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Department of Psychology 
 
 
Over the past century, multiple tests measuring musical ability have been developed, 

and research has been investigating individual differences in musical ability to answer 

questions about the components of musical ability and their dissociations in amusic 

patients, the innate vs. acquired nature of musical skill, and the potential transfer from 

musical training to other abilities. However, there has been little consensus on what 

exactly constitutes musical ability and how to best measure this construct. Previous 

research has used a variety of tasks assessing mainly perceptual skills (e.g., 

same/different judgments in sequentially presented melodies), and outcomes from 

these tasks range from single indices (e.g., pitch ability) to composite scores from 

multiple tasks (e.g., pitch, rhythm, loudness, timbre). The current study uses 

individual differences data from 15 representative musical ability tasks (including 

perception and production measures) to assess the unity and diversity of musical 

ability, and uses the resulting comprehensive latent measure of musical ability to 

evaluate previously theorized links between musical ability and individual differences 



  

in musical experience, working memory, intelligence, personality factors, and socio-

economic status. Results from latent variable model comparisons suggest that musical 

ability is best represented by related but separate pitch, timing, perception, and 

production factors. Consistent with previous research, a latent measure of musical 

ability was positively related to musical training, working memory, and intelligence; 

in contrast, musical ability was not related to openness to experience or socio-

economic status. 
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Chapter 1: Introduction 

Music has been around for centuries: the oldest instrument that has been 

uncovered is a bone flute thought to be more than 30,000 years old (Conard, Malina, 

& Munzel, 2009), and humans developed the capacity to vocalize and possibly sing 

thousands of years prior (Dediu & Levinson, 2013). Psychology has a long history of 

working to measure individual differences in cognitive abilities (as well as some 

controversy over what those individual differences mean, e.g., Murdoch, 2007). 

Although less publicized than intelligence testing, measures of musical ability have a 

similar history. Furthermore, individual differences in music (as well as other 

cognitive functions) are again attracting growing interest, fueled both by interest in 

cognitive transfer and understanding the nature of perceptual and cognitive abilities.  

Musical ability has been conceptualized in a number of ways over the past 

few decades. In fact, in a study where participants completed the phrase “Musical 

ability is:” multiple categories emerged, such as generative skills (e.g., playing an 

instrument, singing, and composing music), receptive responses (e.g., listening, 

understanding, appreciating, and evaluating music music), as well as the origins of 

music ability (e.g., its innate and learned aspects) (Hallam & Prince, 2003). Although 

most researchers acknowledge these distinctions, previous terminology has mainly 

emphasized the innate nature of musical ability, which has been given different terms 

by different researchers. For example, musical capacity has been defined as the 

“inborn psycho-physic and mental capacities distinguished from skills acquired in 
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training” (Seashore, 1915, p. 129), musical ability has been defined as the “potential 

for learning music before formal training and achievement” (Law & Zentner, 2012, p. 

2), and musical aptitude is thought to be the “natural music abilities or innate 

potential to succeed as a musician” (Schellenberg & Weiss, 2012, p. 499).  

The goal of the earliest test of musical ability was to assess children’s innate 

aptitude for music lessons and whether or not they should pursue a career in the arts 

(i.e., Seashore’s Measures of Musical Talents, Seashore, 1919; 1938; 1960). It is 

worth noting that Seashore’s tests were actually developed to investigate the heredity 

of musical ability, which dovetailed with his interest in eugenics (e.g., see Koza, 

2007; Shuter, 1966; Stanton, 1922). Currently, the most prevalent tests used are the 

series of musical ability tests created by Edwin Gordon (1965; 1989). These tests are 

usually used in the field of music education to determine music students’ strengths 

and weaknesses, determine who may have the aptitude for long-term music lessons, 

and are also typically used as a covariate in research examining effects of music 

training on non-musical abilities (i.e., to control for the issue that some participants 

may be predisposed to be good at music, Bugos, Perlstein, McCrae, Brophy, & 

Bedenbaugh, 2007; Bugos & Kochar, 2017). This approach makes sense if musical 

ability is an innate skill; indeed, Carl Seashore argued that “musical talent … is a gift 

of nature -- inherited, not acquired” (Seashore, 1915, p. 129), and there is evidence 

that music ability is heritable (Mosing et al., 2014; Tan, McPherson, Peretz, Berkovic, 

& Wilson, 2014). 

However, others suggest that musical ability is primarily an experience-based 

effect. For example, Shinichi Suzuki claimed that “there is no such thing as an innate 
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aptitude for music” (Hermann, 1981, p. 137), and “any child has seeds of ability 

which can be nurtured as far as the capacity of the brain will allow” (Suzuki, 1981, p. 

2). Previous studies suggest that experience does play an important role in acquiring 

musical expertise (e.g., Chen et al., 2008; Ericsson, Krampe, & Tesch-Romer, 1993), 

and that the amount of musical experience predicts musical ability (e.g., Peretz et al., 

2013; Slevc, Jaeggi, Buschkuehl, & Davey, 2016) although the directional 

relationship is unclear. Additionally, current work has tended to focus more on 

experience, in part because of relationships between musical training and other 

cognitive abilities like language (Slevc & Miyake, 2006), executive functions (Okada 

& Slevc, 2018; Slevc et al., 2016), and intelligence (Schellenberg, 2004).  

More recent work acknowledges that one’s musical skill may be determined 

both by an innate potential to succeed in music and experience/practice in musical 

training, and attempts to measure individual differences in musical skills reflecting 

both innate and learned aspects. Again, terminology for this varies from study to 

study. For example, musical competence has been defined as “listeners’ ability to 

perceive, remember, and discriminate musical melodies and rhythms” and is “meant 

to be neutral with respect to the relative roles of nature and nurture” (Swaminathan & 

Schellenberg, 2018, p. 1), and musical ability is conceptualized as performance on a 

set of perceptual judgments (Law & Zentner, 2012; Wallentin et al., 2010). Like most 

previous studies, the current study does not attempt to disentangle innate versus 

learned musical abilities, but assumes that musical ability exists (i.e., reflecting some 

combination of pre-dispositional and experiential factors) and that tests measuring it 
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are capturing variation specific to the various components of musical ability.1 In sum, 

although different aspects constituting musical ability have been studied extensively 

and multiple tests measuring musical ability have been developed, conclusions about 

musical ability are limited by inconsistent definitions and the use of only single (or a 

couple) perceptual measures of musical ability. 

Aspects of Musical Ability 

Models of music processing vary in how they conceptualize various musical 

factors. Outlined below are relevant musical terms that will be used to discuss the 

models. (Note that following most studies on music, this study focuses solely on 

Western tonal music, although it will clearly be important to pursue these issues in 

non-Western musical traditions as well).  

The basic unit of music is pitch. The perception of pitch is based on the 

periodicity of soundwaves, with sounds with greater frequency (measured in Hertz 

(Hz), or cycles per second) sounding higher pitched than those with lower Hz. 

Multiple sequential pitches form melodies, and multiple pitches played 

simultaneously (i.e., chords) form harmony (see Oxenham, 2013, for a review). 

Another relevant aspect of music is timing, which is represented in tempo, meter, and 

rhythm. In music, tempo refers to the rate or pace of the music, and is also 

conceptualized as the time interval between beats. Meter refers to the organization, or 

1 Here, musical ability is assumed to be variable and influenced by experience even 
though it is described as a fixed ability (due to measurements only capturing a fixed 
snapshot of one’s ability). 
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regular pattern of repeated beats (usually indicated by a time signature such as 4/4). 

Lastly, rhythm deals with the temporal organization of different patterns of notes 

(noises) and rests (silences) (see McAuley, 2010, for a review).  

Most models of music processing distinguish between at least some of these 

aspects of music. Most commonly, models tend to distinguish between pitch and 

timing/rhythmic processing and/or between perception and production of music, 

detailed below.  

 

Pitch vs. Timing Processing 

Most models of musical processing posit that musical processing is modular, 

and separate from other general types of auditory processing (e.g., language 

processing, Peretz & Coltheart, 2003, but see Koelsch et al., 2002; Koelsch & Siebel, 

2005; Koelsch, 2011). Within Peretz and Coltheart’s (2003) modular musical 

processing model (see Figure 1), there are thought to be separate pitch and timing 

processing modules, which operate in parallel with one another (Peretz, 2001; Peretz 

& Coltheart, 2003). The pitch module processes pitch, melodic contour, and intervals 

within a melody or harmony, and the temporal module processes the timing 

component of music, which encompasses meter and rhythm processing (Peretz & 

Coltheart, 2003).  
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Figure 1. Model of music processing, adapted from Peretz & Coltheart (2003). 
Peach-colored boxes specify modules specific to pitch processes and blue boxes 
specify modules specific to timing processes.  
 

Evidence for the separability between pitch and timing abilities comes from 

multiple studies on congenital amusia, a lifelong deficit in music processing that is 

estimated to affect around 2-4% of the population (Peretz, Champod, & Hyde, 2003; 

Peretz, Cummings, & Dubé, 2007; Peretz et al., 2013), as well as evidence from 

acquired amusia (i.e., amusia resulting from stroke or other brain injury). Even 

though individuals with congenital amusia have normal hearing abilities, they have 

trouble recognizing familiar melodies, recognizing poor singing, and do not show 

sensitivity to dissonant or out of key chords (Peretz et al., 2007). This “tone deafness” 

characterizes most amusics, whose processing deficits show a dissociation between 

impaired musical pitch processing, but intact rhythm processing (Ayotte, Peretz, & 

Hyde, 2002; Peretz et al., 2007). The opposite pattern has also been found, with some 
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amusics having intact pitch processing, but deficient rhythm processing (e.g., “beat 

deafness,” or poor discrimination between differing rhythms and poor reproduction of 

rhythms, Alcock, Passingham, Watkins, & Vargha-Khadem, 2000; Phillips-Silver et 

al., 2011). The neuropsychological literature, as a whole, suggests fractionated 

musical abilities; however, it is hard to draw firm conclusions on patient data alone 

because it is unknown if the structure of these abilities are mirrored in the general 

population. Furthermore, it is unknown if amusic patients have developed strategies 

to overcome some of their deficits or if the patients included in these studies are at the 

extreme ends (i.e., only those with very noticeable deficits self-select into these 

studies). In fact, recent evidence suggests that with pitch training, amusic patients can 

show and sustain improvements in pitch and melody discrimination ability, leading 

them to no longer be classified as amusic (Whiteford & Oxenham, 2018). And 

while tests of musical ability have been developed to find cases of amusia (e.g., The 

Montreal Battery of Amusia (MBEA), Peretz, 2001; Peretz et al., 2003, and the 

Montreal Battery of Evaluation of Musical Abilities (MBEMA), Peretz et al., 2013), 

most are intended for normally functioning participants. 

 

Perception vs. Production Processing 

Even when looking at the same construct (e.g., pitch or timing ability), the 

demands are different with perception and production. In perception, the goal is to 

extract information regarding pitch and timing from a continuous auditory signal, and 

in production, the goal is to translate an intended pitch and/or rhythm into motor 

movements to produce an auditory signal.  
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 Most tasks measuring musical ability focus primarily on perceptual abilities. 

To assess musical perception, participants are usually tasked in perceiving whether 

two stimuli are the same or different, or they complete some sort of auditory 

discrimination threshold task (e.g., Gordon, 1965; 1989; Peretz et al., 2003; 2012; 

Wallentin, Nielsen, Friis-Olivarius, Vuust, & Vuust, 2010; Law & Zentner, 2012). 

During musical production, tasks vary from having the participant sing and imitate 

different pitches (e.g., Alcock et al., 2000; Pfordresher & Brown, 2007; Pfordresher, 

Brown, Meier, Belyk, & Liotti, 2010) to tapping along with metronome beeps or 

songs (e.g., Dalla Bella et al., 2017; Fujii & Schlaug, 2013; Iverson & Patel, 2008). 

Interestingly, some amusic patients have shown both intact ability for pitch 

perception and pitch production, but showed deficits in both rhythm perception and 

rhythm production (Alcock et al., 2000). But in other cases, there seems to be a 

dissociation between perception and production abilities for both pitch and timing. 

