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ABSTRACT

Title of Dissertation: A Field Theory of Extended Particles
Based on Covariant Harmonic Oscillator
Wavefunctions

Thomas John Karr, Doctor of Philosophy, 1976

Dissertation directed by: Young Suh Kim

Associate Professor
Department of Physics and Astronomy

We attempt to combine the covariant harmonic cscillator (CHO)
quark model with second quantized field theory. We review the CHO
formalism for a system of two quarks(meson). We introduce a mesonic
field @(il,xz) that depends on the position of both quarks, and then
derive the field equations from a covarient lagrangian L(xl,xz).
The CHO equation allows a complete separation of the average meson
coordinate X from the relative quark coordinate £. The CHO wave-
function in the field expresses the extended size and internal structure
of the meson. ¢ describes mesons in thé ground state and any excited
state, with angular momentum e mass? From & we construct conserved
tensors like 58 the meson momentum. We second quantize @ in the
X variable only and discuss the extended particle commutation relations.
We investigate a @3—type meson interaction where the vertex
function 1is an overlap integral of the wavefunctions entering the
interaction region. We derive anonlinear integrodifferential
equation for the U matrix, linearize and solve it by perturbation
theory. The result is simple diagrammatic rules for the S matrix.

The S matriz is covariant and unitary. We do not find any contra-

diétion between the principles of QFT and the CHO quark model. The



¢ field theory includes scalar meson (point particle)theory as a special
case, while its greater generality illuminates the difference between

point and extended particles.




PROLOGUE

We look for it and do not see it}
Its name is The Invisible.

We listen to it and do not hear it;
Its name is The Inaudible.

We touch it and do not find it;
Its name is the Subtle(Formless).

These three cannot be further enquired into,
And hence merge into one.

Going up high, it is not bright, and coming down low,
it is not dark.

Infinite and boundless, it cannot be given any name;
It reverts to nothingness.

This 1is called shape without shape,
Form without object.

It is the Vague and Elusive.
Meet it and you will not see its head.
Follow it and you will not see its back.

Hold on to the Tao of old in order to master the
things of the present.

From this one may know the primeval beginning[of
the universel.

This is called the bond of Tao.

Lao Tzu
Tao~Te Ching
as translated in A Source
Book in Chinese Philosophy, compiled
by Wing-Tsit Chan

- -
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Myself when young did eagerly frequent
Doctor and Saint, and heard great Argument
About it and about; but evermore

Came out by the same Door as in I went.

28

With them the Seed of Wisdom did I sow,

And with my own hand labour'd it to grow;
And this was all the Harvest that I reap'd--
'T came like Water, and like Wind I go.'

Rubdiyat of Omar Khayyim
as translated by Edward Fitzgerald

Mysterious even in open day,

Nature retains her veil, despite our clamors:

That which she does not willingly display

Cannot be wrenched from her with levers, screws,
and hammers.

Faust monologue, from

Goethe's Faust

Part I, Scene I

as translated by Anthony Scenna

~ididi-




wandering sould.

DEDICATION

My life, like any other, is the encounter of many

Galo Aumada
Mary Gibson

Bill Wheatly
Susan Harvey
Dave Douglas
Phil Ochs
Valerie Blalock
Ted (Vasco)Miller
Duna Poteet

Mike Kozma
Anthony Holdsworth
Walt Whitman
Anne Henry

Tom Roberts
Charles Schwartz
Ho Chih Minh
Steve Slaby

Emma Goldman
Jules Henry

Lynn Fagot

Chuck Goldman
Herbert Marcuse
Pancho Otero
Maria Fletcher
Dennis (Mack)Greene
"Tucson" Salant

I dedicate this with love to them all,

Salahuddin El Hilali
Halem

Anna & Tomas Gergerly
Maggie Aumada
Alan Ginzburg

Sue Ann

Lao-Tzu

Leo Tolstoy
Bertolt Brecht
Bob Dylan

Joseph & Valeria
Thure Meyer

Dave Dellinger
Ursula Leguin
Julia Vinograd
Clarence Didonato
Lina Wertmuller
Tiwiwas

Jaques Ellul
Sharon Fondiller
Max Planck

Ernest Rutherford
Gail Schatz

Stan Gooch

Dwight Wilkinson
Homa Touhidi

and all the others just a breath away...

AT




ACKNOWLEDGEMENT

True education, if it is attained at all, happens by a process
of fortuitous accident. Among these accidents we must count the
circumstances of our early youth, the people we meet and the way they
impress us, the interests they arrouse in us and our opportunity
to develope those interests. I have made education the central
activity of my life, so all the faculties of my self have been
brought into play and been reciprocally affected. As a part of
life, education is uncontrolled and unpredictable. The result becomes
different from the sum of the parts. Recognizing this, I know there
is no fair way to give appreciation to all who have helped me. I
feel warmly towards those I have time to name, and warmly towards
those I cannot name.

First, I thank my parents. From the beginning they stimulated
me to think and encouraged me to follow my scientific inclinations.
This often went against their deepest values, yet they knew it was
the path to my own self development and they never tried to turn me away
from it. Next, I thank the unknown(to me)persons of an unknown
committee who awarded me the Center for Theoretical Physics Fellowship
for 1972 and 1973. This award gave me the freedom and security I so
badly needed during my first two years at this institution. I have
many things to thank Young Suh Kim for. He has always treated me
with great respect and as an equal. I do not know how the faculty
see their own actions, but students often feel they are in a subordinate
or inferior role. I have never felt this way with Prof. Kim. He

excited my interest in fundamental physics, and my good relationship




with him was a decisive factor in my choice of research area. He

has never "directed" me in the choice of research problem, and he

has never pressured me. He has given me valuable advice and invaluable
encouragement whenever my thinking became unsuccessful and my problem
frustrated me. T also thank Joseph Sucher. His patience in

answering my questions was much appreciated, and his continuing
interest in me these four years has given me great support. Finally

I thank Brenda Dunn and Delores Kight, who struggled to read my
handwriting and type this manuscript. I have tried to give them

the same friendliness and good humor they have given me.

-vi~-



CONTENTS

Prologue

Dedication
Acknowledgement

1. Introduction

2. Covariant Harmonic Oscillator Wavefunctions

3. Lagrangian Formulation

4. Second Quantization and the Free Meson Field

5, Meson Interactions

6. S Matrix in Perturbation Theory

7. Unitarity
g. Summary and Outlook

Helicity Basis

Appendix A:

Appendix B: Offshell CHO and Vertex Functions
References

Footnotes

Figures

Figure Captions

~yii—

ii

iv

17

29

41

50

60

69

72

74

77

81

82

95




1. INTRODUCTION

Physicists have called a "point particle" any system whose
structure was too small to be observable or relevant at the time.
Early, striking experimental evidence that nucleons are not point
particles came in the observation of nucleon form factors in 1956[1].
This was the first firm evidence that nucleons have an intrinsic size,
which sharply distinguishes them from leptons. Beginning with mp
scattering experiments and the discovery of the A(1232) resonance[2],
high energy physics has unfolded a rich and complex spectrum of
hadronic states[3]. All our prévious experience with similar spectra
in atoms and nuclei suggests that the behavior of each hadronic state
is due to its specific internal structure o¥ the interrelation of its
parts. But our deepest view inside the hadron is in the contemporary
version of the Rutherford and Frank-Hertz experiments, namely deep
inelastic lepton-nucleon scattering [4]. Here we observe high momentum
transfer events(which signal collision with a point constituent inside
the nucleon)as well as asymptotic cross sections consistent with the
parton picture [5]. Taking these developments together we see the
pressing need for a dynamical theory which explains the evident
structure and size of hadrons.

