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In this dissertation, we investigate computationally the transient dynamics

of an elastic capsule in a square microfluidic channel with two different types of

constriction, i.e., a square or a rectangular constriction, and compare them with the

dynamics owing to a droplet passing.

In the rectangular constricted microchannel, the confinement and expansion

dynamics of the fluid flow results in a rich deformation behavior for the capsule, from

an elongated shape at the constriction entrance, to a flattened parachute shape at

its exit. Larger capsules are shown to take more time to pass the constriction and

cause higher additional pressure difference, owing to higher flow blocking. Our work

highlights the effects of two different mechanisms for non-tank-treading transient

capsule dynamics. The capsule deformation results from the combined effects of

the surrounding and inner fluids normal stresses on the soft particles interface, and

thus when the capsule viscosity increases, its transient deformation decreases, as for

droplets. However, the capsule deformation is not able to create a strong enough

inner circulation (owing to restrictions imposed by the material membrane), and

thus the viscosity ratio does not affect much the capsule velocity and the additional

pressure difference. In addition, the weak inner circulation results in a positive

additional pressure difference ∆P+ even for low viscosity capsules, in direct contrast

to low-viscosity droplets which create a negative ∆P+.

In addition, we focus on the hydrodynamic forces exerted on the rectangular

constriction owing to the capsule passing by considering different capsule sizes, flow



rates and viscosity ratios. As the capsule size increases, the forces increase owing

to the higher flow blocking. The hydrodynamic forces on the constriction are only

weakly affected by the viscosity ratio. For low-viscosity capsules, the additional hy-

drodynamic forces on the constriction are positive in direct contrast to low-viscosity

droplets which create negative additional hydrodynamic forces on the constriction

due to their strong inner circulation.

Finally, we investigate the effects of the constriction type for the transient

capsule dynamics. In the square constriction, the capsule is more deformed ow-

ing to the larger flow changes associated with the smaller cross-section area of this

constriction. The higher flow blocking results in an increase of the capsule veloc-

ity, the additional pressure difference and the hydrodynamic forces exerted on the

constriction owing to the capsule passing.

Our findings suggest that the high cytoplasmatic viscosity, owing to the protein

hemoglobin required for oxygen transport, does not affect adversely the motion of

non-tank-trading erythrocytes in vascular capillaries.
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Chapter 1: Introduction

In this dissertation, we study the interfacial dynamics of artificial or elas-

tic capsules in viscous flows. A capsule is a fluid volume enclosed by an elastic

membrane. Capsules have seen an increased interest during the last few decades

due to their numerous engineering and biomedical applications [55, 58]. Here, the

study of the motion and deformation of capsules and biological cells in microflu-

idic channels is motivated by a wide range of applications including drug delivery,

cell sorting and cell characterization devices [1, 2, 6, 12, 26, 68], fabrication of mi-

croparticles and microcapsules with desirable properties [13, 33, 65], determination

of membrane properties [42,61], and of course its similarity to blood flow in vascular

capillaries [55].

Therefore, studying the dynamics of soft particles in confined solid ducts,

such as microfluidic channels and blood microvessels, provides useful information

on the utilization of these particles in chemical, pharmaceutical and physiological

processes. For example, understanding the stability of soft particle shapes provides

helpful insight on the hydrodynamic aggregation and the effective viscosity of sus-

pensions [17]. The deformation of artificial capsules in microchannels is directly

associated with drug delivery, cell sorting and cell characterization [1, 2]. Further-
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more, the deformability of red blood cells plays a pivotal role in the oxygen and

carbon dioxide exchange between the microcirculation and the body tissues [55],

and helps identifying the effects of blood disorders and diseases [6,25,68]. Studying

the motion of capsules in micro-constrictions is further motivated by its similarity

to the erythrocyte motion over endothelial cells and adherent leukocytes in vascular

capillary vessels as well as other attached protuberances of biological nature such

as those formed during cancer cell metastasis and biofilm formation [28, 72, 77, 78].

The deformation of capsules and biological cells in microfuidic channels is

determined by the nonlinear coupling of the deforming hydrodynamic forces with

the restoring interfacial forces of the particle membrane. Since the latter forces

depend on the type of the soft-particle interface, this suggests that different soft

particles (such as droplets, capsules, vesicles and erythrocytes) may obtain quite

different shapes as they travel in a microfuidic device. [10,17, 38].

The motion of elastic capsules in cylindrical microchannels has been studied

both experimentally and computationally. Leyrat-Maurin and Barthès-Biesel [45]

studied the motion of a single capsule flowing through a hyperbolic pore. They cal-

culated the capsule velocity and the recovery energy for varying flow rates when the

capsule passees through the pore. Quèguiner and Barthès-Biesel [62] used a bound-

ary integral method to study the flow of capsules into a hyperbolic constricted cylin-

drical channel. They studied the effects of capsule size, geometry and membrane

properties. Risso and coworkers [63] studied experimentally the motion of artificial

capsules in a narrow tube and compared their findings with computational results.

The deformed capsules are affected by the capillary number and the relative capsule
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size to tube size. Lefebvre and Barthes-Biesel [43] investigated the effects of mem-

brane prestress and various constitutive laws at steady state. They found that the

back curvature is dependent on pre-inflation. They concluded that the pre-inflation

accounted for the difference between the experimental data and numerical results

of earlier studies [62, 63]. She et al. [67] investigate experimentally the deformation

of multilayered microcapsules and recovery after passing through a cylindrical mi-

crochannel for varying the layer thickness of the multilayered microcapsule and the

capsule size.

Doddi and Bagchi [22] investigated the lateral migration of a neo-Hookean

capsule in a Poiseuille flow in a channel at low-Reynolds number. They found

that all capsules moved away from the wall toward the center of flow. Coupier

and coworkers [16] studied non-inertial lateral migration of a vesicle in a bounded

Poiseuille flow experimentally and numerically. The migration velocity is associated

with a gap between the walls and the capsule surface, the capsule size and the

flow velocity. Kaoui and coworkers [34] studied the lateral migration of a vesicle

in an unbounded Poseuille flow without viscosity contrast between the exterior and

interior fluids. The interaction between the nonlinear character of the Poiseuille flow

and the vesicle deformation causes a cross-streamline migration of vesicles toward

the center of flow center line.

Recent studies have also focused on capsule dynamics in noncylindrical mi-

crofluidic channel. Zhu and coworkers [81] studied computationally the motion of

soft 2D microcapsules through a constriction channel. They probed the effects of

the capsule rigidity and interaction with the pillars on the capsule velocity. Arata
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and Alexeev [4] studied the transient dynamics of the capsule in a microfluid channel

decorated with stiff ridges protruding from the opposite walls. They investigated

the effects of the capillary number and the ridge gap on the lateral migration rate

of the capsule. In addition, they calculated the strain of the capsule surface and

fluid velocity using three-dimensional computer simulations. Mao and Alexeev [46]

computed the stream velocity distribution near protuberances from the opposite

channel walls as microparticles passing for varying Reynolds number. They also

investigated the capsule migration as the capsule passed protuberances. Fiddes and

coworkers [26] conducted experiments to study the effects of confinement (i.e. inter-

actions between the microcapsule and the solid walls) on the microcapsule’s velocity

and its deformation. Leclerc and coworkers [42] conducted experiments to investi-

gate the transient behavior of ovalbumin microcapsules passing through a square

convergent-divergent microchannel. They investigated the relaxation time of micro-

capsules at the exit of pores according to capsule sizes, velocity and cross-section

area.

Kuriakose and Dimitrakopoulos [37] studied the steady-state motion of an

elastic capsule in a square channel and compared their results with those in a cylin-

drical tube. They considered slightly over-inflated elastic capsules following the

Skalak et al. constitutive law. They derived power laws and theoretical analysis

for the capsule motion in a square channel and in a cylindrical tube. Recently,

the same authors investigated the deformation of elastic capsules at steady-state

in a rectangular channel for varying capsule size, capillary number and the mem-

brane hardness [38]. In addition, they compared their results with those for droplets

4



passing.

In biomedical fields, the motion of erythrocytes has been studied both ex-

perimentally and computationally in capillary blood vessels or microfluidic devices.

Skalak and Branemark [69] observed shapes of red blood cells in capillary vessels.

Flowing red blood cells have parachute or umbrella shapes. Shelby et al. [68] demon-

strated experimentally the deformation and shape recovery time of malaria-infected

erythrocytes to verify the effects of stiffness of membrane. Through varying channel

widths, they compared the motion of uninfected cells and infected cell. The more

stiff cells are easily blocked. Recovery time of infected cell is also significantly longer

than that for uninfected cell. It means that the membrane rigidity and internal vis-

cosity are crucial factors for determining the cell motion. Abkarian, Faivre and

Stone [1] investigated experimentally the motion of erythrocytes in a constricted

microchannel. They measured the pressure drop variation associated with the mo-

tion of single and multiple erythrocytes and leukocytes in the channel. Secomb and

coworkers [64] investigated the axisymmetric erythrocyte motion in a nonuniform

capillary numerically. According to their results, the blood resistance in a wavy

capillary is approximately four times higher than in a cylindrical vessel. Noguchi

and Gompper [49] focused on the transient motion of red blood cells and vesicles in

capillary flows by using a three-dimensional mesoscopic method. The flow velocity

affects the transient motion of the red blood cells and vesicles. In addition, the

bending rigidity and the shear modulus of the membrane affects the shape transi-

tions. Pozrikidis [59] studied the axisymmetric motion of a file of red blood cells

in a cylindrical vessel. The author computed the motion of cells using a boundary
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integral methods for axisymmetric Stokes flow. He studied the effects of the mean

velocity, the hematocrit and the capillary diameters on the motion of cells. Sun

and Munn [73] developed a 2D lattice Boltzmann method to describe the motion of

multiple cells in blood flow. They determined the flow resistance at various hemat-

ocrits and vessel diameters. In addition, they determined the increase of resistance

in flow owing to leukocytes rolling or adhesion. Bagchi [7] studied the migration

of a single erythrocyte and multiple erythrocytes in a two-dimensional rectangular

channel, and found that the migration velocity was influenced by the deformability

and their position of erythrocytes in a channel. Tomaiuolo et al. [74] reported on

the red blood cells suspension in microcapillaries. They obtained the cell velocity

and pressure gradient according to the cell area. To verify the cell deformation,

they compared their experimental results with numerical simulation [59]. Isfahani

and Freund [32] calculated studied the forces on the wall-adhered leukocyte as the

red blood cells pass by corresponding homogeneous blood models. They focused on

the effects on the leukocyte geometry and hematocrit on the forces exerted on the

adherent leukocyte in a microvessel.

In this dissertation, we consider capsules made of elastic membranes with

shearing and area-dilatation resistance but negligible bending resistance. Experi-

mental results of biocompatible alginate capsules [11] and synthetic polysiloxane [31]

are in very good agreement with the theoretical results without considering bend-

ing resistance. In addition, this model can be extended to the human red blood

cells where hemoglobin solution is enclosed by the multi-layer membrane. In this

dissertation, we investigate in detail the transient dynamics of elastic capsules in

6



the microfluidic constricted channel (i.e., a rectangular or square constriction). The

motivation of this research is to study the capsule deformation, flow properties and

forces exerted on the constriction channel. The deformed shape of capsules is im-

portant in several microfluidic processes including cell sorting, filtration system and

fabrication [2, 6, 26, 65]. In addition, the study of the deformable red blood cells is

important to understand the cell motion in the capillary blood vessels. To a great

extend, the study applies to the diagnosis of blood cell diseases. Therefore, in this

dissertation, we investigate the transient capsule motion for different constriction

types for both small-to-moderate capsules compare to the height of the constriction.