For example, Dalla Bella and colleagues (2017) administered four perceptual tasks 

(duration discrimination, anisochrony detection with pure tones, anisochrony 

detection with music, and the Beat Alignment Test) and five production timing tasks 

(unpaced tapping, paced tapping to isochronous rhythm, paced tapping to music, 

synchronization-continuation, and adaptive tapping where the tempo fluctuated), and 

found that although some of the perception and production tasks were significantly 

correlated with one another, many were not. A similar mixed pattern of results was 

found in another study assessing timing perception and production, suggesting a 

dissociation between timing perception and production abilities (Fujii & Schlaug, 

2013). These results fall in line with similar dissociations in pitch perception and 
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pitch production abilities (e.g., Dalla Bella, Berkowska, & Sowinski, 2011; Loui, 

Guenther, Mathys, & Schlaug, 2008), but other research has shown that pitch 

perception and pitch production performance scale with one another (Amir, Amir, & 

Kishon-Rabin, 2003). Further, Norris (2000) found that performance on a pitch 

production test correlated with only some pitch perception tasks and varied based on 

the age group studied. Although this literature suggests that perception and 

production abilities may be separable, it is difficult to draw firm conclusions given 

the mixed findings and that most previous tests of musical ability only measure 

musical perception abilities and do not consider musical production abilities. 

 
 

The Role of Perceptual Acuity 

There is also the possibility that any individual differences in musical ability 

may be due to more general perceptual abilities/auditory acuity. Western tonal 

harmony is confined to discrete pitches that differ by 100 cents (or a semitone); 

however, there is variation in performance on more fine grained perceptual acuity 

tasks (e.g., pitch discrimination tasks that find thresholds smaller than 100 cents and 

duration discrimination tasks; Kidd, Watson, & Gygi, 2007). Previous work suggests 

that some general auditory acuity tasks may not be correlated with more complex 

musical timing perception tasks (e.g., Dalla Bella et al., 2017); however, other work 

finds that musical experience/ability is associated with advantages in early perceptual 

processes (e.g., the brainstem frequency following response; Bidelman, Gandour, & 

Krishnan, 2010; Kraus & Chandrasekaran, 2010).  
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Abridged History of Musical Ability Tests 

Some previous tests of musical ability correspond to these theoretical 

divisions (e.g., pitch/timing distinction), but most contain subtests that the authors 

themselves deemed important, which do not directly appeal to theory (see Table 1 for 

a summary). For example, Seashore’s Measures of Musical Talents (Seashore, 1919) 

contains several perceptual subtests tapping different aspects of musical ability and 

were later revised to contain subtests of pitch, rhythm, loudness, time, timbre, and 

tonal memory (Seashore, 1960). Seashore argued that each subtest measured one 

aspect of musical ability individually, and that these measures should not be 

combined into one individual musical aptitude score, but should be considered as a 

whole to describe one’s overall musical aptitude profile.  

Wing’s Tests of Musical Aptitude (Wing, 1948; later revised in 1962) rejected 

Seashore’s view that each subtest should not be combined to form one musical 

aptitude score, and developed a test consisting of seven perceptual subtests, whose 

scores were combined to yield an overall score of musical ability. The first three tests 

were tests of pitch perception ability, and the last four were subjective tests of 

judgments of musicality (i.e., choosing which of two performances of the same piece 

had the better: rhythmic accent, harmonizations, loudness, or phrasing).  

Edwin Gordon first developed the Musical Aptitude Profile (MAP, Gordon, 

1965), which focused on audiation, which he defined as “the foundation of music 

aptitude…the ability to hear and to comprehend music for which the sound is not 

physically present (as in recall), is no longer physically present (as in listening), or 

may never had been physically present (as in creativity and improvisation)” (Gordon, 
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1995, p. 8). The MAP contains seven subtests tapping tonal imagery (same/different 

melody and harmony tasks), rhythm imagery (same/different tempo and meter tasks), 

and musical sensitivity (determining which passage had the best phrasing, balance, 

and style). He later devised the Primary Measures of Music Audiation (PMMA), 

Intermediate Measures of Music Audiation (IMMA), and Advanced Measures of 

Music Audiation (AMMA), which all contained rhythmic and melodic 

same/difference judgments of various lengths suitable for different age groups 

(Gordon, 1989; 2001). Like the other previous tests, Gordon’s assessed only musical 

perceptual abilities.  

The Montreal Battery of Evaluation of Amusia (MBEA, Peretz, 2001; Peretz 

et al., 2003) was designed to evaluate perceptual music deficits in adults, (rather than 

to measure individual differences in a typical population) and contains six subtests 

measuring pitch and rhythm abilities, in which same/different judgments are made. In 

order to evaluate music deficits in children, the Montreal Battery of Evaluation of 

Musical Abilities (MBEMA, Peretz et al., 2013) was developed, with shorter stimuli 

and an overall shorter testing time. The MBEMA also contains four similar subtests 

measuring pitch and rhythm abilities, and the Abbreviated MBEMA contains two. 

Both the MBEA and MBEMA were designed to measure one’s overall/total musical 

ability score and to determine whether someone is amusic (i.e., receiving a score 

below 2SD of the mean). 

A similar test designed to measure variation in musical ability is the Musical 

Ear Test (Wallentin et al., 2010), which consists of rhythmic and melodic 

same/different judgments. Finally, a more recently developed test of musical 
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perception ability is the Profile of Music Perception Skills (PROMS, Law & Zentner, 

2012), which contains subtests of same/different judgments of multiple facets of 

music including melody, rhythm, rhythm-to-melody (i.e., recognizing a rhythmic 

pattern when it is part of a melody), accent, tempo, pitch, timbre, tuning, and 

loudness. Shorter versions of the PROMS have also been created and validated to 

facilitate testing time constraints. The Shortened PROMS (PROMS-S) includes the 

same subtests as the PROMS, but with fewer items (Zentner & Strauss, 2017), the 

Brief PROMS contains only the melody, accent, tempo, and tuning subtests (see 

Kunert, Willems, & Hagoort, 2016 for a psychometric evaluation of the Brief 

PROMS), and the Mini PROMS is an abbreviated version of the Brief PROMS 

(Zentner & Strauss, 2017). Table 1 summarizes the various aspects of musical 

abilities assessed by these different tests. All assume at least some different aspects of 

musical abilities, and most include at least distinct tests for pitch-based and timing-

based abilities. Interestingly, none of these musical ability tests contain tasks 

measuring production. Furthermore, the PROMS Pitch and Tuning subtests (Law & 

Zentner 2012; Zentner & Strauss, 2017) are the only ones that look at more fine 

grained auditory acuity (i.e., at differences smaller than a semitone). Notably, some of 

these tests (i.e., Gordon’s ability tests) require licensing and purchase, whereas others 

are made available for free (or by request) (e.g., Law & Zentner, 2012; Peretz et al., 

2003; Peretz et al., 2013; Wallentin et al., 2010; Zentner & Strauss, 2017). 
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Table 1 
Summary of Selected, Commonly-Used Previous Musical Ability Tests 

Note. Table adapted from Law, 2012 
 

Musical Ability’s Relationship with Other Abilities 

In addition to assessing a model of musical ability, another aim of this study 

was to assess musical ability’s relationship with other factors that are likely relevant 

to musical ability. These include musical training, working memory, intelligence, 

personality (specifically, openness to experience), and socio-economic status (e.g., 

Slevc et al., 2016; Swaminathan et al., 2017; Swaminathan & Schellenberg, 2018). 

By assessing these relationships with a more comprehensive battery of musical ability 

measures, these comparisons aimed to provide a clearer picture of the robustness of 

these relationships. 

One variable commonly investigated in tandem with musical ability is 

musicianship, or amount of musical training (i.e., formal music lessons). Musical 

training’s relationship with various non-musical cognitive abilities has received much 

Subtests Seashore Wing
Gordon 
(MAP)

Gordon 
(AMMA)

Peretz (MBEA, 
MBEMA)

Wallentin 
(MET) 

Law (PROMS, 
PROMS-S)

Melody x x x x x x
Rhythm x x x x x
Pitch x x x
Loudness x x x
Accent x x
Tempo x x
Timbre x x
Phrasing x x
Duration/Time x
Chord Analysis x
Harmony x x
Meter x
Style x
Balance x
Tuning x
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interest, stemming from the possibility of benefits (i.e., transfer effects) of music 

lessons (for reviews, see Benz, Sellaro, Hommel, & Colzato, 2015; Okada & Slevc, in 

press; Schellenberg & Weiss, 2013). Musical ability has been shown to be related to 

musical training (Swaminathan et al., 2017; Swaminathan & Schellenberg, 2018) 

although the directionality of the relationship is uncertain. Nonetheless, these results 

suggest that those with high musical ability skills may pursue and persist longer in 

musical training and/or musical training could enhance musical ability. Supporting 

the latter, a recent longitudinal study demonstrated that children randomly assigned to 

musical training showed higher performance on a tonal discrimination task than 

children in sports training and children in a no contact control group (Habibi, 

Damasio, Ilari, Sachs, & Damasio, 2018).  

Whether examining relationships with musical training or performance on 

musical ability measures, a concern is that any observed relationships might reflect 

shared reliance on domain-general cognitive abilities rather than (or in addition to) 

musical ability per se. For example, during a same/different judgment trial, one needs 

to hold in mind the first sequence in order to compare it to the second sequence. And 

in order to process and make sense of pitch and timing, the notes must be compared 

to a reference frame (e.g., harmony or meter) (Wallentin et al., 2010). These 

processes may necessitate the use of working memory as well as processes like 

pattern recognition, akin to fluid intelligence. In fact, studies have shown that musical 

ability is related to performance on short-term memory measures such as the digit 

span (Swaminathan & Schellenberg, 2018; Wallentin et al., 2010), working memory 
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updating abilities (Okada & Slevc, 2018; Slevc et al., 2016) and intelligence 

(Swaminathan & Schellenberg, & Khalil, 2017). 

In recent research, individual differences in personality traits (specifically, 

openness to experience) have been used to predict various aspects related to music 

ability. Openness to experience is thought to be indicative of intellect and sensitivity 

to artistic, aesthetic experiences as well as curiosity and imagination (John et al., 

2004). Indeed, openness to experience has been shown to predict who takes music 

lessons (Corrigall, Schellenberg, & Misura, 2013), amount of music practice 

(Butkovic, Ullen, & Mosing, 2015), musical competence (Swaminathan & 

Schellenberg, 2018), and musical sophistication (Greenberg, Müllensiefen, Lamb, & 

Rentfrow, 2015). Openness to experience has also been found to predict performance 

on a musical ability test; however, this relationship was mediated by musical training 

(Thomas, Silvia, Nusbaum, Beaty, & Hodges, 2016). These findings suggest that 

those higher in openness may be more likely to try a musical instrument and/or seek 

out more musical experiences, either of which could explain the relationships found 

between openness and musical ability (Thomas et al., 2016; Swaminathan & 

Schellenberg, 2018).  

Of course, musical training requires a certain amount of time and resources; 

correspondingly, measures of socioeconomic status (SES) have also been shown to 

correlate with musical participation (Corrigall et al., 2013; Elpus, 2013; Kaushal, 

Magnuson, & Waldfogel, 2011; Norton et al., 2005; Southgate & Roscigno, 2009, but 

see Okada & Slevc, 2018; Slevc et al., 2016) and musical ability (Swaminathan et al. 

2017; Swaminathan & Schellenberg, 2018). Since those with higher SES have more 
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opportunity for musical training and other musical activities, this study sought to 

investigate the relationships between SES and musical ability. 

While these relationships would be interesting themselves, the ways in which 

specific musical ability measures rely on different perceptual and cognitive abilities 

clearly hampers the ability to observe musical/cognitive relationships more generally.  