Relativistic dynamics is notoriously difficult and has confounded
all attempts at such a theory. We are not even sure of what framework
to pose the problem in. While we have a reliable nonrelativistic
mechanics, classical and quantum, in which we can discuss and evaluate

conjectured dynamical theories of nonrelativistic phenomena, we have



no such ready-made framework for the relativistic phenomena that must
exist inside hadrons. So particle physicists have tried to explain
much of hadronic behavior by symmetry principles independent of detailed
dynamics. SU(3) symmetry is the most famous and successful discovery
of this program[6]; SU(3) classification has brought order to what
would otherwise be a chaotic experimental situation[7]. The quark[8]
was invented to explain SU(3) symmetry, although the inventors made
no committment to its existence. The quark hypothesis became the
first serious basis for deducing hadronic properties from the inter-
relation of constituents inside the hadron. Models that treat the
quark as a real particle and a hadron as a multiquark bound system
have produced many encouraging results[9]. But the validity of these
models is uncertain(independent of their faithfulness to experiment)
because their underlying dynamics is uncertain. For example, the
"naive" or standard quark model is formulated in the language of non-
relativistic quantum mechanics: the hadron is represented by a multi-
particle wavefunction, the quarks move in an effective or a mutual
potential well corresponding to a postulated "force" between quarks,
and the system is bound into a hadron because the wavefunction is
confined to the potential well. But we expect all this is 'wrong"
because it is nonrelativistic, and we do not know how much of this
model is deducible from a consistent relativistic theory. Another
example is the SU(6) symmetry scheme, which is very plausible non-
relativistically and also phenomenologically successful but has been
proven incomnsistent with relativity[ 10].

Second quantized field theory is a successful framework in which
to discuss the relativistic scattering of point particles. It seems

plausible that we can construct a consistent relativistic dynamics of




interacting quark fields. But such field theories have not told us
much about real hadrons. For example, the early quark models put the
quarks in an infinite potential well for calculational convenience[ll],
and this explained(in the context of the model)why isolated quarks are
never observed. But in a quark field theory this simple fact is
unexplained. We cannot obtain any bound state information from a finite
order of perturbation theory and there are no practical nonpertur-
bative methods. Also, it is not clear how the techniques that were
successful for asymptotically free states(scattering)should be modified
to apply to states that are never free. Finally, the field theory

must replace the bound state wavefunction of the nonrelativistic model
by an eigenstate of a hamiltonian operator built from quark(and other)
fields. We do not even know in what Hilbert space to represent this
state; finding such a state(or proving it exists)seems to require a
nonperturative solution to the field equations. Nevertheless there are
many papers about local field mechanisms that might create permanently
bound states[1 2].

In nonrelativistic quantum mechanics the dynamical origin of a
bound state, its detailed properties and its spacial localization are
all interdependent. Although the usual field theory has difficulty
in reproducing any of these features, QFT is especially unsuccessful
in incorporating the idea of spacial localization or size. To escape
this problem some models modify the usual QFT, then make a semiclassical
approximation to the new field equations and show that the approximate
solution for the quark field(or products of fields)is '"trapped" in a
region of finite but nonzero size[l3]. We do not know whether the
solutions(if they exist)to the full quantum equations of these models

have the same trapping feature, nor do we know how to relate the localized



quantum field(if it exists)to the probabilistic wavefunction. Other
models depart from local QFT more radically, by taking the spacial
extension of the hadron to be a fundamental fact and attempting to
describe the direct strong interaction of these extended objects.
String models are examples of this approach[14,15]. These models
bypass the question of how quarks dynamically bind thgether, since
the extended object is fundamental and has no dynamical origin. But
string models have not been able to incorporate a gauge invariant
electromagnetic interaction or explain the observed hadronic form
factors(the experimental basis for believing hadrons are extended
particles). Some string models fail for more basic reasons--they
require more than four spacetime dimensions, or they contain tachyon or
ghost states[14].

Where does all this leave the standard quark model? The most
serious fault of the early model was its nonrelativistic dynamics—-
wavefunction, potential, etc. Although the usual QFT has not become
the relativistic dynamical foundatiqn of the standard model, the
standard model has developed its own relativistic form. A relativistic
wavefunction in the harmonic oscillator quark model was first proposed
by Feynman et al.[16], who stated that it would be difficult to
expect dynamical regularities among resonances from the conventional
field theory and that it is worth considering a new relativistic theory
which is naive and obviously wrong in its simplicity but which is
definite and enables us to calculate as many things as possible.

The nonrelativistic wavefunction has a clear interpretation as
a probability amplitude, and probability has an important role in
quark model calculations. A new theory clearly would be wrong or

incomplete if its wavefunction did not have a probability interpretation.



The wavefunctioné of Feynman et al. are not normalizable and do not
produce correct form factors. Lipes[l7] attempted to reformulate
their work, but his wavefunctions do not covariantly satisfy the
equation of motion. Kim and Noz[18] constructed the first normalized
ghost-free wavefunctions that are fully covariant. They also defined
an inner product that gives the wavefunction a Lorentz~contracted
probability interpretation[18,19]. The asymptotic dipole behavior

of nucleon form factors has been related to the Lorentz contraction
of the wavefunction by Fujimura et al.[20]. Radial excitations of
these wavefunctions produce linearly spaced energy levels, and Kim
and Noz[21] have established the existence of radial-like modes for
the nonstrange baryons(where there is just enough evidence to test the
linearity hypothesis). By taking probability overlap integrals
between wavefunctions, Kim and Noz[22] did a preliminary calculation
of meson decay widths and polarizations and Ruiz[23] calculated the
axial vector coupling constant in nuclear B-decay. Those calculations
show that the covariant harmonic oscillatér wavefunction with a
probability interpretation combines mathematical simplicity with

predictive accuracy.

But a wavefunction, even a covariant one, is only a first-quantized
object. Second-quantized field theory seems the most natural language for
describing the creation and annihilation of particles in high energy
physiés, while the first—-quantized 1anghage of wavefunctions with a
probability interpretation has been useful in the standard
quark model for describing the internal structure of hadrons. What is
the relation between these two languages[24]? Is there a quantum fileld
theory that incorprates a probabilistic wavefunction description of a

particle's internal structure, and that is also consistent with the accepted



relativistic principles of covariance, causality, and unitarity? The
purpose of this paper is to conmstruct such a theory, using the wavefunctions
of Kim and Noz.

We will construct an interacting quantum field theory of mesons in
which each meson is a bound state of two quarks. The béund state is repre-
sented by a covariant harmonic oscillator wavefunction. Our main purpose
is to show how quantum field theory ideas can be combined with wavefunction-
probability ideas into a consistent and physically nontrivial theory. For
simplicity, the quarks in this theory have no internal quantum numbers --
no charge, no SU(3) quantum numbers, no spin. The duantum field we will
construct incorporates the orbital angular momentum of the quark wavefunction
in a natural way, which gives the composite mesons intrinsic integral
angular momentum.

In Section 2 we'review and reformulate the formalism of the Kim-Noz
oscillator wavefunctions and inner product. Our reformulation allows
us to give an elegant and general discussion of the transformation
properties of all the covariant harmonic oscillator (CHO)wavefunctions.

In Section 3 we put the CIHO theory in lagrangian form. This gives

us a theory of a classical free meson field whose internal meson states
are described by CHO wavefunctions. We show how Noether's theorem,
appropriately modified for this lagrangian, gives the usual conser-
vation laws. In the process we find several conditions which a
wavefunction must satisfy for its lagrangian theory to make physical
sense. In Section 4 we second quantize our lagrangian and discuss

the Poincaré transformations of the quantized field. Our field does
not have canonical commutation relations. The difference between

our CR and the CCR is due to internal meson structure, expressed by



the CHO wavefunction. 1In Section 5 we turn on interactions after

first reviewing the interaction model of Kim-Noz[22]. 1In Section 6

we write a perturbation expansion for the S matrix of this field theory
and derive covariant diagrammatic rules of calculation. We discuss

some similiarites and differences with ordinary QFT. 1In Section 7

we prove that our perturbation series is umnitary. Our analysis
illuminates the different role of internal quark motion in the

vertices and the propagators of our theory. In Section 8 we review

the general features of our theory that make it work, and we discuss

some possible extensions and applications.



2. COVARIANT HARMONIC OSCILLATOR WAVEFUNCTIONS

The notation in this paper is as follows. Four-vectors are written

. . ¥
as x,%; their contravariant componen.s are x " @=0, 1, 2, 3), with time

0 i,. ->
component x and space components X (i =1, 2, 3) or x. The metric tensor -

gUV is gOO = — gii = +1, all other components = 0. Four-dimensional

volume elements are written as dx, taree dimensional spacial volume ele-

- o s
ments as dx. The summation conventidn is used throughout.

oom 2 oo i i 9 _ T
X'y Bxy, ¥ 2 xx, XY= XY ;KJ = 8., and 34,9 " =[] . Whgn A

denotes a Lorentz transformation, y = Ax denotes the matrix equation
yu - Auvxv' When (x—y)2 < 0, we write x ~ y. The complex conjugate
of a c-number is denoted by *, and tie hermitean adjoint of an operator

is denoted by t. The normal ordering of creation/annihilation operators
is denoted by double dots : : .

