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Construction of control charts for multivariate process dispersion is not as

straightforward as for the process mean. Because of the complexity of out of control

scenarios, a general method is not available.

In this dissertation, we consider the problem of monitoring multivariate dis-

persion from two perspectives. First, we derive asymptotic approximations to the

power of Nagao’s test for the equality of a normal dispersion matrix to a given

constant matrix under local and fixed alternatives. Second, we propose various un-

equally weighted sum of squares estimators for the dispersion matrix, particularly

with exponential weights. The new estimators give more weights to more recent

observations and are not exactly Wishart distributed. Satterthwaite’s method is

used to approximate the distribution of the new estimators.

By combining these two techniques based on exponentially weighted sums of

squares and Nagao’s test, we are able to propose a new control scheme MTNT, which

is easy to implement. The control limits are easily calculated since they only depend

on the dimension of the process and the desired in control average run length. Our



simulations show that compared with schemes based on the likelihood ratio test and

the sample generalized variance, MTNT has the shortest out of control average run

length for a variety of out of control scenarios, particularly when process variances

increase.
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Chapter 1

Introduction

Statistical Process Control (SPC) is a discipline that uses statistical techniques

to measure and analyze the change in the mean and variance in processes. It is

a primary tool for quality improvement. SPC began as a means for monitoring

product quality in a manufacturing process and now its use has been extended to

other areas like software design, health care, education, etc. Typically there are two

sources that contribute to the variation in the process, the common causes that are

inherent to the process and the assignable (special) causes that can be attributed to

outside sources. Common causes happen by chance, are expected to happen and are

not correctable. For example in metalworking, small measurement variation would

happen because of the limited precision of a measurement gauge. Assignable causes,

on the other hand, are unanticipated, not expected to happen and correctable. For

example, an abnormal batch of product might be produced because of a sudden

increase of temperature in a chemical reaction process. By collecting data from

samples at various points within the production process, assignable causes that

affect the quality of the end product or service can be detected and corrected.

A typical SPC implementation cycles through the following steps:

1. Depending on the goal and characteristics of the monitored process, pick an

appropriate control scheme. Determine control limits.
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Step 2:
Take samples.

Implement SPC procedures.
Make SPC decisions

Product Outputs

Step 3:Identify cause of 
Variation.

Make necessary changes

Step 1: Choose appropriate
control scheme.

Bypass tthis step,if the
scheme has been initiated

Production Process

Figure 1.1: Graphic Representation of a SPC algorithm.

2. Collect samples from the process outputs. Implement the scheme with the

collected samples.

3. If scheme indicates in-control, return to Step 2. If an out of control signal

is given, identify the root cause of change. Make changes to the production

process if it is deemed that some process attributes have changed.

A graphic representation for realizing the statistical process control is presented

above in Figure 1.1.

There are four kinds of process shifting patterns, namely, the step shift, im-

pulse shift, spike shift and trend shift, as in [53]. Figure 1.2 shows these four shifting

patterns. The spike shift and the impulse shift represent situations when the process

undergoes a shock and restores itself to the original condition. These typically are

not concerns of SPC since if the process has the ability to correct itself then use

of SPC is probably redundant. This is especially true for the spike shift case. The

step shift represents the situation when the process has an instant and permanent
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Step Shift Impulse Shift

Spike Shift
Trend Shift

Figure 1.2: Four kinds of Shifting patterns.

shift and trend shifting means a gradual and permanent shift. In this paper we

shall focus on the step shifting scenario, but the proposed new control scheme also

applies to the trend shifting pattern.

The primary tool used for SPC is the control chart, which is a graphic represen-

tation of certain descriptive statistics for some specific quantitative measurements

of the production process. Shewhart pioneered control charts in the early 1920s, and

SPC has ever since received considerable attention. Many new methods have been

proposed and studied, such as the exponentially weighted moving average (EWMA)

chart and the Cumulative Sum (CUSUM) Chart. The Shewhart chart was initially

intended for the monitoring of a univariate process mean, but now SPC applications

have expanded from process mean to process variability, from univariate process to

multivariate process, from i.i.d. observations to correlated processes, and from con-

tinuous variables to attribute and count data.

In the univariate case, the well-known R, S, and S2 charts are the standard

3



charts for the purpose of monitoring process variability. Various alternative tech-

niques for monitoring process dispersion have been introduced and have gained wide

acceptance in practice. Page [35] proposed a CUSUM chart based on the sample

range for monitoring univariate normal process variance. Hawkins [14] discussed

multivariate control schemes based on regression adjusted variables. Huang and

Chen [15] proposed a synthetic control chart for monitoring process dispersion with

sample standard deviation. There is also the method of utilizing the determinant of

the sample covariance matrix |S| as a multivariate dispersion measure. An example

of this is Alt and Smith [3]. Yeh et al. [58] apply a likelihood ratio based EWMA

control chart for monitoring variability of multivariate normal processes.

While extension of these techniques to the multivariate case is of great im-

portance in practice, control chart procedures for monitoring the covariance of a

multivariate process have received very little attention. Unlike the problem of mon-

itoring multivariate process mean, it is not easy to define the changes in the co-

variance matrix that need to be detected. For a p dimensional multivariate process

variance-covariance matrix, there are a total of 2p(p+1)/2 − 1 ways that the matrix

can change. Because of this, even though the designated multivariate control pro-

cedure for dispersion can issue a signal, it is difficult to identify the out-of-control

process parameter(s). Also monitoring multivariate process dispersion tends to be

computational intensive.

This dissertation is organized as follows. In Chapter 2, the three most widely

used control schemes, the Shewhart chart, EWMA chart, CUSUM chart, and their

properties will be reviewed. In Chapter 3, we examine the asymptotic distributions

4



of the traditional likelihood ratio test and another test proposed by Nagao for the

equality of population variance covariance matrix to a given matrix under both

local and fixed alternatives. We will then discuss the weighted moving average type

of process variance covariance matrix estimator and its approximated distribution

using Satterthwaite’s method. In Chapter 4, a new control scheme to monitor

multivariate process variability will be given, and finally some numerical studies to

compare the proposed algorithm with existing ones. In Chapter 5, we summarize

the results of this thesis and suggests topics for future research.
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Chapter 2

Traditional Control Schemes and Average Run Length

2.1 Shewhart Control Chart

The simplest form of the control chart is the Shewhart chart ([43], 1931). In

a Shewhart chart for monitoring the level of a univariate process, an observation at

time t, xt, is used to indicate whether or not the process has undergone some shift in

its level. Assume that a sequence of observations x1,x2,. . . of a quality characteristic

are independently distributed with mean µ and variance σ2. The Shewhart control

chart plots these individual observations against the control limits:

UCL = µ + kσ

C = µ

LCL = µ − kσ,

LCL is the lower control limit, UCL is the upper control limit, [LCL, UCL] defines

the in control region centered at the target value C = µ, and the constant k is used

to control the average run length(ARL). A value of k = 3 gives an in control average

run length of 370. The Shewhart chart is easy to implement and sensitive to large

shifts in the process mean. However it is slow to detect small or moderate changes.
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5 10 15 20

−4
−2

0
2

4

Shewhart Control Chart

Upper control Limit k=1.96

Lower control Limit k=−1.96

Out of control

Signal

Figure 2.1: Target mean=0, variance=1. Mean shifts to 2 at the 11th observation, signal

given at the 13th observation.

2.2 CUSUM Control Chart

The CUSUM control scheme was first proposed by Page ([35], 1954). Since

then it has been widely researched and applied. It is a scheme that accumulates and

monitors the deviations of the sample observations from a predetermined reference

value r. Let the accumulated deviations be yt, then

yt = xt − r + yt−1

xt could be a single observation at time t or the average of subgroup sampled at time

t. Graphically, when the process is in control, the plot of yt will be roughly a line

with slope µ− r. Hence if the mean of the process is larger than the reference value,

the mean path is upward sloping. On the other hand, if the mean of the process is

larger than the reference value, the sequence will show a downward sloping trend.

7



0 10 20 30 40 50

−4
−2

0
2

4

Cusum Control Chart

Upper control Limit k=1.96

Lower control Limit k=−1.96

Out of control

Signal

Figure 2.2: Target mean=0, variance=1, squares are the raw means of subgroups, and

solid dots are the CUSUMs. Mean shifts to 0.5 at the 30th subgroup, and signal is given

at the 33rd subgroup. Plot shows a clear change of slope after the mean shift.

A sudden change of slope is indication of change of process level. The CUSUM

procedure can be derived from the perspective of the sequential probability ratio

test. This derivation indicates that the value of h should be chosen as one-half of

the shift in the level which should be detected quickly. CUSUM Control chart is

sensitive to small shifts, and is not as effective as the Shewhart chart in detecting

large shifts.

2.3 EWMA Control Chart

The exponentially weighted moving average (EWMA) control chart uses a

moving average of observations of the process as the control statistic and is more

sensitive than the Shewhart chart to small shifts in the level of the process. EWMA
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was first described by Roberts ([39], 1959). The EWMA statistic is obtained recur-

sively as

yt = (1 − λ)yt−1 + λxt, for t = 1, 2, . . . . (2.1)

The starting value for the statistic, y0, can be set as the target parameter value or

the average of the historical data. The constant λ determines the length of memory

of the EWMA statistic. By expanding the right hand side of Equation 2.1.

yt = λxt + λ(1 − λ)xt−1 + · · · + λ(1 − λ)t−1x1 + (1 − λ)ty0

=
t−1∑

i=0

λ(1 − λ)ixt−i + (1 − λ)ty0

=
t∑

i=1

λ(1 − λ)t−ixi + (1 − λ)ty0

The sum of weights is

t∑

i=0

wi = 1 − (1 − λ)t + (1 − λ)t = 1

If xt, t = 1, 2, . . . are i.i.d. with mean µ and variance σ2, then

E(yt) = µ

Var(yt) =
λ[1 − (1 − λ)2t]

2 − λ
σ2

If we let the process run long enough, that is as t → ∞, yt has asymptotic variance

λσ2/(2 − λ). The EWMA control chart limits then are

UCL = µ + kλ
√

σ/(2 − λ)

Center = µ

LCL = µ − kλ
√

σ/(2 − λ)

9
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EWMA Control Chart

Upper control Limit k=1.56

Lower control Limit k=−1.56

Out of control

Signal

Figure 2.3: Target mean=0, variance=1, λ = 0.1, mean shifts to 2 at the 60th observation,

and the signal is given at the 71th observation.

The factor k is chosen to give a desired in-control average run length. The parameter

λ allows practitioners to tune the EWMA control scheme to best fit their needs. A

small λ is desirable for small shifts and a large λ is preferred for large shifts, so it is

a very flexible chart. When λ = 1, the scheme reduces to Shewhart control chart.

2.4 Average Run Length(ARL)

The Average Run Length (ARL) is the most frequently used performance

measure for selecting and designing SPC procedures. There are two types of ARLs,

the in-control ARL and the out-of-control ARL. If the process has no shift, the in-

control ARL is the expected number of observations from the control statistic has

stabilized until an out-of-control signal is given. If the process undergoes a shift, the

out-of-control ARL is the expected number of observations from the time of shift
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until an out-of-control signal is given. When one is setting up a process monitoring

scheme, it is desirable that the scheme has a large in-control ARL when the process

is stable around the target values and small out-of-control ARL when the process

has a shift. The in-control and out-of-control ARLs are related to the Type I and

Type II error probabilities in hypothesis testing.

Generally speaking, the run length of a control chart R is a non-negative

discrete random variable. Then

ARL =
∞∑

i=1

Pr(R ≥ r) = 1 +
∞∑

i=1

Pr(R > r)

The Shewhart control chart gives a signal once an observation falls outside

of the control region. Since all the observations are assumed to be i.i.d., the in-

control ARL follows a geometric distribution. Let q be the probability that a single

observation falls outside the control limits, then the in-control ARL for the Shewhart

scheme is

ARLShewhart = 1/q

However, because of correlation among the chart statistics or high dimension-

ality, closed form expressions in terms of the design parameters for the ARL of a

CUSUM chart, EWMA chart or other charts that monitor multivariate or correlated

processes are hard to derive or totally intractable. Their ARLs are often computed

as a numerical solution to an integral equation. There are mainly two methods

for numerically approximation the ARL, the integral equations approach and the

Markov chain approach. Robinson and Ho ([41], 1978) used numerical methods

based on Edgeworth expansions also.
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2.5 Numerical Treatment of ARL

Crowder ([10], 1987) derived the integral equation approach for approximating

the EWMA chart run length conditional upon the outcome of the first observation.

Suppose xt has PDF f(x). Let the average run length function with starting value

y0 = b be L(b). With the first observation x1, and if the process goes out of control,

the run length is one, while if the process stays in control, then the additional run

length will be L((1 − λ)b + λx1). Hence

L(b) = 1 × P(|(1 − λ)b + λx1| > h) +

∫

|(1−λ)b+λx|<h

(1 + L((1 − λ)b + λx)) f(x) dx

= 1 +

∫

|(1−λ)b+λx|<h

L((1 − λ)b + λx)f(x) dx

= 1 + 1/λ

∫ h

−h

L(x)f(
x − (1 − λ)b

λ
) dx (2.2)

This is a Fredholm integral equation of the second kind. Crowder approximated

L(b) by applying the Nystrom method [37] and Gaussian quadrature [5] method.

