently remove the tubing while 

one hand is gripping the ball valve.  Immediately insert a septum into the biogas 

tubing end to avoid gas loss. 

8. Holding the top two corners of the biogas bag, carefully remove bag from the 

hooks and sling. 
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9. Carefully carry biogas bag out to warehouse breezeway and gently place on the 

foam insulation boards. The biogas bag gas port should always face upward. 

10. Connect the vacuum pump inflow tubing to the biogas bag. Record the date, time, 

bag number, meter and pump number, and starting reading on the gas meter in the 

logbook. 

11. Open the gas port on the biogas bag. 

12. Immediately turn on the vacuum pump.  

13. Monitor the biogas bag while draining, ensuring to minimize creases and stopping 

just before a vacuumed suction occurs in the biogas bag. 

14. Turn off the vacuum pump. 

15. Close the biogas bag gas port. 

16. Record ending number on the gas meter in the logbook. 

17. Return drained biogas bag to frame and re-attach with hooks.  Secure sling to 

ensure the gas port remains parallel to the floor. 

18. Reconnect biogas tubing to biogas bag. Secure tubing with a hose clamp with 

screwdriver. Ensure that the clamp is not too tight on tubing to avoid damaging 

tubing. 

19. Open the gas ports on the biogas bag and digester. 

20. Repeat until all bags are drained. 

21. After all bags are drained, turn small vacuum pumps on and flush ambient air 

through, while it is still connected to the gas meter for 3 minutes. 

22. Disconnect and store biogas metering set-up. 
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Figure B.2 View of biogas metering set-up. 

 

B4.  Maintenance 

Daily maintenance for complete mix digestion system  

1. Open doors for venting of warehouse upon arrival.  

2. Inspect each digester to ensure stir rod is attached to motor (as marked by a red line 

on top and bottom of connecting barrel). 

3. Ensure that digester motors are running smoothly.   

4. Using the timer, turn off the stir rods.  Tighten all screws, reapply vacuum grease to 

grommet surrounding stir rod, and turn stir rods back on. 

5. Inspect temperature control panel to ensure unit is properly functioning.  The 

interior temperature should range between 33 – 35°C.  If interior temperature 
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reaches 35°C or exterior temperature reaches 45°C, the temperature controllers will 

shut off until digester system cools. 

6. Inspect each biogas bag to ensure that they are properly secured to frame.   

7. Ensure all digester gas ports and biogas bags collection ports are open. 

8. Check biogas tubing for moisture build-up. Empty water from moisture traps if 

necessary. 

9. Check desiccant trap for moisture control and replace desiccant if necessary. 

10. Ensure no visible water leaks or biogas leaks using combustible gas leak detector. 

Thoroughly inspect digester lid, motor mount with rod, and gas port as well as all 

seams and biogas collection port on the biogas bags. Immediately address any 

detected leak. 

11. Check biogas sampling septum for leaks and replace septum if necessary. 

B5.  Desiccant traps 

Materials 

 Flat head screwdriver 

 Septums 

 Desiccant 

Procedure 

1. Disconnect desiccant trap from digester with flat head screwdriver. Ensure to 

stopper digester biogas tubing with septums to avoid loss of gas. 

2. On desiccant trap, remove 1- Fernco (end connected directly to plastic clear tube). 

3. Pour exhausted desiccant from trap into plastic bag. 
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4. Immediately replace with dry desiccant. Ensure to tightly pack the desiccant into 

the trap. Resemble desiccant trap and connect to digester. 

5. Repeat to change out all desiccant traps as necessary. 

6. At the University of Maryland Water Quality Laboratory, place exhausted desiccant 

(~1 inch thick layer) into a metal tray. 

7. Allow to dry at 120 oC for 8 hours in drying oven.  

8. Stir desiccant occasionally and monitor to avoid burning desiccant. 

9. When dry, immediately transfer desiccant and store in air-tight container. 

B6.  Digester loading procedure  

Materials 

 Forklift 

 Hobart industrial vertical cutter 

 Scales (truck scale and industrial scale) 

 300-gallon tanks on heavy duty forklift pallets 

 50-gallon drums 

 Inoculum 

 Solids-separated liquid dairy manure 

 Forage chopped radish   

 1.5 hp centrifugal pump 

 Drum pump 

 2” connecting hose with banjo fitting 

 1.5” connecting hose with female union 
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Radish preparation 

Evenly place 5-gallons of thawed forage chopped radish into the Hobart industrial 

vertical cutter. Blend for 1 min on high speed and check consistency to ensure particle 

size is less than 3 cm.  It is vital to retighten the Hobart cutter blades between each load 

of radish as the blades have a tendency to loosen. Use specialized wrench and key. 

Procedure 

1. Transfer inoculum from BARC’s complete mix digester (540 m3) into a 300-gallon 

tank. Ensure drain port is closed on tank. Note that transferring the inoculum via a 

digester sampling port is a slow process.  

