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tReal-time appli
ations are be
oming in
reasingly popular in distributed environments. These real-time appli
ations range from hard real-time appli
ations with periodi
 or aperiodi
 tasks and intertaskrelative timing 
onstraints to soft real-time appli
ations with best e�ort timing requirements. This paperintrodu
es a 
omplete system model for s
heduling and dispat
hing hard as well as soft real-time taskswith intertask temporal dependen
ies in distributed environments. The model uses a dynami
 time basedo�-line s
heduler to verify the feasibility of a distributed hard real-time task set, and a parametri
 run-time kernel that guarantees the temporally determinate dispat
hing of hard real-time task instan
es andbest e�ort performan
e for soft real-time task instan
es. The use of the dynami
 time based s
heduling,provides o�-line guarantees for all the timing requirements of the hard real-time tasks while the parametri
dispat
hing me
hanism maintains a 
exible run-time environment that makes use of the sla
k time with alimited overhead.1 Introdu
tionA distributed system is 
olle
tion of inter-
onne
ted pro
essors that does not share memory or 
lo
k . Thesystem provides users with a

ess to various resour
es maintained by the system [1℄. Distributed 
omputingenvironments have be
ome the dominant operation environment in edu
ational as well as industry sites. Thisin
reasing popularity is due to what this environment o�ers in the sense of improved performan
e throughmulti-pro
essing, 
onne
tivity through geographi
al lo
ation distribution, s
alability and portability throughmodularity, availability and reliability through resour
e repli
ation, and 
ost e�e
tiveness [2℄. Distributedappli
ations running on these environments require a wide range of Quality of Servi
e (QoS) guarantees fromthe underlying system. QoS guarantees range from best e�ort performan
e required by non-real-time andsoft real-time appli
ations to the prior guarantee to meet all timing requirements and deadlines requested byhard real-time appli
ations. Among the 
ommon real-time distributed appli
ations are tele
ommuni
ationssystems, 
ommand and 
ontrol, multimedia systems and distributed simulations (�gure 1).To provide timing guarantees for real-time distributed appli
ations, both individual nodes operating sys-tems and the network management system must 
ollaborate to provide an end-to-end QoS enfor
ement ofglobal system timing feasibility. Therefore, a 
omplete system design model needs to be developed that takesinto 
onsideration resour
e s
heduling on 
omputation nodes and 
ommuni
ation resour
es management inthe underlying network 
onne
ting them.
1
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Figure 1: Distributed Command and Control1.1 MotivationThis paper addresses the problem of distributed real-time s
heduling with various types of QoS requirementsand ar
hite
tural models.Many real-life distributed appli
ations have stri
t timing requirements and require timely intera
tion amongthe various tasks in the appli
ation. The existing solutions for su
h hard real-time appli
ations use stati
 (o�line), dynami
 (on line) or hybrid s
heduling method to allo
ate resour
es to the di�erent tasks in the system.Stati
 s
heduling algorithms provide time predi
tability at the expense of 
exibility and performan
e at runtime. Dynami
 algorithms, on the other hand, provide a more 
exible and time eÆ
ient solution but do notprovide a

eptable timing guarantees to many hard-real time appli
ations. The use of the dynami
 time-based parametri
 s
heduling method provides o�-line timing guarantees for hard real-time tasks and 
exibleparametri
 dispat
hing me
hanism at run-time that makes use of the sla
k time with a limited overhead. Someof the 
urrently existing appli
ations that 
losely mat
h the system environment under 
onsideration are:1. Distributed intera
tive simulations (DIS): Intera
tive simulations are used to dupli
ate the experien
e ofsituations that are too expensive, dangerous, or impra
ti
al to fa
ilitate in the real world. For example,in the 
ase of Syntheti
 theater of war training (STOW) problem, military units around the globe
an parti
ipate a joint exer
ise that involve a simulation of real global 
ombat situations [3℄. STOWappli
ations usually involve the timely initiation of several distributed events and rea
tions that requirea stri
t timing and QoS guarantees from the underlying system.2. Mission-
riti
al real-time distributed systems: These systems in
lude avioni
s mission 
omputing sys-tems, ta
ti
al 
ommand and 
ontrol systems, and manufa
turing pro
ess 
ontrol systems. This typeof real-time appli
ations require the support for various types of QoS aspe
ts su
h as bandwidth, la-ten
y, jitter, and time-dependability [4℄. Re
ent large-s
ale mission-
riti
al appli
ations require theintera
tion among large numbers of distributed tasks that are running on several distributed 
omputingnodes. For instan
e, in avioni
s mission 
omputing systems, the air
raft 
ontroller must 
ollaborate withremote 
ommand and 
ontrol systems, provide on-demand browsing 
apabilities for human operators,intera
t with satellite systems to 
al
ulate geographi
al position, and respond, in a timely manner, to2



unanti
ipated fa
tors that might arise in the run-time environment [4℄.3. Distributed ele
troni
 medi
al imaging systems (EMIS): Advan
es in the areas of high-speed networkingand hierar
hi
al storage management fa
ilitate the building of large-s
ale, distributed, performan
e-sensitive EMISs. Distributed EMISs require a great deal of 
exibility, performan
e and QoS from theunderlying 
ommuni
ation infrastru
ture in order to be able to provide message-oriented and stream-oriented media on-demand to any of the distributed diagnosti
 stations a
ross lo
al and wide areanetworks [5℄.1.2 Approa
hThe main problem addressed in this paper is that of s
heduling and dispat
hing real-time tasks running ona network of distributed 
omputing nodes. The major s
heduling methodology used is the Dynami
 time-based parametri
 s
heduling method initially introdu
ed by M. Saksena et al [6℄ and further extended toin
lude periodi
 tasks by S. Choi [7℄. This method uses Fourier-Motzkin variable elimination te
hnique [8℄in the o�-line phase to verify the s
hedulability of the real-time task set and 
al
ulate a dynami
 
alendar fordispat
hing jobs at runtime. The dynami
 
alendar represents the start time of ea
h job �i with two parametri
fun
tions (Fminsi ;Fmaxsi ) whose evaluation generate the minimum and maximum feasible starting times of the
orresponding job. The parameters to these fun
tions 
onsist of time event variables, like jobs' start and �nishtimes, whose values are generated at runtime by previously exe
uted jobs. The parametri
 s
heduling methodwas 
hosen be
ause it provides hard real-time s
hedulability guarantees, as well as, 
exibility to manage sla
ktimes without a�e
ting the task set s
hedulability [7℄.1.3 OutlineThe rest of this paper is organized as follows. Se
tion 2, summarizes prior work in the areas of hard anddistributed real-time s
heduling. The problem of Distributed Hard Real-Time S
heduling is presented in theremainder of the paper's se
tions. We start by des
ribing the problem de�nition and the system model forthis problem in se
tion 3. Next, we de�ne the parametri
 s
hedulability 
ondition of the global system as wellas ea
h of the distributed nodes in se
tion 4. Then we introdu
e the solution algorithms for verifying globalsystem s
hedulability, 
al
ulating dispat
hing 
alendars for distributed nodes, and timely dispat
hing taskinstan
es in 
onforman
e with the system timing requirements in se
tion 5. Se
tion 6 provides the 
orre
tnessproof for the s
heduling algorithms. The stru
ture of the run-time dynami
 dispat
her is des
ribed in se
tion8. Finally, we des
ribe the 
omplete model implementation, pra
ti
al experiments, and results in se
tion 9.2 Related WorkThe area of real-time s
heduling has been an a
tive resear
h topi
 for a relatively long period of time dueto the wide and 
hanging demands of the real-time appli
ations. With the distributed workstations environ-ment be
oming the dominant operation environment, real-time s
heduling work in distributed environmentsis rapidly growing.In the following se
tions, we brie
y present some of the work that have been done in the 
losely relatedareas to the presented problem.
3
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 Cy
li
 S
heduling2.1 Hard Real-Time S
hedulingMany real-time s
heduling algorithms have been presented for various task models and 
hara
teristi
s. Themajor parameters a

ording to whi
h the s
heduling methods 
an be 
lassi�ed are the possibility of task pre-emption, task periodi
ity and 
riti
ality of meeting tasks timing requirements and deadline. A 
omprehensivedes
ription of the various s
heduling algorithms and their appli
able task models is presented by Giorgio C.Buttazzo in [9℄.Hard real-time tasks require all their deadlines and timing requirements to be stri
tly enfor
ed to ensure
orre
t behavior. This needs feasibility tests to be performed prior to run-time in order to guarantee all theirtiming requirements to be met. The problem of guaranteeing timing 
onstraints in hard real-time systems hasre
eived signi�
ant attention, however, few te
hniques have addressed the problem of guaranteeing inter-tasktemporal dependen
ies su
h as relative timing 
onstraints. Most real-time s
heduling te
hniques 
onsider thes
heduling of real-time tasks with ready times and deadlines [10, 11, 12, 13, 14, 15, 16, 17℄. These 
onstraintsimpose 
onstant intervals in whi
h a task must be exe
uted. In 
ontrast, in the presen
e of relative time
onstraints, the time window within whi
h a task must exe
ute may depend on the s
heduling and exe
utionparameters of the other tasks in the system. Some of the systems that 
onsider the problem of s
hedulingperiodi
 and aperiodi
 tasks with relative timing 
onstraints were introdu
ed in [18, 6, 7℄.Some of the s
heduling method that are 
losely related to the presented work are des
ribed below. Theyall involve s
heduling non-preemptive hard real-time tasks.Stati
 Cy
li
 S
heduling: Presented by S. Cheng and Asho
k Agrawala in [19℄. The algorithm studiesperiodi
 tasks with release time, deadline, and jitter 
onstraints. It 
onstru
ts a stati
 
alendar for thetasks. The 
alendar is invoked repeatedly by wrapping around again to its starting point as shown in�gure 2.Parametri
 S
heduling: Gerber et al. [20℄ presents a s
heduling s
heme for aperiodi
 tasks with relativetiming 
onstraints. The algorithm uses Fourier-Motzkin variable elimination te
hnique [8℄ to 
al
ulatea parametri
 
alendar in the o�-line s
heduler, and uses it to dispat
h the task instan
es at run-time. Inthis 
alendar, the start time of ea
h task is presented by two parametri
 bound fun
tions. A. Mok el al.4



in [18℄ presented a method that uses graph representation of tasks and their relative timing 
onstraintsto test the s
hedulability of a real-time task set.Dynami
 Cy
li
 S
heduling: Presented by S. Choi et al. in [7, 21℄. Extends the parametri
 s
hedulingalgorithm to periodi
 tasks with relative timing 
onstraints. The algorithm uses a graph to representthe tasks and their timing 
onstraints. It 
al
ulates a 
y
li
 parametri
 