He obtained a linear system by replacing the integral with an appropriate quadra-

ture (Crowder used a Gaussian-Legendre one), considering the equation only at the

related nodes. After solving the linear equation system we can evaluate L(b). Fur-

ther details about this method can be found in [10]. Rao et al. [36] were able to

establish the uniqueness and convergence of the ARL function as the solution to the

integral Equation 2.2.

Brook and Evans ([6], 1972) first used the Markov Chain method to approxi-

mate the average run length of the CUSUM charts. Lucas and Saccucci ([25], 1990)

used it to analyze the performance of the EWMA control chart. Runger and Prabhu
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([42], 1996) extended the method to discuss the properties of MEWMA(Multivariate

EWMA) charts. The Markov chain method consists of discretizing the control re-

gion into small intervals and treating these intervals as states of a Markov Chain.

The charting statistic would move among these states until it goes out of control (be

absorbed). Champ and Rigdon ([8], 1991) showed that the Markov chain method is

nothing other than a special case of the integral equation approach.
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Chapter 3

Test Statistic

In this chapter, we will first briefly review the likelihood ratio test criterion

and the test statistic proposed by Nagao ([32],[33],[34]). The distribution of Nagao’s

test under local and fixed alternatives will be derived in Section 3.1. In Section 3.2,

we shall discuss improved estimation of the process variance covariance matrix, Sat-

terthwaite’s approximation technique will be used to approximate the distribution

of proposed estimators.

In this chapter, we consider the following data structure. Let the vector-valued

X1,X2, . . . ,Xn be a sequence of independent identically distributed observations

from a p-variate normal distribution, Np(µ,Σ). These observations represent mea-

surements of p correlated process characteristics, where Xi = (xi1, xi2, . . . , xip)
T .

Under the null hypothesis, Σ = Σ0. Both µ and Σ0 are assumed to be known. If

we don’t know µ and Σ0, then a long burn-in process run is needed to estimate

these values. Since we are interested in monitoring process dispersion, without loss

of generality, we may assume that µ = 0. The sample variance covariance matrix

estimator is assumed to be Wishart distributed and has k degrees of freedom.
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3.1 Test criteria

3.1.1 Likelihood Ratio Test and Nagao’s Test

Given the observations X1,X2, . . . ,Xn, we wish to test

H0 : Σ = Σ0 vs. H1 : Σ 6= Σ0 (3.1)

for a given positive definite in control process dispersion matrix Σ0. The likelihood

ratio test criterion, by the arguments of Anderson [1], rejects the null hypothesis for

small values of

LR =
(e

k

)kp/2 ∣∣kSΣ−1
0

∣∣k/2
etr

{
−
(

k

2

)
Σ−1

0 S

}
(3.2)

where etr means the exponential of a matrix trace, k = n − 1,

S =

n∑

i=1

(Xi − X̄)(Xi − X̄)T

k
,

X̄ =

∑n
i=1 Xi

n
.

According to the Wilks’ theorem [54], under the null hypothesis, the asymp-

totic distribution of the log likelihood ratio test statistic TLR

TLR = −2 ln(LR) (3.3)

is χ2 with p(p + 1)/2 degrees of freedom.

Sugiura ([50], [47]) discussed the asymptotic expansion of the non-null distri-

bution of TLR under both local and fixed alternatives. He showed that, under local

alternatives that converge to the null hypothesis at the rate of k−1/2

H?
1 : Σ

−1/2
0 ΣΣ

−1/2
0 = I + k−1/2Θ, (3.4)
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Θ is a symmetric matrix that indicates the size and direction of the shifts, the

asymptotic distribution of TLR is χ2 with p(p + 1)/2 degrees of freedom and non-

centrality parameter trΘ2/2. While under fixed alternatives H1, he showed that the

characteristic function of k−1/2TLR has the form:

CH1(t) = E
[
exp(itk−1/2TLR)

]
=

(
k

2e

)itpk1/2

Γp(k/2 − itk1/2)

Γp(k/2)

× |ΣΣ−1
0 |−itk1/2

|I − 2itk−1/2ΣΣ−1
0 |k/2−itk1/2

(3.5)

where Γp(a) is the multivariate Gamma function with the property that

Γp(a) = πp(p−1)/4

p∏

j=1

Γ(a + (1 − j)/2)

Sugiura did further expansion of (3.5),

ln(CH1(t)) =it
√

k
(
tr(ΣΣ−1

0 ) − p − ln |ΣΣ−1
0 |
)

− k2tr(ΣΣ−1
0 − I)2 + O(k−1/2),

which implies that

k−1/2

[
TLR − k

(
tr(ΣΣ−1

0 ) − p − ln |ΣΣ−1
0 |
)]

d−−−→
k→∞

N(0, 2tr(ΣΣ−1
0 − I)2).

As noted by Sugiura, the variance quantity

τ 2 = 2tr
[
(ΣΣ−1

0 − I)2
]

(3.6)

can be regarded as a measure of the departure from the null hypothesis H0. This

motivated Nagao [34] to propose the following test criterion, which in this paper,

we call Nagao’s test and abbreviate it as TNT . By replacing Σ in τ 2 by its unbiased
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estimator S and multiplying by k/2, Nagao’s test criterion for the equality of process

variance covariance matrix to a given matrix Σ0 is:

TNT = (k/2)tr(SΣ−1
0 − I)2. (3.7)

Nagao’s test rejects the null hypothesis when the observed value of TNT is larger

than a predetermined threshold.

Nagao ([33],[34]) derived the asymptotic expansion of TNT under the null

hypothesis H0 and concluded that the asymptotic null distribution of TNT when

k = n − 1 is large is χ2 with p(p + 1)/2 degrees of freedom.

3.1.2 Some optimal properties of Nagao’s test

In this section, we shall indicate some properties of TNT and sketch briefly the

proofs of these results.

Theorem 1 (Invariance) Nagao’s test TNT is invariant with respect to the trans-

formations

Y = QX

where Q is a square invertible p × p matrix.

Suppose the Nagao’s test statistic associated with Y is T?
NT . Let the variance

covariance matrix of Y and the corresponding estimator be Σ? and S? respectively.

Then

Σ? = QΣQT , S? = QSQT .
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Hence

T?
NT = (k/2)tr

(
S?(Σ?)−1 − I

)2

= (k/2)tr
(
QSQT (QΣ0Q

T )−1 − I
)2

= (k/2)tr
(
QSQT (QT )−1Σ−1

0 Q−1 − I
)2

= (k/2)tr
(
QSΣ−1

0 Q−1 − I
)2

= (k/2)tr(SΣ−1
0 − I)2 = TNT .

If we let Q = Σ
−1/2
0 , or in other words, if the observations are normalized, TNT

is invariant to such standardization, so that when the in control process dispersion

matrix is not I, we may choose to normalize the observations first before carrying

out the test. We will replace SΣ−1
0 by the standardized sample variance covariance

matrix S? and call it the standardized Nagao’s test

TNT = (k/2)tr(S? − I)2

where

Yi = Σ
−1/2
0 Xi

S? =

∑n
i=1(Yi − Ȳ)(Yi − Ȳ)T

n − 1

Ȳ =

∑n
i=1 Yi

n
.

It is to be noted that the log likelihood criterion is also invariant to this kind of

transformation. This can be verified by making the substitution in Equation 3.2.
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Proposition 1 (Frobenius Norm) Let the Frobenius norm (distance) between two

matrices, A and B, be
∥∥A −B

∥∥
F
. Then

TNT = (k/2)
∥∥S − I

∥∥2

F
.

This is true since

∥∥S − I
∥∥

F
=
√

tr(S − I)(S − I)T

=
√

tr(S − I)2, (Symmetricity of S, I)

hence the result.

The Frobenius norm, or the Frobenius distance between two matrices, is a

common and in many ways the simplest way of measuring the discrepancy between

two matrices. In matrix factorization analysis, Frobenius distance is often used as

a criterion of studying the closeness of approximations of a matrix by the product

of two matrices ([44], 2004). Nagao’s test TNT is the squared Frobenius distance

between the estimated process variance covariance matrix S and the target identity

matrix I, scaled by one half the degrees of freedom of S.

Notice also that

TNT = (k/2)
∑

i

∑

j

(Sij − Iij)
2 = (k/2)‖Vec(S − I)‖2

E,

‖ ‖E means the Euclidean norm of a vector. Hence Nagao’s test TNT is also

measure of the Euclidean distance between Vec(S) and Vec(I).

Nagao’s test is also a function of the eigenvalues of sample variance covariance

matrix S. Let the sequence of eigenvalues for the standardized sample variance-
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covariance matrix S be l1 ≤ l2 ≤ · · · ≤ lp. Then

TNT = (k/2)tr(S − I)2

= (k/2)(trS2 − 2trS + p)

= (k/2)
( p∑

i=1

l2i − 2

p∑

i=1

li + p
)

= (k/2)

p∑

i=1

(li − 1)2.

That is to say, TNT is also a measure of the discrepancy between the eigenvalues of

the normalized sample variance covariance matrix and the eigenvalues of the identity

matrix.

3.2 Asymptotic expansions of likelihood ratio test under fixed alter-

natives

In Section 3.1.1, we briefly went over the asymptotic distribution of TLR/
√

k

derived by Sugiura [50] under the fixed alternative H1 : Σ 6= Σ0. In this section, we

will try to refine Sugiura’s results.

Let τ 2 = 2tr(ΣΣ−1
0 − I)2 and define

Z =

[
TLR − k

{
tr(ΣΣ−1

0 ) − p − ln |ΣΣ−1
0 |
}
]
/
(√

kτ
)
.

Let trj = tr(ΣΣ−1
0 )j and let Φ(r)(z) be the rth derivative of the standard normal

cumulative distribution function Φ(z). The first seven derivatives of the standard
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normal distribution Φ(z) can be calculated iteratively as

Φ(1)(z) = φ(z),

Φ(2)(z) = −zφ(z),

Φ(3)(z) = φ(z)(z2 − 1),

Φ(4)(z) = φ(z)(3z − z3),

Φ(5)(z) = φ(z)(z4 − 6z2 + 3),

Φ(6)(z) = φ(z)(−z5 + 10z3 − 15z),

Φ(7)(z) = φ(z)(z6 − 15z4 + 45z2 − 15).

Then Sugiura ([47], 1969) proved that the cumulative distribution function (CDF)

G(z) of Z has the form

G(z) =Φ(z) − φ(z)

6
√

k

[
3p(p + 1)

τ
+

4(p + 2tr3 − 3tr2)(z
2 − 1)

τ 3

]

+
φ(z)

72k

[
−18p(p + 1)(p2 + p + 4)

τ 2

+
24(3z − z3)

τ 4
× {p(p2 + p + 2) − 3p(p + 1)tr2

+ 2(p2 + p − 4)tr3 + 6tr4}

+
16(−z5 + 10z3 − 15z)

τ 6
(p + 2tr3 − 3tr2)

2

]

+ O(k−3/2).
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Then the density g(z) satisfies,

g(z) =φ(z) +
zφ(z)

6
√

k

[
3p(p + 1)

τ
+

4(p + 2tr3 − 3tr2)(z
2 − 1)

τ 3

− 8(p + 2tr3 − 3tr2)

τ 3

]

+
φ(z)

72k

[
9(z2 − 1)p(p + 1)(p2 + p + 4)

τ 2

+
24(z4 − 6z2 + 3)

τ 4
{p(p2 + p + 2) − 3p(p + 1)tr2

+ 2(p2 + p − 1)tr3 + 6tr4}

+
16(z6 − 15z4 + 45z2 − 15)

τ 6
× (p + 2tr3 − 3tr2)

2

]

+ O(k−3/2).

Since all the odd moments of standard normal are 0,

E(z) =

∫ ∞

−∞

z2φ(z)

6
√

k

[
3p(p + 1)

τ
+

4(p + 2tr3 − 3tr2)(z
2 − 1)

τ 3

− 8(p + 2tr3 − 3tr2)

τ 3

]
dz + O(k−3/2)

=
1

6
√

k

[
p(p + 1)

τ
+

8(p + 2tr3 − 3tr2)

τ 3
− 8(p + 2tr3 − 3tr2)

τ 3

]

+ O(k−3/2)

=
p(p + 1)

2τ
√

k
+ O(k−3/2).
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and also

∫ ∞

−∞
z2g(z) dz = 1 +

∫ ∞

−∞

z2φ(z)

72k

[
9(z2 − 1)p(p + 1)(p2 + p + 4)

τ 2

+
24(z4 − 6z2 + 3)

τ 4

{
p(p2 + p + 2)

− 3p(p + 1)tr2 + 2(p2 + p − 1)tr3 + 6tr4

}

+
16(z6 − 15z4 + 45z2 − 15)

τ 6
(p + 2tr3 − 3tr2)

2

]
dz

+ O(k−2)

= 1 +
p(p + 1)(p2 + p + 4)

4kτ 2
+ O(k−2).

Hence

Var(z) = 1 +
p(p + 1)(p2 + p + 4)

4kτ 2
− p2(p + 1)2

4kτ 2
+ O(k−3/2)

=
kτ 2 + p(p + 1)

kτ 2
+ O(k−3/2).

Combining the above results, we have the following theorem.

Theorem 2 Under the alternative H1: Σ 6= Σ0, the log likelihood ratio criterion

TLR is distributed as

P
(TLR − µ√

τ ?
≤ z
)

= Φ(z) + O(k−1/2) (3.8)

as k = n − 1 → ∞, where µ = k
{
trΣΣ−1

0 − p − ln |ΣΣ−1
0 |
}

+ p(p + 1)/2 and

τ ? = 2ktr(ΣΣ−1
0 − I)2 + p(p + 1).