We consider a system of two quarks, with spacetime location X s Xoe
The state of the system is specifiel by a two-point field ¢(xl,x2). We
are interested in ¢ which satisfy the harmonic oscillator equation[25]:

2,

+ 2 (x ox)? 0| a(ax) = 0 '
DX] sz - 37 (% 2 ¥ =0 . (2 .1)
We define new coordinates by
X = l‘(x + x,) £ = l‘(x - x.)
T2 1 .2 : T2 1 2

X 1s called the average or external coordinate, & is called the relative

or internal coordinate. Then @(xl;xz) = o(X, ), ijl + []Xz =

1
5 (C]X4‘[]€) and Eq. (I1.1) becomes

2
[Dx O, -2+ g ]m,a>=o . (2 .2

A,

(o



Fourier analyze ¢ into normal modes of E:

o 1 iPX |
Q(Xa E) = i ‘(2’”)3‘/“2‘ J iP e q)k (P,g) ] (2 '3)
where

2
[:Ejg - %‘ Ezi} 2. (P>8) = E(k) & (P,5) ¢

with E(k) a real number, and where

(~v? moz + B0, (R,E) =0 . (2.5)

The general solution to Eqs. ( 2.4) and ( 2.5) is

%25 = 6B - ” - £(0) a (B0, (2,0) | - (2.6)
(no sum over k)

where ak(P) is an arbitrary function of P and ¢, (P,&) solves Eq. ( 2.4).

k represents all the quantum numbers tlat identify ¢k.
The hyperbolic partial differentisl equation, Eq. ( 2.4), is a

relativistic gencralizstion of the Schirddinger equation for an isotropic

harmonic oscillator. Tt has many solutions, depending on the boundary

conditions imposed. The solutions used by Kim and Noz are constructed

as follows. We define the 4~dimensional oscillator ladder ogperators in

arbitrary coordinates Eu as

R SRS R gy, g Lo + 5 ) (2.7
e £ 2 Jo & 2
so that
SRS I (2.8)
Then b0, bt

(L = 1,2,3) are the creacion operators. Define the number

operators as

~ - O Dl - Ol _
1’10-« bY b b b() 1 ( 2.9)
{

njE LT LT = —blhbi (no sum over i) .



Then b“+, ﬁu, and the differential operator of Eq. (2 .4) are connected

by the following hermitean relation, 2
wt, o o~ 1 w 2
b bu I(I) nl n2 3+1 [ D +4 +2u):] . (2.10)

Let k represent the set of non-negative integérs (no,nl,nz,n3), and define

N(k) = ny + n, + Ny = ny . (2.11)
E(k) = wN(k) + 0 (2.12)
= w(n1 + n, + n, - nO) + W
m’ = mgt + E(K) (2.13)
0 . >
and, for n = 0, (Pp) = L P=0 . (2.14)
0 (s} o]

Then we define the CHO wavefunction ¢k(g) as

b (R, = Akunl(\/ij:' nl>nn2(\/?3'n2)ﬂn3(‘/§7 n,) exp{- %l_n02+n§+n§+n§]}' , (2 -13)
.where Hn is the nth Hermite polynomial and Ak.is a normalization factor
(for the inner product defined below). The phase of Ak is adjusted so that
¢k(£fn) is real for all k,n. ¢k(g) clearly solves Eq. ( 2.4) in the e
coordinates. ¢k(£) is the Kim-Noz wavefunction in the rest frame of
the two quark system. .

Eq. (2.10) shows that N(k) and E(k) are the eigenvalues of Lorentz
invariant operators, so we may define ¢k(P) for an arbitrary P with p2=mi

by Lorentz transforming ¢k(g) to a new coordinate frame. Pick a set of

2
Lorentz transformations {C(P)} such that for each P with PO >0 and P =m ",

P = C(P)P (2.16)
O

and such that the matrix elements C(P): are continuous functions of pV.

Then define ¢k(P) as

had
~~
g
vy
e
tH

-1
b, (B, CYTE) (2.17)

¢P(P) is the wavefunclion in a, [rane where the two quark system has

momentum P, It clearly solves Eq. (2.4). Eq. (2.17) is consistent

10



with the definition used by Kim and Noz[18,19] for P parallel to the 3-axis
and generalizes their definition to arbitrary ?.

Eq. (2 .17) defines ¢k(P) for all P with é) > 0 and P2 = mi. The de-
composition of ®(%,£) in Eq. (2.3) includes a sum over momenta with
PO < 0, so ¢k(P) must also be defined for negative energy. The simplest

0 . ,
way to extend ¢k(P) from Pp > 0 toP <0 is to apply Eqs. (2.15) and (2.17)

for (g)o = -m . Then
- 0 >
0 @ <0, BE) = o (P [-F,0),
that is
= - 2.
b (B,E) = 4 (P,E) (2.18)

Eq. ( 2.18) should be compared with Dirac theoryl28], where the
negative energy spinor v(p,s) describes a positive energy antiparticle
>

moving with momentum -p.

For an arbitrary proper Lorentz transformation A, Eq. ( 2.17) implies

that
6, (AP, 1E) = b, (B, CCARY™ 48)
= 4.2, cam ™t AcE@E® )
- 4, @, H(ALP) @)D ( 2.19)
where M(AP) = CCAR) T AC(P) ( 2.20)

is a rotation. It is usuall27] to callglhe fundamental vector, {C(P)}
the complementary set, and M(A,P) the Wigner rotation. Different

choices of complementary set give different (but simply related)
definitions for ¢k(P). For any complementary set Egs. ( 2.15) and ( 2.17)
imply that the gaussian factor in ¢k(g) becomes

2
expP‘%{—Ez + zizéi%Q } (2.21)

in ¢k(P).



Since ng =0 in ¢k(P), which means there are no excitations
o
of the time coordinate in the rest frame, it follows that ¢k(P) satisfies

(in addition to Eq. (2.4)) the covariant subsidiary condition

w, t w1 Y _
P bu ¢k(P) =P P agu + 7 gu ¢k(P,£) 0 . (2.22)

This condition distinguishes the wavefunctions used by Kim and Noz from

other relativisitc quark wavefunctions[16,17]. Time coordinate excitations

have caused trouble with the harmonic oscillator quark model in the past[16,17].
If Dy is arbitrary, then there is an infinite degeneracy of wavefunctions

¢k(P) for fixed P and E(k) and there can exist wavefunctions with mk2 < 0.

The subsidiary condition, Eq. (2 .22), eliminates these undesirable features

in a manifestly covariant way. Eq. (2 .24) combined with Egs. (2 .3) and

(2.6) gives a similar conditiorn 28] on ¢(X,&):
ox Yo,u +2 & )o(x,E) =0 ( 2.23)
g 2 "y ’

Consider the rest frame wavefunction of Eq. ( 2.15). As a function of
n,¢k(g »N) 1s an isotropic harmonic oscillator. The set of ¢k(g) with
E(k) (or N(k)) fixed is a basis for a linear space of functions that is
invariant under rotations of ;. This set is called the "Hermite basis.'" Define

the internal orbital angular momentum operators as
noa_, L™ = Ig + L2 + L ( 2.24)

where € om is the 3-dimensional antisymmetric tensor. By taking appropriate

linear combinations of the ¢k(P) (with E(k) fixed) we can define[29] a new set
of functions ¢a(g ) that are eigenfunctions of L2 and L3, with eigenvalues
L(L+1) and M respectively. o represents the quantum numbers (E, 1, M)

which completely identify ¢a(P). We define ¢a(P) for arbitrary P with

2 2
P =m " by Eq. (2.17) with ¢a(P) replacing ¢k(P). Then




0o = u . ¢ (P) (2 .25)

where U is a unitary matrix that depends on E(a).and L{a), and the sum
runs over all k with E(k) fixed. The set of ¢a(P) is called the "orbital
basis'". Latin subscripts denote functions in the Hermite basis, ¢kﬂ?),
and Greek subscripts denote functions in the orbital basis, ¢u(P). The
subscript o on wavefunctions is not to be confused with the index on four-
vector components like xH.