In summary, the present dissertation has three main goals: (a) to investigate

the transient dynamics of an elastic capsule when it passes through a microfluidic

constricted channel, (b) to study the hydrodynamic forces exerted on the constric-

tion as the capsule passes through the constriction, and (c) to compare the capsule

and a droplet transient motion in the microfluidic constricted channel.

In chapter 2, we introduce the mathematical formulation of the problem in-

cluding the governing equations and boundary integral equations. We describe the

three-dimensional Membrane Spectral Boundary Element (MBE) method. We uti-

lize in our computations. The details of the channel geometry and the physical

parameters of the problem are defined in this chapter.

In chapter 3, we investigate the motion of an elastic capsule in a rectangular

constricted microchannel for varying flow rates, capsule sizes and viscosity ratios.

We analyze in detail the transient motion of the capsule, the capsule deformation,

its velocity and additional pressure differences when it passes through the constric-

7



tion. In addition, we compare the transient motion of capsules and droplets in the

rectangular constriction.

In chapter 4, we study the hydrodynamic forces exerted on the rectangular

constriction as the capsule passes through the constriction. We focus on the effects

of the flow rate, capsule size and the viscosity ratio on these forces. The shear and

normal forces are also considered. Furthermore, we also compute the forces exerted

on the rectangular constriction owing to droplet passing and compare them with

those owing to the capsule passing in the constriction.

In chapter 5, we investigate the effects of the constriction types on the transient

motion of the capsule. Following our invesitgation in chapter 3, we focus on the

transient motion of the capsule, including the capsule deformation, velocity, pressure

gradient and forces in the square constriction. In addition, we compare the capsule

motion in the square constriction with that presented in chapter 3 and 4 in the

rectangular constriction. A conclusion of our study are presented in chapter 6.
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Chapter 2: Mathematical formulation

In this chapter, we describe the mathematical formulation and the numerical

algorithm used in this dissertation. We study the dynamics of capsules flowing along

the centerline of a constricted microfluidic channel. The study is characterized by

small length scales resulting in low-Reynolds number flows and the Navier-Stokes

equations are simplified to the Stokes equations. We employ the three-dimensional

Membrane Spectral Boundary Element (MSBE) method [23,37,38] to solve interfa-

cial problems in Stokes flows.

2.1 Fluid dynamics

We consider a capsule with viscosity λµ and density ρ1 surrounded by an

immiscible fluid with viscosity µ and density ρ2. The capsule’s interior and exterior

fluids are assumed to be incompressible Newtonian fluids. The characterize size of

the capsule is a = (3V/4π)1/3 where V is the capsule volume. Here, we assume that

the membrane permeability is negligible and thus the capsule volume is constant.

An illustration of a basic problem geometry is shown in figure 2.1. The half-

height of the constriction channel is `z. For a rectangular constriction, its half-width

is `y = 2`z while its half-length is `x = `z . For a square constriction, its half-width

9
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Figure 2.1: Illustration of a capsule in a constriction microchannel.

and half-length are equal to `z . Both the rectangular and the square constrictions

are in the middle of the same outer square microfluidic channel i.e., the half-length

and the half-height of the outer square channel are 2`z and its half-length is 10`z .

The undisturbed velocity u∞

x in a rectangular channel is given by Yih [79],

u∞

x

Υ
= (`2

z − z2) +
∞
∑

m=1

Bm cosh

(

bmy

`z

)

cos

(

bmz

`z

)

(2.1)

where

Υ = −
1

2µ

dp

dx
, bm =

(2m − 1)π

2
, Bm =

(−1)m4`2
z

b3
m cosh

(

bm`y

`z

) , (2.2)

and p is the dynamic pressure.

After integrating Eq.(2.1), the volumetric flow rate Q over the cross-section area is

given by

Q

Υ
=

8`y`
3
z

3
+

∞
∑

m=1

Bm

(

2`z

bm

)2

sinh

(

bm`y

`z

)

sin(bm) (2.3)

The average velocity of the exterior fluid far from the capsule is U= Q/(`y`z)

while the maximum undisturbed velocity at the centerline is Umax ≈ 2U .
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We consider the fluids flow to be in the low-Reynolds-number regime owing

to the small size of the capsule and the solid geometry width. Accordingly, the

governing equations in the exterior fluid are the Stokes and continuity equations

∇ · σ ≡ −∇p + µ∇2u = 0 (2.4)

∇ · u = 0 (2.5)

where σ is the stress tensor and u the fluid velocity vector. The same equations

apply for the interior fluid with the viscosity replaced with λµ.

As shown in figure 2.1, the system surface SB consists of the capsule interface

Sc, the channel surface Ss, and the fluid inlet/outlet surface Sf . At the interface

between the capsule and the surrounded fluid, the velocity u is continuous

u1 = u2 = u (2.6)

and the surface stress vector ∆f is defined by

∆f ≡ n · (σ2 − σ1), (2.7)

where subscripts 1 and 2 denote the capsule’s interior and exterior fluids, respec-

tively. Note that n is the unit normal vector pointing to the surrounded fluid. The

11



boundary conditions are

u = 0 on the solid boundary Ss, (2.8)

u = u∞ or f = f∞ on the fluid surface Sf (2.9)

Here f∞ is the force associated with the undisturbed channel flow u∞ on the fluid

surface Sf .

The velocity u at any point x0 on the system boundary SB is determined by

a surface integral of the stress vector f = n ·σ and the velocity u over all points x

on the boundary SB ,

Ωu(x0) =
∫

Sc

[S · ∆f − µ(1 − λ)T · u · n](x)dS

−
∫

Ss

[S · f 2 − µT · u · n](x)dS

−
∫

Sf

[S · f 2 − µT ·u · n](x)dS (2.10)

where Ω takes values 4πµ(1 + λ) and 4πµ for points x0 on the capsule interface Sc

and the rest boundary, respectively. Here, S represents the fundamental velocity

for the three-dimensional Stokes flow and T the corresponding stress,

Sij =
δij

r
+

x̂ix̂j

r3
(2.11)

Tijk = −6
x̂ix̂jx̂k

r5
(2.12)

where x̂ = x − x0 and r = |x̂|.
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The time evolution of the material points of the membrane are determined via

the kinematic condition at the interface

dx

dt
= u (2.13)

To produce a closed system of equations, the surface stress ∆f is determined by the

membrane dynamics as discussed in the following section.

2.2 Membrane dynamics

Our membrane description is based on the well-established thin-shell theory

and the continuum approach [9, 23, 42, 58] which represent very well capsules and

erythrocytes [23, 58] when the typical membrane thickness is much smaller than

the size of the capsule/cell. For example, the thickness of alginate capsules or

polysiloxane capsules is O(µm) to O(nm) where their size is O(mm) [23] while for

erythrocytes the membrane thickness is O(nm) and the cell size is O(µm).

A membrane shows two basic types of deformation: (i) shearing in-plane with

constant surface area, and (ii) extended in-plane with increasing surface area. Each

deformation is characterized by a modulus of resistance, i.e., a membrane has a

shearing modulus Gs and an area-dilatational modulus Ga.

In the continuum approach, constitutive laws are used to describe the influ-

ence of the shearing and the area-dilatation resistance on the membrane tensions

τ depending on the material composition of the membrane. These laws represent

the relationship between the principal elastic tensions, τP
1

and τP
2

, and the principal

13



stretch ratios, λ1 and λ2. The latter are defined as

λα =
dsα

dSα

, α = 1, 2 (no summation over α) (2.14)

where dSα and dsα represent line elements in the reference and deformed shapes,

respectively [8].

The Skalak et al. law [8, 23, 70] is strain-hardening and thus requires larger

tensions than that of a strain-softening membrane law to reach the same exten-

sion. The Skalak et al. law describes well biological cells (i.e. red blood cells) and

membranes obtained by interfacial polymerization,

τP
1

=
Gsλ1

λ2

(λ2

1
− 1 + Cλ2

2
[(λ1λ2)

2 − 1]) (2.15)

(τP
2

is calculated by reversing the λβ subscripts) where C represents the dimension-

less area-dilatation modulus Ga scaled with the shearing modulus Gs.

The hydrostatic traction ∆f across the membrane, needed in Eq.(2.10), can

be written as

∆f = ∆f(shearing, area-dilatation) (2.16)

and is determined by ∆f = −∇s · τ which in contravariant form gives

∆f = −(ταβ|αtβ + bαβτ
αβn) (2.17)

where the greek indices range over 1 and 2. In this equation, the ταβ|α notation
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denotes covariant differentiation, tβ are the tangent vectors on the capsule surface,

and bαβ is the surface curvature tensor [23, 42, 58].

In addition, we assume that the capsule is (slightly) overinflated and thus

prestressed. Such consideration is motivated by the fact that, owing to osmotic

effects during their fabrication, artificial capsules are often slightly overinflated as

the bioartifucial capsules used in the experimental investigation of Risso, Collé-

Pailot, and Zagzoule [63]. To describe the capsule prestress, we define the prestress

parameter αp such that the undeformed capsule (i.e., reference shape) would be

scaled by (1 + αp) [40]. Note that this is mathematically equivalent to scaling the

stretch ratios λβ by (1 + αp). In our studies, we have used a Skalak capsule with

C = 1 and αp = 0.05 which implies that the undisturbed capsule is 5% larger than

reference shape, i.e., the initial membrane tension is τ0/Gs ≈ 0.3401.

2.3 Definition of problem parameters

To describe the capsule deformation and its transient evolution in the constric-

tion channel, we introduce several geometric and physical properties. To quantify

the capsule deformation, we determine the capsule lengths along the three axes, Lx,

Ly, and Lz, which are the maximum distances of the capsule surface along the x, y,

and z coordinates.

The pressure difference at the channel ends is ∆P = Pin − Pout and we also

calculate the additional pressure difference owing to the presence of the capsule in
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the channel [37],

∆P+ = ∆P − ∆P 0 (2.18)

where ∆P is the pressure difference at the channel ends, and ∆P 0 is the pressure

difference at the channel ends when no capsule is present in the channel.

In this research, there are three physical dimensionless parameters which de-

scribe the motion of a capsule in a microchannel: the viscosity ratio λ, the scaled

area-dilatation modulus C , and the capillary number Ca. The viscosity ratio λ is

the ratio of the viscosity of the inner fluid to that of the exterior fluid. The dimen-

sionless parameter C represents the ratio of the area-dilatation modulus Ga to the

shearing modulus Gs [8],

Ga

Gs
= 1 + 2C (2.19)

The capillary number Ca is defined as the ratio of viscous flow forces to resistive

elastic forces on the membrane,

Ca =
µU

Gs
(2.20)

where U is the average flow velocity in the channel.

2.4 Numerical method

To solve the boundary integral equation (2.10), we employ the three-dimensional

Membrane Spectral Boundary Element (MSBE) method [23,37,38]. The system sur-

face is divided into a moderate number of curvilinear quadrilateral elements. The

spectral boundary element discretization of the system surfaces includes the channel
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surface and the capsule surface as shown in figure 2.2. The geometric and physical

variables on each element are discretized using Lagrangian interpolation in term of

parametric variables. The basis points (ξi, ηj) for the interpolation are chosen the

zeros of orthogonal polynomials of Gauss type. This is equivalent to an orthogo-

nal polynomial expansion and yields the spectral convergence associated with such

expansions.