alendar to be used repeatedlyto dispat
h task instan
es at run-time.2.2 Distributed Real-Time S
hedulingThe area of real-time s
heduling in distributed environment has be
ome an a
tive area of resear
h due to thein
reasing demand on distributed appli
ations with various QoS and timing requirements. Providing temporalpredi
tability a
ross a network of distributed 
omputing nodes requires the support of QoS-sensitive resour
es
heduling of the CPU time on the nodes, transfer time in the underlying network, and the network interfa
eson the host 
omputers. All s
heduling systems has to 
ollaborate to be able to provide end-to-end quality ofservi
e guarantees. Some of the major proje
ts involving real-time s
heduling in distributed environments aredes
ribed in the following subse
tions.2.2.1 HARTS and ARMADA Proje
tsThe HARTS proje
t, developed in the real-time 
omputing laboratory of University of Mi
higan, involved thedesign and implementation of a real-time multi-
omputer system. The work mainly fo
used on the hardwareand software support for time-
onstrained 
ommuni
ation in point-to-point networks. The proje
t studiesreal-time 
ommuni
ation in multi-hop point-to-point networks [22℄. It provides the design and evaluation fora QoS sensitive 
ommuni
ation subsystem ar
hite
ture that is mainly based on the use of real-time 
hannels[23℄. A real-time 
hannel is a simplex, ordered, unreliable, virtual 
onne
tion between two networked hoststhat provides deterministi
 or statisti
al bound on the end-to-end delay by analyzing the traÆ
 rates andtiming requirements on every link on the message delivery route. The network nodes are running a 
ommondistributed real-time operating system whi
h is responsible for network 
ontrol as well as maintaining a globaltime base by syn
hronizing 
lo
ks on the nodes.The ARMADA proje
t is mainly the 
ontinuation of its prede
essor proje
t (HARTS). The goal of thisresear
h proje
t is to develop and demonstrate an integrated set of te
hniques and software tools for designing,implementing, and integrating 
omputation, I/O, or 
ommuni
ation intensive embedded real-time appli
ationon a parallel or distributed environments. The main methodology to a
hieve this goal is the development ofmodular and 
omposable middleware servi
es for 
onstru
ting distributed real-time appli
ations on a standardRTOS like Ma
h-RT from the open software foundation (OSF). The ARMADA proje
t inherits the real-time 
ommuni
ation ar
hite
ture from the HARTS proje
t and also uses a fault-tolerant real-time multi
ast
ommuni
ation servi
e (RTCAST) [24℄. The RTCAST method supports bounded time message transport bysimulating a time based token-ring proto
ol on point-to-point networks. The ARMADA proje
t is 
urrentlyunder development in University of Mi
higan and Honeywell.2.2.2 EPIQ Proje
tDeveloped at University of Illinois at Urbana-Champaign, the EPIQ proje
t was designed with the meta-
omputing framework in mind. It supports end-to-end quality of servi
e 
ontrol and resour
e managementstrategies. The EPIQ proje
t adopts an open environment for real-time appli
ations, whi
h allows for theappli
ations to be developed and validated independent of ea
h other and 
on�gured dynami
ally to run on5



the same platform. This s
heduler analyzes the s
hedulability of an appli
ation based on the assumptionthat it runs alone on a pro
essor with a speed that is a fra
tion of the speed of the target pro
essor. Thekey 
omponent of the open system is the two level hierar
hi
al s
heduler, whi
h 
onsists of an OS s
hedulerresponsible for dispat
hing the pro
essor to the di�erent appli
ations and a se
ond layer of server s
hedulers,one for ea
h appli
ation, whi
h are responsible for s
heduling the di�erent tasks and threads within ea
happli
ation a

ording to its spe
i�ed s
heduling algorithm [25℄.In order to provide end-to-end QoS guarantees in a networked environment, the EPIQ proje
t extendsthe Fast Messages (FM) high performan
e network software model developed in University of Illinois tosupport predi
table performan
e in terms of deterministi
 laten
ies and guaranteed bandwidth. The FM-QoSmodel in
orporates feedba
k-based syn
hronization (FBS) of senders and self-syn
hronizing 
ommuni
ations
hedules to avoid resour
e 
on
i
ts for network links and outputs. Elimination of su
h resour
e 
on
i
ts leadsto predi
table 
ommuni
ation performan
e. FM-QoS uses a Petri net model to 
hara
terize the stru
ture ofthe self organizing s
hedules and to tolerate the 
lo
k drifts [26℄.3 Problem Des
riptionAll the existing variations of the parametri
 time-based s
heduling method are based on a single node model.They mainly fo
us on non-preemptive periodi
/aperiodi
 hard real-time tasks with inter-task relative timing
onstraints. Our basi
 obje
tive is to extend the single node parametri
 time-based s
heduling method to beused with a distributed hard real-time task set with inter-task relative timing and 
ommuni
ation 
onstraints.This distributed algorithm is then used as a basis to develop a 
omplete time-based s
heduling and dispat
hingmodel for a distributed set of hard/soft real-time tasks. In order to develop su
h model, several sub-problemshave to be addressed:� De�ning the task and network model.� De�ning s
hedulability 
onditions to a
hieve global, network, and single node lo
al s
hedulability.� Designing o�-line algorithms for verifying these s
hedulability 
onditions.� Proving the 
orre
tness of the s
hedulability 
onditions and veri�
ation algorithms.� Developing a time-based dispat
hing me
hanism to ensure the 
orre
t timely exe
ution of the real-timetasks.To better understand the distributed time-based parametri
 s
heduling problem, we present the task modelunder 
onsideration followed by the model des
ription for the network that 
onne
ts the distributed 
omputingnodes.3.1 Task ModelThe environment under 
onsideration 
onsists of a set of M 
omputer nodes fNode1; Node2; :::; NodeMg. Onea
h node, runs a group of periodi
 non-preemptive hard real time tasks. The least 
ommon multiple (LCM)of tasks periods on all the nodes is L, whi
h is also known as the s
heduling window on all nodes. In ea
hs
heduling window, there is Nm task instan
es (jobs) that run on node m, su
h that 1 <= m <= M . Thetotal number of jobs running on all nodes in one s
heduling window is N =PMm=1Nm .6



Let �jm = f� ji;m j i = 1 : : :Nmg denote the ordered set of Nm jobs to be dispat
hed sequentially in thejth s
heduling window [(j � 1)L; jL℄ on node m. Jobs are non-preemptively exe
uted in the given order forevery s
heduling 
y
le. The exe
ution order for this job set is predetermined, and enfor
ed by order timing
onstraints. The set of tasks to be dispat
hed on all nodes in the jth s
heduling window is represented by�j = f�j1 [ �j2 [ : : :�jMg.Ea
h periodi
 real-time task in the system needs to spe
ify the parameters that are 
ommon for all itsinstan
es (jobs). These parameters are:1. Task period P2. Low jitter �3. High jitter �In addition to the parameters inherited from the task, there exist a number of parameters for ea
h job � ji;mthat spe
ify its timing behavior and 
hara
teristi
s, these parameters are:1. Start time sji;m2. Exe
ution time eji;m3. Finish time f ji;m4. Minimum exe
ution time lji;m5. Maximum exe
ution time uji;m6. Release time rji;m7. Deadline dji;mThe values of some of the parameters vary a

ording to the runtime behavior of the task, su
h as start-time,exe
ution time, and �nish time. The rest of the task parameters are 
onstants for ea
h job and are determinedprior to the s
hedulability test phase.For every job, only two time event points 
an be used as time variables, the start time s and the �nish timef . Between any two time variables on the same node, there 
an be at most two relative timing 
onstraints.These 
onstraints form the lower or upper bounds on the time period between the two variables. A relativetiming 
onstraint involving only two time variables is referred to as Standard. A standard relative timing
onstraint 
an be de�ned as follows.De�nition 3.1 (Standard Constraints) A standard 
onstraint involves the variables of at most two jobsrunning on the same node, � ja;m and � lb;m(1 � a � b � Nm, j j � l j� 1), where sja;m(or sja;m + eja;m) appearson one side of \�", and slb;m(or slb;m + elb;m) appears on the other side of the \�". For the two jobs, � ja;m,� lb;m, the following 
onstraints are permitted(where 
i is an arbitrary 
onstant) and 
alled relative standard
onstraints (the node number m is eliminated in this example for 
larity purposes):
7



sja � slb � 
1sja � (slb + elb) � 
2sja + eja � slb � 
3sja + eja � (slb + elb) � 
4 slb � sja � 
5slb � (sja + eja) � 
6slb + elb � sja � 
7slb + elb � (sja + eja) � 
8 (1)In addition, release time and deadline 
onstraints for ea
h job are 
alled Absolute standard 
onstraints. Ajob � ja;m has the following absolute 
onstraints:
9 � sja;m sja;m + eja;m � 
10 (2)Any 
onstraint that 
an be rewritten in one of the above forms is also 
onsidered a standard 
onstraint;e.g., sja;m � slb;m + elb;m � eja; + 
 falls into this 
ategory [7℄.The set of all relative timing 
onstraints among jobs running on physi
al node m is represented by Cm.The system timing 
onstraints set 
onsists of the union of all lo
al timing 
onstraint sets on all the separatenodes Cm; 1 � m �M plus the 
ommuni
ation 
onstraints C
 (De�nition 3.3).C = C1 [ C2 : : : [ CM [ C
 (3)3.2 Network ModelThe network model 
onsidered in this problem 
onsists of M pro
essor nodes 
onne
ted by point-to-pointdual simplex links. A link 
onne
ting Nodei to Nodej is referred to as Linki;j . A node in the system 
anhave several in
oming and outgoing links atta
hed to it, ea
h of whi
h 
an operate in parallel with the others.Ea
h link end is 
onne
ted to a front end pro
essor that performs all the data transfer fun
tionality. Figure 3shows the point-to-point network model under 
onsideration. The nodes are assumed to maintain syn
hronized
lo
ks a

ording to a global time-base for the system. The maximum skew between 
lo
ks on di�erent nodes isassumed to be very small 
ompared to message transfer delays. An algorithm for syn
hronizing the distributednodes' 
alendars is presented as part of the run-time dispat
her in se
tion 8.2. There exist di�erent s
hemesfor a
hieving distributed 
lo
ks syn
hronization su
h as the method presented in [27℄.3.2.1 Communi
ation ChannelsBetween two tasks running on two di�erent nodes, a periodi
 
ommuni
ation 
hannel 
an be established whi
h
an transfer periodi
 messages from one task to another. Communi
ation 
hannels 
an span multiple networkpoint-to-point links. The links that a 
hannel goes through are determined using a stati
 routing algorithmto ensure transfer time predi
tability. Communi
ation 
hannels 
an only be established from a sour
e taskinstan
e in one s
heduling window and a destination instan
e in the same or next s
heduling window, thatexe
utes on a di�erent physi
al node. A 
ommuni
ation 
hannel is spe
i�ed by the following parameters:� Sour
e task instan
e.� Destination task instan
e. 8
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Figure 3: Network Model� Message generation s
heme{ Maximum message size (S).{ Maximum message Rate (R).{ Burst size (B).� Desired end-to-end maximum message delay (q).The 
ommuni
ation 
hannel imposes an upper bound on the message delivery time (De�nition 3.2) ex-perien
ed by ea
h message transferred on this 
hannel. The delay limitations imposed by 
ommuni
ation
hannels on transferred messages is referred to as Communi
ation 
onstraints (De�nition 3.3). The set of all
ommuni
ation 
onstraints among the M nodes is represented by C
.De�nition 3.2 (Message Delivery Time (MDT)) The Message Delivery Time MDT for a 
ommuni
a-tion 
hannel is de�ned to be the total time elapsed from the time the sour
e job starts sending out the messagetill the message is 
ompletely re
eived by the target job. This is equal to the sum of the following 
omponents[28℄:1. Communi
ation pro
essing time tC: Whi
h is the time required for preparing the information for trans-mission. For example, the time taken to organize data into pa
kets.2. Queuing time tQ: This is the time spent by the pa
kets waiting in queues for di�erent resour
es.3. Transmission time tT : This is the time it takes for the 
omplete information to be transmitted from thesour
e.4. Propagation time tP : Whi
h is time taken by a single bit in the pa
ket to travel from the 
ommuni
ation
hannel sour
e to the destination.Therefore, The overallMDT 
an be represented as the sum of all these 
omponents. The worst 
ase messagedelivery timeMDTw
 has to be less than or equal to the maximum delay required for the 
ommuni
ation 
hannelq. 9
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Figure 4: Communi
ation 
onstraintsMDT = tC + tQ + tT + tP �MDTw
 � qDe�nition 3.3 (Communi
ation Constraints) A 
ommuni
ation 
onstraint is the upper limit qk;l;ni;j;m im-posed on the delivery time of a message sent over a 
ommuni
ation 
hannel established from one job � ji;m toanother job � lk;n on two di�erent nodes m;n. Therefore, a lower limit is imposed on the time distan
e betweenthe �nish-time of the sour
e job f ji;m and the start-time of the target job slk;n to a