The space of CHO wavefunctions, invariant under rotations,
labeled by E(k) or E(a) is now split into irreducible subspaces (under
rotations) labeled by (E(a), L(x)). Since the ¢a(g,n) are just spherical
harmonics (din their dependence on the direction ;), Eq. (2 .19) for

¢0L(P) is

-1
4, (AR, AE) = & (B,M(A,PIC(R) )

-1
0, M4, 2) 16,4 (B, C() )

it

0, [MCA,P) 10, (P, £) (2 .26)

where QaB is a (2L(a)+1l) x (2L(a)+1l) unitary irreducible matrix representa-

tion of SU(2) and the sum runs over all B with M(B) between -L(a) and +L(a).

Compare Eq. (2 .26) with Dirac theory[26]: the free particle spinor
+iPx .
wa(P,x) = e ua(P) under a Lorentz transformation A becomes
+tikx

¢a(AP,Ax) = & SGB(A)uB(P) and the 4 x 4 matrix SuB(A) is a (ponunitary)
representation of the Lorentz group. We define the Lorentz transformation

operator u(A) on ¢a(P) as



(W6, (M) = ¢ (7,A7E) (2 .27)
= QF, IN(A,PY 16, (4P, ©)
=@k, DMLY 10, (1R () (2 .28)

Eq. (2 .28) says that u(A) and the orbital basis functions form an irreducible
unitary Wigner representation of the Poincaré groupf27,30] for spin L(a) and
mass m, . The QaB[M(A’P)] matrix rotates the spin under the Lorentz trans-
formation A.

Particle physicists do not usually use the Wigner representation of
Eq. (2 .28) to express free-particle Lorentz transformation properties. But
the Wigner representation is equivalent to more usual representations [31].
The Wigner representation has several advantages. There are no redundant
degrees of freedom in it -- a vector field has only three components, etc.
Also, it is a unified description of particles with all possible sping32].
Since the CHO wavefunctions ¢a(P) have arbitrarily high
spin L(a), we use the Wigner representation of Lorentz transformations,
Eq. (2 .26).

For definiteness and simplicity we will work below with only one com-
plementary set. C(P) denotes the 'pure boost" that transforms g into P, viz.
for P = mk(Cosh 0, € sinh 6), € a unit vector in the direction of P with

components e; ¢

— =

cosh 9O e1 sinh 0 e2 sinh © e3 sinh 6

(cosh 0-1)e.e

. 2
e.sinh 6 1+(cosh 6-l)el (cosh 8 l)e2el 183

1
C(P)“v = . (2.29)

ezsinh 8 (cosh e—l)eze 1+(cosh 6—1)e22 (cosh 6—1)e3e

1 2

2
3 183 (cosh e—l)ese2 1+(cosh 6—l)e3

-y spmed

e,sinh 6 (cosh 6-1e




In Appendix A there is a discussion of another complementary set and the
"helicity basis'" that it generates.
Consider the behavior of ¢k(P,€) under the parity transformation
_ 5,0 = o = 0 T _ 0 T .
P=(P,P) »PP= (P, ~P) and £ = (£, £) » Pg = (¢, -£). Inspection of

C(P) above shows that

0 _ 0 i 1. .
Cc(P) 0 = C(PP) 0’ c(P) i = C(PP) i (i, J 1,2,3)
( 2.30)
0 _ 0 _ i L, _
- c(®)~; = c(PR)",; = C(PP) 0 (i =1,2,3) .

When P » PP, £ - Pf the gaussian factor in ¢k(P), Eq. (2 .20), is unchanged.

But Eq. ( 2.30) implies that
-1 -1
c(PP) (Pe) = -c¢(P) & ( 2.31)

which means that the argument of the Hermite polynomials in ¢k(PP,P€) has
the opposite sign from the argument of the Hermite polynomials in ¢k(P,g).

Since the Hermite polynomials are also parity eigenfunctions,

B (2) = D" & (-2),
it follows that

6 (P2, P0) = (DY (,5) ( 2.32)
Eq. (2 .31 directly implies that

4 (PP,PE) = ¢ (By-p) . ( 2.33)

Therefore

N{k)

6, (B,8) = DV 4 (2,-0). C .36)



Because of Eq. (2 .25), these parity relations also hold for ¢a(P) in

place of ¢k(P).

The inner product of two CHO wavefunctions is defined [18] as
(4. (®)54,(Q)) = fd€¢ﬁ(P,E)¢z(Q,€) . ( 2.35)

It follows that for any Lorentz transformation A,
(6 (AR, 8, (AQ)) = (4;.(®), 6, (D) ( 2.36)

and therefore, the factor AK in Eq. (2 .15) can be adjusted so that ¢k(P)

has a Lorentz invariant normalization,

(4 ()10, (B) = 8, . (2 .37)
From Eq.( 2.10) we see that

(6, (B),4,(Q)) = 0 4if N(k) # N(2) . ( 2.38)

Ruid19] showed that for P along the 3-direction

, m1 n3(k)+l ’
(¢k.((1)>),¢£(P)) = —P-g 51% . (2 .39)

Egs. ( 2.37), (2 .38) and (2 .39) give the CHO wavefunction

a covariant probability interpretation: ¢k(P,£) is the probability amplitude
for observing the two quarks in the CHO bound state labeled by k and
separated from each other in spacetime by £, when the two quark system has
total momentum P. The inner product, Eq. ( 2.35), is a probability overlap
integral. Eq. (2 .39) says that this probability overlap becomes Lorentz
contracted when one CHO state moves with respect to another. These

properties are summarized in Figure 1.

-16-



3. Lagrangian Formulation

Our ultimate goal is a field theory for @(xl,xz). The only general
formalisms available for constructing a physically sensible field theory
are the lagrangian and hamiltonian formalisms. The lagrangian approach
is (usually) more manifestly covariant. In this section the equation of

motion for ¢(x 2) will be put into lagrangian form, and the momentum

1’ %

and other dynamical quantities will be explored.

Consider the lagrangian density

=Ly 1oy W w? 82
LO(Xl,xz) = 2(’6Xl<1>)(3x ue) + 50, ") (3, ue) + g 2 (x-x)" @
1 2 2
2 (3 .1)

m
0 2
- o

where @(xl,xz) is a real-valued field function of the two four-vectors

X Ky We define the action J as

xp xp
J:fédeg szdxg [ . & & L (x,,%) .
XA Xy all xl,xz 1 72 70712
0 0 0 0 0 0
. . . 6 = - = =
If ¢ is varied while 69 0 at Xl XlA’xlB and x2 X2A’X2B’ then 6J = 0
implies the Euler-Lagrange equation
oL oL
.g_c%o - 3 M —————8«— + 3 ¥ —0 (3.2)
e M) 2 3(3 V"9
il 2

which is equivalent to Eq. (2 .1). If LO is considered as a function of

(X,&) then

2
1 1 ‘ 2 2
Lo(X,8) = 750 (du0) + 5 0 M) G ud) + L yo - 2 o

4 ¢ 3.3)
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The action is

© g

3=/, dx f, 4t [ axdel (X,8) -
XP £ > > 0
A A all X’g

If & 1§ . . _ 0 _ 0 0 0 0 0
is varied while 8¢ = 0 at X = Xp» X and £ = then 8J = 0

implies the Euler-Lagrange equation

3L |

70 L M ,.f!ll, i

3 X u * % H ¢
225 (2% o

¢ to Eq. (2 .2)-
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‘l mical quantities in terms of divergenceless
ynamic

definition of conserved d
t consequences of the translation

ou
tensors must be modified. We work
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detail below to illustrate the modifications

invariance of L(}X,g) in

required by two coordinates.

lation of both quarks: X > ¥y + a,

Consider the simultaneous trans

hile £ 18 unchanged

* % + a. Then X * X+ 2V
(but does depen

O(X,E) does not

don & expllcitly). Then
depend on X explicitly

L0+ L0+ GLowhere

I
ho== (QX“LO) aly u
i 6(3 + - .
= — 60 — —
S e 9(3 ) .
X ' 3L, |
Feo), 00 Mgy = 3,"(89) and 75 satisfies
Uy = 9 , . :
§d = au(a ®) §(9 8) <
Xu-’? X
Eq. ( 3 .4). Thus
ol
- v %)
oL Y B o
(3, Ly) /—JL (ax\,@) e
: X
X0 Q(BXQ)
| (3 .8)
oLy o ¥ [av(ava)]
+ U
)
a(ax )
IR I G OO R
T,
2%
- T as
-energy tensor v
e d . ternal oF average stress
e define the eXx |
(3 .9
o gy? ” gvaO
v 2y )
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and define the internal or relative Stress-energy tensor t as
uv

31.0

t F o 5.3 .
uv a(a€“¢) XV ( 3.10)

Eq. ( 3 .8) says that

u u =
aX Tpv + ag tuv =0 . (3 .11)
Eq. ( 3 .11) is the two-coordinate analog of Eq. ( 3.5).

