
Dynami
 Real-Time S
heduling in Distributed EnvironmentsSameh M. Elsharkawy Ashok Agrawalafsharkawy, agrawalag�
s.umd.eduDepartment of Computer S
ien
e, University of Maryland at College ParkSeptember 24, 2001Abstra
tReal-time appli
ations are be
oming in
reasingly popular in distributed environments. These real-time appli
ations range from hard real-time appli
ations with periodi
 or aperiodi
 tasks and intertaskrelative timing
onstraints to soft real-time appli
ations with best e�ort timing requirements. This paperintrodu
es a
omplete system model for s
heduling and dispat
hing hard as well as soft real-time taskswith intertask temporal dependen
ies in distributed environments. The model uses a dynami
 time basedo�-line s
heduler to verify the feasibility of a distributed hard real-time task set, and a parametri
 run-time kernel that guarantees the temporally determinate dispat
hing of hard real-time task instan
es andbest e�ort performan
e for soft real-time task instan
es. The use of the dynami
 time based s
heduling,provides o�-line guarantees for all the timing requirements of the hard real-time tasks while the parametri
dispat
hing me
hanism maintains a
exible run-time environment that makes use of the sla
k time with alimited overhead.1 Introdu
tionA distributed system is
olle
tion of inter-
onne
ted pro
essors that does not share memory or
lo
k . Thesystem provides users with a

ess to various resour
es maintained by the system [1℄. Distributed
omputingenvironments have be
ome the dominant operation environment in edu
ational as well as industry sites. Thisin
reasing popularity is due to what this environment o�ers in the sense of improved performan
e throughmulti-pro
essing,
onne
tivity through geographi
al lo
ation distribution, s
alability and portability throughmodularity, availability and reliability through resour
e repli
ation, and
ost e�e
tiveness [2℄. Distributedappli
ations running on these environments require a wide range of Quality of Servi
e (QoS) guarantees fromthe underlying system. QoS guarantees range from best e�ort performan
e required by non-real-time andsoft real-time appli
ations to the prior guarantee to meet all timing requirements and deadlines requested byhard real-time appli
ations. Among the
ommon real-time distributed appli
ations are tele
ommuni
ationssystems,
ommand and
ontrol, multimedia systems and distributed simulations (�gure 1).To provide timing guarantees for real-time distributed appli
ations, both individual nodes operating sys-tems and the network management system must
ollaborate to provide an end-to-end QoS enfor
ement ofglobal system timing feasibility. Therefore, a
omplete system design model needs to be developed that takesinto
onsideration resour
e s
heduling on
omputation nodes and
ommuni
ation resour
es management inthe underlying network
onne
ting them.
1

Satellite

Comm.

Tower

Satellite

dish

Ground Forces

Fighters

Target

Naval Forces

Target

Location

(GPS)

Target &

Navigation

Info.
 Target &

Navigation

Info.

Helicopters

Figure 1: Distributed Command and Control1.1 MotivationThis paper addresses the problem of distributed real-time s
heduling with various types of QoS requirementsand ar
hite
tural models.Many real-life distributed appli
ations have stri
t timing requirements and require timely intera
tion amongthe various tasks in the appli
ation. The existing solutions for su
h hard real-time appli
ations use stati
 (o�line), dynami
 (on line) or hybrid s
heduling method to allo
ate resour
es to the di�erent tasks in the system.Stati
 s
heduling algorithms provide time predi
tability at the expense of
exibility and performan
e at runtime. Dynami
 algorithms, on the other hand, provide a more
exible and time eÆ
ient solution but do notprovide a

eptable timing guarantees to many hard-real time appli
ations. The use of the dynami
 time-based parametri
 s
heduling method provides o�-line timing guarantees for hard real-time tasks and
exibleparametri
 dispat
hing me
hanism at run-time that makes use of the sla
k time with a limited overhead. Someof the
urrently existing appli
ations that
losely mat
h the system environment under
onsideration are:1. Distributed intera
tive simulations (DIS): Intera
tive simulations are used to dupli
ate the experien
e ofsituations that are too expensive, dangerous, or impra
ti
al to fa
ilitate in the real world. For example,in the
ase of Syntheti
 theater of war training (STOW) problem, military units around the globe
an parti
ipate a joint exer
ise that involve a simulation of real global
ombat situations [3℄. STOWappli
ations usually involve the timely initiation of several distributed events and rea
tions that requirea stri
t timing and QoS guarantees from the underlying system.2. Mission-
riti
al real-time distributed systems: These systems in
lude avioni
s mission
omputing sys-tems, ta
ti
al
ommand and
ontrol systems, and manufa
turing pro
ess
ontrol systems. This typeof real-time appli
ations require the support for various types of QoS aspe
ts su
h as bandwidth, la-ten
y, jitter, and time-dependability [4℄. Re
ent large-s
ale mission-
riti
al appli
ations require theintera
tion among large numbers of distributed tasks that are running on several distributed
omputingnodes. For instan
e, in avioni
s mission
omputing systems, the air
raft
ontroller must
ollaborate withremote
ommand and
ontrol systems, provide on-demand browsing
apabilities for human operators,intera
t with satellite systems to
al
ulate geographi
al position, and respond, in a timely manner, to2

unanti
ipated fa
tors that might arise in the run-time environment [4℄.3. Distributed ele
troni
 medi
al imaging systems (EMIS): Advan
es in the areas of high-speed networkingand hierar
hi
al storage management fa
ilitate the building of large-s
ale, distributed, performan
e-sensitive EMISs. Distributed EMISs require a great deal of
exibility, performan
e and QoS from theunderlying
ommuni
ation infrastru
ture in order to be able to provide message-oriented and stream-oriented media on-demand to any of the distributed diagnosti
 stations a
ross lo
al and wide areanetworks [5℄.1.2 Approa
hThe main problem addressed in this paper is that of s
heduling and dispat
hing real-time tasks running ona network of distributed
omputing nodes. The major s
heduling methodology used is the Dynami
 time-based parametri
 s
heduling method initially introdu
ed by M. Saksena et al [6℄ and further extended toin
lude periodi
 tasks by S. Choi [7℄. This method uses Fourier-Motzkin variable elimination te
hnique [8℄in the o�-line phase to verify the s
hedulability of the real-time task set and
al
ulate a dynami

alendar fordispat
hing jobs at runtime. The dynami

alendar represents the start time of ea
h job �i with two parametri
fun
tions (Fminsi ;Fmaxsi) whose evaluation generate the minimum and maximum feasible starting times of the
orresponding job. The parameters to these fun
tions
onsist of time event variables, like jobs' start and �nishtimes, whose values are generated at runtime by previously exe
uted jobs. The parametri
 s
heduling methodwas
hosen be
ause it provides hard real-time s
hedulability guarantees, as well as,
exibility to manage sla
ktimes without a�e
ting the task set s
hedulability [7℄.1.3 OutlineThe rest of this paper is organized as follows. Se
tion 2, summarizes prior work in the areas of hard anddistributed real-time s
heduling. The problem of Distributed Hard Real-Time S
heduling is presented in theremainder of the paper's se
tions. We start by des
ribing the problem de�nition and the system model forthis problem in se
tion 3. Next, we de�ne the parametri
 s
hedulability
ondition of the global system as wellas ea
h of the distributed nodes in se
tion 4. Then we introdu
e the solution algorithms for verifying globalsystem s
hedulability,
al
ulating dispat
hing
alendars for distributed nodes, and timely dispat
hing taskinstan
es in
onforman
e with the system timing requirements in se
tion 5. Se
tion 6 provides the
orre
tnessproof for the s
heduling algorithms. The stru
ture of the run-time dynami
 dispat
her is des
ribed in se
tion8. Finally, we des
ribe the
omplete model implementation, pra
ti
al experiments, and results in se
tion 9.2 Related WorkThe area of real-time s
heduling has been an a
tive resear
h topi
 for a relatively long period of time dueto the wide and
hanging demands of the real-time appli
ations. With the distributed workstations environ-ment be
oming the dominant operation environment, real-time s
heduling work in distributed environmentsis rapidly growing.In the following se
tions, we brie
y present some of the work that have been done in the
losely relatedareas to the presented problem.
3

s

s
s

s

j

N

s
s

s
i+1

i
i-1

relative constraint

s1
1

2
1

2

2
2

1
1

j

jFigure 2: Stati
 Cy
li
 S
heduling2.1 Hard Real-Time S
hedulingMany real-time s
heduling algorithms have been presented for various task models and
hara
teristi
s. Themajor parameters a

ording to whi
h the s
heduling methods
an be
lassi�ed are the possibility of task pre-emption, task periodi
ity and
riti
ality of meeting tasks timing requirements and deadline. A
omprehensivedes
ription of the various s
heduling algorithms and their appli
able task models is presented by Giorgio C.Buttazzo in [9℄.Hard real-time tasks require all their deadlines and timing requirements to be stri
tly enfor
ed to ensure
orre
t behavior. This needs feasibility tests to be performed prior to run-time in order to guarantee all theirtiming requirements to be met. The problem of guaranteeing timing
onstraints in hard real-time systems hasre
eived signi�
ant attention, however, few te
hniques have addressed the problem of guaranteeing inter-tasktemporal dependen
ies su
h as relative timing
onstraints. Most real-time s
heduling te
hniques
onsider thes
heduling of real-time tasks with ready times and deadlines [10, 11, 12, 13, 14, 15, 16, 17℄. These
onstraintsimpose
onstant intervals in whi
h a task must be exe
uted. In
ontrast, in the presen
e of relative time
onstraints, the time window within whi
h a task must exe
ute may depend on the s
heduling and exe
utionparameters of the other tasks in the system. Some of the systems that
onsider the problem of s
hedulingperiodi
 and aperiodi
 tasks with relative timing
onstraints were introdu
ed in [18, 6, 7℄.Some of the s
heduling method that are
losely related to the presented work are des
ribed below. Theyall involve s
heduling non-preemptive hard real-time tasks.Stati
 Cy
li
 S
heduling: Presented by S. Cheng and Asho
k Agrawala in [19℄. The algorithm studiesperiodi
 tasks with release time, deadline, and jitter
onstraints. It
onstru
ts a stati

alendar for thetasks. The
alendar is invoked repeatedly by wrapping around again to its starting point as shown in�gure 2.Parametri
 S
heduling: Gerber et al. [20℄ presents a s
heduling s
heme for aperiodi
 tasks with relativetiming
onstraints. The algorithm uses Fourier-Motzkin variable elimination te
hnique [8℄ to
al
ulatea parametri

alendar in the o�-line s
heduler, and uses it to dispat
h the task instan
es at run-time. Inthis
alendar, the start time of ea
h task is presented by two parametri
 bound fun
tions. A. Mok el al.4

in [18℄ presented a method that uses graph representation of tasks and their relative timing
onstraintsto test the s
hedulability of a real-time task set.Dynami
 Cy
li
 S
heduling: Presented by S. Choi et al. in [7, 21℄. Extends the parametri
 s
hedulingalgorithm to periodi
 tasks with relative timing
onstraints. The algorithm uses a graph to representthe tasks and their timing
onstraints. It
al
ulates a
y
li
 parametri

alendar to be used repeatedlyto dispat
h task instan
es at run-time.2.2 Distributed Real-Time S
hedulingThe area of real-time s
heduling in distributed environment has be
ome an a
tive area of resear
h due to thein
reasing demand on distributed appli
ations with various QoS and timing requirements. Providing temporalpredi
tability a
ross a network of distributed
omputing nodes requires the support of QoS-sensitive resour
es
heduling of the CPU time on the nodes, transfer time in the underlying network, and the network interfa
eson the host
omputers. All s
heduling systems has to
ollaborate to be able to provide end-to-end quality ofservi
e guarantees. Some of the major proje
ts involving real-time s
heduling in distributed environments aredes
ribed in the following subse
tions.2.2.1 HARTS and ARMADA Proje
tsThe HARTS proje
t, developed in the real-time
omputing laboratory of University of Mi
higan, involved thedesign and implementation of a real-time multi-
omputer system. The work mainly fo
used on the hardwareand software support for time-
onstrained
ommuni
ation in point-to-point networks. The proje
t studiesreal-time
ommuni
ation in multi-hop point-to-point networks [22℄. It provides the design and evaluation fora QoS sensitive
ommuni
ation subsystem ar
hite
ture that is mainly based on the use of real-time
hannels[23℄. A real-time
hannel is a simplex, ordered, unreliable, virtual
onne
tion between two networked hoststhat provides deterministi
 or statisti
al bound on the end-to-end delay by analyzing the traÆ
 rates andtiming requirements on every link on the message delivery route. The network nodes are running a
ommondistributed real-time operating system whi
h is responsible for network
ontrol as well as maintaining a globaltime base by syn
hronizing
lo
ks on the nodes.The ARMADA proje
t is mainly the
ontinuation of its prede
essor proje
t (HARTS). The goal of thisresear
h proje
t is to develop and demonstrate an integrated set of te
hniques and software tools for designing,implementing, and integrating
omputation, I/O, or
ommuni
ation intensive embedded real-time appli
ationon a parallel or distributed environments. The main methodology to a
hieve this goal is the development ofmodular and
omposable middleware servi
es for
onstru
ting distributed real-time appli
ations on a standardRTOS like Ma
h-RT from the open software foundation (OSF). The ARMADA proje
t inherits the real-time
ommuni
ation ar
hite
ture from the HARTS proje
t and also uses a fault-tolerant real-time multi
ast
ommuni
ation servi
e (RTCAST) [24℄. The RTCAST method supports bounded time message transport bysimulating a time based token-ring proto
ol on point-to-point networks. The ARMADA proje
t is
urrentlyunder development in University of Mi
higan and Honeywell.2.2.2 EPIQ Proje
tDeveloped at University of Illinois at Urbana-Champaign, the EPIQ proje
t was designed with the meta-
omputing framework in mind. It supports end-to-end quality of servi
e
ontrol and resour
e managementstrategies. The EPIQ proje
t adopts an open environment for real-time appli
ations, whi
h allows for theappli
ations to be developed and validated independent of ea
h other and
on�gured dynami
ally to run on5