We modified Sugiura’s results by adding an extra p(p + 1)/2 to the mean

and p(p + 1) to the variance. This modification is trivial for distant alternatives

when k
{

trΣΣ−1
0 − p − ln |ΣΣ−1

0 |
}

and 2ktr(ΣΣ−1
0 − I)2 are significantly bigger
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than p(p +1)/2 and p(p + 1) respectively, but significant for local alternatives when

k
{

trΣΣ−1
0 − p − ln |ΣΣ−1

0 |
}

and 2ktr(ΣΣ−1
0 − I)2 are comparable with p(p + 1)/2

and p(p + 1).

As an example, we made 10,000 simulations of TLR and compare with 10000

simulations of normal data. In the simulation, Σ0 = I3 and Σ =
( 1 0 0

0 1 0
0 0 1+a

)
, k = 199.

Table 3.1 compares the sample quantiles with theoretical normal quantiles.

Table 3.1: Sample quantiles of TLR vs. normal approximation. a = 1

Quantile 1% 5% 10% 25% 50% 75% 90% 95% 99%

TLR 27.35 36.87 42.65 52.58 65.47 79.76 93.97 102.87 120.68

Normal 21.12 34.41 41.46 53.34 66.85 80.27 93 100.3 114.29

Figure 3.1 is the QQ plot. Figure 3.2 shows the density plots.
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Figure 3.1: QQ plot of TLR vs. normal with mean k
{
trΣΣ−1

0 −p−ln |ΣΣ−1
0 |

}
+p(p+1)/2

and variance 2ktr(ΣΣ−1
0 − I)2 + p(p + 1). Σ0 = I, a=1, k=199

Overall we see good fit except for low-end and high-end tails where the true

quantiles are greater than normal theory quantiles, which suggests inflated Type I
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error rates for hypothesis testing.
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Figure 3.2: Density plot. Solid line: TLR. Dotted line: Normal

Table 3.2 compares the power of the log likelihood ratio test TLR calcu-

lated from simulation with theoretical power for various alternatives. The first

five columns are considered as small shifts (variance of the third dimension shifts to

1.07, 1.21, 1.35, 1.5, 1.71 respectively), while the last five are considered as medium

or large shifts.

Table 3.2: Power of TLR and normal approximation for various shifts. Significance

level=0.05

a 1/
√

199 3/
√

199 5/
√

199 7/
√

199 9/
√

199 1 1.25 1.5 1.75 2

TLR 0.072 0.274 0.63 0.886 0.979 1 1 1 1 1

Normal 0.051 0.321 0.678 0.872 0.953 0.996 0.999 1 1 1

Difference 0.021 -0.047 - 0.048 0.014 0.026 0.004 0.001 0 0 0

In the first column, the shift is really small, from 1 to 1.07, TLR has a higher

rate of rejection than theoretically suggested. As shift size increases, the likelihood
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ratio test doesn’t perform as well as the normal approximation suggests. For medium

to large shifts, the true and approximate powers converge.

0.0 0.5 1.0 1.5 2.0

−0
.0

6
−0

.0
4

−0
.0

2
0.

00
0.

02
0.

04
0.

06

Shift

Po
we

r d
iffe

re
nc

e

Figure 3.3: Plot of the difference between the two power functions of TLR and normal

theoretical for a variety of shifts. Significance level 0.05.

Finally let us examine TLR from the perspective of SPC. When the process

is under control, the mean of TLR is p(p + 1)/2. If the variance covariance matrix

shifts to Σ 6= Σ0, then the mean of TLR becomes

E(TLR) = k
{

trΣΣ−1
0 − p − ln |ΣΣ−1

0 |
}

+ p(p + 1)/2

In terms of the eigenvalues of ΣΣ−1
0 , l1, l2, . . . , lp

E(TLR) = k

p∑

i=1

(li − 1 − ln(li)) + p(p + 1)/2. (3.9)

The term li − 1− ln(li) is a convex function of li and has its minimum at li = 1. In

other words, TLR increases as li departs from its in-control value 1. Both increase

and decrease of li contribute positively to E(TLR). Equation 3.9 suggests that these

contributions are additive too.
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3.3 Asymptotic expansions of Nagao’s test under fixed alternatives

For Nagao’s testing criteria, consider the standardized TNT , assuming the

process mean is 0. let the normalized variance covariance matrix estimator be

S =

k∑

i=1

YiY
T
i /k

= Σ
−1/2
0 ΣΣ

−1/2
0 + U

where

Σ
−1/2
0 ΣΣ

−1/2
0 = [σij]p×p, U = [uij]p×p =

[
k∑

l=1

yliylj/k − σij

]

p×p

E(U) = 0, Var(U) = O(1/k).

The matrix U captures the randomness of TNT . Then we can rewrite TNT as

(1/
√

k)TNT =
(√

k/2
)
tr(S − I)2

=
(√

k/2
)
tr(Σ

−1/2
0 ΣΣ

−1/2
0 − I + U)2

=
(√

k/2
){

tr(ΣΣ−1
0 − I)2 + 2tr

(
(ΣΣ−1

0 − I)U
)

+ trU2
}
,

hence

1√
k

{
TNT − ktr(ΣΣ−1

0 − I)2/2
}

= tr
(
(ΣΣ−1

0 − I)
√

kU
)

+ O(k−1/2)

Vectorize U = S − Σ
−1/2
0 ΣΣ

−1/2
0 by stacking the columns of the matrix U on top

of one another

Vec(U) =
[
u11 u21 . . . up1 u12 . . . upp

]T
p2×p2.
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The covariance between any two entries ust and ukl of Vec(U) is

Cov(uml, ust) = E

{( k∑

i=1

yimyil/k − σml

)( k∑

j=1

yjsyjt/k − σst

)}

= E

{( k∑

i=1

yimyil

k∑

j=1

yjsyjt

)
/k2 − σmlσst

}

= E

{( k∑

i=1

k∑

j=1

yimyilyjsyjt

)
/k2 − σmlσst

}

= E

{( k∑

i=1

yimyilyisyit +
∑

i 6=j

k∑

j=1

yimyilyjsyjt

)
/k2 − σmlσst

}

=

{
kE(ymylysyt) + k(k − 1)E(ymyl)E(ysyt)

}
/k2 − σmlσst

=
{

σmlσst + σmsσlt + σmtσls + (k − 1)σmlσst

}
/k − σmlσst

= (σmsσlt + σmtσls)/k.

Under the regularity conditions, the Central Limit Theorem gives

√
kVec(U)

d−−−→
k→∞

N(0,Σu)

where

Σu =

[
σmsσlt + σmtσls

]

p2×p2

also

tr
(
(ΣΣ−1

0 − I)
√

kU
)

=
k∑

i=1

k∑

j=1

√
k(σij − Iij)uji =

(
Vec(ΣΣ−1

0 − I)T
)T√

kVec(U).

A simple application of the delta method here gives us the following result.

Theorem 3 Under the alternative H1: Σ 6= Σ0, TNT is asymptotically distributed

as

(1/
√

k)
{
TNT−ktr(ΣΣ−1

0 −I)2/2
}

d−−−→
k→∞

N

(
0,
(
Vec(ΣΣ−1

0 −I)T
)T

ΣuVec(ΣΣ−1
0 −I)T

)
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where k is the degrees of freedom of the variance covariance estimator in TNT .

Using the same simulation structure as that of TLR, we generated 10000 replications

of TNT and compared the sample quantiles with the normal theoretical quantiles

when a = 2 in Table 3.3.

Table 3.3: Sample quantiles of TNT/
√

k Vs. normal approximation. a = 2.

Quantile 1% 5% 10% 25% 50% 75% 90% 95% 99%

TNT/
√

k 13.17 16.94 19.04 23.31 28.69 34.82 41.08 45.35 53.42

Normal 8.94 14.33 17.39 22.56 28.27 33.93 39.11 42.22 47.89

Figure 3.5 shows the corresponding quantile-quantile plot and Figure 3.6 com-

pares the density plots. The worst discrepencies occur in the tails.
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Figure 3.4: QQ plot of TNT /
√

k Vs. normal with mean
√

ktr(ΣΣ0 − I)2/2. Σ0 = I,

k=199.

Table 3.4 compares the power of Nagao’s test TNT calculated from simulation

with theoretical power for various alternatives. Both Table 3.4 and Figure 3.6 sug-

gest that the normal approximation is very crude for local alternatives. In fact, the

limiting non-null distribution is degenerate at the null hypothesis so that the asym-
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Figure 3.5: Density plot. Solid line: TNT/
√

k. Dotted line: Normal.
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Figure 3.6: Power plot. Solid line: TNT . Dashed line: Normal approximation. Signifi-

cance level=0.05.

Table 3.4: Power of TNT vs. asymptotic normal approximation for various shifts.

Significance level=0.05.

Shift 1/
√

199 3/
√

199 5/
√

199 7/
√

199 9/
√

199 1 1.25 1.5 1.75 2

TNT 0.089 0.36 0.715 0.931 0.987 1 1 1 1 1

Normal 0 0.055 0.493 0.787 0.906 0.986 0.995 0.997 0.999 1

Difference 0.089 0.302 0.223 0.144 0.081 0.014 0.005 0.003 0.001 0
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Figure 3.7: Plot of the difference between the two power functions of TNT and normal

theoretical for a variety of shifts. Significance level 0.05.

potic formulas do not give good approximations when the alternative is close to the

null hypothesis. Some further discussion about the limiting non-null distributions

under sequences of local alternatives is needed. We will extend this result in the

next section.

3.4 Asymptotic distribution of Nagao’s test criteria under local al-

ternatives

In this section, we will continue our discussion of the distributional properties

of TNT in last section and show that under local alternatives, the statistic TNT =

ktr(S − I)2/2 follows a χ2 distribution with p(p + 1)/2 degrees of freedom and

nocentrality paramenter tr(Θ)2/2. Because of the invariance, we consider the test

using the standardized observations Yt = Σ
−1/2
0 Xt, which has variance covariance

matrix Σ?.

In the following discussion, we will use the matrix exponential and matrix
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logarithm, which are defined as

exp(A) =
∞∑

i=0

1

i!
Ai,

B = ln(A),

if A is a real symmetric positive definite matrix, then ln(A) = B is uniquely defined

as the inverse of the matrix exponential function (restricted to the domain of real

symmetric matrices), that is exp(ln(A)) = A if A is real symmetric and positive

definite.

Let us consider testing

H0 : Σ? = Σ
−1/2
0 ΣΣ

−1/2
0 = Ip×p

vs. the sequence of alternatives:

H1 : Σ? = Σ
−1/2
0 ΣΣ

−1/2
0 = Ip×p + k−1/2Θ

where k is the degrees of freedom of the sample variance covariance matrix and Θ

is a symmetric matrix.

Under the alternative hypothesis, the distribution of S is Wishart
(
k, k−1(I +

k−1/2Θ)
)
. The characteristic function of TNT is

C(t) = cp,k

∫
exp{itTNT}|k−1(I + k−1/2Θ)|−

k
2 |S|

1
2
(k−p−1)

× etr
{

(−1

2
(k−1(I + k−1/2Θ))−1S)

}
dS (3.10)

where the constant

cp,k =

{
2kp/2πp(p−1)/4

p∏

α=1

Γ[
1

2
(k + 1 − α)

}−1

.
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By expressing TNT in terms of

Y = (k/2)1/2 lnS or S = exp(
√

2/kY),

we have

TNT = ktr(S − I)2/2

= ktr
(

exp(
√

2/kY) − I
)2

/2

= trY2 + (2/k)1/2trY3 + (7/6k)trY4 + O(k−3/2).

According to Nagao [34], the Jacobian of such a transformation is

∣∣∣∣
∂S

∂Y

∣∣∣∣ =
(

2

k

)p(p+1)/4

etr{(2/k)1/2Y}
p∏

i>j

f(λi) − f(λj)

λi − λj

Nagao [34] showed that the asymptotic expansion of the distribution of Y is

f(Y) = c?
p,k × etr

{
(1/2)(k − p + 1)(2/k)1/2Y − (k/2)e(2/k)1/2Y

}

×
{

1 +
1

2
(p − 1)(

k

2
)1/2trY +

1

12k
((3p2 − 6p + 1)(trY)2 + ptrY2)

}
(3.11)

where

c?
p,k =

{
p∏

α=1

Γ[
1

2
(k + 1 − α)]

}−1(
k

2

)p(2k−p+1)/4

π−p(p−1)/4

Using (3.10) and (3.11), we can rewrite the characteristic function C(t) as

C(t) = c?
p,k|I + k−1/2Θ|−k/2

×
∫

exp

{
(it)trY2 +

√
2

k
(it)trY3 +

7

6k
(it)trY4

+
1

2
(k − p + 1)

√
2

k
trY − k

2
tr
(
(I + k−1/2Θ)−1 exp(

√
2/kY

)}

×
{

1 +
1

2
(p − 1)

√
2

k
trY

+
1

12k

(
(3p2 − 6p + 2)(trY)2 + p trY2

)
+ O(k−3/2)

}
dY,
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where the integration region is the set of all symmetric p × p matrices.

