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In this dissertation we study the role of the F spin-orbit excited state (F*) in

the F+H2 and F+HD reactions using quantum mechanical calculations. The

calculations involve multiple potential energy surfaces (the Alexander-Stark-Werner,

or ASW, PESs), and include an accurate treatment of the couplings (non-adiabatic,

spin-orbit, and Coriolis) among all three electronic states.

For the F+H2 reaction, we calculate the center-of-mass differential cross

sections and laboratory-frame angular distributions at the four different combinations

of collision energies and hydrogen isotopomer investigated in the experiments of

Neumark et al. [J. Chem. Phys., 82, 3045 (1985)].  Comparisons with the calculations

on the Stark-Werner (SW) and Hartke-Stark-Werner (HSW) PESs, which are limited

to the lowest electronically adiabatic state, show that non-adiabatic couplings greatly

reduce backward scattering. Surprisingly, we find the shapes of both the CM DCSs

and LAB ADs are insensitive to the fraction of F* presented in the F beam.

For the F+HD reaction, we calculate the excitation functions and product

translational energy distribution functions to study the reactivity of F*. Comparisons

with the experiment by Liu and co-workers [J. Chem. Phys., 113, 3633 (2000)]

confirm the relatively low reactivity of spin-orbit excited state (F*) atoms.  Excellent
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contribution to the overall reactivity of the reaction, we attribute discrepancies

between calculation and experiment to an inadequacy in the simulation of the

reactivity of the F ground state, likely a result of the residual errors in the ground

electronic potential energy surface.
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1 Introduction

In this dissertation we use a quantum mechanical (QM) time-independent

scattering method to study the role of the spin-orbit excited state in the F+H2 and its

isotopic F+HD reactions. The calculations involve multiple potential energy surfaces

(the Alexander-Stark-Werner, ASW, PESs),
1
 and include an accurate treatment of the

couplings (non-adiabatic, spin-orbit, and Coriolis) among all three electronic states.
1

The first systematic study of the F+H2 reaction dates back to the discovery of

chemical lasers in late 1960s.
2
 Since then it has been extensively studied both

experimentally and theoretically, and subsequently has become the prototype for

exothermic chemical reactions.
1,3-8

Although the interest in the F+H2 reaction was inspired by its application to

chemical lasers, much study, since the early 1970s, has focused on searching for the

existence of the dynamical resonance predicted by various early QM calculations.
9
 In

1985, Lee and co-workers used a high-resolution molecular beam experiment to

determine the vibrational-state-resolved center-of-mass angular distribution (CM AD)

for the F+H2 reaction.
10

 For the first time, this allowed a direct comparison with

theoretical calculations. The prominent forward scattering of HF in the v'=3 product

level was attributed to a dynamical resonance.
4,10,11

 Throughout this dissertation we

shall use the term DCS to denote the center-of-mass frame differential cross sections,

and the term AD to determine the LAB frame differential cross section.

This 1985 molecular beam experiment
10

 has stimulated extensive theoretical

interest
4
 in the F+H2 system and led eventually to the fully ab initio calculation of a

global potential-energy surface (PES) completed by Stark and Werner (SW) in

1996.
12

 Subsequently Manolopoulos and co-workers, using a complete QM

calculation,
11

 and Aoiz and co-workers, using quasi-classical trajectories (QCT),
13
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investigated the forward scattering of HF (

� 

! v  = 3). They demonstrated that the

forward peak was due mainly to QM tunneling rather than a scattering resonance.
11

Although the overall agreement with experiment was a great triumph for

theory, some discrepancies still exist.
14

 The most noticeable is the underestimation in

the theoretical simulation of the intensities of products scattered in the sideways

direction. Inclusion into the PES of a correction for the spin-orbit splitting in the F

atom
15

 unfortunately increased the degree of discrepancy in the sideways

scattering.
16

 All these calculations
11,13,14,16

 were restricted to a single Born-

Oppenheimer (or adiabatic) PES.  Consequently, the contribution from the reactivity

of the excited spin-orbit state (F*) and the effect of non-adiabatic coupling, which are

ignored in these earlier calculations, offer a possible explanation of this discrepancy

in the LAB ADs.
4

The F* (2P1/2) state lies 1.16 kcal/mole (404 cm–1) higher than the F (2P3/2)

ground state, while the reaction has a barrier height of (1.80±0.25) kcal/mol (bent)
12

taking into account spin-orbit coupling. Since the (F* # F) energy difference is

comparable to the reaction barrier, we would expect F* to be significantly more

reactive than F at collision energies < 0.5 kcal/mol. This has been confirmed recently

by Alexander and co-workers.
1
 Unfortunately, results at this low energy range were

not reported in the 1985 experiment. At higher energy, the F ground state is predicted

to be more reactive than F*.
1
 The population weighted total reaction probability of F*

is estimated to be < 10% of that of F and is thus difficult to be seen

experimentally.
1,10

Because of its lower statistical weight, the spin-orbit excited state does not

contribute much to the overall reaction probability. Still, it can play an important role

in the reaction dynamics as shown in a recent series of theoretical studies.
17-21

 For

example, in the Cl+H2!HCl+H reaction, the presence of multiple PESs enhances the

inelastic scattering of Cl+H2(

� 

j = 0)!Cl+H2(

� 

! j =1,2), and therefore reduces the
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probability of reaction.
17,18

 In the F+HD!HF+D reaction, the integral cross section

of the F ground state shows a strong resonance feature at low collision energies,
22

 but

that of F* does not.
20

 As a result, the resonance feature in the combined cross section

(summed over F and F*) depends sensitively on the amount of F* presented in the

beam.
20

 For the F+H2!HF+H reaction, the higher internal energy of F* gives rise to

additional translation energy in the products for a given initial translational energy

and thus results in a wider spreading of the final product states. Additionally, because

the F*+H2 asymptote correlates with the an highly excited electronic state of HF,
1

reactions of the F* must involve a non-adiabatic transition to a lower, reactive PES.

Accordingly, we would expect the resulting product AD to be different from that for

reaction of atoms in the ground spin-orbit state. This may give rise to enhanced

sideways scattering.

It is due to the open-shell character of the F atom that a detailed investigation

of the F* reactivity is needed in order to understand better the role of the F spin-orbit

excited state in the F+H2 and F+HD reactions. The rest of this dissertation is

organized as follows: Chapter 2 presents an overview of the time-independent

reactive scattering theory. We summarize the methods used to solve the Schrödinger

equation on a single adiabatic PES and multiple PESs with spin-orbit coupling. We

also review in detail the transformation method used to convert the DCSs in the

center-of -mass frame to the ADs in the laboratory frame. This enables us to interpret

the remaining discrepancy between our calculations and the experiment presented in

Chapter 3.

In Chapter 3, we present and discuss the calculated DCSs and ADs for the

F+H2 reaction. By clarifying and separating the contribution due to reaction of the

excited spin-orbit state and the contribution due to non-adiabatic effects during the

reaction of the ground spin-orbit state, we show that non-adiabatic couplings

effectively reduce the backward scattering of HF products. Consequently, the three-
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state calculations resulted in enhanced sideways scattering in the simulated ADs, in

better agreement with experiment.
10

 Surprisingly, we find that the DCSs for reactions

of F and F* have a very similar angular dependence. Thus we see that the presence of

F* in the F beam affects mainly the overall magnitude without changing the shape of

DCSs and ADs. As a result, it is the effect of non-adiabatic couplings, rather than the

contribution from the reactivity of F*, that brings our calculations to better agreement

with the experiment.

In Chapter 4 we present the excitation functions of the HF and DF products

for the F+HD reactions. We demonstrate that the reaction of F* to yield HF does not

show the resonance structure in the excitation functions (energy dependence of the

integral cross sections), while the F does, as seen experimentally
22,23

 and in

theoretical simulations based on the single Stark-Werner (SW) PES.
22

 Consequently,

the greater the fraction of F* in the incident beam, the less pronounced will be this

resonance structure. We also obtain an excellent agreement in the DF product channel

and an improved agreement in the HF product channel with the experiment by a

simple upward shift in the collision energies by 0.35 kcal/mol, an amount

approximately equal to the difference between the actual and the SW barrier

height.
24-26

 This technique, which compensates the overestimation of the calculated

reaction barrier height by a simple upward shift in collision energies, can be applied

to calculations of other chemical reactions, where the (ab initio) calculated PES

usually overestimates the actual barrier height.

In Chapter 5 we compare with experiment our simulations of the HF and DF

product translational energy distributions for the F+HD reaction. This complements

the reactivity of the F spin-orbit excited state found in the experiments.
22,23,27

 From

the excellent agreement between our calculations and the experiment of Liu and co-

workers, we conclude that the population of F* in the molecular beam experiment of

Liu and co-workers reaches thermal equilibrium at the experimental temperature
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600K.
22,23

 Therefore, for the first time in both theory and experiment, we confirm

that the fraction ration of F*:F equals 0.16:0.84 in the F beam. This offers the future

guidance determining the fractional population of F* in the F beam for simulations of

similar molecular beam experiments.

The last Chapter summarizes the role of the F spin-orbit excited state in the

F+H2 and F+HD reactions studied in this dissertation. The most significant effect

associated with the F* is the consequence of non-adiabatic couplings, which alters the

reaction dynamics of the F spin-orbit ground state in the F+H2 reaction. Overall, the

reactivity of F spin-orbit excited state, after taking account the 16% fraction

population of F*, is very small comparing to that of the F spin-orbit ground state.

Consequently, the discrepancies between the experiments
22,23

 and the calculations on

the lowest adiabatically electronically state,
22

 on the intensity of HF product

excitation functions (energy dependence of integral cross sections) of the F+HD

reactions, are not artifacts of an improper treatment of nonadiabaticity in this reaction.

Given the fact that there remain residual inaccuracies in the SW PES,
24-26

 we

consequently encourage further refinement of global F+H2 PES. We also suggest

future DCS calculations of F+HD !  HF(v'=3)+D reaction to explore the F*

reactivity in the collision energy range between 1.3 to 2.0 kcal/mol, where we expect

the F* to make  significant contributions for scattering in the forward direction.
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2 Theoretical Method

2.1 Time-independent Reactive Scattering Method

There are several methods which can be used to investigate reactive

scattering: time-independent quantum scattering, time-dependent quantum wave

packets, or QCT.
28

 In this Chapter, we will focus on the time-independent quantum

scattering method. The goal is to calculate the state-to-state scattering matrix by

solving the time-independent Schrödinger equation,

� 

ˆ H ! = E!, (2.1)

where

� 

E  is the total energy of the system.

2.1.1 The Hamiltonian Operator, 

� 

ˆ H 

The total Hamiltonian operator for a triatomic system is

� 

ˆ H tot = ˆ T n + ˆ T e + ˆ V nn + ˆ V ee + ˆ V ne + ˆ H so (2.2)

where n refers to the nuclei (F, H and H) and e refers to the electrons; 

� 

ˆ T n  is the

kinetic energy operator of the nuclei; 

� 

ˆ T e is the kinetic energy operator of the

electrons; 

� 

ˆ V nn  is the nuclear repulsion; 

� 

ˆ V ee  is the electronic repulsion; 

� 

ˆ V ne  is the

nuclear-electronic attraction; and 

� 

ˆ H so is the spin-orbit interaction.

Usually, 

� 

ˆ H so is added on once the electronic wavefunctions have been

determined. Exclusive of this term, the Hamiltonian is, in atomic units,
29

  

� 

ˆ H = ˆ T n + ˆ T e + ˆ V nn + ˆ V ee + ˆ V ne

   = !

! 
" ni

2

2mni
ni

# + !
! 
" e

2

2me
+

Zni Zn j
! r ni !

! r n j
n j (ni <n j )#ni

#e#

  

� 

                                              + 1
! r e !
! r e'e'(e'<e)"e" !

Zni! r ni !
! r ee"ni

" (2.3)
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where 

� 

mni  refers to the mass of the ith nucleus and 

� 

me  is the electron mass (

� 

me  = 1

in atomic units).

With the Hamiltonian in Eq. (2.3), Eq. (2.1) is a linear partial differential

equation with 3N (N = number of nuclei and electrons) degree of freedom that is

extremely difficult to solve. In the sections that follow, we will discuss the method

used to reduce Eq. (2.1) to a set of coupled ordinary differential equations.

2.1.2 Coordinate Transformations

We first perform a series of coordinate transformations and approximations to

simplify the kinetic energy operators 

� 

ˆ T n  and 

� 

ˆ T e in Eq. (2.3). To better illustrate these

transformations, we switch to a classical description in which the kinetic energy

operators, 

� 

ˆ T n  and 

� 

ˆ T e, become the kinetic energies, 

� 

Tn  and 

� 

Te,

  

� 

Tn = 1
2

mnini
! ! ˙ r ni

2 ,       Te = 1
2

mee! ! ˙ r e
2 . (2.4)

It will be convenient to write the kinetic energies in the matrix form,

  

� 

2T = 2Tn + 2Te =

˙ r 1x
˙ r 2x
!

˙ r 1y
˙ r 2y
!

˙ r 1z
˙ r 2z
!

! 

" 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# # 

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& & 

T

                                  

! 

" 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# # 

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& & 

 

˙ r 1x
˙ r 2x
!

˙ r 1y
˙ r 2y
!

˙ r 1z
˙ r 2z
!

! 

" 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# # 

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& & 

, (2.5)

or equivalently,

  

� 

2T =
! ˙ r ( )T

!G !
! ˙ r , (2.6)

� 

Gx 0

0

G

� 

Gy

� 

Gz
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where

  

� 

Gx = Gy = Gz =
m1 0

m2
0 !

! 

" 

# 
# # 

$ 

% 

& 
& & 
, 

� 

˙ r ix ! drix
dt

, 

� 

˙ r iy !
driy
dt

 and 

� 

˙ r iz !
driz
dt

(2.7)

with 

� 

m1 and 

� 

m2 … referring to the mass of particle 1 and 2 … (nuclei and electrons)

of the system and   

� 

! ˙ r = ˙ r 1x , ˙ r 2x ,", ˙ r 1y , ˙ r 2y ,", ˙ r 1z , ˙ r 2z ,"( ).

Because that the 

� 

G matrix is block diagonal in each of the x, y and z

coordinates and 

� 

Gx = Gy = Gz , we will illustrate explicitly only transformations of

the x coordinate. The transformations of the y and z coordinates will be identical.
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Figure 2.1 Laboratory and nuclear center of mass (CM) coordinates for the triatomic

system of F+H2. The vectors   

� 

! r  and   

� 

! 
R  are the position vectors in the laboratory

(XYZ) and CM (xyz) coordinates respectively, with the subscripts F, H and e

indicating the F and H nuclei and electrons.

Relative Coordinates in the Nuclear Center of Mass Frame

The fist step is to separate the translational motion of the center of mass (CM)

of the system using the relative (or internal) coordinates with origin at the nuclear CM

as shown in Fig. 2.1. The relative coordinates   

� 

! 
R r  and the space fixed coordinates   

� 

! r 

are related by the transformation matrix, 

� 

Lx
r ,
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� 

! 
R r =

Rcm
r

Rn2
r

Rn3
r

Re1
r

Re2
r

"

! 

" 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 

x

=

 
mn1
Mtot

 
mn2
Mtot

 
mn3
Mtot

me
Mtot

me
Mtot
#

'
mn1

Mnuc
1'

mn2
Mnuc

'
mn3
Mnuc

0 0 #

'
mn1
Mnuc

'
mn2
Mnuc

1'
mn3
Mnuc

0 0 #

'
mn1

Mnuc
'

mn2
Mnuc

'
mn3
Mnuc

me

'
mn1

Mnuc
'

mn2
Mnuc

'
mn3
Mnuc

me

 "  "  " $

! 

" 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 

Lx
r

% & ' ' ' ' ' ' ' ' ' ' ( ' ' ' ' ' ' ' ' ' ' 

 

rn1

rn2

rn3

re1

re2

"

! 

" 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 

x

,

(2.8)

where 

� 

 Mtot = mni ,eni ,e
!  and 

� 

Mnuc = mnini
! .

Using Eq. (2.8), we transform the nuclear and electronic energies [  

� 

Tn (
! r )x ,

  

� 

Te(
! r )x ] in space fixed coordinates to nuclear CM, nuclear and electronic energies

[  

� 

Tcm
r (
! 
R cm

r )x ,   

� 

Tn
r (
! 
R n

r )x ,   

� 

Te
r (
! 
R e

r )x ] in the relative coordinates,

  

� 

Tn (! r )x + Te(! r )x =
! ˙ r x( )T

!Gx !
! ˙ r x    "

relative coordinate
 

                          Tcm
r (
! 
R cm

r )x + Tn
r (
! 
R n

r )x + Te
r (
! 
R e

r )x =
! ˙ R x

r( )T
!Gx

r !
! ˙ R x

r
, (2.9)

where

0

0
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0

0

� 

Gcm
r

  

� 

1! me
Mtot

1! me
Mtot

!

� 

mn2 (mn1 + mn2 )
mn1

mn2mn3

mn1
mn2mn3

mn1

mn3 (mn1 + mn3 )
mn1

� 

Gn
r

� 

Ge
r

� 

Mtot

� 

me !

� 

! meMtot

� 

    Gx
r = Lx

r !1" 
# 

$ 
% 

T
&Gx &Lx

r !1

=

                                                                                              

                                                                                           

                                                                                           

                                                                                           

                                                                                           

                                                                                           

" 

# 

' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' 

$ 

% 

( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 

,

(2.10)

and

  

� 

ˆ V nn (! r n ),  ˆ V ee(! r e),  ˆ V ne(! r n,! r e) 
relative coordinate

!  ˆ V nn
r (
! 
R n

r ), ˆ V ee
r (
! 
R e

r ),  ˆ V ne
r (
! 
R n

r ,
! 
R e

r ) . (2.11)

As illustrated in Eq. (2.10), the 

� 

Gx
r  matrix is blocked into 1$1, 2$2, and

Ne$Ne (Ne = number of electrons) matrices which we designate as 

� 

Gcm
r , 

� 

Gn
r  and 

� 

Ge
r

respectively. Subsequently the coordinates of   

� 

Tcm
r (
! 
R cm

r )x ,   

� 

Tn
r (
! 
R n

r )x  and   

� 

Te
r (
! 
R e

r )x  are

separated. The price we pay for this separation is that 

� 

Gn
r  and 

� 

Ge
r  both contain off-

diagonal terms [Eq. (2.10)]. The 

� 

Ge
r  matrix is diagonal if we ignore, comparing to 1,

the small contribution of 

� 

me Mtot !1 40000 (for F+H2).
30,31

For reasons that will become clear in the section below on the Born-

Oppenheimer approximation
30,31

, we group the   

� 

ˆ T e
r (
! 
R e

r ) , 

� 

ˆ V nn , 

� 

ˆ V ee , and 

� 

ˆ V ne  terms

together to form the electronic Hamiltonian  

� 

ˆ H e
r (
! 
R n

r ;
! 
R e

r ):

  

� 

ˆ H e
r (
! 
R n

r ;
! 
R e

r ) = ˆ T e
r (
! 
R e

r ) + ˆ V nn
r (
! 
R n

r ) + ˆ V ee
r (
! 
R e

r ) + ˆ V ne
r (
! 
R n

r ,
! 
R e

r ) . (2.12)

� 

! meMtot
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Figure 2.2 The Jacobi coordinates in the (a) F+H2 reactant arrangement and (b) the

HF+H product arrangement.
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Jacobi and Mass Weighted Jacobi Coordinates

The nuclear kinetic energies   

� 

Tn
r(
! 
R e

r)  can be simplified using the Jacobi

coordinates as shown in Fig. 2.2(a). The Jacobi coordinates
32

 (  

� 

! 
R n1

j ,   

� 

! r n23
j ) and the

relative coordinates (  

� 

! 
R n2

r ,   

� 

! 
R n3

r ) are related by the transformation matrix 

� 

Lx
j ,

  

� 

Rn1

j

rn23

j

! 