ommodate the worst 
asedelivery time. Communi
ation messages are assumed to be periodi
. Ea
h message is assumed to be sent at theend of the sour
e job exe
ution, and 
ompletely re
eived by the destination node before beginning the exe
utionof the target job. Figure 4 shows a 
ommuni
ation 
onstraint on the time-line 
orresponding to 
onstraintequation 4. slk;n � f ji;m � qk;l;ni;j;m (4)If a worst 
ase message delivery time MDTw
 
an be obtained, it 
an be used as an upper limit for the
ommuni
ation 
onstraint if it is less than or equal to the original 
onstraint upper limit q as shown in equation5. slk;n � f ji;m � (MDTw
)k;l;ni;j;m (5)4 S
hedulabilityThe Global s
hedulability of the whole task model is established if and only if we 
an �nd starting times forall jobs that will satisfy all timing 
onstraints for all possible exe
ution times. The possible exe
ution timefor ea
h task lies between the lower and upper bounds for its exe
ution [l; u℄. The system timing 
onstraints10



set 
onsists of the union of all lo
al timing 
onstraint sets on all the separate nodes Cm; 1 � m �M plus the
ommuni
ation 
onstraints C
. C = C1 [ C2 : : : [ CM [ C
 (6)The s
hedulability test predi
ates are presented in de�nitions 4.1 through 4.3. The s
hedulability of a setof N tasks holds if and only if there exist a start time assignment that preserves all required task ordering andtiming 
onstraints. Ordering information is normally given as pre
eden
e 
onstraints represented as part ofthe timing 
onstraints set C. Therefore, the ne
essary and suÆ
ient 
ondition for the task set s
hedulability(S
hed1) is de�ned in 4.1.De�nition 4.1 (Stati
 S
hedulability of � [6℄) The set of N tasks � is s
hedulable if and only if thefollowing predi
ate holds: S
hed1 � 9si :: 8ei 2 [li; ui℄ :: C : : :8i : 1 � i � N (7)where C is the set of relative timing 
onstraints de�ned on fs1; e1; : : : sN ; eNg.S
hed1 represents the stati
 s
hedulability 
ondition for a �xed set of aperiodi
 tasks. The ne
essary andsuÆ
ient s
hedulability 
ondition for a set of N tasks repeating k times is represented as S
hed2 and de�nedin 4.2.De�nition 4.2 (Stati
 S
hedulability of �1;k) The k � fold distributed set of N tasks � is s
hedulable ifand only if the following predi
ate holds:S
hed1;k2 � 9sji;m :: 8eji;m 2 [lji;m; uji;m℄ :: C1;k : : : [8i : 1 � i � N;8j : 1 � j � k;8m : 1 � m �M ℄ (8)where C1;k is the set of relative timing 
onstraints de�ned on fs11; e11; : : : skN ; ekNg.Stati
 s
hedulability o�ers simpler o�-line temporal 
orre
tness veri�
ation of the task set as well asfaster run-time dispat
hing whi
h, merely needs to do table look up to �gure out the next task instan
e to bedispat
hed and its dispat
h time. The drawba
k of the stati
 approa
h, is that it doesn't a

ount for variationsin run-time behaviour of various tasks and uses their worst 
ase exe
ution time in the 
orre
tness analysiswhi
h leads to ineÆ
ien
y in the resulting dispat
hing 
alendars. Parametri
 s
heduling introdu
ed by [6, 7℄generalizes stati
 s
heduling by deferring the a
tual start-time 
al
ulation pro
ess to the run-time dispat
her,whi
h 
an use the a
tual exe
ution times of the previous tasks in the dispat
hing pro
ess.The parametri
 s
hedulability 
ondition of a distributed set of N tasks repeating k times is represented byS
hed3 de�ned in 4.3. The steady state s
hedulability of a set of N periodi
 tasks repeating inde�nitely 
anbe established by testing S
hed1;k3 for large values of k, spe
i�
ally as k ! 1. The steady state 
orre
tnessveri�
ation predi
ate S
hed1;1 is de�ned in 4.4.De�nition 4.3 (Parametri
 S
hedulability of �1;k) The k � fold distributed set of N tasks � is s
hedu-lable with respe
t to parametri
 s
heduling if the following predi
ate holds:
11



S
hed1;k3 �9s11;1 :: 8e11;1 2 [l11;1; u11;1℄ :: 9s12;1 :: 8e12;1 2 [l12;1; u12;1℄ :: : : : :: 9skN1;1 :: 8ekN1;1 2 [lkN1;1; ukN1;1℄ :: C1;k1.̂..̂9s11;m :: 8e11;m 2 [l11;m; u11;m℄ :: : : : :: 9skNm;m :: 8ekNm;m 2 [lkNm;m; ukNm;m℄ :: C1;km.̂..̂9s11;M :: 8e11;M 2 [l11;M ; u11;M ℄ :: : : : :: 9skNM ;M :: 8ekNM ;M 2 [lkNM ;M ; ukNM ;M ℄ :: C1;kMĈ

(9)

De�nition 4.4 (Parametri
 S
hedulability of �1;1 [7℄) The periodi
 task set �1;1 is s
hedulable if andonly if S
hed1;1 = limk!1S
hed1;k3 = True (10)The terms S
hed1;1 and S
hed will be used inter
hangeably to represent the global s
hedulability of thedistributed 
onstrained task set.5 Distributed Dynami
 S
hedulingThis se
tion introdu
es the framework for establishing the global s
hedulability of the distributed task modeldes
ribed in se
tion 3.1, and 
reating a separate dynami
 parametri
 
alendar for ea
h of the distributed nodesin the distributed system that satis�es all system timing and 
ommuni
ation 
onstraints.5.1 S
hedulability Veri�
ationThe s
hedulability veri�
ation pro
ess is performed o�-line and assumes that the timing 
onstraints and 
om-muni
ation parameters of all hard real-time tasks are known prior to runtime. In 
ase the global s
hedulabilityof the system is proven, the algorithm produ
es dynami
 
alendars whi
h are then used by the on-line dy-nami
 dispat
her des
ribed in se
tion 8 to 
ontrol the dispat
hing and exe
ution of all hard real-time tasksa

ording to their spe
i�ed timing requirements. The s
hedulability veri�
ation pro
ess steps are des
ribed inthe following subse
tions.5.1.1 Communi
ation feasibilityEstablishes the feasibility of all the 
ommuni
ation 
hannels to be established between periodi
 real-time tasksresiding on di�erent nodes. This is performed by means of Real Time 
hannels [22℄, a method for establishingtime-
onstrained 
ommuni
ation in multi-hop networks.This pro
ess starts by 
al
ulating the optimum stati
 route fNodes; Node1; :::; Noden; Nodetg for ea
h oneof the 
ommuni
ation 
hannels. The messages of the 
ommuni
ation 
hannels are added to the message-table12
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Figure 5: Global task order generationof ea
h one of the point-to-point links along the 
al
ulated route fLinks;1; :::; Linkn;tg. Using the Messagegeneration s
heme [Maximum message size (S), Maximum message Rate (R), and Burst size (B)℄, the RealTime 
hannels method is used for ea
h point-to-point link to establish the feasibility of the messages passingthrough ea
h link in the 
ommuni
ation network, and 
al
ulating the worst 
ase delay ea
h message experien
esto pass through the link. By adding the message delays on all the 
ommuni
ation 
hannel route links, the end-to-end worst 
ase message delivery time (MDTw
)ts experien
ed by messages of the 
ommuni
ation 
hannelis obtained. If the 
hannel's 
al
ulated worst 
ase message delivery time is less than or equal to the messagedelivery time upper limit qts required by the 
ommuni
ation 
hannel, then this 
hannel is feasible, otherwise,it is not.Total 
ommuni
ation feasibility of the system is established if all the system 
ommuni
ation 
hannels aswell as point-to-point network links are feasible.The detailed steps for the 
ommuni
ation feasibility veri�
ation pro
ess are shown in step (1) of theDynami
 O�-Line S
heduler algorithm 5.3.5.1.2 Global task orderThe Global task order is a single ordered list 
ontaining all the distributed task instan
es (jobs) in the system.Jobs in this list are ordered in the reverse order in whi
h they will be eliminated using the variable eliminationalgorithm used to verify the global system feasibility.The Global task order maintains all job orders spe
i�ed by system pre
eden
e 
onstraints, relative timing
onstraints, jitter 
onstraints, as well as all 
ommuni
ation 
onstraints. A heuristi
 is used to insert jobs inthe Global order list when system timing requirements does not uniquely identify a spe
i�
 order. Some ofthe heuristi
s used are Earliest Deadline First (EDF ), Earliest Ready-time First (ERF ), Least Laxity First(LLF ), or Rate Monotoni
 (RM). 13



In order to be able to apply the variable elimination te
hnique, jobs need to be ordered su
h that thestart time of ea
h job depends only on the pre
eding jobs in the global order. In the same time, we need tomaintain ea
h node's lo
al jobs order. To a
hieve the required global order, we 
onstru
t a Topologi
al graphwhi
h 
onsists of 2N nodes representing all jobs in two 
onse
utive s
heduling windows and Pre
eden
e linkswhi
h spe
ify that the job represented by the sour
e node of the link must pre
ede the job represented by thetarget node of the same link.To generate the Global task order, the in-degree (number of links entering a graph node) of ea
h job nodeis 
al
ulated. The jobs with in-degree equal to 0 are inserted into a priority queue ordered a

ording to theheuristi
 to be used (Heuristi
 Priority Queue HPQ). We repeatedly extra
t the job at the head of the HPQ,add it to the Global Order List (GOL), de
rement the in-degree of all the target nodes of pre
eden
e linksoriginating from the extra
ted job, and insert the nodes with in-degree equal to 0 into the HPQ. The pro
essis stopped on
e there is no more jobs in the HPQ. The global task order generation pro
ess is illustrated in�gure 5.If the GOL does not 
ontain all the system jobs, then the Global task order 
annot be 
onstru
ted due to
ir
ular dependen
ies in the system timing requirements, and therefore, the system is infeasible.The detailed steps for 
onstru
ting the Global task order are presented in algorithm 5.1.Algorithm 5.1 (Global Task Order) The algorithm for �nding the Global Jobs Order is as follows:1. Create a node in the Topologi
al graph for ea
h job in two 
onse
utive s
heduling windows of the taskset.2. Create a Pre
eden
e link from ea
h node to the node dire
tly after it in its lo
al node job order.3. For (ea
h 
ommuni
ation 
hannel) f(3.1) Create a Pre
eden
e link from the node representing the sour
e job of the 
ommuni
ation 
hannelto the 
hannel's target job.g4. Cal
ulate the in-degree for ea
h job node in the Topologi
al graph.5. Insert jobs with in-degree=0 into the Heuristi
 Priority Queue (HPQ).6. While (HPQ is not empty) do f(6.1) Extra
t �rst job in the HPQ.(6.2) Insert job into the Global Order List (GOL).(6.3) For (ea
h pre
eden
e link originating at the extra
ted job) f6.3.1. De
rement the in-degree of the target job of the Pre
eden
e link by 1.6.3.2. If job's in-degree is equal to 0, insert job into the HPQ.gg7. If an order 
ontaining all the system jobs is found, it is used as the Global order for the variable elimi-nation pro
ess.8. Else, Task set timing 
onstraints 
ontain 
ir
ular dependen
ies and the system is not feasible.14
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Figure 6: Distributed timing 
onstraints5.1.3 Global 
onstraint graph GgThe next step in the s
hedulability veri�
ation pro
ess is to 
onstru
t the Global Constraint Graph, whi
hrepresents all the system task instan
es, absolute and relative timing requirements, as well as 
ommuni
ation
onstraints of the system in two 
onse
utive s
heduling windows. An example of the graph representation ofthe system model is shown in �gure 6.The global 
onstraint graph Gg 
onsists of 4N+1 time event nodes representing the task model jobs. Ea
hjob is represented by four time event nodes in the graph [sji;m; f ji;m; sj+1i;m ; f j+1i;m ℄ whi
h represent the start and�nish times for that job in two 
onse
utive s
heduling windows. A v0 node is added to the graph to representthe referen
e time t0 starting from whi
h all time values are measured.The graph weighted links represent the lo
al relative timing 
onstraints among the jobs if they link twotime events that belong to jobs on the same system node, and they represent 
ommuni
ation 
onstraints ifthey link time events belonging to two jobs on separate system nodes. Links to or from the v0 node representabsolute timing 
onstraints su
h as the ready-time or deadline of a spe
i�
 task instan
e. Timing 
onstraintsbetween jobs within one s
heduling window are repeated in the two represented s
heduling windows. Timing
onstraints between jobs in di�erent s
heduling windows is represented on
e between the �rst and se
onds
heduling windows. The di�erent types of timing 
onstraints are represented in the graph as shown in �gure7 a