~

We define the external or average momentum P carried by the field ¢ as
U

0
0.0 0 g
A . _ > 0 5 R
B, (Xsgney) = [ aX e [ dE TOu(xo,iggO,E) ( 3.12)
all ¥ fa a1t

and define the internal or relative momentum D as
u

XOB
. .00 0 _ 3 0 3 7
pesxLx) = fdar [ oax fa ey o%%00 (3.13)
> 0 > U
all & XA all X
Then

~ 0,0 .0 _ 3 0,,.0 .0
Pu (XB,EA,gB) Py (XA,EA,EB)

Xg Eg

0 0,> )
= [ @A [ dEdE (5 T (X,8)]
0 0 3X ou
X, N 0

(after integrating by parts with respect to X(5

0 £0
5 o 3
- ->
= Jox X [ oae®E [ -5— v - e
X EO X iu Ev Vi
A A 1

(because of Eq. ( 3 .11))
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0 0
P 0.0 .0 5 o 5 o
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A A 1 i
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" X358 A ) + P EpA3ATB B A | 3 13
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because the gaussian factor, Eq. (2 .21), in ®(X,£) vanishes at « faster

than any polynomial. Therefore,

~ -
P, = [ Xt 15, (5,0 (3 .17)
all X,¢

is conserved. Then Pu may be physically interpreted as the external
momentum (momentum of the two quark system as a whole) averaged over

the relative motion of the two quarks. PU thus deserves the name 'total

momentum of the field ¢". Eq. ( 3 .15) expresses the physically reasonable

result that the total momentum is conserved.

TOO(X,E) plays the same role as the hamiltonian plays in a one-coordinate

field theory, because
Tow =270 Tn ~ Bouko®B) . (3 .18)

So T00 is just the Legendre transform of LO with the conjugate field 1,

defined as

oL,
nz——==38 (3 .19)
3(2409) X,

PO |

which is formally the same as the relationship between the lagrangian and

hamiltonian in ordinary field theory;

The physical interpretation of ﬁu can be clarified further by writing
TOU explicitly in terms of the CHO wavefunctions. The
general solution ¢(X,£) to the field equation, Eq. ( 3 .4), is given by
Eqs. (2 .3) and (2 .6). We restrict the discussion to ®(X,£) constructed
by substituting the harmonic oscillator wavefunctions of Egs. (2 .15),

( 2.17) and (2 .18) into Eq. (2 .6). We separate ¢ into positive- and

negative— frequency parts:
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+ PP 2 2 x
®£+)(X,E) = - l3/2 [ ap FEFE 62 mg 'E(k))aé+)(P)¢k(P’g)

(2m)
(3
(no sum over k) ,

where aéi)(P) = 9(P°% ak(iP)

_ ) -
2, (X,8) = % (X,8) + & (X,8) > ¢ 3
and

(I)(X’E) = 1 @k(X,g) . (3

k
Then
> —
(£) 1 i FPX By (R,E)
oD xe) =—377 28 © g (Dol (3
k (2n)3/2 2Pb

where

P0= (ﬂ1k2+’§2)1/2 > 0 . (3
Sometimes P0 will have & subscript (k) to emphasize the dependence of ﬂ)
on k through Eq- ( 3 ,24). We define

(£)
a. (D)
0 2
( ZP(k))

so that ¢ (X,g) takes the form

gy o [ ST AEROD s

k ? (27\')3/2 (ZPO)/Z
Since ¢(X,£) is real,

(

alﬁ’) @ -

1

X
ak (P)

(3 .17) and (3

in the form

,18) to ut P
We combine Egs- 18) P 0

.20)

.21)

.22)

.23)

.24)

.25)

.26)

.27)




A 1 >
Po=5 [ d [ar 106G + n2e? + 0,0

2, (3 .28)
_agu(mg”@) - @—2—— g2 0] .

In Eq. ( 3 .28) we expand ¢ into positive~ and negative- frequency parts

with Eq. ( 3 .23). Then a representative term from PO is

N 3 i(P-Q) X N .
1 [& [ae (—5 A ali")(P)afL*)(é)
k, % (2m) (4P 13 Qy”

2 2
[6,(B8) (@ "+ 2" + O, - %7 &%) o) (@, (3 .29)

u .

Application of Gauss' theorem turns the divergence term above into a surface

integral on a surface with lgul + o, This surface integral vanishes because

of the gaussian factor in ¢k(P), Eq. ( 2.21). Then the integration over ﬁ

may be performed to give a momentum delta function. The term in (3 .29)

now is

-
1 . dp__
5 L [ ag

B > 0_p0
5o ) F aé+)(P) 1(BBy) X
k,2 (4P(k)P(29

( 3 .30)

0o 2 0 0 >2 w? 0
[d)K(P(k)’P’E) (mo + P(10P<£) + P+ DE - T €2)¢2(P(2)’§’€)] .

The integration over £ may be performed by applying Egs. ( 2.37) and

( 2.38). Then ( 3 .30) equals

. N A
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From Eq. ( 3 .32) and the properties of ¢1JP) we can show that the conserved

angular momentum tensor MuB is

MuB - JuB + KuB ’ (3°.33)
where
>
3, = ) AKX a8 (Egtgg Eutop)
and (3 .3)
> _
K, = aXde (XToq %, Top)

0
(J . and K_, must be evaluated at the same value of X'). J , may be
aB af af

interpreted as the internal angular momentum of the two quarks moving

around each other in some oscillator state ¢k(P), and KaB may be inter-

preted as the angular momentum of the motion of the two quark system as a

whole. We do not work out the explicit dependence of JuB and KuB on

ai%)(P) and ¢kﬂP) because we do not need it for the following sections.

Our analysis of ®(X,&) may be summarized as follows. ?(X,E) can be

considered as a real field function of two space-time coordinates. its

equation of motion can be derived from a lagrangian action principle. The

symmetries of the lagrangian imply natural conservation laws. When &(X,E)

is a solution of the equation of motion constructed from the harmonic

oscillator wavefunctions ¢k(P) in Sec. 2 , then the conservation laws can

be greatly simplified. The resulting cuantities can be given their usual

physical interpretation (e.g. %U is monmentum) if 2(X,E) is interpreted as

the wavefunction of a system of two quarks bound together by the covariant

harmonic oscillator potential of Eq. (IL.4). aé—)(gj aé+)(§) is the density

. -
(in momentum space) of two quark systems with momentum P, quantum numbers k

and mass m ; ¢, (P,£) is the probability amplitude that the two quarks of




this system are separated in space-time by £. The momentum ﬁu carried

by the field 2(X,£), i.e. carried by a two quark system, is conserved,
so the systems move as free particles. Henceforth we call these systems
mesons.

The purely formal aspects of the above analysis generalize to any
lagrangian of two coordinates L(X,£). For example, if L(X,E) has a
translation symmetry then Noether's theorem in the form of Eqs. ( 3 .7) -

( 3.11) implies a "momentum conservation" law like Eq. ( 3 .11). But

for a general L(X,£) this "conservation' law by itself is physically
meaningless. To make even the formal step from Eq. ( 3 .11) to Eq. ( 3 .15)
requires enough detailed knowledge of the wavefunctions ¢k(P), i.e. of

the solutions to the equation of motion in &, to eliminate the surface i
integral sg, Eq. ( 3 .15) contains four quantities, each dependent on

three times. It is not clear that any of those quantities, or any com-

bination of them, is physically interpretable as momentum. The first

quantity that is a physical momentum is ?u, Eq. (3 .17). ﬁu is an

average over all the relative motion of the two quarks, which is what we
intuitively expect the momentum of the two quark system as a whole to be.

So a necessary condition for a physically meaningful momentum conservation
law is 5u(+m;x2,xg) = pl=sx %)) .