" 
# 

$ 

% 
& 
x

=
'mn2

µ j 'mn3
µ j

1 '1

! 

" 
# 

$ 

% 
& 

Lx
j

! " # # # $ # # # 
 
Rn2

r

Rn3

r

! 

" 
# 

$ 

% 
& 
x

 with 

� 

µ j = Mnuc

mn1 (mn2 + mn3 )
, (2.13)

Using Eq. (2.13), we transform the nuclear kinetic energy and the electronic

Hamiltonian [  

� 

Tn
r (
! 
R n

r )x ,   

� 

ˆ H e
r (
! 
R n

r ;
! 
R e

r )] in relative coordinates to [  

� 

Tn
j (
! 
R n

j )x ,

  

� 

ˆ H e
j (
! 
R n1

j ,! r n23
j ;
! 
R e

j )] in Jacobi coordinates,

  

� 

Tn
r (
! 
R n

r )x =
! ˙ R x

r( )T
!Gx

r !
! ˙ R x

r  "
Jacobi coordinate

 Tn
j (
! 
R n

j )x =
! ˙ R x

r( )T
!Gx

j !
! ˙ R x

j , (2.14)

where

� 

Gx
j = Lx

j!1( )T "Gx
r " Lx

j!1 =

mn1 (mn2 + mn3 )
Mnuc

0

0
mn2mn3

mn2 + mn3

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
, (2.15)

and

  

� 

ˆ H e
r(
! 
R n

r;
! 
R e

r ) !
Jacobi coordinate ˆ H e

j (
! 
R n1

j ,! r n23

j ;
! 
R e

j ) . (2.16)

We further use mass-weighted Jacobi coordinates
32

 (  

� 

! 
R n1

mj ,   

� 

! r n23
mj ) which are

defined by

  

� 

Rn1

mj

rn23

mj

! 

" 
# 

$ 

% 
& 
x

=
s1/ 2 0
0 s'1/ 2

! 

" 
# 

$ 

% 
& 

Lx
mj

! " # $ # 
 
Rn1

j

rn23

j

! 

" 
# 

$ 

% 
& 
x

 with 

� 

s =
mn1

µ
1!

mn1

Mnuc

" 

# 
$ 

% 

& 
'  and 

� 

µ =
mn1mn2mn3

Mnuc

! 

" 
# 

$ 

% 
& 
1/ 2

, (2.17)

to simplify the 

� 

Gx
j  matrix in Eq. (2.15). The [  

� 

Tn
r(
! 
R n

r )x ,   

� 

ˆ H e
j (
! 
R n1

j ,! r n23

j ;
! 
R e

j )] in Jacobi

coordinates and [  

� 

Tn
mj (
! 
R n1

mj ,! r n23
mj )x ,   

� 

ˆ H e
mj (
! 
R n1

mj ,! r n23

mj;
! 
R e

mj ) ] in mass-weighted Jacobi

coordinates are related by the transformations,
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� 

Tn
j (
! 
R n1

j ,! r n23

j )x =
! ˙ R x

j( )T

!Gx
j !
! ˙ R x

j  "
mass#weighted

Jacob coordinate
 Tn

mj (
! 
R n1

mj ,! r n23

mj )x =
! ˙ R x

mj( )T

!Gx
mj !
! ˙ R x

mj , (2.18)

where

� 

Gx
mj = Lx

mj!1( )T "Gx
j " Lx

mj!1 =
µ 0
0 µ
# 

$ 
% 

& 

' 
( , (2.19)

and

  

� 

ˆ H e
j (
! 
R n1

j ,! r n23

j ;
! 
R e

j ) !
mass"weighted

Jacob coordinate ˆ H e
mj (
! 
R n1

mj ,! r n23

mj;
! 
R e

mj ) . (2.20)

Explicitly, the kinetic energy

� 

Tn
mj  becomes,

  

� 

Tn
mj = µ

2
! ˙ R mj( )2

+
! ˙ r mj( )2! 

" # 
$ 
% & =

1
2µ
! 
P ! R mj

2 +
! 
P ! r mj

2( ). (2.21)

where   

� 

! 
P ! R mj = µ

! ˙ R mj  and   

� 

! 
P ! r mj = µ

! ˙ r mj  are the momenta in the   

� 

! 
R  and   

� 

! r  coordinates.

At this point we switch back to a quantum description by the operator substitution

� 

P!"i#  in Eq. (2.21). Thus, in mass-weighted Jacobi coordinates, the kinetic energy

operator 

� 

ˆ T n
mj  is

  

� 

ˆ T n
mj = ! 1

2µ
" ! 

R mj
2 + " ! r mj

2( ) , (2.22)

and the Schrödinger equation becomes,

  

� 

! 1
2µ

(" ! 
R mj
2 + " ! r mj

2 ) + ˆ H e
mj (
! 
R mj ,! r mj;

! 
R e

mj )
# 

$ % 
& 

' ( ) = E) . (2.23)

So far, we have explicitly labeled each coordinate with superscripts to keep

track of the coordinate transformations. Hereafter, we will always refer (  

� 

! 
R ,   

� 

! r  and

  

� 

! 
R e ) to the mass-weighted Jacobi coordinates (  

� 

! 
R mj ,   

� 

! r mj  and   

� 

! 
R e

mj ), thus no longer label

those superscripts. We will reassign them only if necessary.

Delves Hyperspherical Coordinates

Considering both the reactant and product coordinates (Fig. 2.2) and using Eq.

(2.23), the Schrödinger equation for the F+H2 reaction becomes,
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Reactants: 
  

� 

! 1
2µ

" ! 
R F
2 + " ! r H2

2( ) + ˆ H e (
! 
R F ,! r H2

;
! 
R e )

# 

$ % 
& 

' ( )F + H2
= E)F + H2

, (2.24)

Products:   
  

� 

! 1
2µ

" ! 
R H
2 + " ! r HF

2( ) + ˆ H e (
! 
R H ,! r HF ;

! 
R e )

# 

$ % 
& 

' ( )H + HF = E)H + HF . (2.25)

As illustrated in Fig. 2.2, the coordinates best describing the approach of the

reactants in Eq. (2.24) are very different from the coordinates best describing the

recoil of the products in Eq. (2.25). This leads to various complications in QM

reactive scattering calculations.
33

 In order to avoid these difficulties, we look for a

new coordinate system that is independent of the reaction coordinates.

Following Smith’s work,
34

 we first attempt to find the transformation matrix

between the reactant and product coordinates. The requirements that both coordinates

transform inversely back to the same relative coordinate   

� 

! 
R n

r  in Eq. (2.8) leads to the

relation,

  

� 

! 
R n

r( )x
= Lx

j( )reac

!1
" Lx

mj( )reac

!1
"
! 
R n

mj( )x,reac
= Lx

j( ) prod

!1
" Lx

mj( ) prod

!1
"
! 
R n

mj( )x,prod
. (2.26)

Thus the reactant and product mass-weighted Jacobi coordinates, 
  

� 

! 
R n

mj( ) x,reac
 and

  

� 

! 
R n

mj( )x,prod
, are related by the matrix 

� 

Lx
rp ,

  

� 

! 
R n

mj( )x,react
= Lx

rp !
! 
R n

mj( )x,prodt
, (2.27)

where
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� 

Lx
rp = Lx

mj( )reac ! Lxj( )reac ! Lxj( ) prod
"1

! Lx
mj( ) prod

"1

      =

"
mn1

1/2mn3
1/2

(mn1 + mn2 )1/2(mn2 + mn3 )1/2

mn2
1/2(mn1 + mn2 + mn3 )1/2

(mn1 + mn2 )1/2(mn2 + mn3 )1/2

"
mn2

1/2(mn1 + mn2 + mn3 )1/2

(mn1 + mn2 )1/2(mn2 + mn3 )1/2 "
mn1

1/2mn3
1/2

(mn1 + mn2 )1/2(mn2 + mn3 )1/2

# 

$ 

% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 

      =
cos) "sin)
sin) cos)
# 

$ 
% 

& 

' 
(  

(2.28)

Here we have defined a skewing angle, 

� 

!:
35,36

� 

! = tan"1(
mn2

µ
), (2.29)

with 

� 

µ defined in Eq. (2.17).

Explicitly, the mass-weighted reactant and product Jacobi coordinates are

related by an orthogonal transformation,

� 

R
r

! 

" 
# 

$ 

% 
& 
x,reac

=
cos' sin'
(sin' cos'
! 

" 
# 

$ 

% 
&  
R
r

! 

" 
# 

$ 

% 
& 
x,prod

.  (2.30)

Subsequently, Delves define the hyperspherical coordinates:
32,37

Hyperradius, 

� 

! :   
  

� 

! =
! 
R 2 +

! r 2( )1/ 2 , (2.31)

Hyperangle, 

� 

!" :   

� 

!" = tan#1 R
r

$ 
% 
& 

' 
( 
) 
"

, (2.32)

with 

� 

!  indicating the nuclear arrangement of reactants or products. Note that the

hyperradius, 

� 

! , is independent of the reactant or product coordinates as a result of the

orthogonal transformation of Eq. (2.30). This is the separation coordinate we shall

utilize in the QM treatment of reactive scattering.
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With Eq. (2.31) and (2.32) and using the chain rule, the nuclear kinetic energy

operator 

� 

ˆ T n  in Eq. (2.22) becomes,
36

� 

ˆ T n = ! 1
2µ"5

#
#"

"5 #
#"

+ $2

2µ"2 , (2.33)

where the 

� 

!2  is the square of Smith’s grand angular momentum operator,
34

� 

!2 = " 1
sin2 2#$

%
%#$

sin2 2#$
%
%#$

+
ˆ j 2

sin2#$

+
ˆ L 2

cos2#$

. (2.34)

As shown in Fig. 2.3(a), 

� 

ˆ j  is the rotational angular momentum operator of the

diatomic fragment and 

� 

ˆ L  is the orbital angular momentum operator of the atom

around the CM of the diatomic molecule.

Note that the hyperspherical coordinates still depend on the nuclear

arrangement through the hyperangle 

� 

!" . This arrangement dependence can be

removed by expanding the wavefunction in sets of orthonormal functions 

� 

!("# )  (see

section 2.1.4). The hyperspherical coordinates, 

� 

!  and 

� 

!"  together with the other four

coordinates of 

� 

ˆ R ! ,

� 

ˆ R !  in 

� 

ˆ L ( ˆ R ! , ˆ R " ) and 

� 

ˆ r ! , 

� 

ˆ r !  in 

� 

ˆ j ( ˆ r ! , ˆ r " ) span the 6 mass-weighted

Jacobi coordinates   

� 

! 
R  and   

� 

! r .
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Figure 2.3 (a) Schematic drawing showing the rotational angular momentum   

� 

! 
j  of the

diatomic molecule H2 and the orbital angular momentum   

� 

! 
L  of the F atom around the

center-of-mass of H2. (b) Vector diagram showing the addition of   

� 

! 
j  and   

� 

! 
L  to form

the total angular momentum   

� 

! 
J  with projections M along the space (laboratory) frame

Z axis and K along the body frame z axis.
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2.1.3 The Potential Energy Surface (PES)

In this section, we review the concept of the PES derived from the Born-

Oppenheimer approximation
30,38

 as well as several important definitions, including

adiabatic
30,39

 and diabatic
39

 PESs and non-adiabatic coupling
30,39

.

Born-Oppenheimer and Adiabatic Approximation

Based on the observation that electrons move much faster than the massive

nuclei in the molecule, the Born-Oppenheimer approximation seeks to determine

electronic wavefunctions that adjust themselves instantaneously to each nuclear

geometry, or in other words, to determine electronic wavefunctions which are

independent of the nuclear motion. This separates the electronic Hamiltonian

  

� 

ˆ H e (
! 
R ,! r ;
! 
R e ) from the nuclear kinetic energy operator 

� 

Tn  in Eq. (2.23) leading to a

major simplification. Born and Oppenheimer recognized that the electronic

Hamiltonian   

� 

ˆ H e (
! 
R ,! r ;
! 
R e ) in Eq. (2.20) (or Eq. 2.12) depends only on the position of

nuclei, not on their momenta. We first solve the electronic Schrödinger equation at

fixed nuclear positions   

� 

(
! 
R ,! r ) ,

  

� 

ˆ H e!i(
! 
R ,! r ;
! 
R e ) = "i!i(

! 
R ,! r ;
! 
R e ). (2.35)

Without any approximation, the total wave function 

� 

! can then be expanded

in this complete set of orthonormal electronic wave functions   

� 

!i(
! 
R ,! r ;
! 
R e ), with

expansion coefficients   

� 

!i(
! 
R ,! r ) which depend only on the nuclear coordinates   

� 

(
! 
R ,! r ) ,

  

� 

!(
! 
R ,! r ,
! 
R e ) = " i(

! 
R ,! r )#i(

! 
R ,! r ;
! 
R e )i$ . (2.36)

Using Eq. (2.35) and (2.36), and expanding Eq. (2.23), we find,

  

� 

!R
2"i (

! 
R ,! r )[ ]#i (

! 
R ,! r ;
! 
R e) + $i (

! 
R ,! r )#i (

! 
R ,! r ;
! 
R e)i% + "i (

! 
R ,! r )!R

2#i (
! 
R ,! r ;
! 
R e)i%

  

� 

                 + 2 !R"i (
! 
R ,! r )[ ] !R#i (

! 
R ,! r ;
! 
R e)[ ]i$ = E "i (

! 
R ,! r )#i (

! 
R ,! r ;
! 
R e)

i$[ ]. (2.37)
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Multiplying both sides by   

� 

! j (
! 
R ,! r ;
! 
R e ) and integrating over the electronic

coordinate   

� 

! 
R e , we obtain,

  

� 

ˆ T n + ˆ V BO( )! i(
! 
R ,! r ) + ˆ U BO = E! i(

! 
R ,! r ) , (2.38)

where

  

� 

ˆ U BO = !1
2µ

" j (
! 
R ,! r ;
! 
R e)# ! R 

2 + # ! r 
2 "i (

! 
R ,! r ;
! 
R e)

i$ %i (
! 
R ,! r )

  

� 

                      ! 1
µ

" j (
! 
R ,! r ;
! 
R e)# ! R + # ! r "i (

! 
R ,! r ;
! 
R e) #R$i (

! 
R ,! r )

i% (2.39)

and

  

� 

ˆ V BO = !i(
! 
R ,! r ). (2.40)

The first and second terms of 

� 

ˆ U BO  in Eq. (2.39) define the second- and first-

derivative non-adiabatic coupling between various electronic states.
30

 In the adiabatic

approximation, all of the off-diagonal (

� 

i ! j) terms in 

� 

ˆ U BO  in Eq. (2.39) are

ignored.
30

 In the traditional Born-Oppenheimer approximation, even the diagonal

terms in 

� 

ˆ U BO  in Eq. (2.39) are ignored,
30

 so that the Schrödinger equation, in

hyperspherical coordinates, becomes

  

� 

! 1
2µ"5

#
#"

"5 #
#"

+ $2

2µ"2 + ˆ V BO
% 

& 
' ' 

( 

) 
* * +i (
! 
R ,! r ) = E+i (

! 
R ,! r ). (2.41)

In this approximation the nuclei move on the PES, 

� 

ˆ V BO , which is the

eigenvalue of the so called clamped nuclei electronic Hamiltonian   

� 

ˆ H e (
! 
R ,! r ;
! 
R e ).

Adiabatic and Diabatic Basis

The functions which diagonalize the electronic Hamiltonian 

� 

ˆ H e  in Eq. (2.35)

define the adiabatic basis.
39

 They have the properties:

� 

! j ˆ H e !i = "i#ij , (2.42)

and, as shown explicitly by Eq. (2.39),
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� 

! j ˆ T n !i
i" j

" 0 . (2.43)

In the treatment of reactive scattering involving the more than one electronic

state, it is more convenient to use diabatic basis functions
39

 

� 

! dia , which by definition

have the properties:

� 

! j
dia ˆ H e !i

dia

i" j
" 0 , (2.44)

and

� 

! j
dia ˆ T n !i

dia = 0. (2.45)

The adiabatic and diabatic basis are related by a unitary transformation which

is a function of the nuclear coordinates. Equation (2.45) results in (

� 

ˆ U BO  = 0) in Eq.

(2.39). This is the reason we use the diabatic basis to solve the multiple PES

Schrödinger equation in section 2.1.4.

2.1.4 Solving the Schrödinger Equation

In this section we consider the method of solving the Schrödinger equation

first on a single PES. We then extend the method to multiple PESs. Finally we

introduce the additional coupling between the electronic states which is introduced by

the spin-orbit Hamiltonian.

Single Potential Energy Surface

Similar to the expansion used in deriving the Born-Oppenheimer

approximation, we solve the single PES Schrödinger equation in Eq. (2.41) by

expanding the nuclear wavefunction   

� 

!i(
! 
R ,! r ) in the eigenfunctions of the 

� 

!2  operator,

� 

!n ("# , ˆ R " , ˆ R $ , ˆ r " , ˆ r $ ) , with expansion coefficients 

� 

Cn (!)  which depend only on the

hyperradius 

� 

! :
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� 

!i(
! 
R ,! r ) = 1

"5 / 2 Cn (")#n ($% , ˆ R $ , ˆ R & , ˆ r $ , ˆ r & )
n' . (2.46)

Substituting Eq. (2.46) into Eq. (2.41) leads to a set of “close-coupled”

equations for the expansion coefficient

� 

Cn (!) :
40

� 

d2

d!2
Cn (!) = 2µ Wnn' (!)Cn ' (!)n '" , (2.47)

where

� 

Wnn' (!) = "n
ˆ H ! "n ' (2.48)

with

� 

ˆ H ! = "2

2µ!2 + ˆ V BO + 1
2µ

15
4!2 # E . (2.49)

The reason we separate the term 

� 

1 !5 / 2  from 

� 

Cn (!)  in Eq. (2.46) is that it can

be factored out from the left and right hand sides of Eq. (2.47).