The boundary integral equation, Eq.(2.10), consists of two different types of

points. The left-hand-side of the equation includes the collocation points x0 where

the equation is required to hold while the right-hand-side of the equation contains

the basis points x where the physical variables u and f are determined. The

MSBE method uses collocation points x0 of Gauss quadrature, i.e., in the interior

of the elements. As a result, the boundary integral equation holds even for singular

elements, i.e., the elements which contain the corners of the microfluidic channel. In

addition, we use basis points x of Gauss-Lobatto quadrature, and thus the physical

variables are determined in the interior and on the edges of the spectral elements

[23,37,38,77]. For the time integration, we used the 2nd-order Runge-Kutta scheme

with a typical time step ∆t = 1.0 × 10−4.
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(a)

(b)

Figure 2.2: Spectral boundary element discretization of the system surface: (a) the
capsule surface, (b) the solid surface of a microfluidic channel along with the fluid
surfaces at the channel ends.
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Chapter 3: Motion of an elastic capsule in a con-

stricted microchannel

In this chapter, we study the transient dynamics of capsules in a rectangular

constriction channel. To our knowledge there are no numerical studies to verify the

motion of capsules in a constriction channel. The study of the capsule motion in

the constriction has seen an increased interest during the last few decades due to

a wide range of applications including drug delivery, cell sorting and cell charac-

terization devices [1, 2, 6, 12, 26, 68], fabrication of microparticles and microcapsules

with desirable properties [13,33,65], determination of membrane properties [42,61],

and of course its similarity to blood flow in vascular capillaries [55]. For the cell

sorting or filtration system in microfluidic devices, the non-cylindrical microchannel

are widely used [4, 26, 46].

First, we present the verification of our methodology for capsule motion in a

constriction channel by comparing our results with previous experimental results.

Next, we investigate the transient dynamics of a capsule and its deformation when

the capsule passes through the constriction. We demonstrate the effects of various

physical parameters (i.e., capsule size, capillary number and viscosity ratio) on the

19



capsule motion in the constriction. Furthermore, we compare the motion and de-

formation of capsule with those of droplets in a constriction owing to see the effects

of the membrane enclosed fluid volume.

3.1 Problem description

We consider a spherical Skalak capsule with scaled area-dilatation modulus

C = 1, moving along the centerline of a constriction microchannel. Three dimen-

sional views of the problem geometry are presented in figure 3.1. The inner fluid of

capsule and exterior fluid are Newtonian fluids, with viscosities λµ and µ, and the

same density ρ. The characterize size of the capsule is a = (3V/4π)1/3 where V is

the capsule volume. For the constriction channel, the undisturbed flow far from the

capsule is given by equation (2.1).

Assuming low-Reynolds-number flows, Stokes and continuity equations are

employed as the governing equations in both fluids. For the system, boundary

conditions are shown in detail in chapter 2. The numerical solution of the boundary

integral equation is achieved by employing the membrane spectral boundary element

method (MSBE) for membranes, which has been described in chapter 2.

The surface discretization of the geometry is illustrated in figure 3.1. For the

calculation of capsule in the constriction channel, the computations we performed

employ NE = 32 elements. The capsule surface, by being projected onto a cube, is

divided into 6 elements as seen in figure 3.1(a). The spectral element discretization

of the channel surface follows the capsule’s center of mass. The channel surface is
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divided into four rows of four elements each as seen in figure 3.1(b). The channel

length `x equal to 10 times the half-size of constriction height `z . Finally, the

channel’s inlet and outlet are discretized into one element as shown in 3.1(b). The

height of the constriction is 2`z and that of the channel is 4`z . Both the constriction

and the channel have width 4`z . The rectangular constriction has length 2`z while

the length of the entire microfluidic device is 20`z . At the beginning of computation,

the capsule is located before the constriction at xc/`z = −4. In this work, we used

NB =12-14 basis points i.e., a total number of spectral points for the entire geometry

N = NEN2
B =4608-6272.

The problem utilized two symmetry planes y = 0 and z = 0. We use two

dimensionless group to describe the capsule flow in a channel: the viscosity ratio λ

and the capillary number Ca. Our membrane contains shearing modulus and area-

dilatation. The shearing modulus Gs is introduced by the capillary number (i.e., a

ratio of viscous flow force to resistive elastic forces on the membrane) such as

Ca =
µU

Gs

(3.1)

where U is the average undisturbed velocity in the channel. The constriction chan-

nel’s half-height `z is used as the length scale, the velocity is scaled with the average

undisturbed velocity in the constriction U , and the time is scaled with the `z/U . In

addition, the pressure is scaled with µU/`z , and the membrane tensions with Gs.
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(a)

(b)

Figure 3.1: Spectral boundary element discretization of system surface: (a) capsule
surface, (b) solid surface of a constriction channel along with the fluid surface at
the channel end. Each figure illustrates Lobatto distribution of nodal lines for the
corresponding geometry with basis points NB = 12.

22



Varying parameter Fixed parameters

a/`z = 0.2 − 1 Ca = 0.1, λ = 1
Ca = 0.01 − 0.1 a/`z = 0.7, 1, λ = 1

λ = 0.01 − 5 a/`z = 0.7, 0.9, Ca = 0.1

Table 3.1: Range of parameters studied in this work. The capsule hardness is C = 1
and its prestress αp = 0.05 (or τ0/Gs ≈ 0.3401).

3.2 Validation

In this section, we compare our results with published results for the tran-

sient dynamics in the constricted microchannel. To solve our problem, we use our

three-dimensional membrane algorithm and calculate the capsule motion along the

centerline of a rectangular constricted microchannel. [The spectral boundary ele-

ment discretization of the channel is seen in Fig. 3.1(b)] The range of dimensionless

parameters employed in our computational work (shown in table 3.1) can readily

be used in experimental microfluidic systems. As an example, Leclerc et al. [42]

investigated ovalbumin microcapsules with shear modulus Gs = 0.07N/m in mi-

crofluidic channels with a typical height `z = 50µm. Using as external fluid glycerin

with viscosity µ ≈ 1Pa · s and average velocities U = 1 − 4 cm/s, the authors

achieved capillary numbers in the range Ca ≈ 0.1 − 0.5. Considering erythro-

cytes with shear modulus Gs = 2.5 µN/m [21, 29] in microfluidic channels with

height `z = O(1)µm and an external liquid with a viscosity similar to that of water,

µ ≈ 1mPa · s, the same range of capillary numbers can be achieved with average

velocities U= O(1)mm/s.
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3.3 Constriction dynamics for equiviscous capsules

In this section we investigate the transient dynamics of a viscous capsule (with

viscosity ratio λ=1) as it passes through the microfluidic constriction. We consider

a wide range of capsule sizes a, comparable or smaller to the constriction half-length

(i.e., a/`z= 0.2-1) in weak and moderate flow rates Ca. Our results, including the

capsule lengths, its velocity Ux and the additional pressure difference ∆P+ due to

the capsule presence, are expressed as functions of the capsule centroid xc.

The shape of a Skalak capsule as it flows inside the micro-device is shown in

figure 3.2. The bullet-like shape of the capsule obtained initially at the left-side

of the square channel, e.g. [37], becomes more pointed as the capsule approaches

the constriction as shown in figure 3.2(a). This is due to the strong hydrodynamic

forces associated with the cross-sectional area decrease which doubles the average

fluid velocity inside the constriction since the flow rate Q is fixed in our problem. To

balance the deforming hydrodynamic forces, the capsule tries to increase its down-

stream curvature and decrease its upstream curvature so that the total restoring

tension force on the membrane is increased. In essence, this capsule deformation

results from the curvature term in the membrane traction, Eq.(2.17), as we iden-

tified in our earlier studies on capsule dynamics in planar extensional flows or in

microfluidic channels [23, 37, 38].

Thus as the capsule approaches the constriction, its length Lx is increased

while its height Lz is decreased considerably, as seen in figure 3.3(a,c). At the

same time the capsule width Ly is increased as shown in figure 3.3(b) and thus the

24



(a) (b)

(c) (d)

Figure 3.2: The shape of a Skalak capsule with C = 1, a/`z = 1, λ = 1 and Ca = 0.1
moving inside the microfluidic constriction. The capsules centroid xc/`z is (a) −1.51,
(b) −0.1, (c) 0.81, and (d) 2.05. The three-dimensional capsule views were derived
from the actual spectral grid using orthographic projection in plotting.
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capsule tries to occupy a larger area along the less-confined width of the rectangular

constriction. This deformation is consistent with the steady-state capsule shape

in rectangular channels where the capsule extends significantly in the less-confined

lateral direction of the channel cross-section owing to the development of strong

lateral tensions on the capsule membrane required for interfacial stability [38].

When the capsule is inside the constriction, i.e., its centroid is nearly xc = 0

as in figure 3.2(b), the capsule has obtained a shape similar to the pebble-like shape

characteristic of capsule motion in rectangular channels [38]. This capsule shape

involves elongation in the flow and lateral directions, i.e. increased length Lx and

Ly, and a significant decrease in its height Lz, as shown in figure 3.3.

As the capsule moves out of the constriction seen in figure 3.2(c), its down-

stream portion lies at the right-side of the square channel and thus it experiences

the dynamics of the cross-section expansion, i.e., the sudden drop of the average

fluid velocity. Thus the downstream portion of the capsule slows down; however, its

upstream part is still inside the constriction and moves with the faster velocity of the

constriction. Both actions result in a compression of the capsule shape and thus in a

significant reduction of the capsule length Lx accompanied with a fast increase of its

height Lz , as shown in figure 3.3. This expansion effect is much more pronounced

as the capsule completely exits the constriction where it obtains a very flattened

three-dimensional parachute-like shape, presented in figure 3.2(d), characterized by

a higher height Lz compared to its length Lx. (See also the capsule lengths in figure

3.3 when the capsule centroid is nearly xc = 2.) After this peak, the capsule relaxes

towards a bullet shape in the square channel far downstream of the constriction.
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Figure 3.3: Evolution of the capsule lengths as a function of the centroid xc,
for a Skalak capsule with C = 1, Ca = 0.1 and λ = 1, for size a/`z =
0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 1. (a) Length Lx, (b) width Ly, and (c) height Lz (scaled
with the length 2a of the undisturbed spherical shape). These lengths are deter-
mined as the maximum distance of the interface in the x, y and z directions.
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Therefore, the two district regimes associated with the microfluidic constric-

tion, i.e., confinement and expansion, result in two district interfacial shapes. In

the confinement regime, the capsule obtains an elongated bullet shape where its

length Lx obtains a maximum value and its height Lz a minimum value. The oppo-

site happens during the expansion dynamics where the capsule obtains a flattened

parachute shape. Similar deformation has been observed in axisymmetric constric-

tions where the capsule width is identical to its height (i.e. Ly = Lz) due to the

axisymmetry [62].

The confinement dynamics are more pronounced as the capsule size a is in-

creased as shown in figure 3.3, since then the capsule occupies a larger volume and

thus causes a higher flow blocking. It is of interest to note that due to the rectangu-

lar constriction, both the confinement and expansion dynamics are associated with

an elongated capsule width Ly, which increases monotonically with the size a, as

seen in figure 3.3(b). Therefore, the constriction cross-sectional asymmetry results

in a highly non-axisymmetric, fully three-dimensional capsule shape (as shown in

figure 3.4), which cannot be described from single-view observations as commonly

happens in microfluidic experiments or based on axisymmetric or two-dimensional

computations.