2. After using the Hobart vertical cutter, weigh radish on industrial scale located in 

warehouse (163F). 

3. Obtain solids-separated dairy manure in 50-gallon drums. 

4. Place an empty 300-gallon tank on the truck scale outside of 163 F to obtain weight.  

Record weight. Ensure drain port is closed on tank. 

5. Using a forklift, transfer inoculum tank and drums of manure to the truck scale area. 

Additionally, transport the pre-weighed radish to the truck scale area. 

6. Using a drum pump, transfer the desired amount of inoculum into the empty tank on 

the truck scale. Record weight. 

7. Using a drum pump, transfer the desired amount of manure into the tank on the 

truck scale. Record weight. 

8. Transfer the desired amount of pre-weighed radish into the tank on the truck scale. 

Record weight. 
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9. Forklift the tank on the truck scale into the warehouse. Ensure to place the tank so 

that it is accessible with the length of hosing available to load each digester. 

10. Thoroughly homogenize mixture in tank with a 2x4 piece of lumber.  

11. Connect a 2” hose to the tank drain port and the 1.5 hp centrifugal pump input. 

12. Connect a 1.5” hose to the pilot-scale digester drain port (located on bottom of 

digester) and the 1.5 hp centrifugal pump output. 

13. While transferring feedstocks from tank to digester, ensure to continuously stir 

mixture. 

14. Open the ball valve on the digester drain. Check to make sure that the water 

sampling port is closed on the digester. Remove the digester septum, open the gas 

port, and take the biogas tubing off the gas port. 

15. Open the ball valve on the tank drain. 

16. Check for any leaks in the set-up. 

17. Turn the centrifugal pump on.  

18. Pump feedstock into the digester while monitoring volume level on digester.  

Remember to keep homogenizing mixture in tank.  

19. Ensure that the digester liquid level is always above the heating blankets to prevent 

scorching the digester walls.  

20. Turn off the pump and quickly close the ball valves on the digester and the tank. 

21. Close the digester gas port. Attach biogas tubing with a hose clamp to the gas port. 

Insert septum and secure with a hose clamp. 

22. Attach the other end of the biogas tubing to an empty biogas bag. 
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23. Record tank number, biogas bag number, treatment (including weights of 

feedstocks added), date, and time in the logbook. 

24. Disconnect pump carefully as liquid will still be in the hosing. Allow hoses to 

completely drain. Between treatments, flush pump and hoses with water to cleanse. 

25. Repeat this process 5 times, selecting the digesters for manure-only vs. radish + 

manure treatments in a random order. 

26. Once all digesters have been loaded, turn on temperature control panels and stir 

rods. Open digester gas ports and biogas bag ports. 

27. Clean out the pump and hosing with water and wash down area.  

 
 

Figure B.3 View of digester loading set-up. 
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B7. Digester unloading procedure 

Materials 

 Flathead screwdriver 

 300-gallon tanks on heavy duty forklift pallets 

 1.5” connecting hose with female union 

 1.5 hp centrifugal pump 

Procedure 

1. Connect a 1.5” hose to the pilot-scale digester drain port and direct outtake into 

a 300-gallon empty tank. 

2. Remove septum and biogas tubing from digester gas sampling port with a 

flathead screwdriver. Keep gas port open. 

3. Slowly open digester drain.   

4. Observe carefully to prevent digester lid from collapsing.  

5. Once the liquid level is just below the water sampling port, open the water port. 

6. Continue to drain digester into the tank. 

7. To clean digester, fill a 300-gallon tank with water and use the centrifugal pump 

to flush water into the digester several times. Agitate water with digester stir 

rod. 

8. Wash down area when complete 
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Appendix C: Supplementary Tables for Chapter 2 
 

     Table C.1 Average cumulative biogas and CH4 production values for BMP1 for the triplicate bottles, with 100 gww of inoculum 

added to each BMP bottle, including inoculum controls. 

 

  

Biogasa 

(mL) 
CH4

a  

(mL) 
CH4

b  

(mL) 
g VS added 

(substrate) 
mL CH4/g VSb 

g substrate 

added 
mL CH4/g substrateb 

Inoculum 166 36 
     

0% Radish 313 121 85 0.36 236 10 8.49 

20% Radish 412 176 140 0.45 315 10 14.0 

40% Radish 498 219 183 0.53 344 10 18.3 

50% Radish 522 230 194 0.57 337 10 19.4 

60% Radish 578 256 220 0.62 357 10 22.0 

80% Radish 631 279 243 0.70 345 10 24.3 

100% Radish 743 330 294 0.79 372 10 29.4 
      a Inoculum included. 
      b CH4 production from the inoculum source subtracted from each bottle. 
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      Table C.2 Average cumulative biogas and H2S production values for BMP1 for the triplicate bottles, with 100 gww of inoculum 

added to each BMP bottle, including inoculum controls. 

