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At the leading order, M-theory admits minimal supersymmetric compactifi-

cations if the internal manifold has exceptional holonomy. The inclusion of non-

vanishing fluxes in M-theory and string theory compactifications induce a superpo-

tential in the lower dimensional theory, which depends on the fluxes. In this work,

we check the conjectured form of this superpotential in the case of warped M-theory

compactifications on Spin(7) holonomy manifolds. We perform a Kaluza-Klein re-

duction of the eleven-dimensional supersymmetry transformation for the gravitino

and we find by direct comparison the superpotential expression. We check the con-

jecture for the heterotic string compactified on a Calabi-Yau three-fold as well. The

conjecture can be checked indirectly by inspecting the scalar potential obtained after

the compactification of M-theory on Spin(7) holonomy manifolds with non-vanishing

fluxes. The scalar potential can be written in terms of the superpotential and we



show that this potential stabilizes all the moduli fields describing deformations of

the metric except for the radial modulus.

All the above analyses require the knowledge of the minimal supergravity

action in three dimensions. Therefore we calculate the most general causal N = 1

three-dimensional, gauge invariant action coupled to matter in superspace and derive

its component form using Ectoplasmic integration theory. We also show that the

three-dimensional theory which results from the compactification is in agreement

with the more general supergravity construction.

The compactification procedure takes into account higher order quantum cor-

rection terms in the low energy effective action. We analyze the properties of these

terms on a Spin(7) background. We derive a perturbative set of solutions which

emerges from a warped compactification on a Spin(7) holonomy manifold with non-

vanishing flux for the M-theory field strength and we show that in general the Ricci

flatness of the internal manifold is lost, which means that the supergravity vacua

are deformed away from the exceptional holonomy. Using the superpotential form

we identify the supersymmetric vacua out of this general set of solutions.
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1. INTRODUCTION

Low dimensional compactifications of M-theory have previously been discussed in

the literature. The amount of supersymmetry obtained in the low-dimensional effec-

tive theory is directly related to the holonomy of the internal manifold. Compact-

ifications on Riemannian manifolds of exceptional holonomy are of special interest

because they allow us to obtain theories with less supersymmetry and in a differ-

ent number of space-time dimensions. In particular, M-theory compactifications

on Spin(7) holonomy manifolds1 lead to a minimal supersymmetric theory in three

dimensions. Early papers which have considered compactification of M-theory on

exceptional holonomy backgrounds are [2] and [3].

Recall that there is a close connection between the theory of Riemannian man-

ifolds with reduced holonomy and the theory of calibrated geometry [4]. Calibrated

geometry is the theory which studies calibrated submanifolds, a special kind of min-

imal submanifolds of a Riemannian manifold, which are defined using a closed form

called the calibration. Riemannian manifolds with reduced holonomy usually come

1For a mathematical introduction into the subject of manifolds with exceptional holonomy the

reader can consult the book by Dominic Joyce [1].
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equipped with one or more natural calibrations. Based on this close relation to

calibrated geometry and generalizing the result for the superpotential found in [5],

Gukov made a conjecture about the form of the superpotential appearing in string

theory compactifications with non-vanishing Ramond-Ramond fluxes on a manifold

X of reduced holonomy [6]

W =
∑ ∫

X

(Fluxes) ∧ (Calibrations) . (1.1)

In this formula the sum is over all possible combinations of fluxes and calibrations.

This conjecture has been previously checked by computing the scalar potential from

a Kaluza-Klein reduction of the action for a certain type of theories. This, in

turn, determines the superpotential. We want to emphasize that this procedure

is an indirect verification of (1.1). In this thesis we present a direct computation

based on the general observation that the gravitino supersymmetry transformation

contains a term proportional to W . For the Type IIB theory these potentials have

been computed in [7] and [8]. The superpotentials for Type IIA compactifications

on Calabi-Yau four-folds were derived in [9, 10, 11], while the scalar potential for

M-theory on G2 holonomy manifolds has been computed in [12]. One of our main

goals will be to compute directly the superpotential for the three-dimensional theory

obtained from compactification of M-theory on Spin(7) holonomy manifolds. Having

the form of W we can then determine the concrete form of the scalar potential

which arises in the low energy effective action. This is another important problem

addressed in this thesis.

It is well known that for a conventional compactification of the heterotic string

2



on a Calabi-Yau three-fold, i.e. without taking warp factors into account, turning

on an expectation value for the heterotic three-form will induce a superpotential,

which breaks supersymmetry without generating a cosmological constant [13]. In

the context of Gukov’s conjecture [6], it was argued in [14] that this superpotential

can be written as in (1.1), generalizing the original proposal [6] to fluxes of Neveu-

Schwarz type. For an earlier discussion on the superpotential one can consult [13].

Due to the fact that this is a rather important result, we have included in our thesis

the superpotential derivation for the heterotic theory alongside with the derivation

for M-theory on Spin(7) manifolds. We shall check the above conjecture for both

theories in section 5.1 by computing the superpotential explicitly from a Kaluza-

Klein reduction of the gravitino supersymmetry transformation.

Of great importance are the compactifications of M-theory and string theory

with non-vanishing expectation values for tensor fields. The previously mentioned

procedures play a very special role when trying to find a realistic string theory

model that could describe our four-dimensional world. Especially interesting are

the so called warped compactifications. Such compactifications were first discovered

for the heterotic string in [15] and [16] and were later generalized to warped com-

pactifications of M-theory and F-theory in [17, 18, 19]. In these compactifications

tensor fields acquire non-vanishing expectation values, while leaving supersymmetry

unbroken. The compactification generates scalar fields in the low-energy effective

supergravity theory, the so called moduli fields. The vacuum expectation values of

the moduli fields characterize the vacuum. If the compactified theory contains no

scalar potential, the moduli fields can take any possible values and the theory loses
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its predictive power because the vacuum is undetermined. However, it was realized

in [5, 7, 8, 19, 20] and [21] that for string theory and M-theory compactifications

with non-vanishing fluxes a scalar potential emerges, which stabilizes many of the

moduli fields. More specifically, the restrictions imposed by supersymmetry on the

fluxes lead to constraints on the moduli fields of the theory and most of these moduli

fields will be stabilized, hence the number of possible vacua is reduced.

In this thesis we would like to consider warped compactifications of M-theory

on a smooth and compact Spin(7) holonomy manifold. As we have mentioned be-

fore the resulting action has an N = 1 supersymmetry in three dimensions and it

is interesting from several reasons. First of all these theories are closely related to

four-dimensional counterparts with completely broken supersymmetry. This is be-

cause they can not be obtained by a dimensional reduction from a supersymmetric

four-dimensional theory2, thus one might understand the mechanism of N = 1 su-

persymmetry breaking in four dimensions by studying the three-dimensional theory

with N = 1 supersymmetry. Also, because the string world-sheet is two-dimensio-

nal one expects to observe interesting phenomena upon compactification of string

theory to two dimensions [9] and for this reason three-dimensional compactifications

of M-theory are attractive. Another strong reason to pursue a serious analysis of

M-theory on such a background is the close relation which exists between manifolds

with Spin(7) holonomy and manifolds with G2 holonomy. We would like to remind

the reader that M-theory compactified on manifolds with G2 holonomy generates

2The minimal supersymmetric theory in four dimensions compactified on S1 produces a three-

dimensional theory with N = 2 supersymmetry.
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a minimal supersymmetric theory in four dimensions which is appealing from a

phenomenological point of view.

As well, models with N = 1 supersymmetry in three dimensions are interest-

ing in connection to the solution of the cosmological constant problem along the

lines proposed by Witten in [22] and [23] and exemplified in the three-dimensional

case in [24]. The basic idea of this proposal is that in three dimensions supersym-

metry can ensure the vanishing of the cosmological constant, without implying the

unwanted Bose-Fermi degeneracy. However, this mechanism does not explain why

the cosmological constant of our dimensional world is so small, unless there is a

duality between a three-dimensional supersymmetric theory and a four-dimensional

non-supersymmetric theory of the type that we are discussing. So, M-theory com-

pactifications on Spin(7) holonomy manifolds allow us to address the cosmological

constant problem from a three-dimensional perspective.

In general, due to membrane anomaly [25, 26, 27] and the global tadpole anom-

aly [18], the compactification of M-theory on eight-dimensional manifolds involves

the presence of a non-vanishing flux for the field strength [17]. The supersymmetry

imposes restrictions on the form of the field strength flux. In the Spin(7) holonomy

case the restrictions imposed to the flux were derived in [28]. It was later shown

in [29] and [30] that these constraints can be derived from certain equations which

involve the superpotential

W = DAW = 0 , (1.2)

where DAW indicates the covariant derivative of W with respect to the moduli
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fields which correspond to the metric deformations of the Spin(7) holonomy mani-

fold3. We want to note that the compactness of the internal manifold was essential

in the analysis performed in [29] and [30]. In the present paper we restrict ourselves

to manifolds with Spin(7) holonomy which are smooth and compact4. However, as

stated in [29], the result obtained using (1.2) is valid for non-compact manifolds as

well but the proof does not involve the above equations. The existence of a Ricci

flat metric for such manifolds is not guaranteed as in the Calabi-Yau case, there-

fore we will tacitly suppose that there are such metrics and we will perform all the

derivations under this assumption. Even if we will be concerned only with compact

manifolds which have Spin(7) holonomy we would like to mention a few papers, such

as [31, 32], where non-compact examples of such manifolds have been constructed

and analyzed. Also in [33] aspects of topological transitions on non-compact man-

ifolds with Spin(7) holonomy and phase transitions have been considered. A more

complete list of papers regarding M-theory on singular manifolds with exceptional

holonomy can be found in [34] which is a recent review of the subject.

In this thesis, we calculate the Kaluza-Klein compactification of M-theory on

a Spin(7) holonomy manifold with non-vanishing fluxes. Our calculation is similar

to that of [20], which has been done in the context of M-theory compactifications

on conformally Calabi-Yau four-folds. We will see that the resulting scalar potential

leads to the stabilization of all the moduli fields corresponding to deformations of the

internal manifold, except the radial modulus. This scalar potential can be expressed

3In the previously mentioned papers the external space is considered to be Minkowski.

4A compact manifold with Spin(7) holonomy is simply connected. For details see [1].
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in terms of the superpotential which has appeared previously in the literature [6, 29]

and [30].

This thesis is based on our recent results published in [30, 35] and [36]. However

several additions were necessary in order to present the results in a logical fashion.

In what follows we present the structure of this thesis.

In chapter 2 we study the possible solutions of the equations of motion of

M-theory on a warped geometry with a Spin(7) holonomy internal manifold. We

start by introducing in section 2.1 the M-theory action and we define the quartic

polynomials which define the quantum correction terms. In section 2.2 we derive

perturbatively the form of the equations of motion and we discuss the Ricci flatness

problem of the internal manifold. In section 2.3 we have collected some of the most

important properties of the above mentioned quartic polynomials.

Chapter 3 is devoted to the derivation of the low energy effective action that

emerges from M-theory compactification on Spin(7) holonomy manifolds in the pres-

ence of non-zero background flux for the field strength. We start in section 3.1 with a

simpler situation with the compacification of the theory without background fluxes.

In section 3.2, we take the fluxes into account and derive the complete form of the

bosonic part of the action. In this way we are able to identify the scalar potential

which arises in the compactified theory due to the inclusion of fluxes.

Some of the vacua emerged from compactification which were found in chap-

ter 2 are candidates for supersymmetric solutions and they correspond to a minimal

supergravity theory in three dimensions. The conditions which lead to a supersym-

metric background can be derived by knowing the three-dimensional supergravity
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theory. Also, the analysis of the properties of these solution requires the knowledge

of the above mentioned supergravity. Hence, chapter 4 is dedicated to the derivation

of the most general off-shell three-dimensional N = 1 supergravity action coupled

to an arbitrary number of scalars and U(1) gauge fields. In section 4.1, we present

the algebra of supercovariant derivatives which describes the superspace geometry.

We then discuss Ectoplasmic integration, the technique used to calculate the density

projector, which is required to integrate over curved supermanifolds. In section 4.2,

we solve the Bianchi identities for a super three-form subject to the given algebra

required for Ectoplasmic integration. In section 4.3, we detail the use of Ectoplasm

to calculate the density projector. In section 4.4, we complete the supergravity

analysis by first deriving the component fields and then calculating the component

action. We end the analysis by giving the supersymmetry transformations for the

component fields and putting the component action on shell, i.e., we remove the

auxiliary fields by their algebraic equations of motion.

Chapter 5 contains our main analyses of the topic. Rather than computing

first the scalar potential and from there obtaining the superpotential, we compute

in section 5.1 the superpotential directly by a Kaluza-Klein compactification of the

gravitino supersymmetry transformation. We illustrate this idea in section 5.1.1

in the case of M-theory compactified on a Spin(7) holonomy manifold and in sec-

tion 5.1.2 we compute the superpotential for the heterotic string compactified on a

Calabi-Yau three-fold. In section 5.2 we determine the form of the scalar potential

generated for the moduli fields by the field strength flux. We conclude that most

of the moduli fields are stabilized but the radial modulus remained unconstrained.
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We also show that the result obtained at the end of chapter 3 is a particular case

of the more general construction of chapter 4. Based on (1.2) and using the form

(1.1) for W , we derive in section 5.3 the conditions imposed on the internal flux

by a supersymmetric solution and we investigate the conditions under which the

supersymmetry is broken dynamically by the internal flux.

Our concluding remarks are presented in chapter 6. We give a summary of

our results and comment on the physics implied by the explicit form of the scalar

potential. We conclude this section with some open questions and directions for

future investigations suggested by our findings.

Finally, details related to our calculations are contained in the appendices. In

appendix A, we provide the conventions used in this thesis as well as some useful

identities and small derivations of results which were used in different sections of

this work. In appendix B, we provide the conventions used in chapter 4 and we

provide various derivations and check procedures needed in the previously mentioned

chapter. In appendix C, we provide relevant aspects related to manifolds with

Spin(7) holonomy which were used in some parts of our computation.
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2. M-THEORY VACUA

In this chapter we find all the vacua generated by a warped compactification of

M-theory on compact eight-dimensional manifolds with Spin(7) holonomy in the

presence of a non-zero flux for the field strength. We will take into consideration

all the known terms in the low energy effective action up to the order κ
−2/3
11 , where

κ11 is the eleven-dimensional gravitational coupling constant. Not all the terms in

the effective action are known to this order. Therefore we will need a criterium to

consistently eliminate the contribution to the equations of motion that comes from

these unknown terms. Terms like F 2R3 are known to appear in the κ
−2/3
11 order [37]

but they are suppressed in the large volume limit [38], which is the most realistic

compactification scenario. In this limit the “radius” of the internal manifold1 is much

bigger than the eleven-dimensional Planck length and because of this property their

ratio generates a big number. It is natural to consider as the key ingredient for our

analysis a perturbative series expansion in terms of the above defined ratio. The

most obvious ansatz is to consider the leading order of the internal metric to be

1The “radius” of the manifold is nothing else but the characteristic length (the average size) of

the manifold.
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proportional to the square of this dimensionless parameter. If we restrict ourselves

to the first few orders of this perturbative expansion we can exclude the contribution

that comes from the above mentioned unknown terms. We would like to mention

that such a large “radius” expansion for the case of a Calabi-Yau manifolds was

previously considered in [39] and [40].

This chapter is organized as follows. In section 2.1 we introduce the low

energy effective action of M-theory with all the known leading quantum correction

terms. Also we carefully define the quartic polynomials in the Riemann tensor, that

enter in the definition of the quantum correction terms. In section 2.2 we analyze

perturbatively the equations of motion and we derive conditions that have to be

satisfied by the internal background flux in order to have a valid solution. Also

at the end of section 2.2 we argue that in general the internal manifold looses its

Ricci flatness once the quantum correction terms are taken into account. However

we show that the manifold remains Ricci flat if a certain condition is satisfied by

the warp factors. This relation is rather important because it shows under what

conditions we obtain a supersymmetric solution after compactification. In section

2.3 we discuss some of the properties of the quartic polynomials E8, J0 and X8.

These properties are used throughout our analysis presented in section 2.2 and we

have considered it is useful to have them listed in a separate section. In particular

in sub-section 2.3.2 we prove that J0 vanishes on a Spin(7) background and we also

derive a compact expression for the first variation of J0 with respect to the internal

metric. At the end of sub-section 2.3.2 we compute an elegant formula for the trace

of the first variation of J0.
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2.1 The Low Energy Effective Action

For completeness we introduce in this section the bosonic truncation of the ele-

ven-dimensional supergravity action along with its known correction terms. The

effective action for M-theory has the following structure

S = S0 + S1 + . . . . (2.1.1)

In the above expression S0 represents the bosonic truncation of eleven-dimensional

supergravity [41] and S1 represents the leading quantum corrections term. S0 is of

order κ−2
11 , S1 is of order κ

−2/3
11 and the ellipsis denotes higher order terms in κ11.

The explicit expressions of S0 and S1 are

S0 =
1

2κ2
11

∫
M11

d11x
√
−g11R−

1

4κ2
11

∫
M11

(
F ∧ ?F + 1

3
C ∧ F ∧ F

)
, (2.1.2a)

S1 = −T2

∫
M11

C ∧X8 + b1T2

∫
M11

d11x
√
−g11

(
J0 − 1

2
E8

)
+ . . . , (2.1.2b)

where g11 is the determinant of the eleven-dimensional metric of M11, F = dC is

the four-form field strength of the three-form potential C and b1 is a constant

b1 =
1

(2π)432213
. (2.1.3)

T2 is the membrane tension and it is related to the eleven-dimensional gravitational

coupling constant by

T2 =

(
2π2

κ2
11

)1/3

. (2.1.4)

X8 is a differential form of order eight whose components are quartic polynomials

in the eleven-dimensional Riemann tensor

X8(M11) =
1

192 (2π)4

[
TrR4 − 1

4
(TrR2)2

]
, (2.1.5)
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where Rij = 1
2
Rijkl e

k ∧ el is the curvature two-form written in some orthonormal

frame ei. Furthermore, E8 and J0 are also quartic polynomials of the eleven-dimen-

sional Riemann tensor and have the following expressions [42]

E8(M11) = − 1
3!
δABCM1N1...M4N4

ABCM ′
1N ′

1...M ′
4N ′

4
RM ′

1N ′
1
M1N1 . . . R

M ′
4N ′

4
M4N4 , (2.1.6)

J0(M11) = tM1N1...M4N4 tM ′
1N ′

1...M ′
4N ′

4
RM ′

1N ′
1
M1N1 . . . R

M ′
4N ′

4
M4N4

+ 1
4
E8(M11) . (2.1.7)

The tensor t is defined by its contraction with some antisymmetric tensor A

tM1...M8AM1M2 . . . AM7M8 = 24TrA4 − 6(TrA2)2 . (2.1.8)

More details regarding the properties of polynomials E8, J0 and X8 can be found in

section 2.3.

2.2 The Equations of Motion

In this section we perform a perturbative analysis of the equations of motion and

we derive the conditions that the internal flux has to satisfy in order to have a valid

solution. We conclude this section with a discussion about the way the internal

manifold gets deformed under the influence of higher order correction terms.

The equation of motion which follows from the variation of action (2.1.1) with

respect to the metric is

RMN(M11)−
1

2
gMNR(M11)−

1

12
TMN

= −β 1√
−g

δ

δgMN

[√
−g(J0 −

1

2
E8)

]
, (2.2.1)
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where TMN is the energy momentum tensor of F given by

TMN = FMPQR FN
PQR − 1

8
gMN FPQRS F

PQRS , (2.2.2)

and we have set β = 2κ2
11b1T2. We have listed in appendix A.2 the expressions for

the external and internal energy-momentum tensor. Also in the above mentioned

appendix we provide the results obtained for the external and internal components

of the term in right hand side of the Einstein equation (2.2.1).