ording to the following rules:� Minimum/Maximum exe
ution times are represented by two mutually ex
lusive links between thestart time and �nish time events of the same job. The minimum exe
ution time is represented by a linkfrom the job's start time node s to the job's �nish time node with a weight l. The maximum exe
utiontime is represented by a link in the reverse dire
tion with a weight �u.� Relative timing 
onstraints are represented in the graph by a single link for ea
h 
onstraint. A
onstraint v2 � v1 � w is represented by a link from event node v1 to event node v2 with a weight w.� Ready-times and deadlines are absolute timing 
onstraints and are therefore represented by linksto/from the time referen
e node v0. The ready time r is represented by a link from the job's start time15
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Figure 7: Graphi
al representation of timing 
onstraintsnode s to the v0 node with a weight �r, and the deadline is represented by a link from the v0 node tothe �nish time node f of the same job with a weight d.� Communi
ation 
onstraints are represented by a link from the target job's start time node st to thetarget job's �nish time node fs. The link weight is the negative value of the worst 
ase message delayrequired by the 
ommuni
ation 
onstraint �q.A detailed des
ription of the rules to 
onstru
t a graph representation of hard real-time tasks with inter-tasktiming 
onstraints is presented in details in [7℄.5.1.4 Global system feasibilityAfter 
onstru
ting the Global 
onstraint graph, it is used in this step by the Cy
li
 Variable EliminationMethod [7℄ to verify the global feasibility of the timing requirements of all the system tasks.The Method repeatedly eliminates the time event nodes in the se
ond s
heduling window of the 
onstraintgraph. The elimination pro
ess usually results in 
hanges in the timing 
onstraints of the �rst graph s
hedulingwindow. These updates are 
opied to the se
ond s
heduling window, after it has been re-
onstru
ted, and theelimination pro
ess of the se
ond s
heduling window nodes is repeated.If an infeasibility 
ondition is dete
ted after the elimination of any time event node, the pro
ess is stopped,and the system is de
lared infeasible. The infeasibility 
ondition arises when a negative weight 
y
le isgenerated after the elimination of a time event node.The system is s
hedulable if the elimination pro
ess rea
hes a steady state in whi
h no updates areintrodu
ed to the graph after eliminating all the se
ond s
heduling window time event nodes. If the maximumnumber of iterations is rea
hed before the Cy
li
 Variable Elimination pro
ess iterations rea
h a steady state,it is 
on
luded that the system task set with the given timing 
onstraints are not s
hedulable. The maximumnumber of iterations is n2 � n + 2, where n is the number of jobs in the �rst s
heduling window that havetiming 
onstraints with jobs in the se
ond s
heduling window.The detailed steps for the Distributed Cy
li
 Variable Elimination Method are des
ribed in algorithm 5.2.16



Algorithm 5.2 (Cy
li
 Variable Elimination te
hnique)1. Initialize Global 
onstraint graph Gg.2. Let iteration = 0.3. Let n = number of jobs in the �rst s
heduling window that have timing 
onstraints with jobs in the se
onds
heduling window.4. While (iteration < n2 � n+ 2) do f(4.1) For (j = 2N to 1) do f4.1.1. Eliminate graph event node j from se
ond s
heduling window.4.1.2. If (resulting graph 
ontains a negative weight 
y
le) f� Task set is not feasible� Exitgg(4.2) If (New updates were generated in the graph's �rst s
heduling window as a result of the eliminationpro
ess) f4.2.1. Re
onstru
t graph se
ond s
heduling window.4.2.2. Add elimination graph updates to the se
ond s
heduling window.4.2.3. iteration = iteration+ 1g(4.3) Else f4.3.1. Task set is feasible4.3.2. Exitgg5. Task set is not feasible6. Exit5.2 Lo
al node 
alendarsIn the distributed environment under 
onsideration, ea
h node has to operate independently and intera
t withthe tasks running on other nodes only through the 
ommuni
ation 
hannels spe
i�ed. Therefore, we 
al
ulatea separate 
y
li
 dynami
 
alendar for ea
h one of the distributed nodes. Ea
h of the lo
al node 
alendars musthave all the information required to dispat
h the lo
al real-time jobs a

ording to their timing 
onstraints,and in the same time, adhere to the global system feasibility and 
ommuni
ation timing 
onstraints.To 
onstru
t lo
al node 
alendars, a separate lo
al 
onstraint graph is built for ea
h one of the nodes usingonly its lo
al jobs and lo
al timing 
onstraints as des
ribed in se
tion 5.1.3. By applying the Cy
li
 VariableElimination Method on the lo
al 
onstraint graph, the lo
al parametri
 
alendar for the node is generated. Thenode 
alendar 
onsists of two parametri
 fun
tions for ea
h one of the jobs, minimum start time Fmin() andmaximum start time Fmax(). The 
ommuni
ation timing 
onstraints are then appended to the generated lo
aldynami
 
alendars by adding the arrival time of the 
ommuni
ation messages as parameters to the minimum17



start time fun
tions of jobs that are targets of 
ommuni
ation 
hannels. The resulting parametri
 
alendar isthen used by the dynami
 dispat
her to start the exe
ution of hard real-time jobs a

ording to their timing
onstraints as des
ribed in se
tion 8.Algorithm 5.3 (Dynami
 O�-Line S
heduler) The O�-line s
heduling and 
alendar 
al
ulation is per-formed by the following algorithm:1. Communi
ation feasibility:(1.1) For (every 
ommuni
ation 
hannel) f1.1.1. Cal
ulate the optimum rout1.1.2. Add the 
ommuni
ation 
hannel messages to the message tables of all the links on 
hannel routg(1.2) For (Every network link) f1.2.1. Che
k the feasibility of this link using the real-time 
hannel method1.2.2. If (any link is not feasible) f1.2.2.1. Re
ord infeasible link1.2.2.2. Real-time 
ommuni
ation is not feasible1.2.2.3. Exitg1.2.3. Else f1.2.3.1. Cal
ulate the worst 
ase delay that ea
h message experien
e passing through this linkgg(1.3) For (Every 
ommuni
ation 
hannel) f1.3.1. Cal
ulate the end-to-end worst 
ase message delivery time (MDTw
)ts1.3.2. If ((MDTw
)ts � qts) f1.3.2.1. Re
ord infeasible 
ommuni
ation 
hannel1.3.2.2. Real-time 
ommuni
ation is not feasible1.3.2.3. Exitgg(1.4) System Real-time 
ommuni
ation is feasible2. Global 
onstraint graph (Gg):(2.1) Create a referen
e node v0 representing the global time t0 = 0(2.2) For (All sour
e/target nodes of Real-time 
hannels) f2.2.1. Let the global node v0 represent the node's referen
e time2.2.2. For (ea
h job) f2.2.2.1. Add four time event nodes to the 
onstraint graph� Start time in �rst s
heduling window� Finish time in �rst s
heduling window� Start time in Se
ond s
heduling window� Finish time in Se
ond s
heduling window18



2.2.2.2. Add job's minimum and maximum exe
ution times 
onstraint links to the graph2.2.2.3. Add job's ready time and deadline 
onstraint links to the graphg2.2.3. Add jitter 
onstraints as links between 
onse
utive jobs of the same real-time task2.2.4. Add relative timing 
onstraints as links in the graph2.2.5. Add 
ommuni
ation 
onstraints to the graph as links from the start time of the target job to the�nish time of the sour
e job with a weight equal to the negative value of the worst 
ase messagedelivery time (�MDTw
)ts of the 
orresponding 
ommuni
ation 
hannelg3. Global system feasibility:(3.1) Use algorithm 5.1 to �nd the Global Jobs Order.(3.2) If (a global order is not found) f3.2.1. Task set is not feasible3.2.2. Exitg(3.3) Apply Cy
li
 Variable Elimination te
hnique des
ribed in algorithm 5.2 to establish the global s
hedu-lability of the system(3.4) If (System is not feasible) f3.4.1. Mark 
onstraints that lead to infeasibility3.4.2. Task set is not feasible3.4.3. Exitg(3.5) Global system is feasible4. Lo
al node 
alendars:(4.1) For (All nodes) f4.1.1. Build the lo
al 
onstraint graph for the node using only lo
al jobs and lo
al timing 
onstraints4.1.2. Apply Cy
li
 Variable Elimination te
hnique to establish the lo
al s
hedulability of the node4.1.3. If (Node is not s
hedulable) f� Mark the node as infeasible for re-evaluation and re-s
hedulingg4.1.4. Cal
ulate the minimum and maximum start-time parametri
 fun
tions for ea
h job4.1.5. For (Ea
h job that is a target of a Communi
ation 
hannel) f� Add the arrival-time of the 
ommuni
ation message as a parameter to the job's minimumstart time parametri
 fun
tiong4.1.6. Store the node's dynami
 parametri
 fun
tions into its lo
al 
alendar to be used by the run-timedispat
her.g6 Algorithm Corre
tnessTo prove the 
orre
tness of the distributed s
heduling method, we need to establish the 
orre
tness of few sub-problems whi
h 
onstitute the total 
orre
tness of the main algorithm. Ea
h of the individual sub-problemsis introdu
ed separately in one of the following sub-se
tions.19



6.1 Cy
li
 Variable Elimination and Parametri
 S
hedulingThe use of variable elimination te
hniques for non-periodi
 dynami
 parametri
 s
heduling has been introdu
edin [6℄. The extension of the parametri
 s
heduling method to in
lude periodi
 and sporadi
 tasks in a single-node environment has been presented in se
tion 5.1.4. The algorithm details as well as its proof of 
orre
tnessare des
ribed in [7℄. Therefore, we 
onsider the single-node 
y
li
 variable elimination method to be 
orre
t,and basi
ally use it as a bla
k-box.6.2 Real-time Channels Feasibility TestingReal-time 
hannels is an algorithm used to verify the timing feasibility of 
ommuni
ation messages on ea
hnetwork link and 
al
ulate the worst 
ase delivery time for ea
h message. The algorithm is des
ribed brie
yin se
tion 5.1.1. The details of the algorithm as well as the proof of 
orre
tness are des
ribed in [22℄. We also
onsider this method to be 
orre
t and use in a bla
k-box manner as well.6.3 Global S
hedulability ValidationThis sub-se
tion establishes the 
orre
tness of the global feasibility analysis step performed by the o�-lines
heduler. In order to verify the global s
hedulability 
orre
tness we need to establish few major points asdes
ribed in the sub-se
tions below.6.3.1 Representation 
ompletenessAll system 
omponents are represented in the global 
onstraint graph Gg used for s
hedulability analysis.Ea
h of the distributed jobs is represented in the global 
onstraint graph by two time event nodes (s; f),and ea
h of the timing 
onstraints is represented in the global 
onstraints graph as follows:� Ready time of a job is represented by a link from the start time event node s to the referen
e time nodev0.� Deadline is represented by link from node v0 to the �nish time event node f of the job.� Minimum exe
ution time is represented as a link from the start time event node s to the �nish timeevent node f of the job.� Maximum exe
ution time is represented as a link from the �nish time event node f of the job to thestart time event node s.� Low jitter 
onstraint is represented as a link from the �nish time of a task instan
e fi to the start timeof the next instan
e in the same task si+1.� High jitter 
onstraint is represented as a link from the start time of a task instan
e si to the �nish timeof the previous instan
e in the same task fi�1.� Pre
eden
e 
onstraints are represented as a link from the �nish time of a job f to the start time of thenext job s. 20