In addition, the larger capsule size a (or flow blocking) causes a monotonic

decrease of the capsule velocity Ux and an increase of the additional pressure differ-

ence ∆P+ as seen in figure 3.5. Observe that for the equiviscous (λ = 1) capsules

studied in this section, the additional pressure difference ∆P+ is positive (as also

happens for viscous droplets [51]) and thus the capsule presence results in higher
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(a)

(b)

Figure 3.4: The shape of a Skalak capsule with C = 1, a/`z = 1, λ = 1 and Ca = 0.1
moving inside the microfluidic constriction for capsules centroid (a) xc/`z = −1.51
and (b) xc/`z = 2.05. The capsule shape is plotted as seen slightly askew from the
positive z-axis to reveal its fully three-dimensional conformation.
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energy requirements to maintain a constant flow rate.

We emphasize that the effects of decreasing the flow rate Ca (for a given

capsule size) are similar to that of increasing the capsule size a (for a given flow

rate), since both types of experiments result in a higher flow blocking in the former

case due to the reduced interfacial deformation. Thus our results for the flow rate

effects for a given capsule size (in particular for Ca = 0.01− 0.1 and a/`z= 0.7, 0.9)

are omitted.

The monotonic variation of the capsule velocity Ux and the additional pres-

sure difference ∆P+ with the capsule size a or flow rate Ca can be understood by

utilizing the scaling behavior we developed for capsule motion in a straight chan-

nel [37]. We emphasize that earlier analysis [37] was valid for steady-state capsule

motion in straight solid ducts while the current problem involves transient dynam-

ics. However, our computational findings presented in figure 3.5 clearly indicate that

the transient dynamics over the entire micro-device scale as the capsule dynamics

inside the constriction (e.g. see figure 3.2(c)) which is similar to the dynamics in a

straight solid duct. Our conclusion for the current problem is further reinforced by

the quasi-steady nature of the Stokes flow.

Therefore, utilizing Eqs.(19) and (27) from Kuriakose and Dimitrakopoulos

[37], for capsules with size a comparable to the constriction size `z, the capsule

velocity inside the constriction should scale proportionally with the gap h between

the capsule surface and the solid walls,

Ux − U

U
∼

h

`z
(3.2)
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Figure 3.5: Evolution of (a) the capsule velocity Ux, and (b) the additional pressure
difference ∆P+, as a function of the centroid xc, for a Skalak capsule with C = 1,
Ca = 0.1 and λ = 1, for size a/`z = 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 1.
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while the additional pressure difference should be inversely proportional to the gap,

∆P+

Π
∼

`z

h
(3.3)

It is of interest to note that Eqs.(3.2) and (3.3) are formally valid for cylindrical

channels, and thus they represent only qualitatively the present problem by consid-

ering the gap h between the capsule surface and the solid walls in the xz-plane where

the strongest hydrodynamic forces occur owing to the rectangular constriction. As

the capsule size a increases (or as the flow rate Ca decreases), the gap h between

the capsule surface and the solid walls decreases, and thus the capsule velocity de-

creases while the additional pressure difference ∆P+ increases, in agreement with

our computational results shown in figure 3.5.

3.4 Effects of viscosity ratio

In this section we investigate the effects of viscosity ratio λ on the transient

dynamics of a capsule as it passes through the microfluidic constriction. For this,

we consider a capsule with a fixed size a/`z = 0.9 and capillary number Ca = 0.1,

while we vary the viscosity ratio in the range λ = 0.01 − 0.5, i.e., we investigate

from inviscid to very viscous capsules.

Figure 3.6 shows that, for any viscosity ratio, the evolution of the capsule

dimensions is similar to that for an equiviscous capsule discussed in section 3.3. In

addition, the figure reveals that both in the confinement and the expansion area (i.e.,

as the capsule enters or exits the constriction), its deformation decreases with the
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viscosity ratio. However, during the final relaxation stage towards the bullet shape

in the square channel far downstream from the constriction, it is the very viscous

capsule with λ = 5 which is more deformed since capsules with smaller viscosity

ratio relax faster.

To explain the effects of the viscosity ratio on the capsule deformation, we

need to consider that the capsule is deformed owing to the combined effects of the

surrounding and inner fluids normal stresses on the capsule interface. Therefore, the

capsule transient dynamics is characterized by the membrane time scale necessary

to reach steady state, which for a given membrane hardness C is given by

τm ∼ (1 + λ)Ca
a

`z

τf (3.4)

where τf = `z/U is the flow time scale. (More details on this time scale are given

in Park and Dimitrakopoulos [53].) For low enough viscosity ratio, e.g. for λ ≤ 0.01

in our problem, the inner fluid does not practically participate in the transient

dynamics, and thus all low-viscosity capsules show identical evolution, in agreement

with our computational results shown in figure 3.6. For moderate viscosity ratios,

λ = O(1), both the inner and the surrounding fluids affect the capsule deformation,

while for very viscous capsules (e.g. λ = 5), it is the inner fluid which mostly affects

the capsule deformation.

As the viscosity ratio λ increases, the time necessary for the capsule to react

to the flow changes imposed by the constriction (i.e., the time scale τm) is increased.

This makes the deformation rate slower and thus the capsules transient deformation
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Figure 3.6: Evolution of the capsule lengths as a function of the centroid xc, for
a Skalak capsule with C = 1, a/`z = 0.9 and Ca = 0.1, for viscosity ratio λ =
0.01, 0.1, 1, 2, 5. (a) Length Lx, (b) width Ly, and (c) height Lz (scaled with the
length 2a of the undisturbed spherical shape). Our results for λ = 0.01 are identical
for lower viscosity ratios, e.g. λ = 0.001, 0, and thus represent the low-viscosity limit
λ � 1.
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decreases with the viscosity ratio as seen in figure 3.6. For the same reason, during

the final relaxation stage towards the bullet shape far downstream from the con-

striction, the very viscous capsule with λ = 5 needs a significant time (or channel

length) to reach equilibrium while the capsules with smaller viscosity ratio relax

faster, in agreement with Eq.(3.4) and our computational findings shown in figure

3.6.

In contrast to the viscosity effects on the capsule deformation, the capsule

velocity Ux is practically not affected by λ, and thus all capsules show the same in-

crease in Ux as they pass through the constriction, as seen in figure 3.7(a). Similarly,

the viscosity ratio has very weak effects on the additional pressure difference ∆P+

which is positive for all viscosity ratios (even for inviscid capsules with λ � 1), as

shown in figure 3.7(b).

3.4.1 Comparison with droplet dynamics

Owing to the rather unexpected behavior of the capsule velocity Ux and the

additional pressure difference ∆P+ not to be affected much by the viscosity ratio,

we proceed now by investigating the corresponding effects on the droplet defor-

mation. A droplet is also a deformable object but, in contrast to a capsule, its

surface tension γ remains constant. Thus, our goal here is to clarify the similarities

and differences of droplet and capsule transient dynamics as they pass through the

microfluidic constriction. To determine the droplet dynamics, we utilized our fully-

implicit time-integration spectral algorithm for droplets [20] as well as our mem-
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Figure 3.7: Evolution of (a) the capsule velocity Ux, and (b) the additional pressure
difference ∆P+, as a function of the centroid xc, for a Skalak capsule with C = 1,
a/`z = 0.9 and Ca = 0.1, for size λ = 0.01, 0.1, 1, 2, 5.

36



brane spectral boundary element algorithm by imposing surface-tension interfacial

conditions, which is identical to our explicit time-integration spectral algorithm for

droplets [76]. In this case, the capillary number is defined as Ca = µU/γ where γ

is the droplets surface tension.

A comparison of the deformation of droplets and capsules, as in figures 3.8

and 3.6, reveals that the droplets length Lx and height Lz deform similarly to

those for a capsule, as both soft particles pass through the microfluidic constriction.

It is of interest to note that similar interfacial deformation was also found, both

computationally and experimentally, for nearly-spherical vesicles in microchannels

with oscillating height [10, 50]. In essence, the deformation of the particles length

and height is a pure hydrodynamic effect due to the significant changes in the flow

caused by the constriction.

On the other hand, the droplets lateral dimension (i.e., its width Ly) shows

a smaller deformation than that for a capsule. Furthermore, the width Ly of the

droplet increases only during the confinement area where the droplet enters the

constriction, and decreases during the expansion area where the droplet exits the

constriction, while the capsule remains laterally elongated over the entire constric-

tion. The different evolution of the width of the two soft particles in the rectangular

constriction is similar to the difference in the steady-state shapes of droplets and

capsules in rectangular channels identified in our recent work [38]. In particular,

in asymmetric channel flows, a capsule extends significantly along the less-confined

lateral direction of the channel cross-section (i.e., the channel width) to facilitate

the development of strong lateral tensions required for interfacial stability. Such
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Figure 3.8: Evolution of the droplet lengths as a function of the centroid xc, for a
droplet with a/`z = 0.9, Ca = 0.1 and viscosity ratio λ = 0.01, 0.1, 1, 2, 5. (a) Length
Lx, (b) width Ly, and (c) height Lz (scaled with the length 2a of the undisturbed
spherical shape). Our results for λ = 0.01 are identical for lower viscosity ratios,
e.g. λ = 0.001, 0, and thus represent the low-viscosity limit λ � 1.
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deformation is not required for a droplet owing to its a constant surface tension,

and thus in the present problem, the droplet width, after the initial increase in the

confinement area, reduces in the expansion area to facilitate the flattened parachute

shape as the droplet exits the constriction.

The major differences in the motion of the two soft particles involve the velocity

Ux and the additional pressure difference ∆P+, which in the case of a droplet are

affected significantly by the viscosity ratio λ as shown in figure 3.9. In contrast

to the practically insensitive capsules, the velocity of a droplet decreases with the

viscosity ratio. The same is true for its additional pressure difference ∆P+ which

for a droplet is negative for low enough viscosity ratios. It is of interest to note

that the evolution of the velocity Ux and the additional pressure difference ∆P+

for a very viscous droplet (e.g. λ = 5) is very similar to that for the capsule (at

any viscosity ratio). Therefore, even under the transient conditions imposed by the

microfluidic constriction, capsules with any viscosity ratio correspond better to very

viscous droplets, as we identified for steady-state capsule motion in solid ducts [37].

3.4.2 Reasoning for the transient dynamics of droplets and

capsules

To explain the different effects of the viscosity ratio on the transient velocity

Ux and the additional pressure difference ∆P+ of droplets and capsules over the

constriction, we need to to consider the fluid circulation inside the soft particles.