Without sources the field strength obeys the Bianchi identity

dF = 0 , (2.2.3)

and the equation of motion

d ∗ F =
1

2
F ∧ F +

β

b1
X8 . (2.2.4)

The metric ansatz is a warped product

ds2 = g̃MN dX
M dXN = η̃µν(x, y) dx

µdxν + g̃mn(y) dymdyn

= e2A(y) ηµν(x) dx
µdxν + e2B(y) gmn(y) dymdyn , (2.2.5)

where ηµν describes a three-dimensional external space M3 and gmn is a Spin(7)

holonomy metric of a compact manifold M8. As usual the big Latin indices M , N

take values between 0 and 10, the Greek indices µ, ν take values between 0 and 2

and small Latin indices m, n take values between 3 and 10. Also, XM refers to the

coordinates on the whole eleven-dimensional manifold M11, x
µ are the coordinates

on M3 and ym are the coordinates on M8. We want to note that M11 is the direct

product between M3 and M8 only in the leading order approximation.
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In what follows we introduce a dimensionless parameter “t” defined as the

square of the ratio between l8, the characteristic size of the internal manifold M8,

and l11 which denotes the eleven-dimensional Planck length

t =

(
l8
l11

)2

� 1 , (2.2.6)

where l8 is given by

(l8)
8 =

∫
M8

d8y
√
g , (2.2.7)

and we have considered the large volume limit for M8, which means that l8 � l11.

We will suppose that all the fields of the theory have a series expansion in “t”

and we will analyze the equations of motion order by order in the “t” perturbative

expansion. The main ansatz is to consider that the metric of the internal compact

space M8 has the following series expansion in “t”

gmn = t [g(1)]mn + [g(0)]mn + . . . . (2.2.8)

Thus the inverse metric is

gmn = t−1[g(1)]mn + t−2[g(2)]mn + . . . , (2.2.9)

where the above expansion coefficients are derived in appendix A.2. It is obvious

now that the Riemann tensor, the Ricci tensor and the Ricci scalar of the internal

manifold M8 will have a series expansion in “t” of the form

Ra
mbn(M8) = [R(0)]ambn + t−1[R(1)]ambn + . . . , (2.2.10a)

Rmn(M8) = [R(0)]mn + t−1[R(1)]mn + . . . , (2.2.10b)

R(M8) = t−1R(1) + t−2R(2) + . . . , (2.2.10c)
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where the coefficients in the above expansions can be determined in terms of the

expansion coefficients of gmn and gmn and their derivatives. It is not so obvious at

this stage of computation that the right ansatz for the warp factors is

A = t−3A(3) + . . . ⇒ eA = 1 + t−3A(3) + . . . , (2.2.11)

and similarly for B. The motivation for this ansatz comes from the fact that the

internal Einstein equation receives contributions from the quantum correction terms

in the t−3 order of perturbation theory. It is natural to suppose that the effect of

warping appears at the same order in the equations of motion to compensate for

this extra contribution.

The Poincaré invariance restricts the form of the background flux F to the

following structure

F = F1 + F2 , (2.2.12)

where F1 is the external part of the flux

F1 = 1
3!
εµνρ [∇mf(y)] dxµ ∧ dxν ∧ dxρ ∧ dym , (2.2.13)

and F2 is the internal background flux

F2 = 1
4!
Fmnpq(y) dy

m ∧ dyn ∧ dyp ∧ dyq . (2.2.14)

We also expand the coefficients f and Fmnpq in a power series of t

f = f (0) + t−1f (1) + . . . , (2.2.15)

and

Fmnpq = F (0)
mnpq + t−1F (1)

mnpq + . . . . (2.2.16)
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Taking into account that the three-dimensional external space described by ηµν

is not at all influenced by the size of the eight-dimensional manifold M8 described

by gmn, all the quantities that emerge from the metric ηµν are of order zero in

an expansion in “t”, in other words all these quantities are independent of the

scale “t”. The external manifold suffers no change due to the deformations of the

internal manifold and ηµν generates the same equations of motion as in the absence

of fluxes and without the quantum correction terms. The zeroth order of the external

component of equation (2.2.1) reads

Rµν(M3)− 1
2
ηµνR(M3) = 0 , (2.2.17)

therefore

Rµν(M3) = 0 , (2.2.18a)

R(M3) = 0 , (2.2.18b)

which means that the external space is Minkowski2. However our result does not

eliminate the possibility for an AdS3 background in the case when membranes are

included in the analysis (see e.g. [43]).

A careful analysis of the internal and external Einstein equations to orders

no higher than t−2 and t−3, respectively, reveals that the internal manifold remains

Ricci flat to the t−2 order in perturbation theory

R(0)
mn = R(1)

mn = R(2)
mn = 0 , (2.2.19)

2In three dimensions the Riemann tensor is proportional to the Ricci tensor.
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and the Ricci scalar vanishes to the t−3 order

R(1) = R(2) = R(3) = 0 . (2.2.20)

These results are natural because we expect to observe deformations of the internal

manifold starting at the t−3 order since the quantum correction terms are of this

order of magnitude in an expansion in “t” and in addition the warp factors were

chosen to be of the same order of magnitude. As a matter of fact, to order t−2 even

the warping has no effect and the eleven-dimensional manifold is a direct product

between M3 and M8.

We can also derive from the equation of motion (2.2.4) that the covariant

derivative of the external flux vanishes to order t−2

∇mf
(0) = ∇mf

(1) = ∇mf
(2) = 0 . (2.2.21)

Collecting these facts we are left with the following field decomposition for ∇mf ,

Rmn(M8) and R(M8)

∇mf = t−3∇mf
(3) + t−4∇mf

(4) + . . . , (2.2.22a)

Rmn(M8) = t−3R(3)
mn + t−4R(4)

mn + . . . , (2.2.22b)

R(M8) = t−4R(4) + . . . . (2.2.22c)

To order t−4 the external component of the equation of motion (2.2.1) has the

following form

R(4) − 44(1)A(3) − 144(1)B(3) − 1
48

[
F

(0)
2

]2

+ 1
2
βE

(4)
8 (M8) = 0 , (2.2.23)

where we have introduced the Laplacian

4(1) = [g(1)]mn∇m∇n , (2.2.24)
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and [
F

(0)
2

]2

= [g(1)]aa′ [g(1)]bb
′
[g(1)]mm′

[g(1)]nn′ F
(0)
abmn F

(0)
a′b′m′n′ . (2.2.25)

We note that the right hand side of (2.2.1) has been evaluated on the un-warped

background because to this order the warping is not felt by that term. To order t−4

in perturbation theory the trace of the internal Einstein equation has the following

form

3[R(4) − 74(1)A(3) − 144(1)B(3)] = 217 β4(1)E
(3)
6 (M8) . (2.2.26)

Eliminating the R(4) term from equations (2.2.23) and (2.2.26) we obtain an equation

for the warp factor A(3) and the leading order term of the internal flux F
(0)
2 which

is defined below

34(1)A(3) − 1
48

[
F

(0)
2

]2

+ 1
2
βE

(4)
8 (M8)− 217 β4(1)E

(3)
6 (M8) = 0 . (2.2.27)

The equation of motion for the external flux at the order t−4 is [40]

4(1)f (3) − 1
48
F

(0)
2 ?(1) F

(0)
2 + 1

2
βE

(4)
8 (M8) = 0 , (2.2.28)

where the Hodge ?(1) operation is performed with respect to the leading order term

[g(1)]mn of the internal metric. If we subtract (2.2.28) from (2.2.27) and integrate3

the resulting expression we obtain that F
(0)
2 is self dual with respect to ?(1) operation

3The integration is performed on a manifold which we have denoted M ′
8, whose metric is

[g(1)]mn. In some sense we can think of [g(1)]mn as being the undeformed Spin(7) holonomy metric

and the next order term [g(0)]mn being the deformation from the exceptional holonomy metric.

Hence M ′
8 can be thought as the undeformed Spin(7) holonomy manifold. We also want to note

that E
(4)
8 (M8) is the Euler integrand of M ′

8.
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?(1)F
(0)
2 = F

(0)
2 . (2.2.29)

The leading order term of the internal flux F
(0)
2 is a four-form defined on M ′

8

F
(0)
2 = 1

4!
F (0)

mnpq dx
′m ∧ dx′n ∧ dx′p ∧ dx′q , (2.2.30)

where x′ are the coordinates of M ′
8. Also, F

(0)
2 satisfies

1

4κ2
11

∫
M ′

8

F
(0)
2 ∧ F (0)

2 =
T2

24
χ8

′ , (2.2.31)

where χ8
′ is the Euler character ofM ′

8. The last relation is obtained from integrating

out the equation (2.2.28) and considering that the internal flux is self dual. The

condition (2.2.31) is nothing else but the perturbative leading order of the global

tadpole anomaly relation4 that the internal flux has to obey when compactifications

of M-theory on eight-dimensional manifolds are taken into consideration [18].

The difference between equations (2.2.28) and (2.2.27) together with the self

duality condition (2.2.29) of the internal flux produces an equation which relates

the warp factor A to the external flux

4(1)
[
f (3) − 3A(3) + 217 β E

(3)
6 (M8)

]
= 0 . (2.2.32)

Also the self-duality of the internal flux implies the vanishing of the following ex-

pression

[F (0)]mabc [F (0)]n
abc − 1

8
[g(1)]mn [F (0)]abcd [F (0)]abcd = 0 , (2.2.33)

4We remind the reader that we have not considered space-filling membranes in our calculations.
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where the details of the derivation are provided in appendix B of [44]. Therefore we

are left with the following form for the internal Einstein equation to the order t−3

in perturbation theory

R(3)
mn − 1

2
g(1)

mnR
(4) + 3[ g(1)

mn4(1) −∇m∇n] (A+ 2B)(3) + β

(
δY

δgmn

)(3)

= 0 , (2.2.34)

where δY /δgmn and its trace are computed in section 2.3.2. The internal manifold

remains Ricci-flat only under a very specific condition. To determine this condition

we replace in (2.2.34) the expression for the perturbative coefficient of the Ricci

scalar R(4) obtained from (2.2.26)

R(4) = 74(1) (A+ 2B)(3) − β

3

(
gab δY

δgab

)(4)

, (2.2.35)

and we recast (2.2.34) in the following form

R(3)
mn + 1

6
g(1)

mn

[
β

(
gab δY

δgab

)(4)

− 34(1) (A+ 2B)(3)

]
+

[
β

(
δY

δgmn

)(3)

− 3∇m∇n (A+ 2B)(3)

]
= 0 . (2.2.36)

One quick way to obtain a supersymmetric theory after compactification is to ask

for Ricci flatness of the internal manifold. Of course this requirement is not the most

general one but in this way we can preserve for example the exceptional holonomy of

the internal manifold. Ricci flatness of M8 is not the whole story and we will see in

chapter 5 that the internal flux has to satisfy restrictive conditions as well if we want

a supersymmetric solution. Therefore, it is natural to look for vanishing solutions

of (2.2.36). Now it is easy to see that Ricci flatness to this order in perturbation

theory requires that

∇m∇n (A+ 2B)(3) =
β

3

(
δY

δgmn

)(3)

, (2.2.37)
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which is a strong constraint on the warp factors and the Y polynomial. To simplify

the problem and to find cases where equation (2.2.37) is satisfied one fixes

A+ 2B = 0 , (2.2.38)

which leaves us with only one warp factor. Hence we are left with the problem of

finding suitable internal manifolds for which the first variation of the polynomial

Y vanishes. As explained in [45], even if the polynomial Y vanishes because of the

exceptional holonomy of the internal metric its first variation does not vanish in

general.

Our analysis in chapter 3 assumes (2.2.38) and takes into consideration only

manifolds for which the right hand side of (2.2.37) is zero. We would like to note

that the above assumptions simplify relation (2.2.32) to

4(1)
[
f (3) − 3A(3)

]
= 0 . (2.2.39)

This happens because the Laplacian of E6 is proportional to the trace of the variation

of Y which vanishes according to (2.2.37). This shows clearly that the external

flux controls the warping and with appropriate boundary conditions one obtains

f (3) = 3A(3), which, according to [46], is exactly the condition for a supersymmetric

solution to this order in perturbation theory. However, we will see in chapter 5

that this is not the whole story and one has to impose additional conditions on the

internal flux for a supersymmetric background.

We can conclude that the internal manifold gets modified at the t−3 order in

perturbation theory in the sense that in general it looses its Ricci flatness unless the

very restrictive constraint (2.2.37) is satisfied.
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2.3 Some Properties of the Quartic Polynomials

In this section we look at some of the properties related to the quartic polynomials

in the Riemann tensor which appear in the low energy effective action of M-theory.

More precisely we will derive several relations obeyed by the polynomials which

appear in the definition (2.1.2b) of S1. There are three different subsections, one for

each of the polynomials E8, J0 and X8, respectively. We want to emphasize that all

the properties of these polynomials are computed on an undeformed background, i.e.,

our background is a direct productM3×M8 withM3 being maximally symmetric and

M8 being a Spin(7) holonomy manifold. Obviously the warping and the deformation

of the background will correct all the relations derived in the following subsections

but these corrections are of a higher order than t−4 and we can neglect them as our

analysis stops at this order in perturbation theory.

2.3.1 Properties of the E8 Polynomial

Let us focus now on the properties of the quartic polynomial E8 defined in (2.1.6) for

an eleven-dimensional manifold. As in [42] we generalize its definition by introducing

a polynomial En(MD) for any even n and any D -dimensional manifold MD (n ≤ D)

as follows

En(MD) = ± δM1...Mn
K1...Kn

RK1K2
M1M2 . . . R

Kn−1Kn
Mn−1Mn , (2.3.1)

where the indices take values from 0 to D − 1 and the “+” corresponds to the

Euclidean signature and the “−” corresponds to the Lorentzian signature. As we

have mentioned at the beginning of section 2.3, E8 is computed on a direct product
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manifold M11 = M3 ×M8, therefore we have [20]

E8(M3 ×M8) = −E8(M8)− 8R(M3)E6(M8) = −E8(M8) , (2.3.2)

where R(M3) is the Ricci scalar for the external manifold which is zero in our case.

If n = D in formula (2.3.1) then En(Mn) is proportional to the Euler integrand of

Mn. In particular for E8(M8) we have that

∫
M8

E8(M8)
√
g d8y =

χ8

12 b1
, (2.3.3)

where χ8 is the Euler characteristic of M8. If the manifold M8 has a nowhere-

vanishing spinor, E8(M8) and X8(M8) are related in the sense that their integrals

over M8 are proportional to the Euler characteristic of M8. The details of this

correspondence are provided in section 2.3.3. The variation of E8(M8) with respect

to the internal metric can be derived using the definition (2.3.1) or much easier from

(2.3.3) to be

δE8(M8)

δgmn

= −1

2
gmnE8(M8) , (2.3.4)

therefore the trace of the variation is

gmn
δE8(M8)

δgmn

= −4E8(M8) . (2.3.5)

We want to note that the variation of E8 given in (2.3.4) is of order t−5 whereas its

trace (2.3.5) is of order t−4. Finally, for further reference, we provide the perturbative

expansion for E8(M8) and E6(M8)

E8(M8) = t−4E8
(4)(M8) + . . . , (2.3.6a)

E6(M8) = t−3E6
(3)(M8) + . . . . (2.3.6b)
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2.3.2 Properties of the J0 Polynomial

In this subsection we look closely at the properties of the quartic polynomial J0

defined in (2.1.7). We particularize the background to be Spin(7) holonomy compact

manifold and we compute the value of J0 integral on such a background. We will

also calculate the first variation of J0 with respect to the internal metric and the

trace of its first variation.

As we will show, for a Spin(7) holonomy manifold the integral of the quartic

polynomial J0 vanishes. Below we provide the detailed proof of this statement. The

essential fact that constitutes the basis of the demonstration is the existence of the

covariantly constant spinor on a compact manifold which has Spin(7) holonomy.

The quartic polynomial J0 can be expressed as a sum of an internal and an

external polynomial [20]. Furthermore, these polynomials can be written only in

terms of the internal and external Weyl tensors [47, 48]. Since the Weyl tensor

vanishes in three dimensions we are left only with the contribution from the internal

polynomial ∫
M11

J0(M11)
√
−g d11x =

∫
M8

J0(M8)
√
g d8y . (2.3.7)

Because the internal manifold has a nowhere-vanishing spinor, the integral of the

remaining internal part can be replaced by the kinematic factor which appears in

the four-point scattering amplitude for gravitons, as explained in [49]∫
M8

J0(M8)
√
g d8y =

∫
M8

Y
√
g d8y , (2.3.8)

where we have denoted the kinematic factor by Y . As a matter of fact J0 represents

the covariant generalization of Y and the modifications of the equations of motion
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are given in terms of Y and its variation with respect to the internal metric. This

kinematic factor was written in [45] as an integral over SO(8) chiral spinors5

Y =

∫
dψL dψR exp(Rabmn ψ̄L Γab ψL ψ̄R Γmn ψR) , (2.3.9)

where (2.3.9) is evaluated using the rules of Berezin integration. As argued in [45],

Y is zero for Ricci-flat and Kähler manifolds, but for general Ricci-flat manifolds it

does not necessarily have to vanish. In our case, the 8s of SO(8) decomposes under

Spin(7) as 7⊕1. The singlet in this decomposition corresponds to the Killing spinor

η of the Spin(7) manifold. If the holonomy group of the eight-dimensional manifold

is Spin(7) and not some proper subgroup, then the covariantly constant spinor η is

the only zero mode of the Dirac operator, as proved in [1]. Moreover, the parallel

spinor obeys the integrability condition (e.g. see [50])

RabmnΓmnη = 0 , (2.3.10)

therefore the integrand of (2.3.9) does not depend on the Killing spinor η and implies

the vanishing of Y for M8 with Spin(7) holonomy

Y = 0 for Hol[g(M8)] = Spin(7) , (2.3.11)

which implies the vanishing of the integral (2.3.7). It has been shown in [51] that Y

vanishes in the G2 holonomy case as well. The Calabi-Yau case is another example

where the polynomial Y vanishes [45]. The fact that the manifold is Ricci-flat and

Kähler ensures the existence of the covariantly constant spinors, which is sufficient

to imply Y = 0 as explained in [52]. We conclude that the integral of J0 vanishes if

5The eight-rank tensor “t′′ that appears in [45] is different from our convention.
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the internal manifold admits at least one covariantly constant spinor, in particular

it vanishes for an internal manifold which has Spin(7) holonomy.

In what follows we will derive the first variation of Y with respect to the

internal metric. One can use (2.3.9) to compute the variation of Y and the following

result is obtained [51]

δY = 4 εα1...α8 εβ1...β8 (Γi1i2)α1α2 . . . (Γ
i7i8)α7α8 (Γj1j2)β1β2 . . .

· (Γj7j8)β7β8 Ri1i2j1j2 Ri3i4j3j4 Ri5i6j5j6 δRi7i8j7j8 . (2.3.12)

Because the internal manifold has a nowhere vanishing spinor we can transform from

the spinorial representation to the vector representation 8v of SO(8). From [50] we

have the following relation between these representations

V a = −i(ηΓa)αψ
α , (2.3.13)

where η is the unit Killing spinor. After performing the change of representation in

(2.3.12) and using the identity (A.1.28) and relation (A.1.32) we obtain

δY = −215 zk7k8m7m8 Ω
i7i8

k7k8 Ω
j7j8

m7m8 ∇i7∇j7δgi8j8 , (2.3.14)

where we have introduced

Ω
ab

mn = Ωab
mn + δab

mn , (2.3.15)

Ω being the Cayley calibration of the Spin(7) holonomy manifold M8. To provide

a perturbative expansion for Ω we have to remember that the volume VM8 of the

internal manifold M8 can be expressed in terms of the Cayley calibration

∫
Ω ∧ ?Ω = 14VM8 , (2.3.16)
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hence the Cayley calibration perturbative expansion is

Ωmnpr = t2 Ω(2)
mnpr + tΩ(1)

mnpr + . . . . (2.3.17)

The polynomial zk7k8m7m8 is cubic in the eight-dimensional Riemann tensor and it

is defined by

zk7k8m7m8 = |g|−1 εa1···a6k7k8 εb1···b6m7m8 Ra1a2b1b2 Ra3a4b3b4 Ra5a6b5b6 . (2.3.18)

It is obvious that the perturbative expansion of zmnpr has the following form

zmnpr = t−5 [z(5)]
mnpr

+ . . . . (2.3.19)

Finally we determine the expression of the first variation of Y with respect to

the internal metric

δY

δgi8j8

= −215 Ω
i7i8

k7k8 Ω
j7j8

m7m8∇i7∇j7z
k7k8m7m8 , (2.3.20)

which contributes to the internal Einstein equation. It is obvious that the leading

order of (2.3.20) is t−5, i.e., the leading order of zmnpr. However the term δY/δgij

which appears in the equation of motion (2.2.1) is of order t−3. In other words, t−3 is

the order at which the equations of motion receive contributions from the quantum

correction terms. As we have explained in section 2.2, it is natural to suppose that

the warping effects are visible to the same order in the perturbation theory and this

is why we have considered the ansatz (2.2.11).