Using the Neumann Series expansion:

(I + k−1/2Θ)−1 = I − Θ√
k

+
Θ2

k
− Θ3

k3/2
+

Θ4

k2
+ O(k−5/2)

and

exp(
√

2/kY) = I +

√
2

k
Y +

Y2

k
+

√
2Y3

3k3/2
+

Y4

6k2
+ O(k−5/2)

We have

(I + k−1/2Θ)−1 exp(
√

2/kY) =

(
I − Θ√

k
+

Θ2

k
− Θ3

k3/2
+

Θ4

k2
+ O(k− 5

2 )

)

×
(

I +

√
2

k
Y +

Y2

k
+

√
2Y3

3k3/2
+

Y4

6k2
+ O(k− 5

2 )

)

= I +
1√
k

(√
2Y − Θ

)
+

1

k

(
Y2 −

√
2ΘY + Θ2

)

+
1

k3/2

(√
2

3
Y3 − ΘY2 +

√
2Θ2Y − Θ3

)

+
1

k2

(
Y4

6
−

√
2

3
ΘY3 + Θ2Y2 −

√
2Θ3Y + Θ4

)

+ O(k−5/2).

Also

|I + k−1/2Θ|−k/2 = exp
(
− k

2
ln |I + k−1/2Θ|

)

= exp

{
k

2

(trΘ

k1/2
+

trΘ2

2k
− trΘ3

3k3/2
+

trΘ4

4k2
+ O(k−5/2)

)}

= exp

{
−

√
k

2
trΘ +

trΘ2

4
− trΘ3

6
√

k
+

trΘ4

8k
+ O(k−3/2)

}
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After some calculation, we have

C(t) = c?
p,k exp

(
− kp

2

)
exp

(
− trΘ2

4

)

×
∫

exp

{
(it)trY2 − 1

2
trY2 +

√
2

2
trΘY

}

× exp

{√
2

k

(
(it)trY3 − trY3

6
+

trΘY2

2
√

2
− trΘ2Y

2
+

1

2
(1 − p)trY +

trΘ3

3
√

2

)

+
1

k

(7

6
(it)trY4 − trY4

12
+

√
2

6
trΘY3 − trΘ2Y2

2
+

√
2

2
trΘ3Y − 3trΘ4

8

)

+ O(k−3/2)

}

×

{
1 +

1

2
(p − 1)

√
2

k
trY +

1

12k

(
(3p2 − 6p + 2)(trY)2 + p trY2

)

+ O(k−3/2)

}
dY

= c?
p,k exp

(
− kp

2

)
exp

(
− trΘ2

4

)∫
E1 × E2 × E3 dY.

By completing the square for E1

E1 = exp

{
(it)trY2 − 1

2
trY2 +

√
2

2
trΘY

}

= exp

{
− 1

2
(1 − 2it)tr

(
Y − Θ√

2(1 − 2it)

)2
}

exp
( trΘ2

4(1 − 2it)

)
. (3.12)
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By carrying out further expansion for E2, we have

E2 = 1 +

√
2

k

{(
it− 1

6

)
trY3 +

trΘY2

2
√

2
− trΘ2Y

2
+

1

2
(1 − p)trY +

trΘ3

3
√

2

}

+
1

k

{(
it − 1

6

)2

(trY3)2 +
it − 1

6√
2

trY3trΘY2 +
(
it − 1

6

)
(1 − p)trY3trY

+ (
7

6
it − 1

12
)trY4 − (it − 1

6
)trY3trΘ2Y +

(trΘY2)2

8
+

√
2

6
trΘY3

+
2(it − 1

6
)

3
√

2
trY3trΘ3 +

1 − p

2
√

2
trYtrΘY2 − 1

2
√

2
trΘ2YtrΘY2

− 1 − p

2
trYtrΘ2Y − trΘ2Y2

2
+

1

6
trΘY2trΘ3 +

1

4
(p − 1)2(trY)2

+
(trΘ2Y)2

4
+

√
2

2
trΘ3Y − 1

3
√

2
trΘ2YtrΘ3 +

1 − p

3
√

2
trYtrΘ3

− 3

8
trΘ4 +

(trΘ3)2

18

}

+ O(k−3/2),

hence

E2 × E3 = 1 +

√
2

k

{(
it − 1

6

)
trY3 +

trΘY2

2
√

2
− trΘ2Y

2
+

trΘ3

3
√

2

}

+
1

k

{(
it − 1

6

)2

(trY3)2 +
(it− 1

6√
2

)
trY3trΘY2 −

(
it − 1

6

)
trY3trΘ2Y

+
(trΘY2)2

8
+
(7

6
it− 1

12

)
trY4 − 1

2
√

2
trΘ2YtrΘY2

+
2(it − 1

6
)

3
√

2
trY3trΘ3 +

√
2

6
trΘY3 − 1

3
√

2
trΘ2YtrΘ3 +

1

6
trΘY2trΘ3

+
(trΘ2Y)2

4
− 1

2
trΘ2Y2 +

p

12
trY2 − 1

12
(trY)2 +

√
2

2
trΘ3Y

+
(trΘ3)2

18
− 3

8
trΘ4

}

+ O(k−3/2)

= 1 +

√
2

k
F1 +

1

k
F2 + O(k−3/2).
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Let g(Θ) = Θ/(
√

2(1−2it)) = (gij). Then the first term of E1 can be rewritten

as

exp

{
−
∑p

i=1(Yii − gii)
2 + 2

∑
i>j(Yij − gij)

2

2(1 − 2it)−1

}
(3.13)

As in Nagao [34], the special structure of E1 in (3.13) prompts us to consider the

vector of the unique elements in Z = Y − Θ/(
√

2(1 − 2it)), Hvec(Z), as having

a p(p + 1)/2 dimensional normal distribution with mean 0 and covariance matrix

[σij,kl] with

Hvec(Z) =
[
z11, z22, . . . , zpp, z12, z13, . . . , zp−1,p

]T
p(p+1)/2×1

and

σij,kl = (1 − 2it)−1(δikδjl + δilδjk)/2

where δij is the Kronecker Delta function with

δij =





1 i = j

0 otherwise

Here the variance quantity σij,kl is complex valued. The “ Covariance Matrix ” of

Hvec(Z) is block diagonal

[
σij,kl

]
=




(1 − 2it)−1Ip×p 0

0 1
2
(1 − 2it)−1I p(p−1)

2
× p(p−1)

2




p(p+1)
2

× p(p+1)
2

.

Hence

∣∣∣
[
σij,kl

]∣∣∣ = (1 − 2it)−p(p+1)/2 2−p(p−1)/2.
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Thus we have the asymptotic expansion for the characteristic function

C(t) = c?
p,k(2π)

p(p+1)
4 2−

p(p−1)
4 (1 − 2it)−

p(p+1)
4 exp

(
− kp

2

)
exp

(
− trΘ2

4
+

trΘ2

4(1 − 2it)

)

× EY

(
1 +

√
2

k
F1 +

1

k
F2 + O(k−3/2)

)

= c??
p,k(1 − 2it)−

p(p+1)
4 exp

(1

2
ittrΘ2(1 − 2it)−1

)

× EY

(
1 +

√
2

k
F1 +

1

k
F2 + O(k−3/2)

)
(3.14)

where

c??
p,k =

{
p∏

α=1

Γ[
1

2
(k + 1 − α)]

}−1(
k

2

)p(2k−p−1)/4

π−p(p−1)/4

× (2π)
p(p+1)

4 2−
p(p−1)

4 exp
(
− kp

2

)
(3.15)

Using the Stirling’s formula in (3.15), we get

c??
p,k = 1 − p(2p2 + 3p − 1)

24k
+ O(k−2)

The structure of (3.14) resembles the characteristic function of a non-central χ2

distribution with some correction terms. The degrees of freedom and non-centrality

parameter are p(p + 1)/2 and 1
2
trΘ2 respectively. To evaluate the correction terms,

we will substitute Z+ g(Θ) for Y. Note that matrix trace is a linear operator, then

all the odd moments of Z are zero. We will also use the following results:

EZ(Z2) =
p + 1

2(1 − 2it)
I

EZ(trZ2) =
p(p + 1)

2(1 − 2it)

EZ

(
tr(Z2Θ)

)
=

(p + 1)trΘ

2(1 − 2it)
,
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so that for the k−1/2 order term F1

EY (F1) = EY

{(
it− 1

6

)
trY3 +

trΘ3

3
√

2
+

trΘY2

2
√

2
− trΘ2Y

2

}

= EZ

{(
it− 1

6

)
tr
(
3Z2g(Θ) + g(Θ)3

)
− trΘ3

6
√

2

+
tr
(
Θ(Z2 + g(Θ)2)

)

2
√

2
−

tr
(
Θ2g(Θ)

)

2

}

= EZ

{
3(it− 1

6
)trZ2Θ

√
2(1 − 2it)

+
(it− 1

6
)trΘ3

2
√

2(1 − 2it)3
+

trΘ3

3
√

2

+
trΘZ2

2
√

2
+

trΘ3

4
√

2(1 − 2it)2
− trΘ3

2
√

2(1 − 2it)

}

= EZ

{(
− 1√

2
+

1√
2(1 − 2it)

)
trZ2Θ

+
( 1

3
√

2
− 1

2
√

2(1 − 2it)
+

1

6
√

2(1 − 2it)3

)
trΘ3

}

=
(
− 1√

2(1 − 2it)
+

1√
2(1 − 2it)2

)p + 1

2
trΘ

+
( 1

3
√

2
− 1

2
√

2(1 − 2it)
+

1

6
√

2(1 − 2it)3

)
trΘ3

= b0 + b1(1 − 2it)−1 + b2(1 − 2it)−2 + b3(1 − 2it)−3 (3.16)

where

b0 =
trΘ3

3
√

2
,

b1 = −(p + 1)trΘ

2
√

2
− trΘ3

2
√

2
,

b2 =
(p + 1)trΘ

2
√

2
,

b3 =
trΘ3

6
√

2
.

Let P (d, δ2) be the lower tail probability of the noncentral χ2-distribution with d

degrees of freedom and non-centrality parameter δ2. By combining the results from
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Equation 3.14, 3.16 and inverting the characteristic function, we obtain the limiting

distribution of Nagao’s test TNT under the sequence of local alternatives H1.

Theorem 4 Under the sequence of local alternatives H1, as k → ∞, the limiting

distribution of Nagao’s test statistic TNT = ktr(S− I)2/2 is χ2 with d = p(p + 1)/2

degrees of freedom and non-centrality parameter δ2 = trΘ2/2. More accurately,

P(TNT < χ2) = P(d, δ2) +

√
2

k

{
b0P(d, δ2) + b1P(d + 2, δ2)

+ b2P(d + 4, δ2) + b3P(d + 6, δ2)
}

+ O(k−1) (3.17)

where bi, i = 0, 1, 2, 3, are given above.

In terms of the original observations Xt, the asymptotic distribution should

be χ2 with d = p(p + 1)/2 degrees of freedom and noncentrality parameter δ2 =

ktr(ΣΣ−1
0 − I)2/2. The k−1/2 order expansion terms involve χ2-distributions with

the same non-centrality parameter δ2 and degrees of freedom d, d + 2, d + 4, d + 6.

Note also that
3∑

i=0

bi = 0,

implying

E(TNT ) = τ 2 + d +
3∑

i=0

2
√

2ibi/
√

k + O(k−1).

In Section 3.1, we pointed out the monotonicity of the log likelihood ratio test

with respect to the departure of the eigenvalues l1, l2, . . . , lp of ΣΣ−1
0 from 1. The

result also holds asymptotically for Nagao’s test since the non-centrality parameter

δ2 = ktr(ΣΣ−1
0 − I)2/2 = k

p∑

i=1

(li − 1)2/2.
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Figure 3.8: Power function of Nagao’s test TNT against the variance change of the first

variable of a two dimensional observation vector. The x-axis Θ11 is the (1,1) entry of Θ

matrix, which indicates the size and direction of change. Significance level = 0.05.

Hence the further the eigenvalue li, (i = 1, 2, . . . , p) departs from 1, the greater the

value of δ2. Also similar to the log likelihood ratio test, both increase and decrease

of li contribute to δ2 since δ2 is a sum of squares of deviations. These individual

contributions are additive as well.

Figure 3.8 plots the power function of TNT against various changes of the

variability of the first dimension in a two dimensional vector. The graph clearly

shows that the Nagao’s test TNT has power against both variability increase and

decrease.
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3.5 Improved Estimation of Covariance Matrix

In the implementation of a SPC scheme, batch (subgroup) samples are taken

in a temporal order. Let the batch size be m. To monitor the process variability,

one needs an estimator of Σ which can best reflect the current state of the process,

in control or out of control.

Let Xij , j = 1, 2, . . .m be the observations of the ith subgroup. The traditional

and widely used estimator at time i, assuming the mean is known and zero, is

S?
i =

m∑

j=1

XijX
T
ij

m
.

We usually want the batch sample size m to be always larger than the dimensionality

p so that the sample variance-covariance matrix has full rank. However sometimes

due to economical or practical restrictions, the batch size is small, and in some cases,

m = 1. If we only use samples from one subgroup to estimate process variance

covariance matrix, the estimator Si is often singular (m < p) and unstable.