Wavefunctions that have the properties that allow us to deduce physical
conservation laws we shall call physically " good " relativistic bound state
wavefunctions. In contrast, "bad' bound state wavefunctions are those
that diverge at IE‘ + «© (the system is really unbound), or do not vanish

fast enough as |E| - o to eliminate surface terms like SE (the system leaks

momentum out through the surface at \El -+ o), To have a manifestly covariant

formalism #(X,&) and ¢k(P) must depend on the relative time EO; then "bad"
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4., Second Quantization and the Free Meson Field

In Sec. 3 we discussed a new type of field theory. The lagrangian

LO(X,E) of this theory depends on two space-time positions, and the classical
field ®(X,E) is interpreted as the first—-quantized wavefunction of a freely

moving meson that is really a system of two scalar quarks bound together by

a relativistic harmonic oscillator potential. &(X,%&) covariantly describes an

infinite spectrum of meson excited states. There is no upper bound to the

mass of the excited states, so the quarks are permanently bound. This should
be compared with ordinary local field theory, where the lagrangian L(x)
depends on only one space-time position and the classical field ¢(x) is
interpreted as the first—-quantized wavefunction of a structureless point

particle, either moving freely or under the influence of some other fields

or external potentials.

There are two ways to second quantize an ordinary local field ¢(x).

One way is to find a local lagrangian L(x) for ¥(x), then define the con~

jugate field 1(x) by

ol(x)

NED

i

and impose the canonical commutation relation[34]

I(x) =

MG, eI, oy - -18(x - ¥) (4.1)

in addition to the Euler-Lagrange equation of motion for #(x). The other

way is to find the hamiltonian H for ¢(x) and impose the Heisenberg (canonical)
equation of motion[33]

3% (x)

i
on

= f[e(x), H] . (4.2)

For a local theory with a lagrangian L, H can be defined by a Legendre

transformation
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H = Jd; [n(x)%gl - Lx)] .

0

(4 .3)

Then the two methods of field quantization are equivalent[35]. But(at least

for free fields) Eq. (4 .2) is conceptually much closer to the physics

that the field is describing than Eq. (4 .1). Also, the covariant

generalization of Eq. (4 .2) can be derived[33] from the general principle

of translation invariance,

T LICOP f’u]

where Pu is the generator of space-time translations.

(4.4)

We take Eq. (4 .4)

as the appropriate point to generalize second quantization from ®(x) to

o (X, &)

Consider the field @k(X,E) of Sec. 3. As a classical field, ®k(X,E)

describes a freely moving meson with quantum numbers k; the meson is really

a two quark system in harmonic oscillator state ¢k(P).

! n

meson by a” is a translation of both quarks by a
lation of X by a" while Eu is unchanged. If Qk(X,E)

iy
with associated tramslation operator U(a) = exp[-—lPu

(k)

A translation of the

, and therefore is a trans-

is made an operator,

au] then U(a) should

only translate X, not &. Then @k(x+a,€) = UT(a) ¢, (%,8) U(a),

which implies
i

99 (x,£)

r\,u
— = [(I)k.(x’g)’ P(k)] .
BXU

( 4.5)

Eq. (4 .5) is the two-coordinate generalization of the Heisenberg equation,

Eq. (4 .4)., It is a quantum equation of motion for the X coordinate.

There is no similar argument to derive a quantum equation of motion for

the § coordinate.

u

The operator ﬁ(k) should be constructed from @k(x,g) and its derivatives.

Since P%k) generates traunslations of the meson as a whole,

momentum of the meson, not of the individual quarks.

momentum operator is the kth term of Eq. (3 .31),

’\ju
be the
P(k) should e

The obvious candidate for
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d commute.
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1 expressio quantization procedures 1is
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on, Eq. ( 2.2),

The mathematicd
r~Lagrangeé equation of moti

as follows. o (X, £) satisfie
We decompose »(X,£) by Eqs.( 3 21)

ion, E4-

and the subsidiary condit
(3 .26) is the

CHO

(3 .26); the ¢k(P,g) in Eq.
wavefunction of Sec- 2 We define the operators
- - (+) ? 1‘(?) = a(—) (]'_)*)
ak(P) z 3, ®> ay K (4.7 |
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and impose the commutation relation

[2,®), a@1=3, s¢-0, ( 4.8)

setting all other commutators equal to zero. Now &(X,£) and each @k(X,E)
is a hermitean boson field.
Much of the formalism of free local fields is trivially extended to

®(X,E). We assume there is a unique vacuum state |0> such that
-5
ak(P)|0> = 0 for all k . 4 .9)

The Hilbert space that ®(X,£) operates in is the Fock space spanned by state

vectors

> > > + > + o> + 4
3 HE = cen .10
R O O R L LA YN b 30
with arbitrary k, &, ...,m. With P" defined in terms of ®(X,g) by Eq.

the momentum operator and space—time translation generator is

L fdp+ p‘ék) al‘:(’f) ak(_f) . (4 .11)

T _. pH.
Then ®&+A,E) = ol HAy (X, E) e 1Py , (4 .12)

and therefore ®(X,&) and each @kQ(,E) satisfies Eq. (4 .5).
#(X,E) can also be expressed in terms of the orbital basis wavefunctions
$,(P). We define

* ->
4 .1
U ak(P) (4 .13)

e

-5
aa(P)
where Uik is the unitary matrix of Eq. ( 4.25) and the sum runs over all k

with E(k) = E(a) fixed. From Eq. (4 .13) it follows that
> >
ak(P)¢k(P) = aa(P)¢a(P) ( 4.14)

where the sums run over all k, o with E(k) = E(a) fixed. We also

define



B \NM;;%;M“;h__ e e
>
b () = L J b X B 0 + TR Gl B D) (1S
N7/ 0 |k |
| * (217)3/2 (ZP(df '
22 (%

% . where P?a) =( ma2 + P ) > 0,

so that &(X,£) = ) @a(x,g) . (4 .16)

o

The Fock space is spanned by

+ T2 I 5
!g(ayu; F(B) Bsoois ?(Y),Y> = aa(P(ay aB(P(B))... aY(ﬁfY))|0> (4 .17)

with arbitrary o,B,...Yyand the momentum operator is

B =f ab P‘Ea)@ag(’ﬁ) a () . C(4.18)

For an arbitrary proper lorentz transfornation A, define the unitary operator

U(A) representing A by

(e, N0 1%
vy o @ vty = | —&— | . alae) qx DIOLDT L (4.19)
o 0 B Ba ’
e
where QaB is the (2L(a) + 1) = (2L(a) -+ 1) unitavy irreducible matrix

representation of SU(2) introduced in Eq. ( 2.26) and the sum runs over all

B with E(B) = E(a) and L() = L(c). Then the S.ingle meson states |F, o>

Z belong to a unitary representation of the Poincaré groupl[30] with mase m
and spin L(a) (the energy factor in Eq. 4.19) is needed to make U(A) unitary
consistent with (4 .8)}. Since N(a) is l:nearly dependent on L{a) [29] the mass-—
squared spectrum is linearly dependent on the spin. @(X,§) is the free field
for the infinity of mesons with all poss:ble quantum numbers o. By combining

Eqs. (2..26), (4 .15) and (2 .19) we can easily show that

VA (X,E) U (M) = o(AX, AE) ' (4 .20)

for any proper lorentz transformation A.
Eqs. (4 .12) and (4 .20) define ths action of continuous Poincaré trans-
formations on ¢(x,£). Tor completencss ye now discuss the discrete trans-—

formations parity and time reversal. Tor a free field the discrete trans-
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Parity and time reversal jpvariant the

ory. In the 1agrangian formulation this
a separate free jagrangian (with the same form
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of o(X,8).
The parity operator is denoted py P, the time reversal operator by
d K compleX conjugates all c—numbers. With

T = UR where U is gnitary 2p

the proper choice of phaseé for P»

>
= l"P’ o>

-
ple, @
(4.21)

1=+a(—P) )
- o

insic parit

th quantum numbers

and therefore © aa(g) P
y of the mesol wi

be adjusted

* Since ®(X,8) is hermltian, the ph
P 1 _ _
ga (@ U 7 + aa( P) ( 4.22)
functions can be transformed by
Let P, T operate OO @a(X,i) The wave
Eq. ( 2.32) and (2 43) with the cesult that
-1 N g (PX, PE) .
po (LOF + (-1 % (4.23)
—l — —'PX, "PE) . (l]..24
and T¢G(X,€)T =+ @a ( )
For example, we can give all the pesons positive intrinsic parity,
’ . ~1 _ —.')'
P aa(P)P = aa( P)
i. |
e -1 - ("l)N(a)q}a(‘PX’ PE) N ( 4-25)




[ With this assignment of parities, ®(X,&) is neither even or odd under a

transformation by P. Or we can make the intrinsic parity equal to the

parity of the wavefunction ¢a(p,g),viz (—l)N(u) so that

o

Pa (P IR L COR ot

and

P@a(x,g)P'l o (PX, PE). ¢ 4.26)

This is especially attractive mathematically, because Eq. (4 .26) gives

®(X,&) a definite parity:

Po(x,e)P L = o(PX, PE) . (4 .27) .