 
 

Current Study Objectives 

The goal of this study was to investigate various aspects of musical ability 

based on theoretically proposed distinctions and distinctions found in previous 

individual differences work, and to develop a theory/model that specifies a more 

nuanced picture of what constitutes musical ability.  Previous studies have advocated 

for a range of different factors (including pitch, harmony, timing, expressiveness, 

etc.), and previously developed tests of musical ability have emphasized factors that 

the authors deemed most important (e.g., Law & Zentner’s (2012) test of musical 

ability taps nine characteristics of sound, and Wing’s (1919; 1960) tests make the 

distinction between tests of perceptual ability and tests assessing judgment of the best 

expression/musicality within excerpts). Based on the previous literature regarding 

musical ability, the models assessed here focused on the most commonly used 

distinctions already present in the field: pitch and timing. Furthermore, most current 

tests only measure perception abilities, where the trials consist of listening to two 

musical stimuli and judging whether they are the same or different. However, because 

perception and production abilities have been shown to differ within certain 

populations, tests of production ability were also included. This study used a latent 
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variable approach to conduct a large individual differences study with multiple tasks 

measuring pitch perception, pitch production, timing perception, and timing 

production. Model comparisons were used to ascertain whether individual differences 

in these abilities fit the models hypothesized by the literature. This study also 

examined the extent of the relationship between pitch and timing abilities, perception 

and production abilities, and the relationship between finer-grained auditory acuity 

and processing of more complex music.  

A secondary goal of this study was to assess if and how musical ability relates 

to other non-musical abilities and factors. This provided a more nuanced 

understanding of how different aspects of musical ability relate to non-musical 

abilities such as working memory and fluid intelligence, which may help clear up 

current controversial findings about the relationship between musical and non-

musical abilities (e.g., Moreno et al., 2011; Okada & Slevc, 2018). In addition, this 

provided a better understanding of if and how performance on these musical ability 

assessments reflects other situational and cognitive factors that are likely (albeit 

somewhat controversially) related to musical abilities (e.g., musical training, 

personality, and SES).  
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Chapter 2: Method 
 

 

Pre-registration 

Due to the importance of research reproducibility and openness (e.g., Nosek, 

Spies, & Motyl, 2012), this project was pre-registered before data was collected on 

the Open Science Framework (http://openscienceframework.org/), and a frozen, non-

editable registration form is available at https://osf.io/jwyhu (see, e.g., van’t Veer & 

Giner-Sorolla, 2016 for the importance of pre-registration). All of the methods, 

exclusion criteria, and analyses were conducted as specified in the pre-registration 

form except where noted. 

 

Participants 

167 participants (total N = 165 after two exclusions2) were recruited from the 

University of Maryland’s undergraduate research pool and received class credit for 

participation. A target sample size of 150 participants (or as close as possible by June, 

20183) was set a priori based on similar participant numbers in other studies 

                                                
2 One participant asked for their data to be removed from the study after participation, 
and one other participant’s data was removed because they scored above the pre-
registered cut off score of 32 on the Revised American Academy of Otolaryngology-
Head & Neck Surgery Five-Minute Hearing Test, signifying a difficulty in 
communication and requiring a hearing test/solution (Kochkin & Bentler, 2010; 
Koike, Hurst, & Wetmore, 1994). 
 
3 Data was collected until the end of the Spring semester, and so the final sample size 
was slightly larger than the targeted N of 150. 
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examining individual differences in cognitive processes (120 in Conway, Cowan, 

Bunting, Therriault, & Minkoff, (2002); 133 in Engle, Tuholski, Laughlin & Conway 

(1999); 137 in Miyake et al. (2000); 215 in Shipstead, Lindsey, Marshall, & Engle, 

2014; 127 in von Bastian & Druey, 2017; 92 in von Bastian & Oberauer, 2013). 

Participants were on average 19.86 years of age (SD = 1.69), with a range of 18-29 

years. Ninety-nine participants (60%) identified as female, 63 (38%) identified as 

male, 2 identified as non-binary, and 1 identified as trans-male. Although all 

participants spoke English fluently, some reported other languages as their first, 

native language. 149 participants reported English as their first language, 5 reported 

Chinese/Mandarin, 3 reported Korean, and 1 reported each of the following: Gujarati, 

Igbo, Nepali, Portuguese, Spanish, Tagalog, Tamil, and Vietnamese. 

 

Measures 

 Additional information on all of the measures used here is available on the 

Open Science Framework at https://osf.io/mp3u7/. 

Musical Measures  

Participants completed a battery of 15 musical tasks measuring pitch ability 

and timing ability (see Table 2 for a summary). Versions of these tasks have all been 

used previously to measure various aspects of musical perception ability, auditory 

acuity, or musical production ability. Although some of these tasks come from a 

single test battery (e.g., the PROMS-S has 3 pitch tasks and 2 timing tasks), each task 
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is grouped and described under its respective heading, i.e., Pitch Perception 

Measures, Pitch Production Measures, Timing Perception Measures, and Timing 

Production Measures.  

 

Pitch Perception Measures. These five tasks – PROMS-S Melody subtest, 

PROMS-S Tuning subtest, PROMS-S Pitch subtest, Chord Analysis, and Pitch 

Threshold Discrimination – all required perceptual judgments of pitch. 

PROMS-S. The shortened version of the Profile of Music Perception Skills 

(PROMS-S)4 that has been shown to be reliable and consistent (Zentner & Strauss, 

2017) was used to keep testing time to a minimum. All tasks from the PROMS-S 

battery consisted of same/different judgments (with an equal number of same and 

different trials, balanced for difficulty) and were administered on LimeSurvey, an 

online survey application5 (Law & Zentner, 2012; Zentner & Strauss, 2017). 

Transcriptions of all musical stimuli from the PROMS-S are included at 

https://osf.io/mp3u7/. Five subtests from the PROMS-S were administered overall, 

three of which involve pitch perception and are described individually below. All five 

subtests followed the same procedure: participants were tasked with determining if 

two sequences were the same or different. In each trial, participants listened to the 

                                                
4 The original PROMS included 9 subtests with 18 items each (9 same trials and 9 
different trials, with 3 easy, moderate, and complex trials each) (Law, 2012; Law & 
Zentner, 2012). To shorten the total testing time, the PROMS-S used only trials 
meeting the following criteria: difficulty level between 5%-95%, item-to-total 
correlation of 0.30 or higher on that subtest, within 10% of reliability reported for the 
original PROMS (Zentner & Strauss, 2017). 
 
5 All versions of the PROMS are free to use and provided by the authors to administer 
on LimeSurvey. 
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first musical stimulus twice, heard the comparison musical stimulus, then indicated 

whether they thought the comparison musical stimulus was “definitely different,” 

“probably different,” “I don’t know,” “probably same,” or “definitely same”. Each 

subtest contained 2 practice trials (one same, one different) to allow participants to 

familiarize themselves with the task. To measure aspects of pitch perception, the 

Melody, Tuning, and Pitch subtests from the PROMS-S were administered and are 

described below. 

The PROMS-S Melody subtest consisted of 10 trials with sequences of 

varying length (9-19 tones) voiced in a harpsichord timbre ranging from C4 (middle 

C) to A-flat5. Participants were tasked with determining if two melodies were the

same or different. Trials ranged in difficulty, with easier trials containing simpler 

rhythms and different pitches on down beats, and more complex trials containing 

more notes and accidentals and different pitches on passing notes (see Figure 2 for an 

example of a different trial). Following Law and Zentner (2012) and Zentner and 

Strauss (2017), participants’ raw accuracy scores were weighted to include 

confidence levels by scoring 1 point for a correct “definitely” answer, 0.5 point for a 

correct “probably” answer, and 0 for all other answers. Then, scores were converted 

to d-prime (d’), a measure of sensitivity calculated as the difference between the 

proportion of hits and false alarms (z(Hits) - z(False Alarms))6 . In the case of a 

participant achieving floor or ceiling performance (i.e., 0 or 1 for hit rate or false 

alarm rate), d’ could not be calculated, so these extreme values were replaced. A rate 

6 A d’ score of 0 indicates no sensitivity/no discrimination ability, d’ score of 1 
indicates 69% correct for both different and same trials, and higher numbers indicate 
greater sensitivity.  
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of 0 was replaced with 0.5/n and a rate of 1 was replaced with (n-0.5)/n, where n was 

the number of trials (Macmillan & Kaplan, 1985). This effectively increased or 

decreased performance levels by half a trial and allowed for calculation of d’. 

 

Figure 2. Example of a different stimulus from the Melody subtest (from Law, 2012). 
The asterisks indicate the changed note within the second sequence.  

 
The PROMS-S Tuning subtest presented participants with a C Major chord 

(C4, E4, G4, C5) voiced in a piano timbre for 1.5 s. Within the C Major chord, the E 

was mistuned by a variable amount (0-50 cents) and the participant determined if the 

comparison chord had the same amount of mistuning as the first chord. The eight 

trials ranged in difficulty, with easier trials containing larger amounts of mistuning 

change, and more complex trials containing smaller amounts of mistuning change. 

Like the Melody subtest, participants’ raw accuracy scores were weighted to include 

confidence levels, then transformed to d’.  

The PROMS-S Pitch subtest consisted of pairs of pure tones (2000 ms 

sinusoids with 100 ms linear on/off ramps) centered around A4, and participants 

determined if the comparison tone was the same or different (i.e., either lower or 

higher) pitch than the first tone. The eight trials ranged in difficulty, with easier trials 

containing larger pitch changes, and more complex trials containing smaller pitch 

changes. Again, participants’ raw accuracy scores were weighted to include 

confidence levels, and were transformed to d’.  

Chord Analysis. In this subtest from Wing’s revised Musical Aptitude Test 

(Wing, 1962), participants listened to 20 musical stimuli voiced by a piano timbre 

First stimulus Comparison stimulus

*                      *
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presented in PsychoPy (v 1.82.0, Peirce, 2007; 2009). Each stimulus was either a 

single note or a chord, ranging from one to six notes (see https://osf.io/mp3u7/ for 

transcriptions of stimuli). Participants were instructed to determine the number of 

notes played in each stimulus, and were given four practice trials (containing two, 

three, one, and four notes) to familiarize themselves with the task before the 20 real 

trials. Participants’ scores were calculated as proportion accuracy, following the 

procedure used by Wing (1962).  

Pitch Threshold Discrimination. In order to measure perceptual acuity in 

pitch, participants’ pitch threshold discrimination was measured using the Pitch 

Discrimination (Pure Tone) task from the Psychoacoustics Toolbox (Grassi & 

Soranzo, 2011; Soranzo & Grassi, 2014) designed for Matlab. In this adaptive7 task, 

participants completed two blocks of 30 trials each. In each trial, participants heard 

three serially presented 250-ms pure tones, and determined which was the highest in 

pitch (3AFC). (This task can also be completed with a 2AFC; however, a 3AFC was 

chosen because it can more robustly estimate thresholds and using 2AFC are more 

affected by false alarms (Grassi & Soranzo, 2014). In this 3AFC task, two of the 

tones were the same and the other was presented at a variable frequency (either below 

or above the participants discrimination threshold). Based on each participants’ 

performance, the discrimination threshold was calculated using the maximum 

likelihood estimation procedure, which employs the maximum likelihood estimation 

and the stimulus selection policy. Each participant’s data was fitted to a sigmoid 

                                                
7 The adaptive maximum likelihood procedure was chosen over the staircase method 
because it uses all of the available data and can estimate participants’ thresholds more 
accurately and is faster to administer (Grassi & Soranzo, 2009). 
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function (logistic used here because it is the most widely used), which represents the 

proportion of correct responses for varying stimulus/frequency levels. In order to 

estimate each participant’s performance, multiple functions with different midpoints 

are hypothesized, and the maximum likelihood estimation finds the function that is 

most like the participant’s after each trial. After this, each participants’ threshold was 

calculated by finding the stimulus level that corresponded to the point on the function 

at which the participant achieved 72.87% correct responses (called the p-target, which 

was set at 0.7287 following Grassi & Soranzo, 2014). Each participant’s 

discrimination threshold was calculated in both blocks, and the average of the two 

blocks was used as the final pitch threshold discrimination score. 