In addition we also need the trace of (2.3.20) with respect to the internal

metric. We provide in what follows the main steps of the derivation. We begin the
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computation by using the definition (2.3.15) for Ω and we obtain that

gi8j8

δY

δgi8j8

= −215
[
gi8j8Ω

i7i8
k7k8 Ωj7j8

m7m8∇i7∇j7z
k7k8m7m8

+ gi8j8 Ωi7i8
k7k8 δ

j7j8
m7m8

∇i7∇j7z
k7k8m7m8

+ gi8j8 δ
i7i8
k7k8

Ωj7j8
m7m8∇i7∇j7z

k7k8m7m8

+ 4∇a∇b

(
zam

bm
) ]

. (2.3.21)

We denote the first, the second and the third terms in the square parentheses of

(2.3.21) with T1, T2 and T3, respectively. Using (A.1.31), T1 can be rewritten as

T1 = 24 (zmn
mn) +4 (Ω · z)

− 2
(
∇a∇b +∇b∇a

)
(Ω · z)− 4∇a∇b

(
zam

bm
)
, (2.3.22)

where4 = ∇a∇a is the Laplacian and Ω·z is a short notation for the full contraction

between the Cayley calibration Ω and the z polynomial. The sum of the second and

the third terms in (2.3.21) can be rewritten as

T2 + T3 = 2
(
∇a∇b +∇b∇a

)
(Ω · z) . (2.3.23)

It was noted in [46] that

Ω · z = 0 , (2.3.24)

therefore we obtain an elegant and compact expression for the trace of (2.3.20)

gmn
δY

δgmn

= −2164zmn
mn . (2.3.25)

With the observation that

zmn
mn = 2E6(M8) , (2.3.26)

the result (2.3.25) can be expressed as

gmn
δY

δgmn

= −2174E6(M8) , (2.3.27)
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where E6(M8) is given by (2.3.1) for n = 6 and D = 8. It is very interesting to

note the similarity of formula (2.3.27) with the corresponding one for Calabi-Yau

manifolds [40]. We also want to emphasize that the shift of the Cayley calibration

toward Ω is exactly what is needed in order to obtain the simple form of the trace

given in (2.3.27). A simple analysis of formula (2.3.27) reveals that the trace of the

first variation of Y is of order t−4.

gmn
δY

δgmn

= −2174(1)E
(3)
6 (M8) t

−4 + . . . , (2.3.28)

where E
(3)
6 (M8) was introduced in equation (2.3.6b) and4(1) was defined in (2.2.24).

2.3.3 Properties of the X8 Polynomial

The integral of X8(M8) over an eight-dimensional manifold M8 is related to the

Euler characteristic χ8 of the manifold if M8 admits at least one nowhere vanishing

spinor ∫
M8

X8(M8) = − χ8

24
. (2.3.29)

In our calculation M8 has Spin(7) holonomy, so there is a Killing spinor on M8 and

therefore we can use the above property in our derivations.

In what follows we will justify the relation (2.3.29). The eight-form X8 is

defined by relation (2.1.5) and can be expressed in terms of the first two Pontryagin

forms P1 and P2

P1 = − 1

8π2
TrR2 , (2.3.30a)

P2 =
1

128π4
[(TrR2)2 − 2TrR4] , (2.3.30b)
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as follows

X8 =
1

192
[P 2

1 − 4P2] , (2.3.31)

where R is the curvature two-form. The existence of a covariantly constant spinor

on a Spin(7) holonomy manifold means that we have a nowhere vanishing spinor

field on the eight-dimensional manifold. It has been shown in [49] that under these

circumstances there is a necessary and sufficient condition which relates the Euler

class and the first two Pontryagin classes of the manifold

e− 1

2
P2 +

1

8
P 2

1 = 0 , (2.3.32)

where e is the Euler integrand of M8. Hence, the eight-form X8 is proportional to

the Euler integrand of M8

X8(M8) = − 1

24
e(M8) , (2.3.33)

and from here the relation in (2.3.29) follows immediately.
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3. COMPACTIFICATION OF M-THEORY ON SPIN(7)

HOLONOMY MANIFOLDS

In this section, we perform the compactification of the bosonic part of M-theory ac-

tion on a Spin(7) holonomy manifold M8. Since Spin(7) holonomy manifolds admit

only one covariantly constant spinor, we will obtain a theory with N = 1 supersym-

metry in three dimensions. We use the following assumptions and conventions. The

eight-dimensional manifold M8 is taken to be compact and smooth. As seen before

in chapter 2 we shall assume the large volume limit in which case the size of the

internal eight-manifold lM8 = (VM8)
1/8 is much bigger than the eleven-dimensional

Planck length l11. Here VM8 denotes the volume of the internal manifold.

It was shown in [17, 18, 28] that compactifications of M-theory on both con-

formally Calabi-Yau four-folds and Spin(7) holonomy manifolds should obey the

tadpole cancelation condition

1

4κ2
11

∫
M8

F̂2 ∧ F̂2 +N2 = T2
χ8

24
, (3.1)

where F̂2 is the internal part of the background flux, χ8 is the Euler characteristic of

the internal manifold and N2 represents the number of space-time filling membranes.
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We have slightly changed the notation in the sense that a symbol with a “hat”

above it denotes the corresponding background value. κ11 is the eleven-dimensional

gravitational coupling constant, which is related to the membrane tension T2 by

T2 =

(
2π2

κ2
11

)1/3

. (3.2)

Equation (3.1) is important because it restricts the topology of the internal mani-

fold as the Euler characteristic is expressed in terms of the internal fluxes. In our

computation, we consider the case N2 = 0, in other words the Euler characteristic of

the internal manifold depends only on the internal flux and we have no membranes

in our analysis. Under this assumption, in the case when the background fluxes

are zero, i.e. F̂2 = 0, the tadpole cancelation condition (3.1) restricts the class of

internal manifolds to those which have zero Euler characteristic. In this case there

is no need for a warped geometry and the target space is simply the direct product

M3 ⊗ M8. In section 3.1, we consider this particular case and we show that no

scalar potential for the moduli fields arises under these circumstances. To relax the

constraint and allow for manifolds with non-vanishing Euler characteristic we have

to consider a non-zero value for the internal background flux F̂2. Consequently, we

will have to use a warped metric ansatz as we did in the analysis from chapter 2

and we will impose the requirement (2.2.38) for the warp factors. In section 3.2, we

show that the appearance of background fluxes generates a scalar potential for some

of the moduli fields appearing in the three-dimensional low energy effective action.

Later on in section 5.2 we will see that the anti-self-dual part of the four-form F̂ is

the one that generates the scalar potential.
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3.1 Compactification with Zero Background Flux

We want to compactify the action (2.1.1) on a compact and smooth Spin(7) holono-

my manifold whose Euler characteristic is zero. Because of this property and because

of the exceptional holonomy of the internal manifold, the quantum correction terms

(2.1.2b) vanish upon an integration over the internal manifold. Therefore, the only

contribution to the three-dimensional effective action will come from (2.1.2a), i.e.

from the bosonic truncation of the eleven-dimensional supergravity. In order to

achieve our goal, we make the spontaneous compactification ansatz for the eleven-

dimensional metric gMN(x, y), which respects the maximal symmetry of the external

space which is described by the metric ηµν(x)

ds2 = gMN dX
M dXN = ηµν(x) dx

µdxν + gmn(x, y) dymdyn , (3.1.1)

where gmn(x, y) is the internal metric. Here x represents the external coordi-

nates labeled by µ = 0, 1, 2, while y represents the internal coordinates labeled

by m = 3, . . . , 10, and M, N run over the complete eleven-dimensional coordinates.

In addition, gmn(x, y) depends on a set of parameters which characterize the possible

deformations of the internal metric. These parameters, called moduli, appear after

compactification as massless scalar fields in the three-dimensional effective action.

In other words, an arbitrary vacuum state is characterized by the vacuum expec-

tation values of these moduli fields. In the compactification process we choose an

arbitrary vacuum state or equivalently an arbitrary point in moduli space and con-

sider infinitesimal displacements around this point. Consequently, the metric will
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have the following form

gmn(x, y) = ĝmn(y) + δgmn(x, y) , (3.1.2)

where ĝmn is the background metric and δgmn is its deformation. The deformations

of the metric are expanded in terms of the transverse traceless zero modes of the

Lichnerowicz operator

4L eab = −� eab − 2Rabmne
mn + 2R(a

meb)m , (3.1.3)

where eab is some symmetric second rank tensor. The transverse traceless zero

modes of 4L describe variations of the internal metric leaving the Ricci tensor

invariant to linear order. Furthermore, it was shown in [50], that for a Spin(7)

holonomy manifold, the zero modes of the Lichnerowicz operator eA are in one to

one correspondence with the anti-self-dual harmonic four-forms ξA of the internal

manifold

eA mn(y) = 1
6
ξA mabc(y) Ωn

abc(y) , (3.1.4a)

ξA abcd(y) = − eA [a
m(y)Ωbcd]m(y) , (3.1.4b)

where A = 1, . . . b−4 and Ω is the Cayley calibration of the internal manifold, which

in our convention is self-dual. The tensor eI
mn is symmetric and traceless (see [50]).

b−4 is the Betti number that counts the number of anti-self-dual harmonic four-forms

of the internal space.

Besides the zero modes of the Lichnerowicz operator there is an additional vol-

ume changing modulus, which corresponds to an overall rescaling of the background
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metric. So the metric deformations take the following form

δgmn(x, y) = φ(x) ĝmn(y) +

b−4∑
A=1

φA(x) eA mn(y) , (3.1.5)

where φ is the radial modulus fluctuation and φA are the scalar field fluctuations

that characterize the deformations of the metric along the directions eA. Therefore

the internal metric has the following expression

gmn(x, y) = ĝmn(y) + φ(x) ĝmn(y) +

b−4∑
A=1

φA(x) eA mn(y) . (3.1.6)

The three-form potential and the corresponding field strength have fluctuations

around their backgrounds Ĉ(y) and F̂ (y), respectively, which in this section are

considered to be zero. The fluctuations of the three-form potential are decomposed

in terms of the zero modes of the Laplace operator. Taking into account that

for Spin(7) holonomy manifolds there are no harmonic one-forms (see (C.2) ) the

decomposition of the three-form potential has two pieces

δC(x, y) = δC1(x, y) + δC2(x, y)

=

b2∑
I=1

AI(x) ∧ ωI(y) +

b3∑
J=1

ρJ(x) ζJ(y) , (3.1.7)

where ωI are harmonic two-forms and ζJ are harmonic three-forms. The set of b2

vector fields AI(x) and the set of b3 scalar fields ρJ(x) are infinitesimal quantities

that characterize the fluctuation of the three-form potential around its background

value. The fluctuations of the field strength F are then

δF (x, y) = δF1(x, y) + δF2(x, y)

=

b2∑
I=1

dAI(x) ∧ ωI(y) +

b3∑
J=1

dρJ(x) ∧ ζJ(y) . (3.1.8)
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Substituting (3.1.6), (3.1.7) and (3.1.8) into S and considering the lowest order

contribution in moduli fields we obtain

S3D =
1

2κ2
3

∫
M3

d3x
√
−η

{
R(M3)− 18(∂αφ)(∂αφ)

−
b2∑

I,J=1

KIJ f
I
αβf

Jαβ −
b3∑

I,J=1

LIJ(∂αρ
I)(∂αρJ)

−
b−4∑

A,B=1

GAB(∂αφ
A)(∂αφB)

}
+ . . . , (3.1.9)

where η = det(ηµν) and the ellipsis denotes higher order terms in moduli fluctuations.

κ3 is the three-dimensional gravitational coupling constant

κ2
3 = V−1

M8
κ2

11 , (3.1.10)

and VM8 is the volume of the internal manifold

VM8 =

∫
M8

d8y
√
ĝ , (3.1.11)

where ĝ = det(ĝmn). The details of the dimensional reduction of the Einstein-Hilbert

term can be found in appendix A.3. The other quantities appearing in (3.1.9) are

the field strength f I of the b2 U(1) gauge fields AI

f I
αβ = ∂[αA

I
β] = 1

2
(∂αA

I
β − ∂βA

I
α) , (3.1.12)

and the metric coefficients for the kinetic terms

KIJ =
3

2VM8

∫
M8

ωI ∧ ? ωJ , (3.1.13a)

LIJ =
2

VM8

∫
M8

ζI ∧ ? ζJ , (3.1.13b)

GAB =
1

4VM8

∫
M8

d8y
√
ĝ eA am eB bn ĝ

ab ĝmn . (3.1.13c)
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With the help of (3.1.4a) and (3.1.4b) we can rewrite (3.1.13c) as follows

GAB =
1

VM8

∫
M8

ξA ∧ ? ξB . (3.1.14)

Note that the Hodge ? operator used in the previous relations is defined with respect

to the background metric. As we can see in the zero flux case, the action contains

only the gravitational part plus kinetic terms of the massless moduli fields and no

scalar potential. Therefore, if the flux is zero we have no constraint on the dynam-

ics of the moduli fields and the vacuum of the three-dimensional theory remains

arbitrary.

3.2 Compactification with Non-Zero Background Flux

In this section we relax the topological constraint imposed on the internal manifold

and allow for a non-vanishing background value for the field strength of M-theory,

i.e. we consider manifolds with non-vanishing Euler characteristic. Because of this

assumption we will have nonzero contributions in the three-dimensional action which

come from the quantum correction terms (2.1.2b). We start with the warped ansatz

(2.2.5) for the metric

ds2 = g̃MN dX
M dXN

= e2A(y) ηµν(x) dx
µdxν + e−A(y) gmn(x, y) dymdyn , (3.2.1)

where we have imposed the condition (2.2.38) on the warp factors. In equation

(3.2.1) A(y) represents the scalar warp factor, ηµν(x) is the metric for the maximally

symmetric external space, i.e. Minkowski, and gmn(x, y) has Spin(7) holonomy. As

we did in the previous section we will decompose the field fluctuations in terms of
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harmonic forms. The metric fluctuations will have the same decomposition as in

(3.1.5) and also the field strength and its associated potential will have the decom-

positions (3.1.8) and (3.1.7), respectively. Maximal symmetry of the external space

restricts the form of the background flux to

F̂ (y) = F̂1(y) + F̂2(y) , (3.2.2a)

F̂1(y) = 1
3!
εαβγ ∂mf(y) dxα ∧ dxβ ∧ dxγ ∧ dym , (3.2.2b)

F̂2(y) = 1
4!
Fmnpq(y) dy

m ∧ dyn ∧ dyp ∧ dyq , (3.2.2c)

therefore, C has the following background

Ĉ(y) = Ĉ1(y) + Ĉ2(y) , (3.2.3a)

Ĉ1(y) = − 1
3!
εαβγ f(y) dxα ∧ dxβ ∧ dxγ , (3.2.3b)

Ĉ2(y) = 1
3!
Cmnp(y) dy

m ∧ dyn ∧ dyp . (3.2.3c)

Next we consider the compactification of the eleven-dimensional action. We

start with the Einstein-Hilbert term which becomes

1

2κ2
11

∫
M11

d11x
√
−g̃11 R̃(M11) =

1

2κ2
3

∫
M3

d3x
√
−η

{
R(M3)

− 18(∂αφ) (∂αφ)−
b−4∑

I,J=1

GIJ (∂αφ
I) (∂αφJ)

}
+ . . . , (3.2.4)

where g̃11 = det(g̃MN) and GIJ is given in (3.1.14). The details of the dimensional

reduction can be found in appendix A.3. Let us take a closer look at the second

term in (2.1.2b). We have showed in section 2.3.2 that the exceptional holonomy

implies the vanishing of integral of the quartic polynomial J0. Also, regarding the

term of S1 which involves the quartic polynomial E8, we can use properties (2.3.2)
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and (2.3.3) to obtain

b1T2

∫
M11

d11x
√
−g11

(
J0 −

1

2
E8

)
=

∫
M3

d3x
√
−η T2

χ8

24
. (3.2.5)

We want to emphasize that the metric used in computing (3.2.5) is the un-warped

one. In other words, in the language of chapter 2, we are considering only the leading

order contribution in a perturbative series in the “t” parameter and therefore we

can neglect in the first approximation the contribution which comes from warping.

The remaining terms in S consist of the kinetic term for C, the Chern-Simons

term, and the tadpole anomaly term, i.e. the term proportional to X8. The expres-

sions (3.1.8) and (3.2.2) of the field strength F imply that∫
M11

F ∧ ?F =

∫
M11

F̂1 ∧ ? F̂1 +

∫
M11

F̂2 ∧ ? F̂2

+

∫
M11

δF1 ∧ ? δF1 +

∫
M11

δF2 ∧ ? δF2 , (3.2.6)

where the first term is subleading and will be neglected. To leading order, the last

two terms in the above sum can be expressed as

1

4κ2
11

∫
M11

[δF1 ∧ ? δF1 + δF2 ∧ ? δF2]

=
1

2κ2
3

∫
M3

d3x
√
−η

{ b2∑
I,J=1

KIJ f
I
αβ f

Jαβ

+

b3∑
I,J=1

LIJ (∂αρ
I)(∂αρJ)

}
, (3.2.7)

where f I , KIJ and LIJ were defined in (3.1.12) and (3.1.13). Due to the specific

structure of C(x, y) and F (x, y), which are given in equations (3.1.7), (3.1.8), (3.2.2)

and (3.2.3), the Chern-Simons term will have the following form to leading order in
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moduli field fluctuations∫
M11

C ∧ F ∧ F = 3

∫
M11

Ĉ1 ∧ F̂2 ∧ F̂2

+ 2

∫
M11

δC2 ∧ δF2 ∧ F̂2 + . . . . (3.2.8)

Since the first term in (3.2.8) cancels the tadpole anomaly term, we obtain the

following result

1

12κ2
11

∫
M11

C ∧ F ∧ F + T2

∫
M11

C ∧X8

=
1

6κ2
11

∫
M11

δC2 ∧ δF2 ∧ F̂2 + . . . . (3.2.9)

Using the harmonic decomposition for the field fluctuations (3.1.7) and (3.1.8) we

derive

1

6κ2
11

∫
M11

δC2 ∧ δF2 ∧ F̂2 =
1

2κ2
3

b2∑
I,J=1

EIJ

∫
M3

AI ∧ dAJ , (3.2.10)

where we have defined

EIJ =
1

3VM8

∫
M8

ωI ∧ ωJ ∧ F̂2 . (3.2.11)

The coefficient (3.2.11) is proportional to the internal flux and this is the reason

why we did not obtain a Chern-Simons term in section 3.1. This completes the

compactification of M-theory action on Spin(7) holonomy manifolds. Using the

above results we obtain to leading order in moduli fields the following expression for

the low energy effective action

S3D =
1

2κ2
3

∫
M3

d3x
√
−η

{
R(M3)− 18(∂αφ)(∂αφ)

−
b3∑

I,J=1

LIJ (∂αρ
I)(∂αρJ)−

b−4∑
I,J=1

GIJ(∂αφ
I)(∂αφJ)

−
b2∑

I,J=1

[
KIJ f

I
αβ f

Jαβ + EIJ ε
µνσAI

µ f
J
νσ

]
− V

}
+ . . . , (3.2.12)
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where we have denoted by V the scalar potential

V =
1

2VM8

∫
M8

F̂2 ∧ ?F̂2 − 2κ2
3 T2

χ8

24
. (3.2.13)

We can see clary now that besides the Einstein-Hilbert term, the kinetic terms and

the Chern-Simons term we have an additional piece in the action because we choose

to have some non-vanishing value for the background of the field strength. The

relation (3.2.13), which defines the scalar potential, is very similar with the tadpole

anomaly cancelation condition (3.1) and we will see in chapter 5 that this property

will determine that V depends only on the anti-self-dual part of F̂2 whereas the

self-dual part of F̂2 is dynamical in nature and under special conditions can break

the supersymmetry of the theory.
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4. MINIMAL THREE-DIMENSIONAL SUPERGRAVITY

COUPLED TO MATTER

Some of the vacua obtained after compactification are supersymmetric and they

correspond to a minimal supergravity theory in three dimensions. The analysis of the

properties of these vacua requires the knowledge of the supergravity action. Hence,

this chapter is dedicated to the derivation of the most general off-shell three-dimen-

sional N = 1 supergravity action coupled to an arbitrary number of scalars and

U(1) gauge fields. Component formulations of supergravity in various dimensions

with extended supersymmetry have been known for a long time [53]. In general, the

extended supergravities can be obtained by dimensional reduction and truncation

of higher dimensional supergravities. For example, a four-dimensional supergravity

with N = 1 supersymmetry leads to a three-dimensional supergravity with N = 2

supersymmetry after compactification. For this reason the component form of three-

dimensional N = 2 supergravity is known. Although there has been much activity

in three dimensions [54, 55, 56, 57, 58, 59, 60, 61, 62], there is no general off-shell

component or superspace formulation of three-dimensional N = 1 supergravity in

the literature. There are, however, on-shell realizations with N ≥ 1 given in [63, 64].
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The N = 1 theory cannot be obtained by dimensional reduction from a four-dimen-

sional theory and requires a formal analysis.