In general, Eq. (2.47) can then be solved using standard techniques.
40

However it is more efficient to replace the 

� 

!n  in Eq. (2.46) with the basis functions

that are the eigenfunctions of 

� 

ˆ H !  in Eq. (2.49) at a fixed 

� 

! .
33,36

 Also notice that the

� 

!2  in Eq. (2.34) contains the uncoupled terms 

� 

ˆ j 2 and 

� 

ˆ L 2. Using the conservation of

the total angular momentum   

� 

! 
J =
! 
j +
! 
L , we define the basis functions,

1,33,36,41,42

� 

!n " JMK#vjk = 2
sin2$

2J +1
4%

& 
' 
( 

) 
* 
+ 
1/ 2

DMK
J* (,# )Yjk (-# ,0)!vj ($#;.) (2.50)

where 

� 

J  is the total angular momentum; 

� 

M  and 

� 

K  are the projections of 

� 

J  along the

space-frame Z axis and along the Jacobi vector   

� 

! 
R !  (the body frame z axis) as shown

in Fig. 2.3(b); 

� 

!  indicates the reactant or product arrangements; 

� 

v  is the vibrational

quantum number of the diatomic fragment;

� 

j  is the rotational quantum number of the

diatomic fragment with projection 

� 

k  along   

� 

! 
R ! ; 

� 

DMK
J* (!" ) is a Wigner rotation

matrix;
43

 

� 

Yjk (!" ,0) is a spherical harmonic;
43

 and 

� 

!vj ("# ;$)  is the solution of a

vibrational referenced surface eigenvalue problem at a fixed 

� 

! .
36



23

Using Eq. (2.50) to evaluate Eq. (2.48), we solve Eq. (2.47) by a sector by

sector log-derivative propagation
33,40

 to extract the helicity-frame state-resolved

reactive scattering S-matrix elements 

� 

SK!vjk"K '! 'v ' j 'k '
J .

33,44
 Note that   

� 

! 
L  is always

perpendicular to the plane containing the Jacobi vector   

� 

! 
R ! , thus the projection of   

� 

! 
L 

along the Jacobi vector   

� 

! 
R !  always equals zero which results in 

� 

K = k  in Eq. (2.50).

Definite Parity Basis and Interchange Symmetry

We can reduce the size of the basis set by one half using the definite-K (K % 0)

parity basis function 

� 

!n
" = JMK#vjk;" ,

39

� 

!n
" = JMK#vjk;" = 1

2
JMK#vjk + " JM,$K#vj,$k( ) , (2.51)

where 

� 

! = ±1. Notice that 

� 

!n
"= +1 ˆ H !n

"=#1 = 0 as a result of the definition in Eq.

(2.51).

In terms of the relation between the signed-K and definite-K basis functions,

the S-matrix element is:
33

� 

SK!vjk"K! 'v ' j 'k '
J = S#K!vj#k"#K! 'v' j '#k '

J

                    = 1
2

(SK!vjk"! 'v ' j 'k '
J ,$= +1 + SK!vjk"! 'v ' j 'k '

J ,$=#1 )
(2.52)

and

� 

SK!vjk"#K ,! 'v' j '#k '
J = S#K ,!vj#k"K! 'v' j 'k'

J

                       = (#1)J

2
(SK!vjk"K! 'v ' j 'k '

J ,$= +1 # SK!vjk"K! 'v ' j 'k '
J ,$=#1 )

(2.53)

For a system, like F+H2, containing the homonuclear H2 molecule, the

Hamiltonian is unchanged under the exchange of the two H nuclei, while the H2

rotational wavefunctions 

� 

Yjk (!" ,0) in Eq. (2.50) have the symmetry 

� 

(!1) j  with

respect this exchange. Consequently the matrix elements 

� 

Yj 'k'
ˆ H Yjk  vanish unless 

� 

j

and

� 

j' are both even or both odd. Thus the basis need contain only even 

� 

j  (para-H2)

or odd 

� 

j  (ortho-H2).
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Multiple Potential Energy Surfaces

In the multiple PES calculations,
1,42,45

 we use the diabatic electronic states

� 

!i
d  defined in Eq. (2.44) and (2.45), or explicitly,

1

� 

!i
dia = "# $ , (2.54)

where 

� 

!  indicates the reactant or product arrangements; 

� 

!  and 

� 

!  are the projection

of electronic and spin angular momenta along the Jacobi vector   

� 

! 
R ! .

With Eq. (2.54), using the expansion in Eq. (2.36), and working through the

same procedure in Eq. (2.37) and (2.38), the Schrödinger equation becomes,

  

� 

ˆ T n!i(
! 
R ,! r ) + "i

dia ˆ H e " j
dia ! j (

! 
R ,! r )

j# = E!i(
! 
R ,! r ) . (2.55)

Note that the 

� 

ˆ U BO = 0 in Eq. (2.38-2.39) as a fact of Eq. (2.45).

For a two electronic state system, Eq. (2.55) becomes, in matrix form,
46

� 

ˆ T n
1 0
0 1
! 

" 
# 

$ 

% 
& +

ˆ H e,11
ˆ H e,12

ˆ H e,21
ˆ H e,22

! 

" 
# 

$ 

% 
& 

' 

( 
) 
) 

* 

+ 
, 
, 
-1

-2

! 

" 
# 

$ 

% 
& = E

-1

-2

! 

" 
# 

$ 

% 
& , (2.56)

where

� 

ˆ H e,ij = !i
dia ˆ H e ! j

dia . (2.57)

We can extend the basis function of Eq. (2.50) by explicit inclusion of the

electronic state 

� 

!i
dia = "# $ , obtaining,

1,42,45

� 

!ni " JMK#vjk,$% = 2
sin2&

2J +1
4'

( 
) 
* 

+ 
, 
- 
1/ 2

DMK
J* (.# )Yjk (/# ,0)!vj (&#;0) $% # , (2.58)

where

� 

K = ! + " + k . (2.59)

Similar to the procedures of Eq. (2.46-2.50) in the single PES calculation, Eq.

(2.56) can be solved
1
 to extract the helicity-frame state-resolved reactive scattering S-

matrix elements,



25

� 

SK!vjk"!#K '! 'v' j 'k'"'! '
J = S$K!vj,$k,$",$!#$K '! 'v ' j ',$k',$"',$! '

J

                            = 1
2

(SK!vjk"!#K '! 'v ' j 'k '"'! '
J ,%= +1 + SK!vjk"!#K '! 'v' j 'k'"'! '

J ,%=$1 )
, (2.60)

and

� 

SK!vjk"!#$K '! 'v ' j ',$k',$"',$! '
J = S$K!vj,$k,$",$!#K '! 'v' j 'k'"'! '

J

                                  = 1
2

(SK!vjk"!#K '! 'v ' j 'k '"'! '
J ,%= +1 $ SK!vjk"!#K '! 'v' j 'k'"'! '

J ,%=$1 )
. (2.61)

Comparing to the procedures in single PES calculation, the differences are the

replacement of 

� 

!n  in Eq. (2.48) by 

� 

!ni in Eq. (2.58) and the replacement of the 

� 

ˆ V BO

term in Eq. (2.49) by 

� 

ˆ H e,ij  in Eq. (2.57).

Spin-Orbit Coupling

The first order correction to the electronic Hamiltonian 

� 

ˆ H e  in Eq. (2.55) is to

include the spin-orbit Hamiltonian 

� 

ˆ H so, which represents the interactions arising from

the couplings between the Spin (  

� 

! 
S ) and electronic (  

� 

! 
L ) orbital angular momenta.

Explicitly,

  

� 

ˆ H so = aso(
! 
R ,  ! r ) !

! 
S !
! 
L , (2.62)

where   

� 

aso(
! 
R ,  ! r )  is the spin-orbit coupling constant whose values depends on the

relative position of Jacobi vectors (  

� 

! 
R ,  ! r ) [Eq. (2.13)]. For the F+H2 asymptote, aso is

the same as the spin-orbit coupling constant of F atom, 269 cm-1. The effect of 

� 

ˆ H so on

the PES is discussed in more detail in the next paragraph. The matrix elements of 

� 

ˆ H so

give rise to additional couplings between different electronic states. The procedures

used for the multiple PES calculations can be used unchanged.
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Figure 2.4 Schematic drawing of the PESs for the reaction of F+H2!HF+H in the

reactant asymptote region, transition state region and the product asymptote region.

Only the energy levels of the spin-orbit coupling states are drawn to scale. The upper

left corner shows the electronic correlation diagram for collinear geometry. The

unpaired F 2p orbital can point along the z (

� 

pz ), x (

� 

px) or y (

� 

py) axes to form 

� 

! , 

� 

!x

or 

� 

!y  electronic states. After inclusion of the electron spin these correlate with the

� 

2!1/ 2 , 

� 

2!3 / 2 and 

� 

2!1/ 2  states in the transition state region. The dashed line indicates

the PES without spin-orbit coupling.
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As shown in Fig. 2.4, the effect of the spin-orbit coupling on the PES
1,4,12

 is

best illustrated in collinear geometry. In the reactant asymptote the inclusion of spin-

orbit coupling splits the degenerate F(
2
P) states into ground 

2
P3/2 and spin-orbit

excited 
2
P1/2 states separated by 404 cm

-1
 (1.16 kcal/mol).

47
 The spin-orbit

Hamiltonian does not contribute either to the closed-shell H2 ground state (
1&0) or to

the HF+H product states, since HF (
1&0) has a closed shell and l = 0 for the H (

2
S)

ground state. In the transition-state region, because of the large splitting between the

& and ' states and the small value of the spin-orbit coupling,
12

 the reactive surface

(
1&1/2 in collinear geometry) is not coupled significantly with the non-reactive '

states.
1,4,12

 Therefore the effect of the spin-orbit coupling gradually vanishes [see

Fig. 5(a) in Ref. 12]. In summary, the spin-orbit coupling lowers the energy of the

F+H2 reactants and leaves the reactive PES in the transition-state region unchanged.

Consequently, the reaction barrier is effectively raised by about 1/3 of the spin-orbit

coupling (0.385 kcal/mol).
1,4,12,42

The presence of the spin-orbit Hamiltonian has several consequences for the

scattering dynamics.
17-21

 First, the tunneling probability for the near isothermal

reaction: F 

� 

2P3 / 2 ! HF 

� 

1!0 (

� 

! v  = 3), decreases as a result of the increased reaction

barrier. Thus the forward scattering peak in the differential cross section, which is due

mainly to the scattering into the HF 

� 

! v  = 3 state, is reduced.
20

 Secondly the presence

of the higher energy spin-orbit excited state 

� 

2P1/ 2  can enhance the probability of direct

reaction without resonance and tunneling effects. This depends on the strength of the

coupling between the ground and the excited spin-orbit states. Thirdly, non-adiabatic

transitions open a channel for electronically inelastic scattering, which can reduce the

probability of chemical reaction.
17,18

 Furthermore, due to the F spin-orbit splitting,

the reactions from ground (F 

� 

2P3 / 2) and spin-orbit excited (F 

� 

2P1/ 2) states will lead to

substantially different kinetic energies of final HF products, which will be manifested
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in LAB ADs.
19

 The detailed investigation of these effects is the main focus of this

dissertation and will be described in Chapters 3-5.

2.2 Experimental Observables

2.2.1 Differential and Integral Cross Sections

The connection between the experimental measurements and the theoretical

calculations are differential [

� 

d!(") ]48,49,50
 and integral [

� 

! ] cross sections:
33,44

� 

d! if (") = 1
2ikin

(2J +1)dKK '
J (# $")Sif

J
J%

2

, (2.63)

� 

! if = ! if (")# d$ = %
kin
2 (2J +1) Sif

J 2

J& , (2.64)

where the subscript if designates a particular initial-to-final transition; 

� 

Sif
J  is the

scattering matrix element in Eqs. (2.52-2.53) or Eqs. (2.60-2.61) for single and multi

PES respectively; and

� 

dKK '
J  is a Wigner reduced rotation matrix element.

43
 The reason

to use (

� 

! "# ) rather than 

� 

!  in Eq. (2.63) is because the experimental angle is

conventionally referenced to the F beam,
10

 while the angle of 

� 

dKK '
J  defined in Ref. 43

is referenced to the H2 beam.
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Figure 2.5 (a) Experimental data (•) from Ref. 10 and simulated (solid line) LAB

AD
52

 for the reaction of F+para-H2 at a collision energy of 79 meV. (b) Kinematic

(Newton) diagram and (c) Simulated DCS (reproduced using the ABC scattering

code
33

) in the scattering angle#recoil velocity 3D contour map at this collision

energy. The thick solid lines indicate the maximum relative velocities for HF

produced in the lowest (j( = 0) rotational level of the 

� 

! v  = 1, 2 and 3 manifolds.
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2.2.2 Laboratory Angular Distribution and Newton Diagram

The scattering angle 

� 

!  in Eq. (2.63) is measured relative to the nuclear CM

coordinates. However, the experiment measures the laboratory angular distributions

(LAB ADs) which refer to a space fixed coordinate system. As shown in Fig. 2.5, the

relationship between the CM DCS and the LAB AD is best illustrated by a velocity

(or Newton) diagram.
51

 The main principle is that the relative velocity

  

� 

! 
V rel =

! 
V F ,lab !

! 
V H2 ,lab =

! 
V F ,cm !

! 
V H2 ,cm (2.65)

is a direct measure of the available kinetic energy 

� 

Trel  in the CM coordinate,

  

� 

Ttot = 1
2
mFVF ,lab

2 + 1
2
mH2

VH2 ,lab
2 = 1

2
MnucVCM

2

TCM
! " # $ # 

+ 1
2
MCMVrel

2

Trel
! " # $ # 

. (2.66)

By conservation of energy and momentum,

  

� 

Trel = 1
2

mHVH ,cm
2 + 1

2
mHFVHF( ! v ! j ),cm

2

Tprod ,rel

! " # # # # # $ # # # # # 
+ UHF( ! v ! j )

U prod

! " # $ # 
, (2.67)

and

  

� 

mH

! 
V H ,cm = mHF

! 
V HF( ! v ! j ),cm , (2.68)

the angular distribution of the product HF(

� 

! v ! j ) is constrained to a circle with radius

� 

VHF( ! v ! j ),cm .

Beam Spread and Energy Dispersion

Because of the unavoidable spatial spread and energy dispersion in any

molecular beam, together with the finite size of the detector acceptance angle, a

convolution is needed for a quantitative comparison between the experimental and

theoretical results. First described in detail by Warnock and Bernstein in 1968
53

 and

numerically applied by Aoiz,
14

 the convolution contains the following major

procedures:
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First, let us focus on a particular pair of F-and-H2 velocity vectors

(  

� 

! 
V F ,lab,  

� 

! 
V H2,lab), or in other words, assume there is no spatial spread or energy

dispersion in the F and H2 molecular beam. Thus, for a particular initial-to-final

transition, the flux (number of particles per unit time) collected by a point detector at

a chosen laboratory angle 

� 

!lab, 

� 

Ipseudo(!lab), is

� 

Ipseudo(!lab) = "VnFnH2Vreld# if (!cm $!lab,Vrel ) . (2.69)

where 

� 

nF  and 

� 

nH2
 are the F and H2 particle densities per unit volume and 

� 

!V  is the

scattering volume defined by the intersection of the F and H2 beams. Here we use the

subscript “pseudo” to distinguish the un-convoluted flux 

� 

Ipseudo  from the fully

convoluted flux 

� 

I .

Taking into account the finite size of the detector acceptance angle (or solid

angle 

� 

d!lab ), we have a solid-angle convoluted flux 

� 

Id! lab
("lab )  which, by

conservation of flux, is an integral of the differential cross section 

� 

d! if ("cm )  over all

CM angles (

� 

!cm , 

� 

!cm ) which correspond to the range of the detector solid angle at

� 

!lab ,

� 

Id!lab ("lab) = #VnFnH2Vrel sin("cm )d"cmd$cmd% if ("cm,Vrel )("cm ,$cm )&d!lab'' .

(2.70)

The CM angles (

� 

!cm ,

� 

!cm ) in Eq. (2.70) are both functions of the laboratory

angles (

� 

!lab , 

� 

!lab ). This complicated relation between the CM and laboratory angles

gives rise to an irregular range of (

� 

!cm ,

� 

!cm ) integration. As a result, it is more

convenient to evaluate 

� 

Id! lab
("lab )  in the laboratory frame where we can use a uniform

grid for the integration over the detector solid angle. To do so, several steps of

transformation and approximations are needed.
53

First, for each particular initial-to-final transition, we assume a delta function

distribution of CM product velocities, 

� 

!(Vif ,cm )dVif ,cm =1" , so that Eq. (2.70)

becomes,
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� 

Id! lab
("lab ) # $VnFnH2

Vrel d"cmd%cmdVif ,cm&(Vif ,cm )sin("cm )d' cm ("cm ,Vrel )
(" cm ,%cm )(d! lab

))) . (2.71)

Then by means of the transformation of integral theorem

  

� 

F(
! 
X )d
! 
X ! = F(

! 
Y ) " #

! 
X /#
! 
Y d
! 
Y ! ,  (2.72)

Eq. (2.71) becomes

� 

Id! lab
("lab ) # $VnFnH2

Vrel d"labd%labdVif ,lab&(Vif ,cm )Jcm'lab sin("cm )d( if ("cm,Vrel )
lab
)))

(2.73)

where 

� 

Jcm!lab  is the Jacobian of the integral transformation,

  

� 

Jcm!lab =
"
! 

V if ,cm

"
! 

V if ,lab

=
"(#cm,$cm,Vif ,cm )
"(#lab ,$lab ,Vif ,lab )

=
Vif ,lab
2 cos(#lab )

Vif ,cm
2 sin(#cm )

, (2.74)

with   

� 

! 
V if ,lab  being a product velocity vector in the laboratory frame which corresponds

to a given   

� 

! 
V if ,cm  in Eq. (2.71).

We then use a standard property of CM-to-LAB frame transformation for a

delta function,
50,53

� 

!(Vif ,cm ) = !(Vif ,lab )
"Vif ,cm

"Vif ,lab

=
!(Vif ,lab )
cos#

, (2.75)

with 

� 

!  being the angle between   

� 

! 
V if ,cm  and   

� 

! 
V if ,lab .

Substituting Eqs. (2.74-2.75) back into Eq. (2.73), we find

� 

Id! lab
("lab ) # $VnFnH2

Vrel d!lab
Vif ,lab,q
2

Vif ,cm
2

1
cos% q

d& if ("cm,q ,Vrel )
lab
''

q=1,2
( (2.76)

where 

� 

d!lab = cos"labd"labd#lab  is the solid angle in the laboratory frame with the

convention that 

� 

!lab  is measured from the Y axis (the F beam direction) and the index

(q = 1, 2) refers to the fast (  

� 

! 
V if ,lab,2) and slow (  

� 

! 
V if ,lab,1) component of   

� 

! 
V if ,lab  (see Fig.