A new estimator is needed. It is natural to “borrow strength” from the past

and use a combination of past and current observations in the estimation of variance-

covariance matrix Σ. Here we suggest using a weighted sum of squares. For the ith

subgroup with observations Xi1,Xi2, . . . ,Xim, let

Vi =

m∑

j=1

XijX
T
ij/m.
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Then the overall weighted average estimator of Σ at time t is

St =

t∑

i=t−n+1

wiVi

=
t∑

i=t−n+1

m∑

j=1

wiXijX
T
ij/m, wi ≤ wj. (3.18)

The window size n measures how far we look back. We use n−1 past subgroups and

current subgroup, and wi is the weight of the ith subgroup. Since the more recent

subgroups carry the more up-to-date information about the process, it therefore

makes sense to give higher weights to more recent subgroups and lower weights

to older ones, hence the requirements wi ≤ wj. All the observations within each

subgroup share the same weight wi/m. The estimator St no longer has an exact

Wishart distribution.

Here we consider two weighted sums, exponentially weighted sum of squares

(EWSS) and polynomially weighted sum of squares (PWSS). The forms and proper-

ties of these two kinds of weighting schemes are introduced in the next two sections.
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3.5.1 Exponentially Weighted Sum of Squares (EWSS)

The exponentially weighted sum of squares, SEWSS
t , like the EWMA control

scheme, is defined recursively as

SEWSS
t = λ

m∑

j=1

XtjX
T
tj/m + (1 − λ)St−1

= λ
m∑

j=1

XtjX
T
tj/m + λ(1 − λ)/m

m∑

j=1

X(t−1)jX
T
(t−1)j

+ · · · + (1 − λ)t/m
m∑

j=1

X0jX
T
0j

=
t∑

i=1

m∑

j=1

λ(1 − λ)t−i/mXijX
T
ij + (1 − λ)t/m

m∑

j=1

X0jX
T
0j

where SEWSS
0 =

∑m
j=1 X0jX

T
0j/m is not from observed subgroup and usually taken

as the in control process dispersion matrix Σ0.

The sum of weights is

t∑

i=0

m∑

j=1

wi/m = 1 − (1 − λ)t + (1 − λ)t = 1

The ratio of the weights between two adjacent subgroups is a constant:

wi

wi−1

=
1

1 − λ
> 1.

3.5.2 Polynomially Weighted Sum of Squares (PWSS)

In polynomially weighted sum of squares (PWSS), we use a moving window

of size n to estimate Σ:

SPWSS
t =

t∑

i=t−n+1

m∑

j=1

(i − t + n)cXijX
T
ij

(1 + 2c + · · · + nc)m
.
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The weight of the ith subgroup is wi = (i − t + n)c/(1 + 2c + · · · + tc), and the

weight of the jth observation in the ith subgroup is wi/m. Here the parameter c

determines the rate at which “older” data enter into the calculation of the SWSS

statistic. A large value of c gives more weight to recent data and less weight to older

data; a small value of c gives more weight to older data. The parameter n is the

window size, a large value of n means more past subgroups are considered in the

weighting scheme.

Unlike in EWSS, the ratio of weights is not a constant:

wi

wi−1
=
( i

i − 1

)c

> 1

Both EWSS and PWSS are unbiased estimators of Σ. EWSS considers all the past

available observations while PWSS only considers those observations that fall into

the fixed size moving window. One natural advantage EWSS has against PWSS is

that its calculation only needs the most recent EWSS value and current subgroup,

while PWSS needs all the past and current n (window size) subgroups. Also EWSS

only has one tuning parameter λ while PWSS has two, n and c.

3.5.3 Satterthwaite’s Approximation

In this section, we shall study the distributional behavior of SEWSS
t , SPWSS

t ,

or more generally any weighted sum of squares St =
∑t

i=t−n+1

∑m
j=1 wiXijX

T
ij/m.

Recall that when the process is under control, the observations Xij are assumed to

be independent normally distributed with mean 0 and variance covariance matrix
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Σ. Under these assumptions,

XijX
T
ij v Wp(1,Σ).

Let

X =
[
X(t−n+1)1, X(t−n+1)2, . . . , X(t−n+1)m, . . . , Xtm

]
p×nm

.

Then we say that the random matrix X is normally distributed with mean zero and

covariance matrix ΣX = Var-cov(Vec(X)). Then St can be rewritten as

St = XWXT (3.19)

where

W = 1/m ×




wt−n+1Im 0 . . .

0 wt−n+2Im . . .

...
...

0 0 . . . wtIm




nm×nm

wi each has multiplicity of m in W. Hence St is a matrix quadratic form with

diagonal weight matrix W.

Many authors have studied the distributional behavior of the quadratic forms

like above. St is a nonnegative linear combination of Wishart distributed random

matrices with degrees of freedom 1 and scale matrix Σ, we are natually motivated to

think that the linear combination itself might also be exactly distributed as Wishart.

This is true for some special cases; a simple example is when W = Diag(1/n).

When wi’s are not identical, for the univariate case, the celebrated Cochran’s therem

gives the conditions under which a quadratic form is χ2 distributed. Many others
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have since extended the scope to more general setups. Anderson [1] discussed the

multivariate analogue of Cochran’s theorem. Wong et al. [55] [56] derived more

general conditions under which a linear combination of Wishart distributed random

matrices is also exactly distributed as Wishart.

Mathew et al. [28] showed that a general matrix quadratic form XBXT , where

B = AAT is a nonnegative definite n×n matrix of rank r and A is an n× r matrix

of rank r, follows Wishart(b,Σ/b) if and only if the following condition holds:

(AT ⊗ Ip)ΣX(A ⊗ Ip) = C ⊗ Σ

with C being a symmetric and idempotent r× r matrix and b = rank(C). However

some simple verifications showed that neither EWSS nor PWSS satisfies the required

conditions.

In the univariate case, Satterthwaite [40] proposed a technique to approximate

the distribution of a linear combination of χ2 variates by that of a single scaled χ2

with appropriate degrees of freedom. Univariate Satterthwaite’s Approximation

matches the first two moments of the linear combination and another χ2 variate,

hence it’s a method of moments estimation.

When p = 1, that is when we have univariate observations, the approximation

of St is given by

St v aχ2
k,
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where

E(St) = σ2 E(aχ2
k) = ak

Var(St) = 2
t∑

i=t−n+1

w2
i σ

4/m Var(aχ2
k) = 2a2k.

By equating the first two moments, we have

σ2 = ak

t∑

i=t−n+1

w2
i σ

4/m = a2k

The solution is

a =
t∑

i=t−n+1

w2
i σ

2/m

k = m/

t∑

i=t−n+1

w2
i .

When p > 1, it is natural to extend the idea of the univariate Satterthwaite

Approximation to multivariate data, that is to approximate the distribution of St

by

St v Wishart(k,Σ′)

However this approximation is complicated by the fact that there are more expecta-

tions, variances and covariances (p+p(p+1)/2 of them) than the number (p(p+1)/2)

of unknowns in Σ. Tan and Gupta [52] suggested solving the problem by equating

the expectations and generalized variances.

Mortarino [31] summarized the multivariate Satterthwaite estimation results

as:

U =
n∑

i

wi

mi
Wp(mi,∆i)
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That is, U is a linear combination of Wishart distributed random matrices Wp with

weights, degrees of freedom and scale matrices shown above. Then the distribution

of U can be approximated as

U v Wp(k,∆)

with

k =

{
(det(

∑n
i=1 wi∆i)

p+1

det(∆?)

} 2
p(p+1)

,

∆ =

∑n
i=1 ∆i

k

where ∆? = K−
p {
∑n

i=1 w2
i (∆i ⊗ ∆i)/mi}Kp, the matrix Kp and its Moore-Penrose

inverse K−
p have the property that

Det
{
K−

p (D ⊗ D)Kp

}
= {Det(D)}p+1

for any symmetric matrix D of rank p.

Applying the above technique to St in (3.19), then

St v Wp(k,Σ′), (3.20)

and the degrees of freedom k and the corresponding scale matrix can be additionally

simplified as

k =

{
(1/(

t∑

i=t−n+1

w2
i /m)

p(p+1)
2

} 2
p(p+1)

= m/
t∑

i=t−n+1

w2
i (3.21)

Σ′ = Σ/k.

The approximate degrees of freedom does not depend on p.
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Applying (3.18) to EWSS and PWSS, we get:

kEWSS =
m

(
∑t

i=0(λ(1 − λ)t−i)2)

→ m(2 − λ)

λ
, as t → ∞

and

kPWSS =
m(
∑t

i=t−n+1 ic)2

∑t
i=1 i2c

. Since

1

c + 1
=

xc+1

c + 1

∣∣∣∣∣

1

0

=

∫ 1

0

xc dx ≈
n∑

i=1

1

n

( i

n

)c

, when n is large,

t∑

i=t−n+1

ic ≈ nc+1

c + 1
.

We have

kSWSS ≈
m(nc+1

c+1
)2

n2c+1

2c+1

=
mn(2c + 1)

(c + 1)2
.

We will refer to kEWSS and kPWSS as the respective “effective degrees of freedom”

in EWSS and PWSS. The corresponding scale matrix can be derived accordingly.

Table 3.5 shows the “effective degrees of freedom” for different choices of λ for

the EWSS scheme with subgroup size 1. Figure 3.9 displays the weights for various

Table 3.5: Effective degrees of freedom for various λ

λ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.5

k 199 99 66 49 39 33 28 24 22 19 9 7 3

choice of λ and different lags. Table 3.6 shows the “effective degrees of freedom” for
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Figure 3.9: Weight vs. lag for various λ. Solid line: λ = 0.01. Dashed line: λ = 0.02.

Dotted line: λ = 0.03

different choice of window size n and weighting parameter c for the PWSS scheme

with subgroup size 1. Figure 3.10 compares the weight curves for various weighting

factors c when window size is 100.

Table 3.6: Effective degrees of freedom for various choice of c and n

Weighting factor c

Window Size n 0 0.5 1 1.5 2 2.5 3 3.5 4

100 100 89 75 64 56 49 44 39 36

200 200 178 150 128 111 98 88 79 72

It is worth noting that the use of an exponentially weighted sum of squares type
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Figure 3.10: Weight vs. lag for various c. Solid line: c = 0.2. Dashed line: c = 2.

Dotted line: c = 1. Window Size 100

of estimator is no stranger to statistical control of process dispersion. Montgomery

and Mastrangelo [30] used exponentially weighted mean squares (EWMS) as the

basis for a control scheme for monitoring a univariate process. They suggested

using a χ2 approximation for the distribution of the EWMS, and the degrees of

freedom for such an approximation is (2−λ)/λ, which agrees with the result shown

above. They even went further to discuss the distribution of EWMS when the

observations involved are not independently distributed. Their results suggest that

the “effective degrees of freedom” is a function of both the weighting parameter λ and

the correlation structure among these dependent observations. In this dissertation,

we expand their results to the multivariate case and look at the generalized weighting

schemes instead of just exponential weighting. However our results are restricted
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to the independent case only. To the author’s knowledge, the expansion to the

approximation of the distribution of a linear combination of multivariate correlated

observations has yet to be done.

As for the measure of the closeness of the Satterthwaite approximation to the

true distribution of the linearly weighted sum of squares, there appears to be only a

very limited number of publications about this topic. Tan and Gupta [52] compared

the theoretical quantiles (from the approximate distribution formula) with quantiles

from Monte Carlo simulation. They concluded that adding more terms (considering

higher moments) does not improve the approximation significantly in the general

situation. Khuri ([22], [23]) looked at this issue from the perspective of matching the

characteristic functions. He suggested that the Satterthwaite approximation does

not hold well when some of the weights are negative.

3.6 Numerical Study

We have studied the asymptotic distributions of Nagao’s test TNT and the

modified likelihood ratio test TLR under both local and distant alternatives, but

the sample variance covariance matrix S used in the derivations follows an exact

Wishart distribution. However, if we use a weighted average type estimator, like

EWSS or PWSS, in the test statistics, the accuracy of such a substitution needs

to investigated. There are two levels of uncertainty involved here. The first layer

is the approximation of the distribution of test statistics and the second layer is

the use of an unequally weighted sum of squares estimator which is assumed to be
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approximately Wishart distributed but in fact is not. A closed form expression for

the asymptotic distribution seems to be rather hard to get, so we will do a numerical

study of selected cases comparing the power and level of the tests.

We consider a three dimensional observation vector X = [x1 x2 x3]
T which

has variance covariance matrix Σ. Under the null hypothesis, Σ = I3. Under the

alternative hypothesis

Σ =




1 0 0

0 1 0

0 0 1 + a/
√

k




where a indicates the direction and size of shifts and k is the “effective degrees

of freedom” of the sample variance covariance estimator. For simplicity, we only

consider EWSS with subgroup size m = 1.

Nagao [34] demonstrated that as the degrees of freedom k → ∞, the asymp-

totic expansion of the null distribution of TNT , in terms of χ2 distributions, is

Pr(TNT ≤ x) = Pd +
1

k

{
− p(2p2 + 3p − 1)

24
Pd +

p(p + 1)2

2
Pd+2

− p(6p2 + 13p + 9)

8
Pd+4 +

p(4p2 + 9p + 7)

12
Pd+6

}

+ O(k−1). (3.22)

where d = p(p + 1)/2 and Pd = P(χ2
f ≤ x).

Figures 3.11-14 display the comparison between the level of TNT , P(TNT > c),

using the traditional equally weighted sample variance covariance estimator (exactly

Wishart distributed, with accuracy up to O(1/k) order of expansion, from (3.22)),

and the actual level of TNT , as estimated using EWSS by 5000 Monte Carlo replica-
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tions. The λ values considered are 0.01, 0.02, 0.03, 0.05 which have effective degrees

of freedom 199, 99, 67, 39 respectively. Overall from the simulations, we see that for

the λ values considered, the asymptotic value agrees pretty well with the Monte

Carlo value and as λ increases (effective degrees of freedom decreases), the match

tends to get worse.
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Figure 3.11: Level graph for λ = 0.01. Solid line : asymptotic formula (3.22), Dashed

line : Monte Carlo simulation of true probability. Inset shows all levels from 0 to 1.