Although the off-shell formulation of N = 1 three-dimensional supergravity

has been around since 1979 [65], there has been little work done on understanding

this theory with the same precision and detail of the minimal supergravity in four

dimensions. The spectrum of the N = 1 three-dimensional supergravity theory

consists of a dreibein, a Majorana gravitino and a single real auxiliary scalar field.

Since our formal analysis yields an off-shell formulation, we can freely add distinct

super invariants to the action. The resulting theory corresponds to a non-linear

sigma model and copies of U(1) gauge theories coupled to supergravity. We will

present the complete superspace formulation in the hope that the presentation will

familiarize the reader with the techniques required to reach our goals. In this section

we use the Ectoplasmic Integration theorem to derive the component action for the

general form of supergravity coupled to matter. The matter sector includes U(1)

gauge fields and a non-linear sigma model.

4.1 Supergeometry

Calculating component actions from manifestly supersymmetric supergravity de-

scriptions is a complicated process. However, knowing the supergravity density

projector simplifies dramatically this procedure. The density projector arises from

the following observation. Every supergravity theory that is known to possess an

off-shell formulation for a superspace with space-time dimension D, and fermionic
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dimension N can be be shown to obey an equation of the form

∫
dDx dN θ E−1L =

∫
dDx e−1(DNL|) . (4.1.1)

E−1 is the super determinant of the super frame fields EA
M , DN is a differential op-

erator called the supergravity density projector, and the symbol | denotes taking the

anti-commuting coordinate to zero. This relation has been dubbed the Ectoplasmic

Integration Theorem and shows us that knowing the form of the density projector

allows us to evaluate the component structure of any Lagrangian just by evaluating

(DNL|). Thus, the problem of finding components for supergravity is relegated to

computing the density projector.

Two well defined methods for calculating the density projector exist in the

literature. The first method is based on super p-forms and the Ethereal Conjecture.

This conjecture states that in all supergravity theories, the topology of the super-

space is determined solely by its bosonic submanifold. The second method is called

the ectoplasmic normal coordinate expansion [66, 67], and explicitly calculates the

density projector. The normal coordinate expansion provides a proof of the ecto-

plasmic integration theorem. Both of these techniques rely heavily on the algebra

of superspace supergravity covariant derivatives. The covariant derivative algebra

for three dimensional supergravity was first given in [65]. In this paper, we have

modified the original algebra by coupling it to n U(1), gauge fields:1

[∇α, ∇β} = (γc)αβ ∇c − (γc)αβRMc , (4.1.2a)

1We do not consider non-abelian gauged supergravity because the compactifications of M-theory

on Spin(7) manifolds that we consider lead to abelian gauged supergravities.
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[∇α, ∇b} = 1
2
(γb)α

δR∇δ + (∇αR)Mb + 1
3
(γb)

β
α W

I
β tI

−
[
2(γb)α

δΣδ
d + 2

3
(γbγ

d)α
ε(∇εR)

]
Md , (4.1.2b)

[∇a, ∇b} = −2εabc

[
Σαc + 1

3
(γc)αβ(∇βR)

]
∇α + εabc

[
R̂cd

− 2
3
ηcd(2∇2R + 3

2
R2)

]
Md + 1

3
εabc(γ

c) δ
β ∇βW I

δ tI , (4.1.2c)

where

∇δW I
δ = 0 , (4.1.3a)

R̂ab − R̂ba = ηabR̂ab = (γd)
αβΣβ

d = 0 , (4.1.3b)

and

∇αΣ f
β = −1

4
(γe)αβ R̂ f

e + 1
6

[
Cαβη

fd + 1
2
εfde (γe)αβ

]
∇dR . (4.1.3c)

The superfields R, Σα
b and R̂ab are the supergravity field strengths, and W I

α are the

U(1) super Yang-Mills fields strengths. tI are the U(1) generators with I = 1 . . . n.

Ma is the 3D Lorentz generator. Our convention for the action of Ma is given in

appendix B.1. An explicit verification of the algebra (4.1.2) is performed in appendix

B.3, where it is shown that the algebra closes off-shell.

4.2 Closed Irreducible Super Three-forms

Indices of topological significance in a D-dimensional space-time manifold can be

calculated from the integral of closed but not exact D-forms. The Ethereal Conjec-

ture suggests that this reasoning should hold for superspace. Thus, in order to use

the Ethereal Conjecture [68], we must first have the field strength description of a
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super three-form. In this section, we derive the super three-form associated with

the covariant derivative algebra (4.1.2).

We start with the general formulas for the super two-form potential and super

three-form field strength. A super two-form Γ2 has the following gauge transforma-

tions

δΓAB = ∇[AKB) − 1
2
T E

[AB)KE , (4.2.1)

which expresses the fact that the gauge variation of the super two-form is the super

exterior derivative of a super one-formK1. The field strengthG3 is the super exterior

derivative of Γ2

GABC = 1
2
∇[AΓBC) − 1

2
T E

[AB| ΓE|C) . (4.2.2)

We have a few comments about the notation in these expressions. First, upper case

roman indices are super vector indices which take values over both the spinor and

vector indices. Also, letters from the beginning(middle) of the alphabet refer to

flat(curved) indices. Finally, the symmetrization symbol [ ) is a graded symmetriza-

tion. A point worth noting here is the that the superspace torsion appears explicitly

in these equations. This means that the super form is intimately related to the

type of supergravity that we are using. The appearance of the torsion in these ex-

pressions is not peculiar to supersymmetry. Whenever forms are referred to using a

non-holonomic basis this phenomenon occurs.

A super form is a highly reducible representation of supersymmetry. Therefore,

we must impose certain constraints on the field strength to make it an irreducible

representation of supersymmetry. In general, there are many types of constraints
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that we can set. Different constraints have specific consequences. A conventional

constraint implies that one piece of the potential is related to another. In this case

if we set the conventional constraint

Gαβγ = 1
2
∇(αΓβγ) − 1

2
(γc)(αβ|Γc|γ) = 0 , (4.2.3)

we see that the potential Γcα is now related to the spinorial derivative of the potential

Γαβ. This constraint eliminates six superfield degrees of freedom.

Since G3 is the exterior derivative of a super two-form it must be closed, i.e.

its exterior derivative F4 must vanish. This constitutes a set of Bianchi identities

FABCD = 1
3!
∇[AGBCD) − 1

4
T E

[AB| GE|CD) = 0 . (4.2.4)

Once a constraint has been set, these Bianchi identities are no longer identities. In

fact, the consistency of the Bianchi identities after a constraint has been imposed

implies an entire set of constraints. By solving the Bianchi identities with respect

to the conventional constraint, we can completely determine the irreducible super

three-form field strength. Since we have set Gαβγ = 0, it is easiest to solve Fαβγδ = 0

first

Fαβγδ = 1
6
∇(αGβγδ) − 1

4
T E

(αβ| GE|γδ) = −1
4
(γe)(αβ|Ge|γδ) . (4.2.5)

To solve this equation, we must write out the Lorentz irreducible parts of Gaβγ. We

first convert the last two spinor indices on Geγδ to a vector index by contracting with

the gamma matrix: Geγδ = (γf )γδGef . Further, Gaβγ = Gβγa implies that Gab is a

symmetric tensor, so we make the following decomposition: Gab = Gab + 1
3
ηabG

d
d,

where the bar on Gab denotes tracelessness. With this decomposition, the Bianchi
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identity now reads

Fαβγδ = −1
4
(γe)(αβ(γf )γδ)Gef = 0 , (4.2.6)

where the term containing Gd
d vanishes exactly. The symmetric traceless part of

this gamma matrix structure does not vanish, so we are forced to set Gab = 0. Thus,

our conventional constraint implies the further constraint Gaβγ = (γa)βγG. The next

Bianchi identity reads

Fαβγd = 1
2
∇(αGβγ)d − 1

3!
∇dG(αβγ) − 1

2
T(αβ|

E GE|γ)d

+ 1
2
Td(α|

E GE|βγ) . (4.2.7)

Using our newest constraint and substituting the torsions we have

Fαβγd = 1
2
(γd)(βγ∇α)G+ 1

2
(γe)(αβ|Gγ)ed

= 1
2
(γd)(βγ∇α)G+ 1

2
(γe)(αβ| εed

a
[
(γa)γ)

δ Gδ + Ĝγ)a

]
, (4.2.8)

here we have replaced the antisymmetric vector indices with a Levi-Civita tensor

via; Gγed = εed
aGγa, and further decomposed Gγa into spinor and gamma traceless

parts; Gγa = (γa)γ
β Gβ + Ĝγa, respectively. Contracting (4.2.8) with εcbe (γe)αβ δσ

γ

implies Gσ = ∇σG. Substituting this result back into (4.2.8) implies that Ĝγ
a = 0.

Thus, we have derived another constraint on the field strength

Gαbc = ε a
bc (γa)

σ
α ∇σG . (4.2.9)

The third Bianchi identity will completely determine the super three-form

Fαβcd = ∇(αGβ)cd +∇[cGd]αβ − T E
αβ GEcd − T E

cd GEαβ − T(α|[c|
E GE|d]β)

= εcd
e(γe)

σ
(α ∇β)∇σG+ (γ[d)αβ∇c]G− (γe)αβGecd + (γ[cγd])αβ RG . (4.2.10)
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Note that Gαbγ = −(γb)αγG. Contracting with (γb)
αβ yields the following equation

for the vector three-form

Gbcd = 2εbcd

[
∇2G+RG

]
. (4.2.11)

The final two Bianchi identities are consistency checks and vanish identically

Fαbcd = 1
3!
∇αG[bcd] − 1

2
∇[bGcd]α − 1

2
Tα[b|

E GE|cd] +
1
2
T[bc|

E GE|d]α = 0 , (4.2.12a)

Fabcd = 1
3!
∇[aGbcd] − 1

4
T E

[ab| GE|cd] = 0 . (4.2.12b)

We have shown that the super three-form field strength related to the supergravity

covariant derivative algebra (4.1.2) is completely determined in terms of a scalar

superfield G. In 3D, a scalar superfield is an irreducible representation of super-

symmetry, and therefore the one conventional constraint was enough to completely

reduce the super three-form.

4.3 Ectoplasmic Integration

In order to use the Ethereal Conjecture, we must integrate a three-form over the

bosonic sub-manifold. The super three-form derived in the previous section is

Gαβγ = 0 , (4.3.1a)

Gαβc = (γc)αβ G , (4.3.1b)

Gαbc = εbcd (γd) σ
α ∇σ G , (4.3.1c)

Gabc = 2εabc

[
∇2G+RG

]
. (4.3.1d)

The only problem with this super three-form is that it has flat indices. We worked

in the tangent space so that we could set supersymmetric constraints on the super
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three-form. Now we require the curved super three-form to find the generally co-

variant component three-form. In general, the super three-form with flat indices is

related to the super three-form with curved indices via

GMNO = (−1)[3/2] E A
M E B

N E C
O GCBA , (4.3.2)

where we have used a different symbol for the curved super three-form just to avoid

any possible confusion. As it turns out, the component three-form is the lowest

component of the curved super three-form gmno = Gmno|. Using the usual component

definitions for the super frame fields; E a
m | = e a

m , E α
m | = −ψ α

m , we can write the

lowest component of the vector three-form part of (4.3.2)

gmno = −Gonm| − 1
2
ψ[m

aGno]α| − 1
2
ψ[m

α ψn
β Go]αβ|+ ψm

α ψn
β ψo

γ Gαβγ| . (4.3.3)

Since this is a θ independent equation, we can convert all of the curved indices to

flat ones using e m
a

gabc = Gabc| − 1
2
ψ[a

αGbc]α| − 1
2
ψ[a

α ψb
β Gc]αβ|+ ψa

α ψb
β ψc

γ Gαβγ|

=
{

2 εabc

[
∇2 +R|

]
− 1

2
ψ α

[a εbc]d (γd) σ
α ∇σ − 1

2
ψ α

[a ψ
β

b (γc])αβ

}
G| . (4.3.4)

We note in passing that this equation is of the form D2G|. Since gabc is part of a

closed super three-form, it is also closed in the ordinary sense. Thus, any volume

three-form ωabc = ω εabc may be integrated against gabc and will yield an index of

the 3D theory if gabc is not exact. We are led to define an index ∆ by

∆ =

∫
ω εabc gabc . (4.3.5)

If we define 1
6
εabcgabc = D2G| we can read off the density projector
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D2 = −2∇2 + ψ α
d (γd) σ

α ∇σ − 1
2
ψ α

a ψ β
b εabc (γc)αβ − 2R . (4.3.6)

The Ethereal Conjecture asserts that for all superspace Lagrangians L the local

integration theory for 3D, N = 1 superspace supergravity takes the form

∫
d3xd2θE−1L =

∫
d3x e−1(D2L|) . (4.3.7)

4.4 Obtaining Component Formulations

We are interested in describing at the level of component fields the following gen-

eral gauge invariant Lagrangian containing two derivatives for 3D, N = ∞ gravity

coupled to matter

L = κ−2K(Φ)R + g−2 h(Φ)IJ W
αI W J

α + g(Φ)ij ∇αΦi∇αΦj

+QIJ ΓI
β W

Jβ +W (Φ) . (4.4.1)

This action encompasses all possible terms which can arise from the compactification

of M-theory which we are considering. The first term is exactly 3D supergravity

when K(Φ) = 1. The second term is the kinetic term for the gauge fields. The

third term is the kinetic part of the sigma model for the scalar matter fields Φi. The

fourth term represents the Chern-Simons term for the gauge fields. Finally, W (Φ)

is the superpotential.

In order to obtain the usual gravity fields we must know how to define the

components of the various field strengths and curvatures. This is done in a similar

manner as before when we determined the three-form component field of the super

three-form. In this case, we go to a Wess-Zumino gauge to write all of the torsions,
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curvatures and field strengths at θ = 0

T γ
ab | = t γ

ab + ψ δ
[a T γ

δb] |+ ψ δ
[aψ

γ
b] T

γ
δγ | , (4.4.2a)

T c
ab | = t c

ab + ψ δ
[a T c

δb] |+ ψ δ
[aψ

γ
b] T

c
δγ | , (4.4.2b)

R c
ab | = r c

ab + ψ δ
[a R c

δb] |+ ψ δ
[a ψ γ

b] R
c

δγ | , (4.4.2c)

F I
ab | = f I

ab + ψ δ
[aF I

δb] |+ ψ δ
[aψ

γ
b] F

I
δγ | . (4.4.2d)

The leading terms in each of these equations, i.e. t γ
ab , t c

ab, r
c

ab and f I
ab correspond,

respectively, to the exterior derivatives of ψa
γ, ea

m, ωa
c and Aa

I , using the bosonic

truncation of the definition of the exterior derivative of a super two-form given in

(4.2.1). By definition the super covariantized curl of the gravitino is the lowest

component of the torsion Tab
γ. Substituting from (4.1.2) we have

f γ
ab := T γ

ab | = −2εabc

[
Σγc|+ 1

3
(γc)γβ(∇βR)|

]
. (4.4.3)

This equation implies the following:

∇αR| = −1
4
(γd)αγ ε

abd fγ
ab , (4.4.4a)

Σγd| = 1
6

[
εabd fab

γ − (γb)δ
γ f bdδ

]
. (4.4.4b)

The lowest component of Σδd is indeed gamma traceless. The other torsion yields

information about the component torsion

T c
ab | = 0 = t c

ab + (γc)αβ ψ
α

[a ψ β
b] , (4.4.5)

which can be solved in the usual manner to express the spin connection in terms

of the anholonomy and gravitino. The super curvature leads us to the component
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definition of the super covariantized curvature tensor

R c
ab | = r c

ab − ψ δ
[aψ

γ
b] (γc)δγR|+ ψ δ

[a

[
− 2 (γb])

α
δ Σ c

α | − 2
3
(γb]γ

c) α
δ ∇αR|

+∇δ R|δb]c
]

= εabd

[
R̂dc|+ 2

3
ηcd

(
− 2∇2R| − 3

2
R2|

) ]
. (4.4.6)

Contracting this equation with εab
c and using the component definitions (4.4.4) leads

to the component definition

∇2R| = −3
4
R2| − 1

4
εabc ψ α

a ψ β
b (γc)αβ R|+ 1

8
εabc rabc + 1

4
ψaβ (γb) γ

β fabγ . (4.4.7)

The super field strength satisfies

F I
ab | = f I

ab + 1
3
ψ δ

[a (γb])
α

δ W
I
α| = 1

3
εabc(γ

c) δ
β ∇βW I

δ | , (4.4.8)

which implies

∇αW
I
β | = −3

4
εabc(γc)αβf

I
ab − 1

2
εabc(γc)αβ(γb)

γ
δ ψ

δ
a W

I
γ | . (4.4.9)

From (4.1.3) we have ∇α∇βW I
β = 0 so we can derive

∇2W I
α| = 1

2
(γc) β

α ∇cW
I
β | − 3

4
R|W I

α| . (4.4.10)

We now have complete component definitions for R and Wα and enough of the com-

ponents of Σaβ and R̂ab to perform the ectoplasmic integration. Since the gauge

potential ΓI
α for the U(1) fields appears in our Lagrangian we must also make com-

ponent definitions for it. ΓI
α has the gauge transformation

δΓI
α = ∇αK

I , (4.4.11)

so we can choose the Wess-Zumino gauge

ΓI
α| = ∇αΓI

α| = 0 . (4.4.12)
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We are now in a position to derive the full component action. We introduce

the following definitions for the component fields

R| = B , W I
α| = λI

α ,

Φi| = φi , ∇α Φi| = χi
α , ∇2Φi| = F i ,

∇α ΓI
β| = 1

2
(γc)αβA

I
c , ∇β ∇β ΓI

α| = 2
3
λI

α , (4.4.13)

in addition to the curl of the gravitino defined in (4.4.2). Using these component

definitions the terms in the action become

∫
d3xd2θE−1K(Φ)R =

∫
d3x e−1(D2K(Φ)R)|

=

∫
d3x e−1

{
− 2B∇2K|+∇αK|

[
− 1

2
(γa)