For the case of droplets, where the interface is just a separation of two fluid

39



1.5

2

2.5

3

3.5

4

4.5

-4 -3 -2 -1 0 1 2 3 4 5 6

U
x
/U

xc/`z

λ decreasing

(a)

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4 5 6

∆
P

+
/Π

xc/`z

λ decreasing

(b)

Figure 3.9: Evolution of (a) the capsule velocity Ux, and (b) the additional pressure
difference ∆P+, as a function of the centroid xc, for a Skalak capsule with C = 1,
a/`z = 0.9 and Ca = 0.1, for size λ = 0.01, 0.1, 1, 2, 5.
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phases with no material, there may be a significant inner circulation (with respect

to the translation motion) owing to the continuity of the interfacial shear stresses

from the surrounding and inner fluids. Thus, complex streamline patterns have been

found for steady-state droplet motion in solid ducts; for example, see figure 3 from

Ho and Leal [30] and figure 3(a) from Lac and Sherwood [41]. The same is true for

unsteady droplet motion such as its passing through the microfluidic constriction

studied in this work. For low-viscosity ratio, the inner circulation is as significant as

the droplet translation velocity Ux. This is shown for λ ≤ 0.1 in table 3.2, where we

calculated the maximum and average of the absolute value of the interfacial shear

velocity (with respect to the droplet translation velocity Ux) as the capsule passes

through the constriction. Note that the magnitude of the interfacial shear velocity

represents very well the strength of the inner circulation. As the viscosity ratio

increases, the inner circulation becomes weaker, e.g. its representative velocity is

reduced compared to the droplet translation velocity Ux, as seen in table 3.2 for

λ = 1, 2. For very viscous droplets, the inner circulation becomes negligible (as

shown in table 3.2 for λ = 5), and eventually for λ → ∞ the droplet solidifies,

the inner circulation becomes zero and the entire droplet moves with its translation

velocity Ux only.

For the case of capsule motion in solid ducts, at steady state there is no

flow inside the capsule owing to the specific symmetry of the channel flow and the

material interface, i.e., the elastic-solid membrane [37, 58]. Thus, the steady-state

capsule motion in duct flows corresponds better to the dynamics of high-viscosity

(λ � 1) droplets since at steady state both soft particles translate in the duct flow
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Table 3.2: Maximum and average of the absolute value of the shear velocity on the
surface of a droplet or capsule (in the reference frame moving with the soft particle),
when the particle is in the middle of the constriction (i.e., xc ≈ 0), for a/`z = 0.9,
Ca = 0.1 and several viscosity ratios λ. Also included is the particle velocity Ux

for comparison reasons. (The velocity scale is the average undisturbed velocity U
in the square channel.) Similar results we obtain when the capsule enters or exits
the constriction.

Material λ Ux,c |Ux|max. |Uy|max. |Uz|max.

Capsule

0.01 3.1752 0.1970 0.1602 0.2628
0.1 3.1751 0.1920 0.1568 0.2536
1 3.1679 0.1521 0.1235 0.2017
2 3.1652 0.1408 0.1003 0.1607
5 3.1380 0.1028 0.0680 0.1009

Drop
0.01 3.9680 3.2646 0.4768 0.9439
0.1 3.8529 2.9522 0.4082 0.8605
1 3.4111 1.6207 0.1773 0.4542
2 3.2916 1.1299 0.1947 0.3014
5 3.1819 0.6601 0.1560 0.1775

Material λ Ux,c |Ux|avg. |Uy|avg. |Uz|avg.

Capsule

0.01 3.1752 0.1083 0.0341 0.0842
0.1 3.1751 0.1068 0.0330 0.0821
1 3.1679 0.0936 0.0275 0.0706
2 3.1652 0.0836 0.0222 0.0598
5 3.1380 0.0608 0.0159 0.0419

Drop
0.01 3.9680 1.3357 0.2941 0.3365
0.1 3.8529 1.1618 0.2377 0.3021
1 3.4111 0.5161 0.0700 0.1509
2 3.2916 0.3446 0.0466 0.1021
5 3.1819 0.1853 0.0289 0.0595

42



as solids with zero inner velocity, as discussed in our earlier papers [37, 38].

During transient, non-tank-treading capsule motion, as in the current problem,

the deformation of the capsule should create some inner circulation. To determine

how significant this inner motion is, in table 3.2 we also include information on the

magnitude of the interfacial shear velocity (with respect to the translation velocity

Ux) for capsules inside the constriction with several viscosity ratios. In contrast to

droplets, the circulation inside a capsule passing through the constriction remains

always small (compared to its translation velocity Ux), even at low viscosity ratios.

Therefore, owing to restrictions imposed by the material membrane, the tran-

sient, non-tank-treading capsule deformation is always accompanied with a weak

inner circulation, and thus the viscosity ratio does not affect much the capsule ve-

locity Ux and the additional pressure difference ∆P+, as shown earlier in figure

3.7. In addition, the weak inner circulation results in a positive additional pres-

sure difference ∆P+ even for low-viscosity capsules with (λ � 1), in direct contrast

to low-viscosity droplets which create a negative ∆P+. In essence, owing to the

weak inner circulation, during transient, non-tanktreading motion, capsules at any

viscosity ratio still correspond to high-viscosity (λ � 1) droplets, as at steady

state [37, 38].

It is of interest to note that low-viscosity capsules are more deformed than

very viscous capsules as discussed earlier around Eq.(3.4), and thus they show a

more flattened parachute shape as they exit the constriction, characterized by a

higher height Lz as seen in figure 3.6(c) for xc/`z ≈ 2. The larger flow blocking of

the more deformed shapes causes a higher peak in the positive additional pressure
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difference ∆P+ of low-viscosity capsules in the expansion area, shown in figure 3.9(c)

for xc/`z ≈ 2.
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Chapter 4: Hydrodynamic forces exerted on a mi-

crofluidic constriction owing to a cap-

sule passing

4.1 Introduction

In this chapter, we investigate the hydrodynamic forces exerted on the con-

striction owing to a capsule passing through the microgeometry as described in

chapter 3. The study of hydrodynamic forces has seen an increased interest owing

to its important role in cell segregation [3, 75], filtration systems [36, 46, 80, 81] and

biomedical fields [2, 28, 32, 77, 78].

In microfluidics, the understanding of hydrodynamic forces is very important

for designing filtration systems, cell sorting or the pattering on the microdevices.

Zhu et al. [81] calculated the capsule deformation and the fluid velocity when the

capsule passed the rigid constricted microchannel. Their results showed that the ad-

hesive strength between the capsule and the constriction and the capsule’s stiffness

strongly affect the capsule dynamics. Furthermore, Zhu et al. [80] investigated the

capsule dynamics as it passed through deformable constrictions. They calculated
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the energy associated with the adhesion between the capsule and the constriction.

Alexeev et al. [2] studied the selectively entrapped or bursting microcapsules on

a substrate with varying adhesive strength. The capsule stiffness and the adhe-

sive interaction on the substrate are major factors for the capsule bursting and its

velocity. Furthermore, they measured the energy associated with the adhesive inter-

action between the rolling capsule and a substrate and the capsule deformation [3].

Pozrikidis [60] investigate the force and torque exerted on a spherical particle when

the particle straddles a flat interface in a simple shear flow. The author studied the

particle translational and angular velocities for any viscosity ratio. Mao and Alex-

eev [46] computed the stream velocity distribution in diagonal protuberances from

the opposite channel walls as microparticles passing for varying Reynolds number.

In biomedical fields, the hydrodynamic force is a key factor to understand

the physiological inflammation response in the microcirculation such as leukocytes

migration, rolling and adhesion to the vascular endothelium cells. Leukocyte migra-

tion, rolling, adhesion and detachment are essential steps in the immune response

system to inflammation. The inflammation process begins with the migration of

leukocytes in the postcapillary venules [27, 47]. Once a leukocyte contact in the en-

dothelial cells, the leukocyte can interact with endothelial cells via receptor-ligand

binding. If the binding force is weak, the leukocyte may begin to roll along the

endothelial cells [5, 15]. When the binding force becomes strong, the leukocyte is

attached to the endothelial cells [24]. For the adhesion of leukocytes on the endothe-

lial cells, leukocytes should be under the force balance between the receptor-ligand

binding forces on the surface and the hydrodynamic forces by the blood flow [57,77].
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Several studies have focused on the fluid forces on protuberances such as ad-

hering cells on the vessel surface or the flow sediments by flow on the microchannel.

Pozrikidis [56] computed the hydrodynamic force, torque exerted on hemisphere-

shaped protuberances and stream-lines over the protuberances in a simple shear

flow. Furthermore, Pozrikidis [57] extended his research by considering the effect of

a pressure gradient on axisymmetric shapes of protuberances, i.e., hemisphere and

rectangular shapes. The drag force and torque are computed over the protuberances

in a parabolic flow. Gaver and Kute [28] studied the fluid stresses on a cell adhering

to a microchannel wall. They considered a two-dimensional flow within two parallel

plates and a semicircular bump. They investigated the effects of adherent cell sizes

on the fluid forces. Dong et al. [24] numerically investigated the mechanics of leuko-

cyte deformation and adhesion to endothelial cells in shear flow. They studied the

drag force and torque for the leukocyte deformation, adhesion to endothelial cells and

disruption of adhesive bonds with varying the mean-blood velocity. Sugihara-Seki

and Schmid-Schönbein [72] determined the shear stress distribution on the leuko-

cyte and its vicinity for adherent, rolling, and free-suspended leukocytes. Wang and

Dimitrakopoulos [77, 78] investigated the effects of the components of the hemo-

dynamic force i.e., the shear and normal forces, on an adhering endothelial cell,

leukocyte and their vicinity. They investigated varying sizes of blood vessels and

cell’s spreading angles. Furthermore, they developed a scaling analysis for the shear

and normal forces exerted on the adherent cell. Couzon et al. [18] experimentally

verified the critical stresses for cell detachment from the microchannel walls. They

focused on the characteristics of shear stress as a function of the number of adhesion
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sites, bonding force and the microchannel size. Khismatullin and Truskey [35] inves-

tigated the effect of cytoplasmic viscosity on the the hydrodynamic force, bonding

force and lift force on a rolling P-selectin-mediated leukocyte as a function of time.

In the studies mentions above, the exterior fluid was modeled as a Newtonian

fluid and they considered a single protuberance or adhering leukocyte. Das et al. [19]

investigated the effects of leukocyte adhesion for the non-Newtonian Casson fluid

flow in small venules. They considered the effects, on the resistance and shear stress,

of the position of adhered leukocytes inside the blood vessel. Pappu et al. [52] in-

vestigated the flow resistance and the fluid drag force over an adhesive rolling of

deformable leukocytes by using a three-dimensional computational modeling and

the immersed boundary method. Based on their results, the flow resistance and the

drag force over the adherent leukocytes are strongly affected by the ratio of the fluid

center velocity to the half channel height, number of adherent leukocytes and cell

concentration. Pickard and Ley [54] experimentally observed velocity profiles over

adherent leukocytes on the microvessel by using microparticle tracking velocimetry

and determined the shear stress on adherent leukocytes. They also measured ad-

hesive force and the peeling tension acting on the vicinity of adherent leukocytes.

Sequeiraa et al. [66] computed the flow velocity, wall shear stress and torques around

an adherent spherical leukocyte on the endothelial wall of a cylindrical venule by

considering an incompressible shear-thinning blood flow model. Christ et al. [14]

experimentally studied the cell adhesion strength as a function of the number of

cells and the cell’s contact area on the wall. Their simulation results showed that

the distribution of shear stress over an adherent cell depends on the height and the
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Figure 4.1: Illustration of the constricted microchannel.

contact area of cells at a fixed cell volume on the wall.

Few studies have considered the cell flow over the protuberances or adher-

ent leuckocytes. Freund [27] numerically investigated the flow mechanics around a

leukocyte when red blood cells flow over the leukocyte. The author verified that

the fluid flow over the leuckocyte is strongly affected by the stiffness of red blood

cells and mean blood flow velocity. Isfahani and Freund [32] studied the forces on

the wall-adhered leukocyte as the red blood cells pass by corresponding homoge-

neous blood models. They focused on the effects on the leukocyte geometry and

hematocrit on the forces exerted on the adherent leukocyte in a microvessel.