Figures 3.15-18 compare the rate of rejecting the null hypothesis for various

shift a when λ = 0.01. We use the asymptotic expansion of the power function

of TNT under local alternatives in Theorem 4 to calculate the theoretical rate of

rejection. Figure 3.18 suggests a large discrepancy between the theoretical result

and Monte Carlo simulation. The source of this large discrepancy when the cutoff

is large could be due to that a = 10 falls out of the local alternative category. It

could be explained as that the O(k−1) terms in the asymptotic expansion formula
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Figure 3.12: Level graph for λ = 0.02. Solid line : asymptotic formula (3.22), Dashed

line : Monte Carlo simulation of true probability. Inset shows all levels from 0 to 1.
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Figure 3.13: Level graph for λ = 0.03. Solid line : asymptotic formula (3.22), Dashed

line : Monte Carlo simulation of true probability. Inset shows all levels from 0 to 1.

(3.17) are no longer negligible for large shifts.

Last we compare the Monte Carlo simulation of the power of TNT using EWSS

with the theoretical power from Equation 3.17 in Figure 3.20 with λ = 0.01 and

significance level=0.05. The maximum difference is 0.04 which happens at a = 6.
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Figure 3.14: Level graph for λ = 0.05. Solid line : asymptotic formula (3.22), Dashed

line : Monte Carlo simulation of true probability. Inset shows all levels from 0 to 1.
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Figure 3.15: Rate of rejection vs. cutoff. λ = 0.01 and a = 1. Solid line : asymptotic

formula (3.17), Dashed line : Monte Carlo simulation of the true power. Inset shows all

rejection rates.

From the graph we also observe that the Monte Carlo power is consistently below

the theoretical power which is expected probably because of the uncertainty added
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Figure 3.16: Rate of rejection vs. cutoff. λ = 0.01 and a = 3. Solid line : asymptotic

formula (3.17), Dashed line : Monte Carlo simulation of the true power. Inset shows all

rejection rates.
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Figure 3.17: Rate of rejection vs. cutoff. λ = 0.01 and a = 5. Solid line : asymptotic

formula (3.17), Dashed line : Monte Carlo simulation of the true power. Inset shows all

rejection rates.

by the Satterthwaite approximation.
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Figure 3.18: Rate of rejection vs. cutoff λ = 0.01 and a = 10. Solid line : asymptotic

formula (3.17), Dashed line : Monte Carlo simulation of the true power. Inset shows all

rejection rates.
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Figure 3.19: Comparison of Power functions. Solid line, circle: asymptotic formula (3.17).

dashed line, solid circle: Monte Carlo simulation of the true power. P1 is consistently below

P2 with maximum difference 0.04
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Chapter 4

Proposed Algorithms

4.1 SPC Application

In Chapter 3, we discussed the unequally weighted process dispersion matrix

estimators and also studied the asymptotic distribution of the log likelihood ratio

test and Nagao’s test under both distant alternatives and sequences of local alter-

natives. Recall that the weighted dispersion matrix estimator is

St =
t∑

i=t−n+1

wiVi =
t∑

i=t−1

m∑

j=1

wiXijX
T
ij/m.

When the process is under control

EXijX
T
ij = I,

and when the process is out of control

EXijX
T
ij = Σ 6= I.

So the impact of the shift will slowly enter into St, and one can see that St will depart

from I more and more as we bring in more new observations. The test statistic

TNT is the Frobenius norm that measures that distance between St and I. The

larger the discrepancy between St and I, the bigger the average value of TNT . The

power function of TNT is also monotone with respect to the discrepancy between the

eigenvalues of ΣΣ−1
0 and I. All things considered, we expect that Nagao’s test TNT
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combined with the improved variance covariance matrix estimator should be a viable

way to monitor multivariate process dispersion. Using the improved estimator in

the log likelihood ratio test should also be viable since TLR is monotone with respect

to the discrepancy of eigenvalues. Alt et al. ([2], [3]) also discussed a Shewhart type

scheme based on the log likelihood ratio test. They used the traditional equally

weighted variance covariance matrix estimator instead of an unequally weighted

one.

We denote these two schemes based on Nagao’s test and log likelihood ratio

test MTNT and MTLR respectively. The stopping rules for them are

LMTNT = inf
{
t ∈ N : (k/2)tr(StΣ

−1
0 − I)2 > h

}

LMTLR = inf
{
t ∈ N : −2 ln

(
LR(St)

)
> h

}

where h is the control limit.

In the multivariate setting, Σ has p(p+1)/2 parameters. There are many ways

in which these parameters can change. Here we do not have any specific interest in

any particular direction or size of change. Unlike some other schemes that are only

concerned with increased variability, the MTNT scheme has power against both the

increase and decrease of process dispersion, which means that situations involving

the increase or decrease of variance of a single characteristic variable, a subset of

characteristic variables, covariances, etc., are all considered. Hence the proposed

SPC procedure has the flavor of being “Omnibus”.

Knoth ([20], [21]) discussed the EWMA-S2 chart for monitoring univariate
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process variability. The stopping rule of the EWMA-S2 chart is characterized by

L = inf
{
t ∈ N : St > σ2

0 + h

√
λ

2 − λ

√
2

m
σ2

0

}
(4.1)

where m is the sample subgroup size, λ is the EWMA weighting parameter. Some

simple change of expression of (4.1) gives

L = inf
{

t ∈ N : m(2 − λ)(St/σ
2
0 − 1)2/2λ > h

}
(4.2)

Hence the EWMA-S2 chart is a univariate version of the proposed MTNT scheme.

It is to be noted that in the works by Yeh et al. [58] and Chang et al. [9], a

similar EWSS estimator for the process dispersion matrix was used. They pointed

out that the asymptotic variance covariance is

(λ/(2 − λ))Σ

This agrees with our proposal except that they didn’t have a distributional assump-

tion.

The optimal design of the proposed algorithm relies upon the choice of the

parameters, λ in EWSS or n and c in PWSS. Here we mainly focus upon discussing

the EWSS scenario. There are mainly three factors that drive the choice of λ. First,

the tests derived in Chapter 3 depend on the asymptotic properties as the “effective

degrees of freedom” k approaches ∞ and in the approximation of degrees of freedom

k = m(2 − λ)/λ or λ = 2m/(k + m)

The higher order terms in the approximation of the distribution of TNT have order

O(1/k) or O(λ), hence a small value of λ means small error in the approximation.
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Also given a fixed “effective degrees of freedom”, if we increase the subgroup sample

size m, λ can be made bigger as well, making the scheme more flexible. Finally the

choice of λ also depends on the dimension of sample observation Xtj. The larger

p, the smaller the value λ should be since ideally we want a full rank estimation of

dispersion matrix and m(2/λ − 1) ≥ p .

The RiskMetrics database created by J.P.Morgan [16] uses a EWSS type of

estimator to estimate and update daily financial market volatility. The company

found that λ = 0.04 gives forecasts of the variance rate that come closest to the

realized variance rate. Lucas and Saccucci [25] examined properties of the EWMA

control scheme to monitor the mean of a univariate normally distributed process.

They pointed out that

for a fixed in-control ARL, the optimal value of λ increases as the shift

in the process increases.

For an in-control average run length of 300, they recommenced using 0.05 ≤ λ ≤ 0.06

for a mean change from 0 to 0.5, 0.14 ≤ λ ≤ 0.15 for a mean change from 0 to 1

and 0.38 ≤ λ ≤ 0.42 for a mean change from 0 to 2. However as pointed out before,

the proposed algorithm is “omnibus” and has no particular sensitivity to any size or

direction of change. Our repeated simulations suggest that for the newly proposed

control scheme, a small value of λ is desirable. When the subgroup sample size is one,

we recommend using λ between 0.01 and 0.03. Within this range, the approximate

degrees of freedom range from 199 to 66. On the other hand, a too small λ value

will cause numerical instability. For the EWMA-S2 control scheme, the univariate
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version of the proposed testing criterion TNT , Knoth [20], in referring to Mittag

[29], even discussed λ as small as 0.000042 with m = 4 and in control average run

length 250. For this value of λ, the corresponding “effective degrees of freedom”

is 190472 and the h in (4.1) is 0.000064375308. It is quite clear that in practical

situations, SPC practitioners will have a hard time achieving this level of numerical

accuracy and a small misspecification of control limit h could be disastrous. Another

reason for this is that if λ is too small, it will take a long time until the test statistic

process stabilizes. Very few practitioners can afford a 190472 observations long burn

in process.

We now examine a numerical example for the proposed testing criteria. We

look at a three dimensional process X = [x1, x2, x3]
T which has in control vari-

ance covariance matrix Σ0 = I3. Shifts in the variance of the third dimension is

introduced at time t = 300. The new variance covariance matrix is

Σ =




1 0 0

0 1 0

0 0 1 + a/
√

k




where a indicates the shift size and k is the “effective degrees of freedom” of sample

variance covariance estimator. Here we use the EWSS with subgroup sample size

one and λ = 0.01, hence k = 199.

Figure 4.1 plots the original data of one realization of X process from time

t = 0 to t = 700. Figure 4.2 shows the corresponding sequence of TNT . Since TNT is

based on a weighted average of past and current sum of squares, we expect that there

exists autocorrelation in the sequence of test statistics. Figure 4.3 and 4.4 display
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the autocorrelation and partial autocorrelation patterns of TNT for λ = 0.01, from

which we can see that TNT for this value of λ resembles an AR(1) process. In fact,

if we let Tt be TNT at time t, St be the variance covariance matrix estimator using

data from the whole time period, [0, t]. Let Vt be the variance covariance estimator

using only data observed at time t, then

Tt =
k

2
tr(St − I)2 =

k

2
tr{(1 − λ)St−1 + λVt − I}2

=
k

2
tr{(1 − λ)(St−1 − I) + λ(Vt − I)}2

=
k

2
(1 − λ)2tr(St−1 − I)2 + kλ(1 − λ)tr(St−1 − I)(Vt − I) +

k

2
λ2tr(Vt − I)2

= (1 − λ)2Tt−1 + (2 − λ)(1 − λ)tr(St−1 − I)(Vt − I) +
λ(2 − λ)

2
tr(Vt − I)2.

Note that St−1 − I and Vt − I are statistically independent with means both equal

to 0. So when λ is small, the observed TNT sequence is approximately an AR(1)

process with autoregressive coefficient (1 − λ)2 and the white noise part played by

λ(2−λ)
2

tr(Vt − I)2.

Figure 4.5 shows the average sample path of 1000 realizations of TNT when

a = 5, from which we observe four phases of TNT . The first phase is the wiggle at the

start. This is the burn-in period when TNT tries to stabilize itself and the impact

of the starting value S0 is phased out. The length of this phase depends upon

the choice of starting value for S0. Choosing S0 close to the in control variance

covariance matrix typically means a short burn-in phase. After the burn-in, TNT

stabilizes and enters into a steady state in-control phase during which it oscillates

around the in-control mean p(p+1)/2 = 6. After the variance of the third dimension

shifts from 1 to 1 + a/
√

k at time t = 300, TNT displays an nearly linear upward
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trend. The slope of the trend depends on the size of the shift; the greater the shift

the bigger the slope. After roughly twice the “effective degrees of freedom”, TNT

enters into the fourth phase, a new stationary state when it oscillates around the

new mean p(p + 1)/2 + ktr(ΣΣ−1
0 − I)2/2 [=6 + a2/2 for the numerical example

discussed here].

Figure 4.6 plots the behavior of TNT around the time when the shifts take

place (same data from Figure 4.4). We can see that almost immediately after the

shifts are introduced, TNT begin its upward trend. This is true even for small size

shifts. This quick response to shift is ideal for SPC since we aim for the fastest

detection.
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Figure 4.1: Original data for three response variables from t = 0 to t = 700. In con-

trol variance covariance matrix Σ0 = I, λ = 0.01, effective degrees of freedom=199,

Variance of the third dimension, Σ33, shifts to 1+10/
√

199 at t = 300. The vertical

line indicates the time when the change happens.

4.2 ARL Study

The numerical studies in Chapter 3 give us some first hand knowledge about

the performance of proposed control schemes. The test statistics are highly corre-

lated because of the structure of the unequally weighted variance covariance matrix

estimators, so that we can not use the Type I error rate of the distribution derived

in Chapter 3 to set up the control limits. In that chapter, we reviewed how to use

integral equation methods to calculate the ARL of EWMA/CUSUM for a univariate

process. Extension of this methodology to the proposed control scheme seems to be
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Figure 4.2: One realization of TNT for a three-dimensional observation process. In control

variance covariance matrix Σ0 = I, λ = 0.01, effective degrees of freedom=199, Variance

of the third dimension, Σ33, shifts to 1 + 10/
√

199 at t = 300.
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Figure 4.3: ACF plot for TNT . λ = 0.01. For this small value of λ, TNT displays

significant autocorrelation structure. Even at lag 34, the autocorrelation is still 0.31.

rather complicated.