Of course, other parity assignments besides Eq.(4 .25) or Eq.(4 .26) are 0
possible. We may define U so that &(X,£)is even under transformation by PT. 3
The fundamental relations of a quantum theory are the commutation

the basic

relations. For a one-coordinate local free scalar field ®(x), =

commutator is

[6(x), 0(y)] = iA(x - y; m) (4 .28)
where A(x-y ;m) = i f QE_; 6(p2 - m2) e(pO)eq).(x—y)
(2m)3
For the two-coordinate free field Qk(x,g), the corresponding commutator is
5 V1 = ([ & 4 ’
(o, &,8), o, (¥,m] = §, f BN 3, (25£) 9, (A1)
(2m) (AP(k)Q(d
[FQYPE) gy o FOEUD 5@ ]
( 4.29)

= 18, DY, E,n;om)

where D(X—-Y,» E,n; mk) = i ){ 3 6(P2-mk2)€(P0)eiP.(X‘Y) (j)k(P,E)d)k(Psn)_
(2mw) (no sum over k) (4 .30)
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The local field commutator has the property of microcausality, that is it
vanishes for x ~ y. The two-coordinate field commutator does not share
this property;
D(X-Y, &,n; mk) # 0 for arbitrary &,n with X ~ Y. ( 4.31)

Only special values of &,n make D vanish with X ~ Y; for example é)=#) =0
and Xp = YO makes D vanish,

The mathematical reason for this "acausal" behavior of D is that D contains
the oscillator wavefunctions, making the integrand of Eq. ( 4.30) contain
an even function of P’0 (for XP=YO); compare this with the A function,
with an integrand odd in PO (XO=Y0). The physical reason for the commutator
in Eq. (4 .29) to be "acausal" (in the external coordinate) is that the two
quarks inside the meson are in relative but bound state motion, i.e. the
wavefunction ¢k(P,£) is a standing wave in E-space. The amplitudes of the
standing wave for different quark separations & are correlated through
the relative equation of motion, Eq. (2 .4). If mesons really have
a stable space-time extended structure, then it is plausible that whatever
mathematical object represents the extended particle (in this theory it is
the wavefunction) will show some "acausal" correlations between space-like
separated points. In this regard, notice that if the commutator in Eq. (4 .29)
is integrated over all values of (&,n), i.e. if it is averaged over all the
relative quark motion, then it vanishes for X ~ Y.

Microcausality plays an important role in the theory of interacting
one~coordinate local fields. Microcausality makes dynamical quantities
built from the fields, for example the hamiltonian density, commute between
space-like separated points. An application of this is the proof that the
Tomonaga-Schwinger equation is integrable[37].Microcausality is equivalent

to the covariance of the T-product,

Tiox) o(N)] = (x>~ o) o(v) + 0 ¥%xO) () a(x) . G .32)

PR



o the construction of the S-matrix

rm is crucial t

M-
icrocausality in this fo
1 (in the external

ation geries: The ngcausality

b ) .
¥ a covariant perturb
has the gerious con-

he #(X,&) commut
ing Taproduct

atOr, Eq’ (4 !29)_,

coordinate) of t

sequence that the correspond
1o, G e 0, D ot )0y (1,

L E) 9, (] = p (X ~¥ ) Ot LMy LD (433
t integrated over all values of (&,n)

is .
not covariant (howeveI: the T-produc

To understand

is 1
indeed covariant)-
¢ two-quark system

a relativisti

) describes
d the free—particl

The field ¢(X,%
he system W€ have separateé e motion of the

the physics of t

o external coordinate frame, from the
1

i

|

l

!

pect to som

with res
namical motion of ome

System as a whole,
the systems which 18 the dy
(P > g) . This :

Wt |

in
ternal structure of
y the wavefunction b1

described b
ically by introd

p describe free

Quark with respect
ucing external and

s .
eparation has been carried out mathemat
particles

internal .
variables.
sufficiently separated from
i

and (%,P) are

ystems),
multiparticle fo

(really the two-quark S
£ for us to construct 2 gecond quantized malism in the |
(X,P) variables. The 1ack of microcausality in Eq. (4 .29) means hat ,

inematics they are not really the variables !

although (X,P) have free PaftiCle k
of a free quantum field. This iS just 2 mathematical problem —— (X,P) are not
e guitable variables of a free quantum field,
nal

Separated from &
jrion of @ with petterl separation of exter

So
we need a nevw decompos

freedom:
(p) is extended to

2 4 mkz, as

and 1
d internal degrees of
nction ¢k

Suppose the definition of the wavefu
momentad of f the mass shell, P

arbitrary timelike momenta P i.e. tO
well as on the mass shell For NOW» make Ed- (2..18) the only condition on
(but time—like). Then W€ can write

¢, () with P arbitrary

Pt 2N




S

> .
dp ip.X _f -ip- X N
Qk(X,E) = l~—§ f — daq e ak(P) + e k(P)]
(2m) (2Fy)
2
-¢k(Q,E) s(p-Q)6(Q ) . G .36
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covariant probability interpretation.
We can emphasize the similarities and differences of this
interaction with the usual trilinear local QFT if we rewrite M once
more:
g(2w)46(P +P _+P
172

(2w)9/2/spipapg

_ )
Miem) F12F20F3) = 3

Vk%m (Pl’ P2, P3) (5.6)

I

where V. %_Lgf dEdng, (B,E)4,(Py,0) 6 (Py,-g-nyet (F2-E7F1oM)

o1 N _ |
) 16(2w>‘*J 49 62p) 6y Fpr a2l By G:i7)

V is the bare vertex function; Eq. (5.6) expresses M as V multiplied
by the kinematic factors appropriate to a diagram with three
external lines. The transformation rule for wavefunctions, Eq.

( 2.26), gives V the correct transformation rule for a three particle

vertex function:
Vogy (AP12AP2sAP5) = Qo [M(A,P,)]Qq [M(A,P))]Q  DM(A,Pq)]

. 5
chv(Pl’ L P3). (58)

This is what we expect from an ordinary theory with trilinear coupling
between the fields of mesons k,%,m. But since V is a probability
overlap integral, the strength of the vertex depends on the space-
time extended structure and internal quark motion of mesons k,%,m.

If the meson momenta are put off the mass shell the vertex strength

is momentum dependent as well. So V is similar in its function

but radically different in its structure from the bare vertex of

ordinary field theories.

bl



Our goal 1is an interacting field theo?y whose lowest order
amplitudes are similar in structure ﬁo the Kim-Noz amplitudes M(klm)’
But before we can put the Kim-Noz interaction into our theory we
need a formalism more general than free field theory. We will use
the simplesf generalization--we replace the free local field @k(X) by
an interacting field QQ(X). We take the interacting two-coordinate
meson field to be

o) (X,8) = jdi o) (X) £, (XX, ©), o (5.9)
o' (X,8) = E <I’I'Q(X,E,)-

'We are familiar with the functions f from Sec. 4, In order to

k
give a probability interpretation to the CHO wavefunction
in £, , we must exclude time coordinate excitaticns, so we impose on

k

' the subsidiary condition

H w '
+ 5 9 = 0. 5.
Dy (dg, + 3 E) 2T(KE) =0 - 6.0

Compare this with Eq. ( 2.23). . ‘ ;

We have given the interacting meson the same internal structure
as the free meson, siﬁcg both are described by the same wavefunction
¢k(P,€) which satisfies Eqs.(2 .4) and (2 .22). The physical
significance of this is that excitations of the internal time
coordinate do not enter the wavefunction during the interaction.
Previous investigations have shown ¢k to give a good explanation of hadron
spectroscopy[8,21,38]. The physics of ¢k is well understood, but
we do not know what physics, if any, the time excitations correspond
to. So we have eliminated them from the interactionvby imposing

the subsidlary condition Eq.(5.10).