α
β ε

abcf β
bc

− ψ β
d (γd) α

β B
]
+K|

[
− 1

2
B2 − 1

4
εabc rabc + 1

4
ψ β

a εabc fbcβ

]}
, (4.4.14)

∫
d3xd2θE−1hIJW

αIW J
α =

∫
d3x e−1(D2hIJW

αIW J
α )|

=

∫
d3x e−1

{
+∇αhIJ |

[
− 3εabc (γc)

αβ f I
ab λ J

β

+ (γa) α
δ ψ δ

a λβI λ J
β

]
+ hIJ |

[
− 2(γc)αβ(∇cλ

J
α )λ J

β

− 1
2
ψaα ψaα λ

βI λ J
β + 3(γe)

ρ
σ fdeI ψ σ

d λ J
ρ +BλβIλ J

β

+ 9
2
fabIf J

ab − 3
2
εabc ψ γ

c λ J
γ f I

ab

]
− 2∇2 hIJ |λβI λ J

β

}
, (4.4.15)

∫
d3x e−1QIJΓI

βW
Jβ =

∫
d3x e−1(D2QIJΓI

βW
Jβ)|

=

∫
d3x e−1

{
2
3
QIJ |λI

βλ
βJ −∇αQIJ |(γc)αβA

I
cλ

βJ

− 1
2
QIJ |AaIψ α

a λI
α − 1

2
QIJ |εabc(γa)

β
α A

I
bψ

α
c λJ

β − 3
2
QIJ |εabcAI

af
J
bc

}
, (4.4.16)
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∫
d3xd2θE−1gij∇αΦi∇αΦj =

∫
d3x e−1(D2gij∇αΦi∇α Φj)|

=

∫
d3x e−1

{
4gij|

[
1
2
(γc)αβ ∇cχ

βi − 1
4
Bχ i

α

]
χαj

+ 2 gij|
[
− 1

2
∇c φi∇c φ

j + 2F i F j
]

+ gij|
[
ψ α

d ∇d φiχ j
α + εabc(γc)

α
βψ

β
a χ

i
α∇bφ

j + 2(γa)αβψ
β
aF

jχαi
]

− 2∇2gij|χαiχ j
α −

[
2B + 1

2
ψ α

a ψ β
b ε

abc(γc)αβ

]
gij|χαiχ j

α

+∇βgij|
[
2(γc)αβ∇cφ

iχ j
α − 4F iχβj − ψ α

d (γd) β
α χ

αiχ j
α

]}
, (4.4.17)

∫
d3x e−1W (Φ) =

∫
d3 e−1(D2W )| =

∫
d3x e−1

{
− 2∇2W |

+ ψ α
d (γd)

β
α ∇βW | −

[
2B + 1

2
ψ α

a ψ β
b ε

abc(γc)αβ

]
W |

}
. (4.4.18)

This component action is completely off-shell supersymmetric. We now put it on-

shell by integrating out B and F i. The equation of motion for F i leads to

F i =
1

4
gij|

{δW
δΦj

∣∣∣ +
δgkl

δΦj

∣∣∣χαkχ l
α + g−2 δhIJ

δΦj

∣∣∣λαIλ J
α

+ 2∇αgjl|χαl + κ−2 δK

δΦj

∣∣∣B − gjl(γ
a)αβψ

β
aχ

αl
}
, (4.4.19)

and the equation of motion for B yields

B = κ2K|−1
{
g−2hIJ |λαIλ J

α − 2W | − gij|χαiχ j
α

− κ−2(∇αK|ψ β
d (γd) α

β + 2∇2K|)
}
. (4.4.20)

To be completely general we assume that the coupling functions depend on some

combination of matter fields, Fa, thus:

∇2K| = 1

2

∑
a

∑
b

δ2K

δF bδFa

∣∣∣∇αF b|∇αFa|+
∑

a

δK

δFa

∣∣∣∇2Fa|

≡ ∇̃2K|+ δK

δΦi

∣∣∣F i . (4.4.21)
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With this definition, we can substitute for F i in (4.4.20), leading to

B = κ2K|−1
[
1 +

1

2
κ−2K|−1gij| δK

δΦi

∣∣∣ δK
δΦj

∣∣∣]−1{
− 2W |

− 1

2
κ−2gij|δW

δΦi

∣∣∣ δK
δΦj

∣∣∣− 2κ−2∇̃2K| − κ2gij| δK
δΦi

∣∣∣∇αgjl|χαl

+
[
− gkl| −

1

2
κ−2gij| δK

δΦi

∣∣∣δgkl

δΦj

∣∣∣ ]
χαkχ l

α

+
[
g−2 hIJ | −

1

2
κ−2g−2gij| δK

δΦi

∣∣∣δhIJ

δΦj

∣∣∣]λαIλ J
α

}
. (4.4.22)

This equation for the scalar field B is what is required to obtain the on-shell su-

persymmetry variation of the gravitino. To see this we begin with the off-shell

supersymmetry variation of the gravitino

δQψ
β

a = Daε
β − εα(T β

αa |+ T b
αa |ψ

β
b )− εαψ γ

a (T β
αγ |+ T e

αγ |ψ β
e )

= Daε
β − 1

2
εα(γa)

β
α B − εαψ γ

a (γe)αγψ
β

e . (4.4.23)

By converting to curved indices and keeping in mind the variation of e a
m

δQea
m = −[εβT d

βa |+ εβψ γ
a T

d
βγ |]e m

d = −εβψ γ
a (γd)βγe

m
d , (4.4.24)

the supersymmetry variation of the gravitino can be put into a more canonical form

δQψ
β

m = Dmε
β − 1

2
εα(γm) β

α B . (4.4.25)

The other fields have the following supersymmetry transformations

δQem
a = εβφγ

m(γa)βγ , (4.4.26a)

δQB = 1
4
εα(γa)αγε

abcfγ
bc , (4.4.26b)

δQA
I
c = −1

3
εγ(γc)

β
γλβ , (4.4.26c)

δQλ
I
α = εβεabc(γc)αβ(3

4
f I

ab + 1
2
(γb)

γ
δψ

δ
aλ

I
γ , (4.4.26d)

δQφ
i = −εαχi

α , (4.4.26e)
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δQχ
i
α = −1

2
εβ(γc)αβ∇cφ

i + εαF
i , (4.4.26f)

δQF
i = −εα(1

2
(γc)β

α∇cχ
i
β + 1

4
Bχi

α) . (4.4.26g)

The purely bosonic part of the lagrangian is

SB =

∫
d3x e−1

[
− 1

4
κ−2εabc rabc + 9

2
g−2hIJ |fabI fJ

ab − gij|∇cφi∇cφ
j

− 3
2
QIJ |εabcAI

af
J
bc − 1

2
κ−2B2 − 2∂iW |F i − 2BW |+ 4gijF

iF j
]
. (4.4.27)

The equations of motion for B and F i with K(Φ) = 1 and fermions set to zero are

B = −2κ2W | , (4.4.28a)

F i = 1
4
gij ∂jW | . (4.4.28b)

Substituting these back into the bosonic Lagrangian we have

SB =

∫
d3x e−1

[
− 1

4
κ−2εabcrabc + 9

2
g−2hIJ |fabIfJ

ab − gij|∇cφi∇cφ
j

− 3
2
QIJ |εabcAI

af
J
bc − ( 1

4
gij|∂iW |∂jW | − 2κ2W |2 )

]
. (4.4.29)

The scalar potential for this theory can be read off from above and is given by

V (φ) = 1
4
gij∂iW |∂jW | − 2κ2W |2 , (4.4.30)

and the on-shell supersymmetry variation of the gravitino takes the form

δQψ
β

m = Dmε
β − κ2 εα(γm) β

α W | . (4.4.31)

We want to note that the superpotential W determines the scalar potential in the

action and also it appears in the gravitino transformation law. These properties give

us the possibility to determine the explicit form of the superpotential, as we will see

in section 5.1, and to subsequently show in section 5.2 that the three dimensional

58



action obtained from compactification of M-theory on a Spin(7) holonomy manifold

is a particular form of (4.4.29).

From the form of (4.1.2) and the discussion of the above section, it is clear the

issue of an AdS3 background is described in the usual manner known to superspace

practitioners. In the limit

R =
√
λ , Σα

b = 0 ,

Wα
J = 0 , R̂ab = 0 , (4.4.32)

the commutator algebra in (4.1.2) remains consistent in the form

[∇α, ∇β} = (γc)αβ∇c −
√
λ (γc)αβ Mc , (4.4.33a)

[∇α, ∇b} = 1
2

√
λ (γb)α

δ∇δ , (4.4.33b)

[∇a, ∇b} = −λ εabcMc , (4.4.33c)

and clearly the last of these shows that the curvature tensor is given by Ra b
c =

−λ εab
c. This in turn implies that the curvature scalar is

εabcRabc = −6λ . (4.4.34)

Through the equation of motion for B in (4.4.28) we see that

√
λ = −2κ2W | , (4.4.35)

where we have used the definition (4.4.13) for B and the imposed limit (4.4.32)

on R. Thus, there is a supersymmetry preserving AdS3 background whenever the

condition

W | < 0 (4.4.36)
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is satisfied, i.e. the space has a constant negative curvature. On the other hand,

supersymmetry is broken whenever

W | > 0 . (4.4.37)

It is obvious from the condition (4.4.35) that W | = 0 corresponds to a supersym-

metric Minkowski background. We will see in section 5.3 that the proportionality

betweenW | and the curvature scalar plays an important role in selecting the possible

supersymmetric solutions obtained after performing the compactification.

60



5. THE SUPERPOTENTIAL CONJECTURE

In the previous chapter we have derived the most general off-shell three-dimensio-

nal N = 1 supergravity action coupled to an arbitrary number of scalars and U(1)

gauge fields and we have also identified the scalar potential and the gravitino super-

symmetry transformation. We have now all the information necessary to analyze

the properties of the theory derived in chapter 3. We know that the three-dimensio-

nal action obtained from compactification includes a superpotential, whose concrete

form has been conjectured in [6]

W =

∫
M

F ∧ Ω , (5.1)

where M denotes the internal manifold. In section 5.1 we will check directly that

the superpotential is indeed given by (5.1), by performing a Kaluza-Klein reduction

of the gravitino supersymmetry transformation law. We will repeat the procedure

for the heterotic theory on Calabi-Yau three-folds and we will check the above

conjectured form for W for this case as well.

An important question is the relationship between the three dimensional action

obtained from the compactification of M-theory on a Spin(7) holonomy manifold and
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the general form of the action shown in (4.4.29). This aspect is analyzed in section

5.2. We check that the form of the scalar potential and subsequently the complete

action is a particular case of the more general class of models discussed in chapter

4 as expected.

The constraints imposed by supersymmetry on these compactifications were

derived in [28] and [69]. In [29] it was shown that these constraints can be derived

from the superpotential (5.1). In section 5.3 we identify the subset of supersymmet-

ric solutions by analyzing these supersymmetry conditions and we derive conditions

that the internal flux has to satisfy for a supersymmetric background.

5.1 The Superpotential

In the next two sub-sections we consider the compactification of the gravitino su-

persymmetry transformation law for M-theory on Spin(7) manifolds and Heterotic

theory on Calabi-Yau three folds. We determine by direct comparison the conjec-

tured form (5.1) for W in both cases.

5.1.1 M-theory on Spin(7) Holonomy Manifolds

Let us start with M-theory on Spin(7) manifolds. The eleven-dimensional super-

symmetry transformation of the gravitino ΨM takes the form

δΨM = ∇Mζ − 1
288

(ΓM
PQRS − 8δP

MΓQRS) ζ FPQRS , (5.1.1)

where capital letters denote eleven-dimensional indices and ζ is an anticommuting

Majorana spinor. In order to compactify this theory on a Spin(7) holonomy mani-
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fold, we will make the ansatz (3.2.1) for the metric. The eleven-dimensional spinor

ζ is decomposed as

ζ = ε⊗ ξ , (5.1.2)

where ε is a three-dimensional anticommuting Majorana spinor and ξ is an eight-di-

mensional Majorana-Weyl spinor. Furthermore, we will make the following decom-

position of the gamma matrices

Γµ = γµ ⊗ γ9 , (5.1.3a)

Γm = 1⊗ γm , (5.1.3b)

where γµ and γm are the gamma matrices of the external and internal space, respec-

tively. We choose the matrices γm to be real and antisymmetric. γ9 is the eight-di-

mensional chirality operator, which anti-commutes with all the γm’s. In compactifi-

cations with maximally symmetric three-dimensional space-time the non-vanishing

components of the four-form field strength F have the form given in (2.2.12). Us-

ing the particular form for F and the decomposition (5.1.3) for the γ matrices, we

obtain the external component of the gravitino supersymmetry transformation

δΨµ = ∇µζ − 1
288

e−3A(γµ ⊗ γmnpq)Fmnpqζ

+ 1
6
e−3A(γµ ⊗ γm)fmζ − 1

2
∂nA(γµ ⊗ γn)ζ , (5.1.4)

where we have used a positive chirality eigenstate γ9ξ = ξ. Considering a negative

chirality spinor corresponds to an eight-manifold with a reversed orientation [49, 70].

We decompose the eleven-dimensional gravitino as we did with ζ in (5.1.2)

Ψµ = ψµ ⊗ ξ , (5.1.5)
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where ψµ is the three-dimensional gravitino. After inserting (5.1.2) and (5.1.5) in

(5.1.4), we multiply both sides of this equation from the left with the transposed

spinor ξT . To evaluate the resulting expression we notice that on these eight-mani-

folds it is possible to construct different types of p-forms in terms of the eight-di-

mensional spinor ξ as

ωa1...ap = ξTγa1...apξ . (5.1.6)

Since ξ is Majorana-Weyl, (5.1.6) is non-zero only for p = 0, 4 or 8 (see [50]). By

this argument we notice that the expectation values of the last two terms appearing

in (5.1.4) vanish, as they contain only one internal gamma matrix. The Spin(7)

calibration, also called the Cayley calibration, is given by the closed self-dual four-

form [28, 69]

Ωmnpq = ξTγmnpqξ . (5.1.7)

Neglecting the contribution from the warp factor we obtain from (5.1.4)

δψµ = ∇µε− γµε

∫
M8

F ∧ Ω , (5.1.8)

where we have again dropped a multiplicative constant in front of the second term

on the right hand side. By comparison with formula (4.4.31) we can then read off

the form of the superpotential

W =

∫
M8

F ∧ Ω , (5.1.9)

which is what we wanted to show. In the next section we perform the same analysis

for the case of heterotic theory on Calabi-Yau three-folds. We note that we had to

rescale the superpotential, i.e. κ2W | → W |, in order to have agreement. We will

64



see in section 5.2 that the same rescaling of the superpotential lowest component

W | is needed in order to have agreement between the compactified action and the

supergravity result.

5.1.2 The Heterotic String on Calabi-Yau Three-folds

In order to derive the superpotential for the four-dimensional heterotic string, we

will consider the compactification of the gravitino supersymmetry transformation

law, as we did in the previous section. Recall that the most general gauge invariant

N = 1, D = 4 supergravity action can be described in terms of three functions

(see e.g. [71, 72]). These are the superpotential W , the Kähler potential K, and

a holomorphic function Hab, which plays the role of the gauge coupling. In the

following we will take Hab = δab. The theory is formulated in terms of massless

chiral multiplets, containing a complex scalar φ and a Weyl spinor ψ and massless

vector multiplets, containing the field Aa
µ with field strength F a

µν and a Weyl spinor

λa. We shall be adding a real auxiliary field Da to the vector multiplets. The

bosonic part of the Lagrangian takes the following form1

G = −1
2
R−KījDµφ

i∗Dµφj − 1
4
F a

µνF
aµν − V (φ, φ∗) . (5.1.10)

Here V (φ, φ∗) describes the scalar potential given by

V (φ, φ∗) = exp(K)(K ījW ∗
i Wj − 3W ∗W ) + 1

2
DaDa. (5.1.11)

In this formula K īj is the inverse matrix to Kīj = ∂ī∂jK(φ, φ∗) where the partial

derivatives are with respect to the scalar fields φ, and Wi = ∂iW + ∂iK W . The

1We will be following the conventions of [72].
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complete Lagrangian is invariant under N = 1 supersymmetry. The relevant part

of the supersymmetry transformations takes the form

δλa = F a
µν σ

µνε− iDa ε , (5.1.12a)

δψµ = 2∇µε+ i eK/2 γµε
∗W . (5.1.12b)

Here λa and ψµ are positive chirality Weyl spinors, describing the gluino and grav-

itino, respectively, ε is a four-dimensional Weyl spinor of positive chirality, while ε∗

is the complex conjugate spinor with negative chirality. If the space-time is flat, the

complete supersymmetry transformations tell us that supersymmetry demands (see

[72])

Wi = Da = W = 0 . (5.1.13)

In what follows we will use the above supersymmetry transformations to determine

the superpotential and D-term for the heterotic string compactified on a Calabi-Yau

three-fold.

It has been known for a long time that gluino condensation triggers sponta-

neous supersymmetry breaking in the heterotic string compactified on a Calabi-Yau

three-fold Y3 (with no warp factors) without producing a vacuum energy [13]. In this

process the Neveu-Schwarz three-form H of the heterotic string acquires a vacuum

expectation value proportional to the holomorphic three-form Ω of the Calabi-Yau

three-fold. It was shown in [13] that this generates a superpotential, which will

break the supersymmetry completely. In a more recent context2 it was argued in

[14] that the superpotential which is induced by such a non-vanishingH-field extends

2For an earlier discussion of the form of the superpotential see [13].
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the conjecture (5.1) to superpotentials with non-vanishing fluxes of Neveu-Schwarz

type, i.e.

W =

∫
Y3

H ∧ Ω . (5.1.14)

The argument, which motivated the above formula, was based on the identifica-

tion of BPS domain walls with branes wrapped over supersymmetric cycles. More

concretely, the BPS domain wall of the N = 1, D = 4 theory originates from

the heterotic five-brane wrapping a special Lagrangian submanifold of Y3. This is

because the five-brane is a source for the Neveu-Schwarz three-form field strength

H. Here we would like to compute the form of the superpotential and the form of

the D-term appearing in (5.1.12) in this particular model by a direct Kaluza-Klein

reduction of the gravitino and gluino supersymmetry transformation, respectively.

Recall that the ten-dimensional N = 1 supergravity multiplet contains a metric

gMN , a spin-3
2

field ΨM , a two-form potential BMN , a spin-1
2

field λ and a scalar

field φ. The super Yang-Mills multiplet contains the Yang-Mills field F a
MN and a

spin-1
2

field χa, the so-called gluino. The relevant part of the N = 1 supersymmetry

transformations in the ten-dimensional string frame takes the form

δΨµ = ∇µζ + 1
48

(γµγ5 ⊗ γabcHabc) ζ , (5.1.15a)

δχα = −1
4
Fα

abγ
abζ . (5.1.15b)

Here µ describes the coordinates of the four-dimensional Minkowski space, and

a, b, . . . describe the six-dimensional internal indices, while α describes the gauge

index.

We consider a Majorana representation for ten-dimensional Dirac matrices
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with ΓM real and hermitian, apart from Γ0 which is real and antihermitian. The

matrices ΓM can be represented as tensor products of γµ, the matrices of the external

space, with γm, the matrices of the internal space

Γµ = γµ ⊗ 1 , (5.1.16a)

Γm = γ5 ⊗ γm , (5.1.16b)

with

γ5 = i
4!
εµνρσ γ

µνρσ . (5.1.17)

We can also introduce the matrix

γ = i
6!