In our work, we focus on the hydrodynamic force and its components, i.e.,

the shear and normal forces, exerted on the rectangular constriction in a square

microchannel duct owing to a capsule passing described as shown in figure 4.1.

First, we study the effects of flow rate Ca, capsule size a, and viscosity ratio λ on the

hydrodynamic force and its components over the rectangular constriction. Second,

we compare the effects of the passing capsule or droplet flow on the hydrodynamic
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forces over the rectangular constriction.

4.2 Definition of physical variables

In our work, we consider the exterior and interior fluids to be Newtonian fluids

at a low-Reynolds-number flows. The capsule used in our work has a spherical

quiescent shape. We investigate the hydrodynamic force and its components (i.e.,

shear and normal forces) over the rectangular constriction as the soft particle moves

inside the microfluidic channel shown in figure 4.1.

The hydrodynamic force Fx exerted on the rectangular constriction is given

by

Fx =
∫

Sconst

fxdS (4.1)

where Sconst is the constriction surface area and fx the force along x-axis on the

constriction. The shear force F sh
x and the normal force F n

x exerted on the rectangular

constriction are given by

F sh
x =

∫

Sconst

f sh
x dS and F n

x =
∫

Sconst

fn
x dS (4.2)

where f sh
x is the x-component of the shear stress, i.e., f sh

x = (
√

(fL
x )2 + (fL

y )2)x, fn
x

is the x-component of the normal force, fn
x = (fL

z )x, on the constriction and Sconst

is the constriction’s surface area. We note that fL = (fL
x , fL

y , fL
z ) is the force vector

defined at the local Cartesian coordinate system (xL, yL, zL) where xL and yL axes

are on the tangent plane at each surface point and the zL axis is parallel to the
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normal vector n.

We calculate the additional hydrodynamics force F +
x , the additional shear

force F sh+
x and additional normal force F n+

x exerted on the constriction owing to

the capsule passing. The additional hydrodynamic force F +
x is given by

F +

x = Fx − F 0

x (4.3)

where F 0
x is the hydrodynamic force exerted on the constriction in the absence of

the capsule in the microchannel. The additional shear and additional normal forces

are defined by

F sh+

x = F sh
x − F sh,0

x and F n+

x = F n
x − F n,0

x (4.4)

where F sh,0
x is the shear force and F n,0

x the normal force exerted on the constriction

when no capsule is present in the microchannel.

As mentioned in chapter 2, the height of the constriction is 2`z. The con-

striction half-height `z serves as the length scale for the present problem. In this

work, the constriction surface area is Sconst = 32`2
z and `2

z serves as the scale of the

constriction surface area. The average undisturbed velocity U in the square channel

is used as the velocity scale. The shear stress τ on the constriction is scaled with

the undisturbed shear stress on the solid wall τ∞

wall = µU/`z . Based on Eq.(4.1),

Fx ∼ `2
zfx ∼ `2

zτ
∞

wall and thus we employ `2
zτ

∞

wall as the scale for the hydrodynamic

force exerted on the constriction due to the capsule passing.
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4.3 Effects of flow rate and capsule size

We investigate now the effects of the capsule size a and flow rate Ca on the

hydrodynamic forces exerted on the constriction channel owing to the capsule pass-

ing.

Figure 4.2 shows the effects of flow rate Ca and capsule size a on the hydro-

dynamic force exerted on the constriction and the additional hydrodynamic force.

Both Fx and F +
x decrease with increasing flow rate Ca, while both forces increase

with increasing capsule size a. The increase of the hydrodynamic force Fx and the

additional hydrodynamic force F +
x is much more pronounced at lower flow rates and

larger capsule sizes owing to a higher flow blocking.

The larger capsule size a (or the lower flow rate Ca) causes an increase of

the shear force F sh
x and the additional shear force F sh+

x as seen in figure 4.3 and

4.4. The normal force F n
x and the additional normal force F n+

x are increased with

increasing of capsule size a (or decreasing flow rate Ca) as shown in figure 4.3 and

4.4. The additional shear F sh+
x and normal F n+

x forces are positive for λ = 1.

To explain this, we utilize the scaling analysis of Wang and Dimitrakopou-

los [77], i.e., the shear force F sh
x is proportional to the shear stress τconst and the

constriction surface area Sconst,

F sh
x ∼ τconstSconst (4.5)

while the normal force F n
x is proportional to the pressure difference ∆P const over
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Figure 4.2: The hydrodynamic forces on the constriction as a function of the capsule
centroid xc, for a Skalak capsule with C = 1 and λ = 1. Effects of the flow rate
Ca = 0.01, 0.02, 0.05, 0.1 for capsule size a/`z = 1 on (a) the hydrodynamic force Fx

and (b) the additional hydrodynamic force F +
x exerted on the constriction. Effects

of the capsule size a/`z = 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 1 for flow rate Ca = 0.1 on (c)
the hydrodynamic force Fx and (d) the additional hydrodynamic force F +

x exerted
on the constriction.
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Figure 4.3: Effects of the capsule size a/`z on the shear and normal forces on
the constriction for a Skalak capsule with C = 1, λ = 1 and Ca = 0.1. (a)
Shear force F sh

x , (b) normal force F n
x , (c) additional shear force F sh+

x , and (d)
additional normal force F n+

x exerted on the constriction. The capsule size is a/`z =
0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 1.
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Figure 4.4: Effects of the flow rate Ca on the shear and normal forces on the
constriction, for a Skalak capsule with C = 1, λ = 1 and a/`z = 1. (a) Shear force
F sh

x , (b) normal force F n
x , (c) additional shear force F sh+

x , and (d) additional normal
force F n+

x exerted on the constriction. The flow rate is Ca = 0.01, 0.02, 0.05, 0.1.
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the constriction and the frontal area of the constriction Aconst,

F n
x ∼ ∆P constAconst (4.6)

We emphasize that a lower flow rate Ca (or a larger capsule size a) causes

higher shear and normal forces exerted on the constriction owing to a higher flow

blocking. Following a comparison between our computational results and the scaling

analysis, Eqs.(4.5) and (4.6), the higher flow blocking should increase the shear stress

τconst and the pressure difference ∆P const on the constriction.

4.4 Effects of viscosity ratio

In this section, we investigate the effects of the viscosity ratio λ on the hy-

drodynamic forces on the constriction as a capsule passes through the microfluidic

constriction. For this, we consider a capsule with a fixed size a/`z = 0.9 and flow

rate Ca = 0.1, while we vary the viscosity ratio in the range λ = 0.01 − 5, i.e., we

investigate from inviscid to very viscous capsules.

Figure 4.5 shows the hydrodynamic force Fx and the additional hydrodynamic

force F +
x exerted on the constriction for several viscosity ratios. The viscosity ratio

has very weak effects on both forces which are positive for all viscosity ratios (even

for inviscid capsules with λ � 1).

Figure 4.6 shows the effects of the viscosity ratio on the shear and normal

forces on the constriction. As the viscosity ratio λ increases, the shear force F sh
x

and the additional shear force F sh+
x increase when the capsule is in the constriction
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Figure 4.5: Effects of the viscosity ratio λ on (a) the hydrodynamic force Fx and (b)
the additional hydrodynamic force F +

x exerted on the constriction as a function of
the capsule centroid xc, for a Skalak capsule with C = 1, Ca = 0.1 and a/`z = 0.9.
The viscosity ratio is λ = 0.01, 0.1, 1, 2, 5.
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(−1 < x/`z < 1). Before the constriction, the shear forces are insensitive to the

viscosity ratio. The normal force F n
x and the additional normal force F n+

x are weakly

affected by the viscosity ratio λ.

4.5 Comparison with droplet dynamics

In this section, we focus on the effects of the viscosity ratio on the forces

exerted on the constriction due to a droplet passing and compare these forces with

the forces exerted on the constriction due to a capsule passing.

Figure 4.7 shows the effects of the viscosity ratio on the hydrodynamic forces

exerted on the constriction owing to the droplet passing. Both Fx and F +
x are more

strongly affected by the viscosity ratio than those for the capsule passing as seen in

figure 4.5. As the viscosity ratio λ decreases, the hydrodynamic force Fx and the

additional hydrodynamic force F +
x exerted on the constriction owing to the droplet

passing are decreased.

To explain the different effects of the viscosity ratio on the hydrodynamic

forces exerted on the constriction owing to the soft particles passing, we need to

consider the inner circulation. As discussed in chapter 3, the inner circulation of the

droplet is generated owing to the continuity of the interfacial shear stress from the

surrounding and inner fluids. Based on table 3.2, the higher viscosity ratio results

in a decrease of the droplet is inner circulation. This means that the resistance (i.e.,

shear and normal stress) at the droplet interface may be increased with increasing

the viscosity ratio.
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Figure 4.6: Effects of the viscosity ratio λ on the shear and normal forces on the
constriction for a Skalak capsule with C = 1, Ca = 0.1 and a/`z = 0.9. (a)
Shear force F sh

x , (b) normal force F n
x , (c) additional shear force F sh+

x , and (d)
additional normal force F n+

x exerted on the constriction. The viscosity ratio is
λ = 0.01, 0.1, 1, 2, 5.
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Figure 4.7: Effects of the viscosity ratio λ on (a) the hydrodynamic force Fx and (b)
the additional hydrodynamic force F +

x exerted on the constriction as a function of
the droplet centroid xc, for a droplet with Ca = 0.1 and a/`z = 0.9. The viscosity
ratio is λ = 0.01, 0.1, 1, 2, 5.
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To offer further physical insight, utilizing Eqs.(4.4) and (4.5), we derive the

scaling for the additional shear force F sh+
x exerted on the constriction owing to the

soft particle passing.

F sh+

x ∼ (τconst − τconst,0)Sconst (4.7)

where the constant τconst,0 is the shear stress on the constriction in the absence of

the soft particle. We also derive the scale of the additional normal force F n+
x exerted

on the constriction owing to the soft particle passing by using Eqs.(4.4) and (4.6),

F n+

x ∼ (∆P const − ∆P const,0)Aconst = ∆P c,0+Aconst (4.8)

where the constant ∆P const,0 is the pressure difference on the constriction in the

absence of the soft particle.

For low-viscosity droplets with λ � 1, the resistance on the droplet surface is

decreased owing to the strong inner circulation and thus the shear stress τconst and

the pressure difference ∆P const exerted on the constriction are decreased. Thus, the

additional shear force F sh+
x and the additional normal force F n+

x are negative as

shown in figure 4.8(c,d).

For viscous droplets with λ = O(1), the shear stress τconst and the pressure

difference ∆P const become larger than the undisturbed values since the slower in-

ner circulation increases for the resistance on the droplet surface. Therefore, the

additional shear force F sh+
x and the additional normal force F n+

x are positive.

For high-viscosity droplets with λ � 1, the restriction imposed on the droplet
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is more increased owing to the much weaker inner circulation. The shear stress

τconst and the pressure difference ∆P const continue to increase. Thus, the additional

shear force F sh+
x and the additional normal force F n+

x are positive. For a viscosity

droplet (e.g. λ = 5), the resistance over the droplet surface owing to the weaker

inner circulation of droplet acts like the restriction imposed by the capsule surface.