the same platform. This s
heduler analyzes the s
hedulability of an appli
ation based on the assumptionthat it runs alone on a pro
essor with a speed that is a fra
tion of the speed of the target pro
essor. Thekey
omponent of the open system is the two level hierar
hi
al s
heduler, whi
h
onsists of an OS s
hedulerresponsible for dispat
hing the pro
essor to the di�erent appli
ations and a se
ond layer of server s
hedulers,one for ea
h appli
ation, whi
h are responsible for s
heduling the di�erent tasks and threads within ea
happli
ation a

ording to its spe
i�ed s
heduling algorithm [25℄.In order to provide end-to-end QoS guarantees in a networked environment, the EPIQ proje
t extendsthe Fast Messages (FM) high performan
e network software model developed in University of Illinois tosupport predi
table performan
e in terms of deterministi
 laten
ies and guaranteed bandwidth. The FM-QoSmodel in
orporates feedba
k-based syn
hronization (FBS) of senders and self-syn
hronizing
ommuni
ations
hedules to avoid resour
e
on
i
ts for network links and outputs. Elimination of su
h resour
e
on
i
ts leadsto predi
table
ommuni
ation performan
e. FM-QoS uses a Petri net model to
hara
terize the stru
ture ofthe self organizing s
hedules and to tolerate the
lo
k drifts [26℄.3 Problem Des
riptionAll the existing variations of the parametri
 time-based s
heduling method are based on a single node model.They mainly fo
us on non-preemptive periodi
/aperiodi
 hard real-time tasks with inter-task relative timing
onstraints. Our basi
 obje
tive is to extend the single node parametri
 time-based s
heduling method to beused with a distributed hard real-time task set with inter-task relative timing and
ommuni
ation
onstraints.This distributed algorithm is then used as a basis to develop a
omplete time-based s
heduling and dispat
hingmodel for a distributed set of hard/soft real-time tasks. In order to develop su
h model, several sub-problemshave to be addressed:� De�ning the task and network model.� De�ning s
hedulability
onditions to a
hieve global, network, and single node lo
al s
hedulability.� Designing o�-line algorithms for verifying these s
hedulability
onditions.� Proving the
orre
tness of the s
hedulability
onditions and veri�
ation algorithms.� Developing a time-based dispat
hing me
hanism to ensure the
orre
t timely exe
ution of the real-timetasks.To better understand the distributed time-based parametri
 s
heduling problem, we present the task modelunder
onsideration followed by the model des
ription for the network that
onne
ts the distributed
omputingnodes.3.1 Task ModelThe environment under
onsideration
onsists of a set of M
omputer nodes fNode1; Node2; :::; NodeMg. Onea
h node, runs a group of periodi
 non-preemptive hard real time tasks. The least
ommon multiple (LCM)of tasks periods on all the nodes is L, whi
h is also known as the s
heduling window on all nodes. In ea
hs
heduling window, there is Nm task instan
es (jobs) that run on node m, su
h that 1 <= m <= M . Thetotal number of jobs running on all nodes in one s
heduling window is N =PMm=1Nm .6

Let �jm = f� ji;m j i = 1 : : :Nmg denote the ordered set of Nm jobs to be dispat
hed sequentially in thejth s
heduling window [(j � 1)L; jL℄ on node m. Jobs are non-preemptively exe
uted in the given order forevery s
heduling
y
le. The exe
ution order for this job set is predetermined, and enfor
ed by order timing
onstraints. The set of tasks to be dispat
hed on all nodes in the jth s
heduling window is represented by�j = f�j1 [�j2 [: : :�jMg.Ea
h periodi
 real-time task in the system needs to spe
ify the parameters that are
ommon for all itsinstan
es (jobs). These parameters are:1. Task period P2. Low jitter �3. High jitter �In addition to the parameters inherited from the task, there exist a number of parameters for ea
h job � ji;mthat spe
ify its timing behavior and
hara
teristi
s, these parameters are:1. Start time sji;m2. Exe
ution time eji;m3. Finish time f ji;m4. Minimum exe
ution time lji;m5. Maximum exe
ution time uji;m6. Release time rji;m7. Deadline dji;mThe values of some of the parameters vary a

ording to the runtime behavior of the task, su
h as start-time,exe
ution time, and �nish time. The rest of the task parameters are
onstants for ea
h job and are determinedprior to the s
hedulability test phase.For every job, only two time event points
an be used as time variables, the start time s and the �nish timef . Between any two time variables on the same node, there
an be at most two relative timing
onstraints.These
onstraints form the lower or upper bounds on the time period between the two variables. A relativetiming
onstraint involving only two time variables is referred to as Standard. A standard relative timing
onstraint
an be de�ned as follows.De�nition 3.1 (Standard Constraints) A standard
onstraint involves the variables of at most two jobsrunning on the same node, � ja;m and � lb;m(1 � a � b � Nm, j j � l j� 1), where sja;m(or sja;m + eja;m) appearson one side of \�", and slb;m(or slb;m + elb;m) appears on the other side of the \�". For the two jobs, � ja;m,� lb;m, the following
onstraints are permitted(where
i is an arbitrary
onstant) and
alled relative standard
onstraints (the node number m is eliminated in this example for
larity purposes):
7

sja � slb �
1sja � (slb + elb) �
2sja + eja � slb �
3sja + eja � (slb + elb) �
4 slb � sja �
5slb � (sja + eja) �
6slb + elb � sja �
7slb + elb � (sja + eja) �
8 (1)In addition, release time and deadline
onstraints for ea
h job are
alled Absolute standard
onstraints. Ajob � ja;m has the following absolute
onstraints:
9 � sja;m sja;m + eja;m �
10 (2)Any
onstraint that
an be rewritten in one of the above forms is also
onsidered a standard
onstraint;e.g., sja;m � slb;m + elb;m � eja; +
 falls into this
ategory [7℄.The set of all relative timing
onstraints among jobs running on physi
al node m is represented by Cm.The system timing
onstraints set
onsists of the union of all lo
al timing
onstraint sets on all the separatenodes Cm; 1 � m �M plus the
ommuni
ation
onstraints C
 (De�nition 3.3).C = C1 [C2 : : : [CM [C
 (3)3.2 Network ModelThe network model
onsidered in this problem
onsists of M pro
essor nodes
onne
ted by point-to-pointdual simplex links. A link
onne
ting Nodei to Nodej is referred to as Linki;j . A node in the system
anhave several in
oming and outgoing links atta
hed to it, ea
h of whi
h
an operate in parallel with the others.Ea
h link end is
onne
ted to a front end pro
essor that performs all the data transfer fun
tionality. Figure 3shows the point-to-point network model under
onsideration. The nodes are assumed to maintain syn
hronized
lo
ks a

ording to a global time-base for the system. The maximum skew between
lo
ks on di�erent nodes isassumed to be very small
ompared to message transfer delays. An algorithm for syn
hronizing the distributednodes'
alendars is presented as part of the run-time dispat
her in se
tion 8.2. There exist di�erent s
hemesfor a
hieving distributed
lo
ks syn
hronization su
h as the method presented in [27℄.3.2.1 Communi
ation ChannelsBetween two tasks running on two di�erent nodes, a periodi

ommuni
ation
hannel
an be established whi
h
an transfer periodi
 messages from one task to another. Communi
ation
hannels
an span multiple networkpoint-to-point links. The links that a
hannel goes through are determined using a stati
 routing algorithmto ensure transfer time predi
tability. Communi
ation
hannels
an only be established from a sour
e taskinstan
e in one s
heduling window and a destination instan
e in the same or next s
heduling window, thatexe
utes on a di�erent physi
al node. A
ommuni
ation
hannel is spe
i�ed by the following parameters:� Sour
e task instan
e.� Destination task instan
e. 8

Node

1

Node

4

Node

2

Node

3

Node

M-2

Node

M-1

Node

M

q
 1,2

q
1,3

q
1,4

q

3,

2

q
M
,M

-2

q
 M
,M

-1

q
 M
-1

,M
-2

q
 2,1

q
3,1

q

2,

3

q
4,1

q
 M
-2

,M
-1

q
M
-2,M

q
 M
-1

,M

Figure 3: Network Model� Message generation s
heme{ Maximum message size (S).{ Maximum message Rate (R).{ Burst size (B).� Desired end-to-end maximum message delay (q).The
ommuni
ation
hannel imposes an upper bound on the message delivery time (De�nition 3.2) ex-perien
ed by ea
h message transferred on this
hannel. The delay limitations imposed by
ommuni
ation
hannels on transferred messages is referred to as Communi
ation
onstraints (De�nition 3.3). The set of all
ommuni
ation
onstraints among the M nodes is represented by C
.De�nition 3.2 (Message Delivery Time (MDT)) The Message Delivery Time MDT for a
ommuni
a-tion
hannel is de�ned to be the total time elapsed from the time the sour
e job starts sending out the messagetill the message is
ompletely re
eived by the target job. This is equal to the sum of the following
omponents[28℄:1. Communi
ation pro
essing time tC: Whi
h is the time required for preparing the information for trans-mission. For example, the time taken to organize data into pa
kets.2. Queuing time tQ: This is the time spent by the pa
kets waiting in queues for di�erent resour
es.3. Transmission time tT : This is the time it takes for the
omplete information to be transmitted from thesour
e.4. Propagation time tP : Whi
h is time taken by a single bit in the pa
ket to travel from the
ommuni
ation
hannel sour
e to the destination.Therefore, The overallMDT
an be represented as the sum of all these
omponents. The worst
ase messagedelivery timeMDTw
 has to be less than or equal to the maximum delay required for the
ommuni
ation
hannelq. 9

T
i,

j

m

T
k,

l

n

>= q
 i,

k,

m

n

Time Line

Node (n)

Node (m)