2.5).
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The second approximation treats the integrand in Eq. (2.76) as a constant over

the small range of the detector acceptance angle 

� 

d!lab . Integrating symbolically, we

find

� 

Id! lab
("lab ) # $!lab$VnFnH2

VrelFd! lab
("lab ), (2.77)

where 

� 

Fd! lab
("lab )  is the solid angle convoluted LAB AD,

� 

Fd! lab ("lab) =
Vif ,lab,q
2

Vif ,cm
2

1
cos#q

d$if ("cm,q%"lab,Vrel )
q=1,2
& . (2.78)

The next procedure of convolution is to vary the value of 
  

� 

! 
V F ,lab  and

  

� 

! 
V H2 ,lab , or

equivalently to vary the value of 

� 

Vrel  as expected from Eq. (2.65). Averaging over the

joint probability function 

� 

P(VF ,lab ,VH2 ,lab ) , we have a 

� 

d!lab  and 

� 

Vrel  convoluted flux

� 

Id! lab ,dVrel ,

� 

Id! lab ,dVrel ("lab ) # dVF ,labdVH2 ,labP(VF ,lab ,VH2 ,lab )Id! lab
("lab )

lab
$$

                     = %!lab%VnFnH2
&  dVF ,labdVH2 ,labP(VF ,lab ,VH2 ,lab )VrelFd! lab

("lab )$$
' 

( 
) 
) 

* 

+ 
, 
, 

.

(2.79)

Our last procedure of convolution is to vary the direction of   

� 

! 
V F ,lab  and   

� 

! 
V H2 ,lab

which has two consequences. First, this brings in additional 

� 

Vrel  convolution as

expected from Eq. (2.65). Secondly, this changes the position vector   

� 

! r  defined by the

intersection of the paired F-and-H2 vectors (  

� 

! 
V F ,lab ,  

� 

! 
V H2 ,lab). Since all the quantities of

� 

Id! lab ,dVrel  in Eq. (2.79) depends on   

� 

! r , a fully (  

� 

! r , 

� 

d!lab  and 

� 

Vrel ) convoluted flux 

� 

I

becomes,

  

� 

I(!lab ) " d! r Id# lab ,dVrel
(!lab )$

        = d! r $ nF (! r )nH2
(! r ) % &#lab dVF ,labdVH2 ,labP(VF ,lab ,VH2 ,lab )VrelFd# lab

(!lab )$$
' 

( 
) 
) 

* 

+ 
, 
, ! 

r 

.

(2.80)
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Here the scattering volume 

� 

!V  in Eq. (2.79) has been absorbed into a volume

integral of   

� 

d! r !  in Eq. (2.80).

Approximating 

� 

!"lab  as a constant for each position vector   

� 

! r  over the small

scattering volume and rewriting the double integral, 
  

� 

dVF ,labdVH2 ,lab!![ ]! r 
, in Eq.

(2.80) in the vector form, we have,

  

� 

I(!lab) " #$lab d! r % nF (! r )nH2 (! r ) d
! 

V F ,labd
! 

V H2,labP(VF ,lab,VH2,lab)%% &

                                                                        VrelFd$ lab (!lab)[ ]! r ,
! 
V F,lab ,

! 
V H2,lab

. (2.81)

Equation (2.81) is a standard form for Monte-Carlo integration and can be evaluated

efficiently.

The advantage of the approximations and transformations in Eq. (2.71-2.78) is

ease of subsequent numerical integration in Eq. (2.81). However, due to the CM-to-

LAB frame transformation in Eq. (2.71), there exists a singularity in Eq. (2.78) when

� 

! = " /2. Usually, the singularity can be avoided in a careful numerical integration or

it can be averaged out in the Monte-Carlo integration. However, when the detector is

located so that 

� 

! = " /2, it is necessary to go back to Eq. (2.70) and carry the

integration explicitly in the relative coordinate.
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3 The F+H2 ! HF+H Reaction

3.1 Introduction

The historical background for the study of the F+H2 reaction was described in

Chapter 1. The same terminology is aslo followed: we use the term DCS to denote the

center-of-mass frame differential cross sections, and the term AD to determine the

LAB frame differential cross section.

The goal of this Chapter is the investigation of whether the full open-shell

character of the reaction is responsible for the discrepancies between the experimental

ADs and the earlier simulations.  A few years ago, Alexander and co-workers have

presented a framework for the theoretical treatment of reactions involving multiple

potential energy surfaces (PES).
1
 We then applied this treatment to the determination

of reaction probabilities and integral cross sections for the F+H2 and Cl+H2

reactions.
1,17

 More recently, Han and co-workers have carried out similar time-

dependent studies of these reactions.
7,54,55

 This past year we have extended the

formalism to the determination of differential cross sections (DCSs) for abstraction

reactions involving an open-shell atom.
8

In general, because of its lower statistical weight and because, as shown in

Fig. 2.4, there are no adiabatic reactive pathways between the spin-orbit excited state

and the electronic ground-state of the products (HF+H),
1,56,57

 the excited spin-orbit

state does not make a significant contribution to the overall reaction probability.
1

However, in several studies of the F+HD ! HF+D reaction we have shown that the

excited spin-orbit state is responsible for noticeable features in the reaction.
21

 For this

reaction, the integral cross section for reaction of the ground spin-orbit state of F

shows a strong resonance feature at low collision energies,
22

 but that of F* does

not.
21

 As a result, the exact shape of the resonance feature in the energy dependence
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of the overall reaction cross section will be a sensitive function of the amount of F*

present in the beam.
21

Reaction of F* to yield HF products in the electronic ground state must

involve a non-adiabatic transition to a lower PES (Fig. 2.4).  Accordingly, the

resulting product ADs may differ from that for reaction of atoms in the ground spin-

orbit state.  Furthermore, the existence of spin-orbit and other non-adiabatic couplings

between the various PESs may result in ADs which differ from those simulated by

calculations on a single PES.  Speculation about the magnitude of these effects have

appeared in the literature.
4,10,11,14

In this Chapter we attempt to answer these questions by determining the state

resolved DCSs of F and F* and then performing a CM-to-LAB transformation to

compare the predicted ADs with experiment.  It will thereby be possible to clarify

unambiguously whether the experimental ADs provide information on the reactivity

of the spin-orbit excited atoms. The organization of this Chapter is as follows:

Sections 3.2 and 3.3 contain a brief review of the FH2 PESs and scattering methods

used.  In Sec. 3.4, we present and discuss the calculated DCSs and ADs with the goal

of clarifying and separating the contribution due to reaction of the excited spin-orbit

state and the contribution due to non-adiabatic effects during the reaction of the

ground spin-orbit state.  A brief conclusion follows.
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3.2 Potential Energy Surfaces

Approach of an F atom in a 
2
P electronic state to molecular hydrogen gives

rise to three states (1
2
A', 2

2
 A', and 1

2
 A").  This is shown schematically in Fig. 2.4.

The three electronically adiabatic PESs can be transformed into four quasi-diabatic

PESs.  The two diabatic PESs of A' symmetry are coupled by a fourth PES, which is

the off-diagonal electrostatic coupling in the quasi-diabatic basis.  The states are also

coupled by spin-orbit and Coriolis terms in the total Hamiltonian.

Stark and Werner carried out high-quality ab initio calculations of the lowest

electronically adiabatic PES, and then produced a global fit to these ab initio

points.
12

 This is designated the SW PES.  Subsequently, Hartke, Stark, and Werner

diagonalized the spin-orbit Hamiltonian in the full electronic basis, added this to the

lowest electronically adiabatic PES, and refit the results.
15

 This fit is known as the

Hartke-Stark-Werner (HSW) PES.  Subsequently, Alexander and Werner
1,58

extended the original calculations of Stark and Werner in the F+H2 arrangement,

transformed to the quasi-diabatic basis mentioned above, and fit the resulting four

quasi-diabatic PESs as well as the coordinate dependence of the spin-orbit coupling.

These fits are called the Alexander-Stark-Werner (ASW) PESs.

The effect of the spin-orbit coupling on the lowest ASW PES has been

described in Chapter 2.1.4 (see the text of Figure 2.4). In summary, the spin-orbit

coupling lowers the energy of the F+H2 reactants and leaves the reactive PES in the

transition-state region unchanged. Consequently, the reaction barrier is effectively

raised by about 1/3 of the spin-orbit coupling (0.385 kcal/mol).
1,4,12,42
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3.3 Reactive Scattering Calculations

We use a close-coupled, time independent method,
1
 as described in Chapter

2.1. The scattering wavefunction is expanded in an over-complete set of products of

electronic-vibrational-rotational states for each of the arrangement channels [Eq.

(2.50 and 2.58)].
1,33,59

 Canonical orthogonalization
60

 is then used to construct the

surface eigenfunctions in each sector. A constant-reference-potential, log-derivative

propagator
33,40

 is employed to integrate the coupled-channel equations. For the

single-state calculations (SW and HSW), the ABC code of Manolopoulos and co-

workers
33

 was used. For the multi-state calculations (ASW), we use the same code,

but modified extensively as described previously.
1
 We refer the reader to these earlier

publications and the descriptions in Chapter 2.1; here we summarize those equations

relevant to the present investigation.

3.3.1 Reactive Scattering Matrix Elements and Differential Cross Sections

Because a definite-K (K %  0) parity basis [Eq. (2.51)]
39

 is used in all the

calculations, we use Eq. (2.52-2.53) for single state calculations
33

 and Eq. (2.60-2.61)

for multiple state calculations to extract the helicity-frame
33,44

 state-resolved reactive

scattering S matrix elements. Note that Eq. (2.53) and Eq. (2.61) are different not

only in the subscripts but also by a pre-factor of (–1)
J
, which would be a complex

number in the multi-state calculations, where J is half-integer.

The molecular beam experiment,
10

 in which we compare, measured the

differential cross sections (DCSs). In the helicity frame and in terms of the S matrix

elements, DCSs are defined as Eq. (2.62).
33,44
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3.3.2 Laboratory Angular Distributions

A crossed beam experiment determines angular distributions (ADs) which

refer to a space-fixed (laboratory) coordinate system, which we designate by LAB

AD. The relationship between the DCS, in which the scattering angle is defined with

respect to the Jacobi vector of the product arrangement, and the LAB AD is

illustrated by the velocity (Newton) diagram
51

 shown in Fig. 2 of Ref. 10, or in more

detail, shown in Fig. 2.5 of Chapter 2.2.2.  Also, a quantitative comparison with

experiment must include a convolution over the spatial spread and energy dispersion

of the molecular beams, together with the finite size of the detector acceptance angle.

To carry out this convolution we use the program developed by Aoiz and co-

workers.
61

 This program involves reducing the CM-to-LAB frame transformation
53

to a form amenable to Monte-Carlo integration
53,61,62

 as shown in Eq. (2) of Ref. 61,

or in more detail, as described in Chapter 2.2.2.
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 Table 3.1 Summary of parameters which define the scattering calculations on the

SW, HSW, and ASW PESs.

J
a

jmax
a

kmax
a

Kmax
a

Emax(eV)
a )max(bohr)

a
NS

a

SW/HSW 0–30 15 4 NA
b 2.0 12 150

ASW 0.5–30.5 15 NA
c 3.5 1.7 12 100

a. J is the total angular momentum; K is the projection of J along the Jacobi vector

  

� 

! 
R !  (the body frame z-axis), where the subscript * designates the chemical

arrangement; 

� 

j  is the rotational quantum number of the diatomic fragment with

projection k along   

� 

! 
R !  and E is the total energy of the system in the CM frame.

The subscript “max” in (j, k, K, and E) designate the parameters which delimit the

size of the channel basis:  all values up to these limits are included.
1,33

 The

parameters )max and NS are the maximum value of the hyperradius ) and the

number of sectors used in a scattering calculation.
33

b. For calculations on a single PES (SW and HSW), Kmax equals kmax and therefore is

not specified.

c. For calculations on multiple PES (ASW), kmax depends on the values of Kmax and

on the collision arrangements  (Kmax = kmax + + + ,).

3.3.3 Scattering Calculations and Initial State Populations

Table 3.1 lists the parameters which define the numerical details of our

scattering calculations on the SW, HSW and ASW PESs.  The subscript “max” (j, k,

K and E) defines the size of the channel basis such that only states with indices which

are less than or equal to these values are included.  The parameters )max and NS are

the ending point and number of steps used in the numerical propagation.
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Table 3.2 Weighting of H2 rotational levels used in simulation of the 1985

experiments of Neumark et al. (Ref. 10)

System Ec (kcal/mol) j = 0 j = 1 j = 2

pH2 1.84 0.80 0 0.20

nH2 1.84 0.20 0.74 0.06

nH2 2.74 0.15 0.69 0.16

nH2 3.42 0.12 0.64 0.24

To simulate the 1985 experiments, the calculated DCS (or CM AD) and LAB

AD are summed over all the possible product states, including projection quantum

numbers, and averaged over the degeneracy of the initial H2 rotational level.  To

compare with experiment is it necessary to average the calculated cross sections over

a weighted distribution of rotational levels in the initial H2 beam. Table 3.2 lists these

weighting factors for comparison with the experiments on pH2 and nH2. In addition,

from our study of the F* reactivity in the F+HD reactions in Chapter 5, we find that

the relative populations of the ground and excited F spin-orbit states in the beam is

best described by a Boltzmann distribution at the temperature of 600K which

characterizes the F atom velocity in the atom source used by Liu and co-workers.
23

Since the experiment of Neumark et al.,
10

 in which we compare, described a similar

F atom velocity, we therefore apply the same relative populations of F and F* in this

calculations, so that F*:F=0.16:0.84.
23
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3.4 Results and Discussion

3.4.1 Center-of-Mass Differential Cross Sections

We present here simulations of the experiments
10

 involving reactions of F

with pH2 at Ec = 1.84 kcal/mol and nH2 at Ec = 1.84, 2.74, and 3.42 kcal/mol.
10

 The

vibrationally-resolved DCSs are shown in Fig. 3.1 (for the calculations on the SW

PES), Fig. 3.2 (for the calculations on the HSW PES) and Fig. 3.3 (for the

calculations on the ASW PESs). For clarity, we show only DCSs for production of

the v'=2 and 3 products.  Although the DCS’s for production of v' = 0 and 1 show

more variations with PES than those for v'=2 or 3, the v' = 0 and 1 DCSs always give

rise to very small ADs, and consequently will be not be discussed further here.

Figures 3.1 Center-of-mass differential reactive cross sections calculated on the SW

PES.
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Figures 3.2 Center-of-mass differential reactive cross sections calculated on the

HSW PES. The collision energies in the parentheses indicate the shifted Ec (shifted

upward by 0.35 kcal/mol) used in the HSW calculation. We employ this shift to

compensate for the overestimation of the activation energy barrier on the ab initio

Stark-Werner  PES.
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Figures 3.3 Center-of-mass differential reactive cross sections calculated on the

ASW PES. The collision energies in the parentheses indicate the same shift in Ec, as

described in Fig. 3.1.

On the basis of comparisons with thermal rate constant measurement, several

groups
24,25

 have concluded that, when spin-orbit coupling is properly taken into

account, the barrier on the ab initio ASW and HSW PESs for the F+H2 reaction (1.91

kcal/mol) 
1
 is too high, by 0.3-0.4 kcal/mol. This is consistent with ongoing

benchmark ab initio calculations,
26

 aimed at providing guidelines for improvements

in the SW and ASW PESs, which are now nearly a decade old. To compensate for the

overestimation of the reaction barrier height in the ground electronic state, we have

shifted the collision energies for the HSW and ASW calculations upward by 0.35

kcal/mol, as indicated by the values in parentheses in Figs. 3.1 and 3.2.
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In Chapter 4, we show that outstanding agreement with the experimental

F+HD!FD+H reactive excitation function can be obtained by the same shift in the

collision energies. We have consistently applied the same shifting in Ec through all of

our comparisons between both the HSW and ASW calculations and experiment for

the F+H2 and F+HD reactions (justification for this shift in Ec is discussed in Chapter

4.3.3).

Because the ground spin-orbit state of the atom correlates with both a reactive

and a non-reactive PESs (Fig. 2.4), in an adiabatic (Born-Oppenheimer)

approximation, to zeroth order only 50% of the incoming flux will follow a PES

which leads directly to products. However, in a single-state calculation all of the

incoming flux will follow the reactive PES.  Consequently, we divide the single-state

results by a factor of two to compare with the multi-state results (ASW).
24,56,63

In Fig. 3.3 (ASW) the short-dashed lines indicate the contribution of the

(statistically-weighted) F ground state.  Thus the difference between the solid and

short-dashed line is the contribution of the (statistically-weighted) spin-orbit excited

state (F*). In general the (statistically-weighted) contribution of F* is small and is

uniformly distributed over all CM scattering angles.

Qualitatively, the simulated SW, HSW and ASW CM DCSs are very similar.

Most of the v'=3 products are forward scattered while the v'=2 products are mainly

backward scattered.  As the collision energy increases so does the degree of forward

scattering of the v'=3 products, while the v'=2 products show a shift from mainly

backward to sideways scattering.  These observations agree well with the

interpretation by Neumark et al. of their beam experiment.
10
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3.4.2 DCS ratios

Although the SW, HSW, and ASW results are qualitatively similar, there are

noticeable differences. To illustrate these more clearly, we compare in Fig. 3.4 the

ratio of the vibrationally resolved HSW vs. SW DCSs.  Although Castillo et al.
16

have already presented a comparison between the HSW and ASW DCSs, we

reproduce here some details which are directly relevant to a comparison of the three

(SW, HSW, and ASW) sets of DCSs.

Figure 3.4 Ratios of SW and HSW DCSs. The dashed and solid curves indicate,

respectively, cross sections for production of HF products in v'=2 and v'=3.
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The HSW:SW DCS ratios are less than unity over most of the range of CM

angles in Fig. 3.4.  This indicates that the integral cross sections on the HSW PES

will be less than those predicted for the SW PES. As discussed already by other

authors,
12,15,24

 the barrier height on the HSW PES is higher because inclusion of the

spin-orbit coupling lowers the entrance channel without affecting the transition state.

The decrease in the magnitudes of the HSW DCSs is a direct consequence of this

increase in the barrier height.  This decrease is most pronounced in the forward

direction.

Figure 3.5 Ratios of HSW and ASW DCSs. The dashed and solid curves indicate,

respectively, cross sections for production of HF products in v'=2 and v'=3.
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Figure 3.5 presents similar DCS ratios for the HSW vs. ASW PESs.  The most

noticeable feature is that the DCS ratios are consistently smallest in the backward

direction.  The multi-state calculations on the ASW PESs predict less backward

scattering than the single-PES calculations on the HSW PES. For reasons that will

become clear later, this reduced backward scattering plays an important role.

If we look in detail as the sideways scattering, especially over the range 30° <

-cm < 120°, we observe that, for v'=2, relative to the backward scattering amplitude,

the ASW:HSW DCS ratio increases as the collision energy increases. At the two

higher collision energies (2.74 and 3.42 kcal/mol) and at certain sideways angles, the

ASW v'=2 DCS becomes larger than the HSW values.

For the v'=3 products this sideways scattering enhancement is less apparent.

However, we observe that the ASW calculations predict more sideways scattering,

relative to the HSW calculations, at the lowest collision energy (1.84 kcal/mol) than

at the higher collision energies (2.74 and 3.42 kcal/mol). Overall, again relative to the

reduction in backward scattering, the DCS ratios demonstrate enhanced forward and

sideways scattering in the ASW calculations, relative to the HSW predictions.

In the discussion below (Sec. 3.4.3) we shall see that this enhancement in

sideways scattering considerably improves the comparison with the experimental

ADs.  Again, with an aim toward the eventual discussion of the ADs, we note that the

sideways maximum in the v'=2 ASW vs. HSW DCS ratios shifts toward smaller

scattering angles as the collision energy increases.