Pitch Production Measures. Participants completed three pitch imitation 

tasks – Familiar Song Imitation, Mowrer Test of Tonal Memory, and Melody 

Imitation – to measure pitch production ability. For all three tasks, participants were 

recorded using the internal microphone of an Apple iMac through PsychoPy (v 

1.82.0, Peirce, 2007; 2009)8. Before participants began the Pitch Production tasks, 

they warmed up with the experimenter by clearing their throat, then completing vocal 

sweeps (i.e., singing from the lowest note they could hit to the highest, then back 

down from the highest to the lowest). 
                                                
8 Unfortunately, the recordings from the internal microphone of the Apple iMac 
desktops occasionally recorded heavy amounts of static noise. Because this extra 
noise made it difficult to extract accurate pitches from the sound files, all trials 
containing static were discarded. This resulted in multiple utterances discarded due to 
faulty recording equipment (22.7% of the utterances in the Familiar Song Imitation 
Task and 12.9% of utterances in the Melody Imitation Task). Furthermore, two 
participants did not have any singing production data due to experimenter error (when 
the microphone was not enabled prior to recording). These exclusion criteria were not 
included in the pre-registration, but were deemed necessary for analysis purposes. 
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Familiar Song Imitation Task. In this task, following Pfordresher et al. (2010), 

participants sang four familiar songs (e.g., Happy Birthday; see https://osf.io/mp3u7/ 

for complete list of song lyrics). First, participants read the song lyrics on the screen, 

then sang them aloud starting on a note that was comfortable for them. Each of the 

four songs was presented one at a time. From these four songs, a pre-specified set of 

10 intervals9 in total were analyzed (following those analyzed in Pfordresher et al., 

2010). To analyze pitch interval accuracy, each utterance containing the notes of 

interest was extracted using Audacity (v 1.3.12, Audacity Team, 2010). Then, Praat 

(v 6.0.19, Boersma & Weenink, 2016) and PraatR (v 2.4, Albin, 2014) were used to 

find the mean pitch in Hertz (Hz) of each utterance. Intervals (in cents)10 were 

calculated with the formula: cents = 1200 x log2(f2/f1), where f1 is the frequency (in 

Hz) of the first note and f2 is the frequency (in Hz) of the second note. This observed 

interval was then subtracted from the expected interval (e.g., a perfect fifth is 700 

cents) to determine accuracy. Interval jumps greater than 1800 cents (i.e., 1.5 octaves) 

were assumed to be pitch tracking errors and were discarded. Four participants 

reported not knowing at least one of the songs, so their accuracy scores reflect ability 

for the trials they did complete. Participants’ accuracy scores were averaged across all 

trials. 
                                                
9 In Pfordresher et al., 2010, six songs total were sung by participants; however, only 
four of the songs were used here to keep testing time to a minimum. In these four 
songs, Pfordresher et al. (2010) analyzed 11 total intervals. Here, one interval from 
Happy Birthday (the minor sixth) was not analyzed because multiple people did not 
sing the lyric containing part of the minor sixth (i.e., a name). This was perhaps due 
to the fact that blank lines were shown in place of a name. 
 
10 Cents were calculated (instead of Hz) because the same interval (i.e., P4) has a 
smaller Hz difference in higher ranges than lower ranges, and cents uses a log 
transform to equally scale these differences. 
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Mowrer Test of Tonal Memory. In this task taken from Mowrer (1994), 

participants heard melodies of varying length (five to nine notes) played by a piano 

timbre and were asked to sing and reproduce the melody using the syllable “/da/” for 

each note. To allow participants to familiarize themselves with the task, a practice 

trial was given (five notes long), and the experimenter provided feedback if the 

participant was not singing “/da/” for each individual note. Participants then 

completed seven trials. Following Mowrer (1994), each trial was scored as either 

correct or incorrect, so accuracy scores ranged from zero to seven. A trial was 

counted as incorrect if any of the pitches were incorrect, including if some of the 

pitches were missing. Scores used in the final analyses were ratings done by the 

author blind to the participants’ other scores; however, to ensure the reliability of 

these scores, a subset of the recordings (19/165) were also rated by a UMD DMA 

Candidate in Vocal Performance. Kappa of .95 was achieved, showing excellent 

inter-rater reliability (Cohen, 1960; Hallgren, 2012). 

Melody Imitation Task. Again following Pfordresher et al. (2010), participants 

imitated 24 five-note sequences11 voiced by a synthesized voice by singing each pitch 

on “/da/”. First, participants decided whether they felt most comfortable imitating 

lower pitched notes or higher pitched notes after listening to examples of the middle 

of each range (i.e., D2 for low and D3 for high). Based on this indicated preference, 

participants heard either the lower range of pitches to imitate (A2 to A3) or the higher 

range of pitches to imitate (A3 to A4). Participants then imitated three types of 

                                                
11 Pfordresher et al. (2010) administered 38 total musical stimuli with intervals 
ranging from unisons to octave jumps; however, to keep testing time to a minimum, 
only stimuli outlining unisons to perfect fifths were included here. 
 



 

 27 
 

sequences: note, interval, and melody sequences. In note sequences, the same pitch 

was repeated five times. In the interval sequences, the pitch changed between the 

second and third note (i.e., both descending and ascending intervals up to a perfect 

fifth). Finally, in the melody sequences, all five pitches alternated in various patterns 

and pre-chosen intervals of a third, fourth, and fifth were analyzed for accuracy. 

Participants’ analyzed according to the same as above.  

In this task, multiple participants sang in a different octave than the musical 

stimuli they selected to hear (e.g., a participant heard A3 but sang A2), presumably 

because they realized the stimuli they heard were not within their vocal range. 

Because of this and the perceptual similarity between pitch chromas of different 

octaves (i.e., octave equivalence, see e.g., Deutsch, 2013), pitches from different 

octaves (ranging from A1-E4) were counted as accurate. To analyze note sequences, 

the utterance containing five notes was extracted using Audacity (v 1.3.12, Audacity 

Team, 2010). Then, Praat (v 6.0.19, Boersma & Weenink, 2016) and PraatR (v 2.4, 

Albin, 2014) were used to find the mean pitch in Hz. In order to account for 

participants singing in either octave, the absolute distance in cents was calculated 

from sung note (e.g., ~A2) to the intended note in multiple octaves (e.g., A1, A2, A3), 

and the smallest distance was used as the accuracy score. To analyze the interval and 

melody sequences, the two “/da/”s containing the notes of interest were extracted 

using Audacity (v 1.3.12, Audacity Team, 2010). Then, Praat (v 6.0.19, Boersma & 

Weenink, 2016) and PraatR (v 2.4, Albin, 2014) were used to find the mean pitch in 

Hz of each of the two utterances. Again, to account for participants singing in 

different octaves, the absolute distance in cents was calculated from each sung note to 
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the intended note in multiple octaves, and the smallest distance was used as the 

individual note accuracy score. Analyses for the interval and melody sequences here 

differ from those used by Pfordresher et al. (2010): instead of calculating the interval 

accuracy (by calculating the distance between the two pitches and disregarding 

whether the sung pitch matched the target pitch), the individual note accuracy was 

used to indicate performance for these conditions. Scores for each participant were 

averaged accuracy for all note, interval, and melody sequences. 

Timing Perception Measures. These four tasks – PROMS-S Rhythm, 

PROMS-S Tempo, BAT Perception, and Duration Discrimination Threshold – all 

required perceptual judgments of aspects related to timing.  

PROMS-S. To measure timing perception, the PROMS-S Rhythm and Tempo 

subtests (Law & Zentner, 2012; Zentner & Strauss, 2017) were administered. These 

shortened subtests followed the same presentation (i.e., participants heard the first 

stimulus twice, then heard the comparison stimulus) and answer procedures (i.e., 

answering “definitely different,” “probably different,” “I don’t know,” “probably 

same,” or “definitely same”) as the subtests outlined in the Pitch section above. Also 

as described above, participants’ raw accuracy scores were weighted by confidence 

and were transformed to d’ for both the Rhythm and Tempo subtests. 

The PROMS-S Rhythm subtest contained sequences of varying length (seven 

to twelve notes) voiced with a percussive “rim shot” timbre. The eight trials ranged in 

difficulty, with easier trials consisting of simple rhythms of mostly quarter notes and 

eighth notes, and more complex trials containing complex rhythm structures with 

mostly eight and sixteenth notes (see Figure 3 for an example of a different trial). 
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Participants’ raw scores were calculated to include confidence, and were transformed 

to d’.  

 

Figure 3. Example of a different stimulus from the Rhythm subtest (from Law, 2012). 
The asterisk indicates the changed rhythm within the second comparison stimulus. 
 

For the PROMS-S Tempo subtest, participants heard two musical stimuli that 

were either the same or different in speed. Three different musical stimuli were 

composed and used12: a rim shot voice similar to the Rhythm subtest (with one layer 

of sound), a conga and shaker (with two layers of sound), and drums, bass, harmony, 

and melody (with multiple layers of sound). The eight trials ranged in difficulty, with 

easier trials containing larger tempo changes, and more complex trials containing 

smaller tempo changes. Participants’ raw scores were calculated to include 

confidence, and were transformed to d’. 

Timing Threshold Discrimination. In order to measure perceptual acuity of 

timing, participants completed the Duration Discrimination Test from the 

Psychoacoustics Toolbox in Matlab (Grassi & Sorenzo, 2009; Sorenzo & Grassi, 

2014). In this adaptive task, participants completed 2 blocks of 30 trials each. In each 

trial, participants heard three serially presented pure tones (3AFC), and determined 

which was the longest in duration. In this 3AFC task, two of the tones had the same 

duration and the other was presented at a variable duration (either below or above the 

                                                
12 Three varying stimuli were used instead of only one stimulus because participants 
reported that it was difficult to remember the various tempi when only hearing one 
song multiple times (Law, 2012). 
 

First stimulus Comparison stimulus

*       *   
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participants discrimination threshold). Based on each participants’ performance, the 

threshold was calculated using the maximum likelihood estimation procedure, as 

described above in the Pitch Threshold Discrimination task. Again, each participant’s 

discrimination threshold was calculated in both blocks, and the average of the two 

blocks was used as the final timing threshold discrimination score. 

Beat Alignment Test - Beat Perception. In order to measure rhythm and timing 

perception, a shortened version (Müllensiefen et al., 2014) of the perception subset 

(Beat Perception in a Musical Passage) of the Beat Alignment Test (BAT, Iverson & 

Patel, 2008) was administered in PsychoPy (v 1.82.0, Peirce, 2007; 2009). (Note that 

the BAT also contains multiple timing production tasks, which are outlined in the 

following section.) In this task, participants listened to 17 musical excerpts13 with 

metronome beeps superimposed, and determined whether or not the superimposed 

metronome beeps synchronized with the musical passage. The stimuli consisted of 

twelve different instrumental songs from three different genres (i.e., rock, jazz, pop 

orchestral). Beeps were either on the beat, out of phase (i.e., consistently ahead or 

behind the beat of the music), or played at a different tempo (i.e., were faster or 

slower than the music). For the stimuli that did not have metronome beeps on the 

beat, the metronome beep tempo was shifted by either 2, 10, or 17.5%. Participants 

received three practice trials for exposure to all three conditions before completing 

the 17 trials. Participants’ scores were calculated as proportion accuracy.  

Timing Production Measures. In these three tasks – Synchronization to a 

Metronome, Synchronization Continuation, and Song Synchronization – participants’ 
                                                
13 In order to minimize testing time, only a subset of the original 24 trials (in the 
BAT) were presented (following version 1.0 of the task in Müllensiefen et al., 2014). 
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timing production was measured by consecutive tapping on the spacebar of a 

keyboard. 

Synchronization to a Metronome & Synchronization Continuation. In the first 

timing production task, two measures were collected within the same task (i.e., 

synchronization to a metronome and synchronization continuation), and are described 

together here. To measure timing production, a modified version of the Beat 

Alignment Test (BAT; Iverson & Patel, 2008) was administered in PsychoPy (v 

1.82.0, Peirce, 2007; 2009). The original BAT contains two production subtests: 

synchronization to a metronome and synchronization to musical passages. In the first 

synchronization to a metronome portion, participants used their dominant hand to tap 

along on the space bar to a 30 second clip14 of a metronome beep at various tempi 

(i.e., inter-onset interval (IOI) of 400 ms, 550 ms, and 700 ms, taken from Iverson & 

Patel, 2008). Immediately following the 30 seconds of metronome beeps, participants 

were instructed to continue tapping in silence and to try to maintain the same beat (at 

the same speed) for an additional 10 seconds (i.e., synchronization continuation). This 

synchronization continuation measure tested whether participants were able to 

maintain the same beat in silence on their own (following Dalla Bella et al., 2017). 