Communication M
essage

Target

Source

Figure 4: Communi
ation
onstraintsMDT = tC + tQ + tT + tP �MDTw
 � qDe�nition 3.3 (Communi
ation Constraints) A
ommuni
ation
onstraint is the upper limit qk;l;ni;j;m im-posed on the delivery time of a message sent over a
ommuni
ation
hannel established from one job � ji;m toanother job � lk;n on two di�erent nodes m;n. Therefore, a lower limit is imposed on the time distan
e betweenthe �nish-time of the sour
e job f ji;m and the start-time of the target job slk;n to a

ommodate the worst
asedelivery time. Communi
ation messages are assumed to be periodi
. Ea
h message is assumed to be sent at theend of the sour
e job exe
ution, and
ompletely re
eived by the destination node before beginning the exe
utionof the target job. Figure 4 shows a
ommuni
ation
onstraint on the time-line
orresponding to
onstraintequation 4. slk;n � f ji;m � qk;l;ni;j;m (4)If a worst
ase message delivery time MDTw

an be obtained, it
an be used as an upper limit for the
ommuni
ation
onstraint if it is less than or equal to the original
onstraint upper limit q as shown in equation5. slk;n � f ji;m � (MDTw
)k;l;ni;j;m (5)4 S
hedulabilityThe Global s
hedulability of the whole task model is established if and only if we
an �nd starting times forall jobs that will satisfy all timing
onstraints for all possible exe
ution times. The possible exe
ution timefor ea
h task lies between the lower and upper bounds for its exe
ution [l; u℄. The system timing
onstraints10

set
onsists of the union of all lo
al timing
onstraint sets on all the separate nodes Cm; 1 � m �M plus the
ommuni
ation
onstraints C
. C = C1 [C2 : : : [CM [C
 (6)The s
hedulability test predi
ates are presented in de�nitions 4.1 through 4.3. The s
hedulability of a setof N tasks holds if and only if there exist a start time assignment that preserves all required task ordering andtiming
onstraints. Ordering information is normally given as pre
eden
e
onstraints represented as part ofthe timing
onstraints set C. Therefore, the ne
essary and suÆ
ient
ondition for the task set s
hedulability(S
hed1) is de�ned in 4.1.De�nition 4.1 (Stati
 S
hedulability of � [6℄) The set of N tasks � is s
hedulable if and only if thefollowing predi
ate holds: S
hed1 � 9si :: 8ei 2 [li; ui℄ :: C : : :8i : 1 � i � N (7)where C is the set of relative timing
onstraints de�ned on fs1; e1; : : : sN ; eNg.S
hed1 represents the stati
 s
hedulability
ondition for a �xed set of aperiodi
 tasks. The ne
essary andsuÆ
ient s
hedulability
ondition for a set of N tasks repeating k times is represented as S
hed2 and de�nedin 4.2.De�nition 4.2 (Stati
 S
hedulability of �1;k) The k � fold distributed set of N tasks � is s
hedulable ifand only if the following predi
ate holds:S
hed1;k2 � 9sji;m :: 8eji;m 2 [lji;m; uji;m℄ :: C1;k : : : [8i : 1 � i � N;8j : 1 � j � k;8m : 1 � m �M ℄ (8)where C1;k is the set of relative timing
onstraints de�ned on fs11; e11; : : : skN ; ekNg.Stati
 s
hedulability o�ers simpler o�-line temporal
orre
tness veri�
ation of the task set as well asfaster run-time dispat
hing whi
h, merely needs to do table look up to �gure out the next task instan
e to bedispat
hed and its dispat
h time. The drawba
k of the stati
 approa
h, is that it doesn't a

ount for variationsin run-time behaviour of various tasks and uses their worst
ase exe
ution time in the
orre
tness analysiswhi
h leads to ineÆ
ien
y in the resulting dispat
hing
alendars. Parametri
 s
heduling introdu
ed by [6, 7℄generalizes stati
 s
heduling by deferring the a
tual start-time
al
ulation pro
ess to the run-time dispat
her,whi
h
an use the a
tual exe
ution times of the previous tasks in the dispat
hing pro
ess.The parametri
 s
hedulability
ondition of a distributed set of N tasks repeating k times is represented byS
hed3 de�ned in 4.3. The steady state s
hedulability of a set of N periodi
 tasks repeating inde�nitely
anbe established by testing S
hed1;k3 for large values of k, spe
i�
ally as k ! 1. The steady state
orre
tnessveri�
ation predi
ate S
hed1;1 is de�ned in 4.4.De�nition 4.3 (Parametri
 S
hedulability of �1;k) The k � fold distributed set of N tasks � is s
hedu-lable with respe
t to parametri
 s
heduling if the following predi
ate holds:
11

S
hed1;k3 �9s11;1 :: 8e11;1 2 [l11;1; u11;1℄ :: 9s12;1 :: 8e12;1 2 [l12;1; u12;1℄ :: : : : :: 9skN1;1 :: 8ekN1;1 2 [lkN1;1; ukN1;1℄ :: C1;k1.̂..̂9s11;m :: 8e11;m 2 [l11;m; u11;m℄ :: : : : :: 9skNm;m :: 8ekNm;m 2 [lkNm;m; ukNm;m℄ :: C1;km.̂..̂9s11;M :: 8e11;M 2 [l11;M ; u11;M ℄ :: : : : :: 9skNM ;M :: 8ekNM ;M 2 [lkNM ;M ; ukNM ;M ℄ :: C1;kMĈ

(9)

De�nition 4.4 (Parametri
 S
hedulability of �1;1 [7℄) The periodi
 task set �1;1 is s
hedulable if andonly if S
hed1;1 = limk!1S
hed1;k3 = True (10)The terms S
hed1;1 and S
hed will be used inter
hangeably to represent the global s
hedulability of thedistributed
onstrained task set.5 Distributed Dynami
 S
hedulingThis se
tion introdu
es the framework for establishing the global s
hedulability of the distributed task modeldes
ribed in se
tion 3.1, and
reating a separate dynami
 parametri

alendar for ea
h of the distributed nodesin the distributed system that satis�es all system timing and
ommuni
ation
onstraints.5.1 S
hedulability Veri�
ationThe s
hedulability veri�
ation pro
ess is performed o�-line and assumes that the timing
onstraints and
om-muni
ation parameters of all hard real-time tasks are known prior to runtime. In
ase the global s
hedulabilityof the system is proven, the algorithm produ
es dynami

alendars whi
h are then used by the on-line dy-nami
 dispat
her des
ribed in se
tion 8 to
ontrol the dispat
hing and exe
ution of all hard real-time tasksa

ording to their spe
i�ed timing requirements. The s
hedulability veri�
ation pro
ess steps are des
ribed inthe following subse
tions.5.1.1 Communi
ation feasibilityEstablishes the feasibility of all the
ommuni
ation
hannels to be established between periodi
 real-time tasksresiding on di�erent nodes. This is performed by means of Real Time
hannels [22℄, a method for establishingtime-
onstrained
ommuni
ation in multi-hop networks.This pro
ess starts by
al
ulating the optimum stati
 route fNodes; Node1; :::; Noden; Nodetg for ea
h oneof the
ommuni
ation
hannels. The messages of the
ommuni
ation
hannels are added to the message-table12

HPQ

GOL

Topological Graph

Extract first Job

Update

in-degree

of

neighbors

Insert

jobs with

in-degree = 0

Figure 5: Global task order generationof ea
h one of the point-to-point links along the
al
ulated route fLinks;1; :::; Linkn;tg. Using the Messagegeneration s
heme [Maximum message size (S), Maximum message Rate (R), and Burst size (B)℄, the RealTime
hannels method is used for ea
h point-to-point link to establish the feasibility of the messages passingthrough ea
h link in the
ommuni
ation network, and
al
ulating the worst
ase delay ea
h message experien
esto pass through the link. By adding the message delays on all the
ommuni
ation
hannel route links, the end-to-end worst
ase message delivery time (MDTw
)ts experien
ed by messages of the
ommuni
ation
hannelis obtained. If the
hannel's
al
ulated worst
ase message delivery time is less than or equal to the messagedelivery time upper limit qts required by the
ommuni
ation
hannel, then this
hannel is feasible, otherwise,it is not.Total
ommuni
ation feasibility of the system is established if all the system
ommuni
ation
hannels aswell as point-to-point network links are feasible.The detailed steps for the
ommuni
ation feasibility veri�
ation pro
ess are shown in step (1) of theDynami
 O�-Line S
heduler algorithm 5.3.5.1.2 Global task orderThe Global task order is a single ordered list
ontaining all the distributed task instan
es (jobs) in the system.Jobs in this list are ordered in the reverse order in whi
h they will be eliminated using the variable eliminationalgorithm used to verify the global system feasibility.The Global task order maintains all job orders spe
i�ed by system pre
eden
e
onstraints, relative timing
onstraints, jitter
onstraints, as well as all
ommuni
ation
onstraints. A heuristi
 is used to insert jobs inthe Global order list when system timing requirements does not uniquely identify a spe
i�
 order. Some ofthe heuristi
s used are Earliest Deadline First (EDF), Earliest Ready-time First (ERF), Least Laxity First(LLF), or Rate Monotoni
 (RM). 13

In order to be able to apply the variable elimination te
hnique, jobs need to be ordered su
h that thestart time of ea
h job depends only on the pre
eding jobs in the global order. In the same time, we need tomaintain ea
h node's lo
al jobs order. To a
hieve the required global order, we
onstru
t a Topologi
al graphwhi
h
onsists of 2N nodes representing all jobs in two
onse
utive s
heduling windows and Pre
eden
e linkswhi
h spe
ify that the job represented by the sour
e node of the link must pre
ede the job represented by thetarget node of the same link.To generate the Global task order, the in-degree (number of links entering a graph node) of ea
h job nodeis
al
ulated. The jobs with in-degree equal to 0 are inserted into a priority queue ordered a

ording to theheuristi
 to be used (Heuristi
 Priority Queue HPQ). We repeatedly extra
t the job at the head of the HPQ,add it to the Global Order List (GOL), de
rement the in-degree of all the target nodes of pre
eden
e linksoriginating from the extra
ted job, and insert the nodes with in-degree equal to 0 into the HPQ. The pro
essis stopped on
e there is no more jobs in the HPQ. The global task order generation pro
ess is illustrated in�gure 5.If the GOL does not
ontain all the system jobs, then the Global task order
annot be
onstru
ted due to
ir
ular dependen
ies in the system timing requirements, and therefore, the system is infeasible.The detailed steps for
onstru
ting the Global task order are presented in algorithm 5.1.Algorithm 5.1 (Global Task Order) The algorithm for �nding the Global Jobs Order is as follows:1. Create a node in the Topologi
al graph for ea
h job in two
onse
utive s
heduling windows of the taskset.2. Create a Pre
eden
e link from ea
h node to the node dire
tly after it in its lo
al node job order.3. For (ea
h
ommuni
ation
hannel) f(3.1) Create a Pre
eden
e link from the node representing the sour
e job of the
ommuni
ation
hannelto the
hannel's target job.g4. Cal
ulate the in-degree for ea
h job node in the Topologi
al graph.5. Insert jobs with in-degree=0 into the Heuristi
 Priority Queue (HPQ).6. While (HPQ is not empty) do f(6.1) Extra
t �rst job in the HPQ.(6.2) Insert job into the Global Order List (GOL).(6.3) For (ea
h pre
eden
e link originating at the extra
ted job) f6.3.1. De
rement the in-degree of the target job of the Pre
eden
e link by 1.6.3.2. If job's in-degree is equal to 0, insert job into the HPQ.gg7. If an order
ontaining all the system jobs is found, it is used as the Global order for the variable elimi-nation pro
ess.8. Else, Task set timing
onstraints
ontain
ir
ular dependen
ies and the system is not feasible.14

s
1

1

0

5

- 8

f
1

1
 s
2

1
 f
2

1

0

15
 - 26

40

s
1

2

0

f
1

2
 s
2

2
 f
2

2

0
 15

- 15
 30

s
3

2
 f
3

2

- 25

35

Node 1
 Node 2

5

0

3

- 7

6

- 9

1

0

4

- 8

1

0

2

- 5

-3

-2

Figure 6: Distributed timing
onstraints5.1.3 Global
onstraint graph GgThe next step in the s
hedulability veri�
ation pro
ess is to
onstru
t the Global Constraint Graph, whi
hrepresents all the system task instan
es, absolute and relative timing requirements, as well as
ommuni
ation
onstraints of the system in two
onse
utive s
heduling windows. An example of the graph representation ofthe system model is shown in �gure 6.The global
onstraint graph Gg
onsists of 4N+1 time event nodes representing the task model jobs. Ea
hjob is represented by four time event nodes in the graph [sji;m; f ji;m; sj+1i;m ; f j+1i;m ℄ whi
h represent the start and�nish times for that job in two
onse
utive s
heduling windows. A v0 node is added to the graph to representthe referen
e time t0 starting from whi
h all time values are measured.The graph weighted links represent the lo
al relative timing
onstraints among the jobs if they link twotime events that belong to jobs on the same system node, and they represent
ommuni
ation
onstraints ifthey link time events belonging to two jobs on separate system nodes. Links to or from the v0 node representabsolute timing
onstraints su
h as the ready-time or deadline of a spe
i�
 task instan
e. Timing
onstraintsbetween jobs within one s
heduling window are repeated in the two represented s
heduling windows. Timing
onstraints between jobs in di�erent s
heduling windows is represented on
e between the �rst and se
onds
heduling windows. The di�erent types of timing
onstraints are represented in the graph as shown in �gure7 a

ording to the following rules:� Minimum/Maximum exe
ution times are represented by two mutually ex
lusive links between thestart time and �nish time events of the same job. The minimum exe
ution time is represented by a linkfrom the job's start time node s to the job's �nish time node with a weight l. The maximum exe
utiontime is represented by a link in the reverse dire
tion with a weight �u.� Relative timing
onstraints are represented in the graph by a single link for ea
h
onstraint. A
onstraint v2 � v1 � w is represented by a link from event node v1 to event node v2 with a weight w.� Ready-times and deadlines are absolute timing
onstraints and are therefore represented by linksto/from the time referen
e node v0. The ready time r is represented by a link from the job's start time15

s
 f
+

l

-
u

Min / Max execution const.