One major goal of the present study is the investigation of how the DCSs can

shed light on the reactivity of the excited spin-orbit atoms.  Since the ASW results in

Fig. 3.5 are a weighted sum of DCSs for reaction of both F and F* (with weights

given in Chapter 3.3.5), it will be helpful to compare the DCSs predicted by reaction,

separately, of each spin-orbit state.  This corresponding ratios of the F* vs. F DCSs

are shown in Fig. 3.6. Here both initial spin-orbit states are given equal weighting.
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Figure 3.6 Ratios of ASW F*(
2
P1/2) and F(

2
P3/2) DCSs. The dashed and solid

curves indicate, respectively, cross sections for production of HF products in v'=2 and

v'=3.

These DCS ratios are quite uniform over the entire range of CM angles.  This

indicates that the F* and F DCSs have a very similar angular dependence.  This is

also apparent in Fig. 3.3, where we plot the DCSs determined with and without the

contribution of the F* state.  As can be seen, the shapes are virtually identical in every

case. Also we see from Fig. 3.6 that the reactivity of the spin-orbit excited state is

~25% of that of the spin-orbit ground state over the range of energies investigated

here.

To a reasonable approximation, if one averages over the oscillatory structure

at small angles, for v'=3 the F*:F DCS ratios are approximately 0.25.  For v'=2 there

is a peak in the F*:F DCS ratio for sideways scattering.  However, the amplitude of

this peak is smaller and its angular range is narrower than the corresponding v'=2
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sideways enhancement in the ASW:HSW DCS ratio shown in Fig. 3.5.  Since the

fractional abundance of F* in the F atomic beam is only 16%, we can overlook the

small sideways modulation in the F*:F DCS ratio in concluding that for v'=2 also the

F*:F DCS ratios are roughly constant.

This uniformity of the F*/F DCS ratios indicates that, to a very good

approximation, and as can be seen in Fig. 3.3, the exact F*:F population ratio in the F

atom beam will only scale the DCS, without affecting its overall shape. In other

words, even with all of the F atoms in the ground spin-orbit state, the ASW:HSW

DCS ratios would be qualitatively the same as what is shown in Fig. 3.5.  However,

the HSW PES is identical to the lowest ASW adiabatic eigenvector.  Consequently,

we conclude that the relative sideways (v'=2) and forward (v'=3) enhancements in the

ASW:HSW DCSs reflect significant non-adiabatic effects, due to the couplings

between the various electronic-spin-rotational states which are absent in the HSW

calculations, and which are independent of the exact ratio of ground and excited spin-

orbit atoms in the beam.

Once we recognize that the exact fraction of F* has a limited effect on the

shape of the DCS, we can simplify our analysis of the dynamics by assuming that all

the F atoms are in the spin-orbit ground state. From comparison of rotational state

resolved DCSs (not shown here), we discover that the features seen in Fig. 3.5 arise,

partially from variations in the forward scattering over a wide range of j( states,

partially from shifts from backward toward sideways scattering for intermediate HF

rotational states, and partially from the quenching of higher HF rotational states over

a large range of scattering angles.

Because of the large difference in the reaction barrier,
1
 we think it less

instructive to compare the SW and ASW DCSs.  Notwithstanding, it is interesting to

recognize that the HSW calculations yield less forward scattering than the SW

calculations (Fig. 3.4).  In contrast the HSF calculations predict more backward
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scattering than the ASW calculations (Fig. 3.5).  The consequence of these two

effects is that the SW and ASW DCSs are very similar in shape. Subsequently, as will

be seen in the next subsection, the SW and ASW ADs are also very similar in shape.

3.4.3 Laboratory Angular Distributions

The simulation of the ADs is carried out by Monte-Carlo integration of Eq. (2)

in Ref. 14 using the program developed by Aoiz and co-workers.
61

 To compare with

experiment, the simulated ADs are further rescaled by an angle and energy

independent scaling factor,
14

 determined from another program kindly lent us by

Aoiz and co-workers. In Ref. 14 this scaling factor was determined by minimizing the

deviation between the simulated and experimental distributions over all laboratory

scattering angles.

Here, in contrast, we deliberately exclude small LAB angles in the

determination of this scaling factor.  For  0 ≤ .lab < 12° the major contribution to the

ADs arises from v'=3 products, forward scattered in the center-of-mass.  Castillo et

al.
11

 attributed this forward scattering to quantum mechanical tunneling.
11

. As

mentioned earlier in Section 3.4.1, it is likely that the barrier on the HSW and ASW

PESs is too high by 0.3–0.4 kcal/mol.
24-26

 In addition, the ab initio calculations on

which the HSW and ASW PESs are based predict too small a value of the reaction

exoergicity (#31.34 kcal/mol
12

 as compared to the experimental value of #32.0

kcal/mol
64

).  Because tunneling probabilities will be very sensitive to errors in the

barrier height and the overall energetics, we thought it best not to include small-angle

scattering in the LAB frame in the determination of the overall scaling of experiment

relative to the theoretical simulation.

In addition, for small angle scattering in the LAB frame the angle between the

laboratory velocity vector of the HF products and the initial relative velocity vector
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[the intersection angle /q in Eq. (2) of Ref. 14, or equivalently, the intersection angle

0q in Eq. (2.78) of Chapter 2.2.2] for HF(v'=3) scattering in the forward direction is

near 1/2.  In this range of intersection angles small inaccuracies in the theoretical

simulation can be substantially amplified in the CM!LAB transformation, because

of the presence of the factor 

� 

1 cos!q  in this transformation.
14,53

Figure 3.7 Comparison of SW and experimental LAB ADs. As indicated, the fitting

is performed only in the LAB angle range 12° < .lab < 80°.
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Figure 3.8 Comparison of HSW and experimental LAB ADs. As indicated, the fitting

is performed only in the LAB angle range 12° < .lab < 80°.  The scaling factor for

the experimental/theoretical comparison, relative to that for the SW simulations at the

upward shifted (+0.35 kcal/mol) energy and for the same H2 isotopomer, is

designated by “sf”.
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Figure 3.9 Comparison of ASW and experimental LAB ADs. As indicated, the fitting

is performed only in the LAB angle range 12° < .lab < 80°. The scaling factor for the

experimental/theoretical comparison, relative to that for the SW simulations at the

upward shifted (+0.35 kcal/mol) energy and for the same H2 isotopomer, is

designated by “sf”. The short dash lines indicate the ADs which would be predicted

without taking into account the F* atoms in the incoming beam.

For all these reasons we restrict the range of LAB angles to 12° ≤ .lab ≤ 80°

in determining the overall scaling factor.  Scaling factors were determined, separately

for the SW, HSW, and ASW simulations.  The resulting ADs are shown in Figs. 3.7-

3.9, for, respectively, the SW, HSW, and ASW simulations.  For comparison and the

purposes of discussion, we re-normalize these three scaling factors to the scaling
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factor for the SW PES.
14

 The resulting relative scaling factors for the HSW and ASW

simulations are displayed in Figs. 3.8 and 3.9.

In Fig. 3.9 (ASW AD simulations) we show the contributions from the

weighted F and F* reactions (with relative weights 0.84 and 0.16) and, separately, the

contribution from just the ground-spin orbit state (weighted by 0.84).  From purely

statistical arguments, as discussed earlier, we would expect the reactive cross sections

from the ASW simulations would be 50% of that from the HSW simulations, since

50% of the flux would be associated with the nonreactive 
2'3/2 PES (Fig. 2.4).

However, the actual optimum scaling factor for the ASW simulations is more than

twice that for the HSW simulations. Because of the variability in these scaling

factors, although the HSW and ASW DCSs are quite different in the backward

direction in the CM frame (120° < -cm < 180°) (Fig. 3.5), the predicted HSW and

ASW ADs now have a similar behavior in the LAB angle range 30° < .lab < 80°.

Overall, in the range of angles used in our fit to experiment, the ASW ADs

reveal enhanced sideways and reduced backward scattering when compared with the

HSW ADs, and look very similar to the SW ADs, as was anticipated in the preceding

section. At the two higher collision energies (2.74 and 3.42 kcal/mol) and in the range

of fitted angles, the ASW ADs agree very well with experiment, but slightly

overestimate the v'=3 forward and the v'=2 backward scattering.

The major motivation for our investigation was the determination of how the

reactivity of spin-orbit excited F atoms is reflected in the LAB angular distribution of

the HF v'=3 product, especially for angles .lab near 20° where simulations based on

previous single PES calculations disagree with experiment (Figs. 3.7 and 3.8).

Because the DCSs for reaction of F(
2
P3/2) and F*(

2
P1/2) have a very similar angular

dependence (Fig. 3.6), we see that the presence of F* in the beam affects mainly the

overall magnitude without changing the shape of the ADs. Thus the underestimation

of sideways scattering in the single-state simulations cannot be explained by a lack of
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consideration of the reactivity of the F* atoms in the beam. Equivalently, this means

we would obtain similar ADs even under the assumption that all of the F atoms are in

the ground spin-orbit (
2
P3/2) state, as shown in Fig. 3.10.

Figure 3.10 Comparison of ASW and experimental LAB ADs, with the assumption

that all the F atoms are initially in the ground (
2
P3/2) spin-orbit state. As indicated,

the fitting is performed only in the LAB angle range 12° < .lab < 80°. The scaling

factor for the experimental/theoretical comparison, relative to that for the SW

simulations at the same energy and for the same H2 isotopomer, is designated by “sf”.
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3.5 Conclusions

In this Chapter we have presented the quantum mechanical study of center-of-

mass differential cross sections and laboratory-frame angular distributions for the

F+H2 reaction on the SW, HSW, and ASW PESs for the four different combinations

of collision energy and hydrogen isotopomer investigated in the experiments of

Neumark et al.
10

  Our simulations show that non-adiabatic coupling greatly reduces

backward scattering, an effect which Suits called “the shadow of the conical

intersection.”
65

 Since backward scattering corresponds to collisions at small impact

parameter, in future work, it would be worthwhile to investigate whether there is an

associated increase in inelastic scattering at small impact parameters.  Also,

surprisingly, we find the shapes of both the DCSs and ADs are insensitive to the

fraction of F* presented in the F beam.

The reduced backward scattering leads to enhanced forward and sideways

scattering. As a consequence, at the two higher collision energies (2.74 and 3.42

kcal/mol), the enhanced sideways scattering bring the ASW ADs to an almost perfect

match with experiment over the range 12° < .lab < 80°.  At these energies the major

discrepancy is associated with the v'=3 forward peaks. Similarly at the lowest

collision energy (1.84 kcal/mol), it is the scattering of HF products in v'=3 which

makes the dominant contribution to the ADs in the sideways direction.  Due to the

substantial exothermicity error in the ab initio calculations on whch all the Stark-

Werner PESs (SW, HSW, and ASW) are based,
26

 the v'=3 products will have

significantly less translational energy in the simulations than in reality. This

difference will be relatively more important at lower collision energies.

Consequently, we might expect that the simulated ADs will be less accurate at the

lower collision energies, which is what is observed in Figs. 3.8-3.10.

Because of the great interest in, and the fundamental importance of, the F+H2

reaction, it would certainly be worthwhile to develop a better set of global PESs
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which would correct, at least partially, the errors in the barrier height and

exothermicity of the ASW and HSW PESs.



59

4 The F+HD Reaction: Product Excitation

Functions

4.1 Introduction

Over the past several years and in Chapter 3, we have presented a number of

fully-quantum scattering studies of the reaction of F with H2.
1,8

 We use quantum-

mechanical time-independent scattering calculations to investigate how the open-shell

character of the F(2P) atom effect the F+H2 reaction.  These calculations involve

multiple potential energy surfaces (the Alexander-Stark-Werner, ASW, PESs),
1
 and

include an accurate treatment of the couplings (non-adiabatic, spin-orbit, and

Coriolis) among all three electronic states.
1
 The importance and role of the open-shell

character of halogen atoms in reactions with molecular hydrogen has been the object

of substantial recent theoretical interest.
1,6,8,17,24,55,58,66,67

One major goal of our investigation is to determine whether multi-electronic-

state calculations which include reaction spin-orbit excited state [F*(
2
P1/2)] can

resolve the remaining discrepancies
68

 between experiment and earlier, single-

electronic-state calculations based on the lowest electronically adiabatic PES, the

Stark-Werner (SW) PES.
16,23

In Chapter 3, we reported center-of-mass differential cross sections (DCSs)

and laboratory-frame angular distributions (ADs) for the F+H2 reaction.  Since the

difference between experiment and earlier, single-state simulations was largest in the

sideways direction, our goal was to explore how inclusion of the spin-orbit excited

state would affect the sideways scattering, We found that the presence of non-

adiabatic couplings effectively reduces the backward scattering of HF products.
19

Consequently, the three-state calculations resulted in an increase in the simulated

ADs in the sideways direction, in better agreement with experiment.
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Figure 4.1 Plot of the energy dependence of the total F+HD ! HF+D reactive cross

section, taken from Fig. 3 of Ref. 16. The experimental data by Liu and co-workers

are indicated by open circles while the theoretical simulations (solid line) are based

one single-state calculations on the SW PES.

Unfortunately, because the F+H2 and F*+H2 DCSs are very similar in shape,

and because the center-of-mass to laboratory transformation involves rescaling, the

predicted ADs are nearly independent of the F* population in the beam. As a result,

comparison of simulated and experimental ADs does not in of itself provide

unambiguous evidence of the importance of the F* reaction.

As an additional probe of the importance of non-adiabatic dynamics we turn

our attention to the F+HD reaction. For this reaction there remain important

differences in the excitation function (relative reaction cross sections) for the HF

product channel between experiment
22,23

 and the predictions of single-electronic-

state calculations based on the SW PES.
23

 As shown in Fig. 4.1, the most noticeable
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is the overestimation of the height of the dynamic resonance peak at collision

energies of ~0.5 kcal/mol.
5,22,23

The F+HD reaction has a barrier height of Eb ~1.92 kcal/mol.
1
 Consequently,

reaction at collision energies less than ~1.0 kcal/mol certainly involves tunneling.
5,22

Tunneling probabilities depends on the height of the barrier.  Inclusion of the spin-

orbit Hamiltonian effectively increases the F+H2 barrier height by 1/3 of the F spin-

orbit splitting (404 cm
–1

 = 1.16 kcal/mol
47

).
1,12,15

 Thus, any feature which is

sensitive to tunneling will be significantly affected by addition of the F spin-orbit

coupling to the single-state calculations.

In addition, since the F*+HD reactant asymptote correlates adiabatically with

a repulsive PES (
2'1/2 in linear geometry),

1
 reaction of the spin-orbit excited atom

will occur through indirect coupling to the reactive PES.  Consequently, the F*

reaction may give rise to a quite different resonance feature, or none at all. Thus, the

relative F: F* population in the incoming beam may dramatically change the shape

and height of the resonance peak.

In addition to the discrepancy between experiment and earlier calculations of

the height of the resonance peak, another noticeable discrepancy is a small rise in the

experimental excitation function in the energy range between 1.5 and 2.0 kcal/mol.
23

This rise occurs because the formation of the HF(v'=3) products from reaction of the

F ground state shows a sudden increase, when sufficient energy (Ec > 1.32 kcal/mol)

is present to overcome the slight endoergicity of the v'=3 products.
23

 The same

phenomenon was not observed in the single-state theoretical calculations.

The F* reaction could contribute here. First, as mentioned above, the presence

of the spin-orbit Hamiltonian lowers the F+HD energy, but only in the reactant

region.
1,12

 This effectively increases the reaction barrier, which will act to reduce the

overall reaction probability.  However, lowering the entrance asymptote will also

increase the threshold for the formation of HF products in v'=3, and therefore delay to
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higher energy the contribution of v'=3 to the excitation function shown in Fig. 2.4. On

the other hand, because of the additional 1.16 kcal/mol of internal energy in the F*

reactants at collision energies below 2 kcal/mol HF products in v'=3 can be formed by

the F*+HD reaction.

The goal of this Chapter is to use quantum reactive-scattering calculations

with full inclusion of the open-shell character of the F atom to investigate how the

spin-orbit excited reaction and/or non-adiabatic effects affect the predicted excitation

functions for the F+HD reaction.  The rest of this Chapter is organized as follows:

Section 4.2 contains a brief review of the theoretical methods used. In Section 4.3, we

present the calculated excitation functions of the HF and DF products. By making

direct comparisons with experiment data, we examine in detail the role of F* in the

F+HD reaction. A conclusion follows.

4.2 Method

4.2.1 Details of the scattering calculations

The exact quantum description of the reaction of F+HD follows the formalism

presented earlier by Alexander, Manolopoulos and Werner.
1
 A full description

requires three potential energy surfaces (PESs) and an accurate description of the

couplings (non-adiabatic, spin-orbit, and Coriolis) among them.  We refer the

interested reader to Ref. 1, and will reiterate here only those details directly relevant

to the present investigation.

The scattering calculations yield the scattering S matrix, in terms of which

integral reactive cross sections , can be determined as:
33,44

! javj" #v #j (Ecol ) =

           $
(2 j +1)(2 ja +1)k javj

2 (2J +1)  Sjakavjk" #v #j #k !h
J (E) 

J ,ka ,k, #k ,!h
%

2  . (4.1)
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Here, the initial (F+HD) states are labeled by the value of the electronic angular

momentum of the atom (ja = 3/2 for F and ja = 1/2 for F*), the projection of ja, the

vibrational, rotational, and projection quantum numbers of the diatomic moiety.  The

primes indicate the corresponding quantities for the product arrangement (FH+D or

FD+H) in addition to the spin projection quantum number (,h) of the H (D) product.

Because the experiments neither select nor resolve the projection quantum numbers,

these are added (for the product quantum numbers) and averaged (for the reactant

quantum numbers).  Here J is the total angular momentum of the system, E is the total

energy, and Ecol is the collision energy for reactants HD(v,j)+F(ja), so

� 

Ecol = E !" ja – evj , (4.2)

where 

� 

! ja is the energy of the particular spin-orbit state of the F atom, and evj is the

vibration-rotation energy of the HD molecule.  Also, the wavevector in Eq. (4.1) is

given by k javj
2 = 2µEcol , where µ  is the F–HD reduced mass.

Table 4.1 lists the parameters used to define the scattering calculations in

Chapters 4 and 5.

TABLE 4.1 Summary of parameters used in the present F+HD scattering

calculations.

J
a

jmax
a

Kmax
a.b

Emax(eV)
a )max(bohr)

a
Ns

a

0.5-30.5 15 3.5 1.3 12 100

a. See the definition in caption a of Table 3.1.

b. See Caption b in Table 3.1.
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Table 4.2 Range of collision energies included in the present F(ja)+HD(v,j)

calculations.

ja j max(Ecol)
a

max(Ecol)
b

3/2 0 4.424 4.074
3/2 1 4.169 3.819
1/2 0 3.288 2.938
1/2 1 3.033 2.683

a. Maximum collision energy attained in the scattering calculations.

b. Collision energy limit in the simulations.  Column 4 = Column 3 – 0.35 kcal/mol.