One practice trial (i.e., 10 second clip of a metronome beeping at 530 IOI) was given 

to allow participants to familiarize themselves with the task of tapping along to the 

metronome, then continuing to tap in silence afterwards. 

14 In the pre-registration, it was proposed to have participants tap to a metronome 
beep for 20 seconds, then tap in silence for 20 seconds. However, due to a 
programming error, the full 30 second metronome beep clip from the BAT was used 
(Iverson & Patel, 2008), and participants tapped in silence for the following 10 
seconds. 
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Although participants completed these two measures within the same task, 

two timing synchronization accuracy scores were calculated for tapping along with 

the metronome and the continuation of tapping without the metronome. First, the first 

two and last two taps for each trial were discarded to account for start-up and wind-

down effects (following Fujii & Schlaug, 2013) and to ensure that taps in silence did 

not overlap with the taps to the metronome during analysis. Inter-tap intervals (ITIs) 

were calculated as the successive difference between the remaining tap times. To 

remove artifacts, all ITIs below 100ms were removed as well as any outliers, defined 

as any ITI greater than 3 times the interquartile range (IQR) of each trial (following 

Dalla Bella et al., 2017; Jakubowski, Bashir, Farrugia, & Stewart, 2018). To calculate 

timing production variability, the coefficient of variation (CV) was calculated. The 

CV is a normalized measure of tapping variability calculated by dividing the standard 

deviation of the ITI for each trial by the mean of the ITI for each trial. 

Song Synchronization. A modified version of the Synchronization to Musical 

Passages subtest (from the BAT, Iverson & Patel, 2008) was administered from the 

Harvard Beat Assessment Test15 (H-BAT, Fujii & Schlaug, 2013) in PsychoPy (v 

1.82.0, Peirce, 2007; 2009). This subtest from the H-BAT included three musical 

stimuli taken from the BAT (i.e., “Hurts So Good” by John Mellencamp, “Tuxedo 

Junction” by Glenn Miller, and “A Chorus Line” by the Boston Pops), which were 

each presented three times in three different tempi. In this subtest, participants were 

                                                
15 The H-BAT version was used instead of the original 12 different stimuli from the 
BAT because these three songs yielded the highest pulse clarity measures (assumed to 
have the least ambiguous pulse), were more controlled than the original stimuli, and 
in order to keep testing time to a minimum. 
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again instructed to use their dominant hand to tap as closely to the beat of the song as 

possible. The same trimming criteria (i.e., eliminate first two and last two taps and 

discard any ITIs below 100 ms and above 3*IQR) as above were used, and 

participants’ scores were again calculated as the coefficient of variation and averaged 

across trials. 

 

Ancillary Measures 

In addition to the primary tasks described above, measures assessing several 

other factors that are likely relevant to musical ability were assessed (i.e., musical 

training, working memory, intelligence, personality, and socio-economic status). 

Musical Training. To assess participants’ musical training, the Goldsmith 

Musical Sophistication Index questionnaire was administered (Gold-MSI, 

Müllensiefen et al., 2014). This self-report questionnaire measures “musical 

sophistication” (defined as a “construct that can refer to musical skills, expertise, 

achievements, and related behaviours across a range of facets”; Müllensiefen et al., 

2014, p. 2) with questions in five subscales: musical training, active engagement, 

perceptual abilities, singing abilities, and emotions. Measures were collected from all 

subscales, however only the musical training subscale was used in the current 

analysis. The musical training subscale differs from previous ways used to measure 

musical experience in that it contains seven questions regarding musical training, 

which include: years of instrument training, years of music theory training, regular 

daily practice, the number of hours practiced at peak of interest, the number of 

instruments played, whether compliments about music performances have been 
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received, and whether they consider themself a musician. Since this measure takes 

into account how long one has taken music lessons as well as the intensity of practice, 

participants’ scores from the musical training subtest provided a continuous and more 

robust measure of musical training (rather than only looking at duration of music 

lessons like most studies). Participants answered these questions on 7-point Likert 

scales. Two items were reverse scored, and participants’ music training scores were 

calculated as the sum of the seven music training subscale items.  

Working Memory. To examine the relationship between general WM ability 

and musical ability, a shortened version of the automated operation span (AO-Span, 

Unsworth, Heitz, Schrock, & Engle, 2005) was administered. In this task, participants 

first completed three practice blocks. The first practice block served to allow 

participants to familiarize themselves with the math portion of the task. Here, a math 

problem was shown on the screen (e.g., (1*4) + 2 = ?), and participants clicked as 

soon as they solved the problem. Next, on the following screen, participants saw a 

number (e.g., 6) and clicked “true” or “false,” and were given feedback. For each 

participant, the mean reaction time to answer all 15 practice math problems was 

calculated and the mean plus 2.5 SD was used as the math time limit during the last 

practice block and the real trials. This accounted for individual differences in solving 

the math problems and ensured that participants were dual tasked. The second 

practice block allowed participants to familiarize themselves with the letter span 

portion of the task. Here, participants saw letters presented serially (only letters F, H, 

J, K, L, N, P, Q, R, S, T, and Y were used), then were presented with a test screen 

containing all of the letters. Participants were instructed to click on the boxes next to 
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the letters they recalled in order, then received feedback. Participants completed three 

practice trials with letter set sizes of two. The third practice block combined the first 

math and letter tasks: first participants solved a math problem, saw a letter, solved 

another math problem, then saw another letter. They repeated this process until they 

recalled all the letters seen at the very end of the trial, after which they received 

feedback on their math performance and letter span performance. Participants were 

told they would only have a limited amount of time to solve the math problem, and if 

they reached the time limit without clicking the mouse, that math problem was 

counted as incorrect. Additionally, they were told to not let their math performance 

fall below 85%. Participants completed three practice trials all with a set size of 3 (see 

Figure 4 for a schematic of the test). 

Figure 4. Test schematic of the automated operation span (adapted from Unsworth et 
al., 2005).  

For the real trials, participants completed eight trials with two set sizes of 

four, two set sizes of five, two set sizes of six, and two set sizes of seven. After each 

trial, feedback on the math performance and letter span was provided. The WM score 

1

T
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was calculated as the sum of the total number of correctly completed set sizes (i.e. 

absolute span), which ranged from 0-44. 

Intelligence. To investigate the relationship between general fluid intelligence 

and musical ability, a shortened version16 of the Raven’s Advanced Progressive 

Matrices (RAPM, Raven, Raven, & Court, 1991) was administered. In each trial, 

participants saw a 3x3 matrix of various geometric shapes, and the bottom right cell 

in the matrix was always blank. Participants were instructed to look at the patterns 

both across and down the matrix, then select which of the eight possible answer 

choices best completed the pattern. Participants were then told to complete as many 

of the 18 trials as possible within 10 minutes (following Kane et al., 2004; Kane et al., 

2007). Participants’ scores were calculated as the proportion of correct answers17.  

Personality. To assess the relationship between Openness to Experience and 

musical ability, the Big 5 inventory18 (John, Donahue, & Kentle, 1991; John, 

Naumann, & Soto, 2008) was administered. In this measure, participants used 5-point 

Likert scales (i.e., “Disagree Strongly,” “Disagree a little,” “Neither agree nor 

disagree,” “Agree a little,” or “Agree strongly”) to answer questions regarding a 

number of personal characteristics. There were 10 questions regarding Openness to 

Experience (e.g., “I am someone who is original, comes up with new ideas”, “I am 

                                                
16 The original RAPM Set 2 contained 36 items, and only the 18 odd trials were used 
here to shorten testing time (following Kane et al., 2004; Kane et al., 2007). 
 
17 Accuracy was calculated as number of correct answers divided by 18 even though 
not all participants completed all 18 trials. Mean number of trials completed was 
17.15, range 11-18. 
 
18 Although the main variable of interest here was openness to experience, the full 
Big 5 inventory was administered to maintain its psychometric properties. 
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someone who values artistic, aesthetic experiences”, “I am someone who is 

sophisticated in art, amusic, or literature”). Two items were reverse scored, and 

participants’ Openness scores were calculated as the average response to the 10 

Openness items. 

Socioeconomic Status. To measure SES, the MacArthur Scale of Subjective 

Social Status was administered (Adler & Stewart, 2007). Here, participants indicated 

where they believe they stood (in terms of money, education, and job status) relative 

to others in the U.S., on a scale of 1 to 1019. This subjective measure of SES has been 

shown to better predict outcomes (e.g., health status) than objectives measures of SES 

such as income or occupational status (Singh-Manoux, Marmot, & Adler, 2005). 

Procedure 

Participants completed this study in either two sessions (online and in-person) 

or in one session (in-person only)20. In the two session format, the first portion of the 

                                                
19 Participants were also asked to self-report their parents’ income and education 
levels (on 9-point and 6-point scales, respectively) as measures of objective SES. 
However, multiple participants indicated that they did not know or did not wish to 
provide this information (specifically, 41 participants did not report their father’s 
income, 39 participants did not report their mother’s income, and one did not report 
their father’s education level). Reassuringly, for those participants who did provide 
these ratings, the subjective measure of SES correlated significantly with both 
parental education (r(162) = .21, p = .007) and parental income (r(113) = .41, p < 
.001). 
 
 
20 Testing changed to take place in only one session for 2 reasons: 1) the total testing 
time ended up being shorter than anticipated, making it feasible to combine both 
sessions, and 2) because the first online portion of the study was worth .5 SONA 
credits, many participants were unnecessarily excluded from participation if they had 
already completed the maximum amount of online studies for a class (2 SONA 
credits). 25 participants completed the one-session study and the remaining 
participants completed the two-session study. 
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study was administered remotely on Qualtrics online, and participants answered 

questionnaires about their background (i.e., hearing screen, Gold-MSI, SES, 

personality measures). During the second in-person session, participants completed 

the pitch tasks (perception and production), the rhythm tasks (perception and 

production), and the WM and IQ tasks, which lasted about one hour and 45 minutes 

to two hours. For the one session format, participants completed all tasks in the same 

order, but filled out the online Qualtrics questionnaires on a testing computer in the 

lab right before performing the other tasks.  

To ensure test order did not influence individual differences results, 

participants completed the tasks in the same fixed order. First, participants completed 

the five PROMS-S tasks (Melody, Rhythm, Tuning, Tempo, Pitch), then they 

completed the two threshold discrimination tasks (Pitch and Timing). Then, to 

minimize fatigue, participants took a mandatory 3-5 minute break during which they 

were encouraged to stand and stretch. After the first break, participants warmed up 

and completed the pitch imitation tasks (Familiar Songs, Mowrer Test of Tonal 

Memory, Melody Imitation), Chord Analysis, and the BAT Perception task. Next, 

participants took a second mandatory 3-5 minute break before completing the Timing 

production tasks (Synchronization to a Metronome, Synchronization Continuation, 

and Song Synchronization), WM task, and the IQ test. This order was chosen so that 

the pitch and timing tasks alternated when possible, the three blocks of the study were 

around the same duration, and to maximize efficiency (i.e., the PROMS tasks were 

completed together because they were presented in the same experimental platform). 
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Table 2. 
List of Musical Tasks 

Pitch Timing

PROMS-S - Pitch PROMS-S - Rhythm

PROMS-S - Melody PROMS-S - Tempo

PROMS-S - Tuning BAT - Beat Perception

Chord Analysis Timing Threshold Discrimination

Pitch Threshold Discrimination

Familiar Song Imitation BAT - Synchronization to a Metronome 

Mowrer Test of Tonal Memory Synchronization Continuation

Melody Imitation (note, interval, 
melodies)

H-BAT - Synchronization to Musical
Passage

Perception

Production
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Chapter 3: Results 

 

 
 

Descriptive statistics for participant demographics, ancillary measures, and 

musical measures are provided in Tables 3 and 4. Cronbach’s alpha (a) was 

calculated for internal consistency and is reported where applicable (Cronbach, 1951). 