v
1
 v
2

w

v
2
 -
v
1
≤
w

Relative timing constraints

s

-
q

s
-
f
³
 q

f

Communication constraints

s
 f

v
0

-
r
 d

Release and Deadline const.
Figure 7: Graphi
al representation of timing
onstraintsnode s to the v0 node with a weight �r, and the deadline is represented by a link from the v0 node tothe �nish time node f of the same job with a weight d.� Communi
ation
onstraints are represented by a link from the target job's start time node st to thetarget job's �nish time node fs. The link weight is the negative value of the worst
ase message delayrequired by the
ommuni
ation
onstraint �q.A detailed des
ription of the rules to
onstru
t a graph representation of hard real-time tasks with inter-tasktiming
onstraints is presented in details in [7℄.5.1.4 Global system feasibilityAfter
onstru
ting the Global
onstraint graph, it is used in this step by the Cy
li
 Variable EliminationMethod [7℄ to verify the global feasibility of the timing requirements of all the system tasks.The Method repeatedly eliminates the time event nodes in the se
ond s
heduling window of the
onstraintgraph. The elimination pro
ess usually results in
hanges in the timing
onstraints of the �rst graph s
hedulingwindow. These updates are
opied to the se
ond s
heduling window, after it has been re-
onstru
ted, and theelimination pro
ess of the se
ond s
heduling window nodes is repeated.If an infeasibility
ondition is dete
ted after the elimination of any time event node, the pro
ess is stopped,and the system is de
lared infeasible. The infeasibility
ondition arises when a negative weight
y
le isgenerated after the elimination of a time event node.The system is s
hedulable if the elimination pro
ess rea
hes a steady state in whi
h no updates areintrodu
ed to the graph after eliminating all the se
ond s
heduling window time event nodes. If the maximumnumber of iterations is rea
hed before the Cy
li
 Variable Elimination pro
ess iterations rea
h a steady state,it is
on
luded that the system task set with the given timing
onstraints are not s
hedulable. The maximumnumber of iterations is n2 � n + 2, where n is the number of jobs in the �rst s
heduling window that havetiming
onstraints with jobs in the se
ond s
heduling window.The detailed steps for the Distributed Cy
li
 Variable Elimination Method are des
ribed in algorithm 5.2.16

Algorithm 5.2 (Cy
li
 Variable Elimination te
hnique)1. Initialize Global
onstraint graph Gg.2. Let iteration = 0.3. Let n = number of jobs in the �rst s
heduling window that have timing
onstraints with jobs in the se
onds
heduling window.4. While (iteration < n2 � n+ 2) do f(4.1) For (j = 2N to 1) do f4.1.1. Eliminate graph event node j from se
ond s
heduling window.4.1.2. If (resulting graph
ontains a negative weight
y
le) f� Task set is not feasible� Exitgg(4.2) If (New updates were generated in the graph's �rst s
heduling window as a result of the eliminationpro
ess) f4.2.1. Re
onstru
t graph se
ond s
heduling window.4.2.2. Add elimination graph updates to the se
ond s
heduling window.4.2.3. iteration = iteration+ 1g(4.3) Else f4.3.1. Task set is feasible4.3.2. Exitgg5. Task set is not feasible6. Exit5.2 Lo
al node
alendarsIn the distributed environment under
onsideration, ea
h node has to operate independently and intera
t withthe tasks running on other nodes only through the
ommuni
ation
hannels spe
i�ed. Therefore, we
al
ulatea separate
y
li
 dynami

alendar for ea
h one of the distributed nodes. Ea
h of the lo
al node
alendars musthave all the information required to dispat
h the lo
al real-time jobs a

ording to their timing
onstraints,and in the same time, adhere to the global system feasibility and
ommuni
ation timing
onstraints.To
onstru
t lo
al node
alendars, a separate lo
al
onstraint graph is built for ea
h one of the nodes usingonly its lo
al jobs and lo
al timing
onstraints as des
ribed in se
tion 5.1.3. By applying the Cy
li
 VariableElimination Method on the lo
al
onstraint graph, the lo
al parametri

alendar for the node is generated. Thenode
alendar
onsists of two parametri
 fun
tions for ea
h one of the jobs, minimum start time Fmin() andmaximum start time Fmax(). The
ommuni
ation timing
onstraints are then appended to the generated lo
aldynami

alendars by adding the arrival time of the
ommuni
ation messages as parameters to the minimum17

start time fun
tions of jobs that are targets of
ommuni
ation
hannels. The resulting parametri

alendar isthen used by the dynami
 dispat
her to start the exe
ution of hard real-time jobs a

ording to their timing
onstraints as des
ribed in se
tion 8.Algorithm 5.3 (Dynami
 O�-Line S
heduler) The O�-line s
heduling and
alendar
al
ulation is per-formed by the following algorithm:1. Communi
ation feasibility:(1.1) For (every
ommuni
ation
hannel) f1.1.1. Cal
ulate the optimum rout1.1.2. Add the
ommuni
ation
hannel messages to the message tables of all the links on
hannel routg(1.2) For (Every network link) f1.2.1. Che
k the feasibility of this link using the real-time
hannel method1.2.2. If (any link is not feasible) f1.2.2.1. Re
ord infeasible link1.2.2.2. Real-time
ommuni
ation is not feasible1.2.2.3. Exitg1.2.3. Else f1.2.3.1. Cal
ulate the worst
ase delay that ea
h message experien
e passing through this linkgg(1.3) For (Every
ommuni
ation
hannel) f1.3.1. Cal
ulate the end-to-end worst
ase message delivery time (MDTw
)ts1.3.2. If ((MDTw
)ts � qts) f1.3.2.1. Re
ord infeasible
ommuni
ation
hannel1.3.2.2. Real-time
ommuni
ation is not feasible1.3.2.3. Exitgg(1.4) System Real-time
ommuni
ation is feasible2. Global
onstraint graph (Gg):(2.1) Create a referen
e node v0 representing the global time t0 = 0(2.2) For (All sour
e/target nodes of Real-time
hannels) f2.2.1. Let the global node v0 represent the node's referen
e time2.2.2. For (ea
h job) f2.2.2.1. Add four time event nodes to the
onstraint graph� Start time in �rst s
heduling window� Finish time in �rst s
heduling window� Start time in Se
ond s
heduling window� Finish time in Se
ond s
heduling window18

2.2.2.2. Add job's minimum and maximum exe
ution times
onstraint links to the graph2.2.2.3. Add job's ready time and deadline
onstraint links to the graphg2.2.3. Add jitter
onstraints as links between
onse
utive jobs of the same real-time task2.2.4. Add relative timing
onstraints as links in the graph2.2.5. Add
ommuni
ation
onstraints to the graph as links from the start time of the target job to the�nish time of the sour
e job with a weight equal to the negative value of the worst
ase messagedelivery time (�MDTw
)ts of the
orresponding
ommuni
ation
hannelg3. Global system feasibility:(3.1) Use algorithm 5.1 to �nd the Global Jobs Order.(3.2) If (a global order is not found) f3.2.1. Task set is not feasible3.2.2. Exitg(3.3) Apply Cy
li
 Variable Elimination te
hnique des
ribed in algorithm 5.2 to establish the global s
hedu-lability of the system(3.4) If (System is not feasible) f3.4.1. Mark
onstraints that lead to infeasibility3.4.2. Task set is not feasible3.4.3. Exitg(3.5) Global system is feasible4. Lo
al node
alendars:(4.1) For (All nodes) f4.1.1. Build the lo
al
onstraint graph for the node using only lo
al jobs and lo
al timing
onstraints4.1.2. Apply Cy
li
 Variable Elimination te
hnique to establish the lo
al s
hedulability of the node4.1.3. If (Node is not s
hedulable) f� Mark the node as infeasible for re-evaluation and re-s
hedulingg4.1.4. Cal
ulate the minimum and maximum start-time parametri
 fun
tions for ea
h job4.1.5. For (Ea
h job that is a target of a Communi
ation
hannel) f� Add the arrival-time of the
ommuni
ation message as a parameter to the job's minimumstart time parametri
 fun
tiong4.1.6. Store the node's dynami
 parametri
 fun
tions into its lo
al
alendar to be used by the run-timedispat
her.g6 Algorithm Corre
tnessTo prove the
orre
tness of the distributed s
heduling method, we need to establish the
orre
tness of few sub-problems whi
h
onstitute the total
orre
tness of the main algorithm. Ea
h of the individual sub-problemsis introdu
ed separately in one of the following sub-se
tions.19

6.1 Cy
li
 Variable Elimination and Parametri
 S
hedulingThe use of variable elimination te
hniques for non-periodi
 dynami
 parametri
 s
heduling has been introdu
edin [6℄. The extension of the parametri
 s
heduling method to in
lude periodi
 and sporadi
 tasks in a single-node environment has been presented in se
tion 5.1.4. The algorithm details as well as its proof of
orre
tnessare des
ribed in [7℄. Therefore, we
onsider the single-node
y
li
 variable elimination method to be
orre
t,and basi
ally use it as a bla
k-box.6.2 Real-time Channels Feasibility TestingReal-time
hannels is an algorithm used to verify the timing feasibility of
ommuni
ation messages on ea
hnetwork link and
al
ulate the worst
ase delivery time for ea
h message. The algorithm is des
ribed brie
yin se
tion 5.1.1. The details of the algorithm as well as the proof of
orre
tness are des
ribed in [22℄. We also
onsider this method to be
orre
t and use in a bla
k-box manner as well.6.3 Global S
hedulability ValidationThis sub-se
tion establishes the
orre
tness of the global feasibility analysis step performed by the o�-lines
heduler. In order to verify the global s
hedulability
orre
tness we need to establish few major points asdes
ribed in the sub-se
tions below.6.3.1 Representation
ompletenessAll system
omponents are represented in the global
onstraint graph Gg used for s
hedulability analysis.Ea
h of the distributed jobs is represented in the global
onstraint graph by two time event nodes (s; f),and ea
h of the timing
onstraints is represented in the global
onstraints graph as follows:� Ready time of a job is represented by a link from the start time event node s to the referen
e time nodev0.� Deadline is represented by link from node v0 to the �nish time event node f of the job.� Minimum exe
ution time is represented as a link from the start time event node s to the �nish timeevent node f of the job.� Maximum exe
ution time is represented as a link from the �nish time event node f of the job to thestart time event node s.� Low jitter
onstraint is represented as a link from the �nish time of a task instan
e fi to the start timeof the next instan
e in the same task si+1.� High jitter
onstraint is represented as a link from the start time of a task instan
e si to the �nish timeof the previous instan
e in the same task fi�1.� Pre
eden
e
onstraints are represented as a link from the �nish time of a job f to the start time of thenext job s. 20

� Lo
al relative timing
onstraints between di�erent jobs are in
luded as links between the appropriatetime event nodes of these jobs.� Communi
ation
onstraints are in
luded as a link from the �nish time event node of the sour
e job fsto the start time event node of the destination job st.These itemized
ategories represent all system absolute timing
onstraints CA, relative timing
onstraintsCR and
ommuni
ation
onstraints C
. Where:CA = SMm=1 CA;mCR = SMm=1 CR;m (11)From equation (6), the
omplete set of system
onstraints
an be represented as:C = C1 [C2 : : : [CM [C
Sin
e: Cm = CA;m [CR;m 8m = 1 : : :MThen: C = CA;1 [CR;1 [CA;2 [CR;2 : : : [CA;M [CR;M [C
Rearranging: C = CA;1 [CA;2 : : : [CA;M [CR;1 [CR;2 : : : [CR;M [C
Therefore form equation 11: C = CA [CR [C
 (12)From equation (12), we
an
on
lude that the timing
onstraints represented in the global
onstraintgraph
onstitute all the system timing requirements. Therefore, we established that all system jobs andtiming requirements are
ompletely represented in the global
onstraint graph and
onsequently are in
ludedin the global s
hedulability analysis.6.3.2 Mapping problem into single-node domainThe global s
hedulability analysis maps to a
y
li
 variable elimination problem, whose
orre
tness is alreadyestablished in ([7, 6℄). 21