√
g(6) εmnpqrs γ

mnpqrs , (5.1.18)

which determines the chirality in the internal space. Here g(6) represents the deter-

minant of the internal metric. Thus γµ are real and hermitian, apart from γ0 which

is real and antihermitian, and γm are imaginary and hermitian as are γ5 and γ. The

relation between Γ, the matrix which determines the chirality in ten-dimensions, γ5

and γ is

Γ = − γ5 ⊗ γ . (5.1.19)

Consider ζ a ten-dimensional Majorana-Weyl spinor of positive chirality. In or-

der to compactify transformations (5.1.15) to four dimensions, we decompose this

ten-dimensional spinor in terms of the covariantly constant spinors of the internal

manifold:

ζ = ε∗ ⊗ ξ+ + ε ⊗ ξ− , (5.1.20)
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where ξ+ and ξ− = (ξ+)∗ are six-dimensional Weyl spinors with positive and negative

chirality, respectively, and ε is a four-dimensional Weyl spinor of positive chirality,

whose complex conjugate is ε∗. Similarly, we decompose the ten-dimensional grav-

itino as:

Ψµ = ψ∗µ ⊗ ξ+ + ψµ ⊗ ξ− , (5.1.21)

where ψµ is a four-dimensional Weyl spinor of positive chirality, that represents the

four-dimensional gravitino.

In complex coordinates the gravitino supersymmetry transformation takes the

form

δΨµ = ∇µζ + 1
48

[
γµγ5 ⊗ (γmnpH

mnp + γm̄n̄p̄H
m̄n̄p̄)

]
ζ

+ 1
48

[
γµγ5 ⊗ (γmnp̄H

mnp̄ + γmn̄p̄H
mn̄p̄)

]
ζ . (5.1.22)

To evaluate the resulting expressions we use the identities (see e.g. [73] or [74])

γm̄ ξ+ = 0 , (5.1.23a)

γmnp ξ+ = ‖ξ+‖−2 Ωmnp ξ− , (5.1.23b)

γmnp̄ ξ+ = 2i γ[mJn]p̄ ξ+ , (5.1.23c)

γmn̄p̄ ξ+ = γm̄n̄p̄ ξ+ = 0 . (5.1.23d)

We now decompose our ten-dimensional spinors as in (5.1.20) and (5.1.21) and make

use of formulas (5.1.23a) and (5.1.23). Multiplying the resulting expression from the

left with ξ†− = ξT
+, we obtain the transformation:

δψµ = ∇µε− 1
48
γµε

∗ ‖ξ+‖−2 Hm̄n̄p̄ Ωm̄n̄p̄ . (5.1.24)
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After integration over the internal manifold we obtain:

δψµ = ∇µε+ iγµε
∗ ‖ξ+‖−2 eK2

∫
Y3

H ∧ Ω , (5.1.25)

where we have used that:

V = 1
48

∫
Y3

J ∧ J ∧ J = 1
64
e−K2 , (5.1.26)

with V being the volume of the internal Calabi-Yau manifold. If we choose

‖ξ+‖−2 = eK/2−K2 , (5.1.27)

and rescale the fields:

ψ → 1
2
ψ , (5.1.28a)

H → 1
2
H , (5.1.28b)

then we obtain the four-dimensional supersymmetry transformation for gravitino,

δψµ = 2∇µε+ iγµε
∗ eK/2

∫
Y3

H ∧ Ω . (5.1.29)

In the above formulas K = K1 +K2 is the total Kähler potential, where K1 is the

Kähler potential for complex structure deformations

K1 = − log

(
i

∫
Y3

Ω ∧ Ω̄

)
, (5.1.30)

and K2 is the Kähler potential for the Kähler deformations

K2 = − log

(
4

3

∫
Y3

J ∧ J ∧ J
)
. (5.1.31)

Comparing this result with (5.1.12) we find the superpotential

W =

∫
Y3

H ∧ Ω , (5.1.32)
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as promised.

Let us now consider the gluino supersymmetry transformations in (5.1.15). If

we again decompose the gluino as in (5.1.21) and the spinor ζ as in (5.1.20), we

obtain after comparing with (5.1.12) the form of the four-dimensional D-term up to

a multiplicative constant

Da = F a
mn̄J

mn̄ . (5.1.33)

Here we have used

Jmn̄ = −iξ†+γmn̄ξ+ , (5.1.34)

while the expectation value for the other index contractions appearing in the four-

dimensional gluino supersymmetry transformation vanish. As we have mentioned

in the previous section, supersymmetry demands D(a) = 0, which in this case gives

the well known Donaldson-Uhlenbeck-Yau equation

Jmn̄F a
mn̄ = 0 . (5.1.35)

The fact that the Donaldson-Uhlenbeck-Yau equation originates from a D-term

constraint was first discussed in [75]. Furthermore, supersymmetry demands

Wi = 0 , (5.1.36)

where we are using again the notation Wi = ∂iW + ∂iK1 W , where K1 is the

Kähler potential for complex structure deformations and is given in (5.1.30). It is

straightforward to evaluate this constraint to obtain Wi =
∫

Y3
φi ∧ Ω = 0, where φi

is a complete set of (2, 1) forms [76]. This implies that H is of type (0, 3). However

in this case

W 6= 0 , (5.1.37)
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and we therefore see that no supersymmetric solutions can be found. It is expected

that this situation changes if we consider instead a “warped” compactification of the

heterotic string [15, 16]. The resulting background is in this case a complex manifold

with non-vanishing torsion. Manifolds with non-vanishing torsion have also been

discussed some time ago in e.g. [77]. As opposed to the previous reference, the

manifolds we shall be interested in have a torsion that is not closed. It is expected

that supersymmetric ground states can be found in this case. In [78] it was computed

the form of this superpotential and checked, that it takes the same form as (5.1.32).

5.2 The Scalar Potential and the Effective Action

In this section we show that the action (3.2.12) is a particular case of the more

general construction presented in section (4.4). Let us elaborate this in detail.

First, we will show that the scalar potential (3.2.13) can be written in terms of the

superpotential

W =

∫
M8

F̂2 ∧ Ω , (5.2.1)

and subsequently we will perform a series of field redefinitions to obtain agreement

between the relevant terms in both actions. The form of the superpotential W was

conjectured in [6] and we have checked this conjecture in the previous section. More

explicitly we have used the supersymmetry transformation for the gravitino (4.4.31)

to identify the form of the superpotential. Using the anomaly cancelation condition

(3.1), the scalar potential becomes

V =
1

VM8

∫
M8

F̂2− ∧ ? F̂2− , (5.2.2)
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where

F̂2− = 1
2

[
F̂2 − ? F̂2

]
(5.2.3)

is the anti-self-dual part of the internal flux F̂2. Using the definition (3.1.14) for

GAB we can obtain the functional dependence of the scalar potential V in terms of

the superpotential (5.2.1)

V [W ] =

b−4∑
A,B=1

GAB DAW DBW , (5.2.4)

where GAB is the inverse matrix of GAB and we have introduced the operator

DAΩ = ∂AΩ +KAΩ . (5.2.5)

From equation (C.6) we can see that the action of DA on the Cayley calibration

produces an anti-self-dual harmonic four-form and this motivates the appearance of

GAB in formula (5.2.4).

What we observe from (5.2.4) is that the external space is restricted to three-

dimensional Minkowski because the scalar potential is a perfect square, in agreement

with [29]. Furthermore, when DAW = 0 the scalar potential vanishes. This relation

provides a set of b−4 equations for b−4 +1 fields, which lives us with the radial modulus

unfixed at this level. Its rather possible that non-perturbative effects will lead to a

stabilization of this field, as in [79].

A few remarks are in order before we can compare the compactified action

to the supergravity action. For a consistent analysis, we must take into account

all of the kinetic terms for the metric moduli. Furthermore, the scalar potential

(5.2.4) does not seem to be a special case of (4.4.30). The discrepancy arises for two
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reasons. First, in the general case the superpotential may depend on all of the scalar

fields existing in the theory and the summation in (4.4.30) is taking into account

all of these scalars, whereas in the compactified version the superpotential depends

only on the metric moduli

∂iW 6= 0 i = 0, 1, . . . b−4 , (5.2.6)

where “0” labels the radial modulus. Second, because of (C.4) the superpotential

has a very special radial modulus dependence in the sense that

∂0W = 2W , (5.2.7)

and this is the reason why the summation in (5.2.4) does not include the radial

modulus. Keeping these remarks in mind we proceed to show that the result coming

from compactification is a particular case of the general supergravity analysis.

We begin by rescaling some of the fields in the supergravity action (4.4.29)

2κ2
3 gij| = Lij , (5.2.8a)

1

2κ2
3

gij| = Lij , (5.2.8b)

κ2
3 W | = W̃ , (5.2.8c)

therefore the relevant terms in the supergravity action, which we denote by S ′
B, can

be written as

S ′
B =

1

2κ2
3

∫
M3

d3x
√
−g(3)

{
− Lij ∂αφ̄

i ∂αφ̄j

−
[
Lij ∂̄iW̃ ∂̄jW̃ − 4 W̃ 2

] }
. (5.2.9)

In the above equation the indices i, j = 0, 1, . . . b−4 . In what follows we will drop

the label “0” from the radion φ0 = φ and the derivative with respect to it ∂0 = ∂
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and we will denote by A, B . . . the remaining set of indices, i.e. A, B = 1, . . . , b−4 .

In (5.2.9) we have placed bars on the scalar fields and the derivative operators which

involve them in order to avoid confusion since we require one more field redefinition.

The relevant terms in the compactified action (3.2.12), which we denote by

S ′
3D, have the following form

S ′
3D =

1

2κ2
3

∫
M3

d3x
√
−g(3)

{
− 18(∂φ)2 − GAB(∂αφ

A)(∂αφB)

− GABDAWDBW
}

=
1

2κ2
3

∫
M3

d3x
√
−g(3)

{
− 18(∂αφ)(∂αφ)− GAB(∂αφ

A)(∂αφB)

−
[
GAB(∂AW )(∂BW ) + 4GA(∂AW )W + GW 2

] }
. (5.2.10)

In the above equation we have used expression (5.2.5) forDA and we have introduced

GA = GABKB and G = GABKAKB.

In order to make the comparison between (5.2.9) and (5.2.10), we have to

redefine the fields in (5.2.9) in the following manner

φ = L00φ̄+ L0Aφ̄
A , (5.2.11a)

φA = φ̄A . (5.2.11b)

Keeping track that φ is the radial modulus, we obtain the following form for S ′
B

S ′
B =

1

2κ2
3

∫
M3

d3x
√
−g(3)

{
− 1

L00

(∂αφ)(∂αφ)

−
(
LAB −

L0AL0B

L00

)
(∂αφ

A)(∂αφB)−
[
LAB(∂AW̃ )(∂BW̃ )

+ 4L0AL00W̃ (∂AW̃ ) + 4(L00L2
00 + 3L00 + 1)W̃ 2

]}
. (5.2.12)

Surprisingly, we have that

(
LAB −

L0AL0B

L00

)
LBC = δA

C , (5.2.13)
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and as a consequence we can perform the following identifications

L00 =
1

18
, (5.2.14a)

LAB −
L0AL0B

L00

= GAB , (5.2.14b)

LAB = GAB , (5.2.14c)

L0AL00 = GABKB , (5.2.14d)

4(L00L2
00 + 3L00 + 1) = GABKAKB . (5.2.14e)

With these identifications, both actions are seen to coincide. The remaining kinetic

terms and the Chern-Simons terms that were left in the actions (4.4.29) and (3.2.12)

can be easily identified and we conclude that the compactified action is in perfect

agreement with the general supergravity action. Therefore we can conclude that

M-theory compactified on manifolds with Spin(7) holonomy produces a low energy

effective action that corresponds to a particular case of the minimal three dimen-

sional supergravity coupled with matter. Hence under particular conditions we can

obtain supersymmetric solutions. In the next section we address this issue.

5.3 The Internal Flux and Supersymmetry Breaking

We have seen that the internal flux is responsible for generating a scalar potential

for some of the moduli fields. Equation (5.2.2) shows clearly that only the anti-self-

dual part of F̂2 is responsible for the emergence of V . The self-dual part is dynamic

in nature and we have seen in section 2.2 that this component of the internal flux

is the solution of the equations of motion. Let us investigate under what conditions
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the solution is supersymmetric.

Since the expressions in which the internal flux appears are of order t−4 or

higher our analysis will be performed on an undeformed and unwarped background

as we have previously considered in section 2.3. In other words to t−4 order in

perturbation theory we do not have equations which involve both the internal flux

and the corrections due to the warping or due to the deformation of the internal

manifold. As a consequence in this section the manifold M8 is considered to be a

Spin(7) holonomy manifold. Under these circumstances it is very easy to select the

supersymmetric solutions. We want to emphasize that our discussion involves the

leading order perturbative expansion coefficients of the Cayley calibration Ω(2) and

the one for the internal flux F (0). However, the discussion is not influenced by this

fact because the perturbative expansion of the fields does not affect their represen-

tation, i.e., all the expansion coefficients will belong to the same representation as

the original field. Our analysis is based only on the fields representations therefore

in what follows we drop the upper index which denote the order in perturbation

theory and the discussion will make no distinction between the full quantities F and

Ω and their leading contributions F (0) and Ω(2), respectively.

The constraints imposed to the internal flux in order to obtain a supersymmet-

ric vacua in three dimensions have been determined in [28]. Later on in [29] these

constraints have been derived from certain conditions imposed to the superpotential

W whose expression was conjectured in [6] to be

W =

∫
M8

F ∧ Ω . (5.3.1)
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We have shown in section 5.1 that (5.3.1) is indeed the superpotential of the theory

and we have proved in section 5.2 that the scalar potential of the effective three-di-

mensional theory is

V [W ] =

b4
35−∑

A,B=1

GAB DAW DBW , (5.3.2)

where GAB is the inverse matrix of GAB, which was defined in (3.1.14). We have

denoted by b4
35− the refined Betti number which represents the number of anti-self-

dual harmonic four-forms ξA. The covariant derivative DA was defined in (5.2.5)

through its action on the Cayley calibration

DA Ω = ξA . (5.3.3)

As we have discussed in section 5.2 the minimum of the scalar potential (5.3.2) is

zero due to its quadratic expression. Therefore an AdS3 solution is excluded and a

three-dimensional supersymmetric effective theory is obtained only when the scalar

potential vanishes, i.e., for a Minkowski background. In other words supersymmetry

requires

DAW = 0 A = 1, . . . , b435− . (5.3.4)

Unlike for the four-dimensional minimal supergravity case we do not have to im-

pose W = 0 as well in order to obtain V = 03. However having set the Minkowski

background in the three-dimensional theory we are left with no choice and we must

impose W = 0. This is because the three-dimensional scalar curvature is propor-

tional to the superpotential4. To summarize, the conditions that W has to satisfy

3The scalar potential in the four-dimensional case contains a term proportional to W 2.

4See the discussion at the end of the section 4.4 for more details.
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in order to have a supersymmetric vacua are

W = 0 and DAW = 0 , (5.3.5)

where DAW indicates the covariant derivative of W with respect to the moduli fields

which correspond to the metric deformations of the Spin(7) holonomy manifold.

Therefore if we want to break the supersymmetry of the effective three-dimensional

theory, all we have to do is to impose

W 6= 0 or DAW 6= 0 , (5.3.6)

and as we will see below the only way we can break the supersymmetry is through

the first condition in (5.3.6) because the second condition in (5.3.5) is always valid.

It is natural to have DAW = 0, i.e. a Minkowski background, because this is the

only solution found in section 2.2. Since the general solution that emerges from

our analysis invalidates the second condition in (5.3.6) from the beginning, the

only way we can break the supersymmetry is to have a non-vanishing value for the

vacuum expectation value of the superpotential W . It is obvious that once the

supersymmetry is broken the relation that exists between W and DAW is no longer

valid and we can have, for example, DAW = 0 and W 6= 0 without generating any

inconsistencies. In other words the superpotential is no longer proportional to the

three-dimensional scalar curvature for a non-supersymmetric theory. Having said

that let us see what constraints we should impose on the internal background flux

in order to obtain a supersymmetric solution.

All the fields on M8 form representations of the Riemannian holonomy group

Spin(7). In particular, the space of differential forms on M8 can be decomposed into
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irreducible representations of Spin(7) and because the Laplace operator preserves

this decomposition the de Rham cohomology groups have a similar decomposition

into smaller pieces. Here we are interested in the four-form internal flux of the field

strength of M-theory, therefore we need the decomposition of the fourth cohomology

group of M8

H4(M8, IR) = H4
1+(M8, IR)⊕H4

7+(M8, IR)⊕H4
27+(M8, IR)⊕H4

35−(M8, IR) . (5.3.7)

In the above expression the numerical sub-index represents the dimensionality of the

representation and the ± stands for a self-dual or anti-self-dual representation. We

denote by bnr the refined Betti number which represents the dimension ofHn
r (M8, IR).

It is shown in [1] that for a compact manifolds which has Spin(7) holonomy b47+ = 0,

hence the decomposition (5.3.7) becomes

H4(M8, IR) = H4
1+(M8, IR)⊕H4

27+(M8, IR)⊕H4
35−(M8, IR) . (5.3.8)

Therefore on a compact Spin(7) holonomy manifold the internal flux can have three

pieces

F̂2 = F1+ ⊕ F27+ ⊕ F35− . (5.3.9)

However we have showed in section 2.2 that the most general solution which emerges

from the equations of motion has to be self-dual, whereas the anti-self-dual piece

generates the scalar potential as shown in section 5.2. Therefore the dynamical com-

ponent of the internal flux is F1+ ⊕ F27+ . The non-dynamical component vanishes,

i.e. F35− = 0, because the scalar potential vanishes. Although not obvious, the

vanishing of the F35− piece is related to the second set of equations in (5.3.5). To
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see this let us rewrite DAW using the definition (5.3.1)

DAW =

∫
M8

DAΩ ∧ F̂2 . (5.3.10)

The variation of the Cayley calibration with respect to the metric moduli belongs

to H4
35−(M8, IR) and therefore

DAW =

∫
M8

ξA ∧ F35− , (5.3.11)

hence DAW vanishes when F35− vanishes

F35− = 0 ⇒ DAW = 0 . (5.3.12)

In other words the general solution for the internal flux precludes a non-vanishing

cosmological constant in the effective three-dimensional theory.

Regarding the first condition in (5.3.5) we can easily see that it is satisfied as

long as F1+ = 0 because the Cayley calibration belongs to H4
1+(M8, IR) and therefore

we have that

W =

∫
M8

Ω ∧ F̂2 =

∫
M8

Ω ∧ F1+ , (5.3.13)

hence

F1+ = 0 ⇒ W = 0 . (5.3.14)

This result means that the only piece from the internal flux that accommodates a

supersymmetric vacuum is

F̂2 = F27+ . (5.3.15)

Due to the fact that we obtain from the equations of motion that the internal flux

has to be self-dual and the external space is Minkowski, i.e. the F35− piece is
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identically zero, the only way we can break supersymmetry is by turning F1+ on

in such a way that we obtain a non-vanishing value for the superpotential. It is

interesting to note that breaking the supersymmetry in this way does not affect

the value of the cosmological constant which remains zero. Such an interesting

scenario with a vanishing cosmological constant and broken supersymmetry has

already appeared in a number of different contexts [11, 20, 8, 40] and [80]. However,

in contrast to the superpotentials appearing in the previous references, it is expected

that the superpotential (5.1) receives perturbative and non-perturbative quantum

corrections. For an analysis of some aspects of these corrections see [29]. This

completes our discussion about M-theory compactifications on Spin(7) holonomy

manifolds.
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6. CONCLUSIONS

In this thesis we have analyzed the properties of the most general warped vacua

which emerge from a compactification with flux of M-theory on Spin(7) holonomy

manifolds. More specifically we have looked at the conjecture made in [6] for the

superpotential which arises in such compactifications. We have also computed the

scalar potential generated by the internal flux and we have determined the conditions

imposed on the flux by a supersymmetric solution.