� Lo
al relative timing 
onstraints between di�erent jobs are in
luded as links between the appropriatetime event nodes of these jobs.� Communi
ation 
onstraints are in
luded as a link from the �nish time event node of the sour
e job fsto the start time event node of the destination job st.These itemized 
ategories represent all system absolute timing 
onstraints CA, relative timing 
onstraintsCR and 
ommuni
ation 
onstraints C
. Where:CA = SMm=1 CA;mCR = SMm=1 CR;m (11)From equation (6), the 
omplete set of system 
onstraints 
an be represented as:C = C1 [ C2 : : : [ CM [ C
Sin
e: Cm = CA;m [ CR;m 8m = 1 : : :MThen: C = CA;1 [ CR;1 [ CA;2 [ CR;2 : : : [ CA;M [ CR;M [ C
Rearranging: C = CA;1 [ CA;2 : : : [ CA;M [ CR;1 [ CR;2 : : : [ CR;M [ C
Therefore form equation 11: C = CA [ CR [ C
 (12)From equation (12), we 
an 
on
lude that the timing 
onstraints represented in the global 
onstraintgraph 
onstitute all the system timing requirements. Therefore, we established that all system jobs andtiming requirements are 
ompletely represented in the global 
onstraint graph and 
onsequently are in
ludedin the global s
hedulability analysis.6.3.2 Mapping problem into single-node domainThe global s
hedulability analysis maps to a 
y
li
 variable elimination problem, whose 
orre
tness is alreadyestablished in ( [7, 6℄). 21



The global 
onstraints graph Gg used in the feasibility analysis 
onsists of a set of nodes representing thestart and �nish times of all the jobs in the task set, a single referen
e time node v0, and links to representabsolute and relative timing 
onstraints among the system task instan
es. Communi
ation 
onstraints arerepresented by relative timing 
onstraints among the sour
e and destination jobs. The start time of any jobinstan
e depends only on the timing 
hara
teristi
s of the previous job instan
es sin
e the global jobs ordertopologi
ally sorts jobs a

ording to their timing dependen
ies. Therefore, we 
an 
on
lude that the global
onstraint graph used for the global feasibility analysis represents a valid single-node dynami
 s
hedulingmodel, on whi
h 
y
li
 variable elimination te
hniques 
an be applied.6.3.3 Mapping s
hedulability output into distributed domainThe out
ome of the single-node 
y
li
 variable elimination problem on the global 
onstraint graph representsthe global distributed system s
hedulability. This 
an be established based on two assertions:Positive s
hedulability assertion: if the single-node problem is s
hedulable, then the distributed systemis also s
hedulable.Negative s
hedulability assertion: If the single-node problem is not s
hedulable, then the distributedsystem is not s
hedulable as well.Sin
e the global 
onstraint graph on whi
h the single-node 
y
li
 dynami
 s
heduling method is appliedin
ludes:� All model jobs� Absolute timing 
onstraints� Relative timing 
onstraints� Communi
ation 
onstraintsand the relative order of the jobs is the same as in all lo
al nodes orders, �nding a feasible solutionto that dynami
 s
heduling problem guarantees a feasible starting time for ea
h of the system jobs thatsatis�es all the node's lo
al absolute and relative timing requirements as well as global 
ommuni
ation timingrequirements. The starting times are guaranteed feasible for all periodi
 repetitions of system s
hedulingwindow (k; 8k = 1!1).9s11 :: 8e11 2 [l11; u11℄ :: 9s12 :: 8e12 2 [l12; u12℄ :: : : : :: 9s1N :: 8e1N 2 [l1N ; u1N ℄.̂..̂9sk1 :: 8ek1 2 [lk1 ; uk1 ℄ :: 9sk2 :: 8ek2 2 [lk2 ; uk2 ℄ :: : : : :: 9skN :: 8ekN 2 [lkN ; ukN ℄ĈA ^ CR ^ C
8k = 1!1 (13)
22



Equation 13 guarantees the satisfa
tion of all global model timing requirements of the distributed real-timesystem and 
onsequently establishes its global s
hedulability. As a result, the Positive s
hedulability assertionis established.In order to establish the negative s
hedulability assertion, we assume that the global 
onstraint graph Ggbuilt using the method des
ribed in se
tion 5.1.3 (using a spe
i�
 heuristi
 like EDF as a se
ondary sorting
riteria for the global task order) was found to be infeasible by the single-node 
y
li
 variable eliminationpro
ess.If the negative assertion is not 
orre
t, then we 
an 
onstru
t a di�erent global 
onstraint graph G0g thatrepresents all the 
hara
teristi
s of the distributed real-time system, in addition to being feasible with respe
tto the single-node 
y
li
 variable elimination method. In order for the feasible 
onstraint graph to representthe distributed system, it is required to satisfy the following requirements:� Contain a single referen
e time node v0.� In
lude all the system's jobs, with all their absolute timing requirements.� Satisfy all lo
al nodes job ordering requirements.� In
lude all nodes' lo
al pre
eden
e and relative timing 
onstraints.� In
lude all system's 
ommuni
ation 
onstraints.� Have a global job order that satis�es all system global pre
eden
e requirements dire
tly or indire
tlyresulting from the system's pre
eden
e, timing, and 
ommuni
ation 
onstraints. This order is to be usedby the 
y
li
 variable elimination method.For the feasible graph G0g to satisfy the des
ribed requirements, it has to be similar to the original global
onstraint graph Gg ex
ept for the global ordering of its jobs. Sin
e the global job order of G0g has to satisfy allglobal pre
eden
e requirements mandated by the system's timing 
onstraints and 
onsequently, its jobs mustbe topologi
ally sorted. Therefore we 
an 
on
lude that the two 
onstraint graphs Gg and G0g are identi
alex
ept for the ordering of jobs that do not have any dire
t or indire
t pre
eden
e relations among them, andwhose relative order is determined using the se
ondary global ordering heuristi
 method.Sin
e the heuristi
 ordering 
riteria is used as a se
ondary 
riteria after using the topologi
al order, thenwe 
an 
on
lude that the jobs ordered using the heuristi
 
riteria are pla
ed in 
onse
utive pla
es within theglobal task order. And sin
e these jobs do not have any relative timing 
onstraints among them, therefore,they adhere to the job requirements of theorem A.1 presented in appendix A. Consequently, we 
an 
on
ludethat the relative order of jobs ordered using the se
ondary ordering heuristi
 method does not a�e
t the�nal out
ome of the Fourier-Motzkin variable elimination pro
ess. This 
on
lusion was also enfor
ed by thesimulation results generated in se
tion 9.3.This result indi
ates that the 
onstraint graph G0g 
annot be feasible while the original graph Gg is infeasi-ble. Consequently, We 
an 
on
lude that a feasible global 
onstraint graph G0g that represents the requirementsof the distributed system 
annot be generated if the original global 
onstraint graph Gg was veri�ed to beinfeasible by the 
y
li
 variable elimination method.By 
ontradi
tion, we 
on
lude that if the system was de
lared to be infeasible in the single-node domain,it must be due to infeasibility in the distributed system timing requirements not the mapping pro
edure and
onsequently, we establish the Negative s
hedulability assertion, whi
h indi
ates that if the single-node problemwas veri�ed not to be s
hedulable, then the distributed system is also not s
hedulable.23



By establishing both the positive and the negative s
hedulability assertions, we 
an 
on
lude that thedistributed system is s
hedulable if and only if the mapped single-node system is also s
hedulable. In otherwords, the out
ome of the single-node variable elimination analysis represents the s
hedulability of the originaldistributed real-time system.6.4 Lo
al Calendars FeasibilityThis sub-problem presents the feasibility of lo
al 
alendars 
al
ulated for ea
h of the systems' nodes separately,with added 
ommuni
ation 
onstraints and its 
onforman
e with global s
hedulability. To establish this point,we need to show that the parametri
 bound fun
tions in the lo
al 
alendars satisfy global timing requirements.In other words the lo
al 
alendars should satisfy lo
al timing 
onstraints as well as inter-node 
ommuni
ation
onstraints.1. Lo
al timing 
onstraintsSin
e� All lo
al timing 
onstraints were in
luded in 
onstraint graphs used to establish the global feasibilityas well as the lo
al 
alendars.� Lo
al order of the jobs in the lo
al 
onstraint graphs is the same as that in the global 
onstraintgraph.It is 
lear that lo
al timing 
onstraints that are proven to be lo
ally feasible by the lo
al 
alendar
al
ulation pro
ess are also guaranteed to be globally feasible.Therefore, it is 
on
luded that the lo
al 
alendars satisfy all lo
al timing 
onstraints previously provenfeasible in the global s
hedulability phase.2. Communi
ation 
onstraintsThe minimum start time fun
tion Fmins () of a job is of the form:Fmins () =Max(p1; p2; p3; : : :)Where, (p1; p2; p3; : : :) are linear fun
tions of the exe
ution timing parameters of previously exe
utedjobs.Therefore, adding the arrival time of a 
ommuni
ation message to the minimum start time of the targetjob guarantees that the start time of that target job st is more than or equal to the message arrival time.In other words, the target start time st is guaranteed to be larger than the sour
e job �nish time fs byat least the message delivery time MDT , for any feasible value of the MDT that is less than or equalto the worst 
ase message delivery time MDTw
.st � fs +MDT 8MDT �MDTw
And sin
e the 
ommuni
ation 
hannel delay (MDT ) is already proven to be less than or equal to theworst 
ase message delivery time MDTw
 by the Real-time 
hannels method, whi
h is in turn less thanor equal to the maximum 
hannel delay q as established in the 
ommuni
ation feasibility veri�
ationstep (se
tion 5.1.1). MDT �MDTw
 � q24



Therefore, it is 
on
luded that the lo
al node 
alendars guarantee that 
ommuni
ation 
hannels' targetjobs 
annot start before the arrival of their 
orresponding 
ommuni
ation messages whi
h are, in turn,guaranteed by the 
ommuni
ation feasibility pro
ess to arrive in a feasible time. As a result, all 
om-muni
ation timing 
onstraints proven feasible in the global s
hedulability test are satis�ed by the lo
alnode 
alendars.So far, it has been proven that lo
al 
alendars satisfy� Jobs absolute timing requirements� Relative timing 
onstraints� Communi
ation timing 
onstraintswhi
h means that ea
h of the nodes' lo
al 
alendars guarantee a feasible start time for ea
h of its lo
aljobs that 
onforms to its ready time and deadline, satis�es lo
al node timing requirements, and 
onforms tothe inter-node 
ommuni
ation 
onstraints.9s11;m :: 8e11;m 2 [l11;m; u11;m℄ :: : : : :: 9skNm;m :: 8ekNm;m 2 [lkNm;m; ukNm;m℄ :: C1;km 8m = 1 : : :MĈ
 (14)By adding equation (14) for all the nodes in the system (1 : : :M), we get:9s11;1 :: 8e11;1 2 [l11;1; u11;1℄ :: 9s12;1 :: 8e12;1 2 [l12;1; u12;1℄ :: : : : :: 9skN1;1 :: 8ekN1;1 2 [lkN1;1; ukN1;1℄ :: C1;k1.̂..̂9s11;m :: 8e11;m 2 [l11;m; u11;m℄ :: : : : :: 9skNm;m :: 8ekNm;m 2 [lkNm;m; ukNm;m℄ :: C1;km.̂..̂9s11;M :: 8e11;M 2 [l11;M ; u11;M ℄ :: : : : :: 9skNM ;M :: 8ekNM ;M 2 [lkNM ;M ; ukNM ;M ℄ :: C1;kMĈ