4.2.2 Comparison with experimental data

Because of the relation between the total energy E and the initial relative

translational energy 

� 

E javj  [Eq. (4.2)], the simulation of an “experimental” cross

section at a particular initial translational (collision) energy necessitates scattering

calculations at a large number of different total energies.  In actual practice, cross

sections were determined at 156 total energies spanning the range 5.063 – 9.465

kcal/mol.  The corresponding maximum collision energies sampled in the calculations

are enumerated in Table 4.2.  The largest of the scattering calculations included 2440

coupled channels.

Both F* and F are present in the initial molecular beam, as well as a

distribution of HD rotational states.  The experiments of Liu and co-workers
5,22,23

measure the following averaged integral cross sections for formation of HF (or HD)

products:

� 

!(Ecol ) =  w ja
javj
" pvj ! javj#v' j ' (Ecol ) , (4.3)

where 

� 

w ja and pvj are, respectively, the relative populations in the initial beams of

the atomic spin-orbit states and molecular vibration-rotation states.  In our

calculations we chose 

� 

w ja to be given by a Boltzmann distribution at the temperature
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of 600K, which characterizes the F atom velocity in the atom source used by Liu and

co-workers,
23

 so that wF* =0.16 and wF =0.84.
69

 We further assume that only the HD

v=0 vibrational level is populated, and, further, that the molecule is confined to its

two lowest rotational levels, with pj=0 =0.82 and pj=1=0.18 at a rotational temperature

of 50K.
23

The experiments reported in Ref. 23 determine only relative cross sections,

which we designate “excitation functions.”  The magnitude of the data shown in Ref.

23 was adjusted to fit simulations based on the SW PES.  For comparison with our

multi-state calculations, we choose to renormalize the experimental data, which are,

after all, only relative quantities, by multiplication by an overall constant scaling

factor.  This we determine by a least-squares fit to our calculations for the DF product

channel. This choice is based on the observation that the calculated excitation

function for DF products agrees extremely well with experiment as will be discussed

in section 4.3.1. This fit yields a scaling factor of 0.78. To be consistent with the

normalization procedure used in the analysis of the experiment,
23

 we use an identical

scaling factor for both the DF and HF product channels.

In the discussion below we will also distinguish between integral cross

sections for reaction of F(
2
P3/2) and F(

2
P1/2). To do so, rather than use Eq. (4.3), we

average the integral reactive cross sections 

� 

!  only over the rotational states of the HD

molecules,

� 

!(Ecol ; ja ) = pvj !vj"v' j ' (Ecol ; ja )
vj
# . (4.4)

Integral cross sections obtained in this way represent the full effect of each spin-orbit

state separately. To obtain integral cross sections that take into account the relative

populations of F and F* in the beam, we must then multiply Eq. (4.4) by the

population of the F spin-orbit states 

� 

w ja , which yields Eq. (4.3).
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4.2.3 Comparison with calculations on SW PES

To better understand the differences between the calculations on the (multi-

state) ASW and (single-state) SW PES, we will also compare our calculations with

the excitation functions calculated for the SW PES.
22,23

 Since the SW PES is a fit to

just the lowest electronically adiabatic state, the calculations reported in Ref. 22

effectively assume zero F* reactivity. Under this assumption, to zeroth order one can

correct for the electronic degeneracy of the F(
2
P3/2)+HD reactant asymptote by

dividing the calculated SW cross sections by a multiple PES factor of 2.
23

In general, because the reactivity of F* is small, this simple renormalization

gives a good estimate of the absolute integral cross section. Nevertheless, in a

detailed comparison with cross sections which are determined on multiple PESs and

which are averaged over the population of F spin-orbit states, this division by 2 will

always yield higher values, except when the F* reactivity is larger than the F ground

state, which only occurs at very low collision energies. Since we have renormalized

the experimental data from Ref. 23 to fit the results of our multi-state calculations,

and since the published experimental data were themselves normalized to fit the

original SW calculations,
22

 we will need to renormalize the SW excitation functions

by multiplying by the same scaling factor (0.78) used to renormalize the experimental

data.  Further, we use the identical scaling factor to rescale the SW calculations and

experiment in Ref. 23 for both the DF and HF product channels. This will preserve

the quality of the original fit of the experiment to the SW calculations.

4.3 Results and Discussions

We begin by making a distinction between reactions of the F ground

[F(
2
P3/2)] and spin-orbit excited [F(

2
P1/2) or F*] states. The F reaction can occur on

the lowest electronically adiabatic PES, which directly correlates the reactants in their

electronic ground state with HF (or DF) products in their electronic ground state
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(
1&+

).
1
 The F* reaction is adiabatically forbidden, because the excited spin-orbit state

correlates adiabatically only to HF (or DF) products in their first excited electronic

ground state (
3'),

1
 which is quite high in energy and therefore inaccessible for

reactions at moderate collision energies.
57,70

 Reaction of F* is enabled by non-

adiabatic couplings between the ground and excited electronic states. In the

discussion that follows, we will make repeated reference to these two mechanisms.

To keep the text concise, we will designate the two spin-orbit states, and the

corresponding cross sections, by just F and F*. We will use the full (
2
Pj) description

only when necessary.

4.3.1 F+HD ! DF+H

Using Eq. (4.3), we obtain the calculated energy dependence of the integral

reactive cross section ,(Ec) for the DF channel which is shown in the upper panel of

Fig. 4.2. The thick solid line depicts the total contributions from reaction of F and F*,

and the two thin lines depict the contributions of F and F*, separately. To compensate

for the overestimation in the ab initio calculations of the reaction barrier height in the

ground electronic state,
24-26

 we have shifted collision energy abscissa for the ASW

cross sections upward by 0.35 kcal/mol. Justification of this shift is discussed in more

detail below in subsection 4.3.3. We also compare our calculations with experiment
23

(open circles) and the earlier single-state calculations
22

 based on the SW PES (filled

circles) which were taken directly from Ref. 22 and then renormalized as described

above.
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Figure 4.2 (Upper panel) Plot of the energy dependence of the total F+HD ! DF+H

reactive cross section. The renormalized experimental data by Liu and co-workers

(Ref. 23) are indicated by open circles. The theoretical simulations based on the

three-state ASW calculations are indicated by the heavy solid line.  The renormalized

single-state SW calculations (solid dots) are indicated, as well as the separate

contribution for the ground (F) and excited-state (F*) reactions.  (Lower panel)  Ratio

of the total cross sections for reaction of the ground and excited spin-orbit states,

predicted by the multi-state ASW calculations, as a function of energy.
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Because of the finite range of total energies spanned in our scattering

calculations, determination of the cross sections for the F* reaction are possible only

for Ec ≤ 2.68 kcal/mol (see Table 4.2).  Because of the higher internal energy of the

F* reactant, at a given total energy the collision energy is larger for F atoms in their

ground spin-orbit state.  Consequently, the range of total energies spanned in the

scattering calculations allows determination of cross sections for the adiabatically-

allowed ground-state reaction up to collision energies of 3.82 kcal/mol.  We can

compare the total cross sections at collision energies between 2.68 and 3.82 kcal/mol

only by extrapolating the F*+HD cross sections,
71

 which make a small contribution

to the total, and then add these to the exact F+HD cross sections. The results of this

extrapolation are indicated by thick dashed lines in Fig. 4.2.

Figure 4.2 reveals that both the (multiple-PES) ASW and (single-PES) SW

calculations agree perfectly with experiment for the DF excitation function. Because

substantial (16%) fraction of the ASW results are due to F* reactivity, the close

resemblance of the ASW DF excitation function with the renormalized SW result

suggests that, except at low collision energies, the F*+HD! DF+H reaction does not

make a significant contribution, as observed in our study of the F+H2 reaction in

Chapter 3.

 We can use Eq. (4.4) to determine the separate F and F* integral cross

sections.  The ratios, ,(Ec;ja=1/2)/,(Ec;ja=3/2), are plotted in the lower panel of Fig.

4.2. We see that the reactivity of F* is relatively small and nearly constant (~25%) for

collision energies above 1 kcal/mol.  It is not until Ec < 0.8 kcal/mol that the F*

reactivity dominates.  We note that because of the small population of F* in the beam,

the effective contribution of the F* reaction under the conditions of the experiment is

only 4 % of the total.
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Figure 4.3 (Upper panel) Plot of the energy dependence of the F+HD ! DF+H

reactive cross sections, for DF products formed in v'=2, 3, and 4.  The renormalized

experimental data by Liu and co-workers (Ref. 23) are indicated by filled circles. The

theoretical simulations based on the three-state ASW calculations are indicated by the

solid lines.  The dashed components indicate the energy range over which the F*

reactive cross sections were extrapolated.  (Lower panel)  Similar plot but for the

F+HD ! HF+D product channel.
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In the upper panel of Fig. 4.3, we plot the excitation functions for each final

DF vibrational manifold and compare these to experiment.  Given the excellent

agreement of the total excitation functions, summed over product vibrational level

(Fig. 4.2), we were surprised to find that significant discrepancies exist for DF

products in v'=2 and 4.  Analysis shows that the underestimation, in the theoretical

simulation, of product flux in the higher rotational states of DF products in v'=3 and 4

is compensated by an overestimation of product flux in v'=2 and 1 (not shown in Fig.

4.3).  As a result, the excitation function, totaled over all vibrational states, agrees

very well with experiment.

4.3.2 F+HD!HF+D

Again, to be consistent with the normalization done in the analysis of the

experiment,
23

 we used an identical scaling procedure for both the HF and DF product

channels.  The HF excitation functions and reactivity ratios are shown in Fig. 4.4. The

labeling is identical to Fig. 4.2. The corresponding vibrational-state-specific

excitation functions are shown in the lower panel of Fig. 4.3.

In the upper panel of Fig. 4.4 we see that both the ASW and SW calculations

disagree with experiment in two aspects: One is the overestimate of the resonance

peak
22,23

 near E c = 0.5 kcal/mol, and the other is the underestimation of the

excitation function in the collision energy range 1.5–2.0 kcal/mol. Compared to the

renormalized SW results, the ASW calculation predicts a smaller intensity for the

resonance peak. This reduction comes from the effect of the increased barrier height

of the ground electronic state which is a consequence of the inclusion of the spin-orbit

Hamiltonian, as discussed in the Introduction.
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Figure 4.4 (Upper panel) Plot of the energy dependence of the total F+HD ! HF+D

reactive cross section. The renormalized experimental data by Liu and co-workers

(Ref. 23) are indicated by open circles. The theoretical simulations based on the

three-state ASW calculations are indicated by the heavy solid line.  The renormalized

single-state SW calculations (solid dots) are indicated, as well as the separate

contribution for the ground (F) and excited-state (F*) reactions.  (Lower panel)  Ratio

of the total cross sections for reaction of the ground and excited spin-orbit states,

predicted by the multi-state ASW calculations, as a function of energy.
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In general, as for the DF channel, the reactivity of F* (thin solid line) is small

compared to that of F except at low collision energies. Nevertheless, because the F*

excitation function does not show any resonance structure, we find that the integral

cross section ratios, ,(Ec;ja=1/2)/,(Ec;ja=3/2), shown in the lower panel of Fig. 4.4,

undergo a large variation in the collision energy range between 0.5 and 2.0 kcal/mol.

The ratio first shows a dip near the center of the resonance peak at Ec = 0.5. This dip

arises from the enhanced integral cross section for the ground-state reaction as a

result of resonance scattering, which does not occur for reactions from F*. As the

collision energy increases, the strength of the resonance scattering gradually

decreases,
72

 but the reactivity of F* keeps increasing. Therefore, the ratio rises.

The ratio continues to rise until Ec 2 1.2 and then starts falling. This drop is

due to a competition between the decreasing rate of resonance scattering and the

gradual leveling off of the F* reactivity. Beyond Ec > 2.0, direct scattering governs

the F reactivity, and the F* reactivity levels off. Consequently the ratios also level off.

Overall, the cross section ratio shows a bump centered around 1.2 kcal/mol. Because

of a substantial amount of F* reactivity at collision energies near the resonance peak

(~65% at full strength but only ~12% when the population of the two spin-orbit states

is correctly accounted for), we find that the average over the population of F spin-

orbit states has a substantial effect, by raising the high-energy side of the resonance

feature. As a result, we see in the upper panel of Fig. 4.4, that in the total excitation

function the resonance structure (thick line) is less pronounced than what is predicted

by the single-state calculations on the SW PES.

Reaction of F* does affect the shape of the resonance feature in the collision

energy range 0.5 –1.5 kcal/mol.  In contrast, we find that it does not make significant

contributions to the disagreement with experiment in the energy range between

1.5–2.0 kcal/mol.  In fact the excitation function calculated from the ASW calculation
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agrees less well with experiment than that predicted by the calculations on the SW

PES.

To investigate further the nature of this disagreement, we look at to the

vibrational-specific excitation functions shown in the lower panel of Fig. 4.3.  We see

that the disagreement between 0.5 and 1.5 kcal/mol is due to the overestimation by

theory of the height of the resonance peak for HF(v'=2) products.

The disagreement with experiment between 1.5 and 2.0 kcal/mol arises mainly

from the underestimation in the theoretical calculations of the cross section for

formation of HF(v'=3). The F* reaction does make some contribution here at Ec < 1.5

kcal/mol, where the v'=3 products are energetically inaccessible for reaction of the

ground spin-orbit state.  However, the F* reactivity is not large.

Unfortunately, the exoergicity of the F+HD!HF+D reaction predicted by the

ASW PES is 0.68 kcal/mol too low.  Consequently, even after the 0.35 kcal/mol

upward shift in the abscissa, the threshold for formation of HF v'=3 products by

reaction of ground state F will be displaced 0.33 kcal/mol toward higher energy.

However, it appears from lower panel in Fig. 4.3 that the onset of significant v'=3

flux is delayed by ~ 0.6 kcal/mol, which is too large to be explained by the remaining

error in the exoergicity.  Further, experiment indicates a larger v'=3 cross section than

predicted by the calculations.
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Figure 4.5 Comparison of the F+H2 reaction probability distributions for the total

angular momentum, (Jtot=0), as calculated on the HSW (solid line) and SW (dashed

line) PES. The reaction probability has been divided by the multiple-PES factor of 2

by the same reason described in Section 4.2.3.

4.3.3 Justification for the shift of collision energies in ASW calculations

On the basis of comparisons between calculated and experimental thermal rate

constants, several groups
24,25

 have concluded that, when spin-orbit coupling is

properly taken into account, the barrier on the ab initio ASW PES for the F+H2

reaction (1.91 kcal/mol) is too high, by ~0.3-0.4 kcal/mol. This is consistent with the

analysis by Liu and co-workers of their experiment,
23

 which suggests that the barrier

on the SW PES is correct in height.
23

 Because the SW PES does not take into
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account the spin-orbit Hamiltonian, Liu's analysis implies that the barrier on the ASW

PES is too high by ~0.39 kcal/mol.  This is confirmed by the results of recent

benchmark ab initio calculations.
26

To better understand the effect of this increased barrier height, we compare in

Fig. 4.5 the reaction probability distributions for the total angular momentum (Jtot=0)

of the F+H2(j=0) reaction calculated on HSW and SW PESs. The reason we compare

the HSW and SW data rather than the ASW and SW is because that the ASW

calculations involve non-adiabatic couplings between multiple electronic states
1
,

while the SW calculations are limited to the lowest adiabatically electronic

state.
4,11,16

 Since non-adiabatic effect can change the reaction dynamics
17,19

 and

give rise to less reaction probabilities,
17

 it becomes less intuitive to compare these

two (ASW and SW) calculations. Nevertheless, we recognize that the HSW

calculations are also limited to an adiabatic PES,
16

 which is almost identical to the

lowest electronic state of the ASW PESs.
1
 The HSW PES is obtained by adding the

spin-orbit correction to the SW PES.
15

 Because the spin-orbit coupling lowers the

energy of the F+H2 reactants and leaves the reactive PES in the transition-state region

unchanged.
12

 Consequently, the reaction barrier on HSW PES is effectively raised by

about 1/3 of the spin-orbit coupling (0.39 kcal/mol).
1,12,15,19

It is therefore because that the HSW PES represent the lowest electronic state

of ASW PES and that the only difference between the HSW and SW PES is the

barrier height, so that we compare the calculations on the HSW and SW PES to

examine the effect of the increased barrier height. The comparison shows that the

HSW and SW give rise to nearly identical reaction probability distributions for the

total angular momentum (Jtot=0), except that they are shifted by ~0.39 kcal/mol, or

by ~1/3 of the F spin-orbit splitting, or by the difference between the HSW and SW

barrier height. The fact that a simple shift in collision energies bring the HSW

reaction probability nearly identical to the SW implies that the effect of raised barrier
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height mainly shift the distributions of the overall reaction probability upward, by an

amount that equals the difference in barrier height.  Given the observation, as

described at the beginning of this subsection, that the SW PES predicts too high a

barrier by ~0.3-0.4 kcal/mol, we choose to shift back the HSW, therefore ASW,

collision energy by an amount of 0.35 kcal/mol.  With this adjustment, the reaction

probability of the ASW is almost the same as the normalized SW.

This simple upward shifting (by 0.35 kcal/mol) in the collision energies to

compensate for the overestimation of the reaction barrier is further supported by our

nearly perfect match with the experiment in the DF channel (see Section 4.3.1) and

the improved agreement in the HF channel. It is only with this shift that we can obtain

a reasonably good fit to experiment in both the DF and HF reaction channels.

4.4 Conclusions

In this Chapter we have presented the results of calculations of integral cross

sections for both product channels of the F+HD reaction. From the detailed

comparisons, we find theory and experiment give nearly perfect agreement for the DF

product channel. In this channel, the reactivity of F*, weighted by the fractional

population of F* in the beam, is very small, estimated at ~5% except at low collision

energies. For the HF product channel agreement with experiment is less good.  From

Fig. 4.4 it may be argued that the multi-state calculations give a significantly better

agreement with experiment, particularly the relative magnitude of the resonance

feature compared with the cross section at higher energy.

Because reaction of F* does not give rise to any resonance features, averaging

over the two spin-orbit states decreases the modulation depth of the resonance. The

greater the fraction of F* in the incident beam, the less pronounced this resonance

structure will be. Relative to the ground-state reaction, the fractional reactivity of F*

is largest,  ~12%, at collision energies near Ec =1.2 kcal/mol for the reaction yielding
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HF products. The discrepancy in the collision energy range between Ec = 1.5 and 2.0

kcal/mol is attributed to the underestimation in formation of HF(v'=3) products.

Comparisons between the SW and HSW reaction probability for the F+H2

reaction (Fig. 4.5) and among the SW, ASW and experimental excitation functions

for the F+HD reaction  (Figs. 4.2 and 4.4) suggest that the best (and simplest) way to

compensate for the overestimation of the reaction barrier height on the ASW PES is

to shift the collision energy upward by ~0.35 kcal/mol. Although this gives rise to

satisfactory comparison with the experiment, we find some discrepancy still exists in

the HF product channel. Because the effect of F* reactivity is small over the range of

collision energy probed in the experiments, the remaining disagreement with

experiment reflects residual inaccuracies in the ASW and SW PESs, which were

based on ab initio calculations which are now nearly 10 years old.