The existence of the quantum corrections terms in the low energy effective

action of M-theory forced us to perform in chapter 2 a perturbative analysis of

the problem. The perturbative parameter “t” was defined in (2.2.6). We have

determined that a consistent solution of the equations of motion requires the self-

duality of the leading order term of the internal flux. We have also shown that the

internal manifold remains Ricci flat to the t−2 order in the perturbation theory, as

shown in (2.2.19). By analyzing (2.2.36) we have shown that the Ricci flatness of the

internal manifold is in general lost to order t−3. However, imposing the restrictive

condition (2.2.37) the internal manifold remains Ricci flat to this order as well. As

a matter of fact this is the order in the perturbation theory where the influence of
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the quantum corrections terms is felt in the equations of motion and it is natural

to expect deformations of the internal manifold to occur at this order. We have

also derived a relation between the warp factor “A” and the external flux given by

(2.2.32). We have collected some of the properties related to the quartic polynomials

in section 2.3. In particular in section 2.3.2 we have shown that J0 vanishes on a

Spin(7) background and we have computed its first variation on a Spin(7) holonomy

background. We have also determined a nice formula (2.3.27) for the trace of the

first variation of J0.

The results obtained in chapter 2 helped us to understand what approxima-

tions and what kind of ansatz have to be employed in the compactification procedure

for the background metric. In chapter 3 we have performed the Kaluza-Klein com-

pactification of M-theory on a Spin(7) holonomy manifold with and without fluxes.

When fluxes are included, we generate a scalar potential for moduli fields. The main

results from chapter 3 are the formula that gives the three-dimensional low energy

effective action 3.2.12 and the expression 3.2.13 of the scalar potential generated by

the background flux of the field strength.

The analysis performed in chapter 5 uses information about the form and the

structure of minimal supergravity in three dimensions. Therefore in chapter 4 we

have derived the general form of 3D,N = 1 supergravity coupled to matter. The off-

shell component action is the sum of (4.4.14) and (4.4.15). In addition the on-shell

bosonic action is given in (4.4.29). The supersymmetry variation of the gravitino,

(4.4.31), was shown to be proportional to the superpotential. The latter statement

was an important ingredient in order to check the form of the superpotential for
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compactifications of M-theory on Spin(7) holonomy manifolds conjectured in [6].

Chapter 5 contains various analyses related to the compactified theory. In

section 5.1 we have checked the conjecture made in [6] regarding the form of the

superpotential, which is induced when non-trivial fluxes are turned on in different

types of string theory and M-theory compactifications. We have accomplished this

task by performing a Kaluza-Klein reduction of the gravitino supersymmetry trans-

formation. In section 5.1.1 we have considered warped compactifications of M-theory

on Spin(7) holonomy manifolds. Since the gravitino supersymmetry transformation

contains a term proportional to W , we were able to verify the conjecture of [6] by a

direct calculation of the superpotential. As it is well known from [13], a compacti-

fication of the heterotic string on a Calabi-Yau three-fold leads to a superpotential,

which breaks the supersymmetry completely. We have checked that this superpo-

tential can be written in the form (5.1.32), which extends the conjecture made in [6]

to fluxes of Neveu-Schwarz type [14]. In section 5.2 we have showed that the scalar

potential can be expressed in terms of the superpotential. Interestingly, formula

(5.2.4) shows that the potential is a perfect square, hence only compactifications

to three-dimensional Minkowski space can be obtained in agreement with [29]. It

is plausible that non-perturbative effects will modify this result to three-dimensio-

nal de-Sitter space along the lines of [79]. This will be an interesting question for

the future. In section 5.3 we have determined the condition (5.3.15) which has to

be satisfied by the internal flux in order to obtain a supersymmetric solution. The

analysis was based on the set of conditions (5.3.5) that were imposed to the superpo-

tential. We have shown the existence of solutions to the three-dimensional equations
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of motion, which break supersymmetry and have a vanishing three-dimensional cos-

mological constant. Such an interesting scenario has recently appeared many times

in the literature.

Contrary to the superpotential appearing in compactifications of M-theory on

Calabi-Yau four-folds, it is known that this N = 1 superpotential receives pertur-

bative and non-perturbative quantum corrections [29]. The computation of these

corrections along the lines of [80] represents an interesting open question.
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A. CONVENTIONS, IDENTITIES AND DERIVATIONS

A.1 Conventions and Useful Identities

This appendix contains the conventions and the main formulas used in the com-

putations related to the Kaluza-Klein procedure. In what follows we present some

conventions related to the Levi-Civita tensor density, some algebraic identities which

involve generalized Kronecker delta and Levi-Civita symbols, and a few useful Γ-

matrix identities. We choose to have

ε1...n = 1 , (A.1.1)

and because the covariant tensor density εb1...bn is obtained from εa1...an by lowering

the indices with the help of the metric coefficients gab, we will have that

ε1...n = g , (A.1.2)

where g = det(gmn) . Therefore the product of two Levi-Civita symbols can be

reexpressed as

εa1...an εb1...bn = g δa1...an

b1...bn
. (A.1.3)
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The generalized Kronecker delta symbol which has appeared in (A.1.3) is defined as

δa1...an

b1...bn
= n!δa1

[b1
. . . δan

bn] , (A.1.4)

where the antisymmetrization implies a 1/n! pre-factor, e.g.,

δa
[mδ

b
n] =

1

2!
( δa

mδ
b
n − δa

nδ
b
m ) . (A.1.5)

For a single contraction of a (p+1)-delta symbol in an n-dimensional space we have

δ
a1...apm
b1...bpm = (n− p) δ

a1...ap

b1...bp
, (A.1.6)

therefore in an n-dimensional space a p-delta symbol is related to an n-delta symbol

as follows

δ
a1...apm1...mn−p

b1...bpm1...mn−p
= (n− p)! δ

a1...ap

b1...bp
. (A.1.7)

As above, the antisymmetrization of two or more gamma matrices implies a

1/n! pre-factor, e.g.,

Γmn = Γ[mΓn] =
1

2!
( ΓmΓn − ΓnΓm ) . (A.1.8)

Using the fundamental relation

{Γm,Γ
n} = 2δn

m , (A.1.9)

one can deduce the following gamma matrix identities

[Γm,Γ
r] = 2Γm

r , (A.1.10a)

{Γmn,Γ
r} = 2Γmn

r , (A.1.10b)

[Γmnp,Γ
r] = 2Γmnp

r , (A.1.10c)
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and

{Γm,Γ
r} = 2δm

r , (A.1.11a)

[Γmn,Γ
r] = −4δr

[mΓn] , (A.1.11b)

{Γmnp,Γ
r} = 6δr

[mΓnp] . (A.1.11c)

In what follows we present our conventions regarding differential forms. If αp

is a differential form of order p, or an p-form, then its expansion in components is

given by

αp =
1

p!
αm1,...,mp dx

m1 ∧ . . . ∧ dxmp . (A.1.12)

Let us consider the wedge product between a p-form αp and a q-form βq. αp ∧ βq is

a (p+ q)-form, so

αp ∧ βq =
1

(p+ q)!
(αp ∧ βq)m1,...,mp+q dx

m1 ∧ . . . ∧ dxmp+q . (A.1.13)

On the other hand, by definition

αp ∧ βq =
1

p! q!
α[m1,...,mp βmp+1,...,mp+q ] dx

m1 ∧ . . . ∧ dxmp+q , (A.1.14)

therefore

(αp ∧ βq)m1,...,mp+q
=

(p+ q)!

p! q!
α[m1,...,mp βmp+1,...,mp+q ] . (A.1.15)

The definition for the exterior derivation is

dαp =
1

p!
∂[m1 αm2,...,mp+1] dx

m1 ∧ . . . ∧ dxmp+1 . (A.1.16)

Since dαp is a (p+ 1)-form

dαp =
1

(p+ 1)!
(dαp)m1,...,mp+1 dx

m1 ∧ . . . ∧ dxmp , (A.1.17)
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we have that

(dαp)m1,...,mp+1
= (p+ 1) ∂[m1 αm2,...,mp+1] . (A.1.18)

The Hodge ? operator of some p -form on a real n -dimensional manifold is defined

as

?αp =

√
g

p!(n− p)!
αk1...kp g

k1m1 . . . gkpmp εm1...mpmp+1...mn

· dxmp+1 ∧ . . . ∧ dxmn , (A.1.19)

where

ε1...n = + 1 . (A.1.20)

Regarding the integration of some p -form αp on a p -cycle Cp we have that∫
Cp

αp =
1

p!

∫
Cp

αm1...mpdx
m1 ∧ . . . ∧ dxmp . (A.1.21)

We can also introduce an inner product on the space of real p -forms defined on a

n -dimensional manifold M

〈αp, βp〉 =

∫
M
αp ∧ ?βp =

1

p!

∫
M
αm1...mp β

m1...mp
√
g dx1 ∧ . . . ∧ dxn . (A.1.22)

We end this appendix with the derivations of some important formulas used in

the computations performed in section 2.3.2. We also list some other useful identities

providing the appropriate references for detailed explanations.

In general one has

[∇m,∇n]η =
1

4
RmnpqΓ

pqη , (A.1.23)

therefore if η is a Killing spinor then ∇mη = 0 and we obtain the integrability

condition

RabmnΓmnη = 0 . (A.1.24)
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If we multiply (A.1.24) from the left with ηΓcd we obtain

RabmnηΓcdΓ
mnη = 0 . (A.1.25)

Using the identities (A.1.10) and (A.1.11), we can show that

ΓaΓmn = Γa
mn + δa

mΓn − δa
nΓm , (A.1.26)

and

ΓabΓmn = Γab
mn − δab

mn − 4δ
[a
[mΓb]

n] . (A.1.27)

If we sandwich the relation (A.1.27) between η and η we obtain that

ηΓabΓmnη = Ωab
mn − δab

mn , (A.1.28)

where

Ωabmn = ηΓabmnη (A.1.29)

is the Cayley calibration of the Spin(7) holonomy manifold and the Killing spinor is

normalized to unity, i.e., ηη = 1. We remind the reader that for a Spin(7) holonomy

manifold, terms like ηΓm1...mpη are not zero only when p = 0, 4 or 8. For details see

reference [50]. This is the reason why we have no contribution from the last term

in (A.1.27). Using (A.1.28) we can recast (A.1.25) as

RabmnΩmn
cd = 2Rabcd . (A.1.30)

We have the following one index contraction between two Cayley calibrations

(see for example [81] and [82])

ΩtabcΩtmnp = 6δa
[mδ

b
nδ

c
p] + 9δ

[a
[mΩbc]

np] . (A.1.31)
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We use the following expression for the variation of the Riemann tensor in

terms of the metric fluctuations

δRabmn = −∇[a|∇mδg|b]n +∇[a|∇nδg|b]m . (A.1.32)

The above result can be easily derived using the relation which exists between the

derivative operators associated with two conformally related metrics.

A.2 The Inverse Metric and Other Derivations

In this appendix we derive the power expansion in t for the inverse metric and we

provide some useful relations used in the analysis of section 2.2. We start with the

derivation of the inverse internal metric gmn followed naturally by the expansions

for the Riemann tensor, the Ricci tensor and the scalar curvature that correspond

to gmn which has Spin(7) holonomy. Once we know this expansions we can perform

a conformal transformation to find the corresponding tensorial quantities for the

internal manifold1. Also at the end of this appendix we provide the expressions

for the external and internal energy-momentum tensor associated with F1 and F2,

respectively, and we list the results obtained for the term in the right hand side of

(2.2.1) for the external and the internal cases.

Let us consider two arbitrary square matrices A and B with real entries2. We

want an expression for (A+B)−1 in terms of A, A−1, B and B−1. While there is no

useful formula for (A+B)−1, we can use a Neumann series to invert A+B provided

1We have to take into account that the full metric (2.2.5) is warped.

2The reader should not confuse these matrices with the warp factors.
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that B, for example, has small entries relative to A. This means that in magnitude

we have

lim
n→∞

(A−1B)n = 0 . (A.2.1)

Under this assumption the inverse of A+ B matrix can be expressed as an infinite

series

(A+B)−1 =
∞∑

k=0

(−A−1B)k A−1 , (A.2.2)

which in a first approximation is given by

(A+B)−1 = A−1 − A−1BA−1 + . . . . (A.2.3)

The above setup helps us to compute the inverse of the matrix gmn introduced in

(2.2.8). If we set Amn = t [g(1)]mn and Bmn = [g(0)]mn, which is the “small” matrix3,

then the formula (A.2.3) translates into

gmn = t−1[g(1)]mn + t−2[g(2)]mn + . . . , (A.2.4)

where we have defined

[g(1)]mn = [g(1)]−1
mn , (A.2.5a)

[g(2)]
mn

= −[g(1)]mp[g(0)]pr[g
(1)]rn , (A.2.5b)

and as usual gmn represents the inverse of gmn.

By performing the appropriate conformal transformations we obtain the in-

ternal and external components of the eleven-dimensional Ricci tensor and the ele-

ven-dimensional Ricci scalar that correspond to the metric (2.2.5). The results are

3The perturbative parameter “t” was introduced in (2.2.6) and in the large volume limit “t” is

much bigger than the unity.
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provided in terms of the un-warped quantities, denoted here without a tilde above

the symbol

R̃µν(M11) = Rµν(M3)− ηµν e
2(A−B)[4A+ 3(∇mA) (∇mA)

+ 6(∇mA) (∇mB) ] , (A.2.6)

R̃mn(M11) = Rmn(M8)− 3∇m∇nA− 6∇m∇nB − gmn4B

− 3(∇mA) (∇nA)− 3gmn(∇kA) (∇kA)

+ 6(∇mB) (∇nB)− 6gmn(∇kB) (∇kB)

+ 6∇(mA∇n)B , (A.2.7)

R̃(M11) = e−2AR(M3) + e−2BR(M8)− e−2B[ 64A+ 144B

+ 12(∇mA) (∇mA) + 42(∇mB) (∇mB)

+ 36(∇mA) (∇mB) ] , (A.2.8)

where4 = ∇m∇m is the internal Laplace operator. We mention that formulas (2.34)

- (2.36) in [83] represent a generalization of the above equations4. Because the warp

factors A and B are of order t−3 we will truncate (A.2.6), (A.2.7) and (A.2.8) and we

will retain only the linear contributions in A and B. The “linearized” expressions

are

R̃µν(M11) = Rµν(M3)− ηµν 4A+ . . . , (A.2.9a)

R̃mn(M11) = Rmn(M8)− 3∇m∇nA− 6∇m∇nB − gmn4B + . . . , (A.2.9b)

R̃(M11) = R(M3) +R(M8)− 64A− 144B + . . . . (A.2.9c)

4The reader must be aware of a small typo in formula (2.35) of [83] where the term −d ∂mA ∂nB

should read −d ∂mA ∂nA.
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Let us compute the external and the internal components of the energy-mo-

mentum tensor associated with the field strength F . Because of the specific form

(2.2.12) of the background flux the energy-momentum tensor defined in (2.2.2) will

have the following form

Tµν = −3ηµν(∇mf) (∇mf)− 1
8
ηµνFabmnF

abmn + . . . , (A.2.10a)

Tmn = −6(∇mf) (∇nf) + 3gmn(∇pf) (∇pf)

+ FmabpFn
abp − 1

8
gmnFabprF

abpr + . . . , (A.2.10b)

where the ellipsis denotes higher order terms which contain warp factors. We are

also interested in computing the trace of the above tensors

ηµν Tµν = −9(∇mf) (∇mf)− 3
8
FabmnF

abmn

= −9 [g(1)]mn[∇mf
(2)] [∇nf

(2)] t−5

− 3
8
[F (0)]abmn[F (0)]abmn t−4 + . . . , (A.2.11a)

gmn Tmn = 18(∇mf) (∇mf) = 18 [g(1)]mn[∇mf
(2)] [∇nf

(2)] t−5 + . . . , (A.2.11b)

where we have provided the leading order contribution of these terms. We want to

note that trace of Tmn vanishes to order t−4 in the perturbation theory.

The external component of the left hand side of equation (2.2.1) is

−β 1√
−g

δ

δηµν

[√
−g(J0 −

1

2
E8)

]
=
β

4
ηµν E8(M8) , (A.2.12)

where we have used (2.3.2) and the fact that J0(M11) does not depend on the external

metric and it vanishes on a Spin(7) holonomy background5. The internal component

5See section 2.3.2 for details.
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of the left hand side of equation (2.2.1) is

−β 1√
−g

δ

δgmn

[√
−g(J0 −

1

2
E8)

]
= −β δY

δgmn
, (A.2.13)

where we have used equation (2.3.4) and δY/δgmn is given in (2.3.20). The trace of

the above equation is

−β 1√
−g

gmn δ

δgmn

[√
−g(J0 −

1

2
E8)

]
= −217 β4E6(M8) , (A.2.14)

where we have used (2.3.27) in its derivation. It is obvious that (A.2.14) is of order

t−4 in the perturbation theory.

A.3 Dimensional Reduction of the Einstein-Hilbert Term

In this appendix we present the technical details related to the compactification of

the Einstein-Hilbert term. We treat first the zero flux case and then we calculate

the reduction for the non-zero background flux case. As usual the Greek indices

refer to the external space, the small Latin indices refer to the internal space, and

finally the capital Latin indices refer to the entire eleven dimensional space.

We start with the following ansatz for the inverse metric

gmn(x, y) = ĝmn(y) + φ(x)ĝmn(y) +

b−4∑
A=1

φA(x) hmn
A (x, y) + . . . , (A.3.1)

where we have denoted by gmn(x, y) the inverse metric of gmn(x, y) and by ĝmn(x)

the inverse metric of ĝmn(x)

gmn(x, y) gnp(x, y) = δm
p , ĝmn(y) ĝnp(y) = δm

p . (A.3.2)
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Due to these facts we obtain that

hmn
A (x, y) = −ĝma(y) eA ab(y) ĝ

bn(y) . (A.3.3)

The tracelessness of eA ab implies the tracelessness of hmn
A . The ansatz (3.1.1) implies

that the only non-zero Christoffel symbols are

Γα
µν = 1

2
ηαβ (∂µηβν + ∂νηµβ − ∂βηµν) , (A.3.4a)

Γα
mν = 0 , (A.3.4b)

Γα
mn = − 1

2
ηαβ (∂βgmn) , (A.3.4c)

Γa
mn = 1

2
gab (∂mgbn + ∂ngmb − ∂bgmn) , (A.3.4d)

Γa
µn = 1

2
gab (∂µgbn) , (A.3.4e)

Γa
µν = 0 . (A.3.4f)

Using the following definition of the Ricci tensor

RMN = ∂AΓA
MN − ∂NΓA

MA + ΓA
MNΓB

AB − ΓA
MBΓB

AN , (A.3.5)

we can derive the expression for the eleven-dimensional Ricci scalar

R(M11) = R(M3) +R(M8) + gmn∂αΓα
mn − ηµν∂νΓ

a
µa + ηµνΓα

µνΓ
b
αb

−
[
ηµνΓa

µbΓ
b
aν + gmnΓa

mβΓβ
an + gmnΓα

mbΓ
b
αn

]
+ gmnΓα

mnΓβ
αβ + gmnΓα

mnΓb
αb . (A.3.6)

where R(M3) denotes the three-dimensional Ricci scalar and R(M8) is the eight-di-

mensional Ricci scalar. We can determine that∫
M11

d11x
√
−g11R(M11) =

∫
M11

d11x
√
−g11

{
R(M3) + ηµνΓa

µaΓ
b
νb

− (∂αg
mn)Γα

mn −
[
ηµνΓa

µbΓ
b
νa + gmnΓa

βmΓβ
an + gmnΓα

mbΓ
b
αn

] }
, (A.3.7)
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where we have integrated by parts with respect to the internal coordinates and we

have used the fact that the internal manifold is Ricci flat, i.e. R(M8) = 0 . It is easy

to see that we obtain the following results

∫
M11

d11x
√
−g11 η

µν Γa
µa Γb

νb = 16VM8

∫
M3

d3x
√
−η (∂αφ)(∂αφ) , (A.3.8a)∫

M11

d11x
√
−g11 (∂αg

mn)Γα
mn = 4VM8

∫
M3

d3x
√
−η

{
(∂αφ) (∂αφ)

+
1

2

b−4∑
A,B=1

GAB (∂αφ
A) (∂αφB)

}
, (A.3.8b)

∫
M11

d11x
√
−g11

[
ηµνΓa

µbΓ
b
νa + gmnΓa

βmΓβ
an + gmnΓα

mbΓ
b
αn

]
= −VM8

∫
M3

d3x
√
−η

{
2(∂αφ) (∂αφ) +

b−4∑
A,B=1

GAB(∂αφ
A)(∂αφB)

}
, (A.3.8c)

where GAB was defined in (3.1.14) and VM8 represents the volume of the internal

manifold and it is defined in (3.1.11).