Let S be initialized at S0 = A, where A is symmetric and positive definite,
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Figure 4.4: PACF plot for TNT . λ = 0.01. For this small value of λ, the first partial

autocorrelation is nearly 1, but the others are not significantly different from 0.
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Figure 4.5: Mean path of TNT for a three-dimensional observation process for a variety of

shift scenarios. Σ0 = I, λ = 0.01, k = 199, Variance of the third dimension, Σ33, shifts to

1+a/
√

k at t = 300. The vertical line indicates the time when the change happens. From

top to bottom is the average path of 1000 realizations for a = 10, 7, 5, 3, 0 respectively.

a = 0 corresponds to the in-control case. The wiggle at the start is the burn-in phase. A

larger shift corresponds to a larger slope, which is desirable for SPC.
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Figure 4.6: Replot of data from Fig 4.3 for t = 240 to t = 360. Σ0 = I, λ = 0.01, k = 199,

Variance of the third dimension, Σ33, shifts to 1 + a/
√

199 at t = 300. The vertical line

indicates the time when the change happens. From top to bottom is the average path

of 1000 realizations for a = 10, 7, 5, 3, 0 respectively. a = 0 corresponds to the in-control

case. Graph indicates that the proposed algorithm is also responsive to the change even

if the shift size is small.

and let the corresponding run length be L(A). Define Zi = XiX
T
i . Then

Zi v Wishart(1,Σ).

With the first observation X1

S1 = (1 − λ)A + λZ1.
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Conditional on the outcome of the first step, we have the following

L(A) = 1 × P(T(S1) ≥ h) +

∫

T(S1)<h

(1 + L((1 − λ)A + λZ))f(Z) dZ

= 1 +

∫

(k/2)tr((1−λ)A+λZ−I)2<h

L((1 − λ)A + λZ)f(Z) dZ

= 1 + (1/λ)

∫

(k/2)tr(B−I)2<h

L(B)f
(B − (1 − λ)A

λ

)
dB (4.3)

where f(Z) is the distribution function of Wishart(1,Σ). (4.3) is also a Fredholm

integral equation of the second kind with matrix inputs.

However to numerically approximate L(A) is a rather challenging task. This is

because unlike in the univariate case when we monitor process mean, the numerical

approximation can be done because the support of integration variable is on a subset

of the real line. However, in the case of monitoring multivariate process dispersion,

the input for the kernel function f() should be a positive definite matrix; that is

B > (1 − λ)A.

Also to numerically evaluate f(A) by applying the Nystrom method [37] and Quadra-

ture method [5], we need to subdivide the integration region of (4.3) into small re-

gions of dimension p. The “Curse of Dimensionality” will cause the computational

burden to grow exponentially as p increases. Hence in this dissertation we will only

look at numerical simulation for a limited number of cases.

We examine the following out of control scenarios. For a p dimensional process

X = [x1, x2, . . . , xp]
T which has in control variance covariance matrix Σ0 = Ip. Shifts

to the variance of the last dimension xp is introduced at some time after the statistic
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has stabilized. The new variance covariance matrix is

Σ? =



Ip−1 0

0 1 + a




where a indicates the direction and size of the shift and a = 0 corresponds to the

in control scenario. Unlike in previous chapters, the small shifts considered are not

measured in units of 1/
√

k, but rather are absolute amounts a = 0.2, 0.4, 0.6, 0.8.

The large shifts considered are d = 1, 2, 3, 4, 5. Since SPC practitioners are usu-

ally more concerned with process variability increases than decreases, we put em-

phasis on the increase in variance cases. However as a way of illustrating the

properties of proposed schemes, we also considered two cases with decreasing vari-

ance, a = −0.2,−0.4. For the purpose of comparison, two weighting parameters,

λ = 0.01, 0.03, are considered. Also due to limitation of computer capability, we

only consider multivariate processes of up to 5 dimensions, that is p = 2, 3, 4, 5.

In the numerical simulation, the process will run until the test statistics reach

steady state before shifts take place. We will compare the MTNT scheme, MTLR

scheme and the scheme based on the sample generalized variance test using un-

equally weighted variance covariance matrix estimators, which in this paper we call

MTGV. The MTGV chart is usually called generalized variance chart elsewhere in

the literatures. It calculates the ratio of the determinant of the sample variance

covariance matrix against the true process generalized variance and compares the

ratio with an upper control limit. This scheme is designed to monitor variability

increases. Interested readers can refer to Aparisi et al. [4].

We used 7000 Monte Carlo trials for all in control simulations The control
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limits are set such that the in control ARL is 200 for all combinations of test, p

and λ. Repeated simulations suggest that the standard errors for these in control

run lengths are around 1.3 times the simulated in control ARL, hence the standard

errors of the in control ARLs are about 1.5% of the ARL with 95% confidence

region being (0.97×ARL, 1.03×ARL). Table 4.1 to 4.4 show the in control average

run length of MTNT and MTLR Schemes for all combinations of p = 2, 3, 4, 5

and λ = 0.01, 0.03. Test statistics after the burn-in period are compared with the

control limits taken from quantiles of χ2
p(p+1)/2 distributions. The schemes stop and

give a signal when the statistic is out of the in control region. The control limits

only depend on the dimension of the process and the desired in control average run

length, which is an important feature of the MTNT and MTLR schemes. In general

for the same quantile (different degrees of freedom), the in control ARL decreases

as the dimension p increases.

We used 2000 Monte Carlo trials to compute the out of control ARLs. The

simulation shows that as the shift size a increases, the standard deviation of out

of control ARL decreases. At a = 0.2, the standard errors of these out of control

run lengths are about 1.1 times the corresponding out of control ARL, hence the

standard errors for their means, the out of control ARLS, are about 2.5% of the

corresponding ARL value with 95% confidence region being (0.95 × ARL, 1.05 ×

ARL). For larger shifts, for example when a = 4, the standard errors of these out

of control run lengths are about 0.7 times the corresponding out of control ARLs,

hence the standard errors are about 1.5% of the ARLs with 95% confidence region

being (0.97 × ARL, 1.03 ×ARL). For each fixed combination of p and λ, the three
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Table 4.1: In control average run length for MTNT for various cutoffs, λ = 0.01

Control Limit p=2 p=3 p=4 p=5

χ2
p(p+1)/2,0.945 365.69 332.8 313.84 289.13

χ2
p(p+1)/2,0.94 341.02 311.56 293.66 270.34

χ2
p(p+1)/2,0.935 317.5 291.46 27.73 252.56

χ2
p(p+1)/2,0.93 297.28 274.36 260.25 239.71

χ2
p(p+1)/2,0.925 279.02 259.51 245.52 228.61

χ2
p(p+1)/2,0.92 261.2 245.07 231.56 215.99

χ2
p(p+1)/2,0.915 247.19 232.07 219.62 205.19

χ2
p(p+1)/2,0.91 234.6 219.55 209.35 195.5

χ2
p(p+1)/2,0.905 221.32 208.51 199.15 187.01

χ2
p(p+1)/2,0.9 211.89 198.71 188.94 178.16

χ2
p(p+1)/2,0.895 201.5 188.96 180.77 170.14

χ2
p(p+1)/2,0.89 192.89 180.3 173.33 163.67

χ2
p(p+1)/2,0.885 183.61 172.89 166.06 157.13

χ2
p(p+1)/2,0.88 175.93 165.81 158.85 151.86

χ2
p(p+1)/2,0.875 168.2 159.98 152.38 147.02

χ2
p(p+1)/2,0.87 161.49 153.64 146.89 141.83

χ2
p(p+1)/2,0.865 155.18 147.26 140.91 137.52

χ2
p(p+1)/2,0.86 149.15 142.02 135.96 132.74

test statistics are calculated using the same simulation data, hence there exists high

amount of correlation among them.

Table 4.5-4.8 list the out of control ARLs of these three schemes for a variety of

shifts when λ = 0.01, 0.03 . The entries for MTGV when a < 0 are omitted because
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Table 4.2: In control average run length for MTLR for various cutoffs. λ = 0.01

Control Limit p=2 p=3 p=4 p=5

χ2
p(p+1)/2,0.945 361.45 346.03 331.88 326.07

χ2
p(p+1)/2,0.94 334.83 321.98 309.68 301.45

χ2
p(p+1)/2,0.935 310.43 299.99 288.59 283.44

χ2
p(p+1)/2,0.93 290.84 280.44 270.62 265.73

χ2
p(p+1)/2,0.925 271 264.05 254.56 249.09

χ2
p(p+1)/2,0.92 254.77 247.26 239.46 234.72

χ2
p(p+1)/2,0.915 241.5 233.42 225.51 223.48

χ2
p(p+1)/2,0.91 228.86 220.74 214.83 211.28

χ2
p(p+1)/2,0.905 218.35 209.7 204.18 198.74

χ2
p(p+1)/2,0.9 209.34 201.34 194.46 190.43

χ2
p(p+1)/2,0.895 199.25 190.31 184.84 182.08

χ2
p(p+1)/2,0.89 189.04 183.1 177.15 174

χ2
p(p+1)/2,0.885 181.31 174.80 170.63 166.61

χ2
p(p+1)/2,0.88 172.87 167.21 163.93 158.8

χ2
p(p+1)/2,0.875 164.54 161.39 156.62 151.61

χ2
p(p+1)/2,0.87 156.93 155.22 150.86 145.71

χ2
p(p+1)/2,0.865 149.79 148.57 144.14 140.34

χ2
p(p+1)/2,0.86 143.46 142.71 137.74 135.38

the MTGV scheme is designed to monitor variability increases and has almost no

power against decreasing scenarios.

From the tables we observe that when a > 0, that is when the variability

increases, the control scheme MTNT outperforms MTLR for all out of control sce-
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Table 4.3: In control average run length for MTNT for various cutoffs, λ = 0.03

Control Limit p=2 p=3 p=4 p=5

χ2
p(p+1)/2,0.99 416.01 325.38 275.33 238.64

χ2
p(p+1)/2,0.9875 372.38 289.82 245.96 213.51

χ2
p(p+1)/2,0.985 336.09 265.08 220.65 195.48

χ2
p(p+1)/2,0.9825 306.53 242.9 202.04 180.34

χ2
p(p+1)/2,0.98 283.23 226.34 188.43 168.94

χ2
p(p+1)/2,0.9775 262.65 212.41 176.43 158.98

χ2
p(p+1)/2,0.975 248.45 199.32 166.88 150.82

χ2
p(p+1)/2,0.9725 232.07 187.94 159.50 143.81

χ2
p(p+1)/2,0.97 221.75 179.15 150.04 136.06

χ2
p(p+1)/2,0.9675 210.13 171.13 143.65 129.02

χ2
p(p+1)/2,0.965 199.13 164.11 138.59 123.39

χ2
p(p+1)/2,0.9625 191.54 156.16 133.42 119.07

χ2
p(p+1)/2,0.96 183.96 149.94 127.11 114.62

χ2
p(p+1)/2,0.9575 176.18 143.56 122.76 110.66

χ2
p(p+1)/2,0.955 167.86 138.81 118.02 107.34

χ2
p(p+1)/2,0.9525 162.15 134.68 114.34 103.97

χ2
p(p+1)/2,0.95 156.28 130.54 111.21 101.51

χ2
p(p+1)/2,0.9475 151.39 126.56 108.4 98.69

narios, while when d < 0, that is when the variability decreases, the control scheme

MTLR outperforms MTNT. This is true because TNT and TLR have the same

asymptotic distribution when the process is under control. Hence for the same in

control ARL, they have nearly equal control limits; while under the alternatives, the
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Table 4.4: In control average run length for MTLR for various cutoffs. λ = 0.03

Control Limit p=2 p=3 p=4 p=5

χ2
p(p+1)/2,0.99 589.65 559.39 534.37 513.34

χ2
p(p+1)/2,0.9875 509.32 485.30 461.31 436.63

χ2
p(p+1)/2,0.985 456.1 421.82 403.42 381.64

χ2
p(p+1)/2,0.9825 406.17 377.72 358.49 342.83

χ2
p(p+1)/2,0.98 365.13 337.24 322.18 309.08

χ2
p(p+1)/2,0.9775 331.78 307.88 292.28 283.23

χ2
p(p+1)/2,0.975 306.12 282.55 267.16 258.51

χ2
p(p+1)/2,0.9725 283.25 259.37 241.99 237.4

χ2
p(p+1)/2,0.97 262.03 239.63 225.33 219.79

χ2
p(p+1)/2,0.9675 242.57 222.37 209.98 204.89

χ2
p(p+1)/2,0.965 224.94 208.31 197.03 193.60

χ2
p(p+1)/2,0.9625 212.47 197.73 187.12 183.88

χ2
p(p+1)/2,0.96 198.37 185.09 176.24 171.73

χ2
p(p+1)/2,0.9575 187.63 177.06 167.72 162.28

χ2
p(p+1)/2,0.955 176.98 168.09 160.84 156.1

χ2
p(p+1)/2,0.9525 168.03 160.92 153.24 147.83

χ2
p(p+1)/2,0.95 160.69 152.93 146.8 141.75

χ2
p(p+1)/2,0.9475 153.36 147.13 141.15 135.36

asymptotic means for TNT and TLR are

E(TNT ) = k

p∑

i=1

(li − 1)2/2 + p(p + 1)/2

E(TLR) = k{
p∑

i=1

(li − 1) −
∏p

i=1 ln li} + p(p + 1)/2
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Table 4.5: Out of control average run length with In control ARL=200. λ = 0.01.