The global
onstraints graph Gg used in the feasibility analysis
onsists of a set of nodes representing thestart and �nish times of all the jobs in the task set, a single referen
e time node v0, and links to representabsolute and relative timing
onstraints among the system task instan
es. Communi
ation
onstraints arerepresented by relative timing
onstraints among the sour
e and destination jobs. The start time of any jobinstan
e depends only on the timing
hara
teristi
s of the previous job instan
es sin
e the global jobs ordertopologi
ally sorts jobs a

ording to their timing dependen
ies. Therefore, we
an
on
lude that the global
onstraint graph used for the global feasibility analysis represents a valid single-node dynami
 s
hedulingmodel, on whi
h
y
li
 variable elimination te
hniques
an be applied.6.3.3 Mapping s
hedulability output into distributed domainThe out
ome of the single-node
y
li
 variable elimination problem on the global
onstraint graph representsthe global distributed system s
hedulability. This
an be established based on two assertions:Positive s
hedulability assertion: if the single-node problem is s
hedulable, then the distributed systemis also s
hedulable.Negative s
hedulability assertion: If the single-node problem is not s
hedulable, then the distributedsystem is not s
hedulable as well.Sin
e the global
onstraint graph on whi
h the single-node
y
li
 dynami
 s
heduling method is appliedin
ludes:� All model jobs� Absolute timing
onstraints� Relative timing
onstraints� Communi
ation
onstraintsand the relative order of the jobs is the same as in all lo
al nodes orders, �nding a feasible solutionto that dynami
 s
heduling problem guarantees a feasible starting time for ea
h of the system jobs thatsatis�es all the node's lo
al absolute and relative timing requirements as well as global
ommuni
ation timingrequirements. The starting times are guaranteed feasible for all periodi
 repetitions of system s
hedulingwindow (k; 8k = 1!1).9s11 :: 8e11 2 [l11; u11℄ :: 9s12 :: 8e12 2 [l12; u12℄ :: : : : :: 9s1N :: 8e1N 2 [l1N ; u1N ℄.̂..̂9sk1 :: 8ek1 2 [lk1 ; uk1 ℄ :: 9sk2 :: 8ek2 2 [lk2 ; uk2 ℄ :: : : : :: 9skN :: 8ekN 2 [lkN ; ukN ℄ĈA ^ CR ^ C
8k = 1!1 (13)
22

Equation 13 guarantees the satisfa
tion of all global model timing requirements of the distributed real-timesystem and
onsequently establishes its global s
hedulability. As a result, the Positive s
hedulability assertionis established.In order to establish the negative s
hedulability assertion, we assume that the global
onstraint graph Ggbuilt using the method des
ribed in se
tion 5.1.3 (using a spe
i�
 heuristi
 like EDF as a se
ondary sorting
riteria for the global task order) was found to be infeasible by the single-node
y
li
 variable eliminationpro
ess.If the negative assertion is not
orre
t, then we
an
onstru
t a di�erent global
onstraint graph G0g thatrepresents all the
hara
teristi
s of the distributed real-time system, in addition to being feasible with respe
tto the single-node
y
li
 variable elimination method. In order for the feasible
onstraint graph to representthe distributed system, it is required to satisfy the following requirements:� Contain a single referen
e time node v0.� In
lude all the system's jobs, with all their absolute timing requirements.� Satisfy all lo
al nodes job ordering requirements.� In
lude all nodes' lo
al pre
eden
e and relative timing
onstraints.� In
lude all system's
ommuni
ation
onstraints.� Have a global job order that satis�es all system global pre
eden
e requirements dire
tly or indire
tlyresulting from the system's pre
eden
e, timing, and
ommuni
ation
onstraints. This order is to be usedby the
y
li
 variable elimination method.For the feasible graph G0g to satisfy the des
ribed requirements, it has to be similar to the original global
onstraint graph Gg ex
ept for the global ordering of its jobs. Sin
e the global job order of G0g has to satisfy allglobal pre
eden
e requirements mandated by the system's timing
onstraints and
onsequently, its jobs mustbe topologi
ally sorted. Therefore we
an
on
lude that the two
onstraint graphs Gg and G0g are identi
alex
ept for the ordering of jobs that do not have any dire
t or indire
t pre
eden
e relations among them, andwhose relative order is determined using the se
ondary global ordering heuristi
 method.Sin
e the heuristi
 ordering
riteria is used as a se
ondary
riteria after using the topologi
al order, thenwe
an
on
lude that the jobs ordered using the heuristi

riteria are pla
ed in
onse
utive pla
es within theglobal task order. And sin
e these jobs do not have any relative timing
onstraints among them, therefore,they adhere to the job requirements of theorem A.1 presented in appendix A. Consequently, we
an
on
ludethat the relative order of jobs ordered using the se
ondary ordering heuristi
 method does not a�e
t the�nal out
ome of the Fourier-Motzkin variable elimination pro
ess. This
on
lusion was also enfor
ed by thesimulation results generated in se
tion 9.3.This result indi
ates that the
onstraint graph G0g
annot be feasible while the original graph Gg is infeasi-ble. Consequently, We
an
on
lude that a feasible global
onstraint graph G0g that represents the requirementsof the distributed system
annot be generated if the original global
onstraint graph Gg was veri�ed to beinfeasible by the
y
li
 variable elimination method.By
ontradi
tion, we
on
lude that if the system was de
lared to be infeasible in the single-node domain,it must be due to infeasibility in the distributed system timing requirements not the mapping pro
edure and
onsequently, we establish the Negative s
hedulability assertion, whi
h indi
ates that if the single-node problemwas veri�ed not to be s
hedulable, then the distributed system is also not s
hedulable.23

By establishing both the positive and the negative s
hedulability assertions, we
an
on
lude that thedistributed system is s
hedulable if and only if the mapped single-node system is also s
hedulable. In otherwords, the out
ome of the single-node variable elimination analysis represents the s
hedulability of the originaldistributed real-time system.6.4 Lo
al Calendars FeasibilityThis sub-problem presents the feasibility of lo
al
alendars
al
ulated for ea
h of the systems' nodes separately,with added
ommuni
ation
onstraints and its
onforman
e with global s
hedulability. To establish this point,we need to show that the parametri
 bound fun
tions in the lo
al
alendars satisfy global timing requirements.In other words the lo
al
alendars should satisfy lo
al timing
onstraints as well as inter-node
ommuni
ation
onstraints.1. Lo
al timing
onstraintsSin
e� All lo
al timing
onstraints were in
luded in
onstraint graphs used to establish the global feasibilityas well as the lo
al
alendars.� Lo
al order of the jobs in the lo
al
onstraint graphs is the same as that in the global
onstraintgraph.It is
lear that lo
al timing
onstraints that are proven to be lo
ally feasible by the lo
al
alendar
al
ulation pro
ess are also guaranteed to be globally feasible.Therefore, it is
on
luded that the lo
al
alendars satisfy all lo
al timing
onstraints previously provenfeasible in the global s
hedulability phase.2. Communi
ation
onstraintsThe minimum start time fun
tion Fmins () of a job is of the form:Fmins () =Max(p1; p2; p3; : : :)Where, (p1; p2; p3; : : :) are linear fun
tions of the exe
ution timing parameters of previously exe
utedjobs.Therefore, adding the arrival time of a
ommuni
ation message to the minimum start time of the targetjob guarantees that the start time of that target job st is more than or equal to the message arrival time.In other words, the target start time st is guaranteed to be larger than the sour
e job �nish time fs byat least the message delivery time MDT , for any feasible value of the MDT that is less than or equalto the worst
ase message delivery time MDTw
.st � fs +MDT 8MDT �MDTw
And sin
e the
ommuni
ation
hannel delay (MDT) is already proven to be less than or equal to theworst
ase message delivery time MDTw
 by the Real-time
hannels method, whi
h is in turn less thanor equal to the maximum
hannel delay q as established in the
ommuni
ation feasibility veri�
ationstep (se
tion 5.1.1). MDT �MDTw
 � q24

Therefore, it is
on
luded that the lo
al node
alendars guarantee that
ommuni
ation
hannels' targetjobs
annot start before the arrival of their
orresponding
ommuni
ation messages whi
h are, in turn,guaranteed by the
ommuni
ation feasibility pro
ess to arrive in a feasible time. As a result, all
om-muni
ation timing
onstraints proven feasible in the global s
hedulability test are satis�ed by the lo
alnode
alendars.So far, it has been proven that lo
al
alendars satisfy� Jobs absolute timing requirements� Relative timing
onstraints� Communi
ation timing
onstraintswhi
h means that ea
h of the nodes' lo
al
alendars guarantee a feasible start time for ea
h of its lo
aljobs that
onforms to its ready time and deadline, satis�es lo
al node timing requirements, and
onforms tothe inter-node
ommuni
ation
onstraints.9s11;m :: 8e11;m 2 [l11;m; u11;m℄ :: : : : :: 9skNm;m :: 8ekNm;m 2 [lkNm;m; ukNm;m℄ :: C1;km 8m = 1 : : :MĈ
 (14)By adding equation (14) for all the nodes in the system (1 : : :M), we get:9s11;1 :: 8e11;1 2 [l11;1; u11;1℄ :: 9s12;1 :: 8e12;1 2 [l12;1; u12;1℄ :: : : : :: 9skN1;1 :: 8ekN1;1 2 [lkN1;1; ukN1;1℄ :: C1;k1.̂..̂9s11;m :: 8e11;m 2 [l11;m; u11;m℄ :: : : : :: 9skNm;m :: 8ekNm;m 2 [lkNm;m; ukNm;m℄ :: C1;km.̂..̂9s11;M :: 8e11;M 2 [l11;M ; u11;M ℄ :: : : : :: 9skNM ;M :: 8ekNM ;M 2 [lkNM ;M ; ukNM ;M ℄ :: C1;kMĈ

(15)

Whi
h basi
ally
onstitutes the Parametri
 S
hedulability
ondition (S
hed1;k3) of a distributed set of tasks�1;k (de�nition 4.3). Therefore we
on
lude that applying lo
al node
alendars on all distributed system nodessatisfy global system s
hedulability requirements.7 ExampleIn this example, we demonstrate the appli
ation of the variable elimination method on a simple distributedsystem with two nodes and two
ommuni
ation
hannels established between them. The example system is25

represented graphi
ally in �gure 6. The timing and
ommuni
ation
onstraints in the �gure translates to thefollowing
onstraint equations: Node1e11 � 5e11 � 8s11 � 0s11 + e11 � 15e12 � 3e12 � 7s12 � 26s12 + e12 � 40s12 � (s11 + e11) � 5Communi
ations22 � (s11 + e11) � 3s12 � (s22 + e22) � 2

Node2e21 � 6e21 � 9s21 � 0s21 + e21 � 15e22 � 4e22 � 8s22 � 15s22 + e22 � 30e23 � 2e23 � 5s23 � 25s23 + e23 � 35s22 � (s21 + e21) � 1s23 � (s22 + e22) � 1
(16)

Arranging the jobs a

ording to their timing and pre
eden
e
onstraints. The Earliest Deadline First(EDF) method is used as a se
ondary sorting heuristi
. The global order generated is shown in the followingsequen
e of variables: s11; e11; s21; e21; s22; e22; s23; e23; s12; e12We start by eliminating variables in the reverse order of their global order.Eliminate e12 (substituted by 7) s12 + e12 � 40 =) s12 � 33Eliminate s12 20 � s12s11 + e11 + 5 � s12s22 + e22 + 2 � s12s12 � 33 =) 20 � 33s11 + e11 � 28s22 + e22 � 31Eliminate e23 (substituted by 5) s23 + e23 � 35 =) s23 � 30Eliminate s23 26

25 � s23s22 + e22 + 1 � s23s23 � 30 =) 25 � 30s22 + e22 � 29Eliminate e22 (substituted by 8) s22 + e22 � 29 =) s22 � 21Eliminate s22 15 � s22s21 + e21 + 1 � s22s11 + e11 + 3 � s22s22 � 21 =) 15 � 21s21 + e21 � 20s11 + e11 � 18Eliminate e21 (substituted by 9) s21 + e21 � 15 =) s21 � 6Eliminate s21 0 � s21s21 � 6 =) 0 � 6Eliminate e11 (substituted by 5) s11 + e11 � 15 =) s11 � 7Eliminate s11 0 � s11s11 � 7 =) 0 � 7Sin
e no
ontradi
tions were introdu
ed in the variable elimination pro
ess, we
on
lude that the globalsystem is S
hedulable. 27

8 Dynami
 Time-based Dispat
hingThe fun
tion of the on-line dispat
her is to start the exe
ution of the real-time task instan
es a

ording to the
al
ulated
alendars as well as the timing information generated at run-time. Therefore, enfor
ing the systems
hedulability established by the o�-line s
heduler while being
exible enough to make use of the sla
k CPUtime.The dynami
 time-based dispat
her pro
esses the information transferred to it from the o�-line s
hedulingmodule to
reate and populate the run-time data stru
tures that are used in the pro
ess of determining theabsolute dispat
h time for the di�erent task instan
es a

ording to run-time parameters. The Dispat
her
analso determine the s
hedulability of new aperiodi
 real-time tasks introdu
ed to the system at run-time. Thisis done by moving task instan
es around in a

ordan
e with their parametri
 fun
tions to preserve total systems
hedulability. The algorithm to insert an aperiodi
 task at run-time is des
ribed in [7℄.This se
tion des
ribes the data stru
tures used by the on-line
omponent, and then explains the use ofthese data stru
tures to handle the task dispat
hing pro
ess.Fmins1 () � s1 � Fmaxs1 ()Fmins2 (s1; e1) � s2 � Fmaxs2 (s1; e1)... ...FminsN (s1; e1; s2; : : : ; sN�1; eN�1) � sN � FmaxsN (s1; e1; s2; : : : ; sN�1; eN�1)Figure 8: Parametri
 Calendar Stru
ture8.1 Run-time data stru
turesS
heduling information needed for the dispat
hing pro
ess are transferred to the on-line
omponent. Thisinformation
onsists of task des
riptions, task-node assignment, task relative ordering on ea
h node, andrelative timing
onstraints in the form of parametri

alendar
onsisting of fun
tions used to determine theminimum and maximum feasible bounds on the exe
ution start times for the task instan
es. The generalstru
ture of the parametri

alendar generated by the o�-line s
heduler is shown in �gure 8. The Run-timeinformation is stored in the form of a dependen
y graph of the tasks and their timing properties. The Dynami
Calendar built by the on-line dispat
her has three main
omponents:Dependen
y Graph (DG) shown in Figure 9, it
onsists of a graph like stru
ture that
ontains all taskinstan
es that are a
tive in the system at the
urrent time along with all their timing requirements, inter-task relative timing
onstraints, inter-node
ommuni
ation
onstraints, and inter-node task instan
edependen
ies. A separate Dependen
y graph is
onstru
ted for ea
h of the distributed nodes in thesystem. The Dependen
y graph is represented as a list of task obje
ts ea
h
ontaining the followinginformation:� Task ID.� Exe
ution period.� Low jitter.� High jitter.� A linked list of the task's instan
e pro�les, ea
h
ontaining the following information:{ Instan
e ID.{ Minimum exe
ution time. 28