Thus in this case, the forces are very similar to those for the capsule (at any viscosity

ratio) as shown in figures 4.8 and 4.6.

Therefore, our study shows that the forces exerted on the constriction owing

to the droplet passing are strongly affected by the viscosity ratio in contrast to those

on the constriction owing to the capsule passing.
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Figure 4.8: Effects of viscosity ratio λ on the shear and normal forces on the con-
striction for a droplet with Ca = 0.1 and a/`z = 0.9. (a) Shear force F sh

x , (b)
normal force F n

x , (c) additional shear force F sh+
x , and (d) additional normal force

F n+
x exerted on the constriction. The viscosity ratio is λ = 0.01, 0.1, 1, 2, 5.
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Chapter 5: Dynamics of an elastic capsule in a

square microfluidic constriction

In this chapter, we study the transient dynamics of a capsule flow in square

microfluidic constriction. The investigation of capsule deformation and its motion

in a square constriction channel has been used in microfluidic devices such as filtra-

tion systems, cell sorting or separation system and biomedical devices. Abkarian,

Faivre and Stone [1] focused on the motion of red blood cells in a square constric-

tion channel. They investigated the effects of pressure difference on the motion of

cells. Leclerc et al. [42] studied the transient flow of microcapsules through square

constriction channels. They focused on the capsule deformation for varying capsule

sizes and computed the capsule shearing modulus from the calculated relaxation

time of capsules when the capsule returned back to the initial shape after passing

through the constriction. In addition, they compared the calculated the value of the

shearing modulus with previous results [44].

Here we numerically investigate the motion of an elastic capsule in a square

microfluidic constriction. First, we determine the transient motion of a capsule and

its deformation when the capsule passes through the constriction. We demonstrate
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the effects of flow rate Ca on the capsule motion in the square constriction. Fur-

thermore, we compare our computational results of the square constriction with our

previous results of the rectangular constriction from chapter 3 and 4.

5.1 Problem description

We consider a three-dimensional capsule flowing along the centerline of a

square microfluidic constriction with a square constriction in the middle, as shown

in figure 5.1. The flow direction (i.e., the x-axis) corresponds to the channel’s or

capsule’s length while the z-direction will be referred as height. The width and

height of the constriction are 2`z and those of the outer channel are 4`z. The square

constriction has length 2`z while the length of the entire microchannel is 20`z . The

half-height of the square constriction `z is used as the length scale for the present

problem. At the time t = 0 the capsule is located at −4`z , the fluid flow begins

inside the microfluidic channel and we investigate the transient dynamics of the cap-

sule as it enters and exists the square constriction [−`z,`z]. The velocity is scaled

with the average undisturbed velocity U in the outer square channel and the time

is scaled with the `z/U . In addition, the pressure is scaled with µU/`z , and the

membrane tensions with Gs.

In our work, we consider the exterior and inner fluid as a Newtonian fluids.

In addition we assume that the flow rate Q inside the microchannel is fixed. We

consider a Skalak capsule with prestress αp = 0.05 and membrane hardness C = 1.
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Figure 5.1: Illustration of a square microfluidic constriction with a square constric-
tion in the middle.

5.2 Transient dynamics of the capsule passing through a

square microfluidic constriction

In this section, we investigate the transient dynamics of a viscous capsule (with

viscosity ratio λ = 1) as it passes through the square-constricted microfluidic chan-

nel. We consider the effects of the flow rate Ca on the capsule motion. Our results,

including the capsule lengths, its velocity Ux, the additional pressure difference ∆P+

and the hydrodynamic forces, are represent as functions of the capsule centroid xc.

The successive capsule profiles are shown in figure 5.2. Near the entrance of

the constriction, the capsule becomes more pointed from the spherical shape into the

bullet-like shape as seen in figure 5.2(a). It is due to the strong hydrodynamic forces

associated with the cross-sectional area decrease where the average fluid velocity is

increased inside the constriction since the flow rate Q is fixed in the study.

Thus as the capsule approaches the constriction, its length Lx is increased while

its height Lz and width Ly (where Ly = Lz for this problem owing to symmetry)

are decreased as seen in figure 5.3.
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(a) (b)

(c) (d)

Figure 5.2: The shape of a Skalak capsule with C = 1, a/`z = 0.7, λ = 1 and
Ca = 0.1 moving inside the square microfluidic constriction. The capsules centroid
xc/`z is (a) −1.34, (b) −0.06, (c) 0.71, and (d) 1.73. The three-dimensional capsule
views were derived from the actual spectral grid using orthographic projection in
plotting.
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Figure 5.3: The capsule lengths as a function of the centroid xc, for a Skalak capsule
with C = 1, a/`z = 0.7 and λ = 1, for flow rate Ca = 0.1, 0.2. (a) Length Lx and
(b) height Lz (scaled with the length 2a of the undisturbed spherical shape). These
lengths are determined as the maximum distance of the interface in the x and z
directions.
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When the capsule approaches nearly the middle of the constriction as in figure

5.2(b), the capsule has obtained a shape similar to the elliptical shape. The capsule

elongates in the flow direction and decreases in the lateral and its height direction,

as shown in figure 5.3.

As the capsule moves out of the constriction as seen figure 5.2(c), the down-

stream portion of the capsule slows down owing to the cross-section expansion, i.e.,

the sudden decrease of the average fluid velocity, while the upstream part of the

capsule still advances with the constriction flow velocity. Both actions causes a

compression of the capsule and a significant reduction of the capsule length Lx as-

sociated with a fast increase of the capsule width Ly and height Lz as shown in

figure 5.3. When the capsule completely exits the constriction, the capsule lateral

expansion is much more pronounced where it obtains a parachute-like shape as seen

in figure 5.2(d). When the capsule has the parachute-like shape, the capsule has the

maximum values of height Lz and width Ly. After that, the capsule returns back

to a bullet shape in the outer square channel.

Therefore, the two different sizes of the microchannel, i.e., confinement and

expansion, cause two distinct interfacial shapes. In the constriction, the capsule

length Lx has the maximum value and its width Ly and height Lz have the minimum

value where the capsule obtains a bullet shape. The opposite happens after the

capsule obtains a parachute-like shape where the capsule length Lx has the minimum

value and its width Ly and height Lz have the maximum value. Similar phenomena

has been observed in chapter 3 in a rectangular constriction.

Figure 5.5 shows the effects of the flow rate Ca on the tip curvatures of the
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Figure 5.4: The shape of a Skalak capsule with C = 1, a/`z = 0.7, λ = 1 and Ca =
0.1 moving inside the microfluidic constriction, for capsules centroid (a) xc/`z =
−1.34, (b) xc/`z = −0.06, (c) xc/`z = 0.71 and (d) xc/`z = 1.73. The capsule
shape is plotted as seen slightly askew from the positive z-axis to reveal its fully
three-dimensional conformation.
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capsule. When the capsule approaches the constriction, the curvature Cf
xz on the

front tip increases while the curvature Cb
xz of the back tip decreases where the cap-

sule becomes a bullet-like shape as shown in figure 5.4(a). When the capsule is in

the middle of the constriction, the curvature Cf
xz has the maximum value while the

curvature Cb
xz continues to decrease. This means that the capsule becomes more

pointed along the flow direction since the capsule deformation is limited along the

height or width direction. As the capsule moves out of the constriction completely,

the tip curvature Cb
xz tends to be negative where the upstream edge of the capsule

changes its shape from a convex to a concave as shown in figure 5.4(d). The tip

curvature Cb
xz has the minimum value due to the maximum expansion of the down-

stream edge of the capsule. As the flow rate Ca increases, the curvatures have a

higher values since the capsule is more deformed owing to the strong hydrodynamic

force.

To provide more information on the motion of the elastic capsule in the square

constricted microchannel, in figure 5.6(a) we present the variation of the capsule

surface area Sc with the flow rate Ca. The capsule surface area Sc is increased when

the capsule squeezes before the constriction while it is reduced after the capsule

passing through the constriction. When the flow rate Ca increases, the capsule has

a larger surface area Sc owing to the stronger forces.

The same pattern is valid for the maximum τP
max and minimum τP

min principal

tension over the capsule surface for several flow rates Ca as shown in figure 5.6(b,c).

Near the entrance of the constriction as in figure 5.2(a), the maximum principal

tension τP
max occurs at the top surface of the capsule, and the minimum principal
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Figure 5.5: The capsule curvatures as a function of the centroid xc, for a Skalak
capsule with C = 1, a/`z = 0.7 and λ = 1, for size Ca = 0.1, 0.2. (a) The tip
curvature of the back side of the capsule Cb

xz and (b) the tip curvature of the front
side of the capsule Cf

xz, at the intersection of the capsule surface with the y = 0
plane.
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tension τP
min is initially located at the back side of the capsule, e.g. left-side of the

capsule. Thus, the capsule elongates along the flow direction. When the capsule

is in the constriction as in figure 5.2(b,c), the maximum principal tension τP
max

maintains a high value until the capsule exits the constriction completely while the

minimum principal tension τP
min becomes negative. The maximum principal tension

τP
max continues to be located at at the top surface of the capsule. In contrast,

the location of the minimum principal tension τP
min is changed from the front side

of the capsule to the lateral side of the capsule. As the capsule moves out of the

constriction completely as seen figure 5.2(d), the minimum principal tension τP
min has

the minimum value where the capsule obtains a parachute-like shape. The negative

tension causes local compression. The maximum principal tension τP
max decreases.

It is located at the downstream of the capsule. As the flow rate Ca increases, the

maximum principal tension on the capsule surface increases owing to the stronger

hydrodynamic forces. The location of the minimum and maximum tensions on the

capsule surface has the same trend for the different flow rates.

The lower flow rate Ca (or higher flow blocking) results in a decrease of the

capsule velocity Ux and an increase of the additional pressure difference ∆P+, owing

to the narrow gap h between the capsule surface and the solid wall as seen in figure

5.7. As discussed in chapter 3, we analyze the variation of the capsule velocity Ux and

the additional pressure difference ∆P+ with the flow rate Ca by utilizing the scaling

behavior presented in Eqs.(19) and (27) from in Kuriakose and Dimitrakopoulos [37].

The capsule velocity inside the constriction should scale proportionally with the gap
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Figure 5.6: The surface area and principal tensions as a function of the centroid xc,
for a Skalak capsule with C = 1, a/`z = 0.7 and λ = 1, for flow rate Ca = 0.1, 0.2.
(a) Surface area of the capsule Sc (scaled with the capsule surface area S0

c ), (b)
maximum principal tension τP

max, and (c) minimum principal tension τP
min on the

capsule.
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h between the capsule surface and the solid walls,

Ux − U

U
∼

h

`z

(5.1)

where U is the average undisturbed velocity in the square constriction and `z the

half-size of the square constriction. The additional pressure difference should be

inversely proportional to the gap,

∆P+

Π
∼

`z

h
(5.2)

where Π is the pressure scale in the outer square channel. As the flow rate Ca

decreases, the gap h between the capsule surface and the solid wall decreases, and

thus the capsule velocity Ux decreases while the additional pressure difference ∆P+

increases, in agreement with our computational results seen in figure 5.7.