Variance of the last dimension shifts from 1 to 1 + a

Shift size p=2 p=3

MTNT MTLR MTGV MTNT MTLR MTGV

-0.4 56.13 48.92 70.14 57.77

-0.2 119 100.85 131.71 111.1

0 201.5 199.25 201.84 198.71 201.34 203.09

0.2 93.41 98.81 73.59 100.1 109.85 87.40

0.4 53.71 56.58 44.33 56.17 63.34 54.65

0.6 37.26 38.87 32.4 40.72 44.73 38.99

0.8 27.66 28.28 25.44 30.71 33.29 29.77

1 21.85 23.88 18.95 24.58 27.08 25.99

2 11.9 12.6 10.9 13.55 14.61 14.02

3 8.23 8.72 7.42 8.79 9.59 9.04

4 6.59 7.18 6.18 7.34 7.87 7.65

5 5.67 5.97 5.17 5.97 6.47 6.22

where l1, l2, . . . , lp are the eigenvalues of ΣΣ−1
0 . Then

E(TNT − TLR) = k{
p∑

i=1

(li − 1)2 − 2

p∑

i=1

(li − 1) + 2
∏p

i=1 ln li}/2

= k

p∑

i=1

{(li − 1)(li − 3) + 2 ln li}/2
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Table 4.6: Out of control average run length with In control ARL=200. λ = 0.01.

Variance of the last dimension shifts from 1 to 1 + a

Shift size s p=4 p=5

MTNT MTLR MTGV MTNT MTLR MTGV

-0.4 82.04 68.22 97.65 75.84

-0.2 156.04 131.04 166.84 139.81

0 199.15 204.18 200.59 195.5 198.74 203.8

0.2 99.92 116.2 93.14 114.25 129.18 112.8

0.4 56.44 66.46 59.38 64.76 77.50 64.18

0.6 43.21 48.4 44.33 45.34 52.44 47.98

0.8 32.81 37.77 34.79 33.67 38.55 38.83

1 26.27 30.13 28.31 29.5 34.22 33.37

2 13.59 15.04 16.29 15.18 17.15 17.68

3 9.48 10.39 11.57 10.42 11.68 12.56

4 7.78 8.38 8.73 8.17 9.04 10.18

5 6.28 6.93 7.15 7.08 7.93 8.53

Also

(li − 1)(li − 3) + 2 ln li =





> 0 , li > 1(a > 0)

= 0 , li = 1(a = 0)

< 0 , 0 < li < 1(−1 < a < 0)

that is to say, these eigenvalues that are greater than one make a positive contribu-

tion to E(TNT −TLR) while these eigenvalues between zero and one make a negative

contribution to E(TNT − TLR). If the overall positive contribution outweighs the
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Table 4.7: Out of control average run length with In control ARL=200. λ = 0.03.

Variance of the last dimension shifts from 1 to 1 + a

Shift size p=2 p=3

MTNT MTLR MTGV MTNT MTLR MTGV

-0.4 82.3 48.57 127.83 60.75

-0.2 186.33 114.45 224.66 134.89

0 199.13 198.37 202.39 199.32 197.73 198.65

0.2 85.72 104.51 84.1 97.5 115.15 93.82

0.4 46.39 56.21 49.2 52.77 62.57 60.46

0.6 31.9 36.52 34.99 35.32 41.98 42.17

0.8 23.63 27.58 26.02 26.72 30.54 32.01

1 18.04 19.64 21.06 20.03 22.56 27.22

2 9.22 10.58 9.89 10.71 12.08 13.51

3 7.02 7.63 7.56 7.47 8.28 9.47

4 5.34 5.84 5.98 6.28 6.95 7.39

5 4.42 4.89 4.8 4.76 5.32 5.93

negative contribution then TNT will stabilize at a higher level than TLR after the

shift. This combined with the fact that it takes almost equal number of observations

for both schemes to stabilize, result in a greater slope for TNT than TLR; and vice

versa. This explains the phenomena we observe in Table 4.5-8 since in the simu-

lation l1 = l2 = 1 and l3 = 1 + a. Overall the ARL improvement of MTNT over

MTLR when a > 0 is between 5% and 15%, while when a < 0, MTLR outperforms

MTNT by 10% to 20%. Figure 4.7 compares the two power functions of TLR and
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Table 4.8: Out of control average run length with In control ARL=200. λ = 0.03.

Variance of the last dimension shifts from 1 to 1 + a

Shift size p=4 p=5

MTNT MTLR MTGV MTNT MTLR MTGV

-0.4 165.75 74.51 172.48 94.29

-0.2 233.35 147.94 249.41 163.77

0 202.04 197.03 199.47 195.48 204.89 199.72

0.2 114.07 128.48 107.48 110.5 132.94 109.75

0.4 61.87 72.4 67.95 66.61 80.85 71.04

0.6 39.48 46.95 47.33 43.86 53.81 54.81

0.8 29.21 33.66 38.43 33.02 39.10 43.91

1 23.29 26.71 32.81 25.94 31.32 37.61

2 11.58 13.26 15.86 12.53 14.57 19.56

3 8.15 8.97 11.52 8.74 10.2 13.29

4 6.76 7.39 9.67 6.79 7.82 10.21

5 5.53 6.08 7.75 6.09 6.48 8.27

TNT .

Next we compare MTGV with the other two schemes. In general, when shift

size is small, for example d = 0.2, 0.4, it appears that MTGV has the shortest ARL

among these three scheme. When p = 3, 4, 5, in general, the MTNT scheme has

the shortest ARLs among these three with some exceptions happen when the shift

size a is really small. The relation between ARLMTLR and ARLMTGV depends on

a and p, for example when p = 4 and a = 3, ARLMTNT = 9.48 < ARLMTLR =
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Figure 4.7: Power function comparison between TNT and TLR. Dotted line: TLR;

Solid Line: TNT

10.39 < ARLMTGV = 11.57, while when p = 3 and a = 0.4, ARLMTNT = 55.89 <

ARLMTLR = 57.15 < ARLMTGV = 60.12. In the variability increase scenarios, the

MTLR scheme appears to be always worse than the better of the other two.

For the comparison between MTNT and MTGV, it appears that for each

fixed combination of λ and p, there exists an equilibrium point (shift size a0) where

if d < d0 then MTGV has shorter out of control ARL and when a > a0 MTNT has

the shorter ARL. For example, when p = 2, λ = 0.01, for all the 9 out of control

cases considered, MTNT has longer ARL than MTLR, which means the equilibrium

point is beyond 5, a0 > 5. When p = 3, λ = 0.01, at a = 0.2, 0.4, 0.6, 0.8 MTNT has

longer ARL than MTGV, while when a = 1, 2, 3, 4, 5, MTNT has shorter ARL than

MTGV, which suggests that the equilibrium point is between 0.8 and 1. While for

all other p and λ combinations, the equilibrium point seems to be between 0.2 and
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0.4.

It is widely perceived that small λ values should be used in EWMA to monitor

small shifts and large λ’s for large shifts. By cross comparing Table 4.5, 4.6 and

Table 4.7, 4.8, we see that this is largely true in the three schemes considered

here. For the same shift, dimension, use of a smaller λ grants a shorter ARL when

a is small and a larger λ gets a longer ARL, for example, when a = 5,p = 2,

λ = 0.03, the ARLs are ARLMTNT = 4.42, ARLMTLR = 4.89, ARLMTGV = 4.8,

they are all smaller than the corresponding ARL when λ = 0.01, ARLMTNT =

5.67, ARLMTLR = 5.97, ARLMTGV = 5.17.

The above simulations focused on the change of one dimension (eigenvalue)

only, therefore they do not project a complete picture about the performance com-

parison among the three control schemes. In fact both MTNT and MTLR are

sensitive to more out of control scenarios than MTGV. All the three schemes con-

sidered here are based on the sample eigenvalues of SΣ−1
0 . As pointed out earlier,

the impacts of these p eigenvalues on MTNT and MTLR are additive, while this

is not true for MTGV since MTGV is based on the product of sample eigenval-

ues, hence an increase of one eigenvalue can be negated by the decrease of another

which results in the overall product staying the same. SPC practitioners should take

precautions about this.
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Chapter 5

Other Considerations and Conclusion

5.0.1 Review

In this dissertation, we consider the problem of monitoring multivariate process

variability. We derive the asymptotic distributions of the log likelihood ratio test

and Nagao’s test under both local and distant alternatives, and investigate the

properties of unequally weighted sum of squares type estimators for the process

variance covariance matrix. Satterthwaite’s approximation is used to estimate the

degrees of freedom of the proposed weighted sum of squares type estimator for the

underlying process variance-covariance matrix. By combining the log likelihood

ratio test and Nagao’s test with the weighted sum of squares estimator, we come up

with two new control schemes, MTLR and MTNT.

The performance of the proposed new schemes are compared with the exist-

ing methods using Monte Carlo method for various scenarios. The new scheme

MTNT is easy to implement and the numerical simulations presented have shown

that MTNT outperforms the schemes based on the likelihood ratio and sample gen-

eralized variance under medium to large variance increase situations. However this

new scheme has its own limitations too. It has longer out of control ARLs than the

MTLR scheme when the process variability decreases. Also this test is based upon

the discrepancies of the characteristic roots of ΣΣ−1
0 from 1, but Σ has p(p + 1)/2
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parameters while ΣΣ−1
0 only has p eigenvalues, so it is always possible that the

process variability shifts in such a way that the eigenvalues of ΣΣ−1
0 remain 1 while

the internal structure of Σ differs from that of Σ0.

5.0.2 Issues to be answered

In the future, we plan to answer the following challenges..

The first issue is the validity and accuracy of Satterthwaite’s approximation.

Satterthwaite’s approximation of the distribution of the EWSS estimator is a method

of moments estimator. It is based upon the assumption that a weighted moving

average of independent Wishart distributed matrices is also Wishart. The validity

of this assumption needs to be checked and the accuracy of the approximation needs

to be further investigated. We may examine this from the perspective of matching

characteristic functions.

Let the batch size m be 1 and moving window size be n. The character-

istic function of the weighted moving average of independent Wishart distributed

matrices

S =
n∑

j=1

wjXjX
T
j

is

Char(S) =
n∏

j=1

∣∣∣I− 2iΘwjΣ
∣∣∣
−1/2

=

∣∣∣∣∣I − 2iΘΣ + (−2iΘΣ)2

n∑

j=1

∑

l>j

wjwl + (−2iΘΣ)3

n∑

j=1

∑

l>j

∑

o>l

wjwlwo

+ · · · + (−2iΘΣ)n

n∏

j=1

wj

∣∣∣∣∣

−1/2

.
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The characteristic function of a Wishart distributed matrix W with k degrees

of freedom and scale matrix Σ/k is

Char(W) =
∣∣∣I − 2iΘΣ

∣∣∣
−k/2

=
∣∣∣I − 2iΘΣ + (−2iΘΣ)2(k − 1)/2k + (−2iΘΣ)3(k − 1)(k − 2)/(6k2)

+ · · · + (−2iΘΣ)k/(kk)
∣∣∣
−1/2

The objective is to find a measure of the difference between two characteristic

functions of S and W with

k = 1/

n∑

j=1

w2
j

as the optimization solution. The natural restriction on the optimal value k should

always be that it is no more than the window size n. If we attempt to match the

orders of ΘΣ, k should be such that the higher order terms (higher than k) will be

neglected, while this neglect can be compensated by the lower or equal order terms.

Second, in the above algorithm, we assume that the mean of the process is 0

and remains so throughout the whole period. However if this assumption fails and

the process mean does shift to another level, without or without shift in the process

dispersion, we may see a signal. This is true because if at time t, the mean shifts to

µ instead of the assumed 0, then

E(XtX
T
t ) = Var(Xt) + E(Xt)E(XT

t )

= Σ + µµT .

hence a shift in the process mean from 0 to µ resembles a shift in the process

variance-covariance matrix from Σ to Σ + µµT . At time t, the mean of the EWSS

86



estimator of the process variance covariance matrix is

E(St) = E{(1 − λ)St−1} + λE{XtX
T
t }

= (1 − λ)Σ + λ(Σ + µµT )

= Σ + λµµT ,

so a change in the process mean is transformed into the shift in the process dispersion

from Σ. This is one side effect of this control scheme.

In order to identify the correct source of variation, we may run two control

schemes simultaneously, one for the process mean and one for the process variability.

The results of these two schemes can be compared. If both schemes issue signals,

then the source of variation could be only the process mean vector or both mean

vector and variance-covariance matrix; if only the proposed scheme for monitoring

process variability issues a signal, then the source of variation is the process variance-

covariance matrix. The change in the mean vector will cause signals with or without

change in the variance-covariance matrix.

The third issue is the assumption that the observations are independent. How-

ever, this independence assumption is often violated in many applications, and the

existence of autocorrelation has large impact on the performance of control charts.

The autocorrelation among the observations could happen if we take samples within

a very short time interval, or the underlying process itself is a time-dependent time

series. The classical time series models for autocorrelated data include AR(p),

ARMA(p, q), etc. The first step may be to investigate the performance of the pro-

posed schemes when we have a simple autoregressive process AR(p). The robustness
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against the autocorrelation is the main concern here.

Finally, an issue that has been persistent in monitoring multivariate process

is that even though the scheme can correctly issue a signal for an overall change, it

can not help identify the original source of the variation. Which dimension or which

subset of dimensions has changed? The proposed schemes can not help answer

this question. We may investigate the individual dimensions separately after the

scheme(s) have issued signals.
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