B

A A A

B B

1

1

2 3

2

Task

Table Instance

Profile

Evaluation

 Pointer

Profile

Instance

First

List Link

E1 E32EE

D

C

A

Figure 9: Dependen
y Graph{ Maximum exe
ution time (WCET).{ A
tivation
ounter that des
ribes the number of life
y
les of the task that this instan
e is goingto remain a
tive in.{ Instan
e fun
tions, a list of parametri
 fun
tions, ea
h
ontaining a pointer to fun
tion
ode,a list of the fun
tion parameters, and an Evaluation
ounter for the unresolved parameters inthe fun
tion.{ Result lists, whi
h are lists of pointers (Evaluation pointers) to the lo
ations of parameters forthe parametri
 fun
tion of other tasks instan
es. These pointers indi
ate that timing valuesfrom this task instan
e are the a
tual parameters for the formal parameters in the other tasksinstan
es fun
tions. A separate list is maintained for ea
h value to be propagated.{ Communi
ation list, a list of the messages to be delivered to other task instan
es, running ondi�erent nodes, at the end of the exe
ution of this task instan
e.Time Ordered List (TOL) A time ordered list of task instan
es is maintained by the run-time module,its entries represent task instan
es that the run-time module have full knowledge about their exe
utionpro�le. This means that the parameters to their parametri
 fun
tions are all satis�ed and the fun
tionsare evaluated to yield an absolute time to start the exe
ution of the task instan
e. Entries in theTOL
onsist of the absolute minimum and maximum feasible times that this task instan
e
an start itsexe
ution. It also in
lude a pointer to the task instan
e pro�le in the dependen
y graph. Entries in thislist are ordered a

ording to their earliest feasible starting times.External Event Queue (EEQ) This is a First-In-First-Out (FIFO) queue of the in
oming
ommuni
ationmessages re
eived from external nodes. Ea
h message should in
lude the following information:� Message ID. 29

� Target Task ID.� Target Instan
e ID.� Event arrival time.� Information about instan
e fun
tion parameters to be substituted by the message arrival time.� Message appli
ation data.8.2 Run-time Exe
ution ModelThe major fun
tionality of the on-line dispat
her is to propagate parameters of the parametri
 fun
tions,and dispat
h the
orre
t task instan
es a

ording to the guidelines of the
alendar generated by the o�-lines
heduler. The dispat
her system
onsists of three major phases: The Initialization phase, the Calendarsyn
hronization phase, and the Task exe
ution phase.8.2.1 Initialization phaseThe Initialization phase of the run-time module starts by pro
essing the
alendar information passed by theo�-line s
heduler in the form of parametri
 fun
tions. The s
heduling information is used at run-time topopulate dispat
her's dependen
y graph. The TOL is initialized with one task instan
e, whi
h is the taskmarked by the o�-line s
heduler to be exe
uted �rst. This instan
e exe
ution time is not dependent on timevalues generated by the other task instan
es.8.2.2 Calendar syn
hronization phaseThe purpose of the Calendar syn
hronization phase is to make all the distributed nodes dispat
hers startexe
uting their real-time
alendars at the same referen
e time t0. The
alendar syn
hronization pro
ess ismaintained by a single node
alled the Time Referen
e Node whi
h repeats the syn
hronization pro
ess forea
h one of the distributed nodes (Client Nodes). The pro
ess assumes that the message delivery time of thesyn
hronization
ommuni
ation messages between the Time referen
e node and the Client node will alwaysbe the same (Æ
) during the Calendar syn
hronization pro
ess.The Calendar syn
hronization pro
ess between the Time Referen
e node A and a Client node B is illus-trated in �gure 10. The Time referen
e node A starts by measuring the pro
ess start time TA1 a

ording toits own
lo
k. Next, node A sends a message MA1 to node B
ontaining TA1 and the message send time sA1.When node B re
eives message MA1
oming from node A, it measures its arrival time rB1, whi
h is measuredusing node B
lo
k. Node B then sends a message ba
k MB1 to node A
ontaining rB1 and the the messagesend time sB1. Finally, Node A re
ords message MB1 arrival time rB2, and sends a third message ba
k MA2to node B
ontaining rB2 and the the message send time sB2. At this moment, ea
h one of the two nodes
an
al
ulate three time intervals Æ1; Æ2; and Æ3 a

ording to equation set 17. All three time intervals are generatedas the di�eren
e between two time measurements generated by the same node
lo
k to avoid errors resultingfrom the di�eren
es among the nodes' system
lo
ks.Æ1 = sA1 � TA1Æ2 = sB1 � rB1Æ3 = sA2 � rA2 (17)30

Time Reference

Node (A)

Client Node

(B)

T
A1
 T
A1
'

s
A1

s
A2

r
A2

r
B1

s
B1

r
B2

t
0
t
0

Sy
nc

. W
ai

t P
er

io
d

(
W

)
 M
A1
=

{

T
A1
, s
A1
}

M
B1
=

{

r
B1
 , s
B1

}

M
A2
=

{

r
A2
, s
A2
}

1

2

c

c

3

Figure 10: Calendar syn
hronization phaseWhen the
lient node B re
eives the third message MA2 at time rB2, it
an
al
ulate an estimate of thesyn
hronization message delivery time Æ
 a

ording to equation 18. Using the Æ
 value, node B
an
al
ulateits equivalent version of the time instan
e TA1 a

ording to its
lo
k T 0A1 using equation 19.Æ
 = rB2 � sB1 � Æ32 (18)T 0A1 = sB1 � Æ2 � Æ1 � Æ
 (19)By
hoosing a syn
hronization waiting period W long enough for all the nodes to �nish their
alendarsyn
hronization pro
ess, all nodes
an
al
ulate the referen
e time t0 a

ording to their own system
lo
kusing the following equations.For the
lient node B: t0 = T 0A1 +W31

For the time referen
e node A: t0 = TA1 +WThe steps of the
alendar syn
hronization pro
ess for the Time Referen
e node are des
ribed in algorithm8.1. The steps for a
lient node are des
ribed in algorithm 8.2.Algorithm 8.1 (Calendar syn
hronization for Time Referen
e node)1. Let TA1 = Current time.2. For (M � 1
lient nodes) do f(2.1) Send a syn
hronization message MA1
ontaining TA1 and the message send time sA1.g3. For (M � 1
lient nodes) do f(3.1) Wait for syn
hronization message MB1 from
lient node.(3.2) Re
ord message arrival time rA2.(3.3) Send a se
ond syn
hronization message to the
lient node
ontaining rA2 and the message send timesA2.g4. Let t0 = TA1 +W .5. Sleep for (t0� Current time) time units.6. Start Lo
al
alendar exe
ution phase.Algorithm 8.2 (Calendar syn
hronization for Client node)1. Wait for syn
hronization message MA1 from the time referen
e node.2. Re
ord the message arrival time rB1.3. Send a message ba
k to the time referen
e node
ontaining rB1 and the message send time sB1.4. Wait for a se
ond syn
hronization message MA2 from the time referen
e node.5. Re
ord the se
ond message arrival time rB2.6. Cal
ulate Æ1; Æ2, and Æ3 a

ording to equation set 17.7. Cal
ulate syn
hronization message delivery time:Æ
 = (rB2 � sB1 � Æ3)=28. Cal
ulate syn
hronization pro
ess starting time a

ording to lo
al
lo
k:T 0A1 = sB1 � Æ2 � Æ1 � Æ
9. Let t0 = T 0A1 +W .10. Sleep for (t0� Current time) time units.11. Start Lo
al
alendar exe
ution phase. 32

8.2.3 Task exe
ution phaseAt the uni�ed
alendar start referen
e time t0, the run-time dispat
her extra
ts the �rst task instan
e in theTOL, and start exe
uting it in the earliest possible time between its minimum and maximum feasible startingtimes. The kernel s
hedules an interrupt at the end of the WCET of that task instan
e in order to be able togain
ontrol and maintain the s
hedule of the remaining tasks exe
ution.After the
urrent task instan
e �nishes exe
ution, kernel gains
ontrol again, it starts by propagating thetiming information generated from the �nished task instan
e to all the fun
tion parameters that are dependenton these values using the results lists of these values in the task instan
e pro�le. The kernel then inspe
ts theexternal event queue (EEQ) and delivers all the messages in the queue to their destination task instan
es. Thedispat
her maintains the unresolved parameter
ounter for the task instan
e parametri
 fun
tions to whi
h theparameters were propagated. If the unresolved parameters
ounter in any one of target task instan
es rea
heszero, this means that the parameters to its fun
tions are all satis�ed and fun
tions
an be evaluated at thispoint. The absolute boundaries on the starting times for these task instan
es are
al
ulated, the instan
es areinserted in the TOL, and their evaluation
ounters are reset to their original values in the instan
e pro�les.The dispat
her also maintains the information in the task-instan
e pro�les regarding the number of
y
lesthe instan
e is going to be a
tive in, this
ounter is de
remented every time the instan
e is exe
uted. If this
ounter was initialized with a negative value, this will
ause the dispat
her to run this task periodi
ally foras long as the operating system kernel is running this parti
ular appli
ation. The on line dispat
her time
omplexity is O(N), were N is the total number of task instan
es in one s
heduling window.The main steps for the On-line dispat
her is shown in the following algorithm.Algorithm 8.3 (On-Line Dispat
her) The on-line dispat
hing of the hard real-time jobs is performed bythe following algorithm:1. Populate the Dependen
y graph using the tasks parametri
 fun
tions generated by the o�-line s
heduler.2. If (Time referen
e node) f� Run the time referen
e node
alendar syn
hronization pro
ess as des
ribed in algorithm 8.1.g Else f� Run the
lient node
alendar syn
hronization pro
ess as des
ribed in algorithm 8.2.g3. Insert the �rst task instan
e in the TOL.4. While (TOL not empty) f(4.1) Get �rst task instan
e in TOL (Itop).(4.2) Cal
ulate a
tual starting time of instan
e stop = Currenttime.(4.3) S
hedule a time interrupt to o

ur immediately after stop +WCET (Itop).(4.4) Yield
ontrol to Itop.(4.5) When Itop �nishes or the s
heduled interrupt o

urs4.5.1. Stop the exe
ution of Itop if it is still running.4.5.2. Re
ord its �nishing time fItop .4.5.3. Substitute the start time stop in all items in its evaluation list.33