Figure 5.8 shows the hydrodynamic force Fx and the additional hydrodynamic

force F +
x exerted on the square constriction owing to the capsule passing for two

flow rates. When the capsule is near the constriction, the hydrodynamic force

increases owing to higher flow blocking between the capsule surface and the solid

walls caused from the decrease of the cross-sectional area. As the capsule moves

out of the constriction completely, the hydrodynamic force increases owing to the

flow blocking associated with the capsule expansion. The additional hydrodynamic

force F +
x has the same trend as for the hydrodynamic force Fx. As the flow rate

Ca decreases, both forces are increased owing to the narrower gap h between the
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Figure 5.7: Capsule properties as a function of the centroid xc. (a) The capsule
velocity Ux, and (b) the additional pressure difference ∆P+ for a Skalak capsule
with C = 1, a/`z = 0.7 and λ = 1, for flow rate Ca = 0.1, 0.2.
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Figure 5.8: The hydrodynamic forces on the square constriction as a function of
the capsule centroid xc, for a Skalak capsule with C = 1, a/`z = 0.7 and λ = 1.
Effects of the flow rate Ca on (a) the hydrodynamic force Fx and (b) the additional
hydrodynamic force F +

x exerted on the constriction. The flow rate is Ca = 0.1, 0.2.

capsule surface and the solid wall and thus the higher flow blocking.

Figure 5.9 shows the shear and normal forces on the square constriction owing

to the capsule passing. The shear force F sh
x and normal force F n

x increase near

the constriction, where the cross-sectional area decreases, owing to the higher flow

blocking. As the capsule moves out of the constriction completely, the normal force

F n
x is much higher than the shear force F sh

x . The additional shear force F sh+
x and

normal force F n+
x have the same trend for the regular forces. As the flow rate Ca

increases, the forces are decreased owing to the larger gap h between the capsule

surface and the solid wall. Following a comparison between our computational

results and Eqs.(4.5) and (4.6), the higher flow blocking should increase the shear

stress τconst and the pressure difference ∆P const on the constriction presented in
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Eq.(4.6) in chapter 4.

5.3 Comparison with the rectangular constricted microchan-

nel

In this section, we clarify the similarities and differences of the capsule tran-

sient dynamics passing through the rectangular and square constrictions. To inves-

tigate the effects of the constriction type (i.e., a rectangular or a square shape) on

the capsule dynamics, we consider the capsule size a/`z = 0.7, flow rate Ca = 0.1,

viscosity ratio λ = 1, and membrane hardness C = 1.

A comparison of the capsule deformation, as shown in figure 5.10, reveals that

the capsule’s length Lx and height Lz deform similarly as the capsule passes through

both constrictions. In both constrictions, the capsule deformation is strongly af-

fected by the hydrodynamic forces owing to the significant changes in the flow rate

caused by the constriction. However, the capsule is more deformed in the square

constriction owing to the stronger hydrodynamic forces since the cross-section area

of the square constriction is half that of the rectangular constriction. The capsule’s

width Ly in the square channel shows the same deformation trend with its height Lz

owing to the symmetry of the constriction, as seen in figure 5.10(b). In the rectan-

gular constriction, the capsule width Ly deforms significantly along the less-confined

lateral direction of the channel cross-section (i.e., the channel width) to facilitate the

development of strong lateral tensions required for interfacial stability as discussed

in Kuriakose and Dimitrakopoulos [37].
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Figure 5.9: Effects of the flow rate Ca on the shear and normal forces on the
constriction for a Skalak capsule with C = 1, a/`z = 0.7 and λ = 1. (a) Shear force
F sh

x , (b) normal force F n
x , (c) additional shear force F sh+

x , and (d) additional normal
force F n+

x exerted on the constriction. The flow rate is Ca = 0.1, 0.2.
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Figure 5.10: Effects of the constriction type on the capsule lengths as a function of
the centroid xc, for a Skalak capsule with C = 1, a/`z = 0.7, λ = 1 and Ca = 0.1.
(a) Length Lx, (b) width Ly and (c) height Lz (scaled with the length 2a of the
undisturbed spherical shape). The solid line represents the square constriction while
the dashed line represents the rectangular constriction.
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A comparison of the capsule velocity Ux and additional pressure difference

∆P+ in the two constriction types is shown in figure 5.11. The capsule velocity

increases near the constriction, while the maximum velocity is achieved in the middle

of the constriction for both types. The additional pressure difference increases when

the capsule is squeezed before entering the constriction or expanded after passing the

constriction. However, the capsule velocity and the additional pressure difference

are higher in the square constriction owing to the higher hydrodynamic forces caused

by the significant changes of the flow rate in this type of constriction.

For the case of the hydrodynamic forces exerted on the constriction as the

capsule passes, the forces increase when the capsule is compressed or expanded

near the constriction. As seen in figure 5.12, they have a similar trend for both

constriction types. However, in the square constriction, the forces are much larger

than those in the rectangular constriction owing to the strong flow blocking as shown

in figure 5.12. Following a comparison between our computational results and the

scaling analysis, Eqs.(4.5) and (4.6), the higher flow blocking should increase the

shear stress τconst and the pressure difference ∆P const on the square constriction.
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Figure 5.11: Effects of the constriction type on capsule properties as a function
of the centroid xc, for a Skalak capsule with C = 1, a/`z = 0.7 and λ = 1, for
flow rate Ca = 0.1. (a) The capsule velocity Ux, and (b) the additional pressure
difference ∆P+ The solid line represents the square constriction while the dashed
line represents the rectangular constriction.
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Figure 5.12: Effects of the constriction type on the forces on the constriction for a
Skalak capsule with C = 1, a/`z = 0.7, Ca = 0.1 and λ = 1. (a) Additional force
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x , and (c) additional normal force F n+

x exerted on
the constriction owing to the caspule passing. The solid line represents the square
constriction while the dashed line represents the rectangular constriction.
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Chapter 6: Conclusions

In this dissertation, we have investigated computationally the transient dy-

namics of an elastic capsule flowing along the centerline of microfluidic constricted

channels. We have studied a slightly over-inflated elastic capsule made of a strain-

hardening membrane (following the Skalak et al. constitutive law) with comparable

shearing and area dilatation resistance.

In chapter 3, we considered a square microchannel with a rectangular constric-

tion. Our investigation involves low-to-moderate flow rates with capillary number

Ca = O(0.1) and capsule sizes a comparable or smaller to the constriction height.

This study is motivated by a wide range of applications including drug delivery,

cell sorting and cell characterization devices, microcapsule fabrication, determina-

tion of membrane properties, and of course its similarity to blood flow in vascular

capillaries.

Our computational investigation reveals that the capsule shows a rich defor-

mation behavior as it moves inside the microfluidic device. In particular, the two

distinct regimes associated with the microfluidic constriction, i.e., confinement and

expansion, result in two distinct interfacial shapes. In the confinement regime, the

capsule obtains an elongated shape with a maximum length and a minimum height.
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The opposite happens during the expansion dynamics where the capsule obtains a

flattened parachute shape.

The deformation of the capsule’s length and height is a pure hydrodynamic

effect due to the significant changes in the flow caused by the constriction, and

thus it is similar to that for a droplet or a vesicle [10, 50]. However, over the

entire passing through the rectangular constriction, the capsule shows an elongated

width owing to the development of strong lateral tensions on the capsule membrane

required for interfacial stability in asymmetric channels as discussed in Kuriakose

and Dimitrakopoulos [38]. Therefore, the transient capsule motion is associated

with a highly non-axisymmetric, fully three-dimensional capsule shape which cannot

be described from single-view observations as commonly happens in microfluidic

experiments or based on axisymmetric or two-dimensional computations.

As the capsule size increases (or as the flow rate decreases), the gap between the

capsule surface and the solid walls decreases, and thus the capsule velocity decreases

while the additional pressure difference increases. Thus, larger capsules take more

time to pass the constriction and cause higher additional pressure difference, owing

to higher flow blocking.

Our work highlights the effects of two different mechanisms for capsules non-

tank-treading transient dynamics. The capsule deformation results from the com-

bined effects of the surrounding and inner fluids normal stresses on the soft particles

interface, and thus when the capsule viscosity increases, its transient deformation

decreases, as for droplets. However, the capsule deformation is not able to create a

strong enough inner circulation (owing to restrictions imposed by the material mem-
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brane), and thus the viscosity ratio does not affect much the capsule velocity and

the additional pressure difference. In addition, the weak inner circulation results in

a positive additional pressure difference even for low-viscosity capsules. This is in

direct contrast to low viscosity droplets where the continuity of the interfacial shear

stresses from the surrounding and inner fluids creates a strong inner circulation and

a negative additional pressure difference. In essence, owing to the weak inner circu-

lation, during transient non-tank-treading motion, capsules at any viscosity ratio λ

correspond to high viscosity (λ � 1) droplets, as at steady state where there is no

flow inside the capsules [37, 38].

In chpater 4, we focused on the hydrodynamic forces exerted on the constric-

tion owing to the capsule passing with considering different capsule sizes, flow rates

and viscosity ratios. As the capsule size increases (or as the flow rate increases),

the forces increase owing to higher flow blocking. We note that the forces are only

weakly affected by the viscosity ratio. In contrast to the capsule, the forces ex-

erted on the constriction owing to the droplet passing is strongly affected by the

viscosity ratio. For low-viscosity droplets, the additional forces are negative owing

to the strong inner circulation. For very viscous droplets, the forces exerted on

the constriction due to the droplet passing are similar to those due to the capsule

passing.

In chapter 5, in addition, we investigated the effects of the constriction type

(i.e., rectangular or square constriction) for the capsules non-tank-treading transient

dynamics. In the square constriction, the capsule is much more deformed owing to

the more change of the flow associated with the smaller cross-section area of the
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constriction than that of the rectangular constriction. The capsule becomes more

pointed in the square channel. In the rectangular constriction, the capsule prefers to

deform along the less-confined lateral direction of the channel, and thus the width

Ly has different size with its height Lz. On th other hand, in the square channel,

the capsule’s width Ly is the same with its height Lz owing to the symmetry of the

constriction. As the flow rate increases, the gap between the capsule surface and

the solid walls is more increased, the capsule velocity increases while the additional

pressure difference and the hydrodynamic forces decrease. In the square constriction,

the capsule has much faster velocity and higher the additional pressure difference

and the hydrodynamic force than those of the rectangular constriction owing to

higher flow blocking caused by the narrower width of the constriction.

It is of interest to note that our conclusions are not restricted to artificial cap-

sules but should also represent physiological capsules, such as erythrocytes, for the

same physical reasons. The erythrocyte membrane consists of an outer lipid bilayer

(which is essentially a two dimensional incompressible fluid with no shearing resis-

tance as in vesicles) and an underlying spectrin skeleton (which exhibits shearing

and area-dilatation resistance like the elastic membrane of common artificial cap-

sules) [71]. Under different flow conditions, the spectrin cytoskeleton dominates the

erythrocyte dynamics and the cell behaves like a non-spherical capsule. The ery-

throcyte is responsible for exchanging oxygen and carbon dioxide with the tissues in

the vascular capillaries [55]. The cells interior is a concentrated solution of the pro-

tein hemoglobin which binds oxygen in the pulmonary system, and releases it to the

tissues throughout the systemic circulation. Because of hemoglobin, the cytoplasm
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viscosity is several times higher than the plasma viscosity resulting in a viscosity

ratio λ = 5 at the human body temperature of 37oC [48, 71]. Our work suggests

that the much higher cytoplasmatic viscosity does not affect adversely the velocity

of non-tank-trading erythrocytes in vascular capillaries nor impose any additional

energy requirement for the cells flow since it does not affect much the additional

pressure difference.
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