However, since Cronbach’s alpha estimates the lower bound of reliability and 

assumes tau-equivalence for all test items (i.e., test items all measure the same 

construct with the same degree of precision and amount of error), McDonald’s omega 

(w) was also calculated where possible and reported as a better estimate of internal 

consistency (McDonald, 1999; see Revelle & Zinbarg, 2009 for a discussion of both 

alpha and omega). McDonald’s omega uses factor analysis to estimate the extent to 

which test items are capturing a construct without the assumption of tau-equivalence 

(Revelle, 2018). Reliabilities found for the tasks used here are similar to those 

reported in previous studies. The reliabilities for the PROMS-S tasks are similar to 

those in Zentner and Strauss (2017), although lower than the reliabilities found in the 

original version of the PROMS (Law & Zentner, 2012). Threshold discrimination 

tasks show comparable reliabilities to those reported in Kidd et al (2007), and the 

musical training and working memory reliabilities are also similar to those reported 

previously (Müllensiefen et al., 2014; Unsworth et al., 2005).  
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Table 3 
Descriptive Statistics for Participant Demographics and Ancillary Measures 

Note. Total N = 165 
 
 
 

Measure Mean SD Min Max Skewness Kurtosis a w

Age (Years) 19.85 1.69 18.00 29.00 1.99 7.01 - -

SES (MacArthur Ladder) 6.42 1.38 3.00 10.00 -0.08 -0.12 - -

Openness to Experience (BIG 5) 5.24 0.57 3.50 6.50 -0.11 -0.29 0.80 0.85

WM (Absolute Span) 18.36 11.36 0.00 44.00 0.34 -0.61 0.69 0.76

IQ (RAPM Accuracy) 0.54 0.18 0.06 0.89 -0.18 -0.37 0.75 0.78

Musical Training (Gold-MSI) 23.89 8.91 7.00 43.00 -0.05 -0.75 0.84 0.89
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Table 4 
Descriptive Statistics for Musical Measures 

Note. Total N = 165, except for Pitch Discrimination N = 161, Duration 
Discrimination N = 153, Familiar Songs N = 145, Mowrer Test N = 163, Melody 
Imitation N = 163, Chord Analysis N = 164, Metronome Synchronization N = 164, 
Synchronization Continuation N = 163 
McDonald’s omega (w) calculated where possible. For some measures (i.e., both 
Threshold Discrimination tasks, Metronome Synchronization task, and 
Synchronization Continuation tasks), w could not be calculated due to the low 
number of response outcomes. 
 
 

Tables 5 and 6 show correlations between each of the measures. To facilitate 

interpretation, the scores for each task were adjusted so that higher scores would 

Measure Mean SD Min Max Skewness Kurtosis a w

PROMS-S Melody (d') 1.15 0.87 -0.80 3.29 -0.02 -0.48 0.61 0.67

PROMS-S Tuning (d') 1.13 0.69 -0.48 3.07 0.36 0.08 0.65 0.73

PROMS-S Pitch (d') 0.61 0.69 -1.47 2.21 0.16 -0.56 0.46 0.73

PROMS-S Rhythm (d') 1.31 0.92 -1.53 3.07 -0.04 -0.25 0.52 0.62

PROMS-S Tempo (d') 1.52 0.78 -0.38 3.07 -0.04 -0.53 0.49 0.53

Pitch Discrimination 
Threshold (change in Hz)

8.40 10.66 0.76 60.76 2.88 8.65 0.85 -

Duration Discrimination 
Threshold (change in ms)

54.15 24.49 15.07 166.27 1.78 4.56 0.75 -

Familiar Songs (cents) 290.35 223.89 15.80 1348.47 1.43 2.76 0.64 0.96

Mowrer Test (accuracy) 2.31 1.92 0.00 6.00 0.40 -1.12 0.77 0.87

Melody Imitation (cents) 243.58 99.46 125.57 732.61 1.91 5.62 0.80 0.91

Chord Analysis (accuracy) 0.52 0.14 0.15 0.90 0.14 -0.21 0.53 0.60

BAT Perception (accuracy) 0.70 0.15 0.35 1.00 0.01 -0.61 0.56 0.62

Metronome Synchronization 
(CV)

0.05 0.01 0.03 0.12 1.32 2.79 0.75 -

Synchronization 
Continuation (CV)

0.05 0.02 0.02 0.16 2.40 10.61 0.62 -

Song Synchronization (CV) 0.09 0.08 0.04 0.44 2.62 6.70 0.93 0.96
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indicate better performance (specifically, both Threshold Discrimination scores, all 

three Timing Production task scores, the Familiar Song Imitation score, and the 

Melody Imitation score were multiplied by -1). Here, performance on many of the 

musical tasks have positive correlations with one another. Importantly, measures of 

each intended construct showed strong correlations (except for the relationship 

between the PROMS-S Pitch subtest and Chord Analysis task), and the magnitude of 

the correlations suggest that these tasks are tapping related abilities, but are not 

completely redundant measures (i.e., high correlations). Another approach to 

calculating correlations is to correct for the attenuation of tasks with lower 

reliabilities (Spearman, 1904). These disattenuated correlations (i.e., an estimate of 

the true correlation of two variables if both variables were perfectly reliable and with 

no measurement error) also show the same pattern of results with mostly stronger 

relationships and are reported in Appendix A and Appendix B. These disattenutated 

correlations may more closely represent the relationships represented between tasks 

in the more comprehensive latent variable framework described below. 
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Table 6 
Correlation Matrix of Ancillary Measures and Musical Measures 

Note. *p < .05, **p < .01, ***p < .001 

Structural Analyses/Model Comparisons 

In order to improve upon the “task impurity problem” (i.e., even if a complex 

task does measure the construct of interest, it also taps other types of processes as 

well), the analyses relied on latent variable analysis to obtain estimates of the latent 

ability underlying performance on a set of theoretically related tasks (e.g., Miyake et 

al., 2000; Okada & Slevc, 2018). That is, because a single task measuring a construct 

of interest may not be indicative of someone’s true score (e.g., could include 

measurement error), multiple measures of each construct of interest were 

administered.  By using latent variable analysis, one can estimate what is common 

1 2 3 4 5
1. Music Training
2. Openness  0.23** 
3. IQ  0.16* 0.12
4. SES Ladder -0.07 0.05 0.02
5. WM 0.14 0.12  0.25** 0.09
PROMS-S Melody  0.43*** 0.15  0.16* -0.05 0.13
PROMS-S Tuning  0.39*** 0.03  0.23** 0.06  0.17* 
PROMS-S Pitch  0.23** 0.06 0.09 -0.04 0.07
Pitch Threshold  0.25** -0.01  0.28*** 0.02 0.13
Chord Analysis  0.32*** 0.04  0.26*** 0.12 0.13
Familiar Songs  0.24** 0.03  0.16* -0.08 0.15
Mowrer Test  0.47***  0.16* 0.04 0.01  0.19* 
Melody Imitation  0.33*** -0.03 0.02 -0.07 0.09
PROMS-S Rhythm  0.30***  0.18* 0.10 -0.05 0.12
PROMS-S Tempo  0.18* 0.02 0.12 -0.11 0.09
Duration Threshold 0.15 0.02  0.35*** 0.03 0.02
BAT Perception  0.40*** 0.04  0.27*** 0.09  0.16* 
Metronome Sync  0.34*** 0.04 0.14 0.06 0.06
Sync Cont  0.17* -0.10  0.16* 0.04 0.08
Song Sync  0.34*** 0.06  0.22** -0.12  0.18* 
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between the tasks measuring a given construct and get a better estimate of the 

underlying component of interest removed from task-specific effects. 

In order to answer the research questions below, a series of confirmatory 

factor analyses (CFA) were assessed to determine the best model of musical ability 

that fit the data. All analyses were conducted with the R Statistical Platform (v. 3.4.1, 

R Core Team, 2017) using the package lavaan (v. 0.5-23.1097, Rosseel, 2012). Each 

model was run with robust maximum likelihood estimation (MLR), which provided 

robust standard errors and a Yuan-Bentler scaled chi-square test statistic that is robust 

to non-normality (Yuan & Bentler, 2000). Full Information Maximum Likelihood 

(FIML) was used for missing data in order to obtain estimates with partial data (as 

opposed to pair-wise or list-wise deletion, Beaujean, 2014). 

For each model, the following model fit indices are reported: Chi-square test 

of model fit (χ2), Comparative Fix index (CFI), Root Mean Square Error of 

Approximation (RMSEA), the Standardized Root Mean Square Residual (SRMR), 

and the Akaike Information Criterion (AIC). The Chi-square Test of Model Fit tests 

the null hypothesis that the observed data are no different from the expected 

population covariance matrix from the model (i.e., that the model fits the data). The 

alternative hypothesis is that our observed data do not fit the population covariance 

specified by our model. Thus, a non-significant χ2 means that the model fits the data 

well. However, this statistic is influenced by sample size, so it is reported alongside 

other model fit indices. The CFI is classified as a comparative index of model fit 

because it indicates “improvement in model fit by comparing the hypothesized model 

in which structure is imposed with the less restricted nested baseline model” (Byrne, 
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2013, p. 72). A CFI above .95 is considered good model fit (Hu & Bentler, 1999). 

The RMSEA and SRMR are classified as absolute indices of model fit because they 

do not compare the hypothesized model with a “reference model in determining the 

extent of model improvement; rather, they depend only on determining how well the 

hypothesized model fits the sample data” (Byrne, 2013, p. 72). A RMSEA less than 

.05 and a SRMR under .08 show good model fit (Hu & Bentler, 1999).  The AIC is a 

measure of goodness of fit, and it penalizes for the addition of more parameters; a 

smaller AIC is indicative of better model fit. If the two models being compared were 

nested, a Satorra-Bentler scaled χ2 difference test was conducted to determine if one 

model fit significantly better than the other (Satorra & Bentler, 2001). However, if the 

two models being compared were non-nested, the model with the lowest AIC was 

deemed the better fitting model.  

In the following figures, all observed, measured variables are represented in 

squares and unobserved, latent factors are represented in circles. The single headed 

arrows from latent factors to measured variables are standardized factor loadings. 

Double headed arrows between latent factors represent the correlation between the 

two factors – squaring this value gives shared variance between the factors. For path 

models, single headed arrows from a measured task or latent variable to another latent 

variable can be interpreted as regression coefficients (e.g., a one unit increase in WM 

equals on average, a one unit increase in musical ability (Beaujean, 2014).  
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Is Musical Ability a Unitary, General Construct, or Are Pitch and Timing 

Dissociable Abilities? 

In order to answer this question, two models (see Figure 5 below) were fitted 

and compared using the lavaan package (v 0.5.23.1097, Rosseel, 2012) in R (v. 3.4.1, 

R Core Team, 2017). The first model (Model 1) was composed of a unitary Musical 

Ability factor, with all 15 musical tasks loading onto it. This model showed 

acceptable model fit (see Table 7 for all model fit indices), and all tasks loaded 

significantly onto the unitary Musical Ability factor. The second model (Model 2) 

was a two-factor model with separate, but correlated Pitch and Timing factors. The 

Pitch factor items consisted of the Pitch, Melody, and Tuning subtests of the 

PROMS-S, Chord Analysis, Pitch Discrimination Threshold, and all pitch production 

measures. The Timing factor items consisted of the Rhythm and Tempo subtests of 

the PROMS-S, Duration Discrimination Threshold, BAT Perception subtest, and all 

timing production measures21. Model 2 also showed acceptable model fit (see Table 

7), and again all tasks loaded significantly onto their respective latent factors. 

In order to determine whether musical ability is a unitary construct or if it is 

more appropriate to have separate Pitch and Timing factors, a χ2 difference test was 

run, and Model 2 showed significantly better fit (Satorra-Bentler scaled χ2  difference 

(1, N = 165) = 22.33, p < .001). In Model 2, the correlation between the latent factors 

of Pitch and Timing was r = .72, p < .001. 