4.5.4. De
rement the evaluation
ounters of all the elements on the evaluation list of stop.4.5.5. Substitute the �nish time ftop in all items in its evaluation list.4.5.6. De
rement the evaluation
ounters of all the elements on the evaluation list of ftop.4.5.7. while (EEQ not empty) f� Get �rst message it the EEQ (Mtop).� Substitute the arrival time of Mtop in its target instan
e parametri
 fun
tions.� De
rement the evaluation
ounter of target instan
e.g4.5.8. If the evaluation
ounters of any instan
e rea
hes zero, then f� Insert this instan
e in TOL.� De
rement its a
tivation
ounter by 1, if it rea
hes 0, the instan
e is removed from thedependen
y graph.� Restore all its evaluation
ounters to their initial values.gg9 Implementation and ResultsThe goals of the experiments
ondu
ted on the distributed dynami
 s
heduling and dispat
hing model are:� Verify the
orre
tness and
ompleteness of the s
heduling and dispat
hing methods, and determine allthe �ne details required for the presented model to be used as a
omplete distributed real-time s
hedulingand dispat
hing environment.� Investigate the e�e
t of varying the heuristi
 used as a se
ondary sorting
riteria to generate the globaltask order on the s
hedulability veri�
ation pro
ess.� Measure the impa
t of varying the di�erent system parameters su
h as the number of tasks or the averagetasks exe
ution time on the parametri
 s
hedulability of a real-time system.The following subse
tions des
ribe the implementation and simulation experiments
ondu
ted to a
hievethe previous goals. The results of these experiments follows along with a dis
ussion of the
on
lusions derivedfrom them.9.1 ImplementationThe dynami
 time-based s
heduler is implemented as a
entral obje
t. The s
heduler obje
t provides methodsto add system nodes,
ommuni
ation links, tasks, relative timing
onstraints, pre
eden
e
onstraints, and
ommuni
ation
onstraints. After all the real-time system
omponents have been entered, the feasibilityveri�
ation pro
ess
an be started. The s
heduler also provides methods for the distributed node dispat
hersto query system parameters and to retrieve their lo
al run-time parametri

alendars. The run-time
alendarsare available only if the system is
on
luded to be s
hedulable.The run-time dispat
hers are implemented as multiple obje
ts, one for ea
h of the system nodes. Ea
hdispat
her obje
t starts its initialization phase by retrieving its dynami

alendar from the s
heduler and34

T
1

2,1
 T
2

2,2

T
2

1,1
 T
2

1,2

T
2

2,1
 T
2

2,1
 T
2

2,2
 T
2

2,2

T
2

3,1

Node 1

Node 2

T
1

1

r=10

d=490

min_ex = 10

max_ex = 20

T
1

2

r=20

d=980

min_ex = 15

max_ex = 25

T
2

1

r=20

d=980

min_ex = 15

max_ex = 25

T
2

2

r=10

d=490

min_ex = 10

max_ex = 20

T
2

3

r=10

d=240

min_ex = 10

max_ex = 15

T
2

3,1
 T
2

3,1
 T
2

3,1
 T
2

3,2
 T
2

3,2
 T
2

3,2
 T
2

3,2

T
1

1,1
 T
1

1,1
 T
1

1,2
 T
1

1,2

>= 50
 >= 50

>= 50
 >= 50

>= 100
 >= 100
<= 900
 <= 900
>= 50

>= 150
 >= 100
>= 100

Figure 11: Simulation system
on�guration diagraminitializing its run-time data stru
tures. The task exe
ution phase starts by exe
uting the
alendar syn
hro-nization pro
ess whi
h uni�es the starting time for the exe
ution of all node
alendars. The node dispat
hersstart dispat
hing the �rst task instan
e at the referen
e time t0 = 0 and
ontinue as des
ribed in se
tion 8.2.3.The s
heduler and dispat
her obje
ts are used to implement an example system that
onsists of twonodes
onne
ted using a bidire
tional link. The example system's
on�guration, task stru
ture, and timing
onstraints are shown in �gure 11. The example system feasibility was veri�ed in the o�-line analysis phaseusing the s
heduler obje
t that generated two separate node
alendars, whi
h were saved into node
alendar
on�guration �les. Two dispat
her obje
ts were run on two Windows NT ma
hines, and initialized withtheir
orresponding
alendar
on�guration �les. They start by the
lo
k syn
hronization pro
ess, and at thereferen
e time t0 = 0 they start dispat
hing the lo
al jobs using their dynami

alendars. Communi
ation
hannels were simulated using so
ket
onne
tions over an Ethernet network. The system tasks were dummytasks that announ
ed their existen
e,
onsumed a random CPU time (Limited by their minimum and maximumexe
ution times), and �nally generate a
ommuni
ation message to their target if they are the sour
e of a
ommuni
ation
hannel.9.2 Experiments Des
riptionIn order to test the e�e
t of parameter variation on the s
hedulability veri�
ation pro
edure, few simulationexperiments were
ondu
ted. The experiments are based on generating a random set of distributed real-timetasks. Absolute as well as relative timing
onstraints among the tasks are randomly generated as well. Thetask set is generated using the following steps: 35

Trun
ated Normal Distribution: Most of the timing parameters for the tasks and
onstraints are gener-ated using a trun
ated Normal distribution. The distribution is spe
i�ed by the minimum trun
ationpoint, maximum trun
ation point, mean �, and standard deviation �. The mean � is
onsidered tobe the median point between the minimum and maximum trun
ation points. The parameter used to
ontrol the time intervals generation in the
ondu
ted experiments is the Normal distribution standarddeviation to mean ratio �=�.Nodes generation: The simulation environment
onsists of M nodes that form a fully
onne
ted networkwith all links having the same
ommuni
ation delay.Tasks generation: A set of N tasks are generated. The tasks timing parameters are generated a

ording tothe following rules:Period (P): The task repetition period is sele
ted randomly from a pre-spe
i�ed ordered set of periods.The period set
onsists of np entries whi
h are generated by assigning the �rst period in the seta pre-spe
i�ed time period, and
al
ulating ea
h subsequent period in the set to be equal to halfof its prede
essor. The number of entries in the period set np is referred to as Number of PeriodLevels.Exe
ution Node: Randomly sele
ted from the M distributed nodes.Jitter
onstraints (�; �): Jitter
onstraints are randomly generated using a trun
ated Normal distri-bution. The minimum and maximum trun
ation points are
al
ulated as per
entages from thetask's period, Jmin and Jmax respe
tively.Ready time (r): Generated as a trun
ated Normally distributed per
entage of the task's period withtrun
ation per
entages rmin and rmax.Deadline (d): Generated as a trun
ated Normally distributed per
entage of the task's period withtrun
ation per
entages dmin and dmax.Minimum exe
ution time (l): Generated as a trun
ated Normally distributed per
entage of thetask's period with trun
ation per
entages lmin and lmax.Maximum exe
ution time (u): Generated as a trun
ated Normally distributed per
entage of thetask's period with trun
ation per
entages umin and umax.Relative timing
onstraints: Nr
 relative timing
onstraints are generated at random in ea
h experimenta

ording to the following guidelines:Node: The relative timing
onstraint
onstraint is assigned to a randomly sele
ted node out of the Msystem nodes.Sour
e and destination jobs: The sour
e and target task instan
es are two randomly sele
ted jobsthat reside on the same node. The sour
e and target jobs are not allowed to be the same. Theearlier of the two jobs is
onsidered to be the sour
e of the timing
onstraint. However, sin
e thea
tual start times of jobs are not known until run-time, the heuristi
 used as the se
ondary ordering
riteria in the global order generation pro
ess is also used to de
ide whi
h of the two jobs is earlier,and therefore to be
onsidered the sour
e of the relative timing
onstraint.Constraint time interval: The relative timing
onstraint interval is
onsidered to the distan
e be-tween the �nish time of the sour
e job to the start time of the target job. The interval is generatedas a trun
ated Normally distributed per
entage of the task's period with trun
ation per
entagesRCmin and RCmax.Communi
ation
onstraints: N

ommuni
ation
onstraints are generated at random in ea
h experimenta

ording to the same guidelines as those used for the relative timing
onstraints, ex
ept that the sour
eand target jobs are not allowed to be on the same system node. The
ommuni
ation
onstraint timeinterval is also generated as a trun
ated Normally distributed per
entage of the task's period withtrun
ation per
entages CCmin and CCmax. 36

Parameter des
ription Symbol Nominal valueTrun
ated Normal distribution standard deviation to mean ratio �=� 0.70Number of nodes M 20Number of tasks N 50Number of period levels np 3Jitter
onstraints minimum period per
entage Jmin 0.40Jitter
onstraints maximum period per
entage Jmax 0.60Ready-time minimum period per
entage rmin 0.01Ready-time maximum period per
entage rmax 0.10Deadline minimum period per
entage dmin 0.90Deadline maximum period per
entage dmax 0.99Minimum exe
ution time minimum period per
entage lmin 0.01Minimum exe
ution time maximum period per
entage lmax 0.05Maximum exe
ution time minimum period per
entage lmin 0.05Maximum exe
ution time maximum period per
entage lmax 0.15Number of relative timing
onstraints Nr
 40Relative timing
onstraint time interval minimum period per
entage RCmin 0.20Relative timing
onstraint time interval maximum period per
entage RCmax 0.50Number of
ommuni
ation
onstraints N

 20Communi
ation
onstraint time interval minimum period per
entage CCmin 0.20Communi
ation
onstraint time interval maximum period per
entage CCmax 0.50Figure 12: Real-time system random generation parametersTherefore, the parameters that
ontrol the real-time system generation pro
ess
an be summarized in �gure12 that in
ludes the parameter name, symbol, as well as a nominal value for the parameter in order to a
hievean average S
hedulability Su

ess Ratio (De�nition 9.1).The Criteria for performan
e evaluation used in the
ondu
ted experiments to measure the of the dis-tributed s
heduling algorithm under various parameter setup is the S
hedulability Su

ess Ratio (SSR) (De�-nition 9.1).De�nition 9.1 (S
hedulability Su

ess Ratio (SSR)) The per
entage of real-time systems (task sets)veri�ed to be s
hedulable by a s
heduling algorithm over the randomly generated set of real-time systems.In the following subse
tions, we present the simulation experiments that are based on the distributedreal-time system random generation method des
ribed here.9.3 Experiment 1In this experiment, we investigate the e�e
t of varying the se
ondary ordering heuristi
 used in the global ordergeneration pro
ess on the distributed dynami
 hard real-time s
hedulability veri�
ation method des
ribed inse
tion 5.In order to a
hieve this goal, 500 distributed real-time systems are generated randomly. Ea
h one of thegenerated systems is run through the dynami
 hard real-time s
heduler to
he
k its s
hedulability few times.Ea
h time a di�erent ordering heuristi
 method is used. The heuristi
 methods tested are:� Earliest Deadline First (EDF). 37

Heuristi
 EDF ERF LLF RM RANDOMTotal 273 273 273 273 273SSR % 54.6 % 54.6 % 54.6 % 54.6 % 54.6Figure 13: SSR for di�erent heuristi
 methods� Earliest Ready-time First (ERF).� Lease Laxity First (LLF).� Rate Monotoni
 (RM).� Random sele
tion (RANDOM).The SSR is
al
ulated for ea
h of the heuristi
 methods. Throughout the test, we keep tra
k of thedi�eren
es in the out
ome of the s
hedulability test for the same systems as measured using the di�erentheuristi
s.9.3.1 ResultsRepeating the experiment several times, we noted that there were no systems rendered s
hedulable by oneheuristi
 method and not s
hedulable by another. We also measured the number of s
hedulable systems inea
h run, and found out that the numbers are always identi
al for all heuristi
 methods. The results of thisexperiment are shown in �gure 13.9.3.2 Con
lusionsFrom this experiment, we
on
lude that the heuristi
 used as a se
ondary sorting
riteria to get the distributedsystem global order does not a�e
t the out
ome of the s
hedulability veri�
ation pro
ess. This result enfor
esthe
orre
tness of theorem A.1 presented in appendix A, and
onsequently the
orre
tness of the s
hedulabilityveri�
ation algorithm established in se
tion 6. Therefore, the distributed parametri
 s
hedulability
ondition�1;k (de�nition 4.3) is the ne
essary and suÆ
ient
ondition for the parametri
 s
hedulability of a distributedperiodi
 real-time system, and the real-time s
heduling algorithm des
ribed in se
tion 5 is suÆ
ient to verifythe dynami
 s
hedulability of distributed set of periodi
 real-time tasks with intertask relative timing and
ommuni
ation
onstraints.9.4 Experiment 2In this experiment we investigate the e�e
t of varying some of the parameters governing the real-time sys-tems generation pro
ess on the s
hedulability veri�
ation algorithm. The parameter variation e�e
t on thes
heduling algorithm is measured by its e�e
t on the s
hedulability su

ess ratio (SSR) as measured by thedistributed s
heduling algorithm. A nominal value is �xed for ea
h of the parameters as shown in �gure 12.Then we start varying ea
h of the parameters separately in a range around its nominal point using small steps.The parameters varied in this experiment are shown in �gure 14 along with their nominal values, variationrange, and step. In ea
h step of a parameter variation, we generate 500 real-time systems for ea
h of theheuristi
s used (EDF, ERF, LLF, RM). The s
hedulability of ea
h of the generated systems is
he
ked usingthe dynami
 s
heduler, and the average SSR is
al
ulated for ea
h one of the heuristi
s separately.38

Parameter Nominal value Range StepN 50 10 - 100 1M 20 2 - 50 1np 3 1 - 6 1Nr
 40 2 - 100 1N

 20 2 - 50 10.70 0.10 - 1.45 0.05Figure 14: Parameter variation ranges and steps9.4.1 ResultsThe variation in the s
hedulability su

ess ratio (SSR) as a result of varying ea
h of the parameters (N , M ,np, Nr
, N

, �=�) are shown in �gures 15, 16, 17, 18, 19, 20 respe
tively.9.4.2 Con
lusionsFrom the results of this experiments we
an draw the following
on
lusion in regards of the dynami
 s
hedulingalgorithm under
onsideration:� The s
hedulability of a distributed real-time system is dire
tly proportional to the number of nodes andinversely proportional with the number of tasks. Therefore we
an
on
lude that the s
hedulability of adistributed system is inversely proportional with the density of tasks on the distributed system nodes.� By in
reasing the number of system period levels allowed to the
ontrol tasks, the system s
hedulabilitydramati
ally de
reases. This is due to the in
reased variability in the system tasks periods and instan-
iation frequen
y, whi
h produ
es high probability for generating infeasible relative timing
onstraintsamong task instan
es with large di�eren
e between their frequen
ies.� In
reasing the number of timing
onstraints, whether they represent relative timing
onstraints or
om-muni
ation
onstraints, de
reases the s
hedulability of the system. Whi
h is due to the in
reased numberof feasibility
onditions that the system will have to satisfy to a
hieve s
hedulability. The tighter thesystem timing
onstraints, the larger their e�e
t on the system feasibility.� In
reasing the standard deviation to mean ratio of the trun
ated Normal distribution used to generatethe time interval values de
reases the system s
hedulability. This is due to the in
reased variabilityin the system timing
onstraints time interval values, and
onsequently the probability of generating
ontradi
ting
onstraints is also in
reased.