We know that after compactification we arrive in the string frame even if we

started in eleven dimensions in the Einstein frame. Therefore we have to perform

a Weyl transformation for the external metric. The fact that we do not see any

exponential of the radial modulus seating in front of R(M3) is because we have

consistently neglected higher order contributions in moduli fields. However it is not

difficult to realize that the Weyl transformation that has to be performed is

ηαβ → e−8φ ηαβ . (A.3.9)

The only visible change in this order of approximation is the coefficient in front of

the kinetic term for radion. All the other terms in the action remain unchanged.
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Therefore the Einstein-Hilbert term is

1

2κ2
11

∫
M11

d11x
√
−g11R(M11) =

1

2κ2
3

∫
M3

d3x
√
−η

{
R(M3)

− 18(∂αφ) (∂αφ)−
b−4∑

A,B=1

GAB (∂αφ
A) (∂αφB)

}
+ . . . . (A.3.10)

Let us analyze what happens when we turn on the fluxes. It is easy to derive

an expression for the Ricci scalar in the non-zero background case. For this task we

rewrite the warped metric (3.2.1) as

g̃MN = e2A(y) ḡMN , (A.3.11)

where the barred metric is given by

ḡMN dX
M dXN = ηµν(x) dx

µdxν + e−3A(y) gmn(x, y) dymdyn . (A.3.12)

The Christoffel symbols that correspond to the metric (A.3.12) are

Γ̄α
µν = Γα

µν , (A.3.13a)

Γ̄α
mν = Γα

mν , (A.3.13b)

Γ̄α
mn = e−3A Γα

mn , (A.3.13c)

Γ̄a
mn = Γa

mn − 3
2

[
δa
m∂n + δa

n∂m − gmng
ab∂b

]
A , (A.3.13d)

Γ̄a
µn = Γa

µn , (A.3.13e)

Γ̄a
µν = Γa

µν , (A.3.13f)

where the unbarred symbols are computed in (A.3.4). We can repeat the computa-

tion for the Ricci scalar corresponding to the metric (A.3.12) and at the end we will

obtain a formula similar to (A.3.6). Due to the simple relations (A.3.13) between
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the Christoffel symbols, the Ricci scalar for the metric (A.3.12) reduces to

R̄(M11) = R(M11) + 21 e3A
[
gab∇a∇bA− 9

2
gab∇aA∇bA

]
, (A.3.14)

where R(M11) is given in (A.3.6).

To compute the Ricci scalar that corresponds to the metric (3.2.1) we have to

perform the conformal transformation (A.3.11). The result of the computation is

R̃(M11) = e−2A(y)R(M11) + eA(y)
[
gab∇a∇bA(y)

− 9
2
gab∇aA(y)∇bA(y)

]
. (A.3.15)

Using the fact that the second term in (A.3.15) produces a total derivative term

which vanishes by Stokes’ theorem and the last term is subleading, we obtain that

∫
M11

d11x
√
−g̃11 R̃(M11) =

∫
M11

d11x
√
−g R(M11) e

−3A(y) + . . . . (A.3.16)

As expected, to leading order the kinetic coefficients receive no corrections from

warping. Therefore we conclude that

1

2κ2
11

∫
M11

d11x
√
−g̃11 R̃(M11) =

1

2κ2
3

∫
M3

d3x
√
−η

{
R(M3)

− 18(∂αφ) (∂αφ)−
b−4∑

A,B=1

GAB (∂αφ
A) (∂αφB)

}
+ . . . , (A.3.17)

i.e. to leading order we obtain the same result as in the zero flux case.
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B. MINIMAL THREE-DIMENSIONAL SUPERGRAVITY

SUPLEMENT

This appendix contains our notations and conventions related to the derivation of

the minimal three-dimensional supergravity. The conventions and notations are

presented in appendix B.1. Appendix B.2 describes the derivation of the three-di-

mensional Fierz identities. In appendix B.3, we derive the closure of the three-di-

mensional super covariant derivative algebra.

B.1 Notations and Conventions

We use lower case Latin letters for three-vector indices and Greek letters for spinor

indices. Supervector indices are denoted by capital Latin letters A,M . We further

employ the early late convention: letters at the beginning of the alphabet denote

tangent space indices while letters from the middle of the alphabet denote coordinate

indices. The spinor metric is defined through

Cµ νC
σ τ = δµ

σ δν
τ − δµ

τ δν
σ ≡ δµ

[σ δν
τ ] , (B.1.1)
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and is used to raise and lower spinor indices via

θν = θµCµ ν , (B.1.2a)

θµ = Cµ ν θν . (B.1.2b)

Some other conventions

diag( ηab ) = (−1, 1, 1) , (B.1.3a)

εabc ε
def = − δ[a

dδb
eδc]

f , (B.1.3b)

ε012 = +1 . (B.1.3c)

The γ-matrices are defined through

(γa)α
γ(γb)γ

β = ηabδα
β + εabc(γc)α

β , (B.1.4)

and satisfy the Fierz identities

(γa)αβ(γa)
γδ = −δ(αγδβ)

δ = −(γa)(α
γ(γa)β)

δ , (B.1.5a)

εabc (γb)αβ(γc)γ
δ = Cαγ(γ

a)β
δ + (γa)αγδβ

δ . (B.1.5b)

For the Levi-Civita symbol, we have the contractions

εabcεdef = −δ a
[d δ b

e δ
c

f ] , (B.1.6a)

εabcεdec = −δ a
[d δ b

e] , (B.1.6b)

εabcεdbc = −2δ a
d . (B.1.6c)

The Lorentz rotation generator is realized in the following manner

exp
[
−1

2
λabMab

]
= exp

[
−1

2
εabc λ

c 1
4
γ[aγb]

]
= exp

[
1
2
λcγc

]
. (B.1.7)
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Infinitesimally, the action of the Lorentz generator is

[ Ma , ϕ(x) ] = 0 , (B.1.8a)

[ Ma , ρα(x) ] = 1
2
(γa)α

β ρβ(x) , (B.1.8b)

[ Ma , Ab(x) ] = εbacA
c(x) . (B.1.8c)

Some useful identities

X[αβ] = −CαβX
γ
γ , (B.1.9a)

TγCβδ + TβCδγ + TδCγβ = 0 . (B.1.9b)

B.2 Derivation of Fierz Identities

Choosing the real basis

γ0 = iσ2 , γ1 = σ1 , γ2 = σ3 , (B.2.1)

we can show by explicit substitution that

(γa)αβ(γa)
γδ = −δ γ

(α δ δ
β) . (B.2.2)

Basis free, we can derive that

(γa)αβ(γa)
γδ = (γa) ε

α (γa)
δ

η CεβC
γη = (γa) ε

α (γa)
δ

η δ
γ

[ε δ
η

β]

= (γa) γ
α (γa)

δ
β − δ γ

β (γaγa)
δ

α = 1
2
(γa) γ

(α (γa)
δ

β) − 3
2
δ γ
(α δ δ

β) . (B.2.3)

Using this last result and (B.2.2) we also have

(γa)αβ(γa)
γδ = −(γa) γ

(α (γa)
δ

β) . (B.2.4)
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The second Fierz identity can be derived directly from the defining relation (B.1.4)

{
(γa) σ

γ (γb) δ
σ = ηabδ δ

γ + εabc(γc)
δ

γ

}
(γb)αβ . (B.2.5)

Using (B.2.2) we can simplify this relation

εabc(γb)αβ(γc)
δ

γ = (γa)γσδ
σ

(α δ δ
β) − (γa)αβδ

γ
γ

= (γa)αγδ
δ

β + (γa)β[γδ
δ

α] = (γa)αγδ
δ

β + Cαγ(γ
a) δ

β . (B.2.6)

A consequence of this identity is the following relation

(γ[c)
δ

(α (γd])
σ

β) = −2 εacdC
δσ (γa)αβ . (B.2.7)

B.3 Supergravity Covariant Derivative Algebra

The algebra of supergravity covariant derivatives given in the literature is not written

in our conventions, and does not contain the gauge fields. To get the correct algebra

we take the form given in the literature with arbitrary coefficients and add the

superfield strengths Fαb and F cI associated with the U(1) gauge theory

[∇α, ∇β} = (γc)αβ ∇c − (γc)αβRMc , (B.3.1a)

[∇α, ∇b} = −a (γb)α
δR∇δ + c (∇αR)Mb + F I

αb tI

+
[
− 2(γb)α

δΣδ
d + b 4

3
(γbγ

d)α
ε(∇εR)

]
Md , (B.3.1b)

[∇a, ∇b} = 2 εabc [ dΣαc + e 2
3
(γc)αβ(∇βR) ]∇α + εabcF cI tI

+ εabc [ R̂cd + 2
3
ηcd(f∇2R + g 3

2
R2) ]Md , (B.3.1c)

where

R̂ab − R̂ba = ηabR̂ab = (γd)
αβΣβ

d = 0 , (B.3.2)
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and

∇αΣ f
β = −1

4
(γe)αβR̂ f

e + 1
6
[Cαβη

fd + 1
2
εfde(γe)αβ]∇dR . (B.3.3)

By checking the Bianchi identities,we will set the coefficients and derive constraints

on the new superfield strengths as in (B.3.3). The Bianchi identity

[[∇(α,∇β},∇γ)} = 0 , (B.3.4)

looks like

[[∇(α,∇β},∇γ)} = −(γc)αβ

{(
1
2
− a

)
(γc)

δ
γ R∇δ + F I

γc tI

+ (γc)
δ

γ

[
− 2Σd

δ + 4
3
b(γd) ε

δ (∇εR)
]
Md

}
+ (c− 1)(∇γR)Mc + [βγα] + [γαβ] . (B.3.5)

This equation is satisfied if c = 1 and

(γc)(αβF I
γ)c = 0 ⇒ F I

γc = 1
3
(γc)

α
γ W

I
α . (B.3.6)

The identity

[{∇α,∇β},∇c ] + {[∇c,∇(α],∇β)} = 0 , (B.3.7)

is quite complicated, so we restrict our attention to one algebra element at a time.

The terms proportional to tI are

(γd)αβεdceF eI − 1
3
(γc)

δ
(α ∇β)W

I
δ = 0 . (B.3.8)

Multiplying by (γc)αβ implies ∇δW I
δ = 0. Multiplying by (γa)

αβ and antisymmetriz-

ing over a and c leads to

F eI = 1
3
(γe) δ

β ∇βW I
δ . (B.3.9)
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Terms proportional to ∇a are

−(γd)αβεcdeR∇e + a(γc)
δ

(α (γd)β)δR∇d = 0 , (B.3.10)

which means a = −1
2
. Continuing to the terms proportional to Σβc∇α

2dεdce(γ
d)αβΣδe∇δ + (γc)

δ
(α (γd)

σ
β) Σd

δ∇σ = 0 . (B.3.11)

Using (B.2.7) and the fact that Σαc is gamma traceless, we see that d = −1. The

terms proportional to R∇α are

Jαβγ∇γ =
{

4
3
e Cαγ(γc)

ρ
b (∇ρR) + 4

3
e(γc)γα(∇βR) + (γc)γ(α(∇β)R)

+ 4
3
b (γc)αβ(∇γR) + 2

3
b (γc)γ(α(∇β)R)

}
∇γ . (B.3.12)

Hence Jαβγ = 0. Jαβγ is symmetric on αβ and therefore it is the sum of two

independent irreducible spin tensors corresponding to the completely symmetric

and corner Young tableaux. Both of these should vanish separately.

Taking J(αβγ) = 0 we see that

4e+ 8b+ 6 = 0 . (B.3.13)

Then setting J γ
βγ = 0 we have

−8e+ 2b− 3 = 0 . (B.3.14)

Thus,

e = b = −1
2
. (B.3.15)

We now turn to the last terms, they are proportional to the Lorentz generator.

Looking at non-linear terms involving R we have

[g − 2a] ε fd
c (γd)αβR

2Mf = 0 , (B.3.16a)

[f − 4b] 2
3
(γd)αβ ε

f
dc ∇

2RMf = 0 , (B.3.16b)
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which implies that

g = 2a = −1 , (B.3.17a)

f = 4b = −2 . (B.3.17b)

We have used the following fact to extract these contributions

∇α∇βR = 1
2
(γd)αβ(∇dR)− Cαβ∇2R . (B.3.18)

The remaining terms in this Bianchi identity are{
(γd)αβ εdceR̂ef + (γf )αβ(∇cR) + 2(γc)

δ
(α ∇β)Σ

f
δ

− 2
3
b(γcγ

fγd)(αβ)(∇dR)− (γd)αβ(∇dR)δ f
c

}
Mf = 0 . (B.3.19)

After converting the free vector index into two symmetric spinor indices by contract-

ing with (γc)γδ we have an expression of the form J f
αβγδMf = 0. This tensor is the

product of two rank two symmetric spin tensors and has the following decomposi-

tion in terms of Young tableaux: ⊗ = ⊕ ⊕ . The completely

symmetric term vanishes identically. The box diagram ∼ CγαCδβJ f
αβγδMf takes

the form

0 = {−2∇cR− 12∇δΣ c
δ + 8 b ∇cR + 2∇cR}Mc , (B.3.20)

which implies that

∇σΣ f
σ = −1

3
∇fR . (B.3.21)

The gun diagram ∼ CγαJ f
α(βδ)γMf takes the form

0 = {−4(γe)βδR̂ f
e − 8∇(βΣ f

δ) + (2 + 2− 8
3
) εcde (γe)βδ∇dR}Mf , (B.3.22)

which implies that

∇(βΣ f
δ) = 1

6
εfde (γe)δβ∇dR− 1

2
(γe)βδ R̂ f

e . (B.3.23)
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Thus, the spinorial derivative of Σ f
α takes the form

∇αΣ f
β = −1

4
(γe)αβR̂ f

e + 1
6

[
Cαβη

fd + 1
2
εfde (γe)αβ

]
∇dR . (B.3.24)

This completes the analysis of the spin-spin-vector Bianchi identity. We now move

on to the spin-vector-vector Bianchi identity

[[∇α,∇b},∇c}+ [[∇b,∇c},∇α}+ [[∇c,∇α},∇b} = 0 . (B.3.25)

This identity is satisfied identically, yielding no further constraints. The final iden-

tity is all vector derivatives: [[∇[a,∇b},∇c]} = 0. This identity yields some more

differential constraints which are of no consequence to the derivations.
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C. REVIEW OF SPIN(7) HOLONOMY MANIFOLDS

This appendix contains a brief review of some of the relevant aspects of Spin(7)

holonomy manifolds. An elegant discussion can be found in the book written by

Joyce [1]. On an Riemannian manifold X of dimension n, the spin connection ω is,

in general, an SO(n) gauge field. If we parallel transport a spinor ψ around a closed

path γ, the spinor comes back as Uψ, where U = Pexp
∫

γ
ω dx is the path ordered

exponential of ω around the curve γ. The set of U transformations form a subgroup

of SO(n) called the holonomy group of the manifold X.

A compactification of M-theory (or string theory) on some internal manifold

X preserves some amount of supersymmetry if X admits one (or more) covariantly

constant spinors. Such spinors return upon parallel transport to their original values,

i.e. they satisfy Uψ = ψ. The holonomy of the manifold is then a (proper) subgroup

of SO(n). A Spin(7) holonomy manifold is an eight-dimensional manifold, for which

one such spinor exists. Therefore, if we compactify M-theory on these manifolds we

obtain an N = 1 theory in three dimensions. Spin(7) is a subgroup of GL(8, IR)

defined as follows. Introduce on IR8 the coordinates (x1, . . . , x8) and the four-form
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dxijkl = dxi ∧ dxj ∧ dxk ∧ dxl. Define a self-dual four-form Ω on IR8 by

Ω = dx1234 + dx1256 + dx1278 + dx1357 − dx1368

− dx1458 − dx1467 − dx2358 − dx2367 − dx2457

+ dx2468 + dx3456 + dx3478 + dx5678 . (C.1)

The subgroup of GL(8, IR) preserving Ω is the holonomy group Spin(7). It is a com-

pact, connected, simply connected, semisimple, twenty-one-dimensional Lie group,

which is isomorphic to the double cover of SO(7). Many of the mathematical prop-

erties of Spin(7) holonomy manifolds are discussed in detail in [1]. Let us here only

mention that these manifolds are Ricci flat but are, in general, not Kähler.

The cohomology of a compact Spin(7) holonomy manifold can be decomposed

into the following representations of Spin(7)

H0(X, IR) = IR , (C.2a)

H1(X, IR) = 0 , (C.2b)

H2(X, IR) = H2
21(X, IR) , (C.2c)

H3(X, IR) = H3
48(X, IR) , (C.2d)

H4(X, IR) = H4
1+(X, IR)⊕H4

27+(X, IR)⊕H4
35−(X, IR) , (C.2e)

H5(X, IR) = H5
48(X, IR) , (C.2f)

H6(X, IR) = H6
21(X, IR) , (C.2g)

H7(X, IR) = 0 , (C.2h)

H8(X, IR) = IR , (C.2i)

where the label “± ” indicates self-dual and anti-self-dual four-forms, respectively,
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and the subindex indicates the representation. The Cayley calibration Ω belongs to

the cohomology H4
1+(X, IR).

Next we will briefly discuss deformations of the Cayley calibration. More

details can be found in [1] and [84]. The tangent space to the family of torsion-free

Spin(7) structures, up to diffeomorphism is naturally isomorphic to the direct sum

H4
1+(X, IR) ⊕ H4

35−(X, IR) if X is compact and the holonomy is Spin(7) and not

some proper subgroup. Thus, if the holonomy is Spin(7) the family has dimension

1 + b−4 , and the infinitesimal variations in Ω are of the form cΩ + ξ, where ξ is a

harmonic anti-self-dual four-form and c is a number.

When we are moving in moduli space along the “radial direction” φ, the Cayley

calibration deformation is

δΩ = KδφΩ , (C.3)

or in other words

∂Ω

∂φ
= KΩ . (C.4)

If we consider infinitesimal displacements in moduli space along the other b−4 direc-

tions, then the Cayley calibration deformation is

δΩ = δφA(ξA −KAΩ) , (C.5)

or in other words

∂Ω

∂φA
= ξA −KAΩ , (C.6)

where ξA are the anti-self-dual harmonic four-forms. If the movement in the moduli

space is not along some particular direction then

δΩ = δφA ξA + (δφK − δφAKA)Ω . (C.7)
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We note that the potential

P =
1

2
ln

( ∫
M8

Ω ∧ ?Ω
)
, (C.8)

generates K = ∂P and KA = −∂AP . The fact that

∫
M8

Ω ∧ ?Ω = 14VM8 = e2P , (C.9)

fixes K = 2, where VM8 is the volume of the internal manifold.
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