(15)

Whi
h basi
ally 
onstitutes the Parametri
 S
hedulability 
ondition (S
hed1;k3 ) of a distributed set of tasks�1;k (de�nition 4.3). Therefore we 
on
lude that applying lo
al node 
alendars on all distributed system nodessatisfy global system s
hedulability requirements.7 ExampleIn this example, we demonstrate the appli
ation of the variable elimination method on a simple distributedsystem with two nodes and two 
ommuni
ation 
hannels established between them. The example system is25



represented graphi
ally in �gure 6. The timing and 
ommuni
ation 
onstraints in the �gure translates to thefollowing 
onstraint equations: Node1e11 � 5e11 � 8s11 � 0s11 + e11 � 15e12 � 3e12 � 7s12 � 26s12 + e12 � 40s12 � (s11 + e11) � 5Communi
ations22 � (s11 + e11) � 3s12 � (s22 + e22) � 2

Node2e21 � 6e21 � 9s21 � 0s21 + e21 � 15e22 � 4e22 � 8s22 � 15s22 + e22 � 30e23 � 2e23 � 5s23 � 25s23 + e23 � 35s22 � (s21 + e21) � 1s23 � (s22 + e22) � 1
(16)

Arranging the jobs a

ording to their timing and pre
eden
e 
onstraints. The Earliest Deadline First(EDF) method is used as a se
ondary sorting heuristi
. The global order generated is shown in the followingsequen
e of variables: s11; e11; s21; e21; s22; e22; s23; e23; s12; e12We start by eliminating variables in the reverse order of their global order.Eliminate e12 (substituted by 7) s12 + e12 � 40 =) s12 � 33Eliminate s12 20 � s12s11 + e11 + 5 � s12s22 + e22 + 2 � s12s12 � 33 =) 20 � 33s11 + e11 � 28s22 + e22 � 31Eliminate e23 (substituted by 5) s23 + e23 � 35 =) s23 � 30Eliminate s23 26



25 � s23s22 + e22 + 1 � s23s23 � 30 =) 25 � 30s22 + e22 � 29Eliminate e22 (substituted by 8) s22 + e22 � 29 =) s22 � 21Eliminate s22 15 � s22s21 + e21 + 1 � s22s11 + e11 + 3 � s22s22 � 21 =) 15 � 21s21 + e21 � 20s11 + e11 � 18Eliminate e21 (substituted by 9) s21 + e21 � 15 =) s21 � 6Eliminate s21 0 � s21s21 � 6 =) 0 � 6Eliminate e11 (substituted by 5) s11 + e11 � 15 =) s11 � 7Eliminate s11 0 � s11s11 � 7 =) 0 � 7Sin
e no 
ontradi
tions were introdu
ed in the variable elimination pro
ess, we 
on
lude that the globalsystem is S
hedulable. 27



8 Dynami
 Time-based Dispat
hingThe fun
tion of the on-line dispat
her is to start the exe
ution of the real-time task instan
es a

ording to the
al
ulated 
alendars as well as the timing information generated at run-time. Therefore, enfor
ing the systems
hedulability established by the o�-line s
heduler while being 
exible enough to make use of the sla
k CPUtime.The dynami
 time-based dispat
her pro
esses the information transferred to it from the o�-line s
hedulingmodule to 
reate and populate the run-time data stru
tures that are used in the pro
ess of determining theabsolute dispat
h time for the di�erent task instan
es a

ording to run-time parameters. The Dispat
her 
analso determine the s
hedulability of new aperiodi
 real-time tasks introdu
ed to the system at run-time. Thisis done by moving task instan
es around in a

ordan
e with their parametri
 fun
tions to preserve total systems
hedulability. The algorithm to insert an aperiodi
 task at run-time is des
ribed in [7℄.This se
tion des
ribes the data stru
tures used by the on-line 
omponent, and then explains the use ofthese data stru
tures to handle the task dispat
hing pro
ess.Fmins1 () � s1 � Fmaxs1 ()Fmins2 (s1; e1) � s2 � Fmaxs2 (s1; e1)... ...FminsN (s1; e1; s2; : : : ; sN�1; eN�1) � sN � FmaxsN (s1; e1; s2; : : : ; sN�1; eN�1)Figure 8: Parametri
 Calendar Stru
ture8.1 Run-time data stru
turesS
heduling information needed for the dispat
hing pro
ess are transferred to the on-line 
omponent. Thisinformation 
onsists of task des
riptions, task-node assignment, task relative ordering on ea
h node, andrelative timing 
onstraints in the form of parametri
 
alendar 
onsisting of fun
tions used to determine theminimum and maximum feasible bounds on the exe
ution start times for the task instan
es. The generalstru
ture of the parametri
 
alendar generated by the o�-line s
heduler is shown in �gure 8. The Run-timeinformation is stored in the form of a dependen
y graph of the tasks and their timing properties. The Dynami
Calendar built by the on-line dispat
her has three main 
omponents:Dependen
y Graph (DG) shown in Figure 9, it 
onsists of a graph like stru
ture that 
ontains all taskinstan
es that are a
tive in the system at the 
urrent time along with all their timing requirements, inter-task relative timing 
onstraints, inter-node 
ommuni
ation 
onstraints, and inter-node task instan
edependen
ies. A separate Dependen
y graph is 
onstru
ted for ea
h of the distributed nodes in thesystem. The Dependen
y graph is represented as a list of task obje
ts ea
h 
ontaining the followinginformation:� Task ID.� Exe
ution period.� Low jitter.� High jitter.� A linked list of the task's instan
e pro�les, ea
h 
ontaining the following information:{ Instan
e ID.{ Minimum exe
ution time. 28
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Figure 9: Dependen
y Graph{ Maximum exe
ution time (WCET).{ A
tivation 
ounter that des
ribes the number of life 
y
les of the task that this instan
e is goingto remain a
tive in.{ Instan
e fun
tions, a list of parametri
 fun
tions, ea
h 
ontaining a pointer to fun
tion 
ode,a list of the fun
tion parameters, and an Evaluation 
ounter for the unresolved parameters inthe fun
tion.{ Result lists, whi
h are lists of pointers (Evaluation pointers) to the lo
ations of parameters forthe parametri
 fun
tion of other tasks instan
es. These pointers indi
ate that timing valuesfrom this task instan
e are the a
tual parameters for the formal parameters in the other tasksinstan
es fun
tions. A separate list is maintained for ea
h value to be propagated.{ Communi
ation list, a list of the messages to be delivered to other task instan
es, running ondi�erent nodes, at the end of the exe
ution of this task instan
e.Time Ordered List (TOL) A time ordered list of task instan
es is maintained by the run-time module,its entries represent task instan
es that the run-time module have full knowledge about their exe
utionpro�le. This means that the parameters to their parametri
 fun
tions are all satis�ed and the fun
tionsare evaluated to yield an absolute time to start the exe
ution of the task instan
e. Entries in theTOL 
onsist of the absolute minimum and maximum feasible times that this task instan
e 
an start itsexe
ution. It also in
lude a pointer to the task instan
e pro�le in the dependen
y graph. Entries in thislist are ordered a

ording to their earliest feasible starting times.External Event Queue (EEQ) This is a First-In-First-Out (FIFO) queue of the in
oming 
ommuni
ationmessages re
eived from external nodes. Ea
h message should in
lude the following information:� Message ID. 29



� Target Task ID.� Target Instan
e ID.� Event arrival time.� Information about instan
e fun
tion parameters to be substituted by the message arrival time.� Message appli
ation data.8.2 Run-time Exe
ution ModelThe major fun
tionality of the on-line dispat
her is to propagate parameters of the parametri
 fun
tions,and dispat
h the 
orre
t task instan
es a

ording to the guidelines of the 
alendar generated by the o�-lines
heduler. The dispat
her system 
onsists of three major phases: The Initialization phase, the Calendarsyn
hronization phase, and the Task exe
ution phase.8.2.1 Initialization phaseThe Initialization phase of the run-time module starts by pro
essing the 
alendar information passed by theo�-line s
heduler in the form of parametri
 fun
tions. The s
heduling information is used at run-time topopulate dispat
her's dependen
y graph. The TOL is initialized with one task instan
e, whi
h is the taskmarked by the o�-line s
heduler to be exe
uted �rst. This instan
e exe
ution time is not dependent on timevalues generated by the other task instan
es.8.2.2 Calendar syn
hronization phaseThe purpose of the Calendar syn
hronization phase is to make all the distributed nodes dispat
hers startexe
uting their real-time 
alendars at the same referen
e time t0. The 
alendar syn
hronization pro
ess ismaintained by a single node 
alled the Time Referen
e Node whi
h repeats the syn
hronization pro
ess forea
h one of the distributed nodes (Client Nodes). The pro
ess assumes that the message delivery time of thesyn
hronization 
ommuni
ation messages between the Time referen
e node and the Client node will alwaysbe the same (Æ
) during the Calendar syn
hronization pro
ess.The Calendar syn
hronization pro
ess between the Time Referen
e node A and a Client node B is illus-trated in �gure 10. The Time referen
e node A starts by measuring the pro
ess start time TA1 a

ording toits own 
lo
k. Next, node A sends a message MA1 to node B 
ontaining TA1 and the message send time sA1.When node B re
eives message MA1 
oming from node A, it measures its arrival time rB1, whi
h is measuredusing node B 
lo
k. Node B then sends a message ba
k MB1 to node A 
ontaining rB1 and the the messagesend time sB1. Finally, Node A re
ords message MB1 arrival time rB2, and sends a third message ba
k MA2to node B 
ontaining rB2 and the the message send time sB2. At this moment, ea
h one of the two nodes 
an
al
ulate three time intervals Æ1; Æ2; and Æ3 a

ording to equation set 17. All three time intervals are generatedas the di�eren
e between two time measurements generated by the same node 
lo
k to avoid errors resultingfrom the di�eren
es among the nodes' system 
lo
ks.Æ1 = sA1 � TA1Æ2 = sB1 � rB1Æ3 = sA2 � rA2 (17)30



Time Reference

Node (A)


Client Node

(B)


T
A1
 T
A1
'


s
A1


s
A2


r
A2


r
B1


s
B1


r
B2


t
0
t
0


Sy
nc

. W
ai

t P
er

io
d 

(
W

)
 M
A1
=


{
 
T
A1 
, s
A1 
}


M
B1
=

{
 
r
B1
 , s
B1
 
}


M
A2
=

{
 
r
A2 
, s
A2 
}


1
 


2
 


c
 


c
 


3
 


Figure 10: Calendar syn
hronization phaseWhen the 
lient node B re
eives the third message MA2 at time rB2, it 
an 
al
ulate an estimate of thesyn
hronization message delivery time Æ
 a

ording to equation 18. Using the Æ
 value, node B 
an 
al
ulateits equivalent version of the time instan
e TA1 a

ording to its 
lo
k T 0A1 using equation 19.Æ
 = rB2 � sB1 � Æ32 (18)T 0A1 = sB1 � Æ2 � Æ1 � Æ
 (19)By 
hoosing a syn
hronization waiting period W long enough for all the nodes to �nish their 
alendarsyn
hronization pro
ess, all nodes 
an 
al
ulate the referen
e time t0 a

ording to their own system 
lo
kusing the following equations.For the 
lient node B: t0 = T 0A1 +W31