39

Varying Number of Control Tasks

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

10

16

22

28

34

40

46

52

58

64

70

76

82

88

94

10
0

Number of Control Tasks

S
ch

ed
u

la
b

ili
ty

 %

EDF

ERF

LLF

RM

Figure 15: Varying the number of real-time
ontrol tasks
Varying Number of Distributed Nodes

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

2
 6
 10

14

18

22

26

30

34

38

42

46

50

Number of Distributed Nodes

S
ch

ed
u

la
b

ili
ty

 %

EDF

ERF

LLF

RM

Figure 16: Varying the number of real-time system nodes40

Varying number of Period Levels

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

1
 2
 3
 4
 5
 6

Number of Period Levels

S
ch

ed
u

la
b

ili
ty

 %

EDF

ERF

LLF

RM

Figure 17: Varying the number of period levels
Varying Number of Relative Timing Constraints

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

2
 9
 16

23

30

37

44

51

58

65

72

79

86

93

10
0

Number of Relative Timing Constraints

S
ch

ed
u

la
b

ili
ty

 %

EDF

ERF

LLF

RM

Figure 18: Varying the number of relative timing
onstraints
41

Varying Number of Communication Constraints

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

2
 5
 8
 11

14

17

20

23

26

29

32

35

38

41

44

47

50

Number of Communication Constraints

S
ch

ed
u

la
b

ili
ty

 %

EDF

ERF

LLF

RM

Figure 19: Varying the number of
ommuni
ation
onstraints
Varying Normal Distribution SD/Mean Ratio

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9
 1

1.
1

1.
2

1.
3

1.
4

Normal Distribution SD/Mean Ration

S
ch

ed
u

la
b

ili
ty

 %

EDF

ERF

LLF

RM

Figure 20: Varying Normal Distribution SD/Mean Ratio
42

Referen
es[1℄ A. Silbers
hatz and Peter B. Galvin. Operating Systems Con
epts. Addison Wesley, �fth edition, Novem-ber 1998.[2℄ Douglas C. S
hmidt, David L. Levine, and Sumedh Mungee. The Design of the TAO Real-Time Obje
tRequest Broker. Te
hni
al report, Department of Computer S
ien
e, Washington University, St. Louis,MO 63130, USA, January 1999.[3℄ Carlos O'Ryan, David L. Levine, Douglas C. Shmedit, and J. Russel Noseworthy. Applying a S
alableCORBA Events Servi
e to Large-s
ale Distributed Intera
tive Simulations. In Pro
eedings of the 5thWorkshop on Obje
t-oriented Real-time Dependable Systems, November 1999.[4℄ Christopher D. Gill, Fred Kuhns, David L. Levine, and Douglas C. Shmedit. Applying Adaptive Real-time Middleware to Address Grand Challenges of COTS-based Mission-Criti
al Real-Time Systems. InPro
eedings of the 1st International Workshop on Real-Time Mission-Criti
al Systems: Grand ChallengeProblems, IEEE, Phoenix, Arizona, November 1999.[5℄ Irfan Pyarali, Timothy H. Harrison, and Douglas C. Shmedit. Design and Performan
e of an Obje
t-Oriented Framework for High-Speed Ele
troni
 Medi
al Imaging. Computing Systems Journal, De
ember1996.[6℄ Manas Saksena. Parametri
 S
heduling for Hard Real-Time Systems. PhD thesis, University of Marylandat College Park, 1994.[7℄ Seonho Choi. Dynami
 Time-Based S
heduling for Hard Real-Time Systems. PhD thesis, University ofMaryland at College Park, 1997.[8℄ G. Dantzig and B. Eaves. Fourier-Motzkin Elimination and its dual. Journal of Combinatorial Theory(A), 14:288{297, 1973.[9℄ Giorgio C. Buttazzo. Hard Real-Time Computing Systems, Predi
table S
heduling Algorithms and Appli-
ations. Kluwer A
ademi
 Publishers, 1997.[10℄ M. L. Dertouzos and A. K. Mok. Multipro
essor On-Line S
heduling of Hard Real-Time Tasks. IEEETransa
tions on Software Engineering, 15(12):1497{1506, 1989.[11℄ G. Fohler and C. Koza. Heuristi
 S
heduling for Distributed Real-Time Systems. PhD thesis, Te
hni
heUniversitat Wien, Vienna, Austria, April 1989.[12℄ J. Xu and D. L. Parnas. S
heduling Pro
esses with Release Times, Deadlines, Pre
eden
e and Exe
lusionRelations. IEEE Transa
tions on Software Engineering, SE-16(3):360{369, 1990.[13℄ K. Ramamritham. Allo
ation and S
heduling of Complex Periodi
 Tasks. In 10th International Conferen
eon Distributed Computing Systems, pages 108{115, 1990.[14℄ T. Shepard and J. A. M. Gagne. A Pre-Run-Time S
heduling Algorithm for Hard Real-Time Systems.IEEE Transa
tions on Software Engineering, 17(7):669{677, 1991.[15℄ J. P. C. Verhoosel, E. J. Luit, D. K. Hammer, and E. Jansen. A Stati
 S
heduling Algorithm forDistributed Hard Real-Time Systems. Real-Time Systems, 6(2):227{246, 1991.[16℄ M. G. Harbour, M. H. Klein, and J. P. Leho
zky. Fixed Priority S
heduling of Periodi
 Tasks withVarying Exe
ution Priority. In IEEE Real-Time Systems Symposium, pages 116{128, De
ember 1991.[17℄ K. Tindell, A. Burns, and A. Willings. An Extendible Approa
h for Analyzing Fixed Priority HardReal-Time Tasks. Real-Time Systems, 6(2), Mar
h 1994.43

[18℄ Aloysius K. Mok and Duu-Chung Tsou. The MSP.RTL Real-Time S
heduler Synthesis Tool. In IEEEReal-Time Systems Symposium, pages 118{128, De
ember 1996.[19℄ S. Cheng and A. K. Agrawala. S
ehduling of Periodi
 Tasks with Relative Timing Constraints. Te
hni
alreport, CS-TR-3392, UMIACS-TR-94-135, Department of Computer S
ien
e, University of Maryland,De
ember 1994.[20℄ R. Gerber, W. Pugh, and S. Saksena. Parametri
 Dispat
hing of Hard Real-Time Tasks. IEEE Transa
-tions on Computers, 44(3), Mar
h 1995.[21℄ S. Choi, S. Elsharkawy, Bao Trinh, and A. Agrawala. Dynami
 Time-Based S
heduling in Hard Real-TimeSystems. 1998.[22℄ Dilip D. Kandlur, Kang Shin, and Domeni
o Ferrari. Real-Time Communi
ation in Multi-hop Networks.IEEE Transa
tions on Parallel and Distributed Systems, pages 1044{1056, O
tober 1994.[23℄ A. Mehra, A. Indiresan, and K. Shin. Design and Evaluation of a QoS-Sensitive Communi
ation Sub-system Ar
hite
ture. IEEE Transa
tions on Parallel and Distributed Systems, CSE-TR(280-96), January1996.[24℄ Tarek Abdelzaher, Anees Shaikh, Farnam Jahanian, and Kang Shin. RTCAST: Lightweight Multi
ast forReal-Time Pro
ess Groups. Te
hni
al report, Real-time Computing Laboratory, Department of Ele
tri
alEngineering and Computer S
ien
e, University of Mi
higan, 1996.[25℄ Z. Deng and J. W. Liu. S
heduling real-time appli
ations in an open environment. In Pro
eeding of theReal-Time System Symposium, San Fran
is
o, California, pages 308{319, De
ember 1997. IEEE.[26℄ Kay Connelly and Andrew A. Chien. FM-QoS: Real-time
ommuni
ation using self-syn
hronizing s
hed-ules. In High Performan
e Networking and Computing, San Jose, California, pages 15{21, November1997. ACM SIGARCH and IEEE-CS-TCCA.[27℄ P. Ramanathan, D. D. Kandlur, and K. G. Shin. Hardware assisted software
lo
k syn
hronization forhomogeneous distributed systems. IEEE Transa
tions on Computers, C-39:514{524, April 1990.[28℄ Veeravalli Bharadwaj, Dedasish Ghose, Venkataraman Mani, and Thomas G. Robertazzi. S
hedulingDivisible Loads in Parallel and Distributed Systems. IEEE Computer So
iety Press, 1996.

44

A Variable Elimination OrderTheorem A.1 Given a set of ordered variables XN = [x1; x2; : : : ; xn�1; xn; : : : ; xN ℄ with standard relative
onstraints among them. If the two
onse
utive variables xn�1 and xn do not have any
onstraints betweenthem, then their relative order does not a�e
t the �nal out
ome of the Fourier-Motzkin variable eliminationpro
ess.Proof:After eliminating the variables xN through xn+1, the remaining variables are:Xn = [x1; x2; : : : ; xn�1; xn℄The
orresponding set of standard relative timing
onstraintsCn � AXn � bAfter eliminating the variable xn, the remaining variable ve
tor is:X 0n = Xn�1 = [x1; x2; : : : ; xn�1℄Eliminating xn�1 as well, the remaining variable ve
tor is:X 0n�1 = Xn�2 = [x1; x2; : : : ; xn�2℄Sin
e there is no timing
onstraints between xn�1 and xn, then there is no
onstraint in the equation setCn that has both variables. Therefore, we
an partition the
onstraint set into the following disjoint sets:Cn � CPn ^ CNn ^ CPn�1 ^ CNn�1 ^ CZwhere:� CPn : is the set of
onstraints that
ontain the variable xn with a positive
oeÆ
ient.CPn � fxn � Di(X 0n); 1 � i � pg� CNn : is the set of
onstraints that
ontain the variable xn with a negative
oeÆ
ient.CNn � fxn � Ej(X 0n); 1 � j � qg� CPn�1 : is the set of
onstraints that
ontain the variable xn�1 with a positive
oeÆ
ient.CPn�1 � fxn�1 � Fk(X 0n�1); 1 � k � rg45

� CNn�1 : is the set of
onstraints that
ontain the variable xn�1 with a negative
oeÆ
ient.CNn�1 � fxn�1 � Gl(X 0n�1); 1 � l � sg� CZ : whi
h is the set of
onstraints that
ontain neither xn�1 nor xn.CZ � f0 � Hm(X 0n�1); 1 � m � tgEliminating xn using the Fourier-Motzkin elimination pro
ess leads to a new equivalent system of
on-straints: C 0n � 9xn :: Cn � 8>><>>: Di(X 0n) � Ej(X 0n); 1 � i � p; 1 � j � qxn�1 � Fk(X 0n�1); 1 � k � rxn�1 � Gl(X 0n�1); 1 � l � s0 � Hm(X 0n�1); 1 � m � tEliminating xn�1, the new
onstraint system is:C 0n�1 � 9xn :: 9xn�1 :: Cn �8<: Di(X 0n) � Ej(X 0n); 1 � i � p; 1 � j � qFk(X 0n�1) � Gl(X 0n�1); 1 � k � r; 1 � l � s0 � Hm(X 0n�1); 1 � m � t (20)From equation 20, sin
e the elimination of variables xn and xn�1 a�e
t two disjoint sets of
onstraints, it isobvious that applying the elimination pro
ess in the reverse order would result in the same set of
onstraintsrepresented in equation 20. As a result, we
on
lude that the order of elimination of two
onse
utive variablesthat do not have any
onstraints between them does not a�e
t the out
ome of the Fourier-Motzkin variableelimination pro
ess.

46