Recent test calculations
26

 suggests that it is now possible to improve,

substantially, the errors in the estimation of the F+H2 reaction barrier and reaction

exoergicity.  Determination of a new, global, multi-state PES with similar

methodology will provide the means for a quantitative understanding of the F+HD

reaction dynamics.
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5 The F+HD Reaction: The Reactivity of F*

5.1 Introduction

Over the past several years and in Chapter 3 and 4, we have presented a

number of fully-quantum scattering studies of the reaction of F with H2 and HD.
1,8

One major goal of our studies is to understand the extent of participation of the spin-

orbit excited state [F*(
2
P1/2)] in the reaction. An unresolved question is whether

inclusion of the F*+HD reaction could resolve remaining discrepancies
23

 between

experimental results and earlier quantum scattering calculations
23

 that were done

under that assumption that the multiplet character of the F atom could be ignored and

that only F atoms in their ground spin-orbit state could react.  The inclusion of the

open-shell character of halogen atoms in reactions with molecular hydrogen has been

the object of intense recent theoretical interest.
1,6-8,17,24,55,58,66,67

As shown in Fig. 5.1, asymptotically, in the reactant arrangement, the spin-

orbit Hamiltonian raises the degeneracy of the F atom.
1
 The ground 

2
P3/2 and excited

2
P1/2 spin-orbit states of the F atom are separated by 404 cm

-1
 (2 1.16 kcal/mol).

47

In what follows, we shall use the more compact notation F* to designate the excited

spin-orbit state of the atom.  Three electronically adiabatic PESs are eigenstates of the

FH2 electronic Hamiltonian:  1A', 2 A' and 1 A".  Of these, only the 1A' PES

correlates with HF (or DF) products in their electronic ground state (
1&+

).  In the

reactant arrangement these three PESs are degenerate asymptotically.  However,

when the spin-orbit interaction is included, the excited spin-orbit state of the reactants

(F*+HD) correlates only the excited 2A' PES.
1
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Figure 5.1 Relative energies (to scale) for the F+HD!HF+D, DF+H reaction, with a

schematic representation of the three electronically adiabatic potentials after inclusion

of the spin-orbit splitting. Only the two highest product vibrational levels are

indicated.

Consequently, within the Born-Oppenheimer approximation, which constrains

nuclear motion to a particular electronic adiabat, the excited spin-orbit state should

not react.  As the reactants approach the 1A' PES splits apart from the two other

PESs, which are repulsive.  Non-adiabatic transitions are most likely to at the point at

which this splitting is roughly equal to the spin-orbit coupling.
1,67,73

 For the

F+H2(HD) reaction this point occurs fairly far out in the reactant valley, well outside

the barrier.
1
 As the reactants approach the barrier, the splitting between the two

electronically excited PESs (2A' and 1A") and the reactive PES is so large that the
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spin-orbit coupling can no longer cause nonadiabatic transitions to occur.  The spin-

orbit Hamiltonian plays no role in the product arrangement (for HF products in their

electronic ground state) because l=0 for the H(
2
S) ground state.

In Chapters 3 and 4, we investigated how inclusion of the full open-shell

character of the F atom affects the angular distributions (differential cross sections)

for the F+H2 reaction (Chapters 3), as well as the behavior of the overall F+HD

! HF+D and DF+H excitation functions (Chapters 4). In Chapter 4, we demonstrated

that the reaction of F* to yield HF did not show the resonance structure in the energy

dependence of the integral cross sections, seen
22

 experimentally and in theoretical

simulations based on the single Stark-Werner (SW)
12

 PES.  Consequently, the greater

the fraction of F* in the incident beam, the less pronounced will be this resonance

structure.

Our determination of the reactive cross sections and product distributions

involves a time-independent treatment of the scattering, based on four quasi-diabatic

potential energy surfaces (PES), the Alexander-Stark-Werner (ASW)
1
 PESs.  All

couplings (electronic mixing of the two states of A' reflection symmetry, spin-orbit,

and Coriolis) are included, as exactly as possible.  Recently, Han, Zhang and co-

workers
7,55

 have developed an equivalent time-dependent approach for reactive

scattering on multiple PESs, and have successfully applied it to the reactions of F

with H2, D2 and HD.

Because of the additional electronic energy of the spin-orbit excited state, at a

given initial collision energy, the F*+HD reaction can yield HF or DF product states

which are energetically inaccessible in the ground-state reaction.  In several papers,

Nesbitt has argued that the only unambiguous probe of the extent of reactivity of the

F atom spin-orbit excited state is the demonstration of the production of HF (or DF)

which are energetically forbidden for the ground-state reaction.
27,64,74

 Unfortunately,

the finite spread of translational energy in any molecular beam experiment, the
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presence of excited rotational states of H2 (or HD) in the beam, and the small

magnitude of reactive cross sections at threshold will add ambiguity to this

demonstration.

Nesbitt, Liu, and their coworkers have argued that the F+HD reaction is the

best candidate to investigate the relative reactivity of the two spin-orbit states of

F.
23,27,64,74

 As shown schematically in Fig. 5.2, the production of HF products in

v'=3 is possible only for collision energies greater than 1.32 kcal/mol.  By carrying

out experiments at lower collision energies, and monitoring the HF products, Nesbitt,

Liu and their co-workers have obtained direct evidence of the reactivity of the excited

spin-orbit state.

As a complement to these experiments, and to help in understanding them, we

present here the results of quantum scattering calculations on the F+HD!HF+D,

DF+H reaction.  We then use these results to carry out a careful simulation of the

experiments of Liu, Nesbitt and their co-workers.
23,27

 This Chapter is organized as

follows: Section 5.2 contains a brief review of the theoretical methods used.  In

Section 5.3, we compare with experiment the results of the simulation of the HF and

DF product translational energy distributions. Section 5.4 reports a similar

comparison for the product rotational distributions.  A discussion and conclusion

follow.
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Figure 5.2 Energy level diagram (to scale) of the j = 0 HF and DF product

vibrational-rotational states in the F+HD reaction.  The solid and dashed lines refer to

the experimental positions [computed from the known heats of formation (Table 5.1)

and the HF (DF) spectroscopic constants] and the predictions based on the ASW FH2

potential energy surface (Ref. 1).

5.2 Method

5.2.1 Details of the scattering calculations

The exact, quantum description of the reaction of F+HD follows the

formalism presented earlier by Alexander, Manolopoulos and Werner.
1
 A full

description requires three potential energy surfaces (PESs) and an accurate
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description of the couplings (non-adiabatic, spin-orbit, and Coriolis) among them.

We refer the interested reader to Ref. 1, and will reiterate here only those details

directly relevant to the present investigation.

5.2.2 Comparison with experiment

To simulate as closely as possible the experiment of Liu and co-workers,
23

 we

have to take into account the energy spread of the molecular beams and the finite

resolution of the detector. To do so, we choose a simple approach which consists in

multiplying the integral cross section of Eq. (4.1) by a Gaussian function.  The cross

section for production of products with translational energy Etr from reaction of F(ja)

with HD(vj) is then given by

� 

Pjavj (Etr ) = ! javj"v' j ' (E javj )  N exp  # (Etr # Ev' j ' )
2 2a2  [ ]

v' j '
$ , (5.1)

Here N is the normalization constant for the Gaussian and Ev'j' is the translational

energy associated with particular product channel v'j', which is given, similarly to Eq.

(4.2) by

� 

Ev' j ' = E ! ev' j ' .  (5.2)

We take the parameter a in Eq. (5.1) equal to 0.3 kcal/mol, which corresponds

to a fwhm of the Gaussian convolution of 0.68 kcal/mol.  The experiments reported in

Ref. 23 determine only relative cross sections.  For comparison we will compare

simulated product translational energy distributions 

� 

Pjavj (Etr )  obtained by

multiplying the cross sections of Eq. (5.1) by an overall constant scaling factor,

identical for both the DF and HF product channels, to bring the theoretical cross

sections to a magnitude comparable to the experiment. This scaling process is

consistent with the normalization method used in the experiment (see the caption of

Fig. 5 in Ref. 23).
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Both F* and F are present in the initial molecular beam, as well as a

distribution of HD rotational states.  Thus an experimental observed distribution of

HF (or HD) products with translation energy Etr is simulated as

� 

P(Etr ) =  w ja
javj
! pvj Pjavj (Etr ) , (5.3)

where 

� 

w ja and pvj are, respectively, the relative populations of the atomic spin-orbit

states and molecular vibration-rotation states.  In our calculations we chose 

� 

w ja to be

given by a Boltzmann distribution at the temperature of 600K which characterizes the

F atom velocity in the atom source used by Liu and co-workers,
23

 so that wF* =0.16

and wF =0.84.
75

 We further assume that only the v=0 vibrational level is populated,

and, further, that HD is confined to its two lowest rotational levels with pj=0 =0.82

and pj=1=0.18 at the experimental rotational temperature of 50K.
23

Several groups
24,25

 have concluded, on the basis of comparisons with thermal

rate constant measurements, that, when spin-orbit coupling is properly taken into

account, the barrier on the ab initio ASW PES (1.92 kcal/mol),
1
 is too high, roughly

by ~0.3-0.4 kcal/mol.  This is consistent with ongoing extensive ab initio

calculations,
26

 aimed at providing the framework for improvements in the SW and

ASW PESs, which are now nearly a decade old.  In our earlier paper,
21

 we concluded

that outstanding agreement with the experimental F+HD!FD+H reactive excitation

function could be obtained by shifting the collision energy in the calculations by 0.35

kcal/mol, so that experimental cross sections at Ec would be compared with

calculated cross section at a collision energy of Ec+0.35 kcal/mol.  This adjustment

was also used here.

In addition, the calculated exoergicity of the F+HD!FH+H reaction is 0.68

kcal/mol too low, as shown in Fig. 5.2. This has the consequence of lowering by 0.68

kcal/mol the translational energy of each product state.  Because the goal of the

present study is a direct comparison with product translational energy distributions,
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we decided that the most accurate comparison could be achieved by (a) calculating all

reactive cross sections at a collision energy equal to the nominal experimental

collision energy plus 0.35 kcal/mol (as discussed in the preceding paragraph) and

then (b) determining the available translational energy of each v'j' product state by

subtracting from the total available energy the true energy of this state.  The latter is

determined from the most recent estimate of the heats of reaction along with the

experimental energies 

� 

e ! v , ! j 
ex  of all vibration-rotation energies of the HF or DF

products.  The latter are obtained from a standard Dunham expansion based on

available spectroscopic coefficients for either HF
76

 or DF.
77

As a result of these adjustments, the product translational energy, Ev'j' in Eq.

(5.2) becomes

� 

E ! v ' j ' = (Eth " 0.35) " #Erxn " e ! v , ! j 
ex , (5.4)

where Eth is the total energy in the theoretical calculation and "3 rxn is the

experimental zero-point corrected heat of reaction (–31.20 kcal/mol for HF+D and

–32.80 kcal/mol for DF+H) obtained from the available gas-phase thermochemistry

data listed in Table 5.1.

To simulate the experiments of Nesbitt and co-workers,
27

 in which infrared

absorption was used to monitor HF product states obtained from a crossed-beam

experiment, it is necessary to average the integral cross sections of Eq. (4.1) over a

distribution of collision energies.  We obtain

! javj"v' j' = ! javj"v' j' (Ejavj )# exp  $ (Ecol $ E javj )
2 2a2  [ ]dEjavj (5.5)

We chose the Gaussian parameter a=0.170 kcal/mol, so that the Gaussian distribution

in Eq. (5.5) has a width (fwhm) of 0.4 kcal/mol, comparable to the spread in collision

energy in the experiments.
27

 We take the collision energy in Eq. (5.5) equal to 0.95

kcal/mol, which is the nominal collision energy in the experiments plus the same
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upward shift of 0.35 kcal/mol invoked earlier in this Section to compensate for the

excessively high barrier on the ASW PES.

We need, in addition, to average over the rotational distribution of the HD

reactants.  As in Eq. (5.3), we define

� 

! ja " # v # j =  pvj
vj
$ ! javj" # v # j   , (5.6)

where in the experiments of Nesbitt and co-workers, p00=0.9 and p01=0.1.
27

Table 5.1 Heats of formations "fH
0
gas (kJ/mol and kcal/mol) used to determine [Eq.

(5.4)] the zero-point corrected exothermicities (

� 

!Erxn ) of F+HD reactions.
a

Species kJ/mol kcal/mol

H2 0 0

HD 0.32 0.077

DF –275.52 -65.851

HF –272.55 -65.141

F 79.39 18.975

D 221.72 52.992

H 218.00 52.103

a.  M. W. Chase, Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys.

Chem. Ref. Data, Monograph 9, 1, (1998) (http://webbook.nist.gov).  1 kcal/mol =

4.184 kJ/mol.
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5.3 Results:  Product Translational Energy Distributions

In the discussion that follows we will compare the calculated product

translational energy distributions with those obtained experimentally by Liu and co-

workers.
23

 In the simulations it is possible to distinguish two reaction mechanisms.

The first is product formation by reaction of the ground spin-orbit state [F(
2
P3/2)].

This pathway is adiabatically allowed by reaction on the lowest electronically

adiabatic PES which correlates directly reactants, in their electronic ground state,

with HF (or DF) products in their electronic ground state (
1&+

).  The second

mechanism is reaction of the excited spin-orbit state [F*(
2
P1/2)] which is

adiabatically forbidden, because the excited spin-orbit state correlates adiabatically

only to HF (or DF) products in their first excited electronic ground state (
3'), which

is quite high in energy and therefore inaccessible for reactions at moderate collision

energies.
57,70

5.3.1 F+HD!DF+H

Using the simulation procedures described above we obtain the calculated

product translational energy distributions P(Etr) for the F+HD!DF+H reaction

shown in Fig. 5.3, at the nominal collision energies reported by Liu and co-

workers.
23

 These have also been compared with experiment (dashed lines).  The thin

and thick solid lines depict, respectively, the total contributions [Eq. (5.3)] of reaction

of the ground and excited spin-orbit states of the F atom and the relative contribution

of just the excited spin-orbit state.  Each panel contains a smaller inset panel that

compares in more detail the distribution of products with low translational energy.
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Figure 5.3 Comparisons of theoretical and experimental product translational energy

distributions for the F+HD!DF+H reaction at collision energies of 1.18, 2.00, 3.13

and 4.00 kcal/mol.  The dashed curves are the experimental results from Ref. 23, the

thin solid curve is the predicted distribution of Eq. (5.3), and the thick solid curve is

the predicted distribution but containing just the contribution of the reaction of

F(
2
P1/2), obtaining by limiting the sum in Eq. (5.3) just to ja = 0.5.
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Given the excellent agreement with experiment we reported for the overall

excitation functions of this channel, we are surprised here to find noticeable

disagreements in the translational energy distributions.  The most noticeable

disagreement is an underestimate of the higher rotational states of the DF(v' = 4)

products at all the experimental collision energies.  This is shown by an

underestimation of products with the lowest translational energy in Fig. 5.3.  A

similar underestimation of the higher rotational states of DF(v' = 3) products is also

apparent at the two higher [Ec = 3.13 and 4.00 kcal/mol] collision energies.  In

addition, the theoretical simulations consistently overestimate the formation of DF(v’

= 2 and 1) products at all collision energies.

To analyze these differences we refer to the vibrational-state-specific reactive

cross sections in the upper panel of Fig. 4.3 and compare these with experiment.

These quantities are defined by

� 

!v' (Ec ) = w ja
javj
" pvj  ! javj#v' j ' (E javj )

j '
"   . (5.9)

Because of the finite range of total energies subtended in the scattering calculation,

calculations of cross sections for reaction of the excited spin-orbit atom are possible

only for Ec ≤ 2.68 kcal/mol (see Table 4.2).  Because of the higher internal energy of

the F* reactant, for a given total energy, the collision energy is larger for F atoms in

their ground spin-orbit state.  Consequently, the range of total energies subtended in

the scattering calculations allow determination of cross sections for the adiabatically-

allowed ground-state reaction up to collision energies of 3.82 kcal/mol.  We can

compare with experiment at collision energies between 2.68 and 3.82 kcal/mol by

extrapolating the F*+HD cross sections, which make only a small contribution to the

total, and then adding these to the exact F+HD cross sections. The results of this

extrapolation are indicated by dashed lines in Fig. 4.3.
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The experimental values in Fig. 4.3 were taken from Figs. 6 and 8 of Ref. 23.

These values were normalized so that the overall experimental excitation function,

obtained by summing over all energetically-accessible product vibrational levels,

agreed as closely as possible with the total reactive cross section, again summed over

product vibrational levels.  The normalization procedure is discussed in more detail in

Ref. 23.

We note that there is a re-distribution of reaction flux such that the

underestimate in the higher rotational states of v'=4 (and, at higher energies, v'=3)

products is well compensated by an overestimate of the cross section for formation of

DF(v'= 2) and (not shown) v'=1.  As a result, when summed over product vibrational

state, the excitation functions agree perfectly with experiment.

We see in Fig. 5.3 that reaction of F(
2
P1/2) makes only a small contribution to

the F+HD! DF+H reaction.  Likely, this is one reason why earlier

calculations,
5,22,35

 which did not consider the reactivity of F*, agree well with

experiment for the F+HD!DF+H channel.  Also, as seen most clearly in the insets in

Fig. 5.3, the reactivity of F(
2
P1/2) makes little contribution to the formation of

products in v'=4 since this vibrational state is always energetically accessible for

reaction of F(
2
P3/2).
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Figure 5.4 Comparisons of theoretical and experimental product translational energy

distributions for the F+HD!HF+D reaction at collision energies of 0.40, 0.80, 1.18,

2.00 and 2.88 kcal/mol. The dashed curves are the experimental results from Ref. 23,

the thin solid curve is the predicted distribution of Eq. (5.3), and the thick solid curve

is the predicted distribution but containing just the contribution of the reaction of

F(
2
P1/2), obtaining by limiting the sum in Eq. (5.3) just to ja = 0.5.



93

5.3.2 F+HD ! HF+D

Product translational energy distributions for the HF channel are shown in Fig.

5.4, in a format similar to Fig. 5.3. The corresponding vibrational-state-specific

excitation functions are shown in the lower panel of Fig. 4.3.  The largest peak

corresponds, at each collision energy, to formation of products in v'=2.  At higher

translational energy, the much less intense product energy distributions correspond to

formation of products in v'=1.  As seen in Fig. 5.2, formation of products in v'=3 is

forbidden for Ec < 1.32 kcal/mol.  In the two lower panels of Fig. 5.4, which

correspond to Ec = 2.00 and 2.88 kcal/mol,
78

 the sharp peak at low translational

energy corresponds to products in v'=3.  At Ec = 0.80 and 1.18, appears a small hint

of this larger v'=3 peak.  At these collision energies, formation of v'=3 products is

allowed by reaction of F(
2
P1/2), in which the additional spin-orbit energy (1.2 kcal)

renders v'=3 products energetically accessible.

The insets in the second and third panels of Fig. 5.4 show that reactivity of the

spin-orbit excited state is responsible for virtually all the formation of HF products in

v'=3 products formation, which have the lowest translational energy.  As the collision

energy increases, the reaction of the spin-orbit ground state to yield HF(v'=3)

becomes energetically allowed.  This is manifested by the sharp increase in the

magnitude of the translational energy distributions, especially at low Etr.  At the

higher values of Ec the contribution of the adiabatically forbidden reaction of the

spin-orbit excited atom is less significant.