For the time referen
e node A: t0 = TA1 +WThe steps of the 
alendar syn
hronization pro
ess for the Time Referen
e node are des
ribed in algorithm8.1. The steps for a 
lient node are des
ribed in algorithm 8.2.Algorithm 8.1 (Calendar syn
hronization for Time Referen
e node)1. Let TA1 = Current time.2. For (M � 1 
lient nodes) do f(2.1) Send a syn
hronization message MA1 
ontaining TA1 and the message send time sA1.g3. For (M � 1 
lient nodes) do f(3.1) Wait for syn
hronization message MB1 from 
lient node.(3.2) Re
ord message arrival time rA2.(3.3) Send a se
ond syn
hronization message to the 
lient node 
ontaining rA2 and the message send timesA2.g4. Let t0 = TA1 +W .5. Sleep for (t0� Current time) time units.6. Start Lo
al 
alendar exe
ution phase.Algorithm 8.2 (Calendar syn
hronization for Client node)1. Wait for syn
hronization message MA1 from the time referen
e node.2. Re
ord the message arrival time rB1.3. Send a message ba
k to the time referen
e node 
ontaining rB1 and the message send time sB1.4. Wait for a se
ond syn
hronization message MA2 from the time referen
e node.5. Re
ord the se
ond message arrival time rB2.6. Cal
ulate Æ1; Æ2, and Æ3 a

ording to equation set 17.7. Cal
ulate syn
hronization message delivery time:Æ
 = (rB2 � sB1 � Æ3)=28. Cal
ulate syn
hronization pro
ess starting time a

ording to lo
al 
lo
k:T 0A1 = sB1 � Æ2 � Æ1 � Æ
9. Let t0 = T 0A1 +W .10. Sleep for (t0� Current time) time units.11. Start Lo
al 
alendar exe
ution phase. 32



8.2.3 Task exe
ution phaseAt the uni�ed 
alendar start referen
e time t0, the run-time dispat
her extra
ts the �rst task instan
e in theTOL, and start exe
uting it in the earliest possible time between its minimum and maximum feasible startingtimes. The kernel s
hedules an interrupt at the end of the WCET of that task instan
e in order to be able togain 
ontrol and maintain the s
hedule of the remaining tasks exe
ution.After the 
urrent task instan
e �nishes exe
ution, kernel gains 
ontrol again, it starts by propagating thetiming information generated from the �nished task instan
e to all the fun
tion parameters that are dependenton these values using the results lists of these values in the task instan
e pro�le. The kernel then inspe
ts theexternal event queue (EEQ) and delivers all the messages in the queue to their destination task instan
es. Thedispat
her maintains the unresolved parameter 
ounter for the task instan
e parametri
 fun
tions to whi
h theparameters were propagated. If the unresolved parameters 
ounter in any one of target task instan
es rea
heszero, this means that the parameters to its fun
tions are all satis�ed and fun
tions 
an be evaluated at thispoint. The absolute boundaries on the starting times for these task instan
es are 
al
ulated, the instan
es areinserted in the TOL, and their evaluation 
ounters are reset to their original values in the instan
e pro�les.The dispat
her also maintains the information in the task-instan
e pro�les regarding the number of 
y
lesthe instan
e is going to be a
tive in, this 
ounter is de
remented every time the instan
e is exe
uted. If this
ounter was initialized with a negative value, this will 
ause the dispat
her to run this task periodi
ally foras long as the operating system kernel is running this parti
ular appli
ation. The on line dispat
her time
omplexity is O(N), were N is the total number of task instan
es in one s
heduling window.The main steps for the On-line dispat
her is shown in the following algorithm.Algorithm 8.3 (On-Line Dispat
her) The on-line dispat
hing of the hard real-time jobs is performed bythe following algorithm:1. Populate the Dependen
y graph using the tasks parametri
 fun
tions generated by the o�-line s
heduler.2. If (Time referen
e node) f� Run the time referen
e node 
alendar syn
hronization pro
ess as des
ribed in algorithm 8.1.g Else f� Run the 
lient node 
alendar syn
hronization pro
ess as des
ribed in algorithm 8.2.g3. Insert the �rst task instan
e in the TOL.4. While (TOL not empty) f(4.1) Get �rst task instan
e in TOL (Itop).(4.2) Cal
ulate a
tual starting time of instan
e stop = Currenttime.(4.3) S
hedule a time interrupt to o

ur immediately after stop +WCET (Itop).(4.4) Yield 
ontrol to Itop.(4.5) When Itop �nishes or the s
heduled interrupt o

urs4.5.1. Stop the exe
ution of Itop if it is still running.4.5.2. Re
ord its �nishing time fItop .4.5.3. Substitute the start time stop in all items in its evaluation list.33



4.5.4. De
rement the evaluation 
ounters of all the elements on the evaluation list of stop.4.5.5. Substitute the �nish time ftop in all items in its evaluation list.4.5.6. De
rement the evaluation 
ounters of all the elements on the evaluation list of ftop.4.5.7. while (EEQ not empty) f� Get �rst message it the EEQ (Mtop).� Substitute the arrival time of Mtop in its target instan
e parametri
 fun
tions.� De
rement the evaluation 
ounter of target instan
e.g4.5.8. If the evaluation 
ounters of any instan
e rea
hes zero, then f� Insert this instan
e in TOL.� De
rement its a
tivation 
ounter by 1, if it rea
hes 0, the instan
e is removed from thedependen
y graph.� Restore all its evaluation 
ounters to their initial values.gg9 Implementation and ResultsThe goals of the experiments 
ondu
ted on the distributed dynami
 s
heduling and dispat
hing model are:� Verify the 
orre
tness and 
ompleteness of the s
heduling and dispat
hing methods, and determine allthe �ne details required for the presented model to be used as a 
omplete distributed real-time s
hedulingand dispat
hing environment.� Investigate the e�e
t of varying the heuristi
 used as a se
ondary sorting 
riteria to generate the globaltask order on the s
hedulability veri�
ation pro
ess.� Measure the impa
t of varying the di�erent system parameters su
h as the number of tasks or the averagetasks exe
ution time on the parametri
 s
hedulability of a real-time system.The following subse
tions des
ribe the implementation and simulation experiments 
ondu
ted to a
hievethe previous goals. The results of these experiments follows along with a dis
ussion of the 
on
lusions derivedfrom them.9.1 ImplementationThe dynami
 time-based s
heduler is implemented as a 
entral obje
t. The s
heduler obje
t provides methodsto add system nodes, 
ommuni
ation links, tasks, relative timing 
onstraints, pre
eden
e 
onstraints, and
ommuni
ation 
onstraints. After all the real-time system 
omponents have been entered, the feasibilityveri�
ation pro
ess 
an be started. The s
heduler also provides methods for the distributed node dispat
hersto query system parameters and to retrieve their lo
al run-time parametri
 
alendars. The run-time 
alendarsare available only if the system is 
on
luded to be s
hedulable.The run-time dispat
hers are implemented as multiple obje
ts, one for ea
h of the system nodes. Ea
hdispat
her obje
t starts its initialization phase by retrieving its dynami
 
alendar from the s
heduler and34
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Figure 11: Simulation system 
on�guration diagraminitializing its run-time data stru
tures. The task exe
ution phase starts by exe
uting the 
alendar syn
hro-nization pro
ess whi
h uni�es the starting time for the exe
ution of all node 
alendars. The node dispat
hersstart dispat
hing the �rst task instan
e at the referen
e time t0 = 0 and 
ontinue as des
ribed in se
tion 8.2.3.The s
heduler and dispat
her obje
ts are used to implement an example system that 
onsists of twonodes 
onne
ted using a bidire
tional link. The example system's 
on�guration, task stru
ture, and timing
onstraints are shown in �gure 11. The example system feasibility was veri�ed in the o�-line analysis phaseusing the s
heduler obje
t that generated two separate node 
alendars, whi
h were saved into node 
alendar
on�guration �les. Two dispat
her obje
ts were run on two Windows NT ma
hines, and initialized withtheir 
orresponding 
alendar 
on�guration �les. They start by the 
lo
k syn
hronization pro
ess, and at thereferen
e time t0 = 0 they start dispat
hing the lo
al jobs using their dynami
 
alendars. Communi
ation
hannels were simulated using so
ket 
onne
tions over an Ethernet network. The system tasks were dummytasks that announ
ed their existen
e, 
onsumed a random CPU time (Limited by their minimum and maximumexe
ution times), and �nally generate a 
ommuni
ation message to their target if they are the sour
e of a
ommuni
ation 
hannel.9.2 Experiments Des
riptionIn order to test the e�e
t of parameter variation on the s
hedulability veri�
ation pro
edure, few simulationexperiments were 
ondu
ted. The experiments are based on generating a random set of distributed real-timetasks. Absolute as well as relative timing 
onstraints among the tasks are randomly generated as well. Thetask set is generated using the following steps: 35



Trun
ated Normal Distribution: Most of the timing parameters for the tasks and 
onstraints are gener-ated using a trun
ated Normal distribution. The distribution is spe
i�ed by the minimum trun
ationpoint, maximum trun
ation point, mean �, and standard deviation �. The mean � is 
onsidered tobe the median point between the minimum and maximum trun
ation points. The parameter used to
ontrol the time intervals generation in the 
ondu
ted experiments is the Normal distribution standarddeviation to mean ratio �=�.Nodes generation: The simulation environment 
onsists of M nodes that form a fully 
onne
ted networkwith all links having the same 
ommuni
ation delay.Tasks generation: A set of N tasks are generated. The tasks timing parameters are generated a

ording tothe following rules:Period (P ): The task repetition period is sele
ted randomly from a pre-spe
i�ed ordered set of periods.The period set 
onsists of np entries whi
h are generated by assigning the �rst period in the seta pre-spe
i�ed time period, and 
al
ulating ea
h subsequent period in the set to be equal to halfof its prede
essor. The number of entries in the period set np is referred to as Number of PeriodLevels.Exe
ution Node: Randomly sele
ted from the M distributed nodes.Jitter 
onstraints (�; �): Jitter 
onstraints are randomly generated using a trun
ated Normal distri-bution. The minimum and maximum trun
ation points are 
al
ulated as per
entages from thetask's period, Jmin and Jmax respe
tively.Ready time (r): Generated as a trun
ated Normally distributed per
entage of the task's period withtrun
ation per
entages rmin and rmax.Deadline (d): Generated as a trun
ated Normally distributed per
entage of the task's period withtrun
ation per
entages dmin and dmax.Minimum exe
ution time (l): Generated as a trun
ated Normally distributed per
entage of thetask's period with trun
ation per
entages lmin and lmax.Maximum exe
ution time (u): Generated as a trun
ated Normally distributed per
entage of thetask's period with trun
ation per
entages umin and umax.Relative timing 
onstraints: Nr
 relative timing 
onstraints are generated at random in ea
h experimenta

ording to the following guidelines:Node: The relative timing 
onstraint 
onstraint is assigned to a randomly sele
ted node out of the Msystem nodes.Sour
e and destination jobs: The sour
e and target task instan
es are two randomly sele
ted jobsthat reside on the same node. The sour
e and target jobs are not allowed to be the same. Theearlier of the two jobs is 
onsidered to be the sour
e of the timing 
onstraint. However, sin
e thea
tual start times of jobs are not known until run-time, the heuristi
 used as the se
ondary ordering
riteria in the global order generation pro
ess is also used to de
ide whi
h of the two jobs is earlier,and therefore to be 
onsidered the sour
e of the relative timing 
onstraint.Constraint time interval: The relative timing 
onstraint interval is 
onsidered to the distan
e be-tween the �nish time of the sour
e job to the start time of the target job. The interval is generatedas a trun
ated Normally distributed per
entage of the task's period with trun
ation per
entagesRCmin and RCmax.Communi
ation 
onstraints: N

 
ommuni
ation 
onstraints are generated at random in ea
h experimenta

ording to the same guidelines as those used for the relative timing 
onstraints, ex
ept that the sour
eand target jobs are not allowed to be on the same system node. The 
ommuni
ation 
onstraint timeinterval is also generated as a trun
ated Normally distributed per
entage of the task's period withtrun
ation per
entages CCmin and CCmax. 36