 

                                                
21 The OSF pre-registration erroneously stated that the BAT Perception subtest should 
be included in the Pitch factor; however, it is included here in the Timing factor.  
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Figure  5. 1-factor model (Model 1) where all tasks load onto a general musical ability 
factor, and a 2-factor model (Model 2) with Pitch and Timing factors 
 
Table 7 
Model Fit Indices 

Note. Model 4A, with the best fit indices, is highlighted in blue. 
 
 

Are Perception and Production Abilities Dissociable? 

Given that the two-factor model with Pitch and Timing factors fit significantly 

better than the one-factor model above, two different four-factor models 

incorporating Pitch, Timing, Perception, and Production factors were fit.  

Model 4A contained the following four factors: Pitch, Timing, Perception, and 

Production (see Figure 6). The Pitch and Timing factors contained the same items as 

in Model 2. The Perception factor items included: all PROMS-S subtests, Chord 

Analysis, Pitch and Duration Thresholds, and BAT Beat Perception. The Production 

Musical 
Ability

PROMS-S Rhythm

BAT – Beat Perception

Duration Threshold

Chord Analysis

Pitch Threshold

PROM-S Tuning

Mowrer Test

BAT Metronome Sync

PROM-S Melody

PROM-S Pitch

Familiar Songs

Melody Imitation

PROMS-S Tempo

Synchronization Cont.

Song Synchronization

.55

.47

.42

.49

.54

.20

.66

.36

.39

.39

.60

.48

.62

.45

.45

PROMS-S Rhythm

BAT – Beat Perception

Duration Threshold

Chord Analysis

Pitch Threshold

PROM-S Tuning

Mowrer Test

BAT Metronome Sync

PROM-S Melody

PROM-S Pitch

Familiar Songs

Melody Imitation

PROMS-S Tempo

Synchronization Cont.

Song Synchronization

Timing

Pitch

.72

.61

.48

.45

.47

.44

.24

.78

.49

.37

.45

.64

.50

.66

.52

.49

Model x2 df AIC SRMR RMSEA CFI
1 216.321 90 6583.014 0.078 0.088 0.756
2 188.640 89 6559.020 0.078 0.079 0.808
4A 95.931 73 6500.109 0.052 0.040 0.959
4B 156.067 84 6534.697 0.068 0.068 0.865
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factor items included all three singing measures and all three tapping measures. This 

model showed good model fit, and showed better fit than model 2 (i.e., lower AIC, 

see Table 7). 

 

Figure 6. Model 4A with Pitch, Timing, Perception, and Production factors 
 
 

Model 4B contained the following four factors: Pitch Perception, Pitch 

Production, Timing Perception, and Timing Production (see Figure 7). The Pitch 

Perception factor contained the Pitch, Melody, and Tuning subtests of the PROMS-S, 

Chord Analysis, and Pitch Discrimination Threshold. The Timing Perception factor 

contained the Rhythm and Tempo subtests from the PROMS-S, Duration 

Discrimination Threshold, and BAT Perception subtest. The Pitch Production factor 

included the Familiar Songs Imitation task, Mowrer Test of Tonal Memory, and 

Melody Imitation task. Lastly, the Timing Production factor included the Metronome 

Synchronization task, Synchronization Continuation, and Song Synchronization. 

Model 4B showed acceptable model fit, but did not fit as well as Model 4A (i.e., 

Model 4B had higher AIC than Model 4A, see Table 7). 

PROMS-S Rhythm

BAT – Beat Perception

Duration Threshold

Chord Analysis

Pitch Threshold

PROM-S Tuning

Mowrer Test

BAT Metronome Sync

PROM-S Melody

PROM-S Pitch

Familiar Songs

Melody Imitation

PROMS-S Tempo

Synchronization Cont.

Song Synchronization

Timing

Pitch

Production

Perception

.67

.55

.40

.39

.35

.21

.20

.91

.57

.37

.45

.60

.26

.36

.28

.48

.71

.20

.22

.18

.36

.77

.75

.53

.18

.15

.08
-.05
.14
.18
.30
.61
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Figure 7. Model 4B with Pitch Perception, Pitch Production, Timing Perception, and 
Timing Production factors 
 

With Model 4A having the overall best fit, the relationships between pitch and 

timing and perception and production were evaluated. In this final model, the Pitch 

and Timing factors were significantly correlated (r = .67, p < .001) and the 

Perception and Production factors were also significantly correlated (r = .71, p < 

.001)). These correlations suggest related, but separate processes underlying 

performance on these tasks. 

In order to assess the relationships between finer-grained auditory acuity and 

the processing of more complex music, factor loadings and correlations between the 

Threshold Discrimination measures and more complex musical tasks were assessed. 

Both of the Threshold Discrimination tasks were strongly and positively correlated 

with one another, and they both loaded significantly onto their respective factors 

(within Model 4A). This suggests that performance on these two tasks was influenced 

by a similar latent process underlying both fine-grained auditory processing and more 

PROMS-S Rhythm

BAT – Beat Perception

Duration Threshold

Chord Analysis

Pitch Threshold

PROM-S Tuning

Mowrer Test

BAT Metronome Sync

PROM-S Melody

PROM-S Pitch

Familiar Songs

Melody Imitation

PROMS-S Tempo

Synchronization Cont.

Song Synchronization

Timing 
Perception

Pitch 
Perception

.76

Pitch 
Production

Timing 
Production

.86

.42

.76

.54

.75

.58

.49

.44

.48

.52

.21

.97

.54

.78

.59

.45

.38

.45

.66

.56



 

 52 
 

complex musical processing (e.g., the Pitch factor influences both Pitch Threshold 

Discrimination performance and more complex musical tasks, such as the PROMS-S 

Melody subtest).  

 

How Does Musical Ability Relate to the Ancillary Measures? 

The goal of this portion of the study was to determine musical ability’s 

relationship with other relevant variables. Because most of the hypothesized 

relationships between musical ability and the ancillary measures were not specific to 

sub-aspects of musical ability (and because our one factor model showed acceptable 

model fit), we proceeded to determine these relationships by fitting the one-factor 

model of Musical Ability with separate path models for each ancillary ability of 

interest (i.e., musical training, WM, IQ, Openness, SES). By examining the 

significance of the path coefficient with the one-factor model, the relationship 

between these variables and overall musical ability was assessed. Although the 

primary analyses here rely on a one factor model of musical ability, given the best 

fitting four factor model above, a set of exploratory analyses were performed 

examining the relationships between each of the four factors and ancillary measures 

to investigate the potential for more specific relationships. 

Musical training, as measured by the seven items on the Gold-MSI, did 

predict overall musical ability (estimate = .70, p < .001). With the four factor model 

of musical ability, musical training predicted latent Pitch (estimate = .63, p < .001) 

and Timing (estimate = .65, p = .004) abilities, but neither Perception (estimate = .21, 

p = .29) nor Production (estimate = .20, p = .28).  
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Working Memory, as measured by the Operation span, did predict overall 

musical ability (estimate = .25, p = .005). Just as with musical training, within the 

four factor model of musical ability, working memory predicted latent Pitch (estimate 

= .21, p = .026) and Timing (estimate = .24, p = .035) abilities, but not Perception 

(estimate = .082, p = .29) nor Production (estimate = -.013, p = .90) abilities. 

IQ, as measured by the Raven’s Advanced Progressive Matrices, did predict 

overall musical ability (estimate = .37, p = .001). With the four factor model of 

musical ability, IQ predicted latent Timing (estimate = .26, p = .042) and Perception 

(estimate = .45, p < .001) abilities, but neither Pitch (estimate = .040, p = .67) nor 

Production (estimate = .088, p = .45) abilities. 

Openness, as measured by the ten items on the BIG5, was not predictive of 

overall musical ability (estimate = .092, p = .35), nor any of the latent factors within 

the four factor model of musical ability: neither Pitch (estimate = .16, p = .097), 

Timing (estimate = .11, p = .39), Perception (estimate = -.048, p = .60), nor 

Production (estimate = -.031, p = .78). 

SES, as measured by the MacArthur ladder did not predict overall musical 

ability (estimate = .016, p = .84), nor any of the latent factors within the four factor 

model of musical ability: neither latent Pitch (estimate = -.014, p = .87), Timing 

(estimate = -.092, p = .52), Perception (estimate = .096, p = .35), nor Production 

(estimate = .11, p = .30) abilities.  
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Figure 8. Individual Path Models for Ancillary Measures and Musical Ability 
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Chapter 4: Discussion 

 
 
 
 
Although multiple tests of musical ability have been developed, there has been 

little consensus on what exactly constitutes musical ability and how to best measure 

it. Further, most musical ability tests assess only perceptual abilities with a small 

number of tasks. The current study used an individual differences approach and 15 

representative musical ability tasks to assess whether theorized factors of musical 

ability (pitch, timing, perception, and production) best represented the 

data/performance on these tasks. Based on a series of confirmatory factor analyses, 

the musical ability model that best fit the data was a four-factor model including 

Pitch, Timing, Perception, and Production factors (Model 4A).  Additionally, multiple 

path analyses showed that a latent measure of musical ability was positively related to 

musical training, working memory, and intelligence, but not to openness or socio-

economic status. 

The separability of Pitch and Timing factors fits with previous findings of 

dissociations between pitch and timing processing in amusic patients (Alcock et al., 

2000; Ayotte et al., 2002; Peretz & Coltheart, 2003; Peretz et al., 2007; Phillips-Silver 

et al., 2011). And the relatedness of the Pitch and Timing factors fits with positive 

relationships found in musical ability tests measuring both pitch and timing abilities 

(Gordon, 2004; Peretz et al., 2003; Law & Zentner, 2012; Wallentin et al., 2010).  

This further supports the structure of musical ability tests in which both of these 

factors are assessed to estimate musical ability. The separate, but related Perception 
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and Production factors also fit with previously found relationships where these 

abilities scale together (Amir & Kishon-Rabin, 2003; Dalla Bella et al., 2017; Fujii & 

Schlaug, 2013) and where they dissociate (Dalla Bella et al., 2011; Dalla Bella et al., 

2017; Fujii & Schlaug, 2013; Loui et al., 2008). Within Model 4A, the finding that 

the Threshold Discrimination tasks are correlated with and are influenced by the same 

latent factors as more complex tasks (e.g., PROMS-S tasks) suggests that these more 

fine-grained auditory acuity tasks are important indicators of musical ability.  

Unsurprisingly, and in relief to music educators everywhere, musical training 

predicted musical ability, which fits with previous studies showing this relationship 

(Fuji & Schlaug, 2013; Law & Zentner, 2012; Slevc et al., 2016; Swaminathan et al., 

2017; Swaminathan & Schellenberg, 2018; Wallentin et al., 2010). Although the 

direction of this relationship is unclear, they suggest that either musical training leads 

to increases in musical ability and/or those who are good at musical ability tests are 

more likely to pursue music lessons. Within the exploratory analysis with the four-

factor model, musical training predicted pitch and timing factors, but not perception 

nor production factors. This is interesting given that musical training increases 

musical exposure, so it is surprising that musical training does not predict production 

or perception abilities. However, it may be the case that musical training moreso 

influences pitch and timing abilities, which still underlie perception and production 

abilities on these tasks.  

The positive relationship between working memory and musical ability also 

fits with previous findings (Okada & Slevc, 2018; Slevc et al., 2016; Swaminathan & 

Schellenberg, 2018; Wallentin et al., 2010) as does the positive relationship with 
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intelligence (Swaminathan et al., 2017). This makes sense as the nature of many of 

the tasks used here necessitate the use of working memory in order to make 

same/different judgments or to listen to a musical clip then sing it aloud. However, it 

is interesting to note that although working memory predicted overall musical ability, 

it was not significantly correlated with many of the musical measures (namely the 

perceptual same/different judgment tasks in the PROMS-S battery). Perhaps the 

stimuli used for these judgments were sufficiently undemanding on memory to be 

within the abilities of even the low-span participants here, or participants may have 

recognized patterns within the stimuli (e.g., chord recognition, Povel & Jansen, 

2001), so they were not as demanding on working memory processes. In regard to the 

exploratory analyses with the four-factor model, working memory predicted pitch and 

timing factors, but not perception nor production factors. Perhaps this is due to the 

reliance on working memory mechanisms when extracting pitch and timing aspects in 

relation to the overall key or meter of the musical stimulus, which may place 

relatively few demands on perception and production processes per se. Interestingly, 

the exploratory analysis with intelligence showed that intelligence predicted 

perception and timing factors, but not pitch nor production factors. This suggests that 

pattern recognition may be more important for recognizing and extracting rhythm 

patterns in perception tasks than in pitch or production tasks.  