We observe that the oscillations predicted in the translational energy

distributions for HF products in v'=2 matches, almost exactly, the oscillations seen

experimentally.  This is a consequence of using the exact HF vibrational-rotation

energies and the exact reaction exothermicity in Eq. (5.4).  Since the HF vibration-

rotation energies are predicted well by the ASW PES, replacement of the
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experimental vibration-rotation energies values of ev'j' with the theoretically predicted

values causes little change in the predicted translational energy distributions.

We note that the simulations fails to reproduce the prominent spike near zero

translational energy for reaction at Ec = 0.4 kcal/mol.  This is marked by an arrow in

the top panel in Fig. 5.4.  Liu and co-workers assigned this peak to HF(v'= 3)

products formed by the reaction of F(
2
P1/2).  This discrepancy is a consequence of

the error of 0.68 kcal/mol in the exothermicity of the F+HD!FH+D reaction

predicted by the ASW PES. As shown in Fig. 5.2, the F*+HD!HF(v'= 3, j = 0)+D

channel becomes energetically accessible for Ec > 0.16 kcal/mol.  However, because

of this error in the exothermicity, in the theoretical scattering calculations this v'=3

channel becomes open only for Ec > 0.84 kcal/mol.  Although an upward shift of "Ec

= 0.35 kcal/mol has been applied in the simulations, to compensate for an excessively

high barrier on the ASW PES, despite this shift the v'=3 channel is still closed in the

theoretical simulations at Ec =0.4 kcal/mol. Consequently, at Ec =0.4 kcal/mol, the

theoretical simulations predict that reaction of F(
2
P1/2) will produce only products in

v'≤2, and therefore give any indication of the peak at threshold seen in the

experimental data.

We observe a large difference in the predicted as compared to experimental

intensities at low translational energies (Etr 2 0.5 kcal/mol), and hence associated

with HF products in v'=3, as seen in the Ec = 2.00 kcal/mol panel.  The inset to this

panel shows that in this range the F* reaction makes little contribution.  Examination

of Fig. 4.3 shows that for collision energies in the range 1.5 ≤ Ec ≤ 2 kcal/mol, the

scattering calculations, even when the collision energy is shifted up by an additional

0.35 kcal/mol, show very little reactivity into HF(v'=3).  Thus the large

underestimation of the low translational energy peak in the panels for Ec = 2.00 and

(too a lesser extent) 2.88 kcal/mol can be attributed to errors in the predicted

dynamics of reaction of spin-orbit ground state F atom.
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We observe good, but not perfect, agreement between the simulations and

experimental product translational energy distributions over the range of values of Etr

which correspond to HF products in v'=2.  As can be seen in Fig. 5.4, reaction of the

excited spin-orbit state makes only a very small contribution here.  Consequently, we

conclude that the disagreement is an indication of an imperfect prediction of the

prediction of product formation by the adiabatically-allowed reaction of ground-state

F.

Looking at Fig. 4.3, we see that for production of v'=2 the simulations

overestimate the vibration-specific excitation functions for collision energies < 3

kcal/mol.  In particular, the calculations overestimate the height of the resonance peak

at Ec

� 

!  0.5 kcal/mol. It is for this reason that the simulations overestimate the product

translational energy distributions in the range of Etr = 4-10 kcal/mol for collision

energies of 0.8, 1.18, and 2.00 kcal/mol.  This overestimation is true in particular for

large peak near Etr =10 kcal/mol, which corresponds to production of HF in low

rotational levels of the v'=2 manifold.

Because of the finite range of energies sampled in the scattering calculations,

the vibration-specific excitation functions were extrapolated for Ec > 2.68 kcal/mol,

as described in the section 5.3.1.  The extrapolated simulated excitation functions

drop below the experimental values for HF(v'=2) at higher energies.

In summary, then, we see that although the reactivity of the spin-orbit excited

(F*) atom is small, it does provide the only mechanism for the formation of HF

products in v'=3 when this vibrational manifold is not energetically accessible by

reaction of the spin-orbit ground state atom.  As the collision energy increases to the

point where reaction of F(
2
P3/2) is energetically allowed, this adiabatically allowed

mechanism rapidly dominates.  Consequently, deviations between experiment and

theory for the product translational energy distributions associated with energetically

allowed product channels (HF in v'=2 and v'=1), reflect inadequacies in the
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simulation of the reaction dynamics on the lowest (adiabatically allowed) potential

energy surface.

5.3.3 Statistical weighting of the ground and the spin-orbit excited states

In our simulation we assumed that the populations of the F(
2
P3/2) and

F(
2
P1/2) states in the beam are in thermal equilibrium at the temperature (600K)

which characterizes the speed of the F atoms in the beam source.
23

  This leads to a

prediction of a relative population of 16% in the spin-orbit excited state.

Unfortunately, there is no direct experimental measurement of this population ratio.
23

From Fig. 5.4 we see that at collision energies of 0.8 and 1.18 kcal/mol, the HF

products with translation energy < 1 kcal/mol are predicted to arise almost

exclusively from reaction of F* atoms, while the products at higher translational

energy are due to reaction of spin-orbit ground-state atoms.  The overall excellent

agreement with the entire range of product translational energy distributions for these

two collision energies, strongly suggests that the thermal population ratio (0.16:0.84)

is an excellent predictor of the atom populations in the molecular beam.  It is also

clear that the assumption of a purely statistical ratio based on the electronic-state

degeneracy (0.33:0.67) will substantially overestimate the F(
2
P1/2) reactivity.  If this

latter ratio were assumed, the product translational distributions for Etr ≤ 1 kcal/mol

in the second and third panels of Fig. 5.4 would be predicted to be substantially

greater (by roughly a factor of two) than seen experimentally.
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Figure 5.5 Comparison of simulated HF(v'=3) rotational distributions with those

obtained by Nesbitt and co-workers (Ref. 27, closed circles) at a nominal collision

energy of 0.6 kcal/mol (see Fig. 9 of this reference).  The simulated distributions

(open circles) were obtained from cross sections calculated over a range of collision

energies, shifted by +0.35 kcal/mol, and then averaged over a Gaussian distribution

with fwhm=0.4 kcal/mol, and further averaged over a distribution of rotational

populations of the HD reactant identical to those reported in Ref. 27.  The open

squares display similar simulated distributions, but with an energy shift of +0.68

kcal/mol.  The upper abscissa corresponds to the total energy, measured with respect

to F(
2
P3/2)+HD(v=0,j = 0).  This is the same energy scale as shown in Fig. 5.2.  The

lower abscissa corresponds to the initial relative energy of the F*+HD reactants.  The

dashed curve indicates the width of the collision energy distribution (centered at 0.6

kcal/mol), taken from Ref. 27.
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5.4 Results:  Product Rotational Distributions

Figure 5.5 displays the simulated product rotational distributions for the HF

products in v'=3, following reaction of F+HD at Ec = 0.6 kcal/mol.  These are

compared with the experimental results of Nesbitt and coworkers.
27

 At this nominal

collision energy, only the reaction of the excited spin-orbit atom can produce HF

products in v'=3.
23,27

 Since the collision energy distribution is negligible for Ec ≥ 1

kcal/mol (Fig. 5.5), and the spin-orbit splitting in the F atom is 1.16 kcal/mol, the

contribution of the adiabatically allowed F+HD reaction can be neglected with

confidence.

We observe in Fig. 5.5 a reasonable agreement between the simulated

rotational distributions and the results of the experiment.  Notwithstanding the

considerable error bars in the experimental data, the simulated distributions are

noticeably colder than seen experimentally.  Because of the ab initio value of the

exoergicity is 0.68 kcal/mol too low (Fig. 5.2), the (v'=3, j' =3) level of HF is

inaccessible for collision energies below 1.47 kcal/mol in reaction of F* with HD(j =

0) and below 1.21 kcal/mol in reaction of F* with HD(j=1).  Even when our shift of

0.35 kcal/mol is taken into account, the range of collision energies sampled in the

experiments of Nesbitt and co-workers is still too low to allow significant population

in HF(v'=3) rotational levels greater than j' = 2.

If we shift the collision energy up by 0.68 kcal/mol, to compensate,

somewhat, for the error in the calculated exothermicity, we obtain a somewhat hotter

rotational distribution.  This is shown by the open squares in Fig. 5.5.  However, even

with this correction, the distribution is colder than seen experimentally, although

certainly within the error bars of the experiment.
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5.5 Discussion And Conclusion

One major shortcoming in the present treatment is our shift of the collision

energy in the theoretical simulations by 0.35 kcal/mol above the experimental value.

This was done to compensate, albeit somewhat artificially, for an overly high barrier

on the ASW PES. Ongoing ab initio studies
26

 indicate the barrier on the ASW PES is

roughly 0.25-0.30 kcal/mol too high.  The remaining disagreements with the

experimental translational energy distributions, which are primarily due to errors in

the description of the adiabatically-allowed reaction of the ground spin-orbit state,

suggest that this simple shift in collision energy is not sufficient to correct fully for

errors in the ASW PES. In addition, recently Skodje, Mebel and co-workers have

used ab initio calculations to correct artifacts in the SW PES in the van der Waals

region in the product arrangement.
79

 It is clear that a more accurate, global set of

PESs is necessary to improve our ability to simulate well the reaction of F with

hydrogen and its isotopomers.

Another drawback is the underestimation of the reaction exothermicity in the

ab initio calculations of Stark and Werner, published nearly a decade ago.
12

 In the

determination of the product translational energy distributions this is compensated for

by use of the experimental exothermicity in the calculation of the product internal

energies.  However, in the comparison with the experimental HF(v'=3) product

rotational distributions, especially for j' > 2, it is not clear whether the observed

disagreement is due to this error in the calculated exothermicity or due to subtle

inaccuracies in the ab initio PESs.

One might ask whether an improved ab initio calculation will change the non-

adiabatic electronic couplings and, by consequence, alter the degree of predicted

nonadiabaticity in the reaction. In a recent investigation of the Cl+H2 reaction

Alexander and co-workers
67

 find that among three possible mechanisms for non-

adiabatic transitions (electrostatic mixing between the reactive and repulsive
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potentials of A' symmetry, Coriolis coupling, and spin-orbit coupling), it is the latter

which dominates.  Since the nonadiabatic transitions occur fairly far out in the

reactant arrangement, where the spin-orbit splitting is virtually identical to its

asymptotic value in the Cl atom, it is unlikely that small changes in the potential

energy surfaces will alter the strength of the spin-orbit coupling.  Likely the same

conclusion will apply to the F+H2 and F+HD reactions, so that improvements in the

PESs will have little effect on the degree of nonadiabaticity in the reaction. In other

words our conclusion on the magnitude and relative importance of the reactivity of

the spin-orbit excited F atom as well as the agreement with experiment will be

unaffected even if the PESs are subjected to small-scale modifications.

One major limitation of any crossed-beam experiment is the inability to

measure absolute cross sections.  However, it might be possible to extract the relative

reactivity of F as compared to F*, as Liu and co-workers have done for the similar

Cl+H2 reaction.
80

 As demonstrated in the first three panels of Fig. 5.4, at low

collision energies, the ratio of the HF product distributions at low translational

energy, which arise primarily by reaction of F* with those at higher translational

energy, which arise predominately by reaction of ground-state atoms, can reveal the

relative reactivity of the ground and spin-orbit excited channels.  This relative

reactivity is well predicted by the simulations presented here.  We believe this

indicates that our scattering calculations provide an accurate estimate of the relative

efficiency of the non-adiabatic reaction of F(
2
P1/2) as compared to the adiabatically-

allowed reaction of F(
2
P3/2).

In this Chapter we have presented the results of calculations of the product

translational energy distribution functions and vibrational-specific excitation

functions for the F+HD!FH+D and FD+H reactions, as well as product rotational

distributions for the F+HD!FH(v'=3)+D reaction.  From the detailed comparisons

we find that theory and experiment agree well in describing the importance of the
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reactivity of the spin-orbit excited atom.  The major differences between the

simulated and experimental product translational energy distribution functions are

associated with errors in the predicted reactivity of the ground-spin-orbit-state atom

F(
2
P3/2) rather than F(

2
P1/2).  In the case of the HF(v'=3) product rotational

distributions it is the errors in the calculated reaction exothermicity which limit the

accuracy of the simulation.

Our analysis leads to the following conclusions. First, there is clear evidence

of the reactivity, albeit small, of F(
2
P1/2).  This is particularly true at collision

energies low enough that reaction of F(
2
P3/2) to form HF(v'=3) is energetically

forbidden. For collision energies and for product channels where reaction of the

ground-spin-orbit state is energetically allowed, this process dominates the

adiabatically forbidden reaction of the excited spin-orbit state.  The simulations do

not lead to perfect agreement with experiment, due to residual inaccuracies in the

existing ab initio PESs, in particular the height of the barrier and the predicted

exothermicity.  The discrepancies between theory and experiment are not artifacts of

an improper treatment of nonadiabaticity in this reaction.  Consequently, we

encourage further refinement and improvement of global FH2 potential energy

surfaces.  Finally, comparison of the simulation product translational energy

distributions with experiment indicates strongly that the relative population of the two

spin-orbit states of the F atom in the beam is well predicted by a thermal equilibrium

at the translational temperature of the halogen.
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6 Summary

In this dissertation we have presented the quantum mechanical study of the

open-shell character of the F atom in the F+H2 and F+HD reactions. The calculations

involved multi-state [Alexander-Stark-Werner (ASW)] potential energy surfaces

(PES) and included an accurate treatment of the non-adiabatic couplings among them.

Overall, except at low collision energies, the reactivity of F spin-orbit excited state

(F*) is small, at most ~25% of the reactivity of the F ground state. After taking into

account the (16%) fractional population of F* in the F beam under typical

experimental conditions, the F* reactivity becomes negligible, contributing at most

~5% of the reaction cross section. As a result of this small reactivity, we find that

reaction from the F* cannot account for the remaining discrepancies [Fig. 3.8 for the

F+H2 reaction and Fig. 4.1 for the F+HD reactions] between the experiment and the

calculations on the adiabatic SW PES.

Despite the low overall reaction probability of the excited spin-orbit state,
1
 we

have shown in the studies of the F+HD ! HF+D reaction (Chapter 4) that the excited

spin-orbit state is responsible for noticeable features in the reaction (Chapter 4). For

this reaction, the integral cross section for reaction of the ground spin-orbit state of F

shows a strong resonance feature at low collision energies,
22

 but that of F* does not.

As a result, the exact shape of the resonance feature in the energy dependence of the

overall reaction cross section sensitively depends on the amount of F* present in the

beam.

From our accurate prediction of the relatively small contribution of F*

reactivity in the F+HD reaction (Chapter 5), we find that the discrepancies between

theory and experiment, on the intensity of resonant structure at Ec ~0.5 kcal/mol and

on the small bump of the HF product excitation functions at Ec between 1.5 and 2.0
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kcal/mol, are not artifacts of an improper treatment of nonadiabaticity in this reaction.

Therefore, the explanation of these discrepancies will reply on further investigation

for the reaction on the lowest electronic state. Given the fact that there remain

residual inaccuracies in the existing ab initio PESs,
24-26

 in particular the height of the

barrier, we consequently encourage further refinement and improvement of global

FH2 potential energy surfaces.

The most surprising and significant effect associated with the F* is the

consequence of non-adiabatic couplings accompanying the treatment of the spin-orbit

couplings. As discussed at length, the approach of an F atom in a 
2
P electronic state

to molecular hydrogen gives rise to three PESs (1
2
A', 2

2
 A', and 1

2
 A") (Fig. 2.4). The

existence of spin-orbit and other non-adiabatic couplings among these PESs offer

additional reaction pathways for the lowest electronic state, which are not present in a

single-electronic-state treatment of the dynamics. These couplings alter the F+H2

reaction dynamics. As described in Chapter 3, our calculations show that non-

adiabatic couplings greatly reduce the backward scattering of HF products. After

rescaling, the reduced backward scattering in the CM frame leads to enhanced

forward and sideways scattering in the simulated laboratory ADs. Consequently, the

three-state calculations (ASW PESs) are in better agreement with the classic

molecular beam experiments of Neumark et al. Since backward scattering

corresponds to collisions at small impact parameter, in future work, it would be

worthwhile to investigate whether there is an associated increase in inelastic

scattering at small impact parameters.

One major shortcoming in the present study is our shift of the collision energy

in the theoretical simulations by 0.35 kcal/mol above the experimental value.  This

was done to compensate, albeit somewhat artificially, for an overly high barrier on

the ASW PES. Ongoing ab initio studies
26

 indicate the barrier on the ASW PES is

roughly 0.25-0.30 kcal/mol too high. Comparisons between the SW and HSW
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reaction probability for the F+H2 reaction (Fig. 4.5) and among the SW, ASW and

experimental excitation functions for the F+HD reaction  (Figs. 4.2 and 4.4) suggest

that the best (and simplest) way to compensate for the overestimation of the reaction

barrier height on the ASW PES is to shift the collision energy upward by ~0.35

kcal/mol. Although this gives rise to satisfactory comparison with the experiment, we

find some discrepancy still exists in the HF product channel. Because the effect of F*

reactivity is small over the range of collision energy probed in the experiments, the

remaining disagreement with experiment reflects residual inaccuracies in the ASW

and SW PESs, which were based on ab initio calculations which are now nearly 10

years old.

Recent test calculations
26

 suggests that it is now possible to decrease,

substantially, the errors in the estimation of the F+H2 reaction barrier and reaction

exoergicity.  Determination of a new, global, multi-state PES with similar

methodology will provide the means for a quantitative understanding of the F+H2 and

F+HD reaction dynamics.

Through this dissertation, we find that the F* reactivity is either too small

(Chapters 4 and 5, F+HD reactions) to make a significant contribution to the reaction

or non-detectable (Figs. 3.9-3.10, F+H2 reaction).  Notwithstanding, experiment by

Liu and co-workers
81

 show that the DCS for the F*+HD ! HF(v'=3)+D reaction are

essentially forward scattered, but the DCS for the reaction of F is more evenly

distributed, at low collision energies (Ec < 2.0 kcal/mol). Because that the spin-orbit

excited state lies 1.16 kcal/mol higher than the ground state (Fig. 5.2) and the energy

threshold for F+HD !  HF(v'=3)+D reaction is 1.32 kcal/mol (Fig. 5.2), the F*

reactivity for the formation of HF(v'=3) products is comparable to the reactivity of F

in this low energy range, as shown in the lower panel of Fig. 4.3 (HF, v'=3).

Giving the fact that the DCS of HF(v'=3) products from reaction of F*+HD is

dominated by forward scattering and that its intensity is comparable to that of F in the
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energy range Ec < 2.0 kcal/mol, we would expect the F* reaction to make a

significant contribution to the forward scattering peaks in this energy range.  Perhaps

this is the reason why earlier calculations on the SW PES at 1.35 kcal/mol failed to

reproduce the forward scattering feature of the HF(v'=3) products.
35

 Future

calculations of DCSs for the F+HD reaction in this energy range will certainly predict

an important role for the F* reaction.
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