Parameter des
ription Symbol Nominal valueTrun
ated Normal distribution standard deviation to mean ratio �=� 0.70Number of nodes M 20Number of tasks N 50Number of period levels np 3Jitter 
onstraints minimum period per
entage Jmin 0.40Jitter 
onstraints maximum period per
entage Jmax 0.60Ready-time minimum period per
entage rmin 0.01Ready-time maximum period per
entage rmax 0.10Deadline minimum period per
entage dmin 0.90Deadline maximum period per
entage dmax 0.99Minimum exe
ution time minimum period per
entage lmin 0.01Minimum exe
ution time maximum period per
entage lmax 0.05Maximum exe
ution time minimum period per
entage lmin 0.05Maximum exe
ution time maximum period per
entage lmax 0.15Number of relative timing 
onstraints Nr
 40Relative timing 
onstraint time interval minimum period per
entage RCmin 0.20Relative timing 
onstraint time interval maximum period per
entage RCmax 0.50Number of 
ommuni
ation 
onstraints N

 20Communi
ation 
onstraint time interval minimum period per
entage CCmin 0.20Communi
ation 
onstraint time interval maximum period per
entage CCmax 0.50Figure 12: Real-time system random generation parametersTherefore, the parameters that 
ontrol the real-time system generation pro
ess 
an be summarized in �gure12 that in
ludes the parameter name, symbol, as well as a nominal value for the parameter in order to a
hievean average S
hedulability Su

ess Ratio (De�nition 9.1).The Criteria for performan
e evaluation used in the 
ondu
ted experiments to measure the of the dis-tributed s
heduling algorithm under various parameter setup is the S
hedulability Su

ess Ratio (SSR) (De�-nition 9.1).De�nition 9.1 (S
hedulability Su

ess Ratio (SSR)) The per
entage of real-time systems (task sets)veri�ed to be s
hedulable by a s
heduling algorithm over the randomly generated set of real-time systems.In the following subse
tions, we present the simulation experiments that are based on the distributedreal-time system random generation method des
ribed here.9.3 Experiment 1In this experiment, we investigate the e�e
t of varying the se
ondary ordering heuristi
 used in the global ordergeneration pro
ess on the distributed dynami
 hard real-time s
hedulability veri�
ation method des
ribed inse
tion 5.In order to a
hieve this goal, 500 distributed real-time systems are generated randomly. Ea
h one of thegenerated systems is run through the dynami
 hard real-time s
heduler to 
he
k its s
hedulability few times.Ea
h time a di�erent ordering heuristi
 method is used. The heuristi
 methods tested are:� Earliest Deadline First (EDF ). 37



Heuristi
 EDF ERF LLF RM RANDOMTotal 273 273 273 273 273SSR % 54.6 % 54.6 % 54.6 % 54.6 % 54.6Figure 13: SSR for di�erent heuristi
 methods� Earliest Ready-time First (ERF ).� Lease Laxity First (LLF ).� Rate Monotoni
 (RM).� Random sele
tion (RANDOM).The SSR is 
al
ulated for ea
h of the heuristi
 methods. Throughout the test, we keep tra
k of thedi�eren
es in the out
ome of the s
hedulability test for the same systems as measured using the di�erentheuristi
s.9.3.1 ResultsRepeating the experiment several times, we noted that there were no systems rendered s
hedulable by oneheuristi
 method and not s
hedulable by another. We also measured the number of s
hedulable systems inea
h run, and found out that the numbers are always identi
al for all heuristi
 methods. The results of thisexperiment are shown in �gure 13.9.3.2 Con
lusionsFrom this experiment, we 
on
lude that the heuristi
 used as a se
ondary sorting 
riteria to get the distributedsystem global order does not a�e
t the out
ome of the s
hedulability veri�
ation pro
ess. This result enfor
esthe 
orre
tness of theorem A.1 presented in appendix A, and 
onsequently the 
orre
tness of the s
hedulabilityveri�
ation algorithm established in se
tion 6. Therefore, the distributed parametri
 s
hedulability 
ondition�1;k (de�nition 4.3) is the ne
essary and suÆ
ient 
ondition for the parametri
 s
hedulability of a distributedperiodi
 real-time system, and the real-time s
heduling algorithm des
ribed in se
tion 5 is suÆ
ient to verifythe dynami
 s
hedulability of distributed set of periodi
 real-time tasks with intertask relative timing and
ommuni
ation 
onstraints.9.4 Experiment 2In this experiment we investigate the e�e
t of varying some of the parameters governing the real-time sys-tems generation pro
ess on the s
hedulability veri�
ation algorithm. The parameter variation e�e
t on thes
heduling algorithm is measured by its e�e
t on the s
hedulability su

ess ratio (SSR) as measured by thedistributed s
heduling algorithm. A nominal value is �xed for ea
h of the parameters as shown in �gure 12.Then we start varying ea
h of the parameters separately in a range around its nominal point using small steps.The parameters varied in this experiment are shown in �gure 14 along with their nominal values, variationrange, and step. In ea
h step of a parameter variation, we generate 500 real-time systems for ea
h of theheuristi
s used (EDF, ERF, LLF, RM). The s
hedulability of ea
h of the generated systems is 
he
ked usingthe dynami
 s
heduler, and the average SSR is 
al
ulated for ea
h one of the heuristi
s separately.38



Parameter Nominal value Range StepN 50 10 - 100 1M 20 2 - 50 1np 3 1 - 6 1Nr
 40 2 - 100 1N

 20 2 - 50 10.70 0.10 - 1.45 0.05Figure 14: Parameter variation ranges and steps9.4.1 ResultsThe variation in the s
hedulability su

ess ratio (SSR) as a result of varying ea
h of the parameters (N , M ,np, Nr
, N

, �=�) are shown in �gures 15, 16, 17, 18, 19, 20 respe
tively.9.4.2 Con
lusionsFrom the results of this experiments we 
an draw the following 
on
lusion in regards of the dynami
 s
hedulingalgorithm under 
onsideration:� The s
hedulability of a distributed real-time system is dire
tly proportional to the number of nodes andinversely proportional with the number of tasks. Therefore we 
an 
on
lude that the s
hedulability of adistributed system is inversely proportional with the density of tasks on the distributed system nodes.� By in
reasing the number of system period levels allowed to the 
ontrol tasks, the system s
hedulabilitydramati
ally de
reases. This is due to the in
reased variability in the system tasks periods and instan-
iation frequen
y, whi
h produ
es high probability for generating infeasible relative timing 
onstraintsamong task instan
es with large di�eren
e between their frequen
ies.� In
reasing the number of timing 
onstraints, whether they represent relative timing 
onstraints or 
om-muni
ation 
onstraints, de
reases the s
hedulability of the system. Whi
h is due to the in
reased numberof feasibility 
onditions that the system will have to satisfy to a
hieve s
hedulability. The tighter thesystem timing 
onstraints, the larger their e�e
t on the system feasibility.� In
reasing the standard deviation to mean ratio of the trun
ated Normal distribution used to generatethe time interval values de
reases the system s
hedulability. This is due to the in
reased variabilityin the system timing 
onstraints time interval values, and 
onsequently the probability of generating
ontradi
ting 
onstraints is also in
reased.
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Figure 15: Varying the number of real-time 
ontrol tasks
Varying Number of Distributed Nodes
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Figure 16: Varying the number of real-time system nodes40



Varying number of Period Levels
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Figure 17: Varying the number of period levels
Varying Number of Relative Timing Constraints
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Figure 18: Varying the number of relative timing 
onstraints
41



Varying Number of Communication Constraints
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Figure 19: Varying the number of 
ommuni
ation 
onstraints
Varying Normal Distribution SD/Mean Ratio


0.00


10.00


20.00


30.00


40.00


50.00


60.00


70.00


80.00


0.
1


0.
2


0.
3


0.
4


0.
5


0.
6


0.
7


0.
8


0.
9
 1


1.
1


1.
2


1.
3


1.
4


Normal Distribution SD/Mean Ration


S
ch

ed
u

la
b

ili
ty

 %



EDF


ERF


LLF


RM


Figure 20: Varying Normal Distribution SD/Mean Ratio
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A Variable Elimination OrderTheorem A.1 Given a set of ordered variables XN = [x1; x2; : : : ; xn�1; xn; : : : ; xN ℄ with standard relative
onstraints among them. If the two 
onse
utive variables xn�1 and xn do not have any 
onstraints betweenthem, then their relative order does not a�e
t the �nal out
ome of the Fourier-Motzkin variable eliminationpro
ess.Proof:After eliminating the variables xN through xn+1, the remaining variables are:Xn = [x1; x2; : : : ; xn�1; xn℄The 
orresponding set of standard relative timing 
onstraintsCn � AXn � bAfter eliminating the variable xn, the remaining variable ve
tor is:X 0n = Xn�1 = [x1; x2; : : : ; xn�1℄Eliminating xn�1 as well, the remaining variable ve
tor is:X 0n�1 = Xn�2 = [x1; x2; : : : ; xn�2℄Sin
e there is no timing 
onstraints between xn�1 and xn, then there is no 
onstraint in the equation setCn that has both variables. Therefore, we 
an partition the 
onstraint set into the following disjoint sets:Cn � CPn ^ CNn ^ CPn�1 ^ CNn�1 ^ CZwhere:� CPn : is the set of 
onstraints that 
ontain the variable xn with a positive 
oeÆ
ient.CPn � fxn � Di(X 0n); 1 � i � pg� CNn : is the set of 
onstraints that 
ontain the variable xn with a negative 
oeÆ
ient.CNn � fxn � Ej(X 0n); 1 � j � qg� CPn�1 : is the set of 
onstraints that 
ontain the variable xn�1 with a positive 
oeÆ
ient.CPn�1 � fxn�1 � Fk(X 0n�1); 1 � k � rg45



� CNn�1 : is the set of 
onstraints that 
ontain the variable xn�1 with a negative 
oeÆ
ient.CNn�1 � fxn�1 � Gl(X 0n�1); 1 � l � sg� CZ : whi
h is the set of 
onstraints that 
ontain neither xn�1 nor xn.CZ � f0 � Hm(X 0n�1); 1 � m � tgEliminating xn using the Fourier-Motzkin elimination pro
ess leads to a new equivalent system of 
on-straints: C 0n � 9xn :: Cn � 8>><>>: Di(X 0n) � Ej(X 0n); 1 � i � p; 1 � j � qxn�1 � Fk(X 0n�1); 1 � k � rxn�1 � Gl(X 0n�1); 1 � l � s0 � Hm(X 0n�1); 1 � m � tEliminating xn�1, the new 
onstraint system is:C 0n�1 � 9xn :: 9xn�1 :: Cn �8<: Di(X 0n) � Ej(X 0n); 1 � i � p; 1 � j � qFk(X 0n�1) � Gl(X 0n�1); 1 � k � r; 1 � l � s0 � Hm(X 0n�1); 1 � m � t (20)From equation 20, sin
e the elimination of variables xn and xn�1 a�e
t two disjoint sets of 
onstraints, it isobvious that applying the elimination pro
ess in the reverse order would result in the same set of 
onstraintsrepresented in equation 20. As a result, we 
on
lude that the order of elimination of two 
onse
utive variablesthat do not have any 
onstraints between them does not a�e
t the out
ome of the Fourier-Motzkin variableelimination pro
ess.
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