Surprisingly, openness to experience did not predict overall musical ability as 

found previously (Greenberg et al., 2015; Swaminathan & Schellenberg, 2018), both 

in the one factor model (see Figure 8) and four-factor exploratory analysis. This may 

be due to the larger battery (and larger range) of musical ability tasks assessed here, 
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highlighting the importance of using multiple tasks to measure a construct. However, 

there was a significant positive correlation between openness and musical training, 

which does fit with previous studies on openness and musical practice and 

engagement (Butkovic et al., 2015; Corrigall et al., 2013). These results suggest that 

individuals higher in openness may be more likely to try a musical instrument and/or 

seek out more musical experiences, and that openness seems to be independent of 

musical ability. 

Interestingly, SES was not related to musical ability, both in the one factor 

model (see Figure 8) and four-factor exploratory analysis, as has been previously 

found (Swaminathan et al., 2017; Swaminathan & Schellenberg, 2018). This may be 

due to the different measures used to assess SES here and in other studies, or may 

reflect the limited SES variability within our college-aged sample. However, note that 

previous findings show that only selective measures of SES are related to musical 

ability (i.e., only mother’s education, but not father’s education or either parental 

income, predicted musical ability in Swaminathan & Schellenberg, 2018), suggesting 

that this previously postulated relationship may not be robust. SES also did not show 

a relationship with musical training as seen in previous studies (Corrigall et al., 2013; 

Kaushal et al., 2011; Norton et al., 2005; Southgate & Roscigno, 2009). However, 

this non-relationship mirrors other recent findings in the same college student 

population (Okada & Slevc, 2018; Slevc et al., 2016), perhaps reflecting the specific 

sample used (see below for discussion).  
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Limitations and Future Directions 

Despite the comprehensive set of musical tasks and the relatively large sample 

size used in this study, there are a few limitations. One type of limitation stems from 

our participant sample of University undergraduates. This specific population may 

have provided a restricted range of cognitive ability and SES. Of note is that our 

measure of SES did not correlate with any of the musical tasks nor our measure of 

musical training. Furthermore, it is unknown whether a different factor structure 

might emerge with a different population, such as with a group of highly trained 

musicians or those with amusia. Relatedly, it is also unknown if this factor structure 

would remain consistent over time or if these factors develop at different rates. 

Gordon (2000) asserted that musical aptitude develops until about age 9, after which 

it becomes stable and fixed, which suggests that this factor structure may differ for 

children. Hopefully future research will begin to investigate these issues. 

Another type of limitation comes from the task battery. Although more 

comprehensive than what has been used in previous work, the tasks used in this study 

are just a subset of all of the existing tasks used to measure musical ability (and there 

is no reason to think that existing tasks fully capture all possible aspects of musical 

ability). In the battery used here, perhaps most notably, the pitch production tasks are 

a very coarse-grained view of what one could typically consider “singing.” Pitch was 

the only aspect measured with these data; however, future research should also 

examine other elements that are ascribed to good singing (e.g., appropriate vibrato, 

brilliance, breath management, tone quality, strain; see, e.g., Oates, Bain, David, 

Chapman, & Kenny, 2006), and investigate the differences between judging pitch 
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accuracy with acoustic measurements (via software) and ratings done by music 

teachers (see Salvador, 2010 for a review of different rating systems). Relatedly, only 

one aspect of timing production was assessed here – the ability to extract the beat and 

tap along consistently. Future work should also consider other types of complex 

tapping that have been shown to vary among individuals (e.g., more complex rhythms 

or polyrhythms, Vuust, Wallentin, Mouridsen, Østergaard, & Roepstorff, 2011) as 

well as other aspects of musical ability that are likely to be related, but separate 

aspects from the Pitch and Timing factors seen here (e.g., timbre or loudness, as in 

Law & Zentner, 2012). Finally, although only basic musical ability skills were 

assessed here, future work will hopefully also explore the relationships between 

abilities like mental imagery (e.g., Halpern, Zatorre, Bouffard, & Johnson, 2004; 

Jakubowski et al., 2018), feeling the groove (e.g., Janata, Tomic, & Haberman, 2012), 

expressing and perceiving emotion in music (see Juslin & Sloboda, 2010 for a 

review), and other more complex aspects of engaging with music. Another limitation 

from the task battery (and thus also of previous studies using these tasks) is that some 

of the tasks have low reliabilities (i.e., Cronbach’s alpha). One possible solution to 

this would be to remove measures that attain low reliabilities (i.e., Cronbach’s alpha 

of less than .6 in PROMS-S Pitch, Rhythm, and Tempo subtests, Wing Chord 

Analysis, and BAT Perception) in estimating the best fitting model. In fact, rerunning 

all models without these tasks still results in the four factor model (i.e., factors of 

Pitch, Timing, Perception, and Production) having the best fit (χ2(165) = 51.30, p = 

.001, SRMR = .052, RMSEA = .076, CFI = .95, AIC = 4301.69), which suggests that 

this factor structure is robust. However, removing measures (or even specific items) 
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based on reliability may undermine the established validity of the test, and additional 

testing should be done to ensure acceptable psychometric properties of shortened 

tests. Further, part of the goal of administering previously used musical tasks was to 

ascertain the relationships between performance on all of these tasks, and to estimate 

latent factors based on shared variance and minimized measurement error.  

A practical limitation is that, while this study shows the importance of 

measuring both music perception and production abilities, analyzing production data 

has many notable challenges. During data collection, many participants were hesitant 

to sing and were embarrassed that the experimenter would hear them sing (perhaps 

exhibiting performance anxiety; e.g., Kenny & Osborne, 2006). A few participants 

sang the same melody for each trial or spoke the lyrics to the familiar songs in a 

monotone voice. Unfortunately, this leaves it unknown whether they possess low 

singing ability or if they just did not want to attempt and put forth any effort. It is also 

interesting that during the Melody Imitation task, some participants sang in a different 

octave than the musical stimuli that they heard. Although pitches from multiple 

octaves were judged as correct due to the perceptual similarity of pitches across 

octaves (i.e., octave equivalence), it may have been a harder task for those hearing 

notes in a given octave, then producing notes in a different octave. Although work on 

pitch recall for pitches heard in different octaves shows that accuracy remains similar 

despite octave displacement (Deutsch & Boulanger, 1984), it is unknown whether 

they were aware that they were singing in a different octave from what they heard and 

if doing so was more difficult. Furthermore, singing recordings can be a very noisy 

signal, and programs designed to extract pitch frequency may not always do so 
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accurately (e.g., pitch tracking errors may occur if or if optimal parameters are not 

set, Babacan, Drugman, d’Alessandro, Henrich, & Dutoit, 2013; Murray, 2001). 

Future work should try to use robust pitch extractors to minimize these types of 

errors.   

Advancing this model of musical ability that takes into account relevant 

factors (pitch, timing, perception and production) will hopefully be an important 

contribution to the field of music psychology. To date, most studies only consider 

perceptual abilities even though the main criterion outcome of interest from these 

tests is whether or not someone will succeed in learning/producing music. The 

separability between these four factors is evidence that musical ability should be 

measured with a range of tasks. Future research on musical ability should attempt to 

measure production aspects as well as perception aspects and also be more explicit 

about what performance on tasks actually represents (i.e., performance on one 

perceptual task should not generalize to someone’s overall musical ability).  

As a methodological contribution, another goal of this project was to 

encourage the use of more sophisticated individual differences approaches to 

investigate musical ability and its relationships to other constructs. Using multiple 

tasks to measure a given construct as well as using latent variable analysis provided 

more robust results to compare to the existing relationships found in the literature. 

With clearer reporting of measures used, the field will hopefully move away from 

mixed findings and toward a clearer, more nuanced picture of musical ability and its 

relationships with other measures. 
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Finally, another future goal of this project is to develop a new, shorter test 

battery (with multiple tasks measuring each factor) that will use freely available 

materials that can reliably measure pitch and timing perception and production 

abilities in the general population. This newer battery could be used by music 

researchers investigating musical ability in adults or by music educators to ascertain 

ability levels of their students. Within the best fitting model here, the four latent 

factors predicted the most variance in the Mowrer Test of Tonal Memory (R2 = .84), 

Metronome Synchronization task (R2 = .69), Pitch Threshold task (R2 = .64), BAT 

Perception task (R2 = .45) and Duration Threshold task (R2 = .44). Interestingly, the 

Mowrer Test of Tonal Memory has the highest R2 value, which underscores its use to 

predict choral ensemble contribution (Mowrer, 1996), and is a quick test that can 

easily be administered by music educators or researchers to measure this aspect of 

music ability. The fact that the tasks with the highest R2 values also highlight that 

pitch and timing production as well as finer-grained perception are critical in 

measuring musical ability. 

In sum, although musical ability has been extensively studied, most 

conclusions about the nature of musical ability and its relationships with other factors 

have been drawn using limited sets of mainly perceptual musical ability tasks. By 

using a more comprehensive set of musical ability tasks and evaluating structural 

latent variable models, this work will hopefully advance research investigating 

different aspects of musical ability and provide a stronger framework for future 

studies investigating the complex nature of musical ability. 
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Appendix B 
 
Disattenuated Correlation Matrix of Ancillary Measures and Musical Measures 

 
Note. *p < .05, **p < .01, ***p < .001 
In the top left quadrant with the five ancillary measures, Pearson’s correlations are 
below the diagonal, reliabilities for each task are on the diagonal, and disattenuated 
correlations are above the diagonal.  
For correlations with the musical tasks, Pearson’s correlations are on the left and 
disattenuated correlations are on the right. Cronbach’s alpha was used here because it 
was not possible to estimate Omega for all measures. There are no disattenuated 
correlations with SES because reliability could not be calculated for this measure.  
 

1 2 3 4 5 1 2 3 5
1. Music Training 0.84 0.25 0.25 - 0.19
2. Openness  0.23** 0.8 0.15 - 0.12
3. IQ  0.16* 0.12 0.75 - 0.35
4. SES Ladder -0.07 0.05 0.02 - -
5. WM 0.14 0.12  0.25** 0.09 0.69
PROMS-S Melody  0.43*** 0.15  0.16* -0.05 0.13 0.60 0.23 0.33 0.33
PROMS-S Tuning  0.39*** 0.03  0.23** 0.06  0.17* 0.53 -0.07 0.34 0.28
PROMS-S Pitch  0.23** 0.06 0.09 -0.04 0.07 0.40 0.07 0.27 0.16
Pitch Threshold  0.25** -0.01  0.28*** 0.02 0.13 0.32 -0.02 0.41 0.10
Chord Analysis  0.32*** 0.04  0.26*** 0.12 0.13 0.51 0.07 0.39 0.25
Familiar Songs  0.24** 0.03  0.16* -0.08 0.15 0.30 0.01 0.18 0.20
Mowrer Test  0.47***  0.16* 0.04 0.01  0.19* 0.65 0.20 0.09 0.31
Melody Imitation  0.33*** -0.03 0.02 -0.07 0.09 0.52 0.00 0.13 0.32
PROMS-S Rhythm  0.30***  0.18* 0.10 -0.05 0.12 0.43 0.31 0.26 0.32
PROMS-S Tempo  0.18* 0.02 0.12 -0.11 0.09 0.31 -0.06 0.16 0.03
Duration Threshold 0.15 0.02  0.35*** 0.03 0.02 0.18 -0.02 0.44 0.00
BAT Perception  0.40*** 0.04  0.27*** 0.09  0.16* 0.64 0.04 0.43 0.22
Metronome Sync  0.34*** 0.04 0.14 0.06 0.06 0.43 0.00 0.23 0.06
Sync Cont  0.17* -0.10  0.16* 0.04 0.08 0.32 -0.10 0.30 0.14
Song Sync  0.34*** 0.06  0.22** -0.12  0.18* 0.39 0.09 0.25 0.23
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