 

  

Biogasa  

(mL) 
H2S 

a 

(mL) 
H2Sb  

(mL) 
g VS added 

(substrate) 
mL H2S/g VSb 

g substrate 

added 
mL H2S/g substrateb 

Inoculum 166 0.16 
     

0% Radish 313 0.42 0.26 0.36 0.73 10 0.03 

20% Radish 412 0.58 0.42 0.45 0.94 10 0.04 

40% Radish 498 0.91 0.75 0.53 1.40 10 0.07 

50% Radish 522 1.10 0.94 0.57 1.64 10 0.09 

60% Radish 578 1.17 1.01 0.62 1.63 10 0.10 

80% Radish 631 1.45 1.29 0.70 1.84 10 0.13 

100% Radish 743 1.92 1.76 0.79 2.23 10 0.18 
        a Inoculum included. 
        b H2S production from the inoculum source subtracted from each bottle. 
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     Table C.3 Average cumulative biogas and CH4 production values for BMP2 for the triplicate bottles, with 125 gww of inoculum 

added to each BMP bottle, including inoculum controls. 

 

  

Biogasa 

(mL) 
CH4

a 

(mL) 
CH4

b 

(mL) 
g VS added 

(substrate) 
mL CH4/g VSb 

g substrate 

added 

mL CH4/g 

substrateb 

Inoculum 143 18 

     Early Harvest Radish 839 411 394 1.11 355 26 15.1 

Late Harvest Radish 802 403 386 1.12 345 26 14.8 
         a Inoculum included. 
         b CH4 production from the inoculum source subtracted from each bottle. 
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Appendix D: Supplementary Table for Chapter 3 
 

Table D.1 Average cumulative CH4 production values for the inoculum to substrate ratio (ISR) study for the triplicate bottles, with 

varying ratios of inoculum added to each BMP bottle, including inoculum controls*. 

 

  
 

mL CH4/g 

VSa 

g VS added 

(substrate) 
CH4

a 

(mL)  
Inoculum 

(gww) 
Inoculum 

factorb 

 Calculated 

CH4
c (mL) 

Actual 

CH4
c (mL) 

Inoculum 
   

1.55 20 
   

Substrate: 100%  Radish         

ISR 65 
 

6.15 1.66 10.2 37.1 1.86 13.1 13.0 

ISR 50 
 

0.67 1.66 1.11 20.0 1.00 2.66 1.48 

ISR 35 
 

0.02 1.66 0.03 10.8 0.54 0.87 0.03 

ISR 20 
 

0 1.66 0 5.00 0.25 0.39 0 

ISR 10 
 

0 1.66 0 2.22 0.11 0.17 0 

ISR 0 
 

0 1.66 0 0 0 0 0 

         
Substrate: 40% Radish/60% Manure 

    
 

 ISR 65 

 

284 1.09 308 37.1 1.86 311 312 

ISR 50 

 

239 1.09 259 20.0 1.00 261 262 

ISR 35 

 

2.46 1.09 2.67 10.8 0.54 3.50 2.96 

ISR 20 

 

0.86 1.09 0.93 5.00 0.25 1.32 1.07 

ISR 10 

 

0.48 1.09 0.52 2.22 0.11 0.69 0.67 

ISR 0   0.03 1.09 0.03 0 0 0.03 0.03 
a CH4 production from the inoculum source subtracted from each bottle. 
b Adjusts for quantity of inoculum in each bottle relative to inoculum controls. 
c Inoculum included. 
* Actual CH4 values determined by subtracting out inoculum CH4 production on a daily basis, while the calculated values were based 

on cumulative CH4 production. If the CH4 production from inoculum was higher than the substrate CH4 production on a certain day, 

the substrate daily CH4 value was given as zero.  
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Appendix E: Supplementary Tables for Chapter 4 
 

Table E.1 Average cumulative biogas and CH4 production values for the triplicate complete mix batch digesters. 

  

Biogasa 

(L) 
CH4

a 

(L) 
kg VS added 

(total) 
L CH4/kg VSa 

kg substrate 

added 
L CH4/kg substratea 

M1 4093 2779 14.6 190 365 7.61 

RM1 7879 4681 22.3 210 365 12.8 

M2 2790 1732 11.6 149 365 4.74 

RM2 5459 3060 14.7 208 365 8.38 
                               a Inoculum included. 

 

 

 

Table E.2 Average cumulative biogas and H2S production values for the triplicate complete mix batch digesters. 

  

Biogasa 

(L) 
H2Sa 

(L) 
kg VS added 

(total) 
L H2S/kg VSa 

kg substrate 

added 
L H2S/kg substratea 

M1 4093 25.0 14.6 1.71 365 0.07 

RM1 7879 49.3 22.3 2.21 365 0.14 

M2 2790 10.5 11.6 0.91 365 0.03 

RM2 5459 24.6 14.7 1.68 365 0.07 
                              a Inoculum included.
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Appendix F: Letter for Inclusion of One’s Own Previously 

Published Materials 
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