Equation (5.9) is the most general representation of the
interacting field consistent with the three quantization principles
discussed above, because the functions eiP'X ¢k(P,£) for arbitrary
P (including P off the free meson mass shell) and k form a complete

set. The only restriction our quantization principles put on

' is the subsidiary condition. @é(X,E) can be expanded in the

hermite basis as

o) (X,8) = J dp [e’iP‘x al (B) + P X ai{*(?)]%(P,g)e(Pz). G .11)

With , .
' 2! (X) J dp [e_lP'x al (@) + eif¥ a{j(?)] (5.12)

we always can represent @L(X,E)naccording to Eq. (5.9). Of course,
we can repeat this analysis with the Kermite basis function ¢k re-
placed by the orbital basis functions ¢a and the fields @& replaced
by ¢&. We assume that under a change of coordinate frame @L(X)
transforms such that

L 8! (X, E)
L(a)fixed

is a Lorentz scalar.

We are still free to specify the dynamics of_@Q(X). Motivated
by the model calculation of Kim and Noz[22] we want the second
quantized fields to interact with trilinear couplings while the
interaction vertex is determined by the oveflap of wavefunctions.

Specifically, we choose the interaction lagrangian density as

I ' VYo (YYDt (V) T
L, %v,2) = 2[¢k(X)@£(Y)¢m(Z) + ¢m(2)¢2(Y)¢k(k)]Fkgm(X,Y,Z) (5.13)

(summation convention assumed from now on), where the function

»




= XdYdz X, Z~Y Y,X-7 -Z,Y-X 5.14)
Fklm(X’Y’z) = J dXdeka(X-X,Z—Y) EQ(Y-Y,X Z) fm(Z Z,Y-X) (
Fklm is real and has the following symmetry properties:

- (5.15)
Fon(X + A, Y +A4, Z+A) = Fp, (X,Y,2)

and

R, @yz = YONOR® e ek  (39

The total action J is

«

J = J dxdg Lg(e',a%e") + % J dxdvdz L, (e") .

Variation of J gives the Euler-Lagrange equation of motion:

2
Oy + 0, -+ g2+ mpD)e' (%,8) = 5 J dYe' (Y,X-Y-£) &' (Y+£,Y-X)

+ hermitean conjugate. (5.17)
We define the full hamiltonian H as

oL 3. (X, E)

H = J dXdtf ——F7——~
a(ax%) X0

- & L, (Y,X,2) + L (Y,Z2,X)] (5.18)
18 J dxdydz [Ll(X,Y,Z) + .Ll( s X,2) 1¢ )

= He) + H ) .

Then the time development of ¢L(X) is given by the Helsenberg equation

of motion,

99, (X)
k — \J 7 (5.19)
i 5%, = [¢k(k), H] . '

This defines our theory. H, is hermitean and trilinear in the fields,
but aue to the symmetry of Fkkm there is no coupling between

fields @L, @i, QA when N(k) + N(R) + N(m) = odd integer. The

theory is clearly invariant under translations and proper Lorentz
transformations. It is also space- and time-reversal invariant for

‘a wide variety of choices for the intrinsic parity of each ¢L; for

example, Eqs. (4..25) and (4 .26) are both acceptable.



Before going further we must point out some problems with

the interacting field formalism we have outlined above. In an

ordinary local field theory the canonical commutation relations (CCR' 5)

imply the equivalence of the Heisenberg and Euler-Lagrange

equations of motion[35].But there are mo CCR's for our field
theory, and even if there were w2 could not prove the equivalence
To prove these equations are compatible

of Eqs. (5.17) and (5.19).
we need a complete solution to the dynamics,because Hl contains
fields at different times. Also, Wwe cannot prove that the
subsidiary condition is consistent with either equation of
motion. But similar deep questicns about local QFT are also un-
answered. We assume that our method of quantizing an interacting
theory, which is physically reascnable, is also mathematically

consistent. In any case, we do not use the Euler-Lagrange equa-

tions any further.
The usual assumptions of QFT can be generalized to the infinite

collection of fields @é(X). We assume there is a single unique

We assume every ¢é has a

vacuum state, good for all the fields.

single meson state with mass my . We assume the usual asymptotic condi-

tion[34] holds for every @é(X). Then free mesons are asymptotic
"in" and "out" states of @ﬁ(X). Ve assume the "in" and "out" states

of all k are complete sets. With the reduction formalism any S-

matrix element is related to a vacuum expectation value of a product

of Heisenberg fields.

To develop a perturbation series for the S matrix it is customary

to transform the fields to the in-eraction picture[34], which we proceed



the U matrix as

to do. We define
. i -1 +
w(E,0) = elHOt o ift : U(tl,tz) = U(tl,O)U (tZ’O)' 6 .20)
We assume that any HeisenbeTl® operator A'(t, x) puilt from the
fields can be related tO the correspondlng free operator A(t, x)
by
> + *) ue, 0) .
A'(e,x) = U (t,0) A& ¥ ’ ’ G .21)
. <17 5. iy E
where A(E,X) = it ' (0 xe 0 G .22)
The U matri¥ solves theé equation
-1 t—_
5 du(e,0). = [ ifht B, © % J U(t,0) > G .23)
dt
subject tO the jnitial COﬂdlthﬂ v(0,0) = 1. The S matrix is
U (2,=%) .
s = o) 107 (5.24)
Clearly it is gnitary pecause HC’ Hy are hermitean.
The 1nteract10n picture simpllfles ordinary QFT because
i f nctlonal of free fields. The
1f we use Ed G .18)

e1H0t Hl o

Sltuatlon is mor

to evaluate Hl at
0 p 0 0
Y )Qz(Y) Uy ,2 )®m(Z)U(z ,t)

J & @k(t,’i)u(t,

e

'> 3
.szm((t,X), y, 2) +3 gimilar terms. (5.25)
the unknown operator U

but
The fields 1

ie al . ) is really 2@ ponlineart integrodifferential
s also present:

equation for U.




5. 5 MATRIX TN PERTURBATION THEORY

te S matrix elements by a power series
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QFT we do this by iteratively

Oour goal i
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g constant B¢

e a Voltert
n of our theory

in the couplin
Eq. (5.23) seems

(5.23),'1ik

o(g) jteratio

a integral equation.

solving Eq.
requires U(t,0) for all

to imply that the
rurbation theory based on

11y was the case then a per

t. If this read
jon picture would not be practical. But there are two

the interact
r this conclusion-

e integral of Eq. (5.25)

of the contribution to th
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comes from th
ivial factors)

To see Whys
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iminates emabrrassing

gecond,
v QFT; it el

ordering i8 erivial in ordinal
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interpretable,




from perturbation theory[34].Since our Hy contains interacting
fields at different times we do mot kaow what prescription to use
for normal ordering. But at the level of Eq. (5.25) we should
use some prescription; if we do not, then a perturbation series
will include tadpoles (probably divergent). Any normal ordering
will be symmetric (thus obviating the need to explicitly symmetrize
in Eqs. (5.13) and (5.18)) and therefore the ordering of 2y @g, ¢m
in Eq. (5.25) should not be Vvery important. .

These features of the theory suggest that we can approximate
eilpt Hle_:mot by eliminating the U natrix in Eq.(5.25) and then

normal ordering the free fields, i.e. setting

14

se® = vt = v =1 (6.2)

and

iH t -ig t . & T aer 17 . > I . >
e 0 Hle 0 = A J dXdXdZ.¢k(t,X)®2\Y)9m(Z).Yklm(tx,y,&).‘( 6.3)
We can solve the U matrix equation iteratively in this

¢ F as a hamiltonian density

approximation by regarding :Qkéﬂ m kim

depending on one time variable (igroring time differences among the
fields). The resulting U matrix is the sum of time ordered prodﬁcts

of such densities integrated over all variables. Because WG have
normal ordered the fields in the density, We tentatively extend the time
ordering of n densitiles to the time ordering of Bﬁ fields (because
previous normal ordering Temoves all significance from time

ordering among fields in the same density). Then we (tentatively)

calculate the U matrix as

N .
0 -~ == . £ _j_.g’_ -—l— Y/ r e .
U(2y-=) =1 4n£1 tﬁ } =7 [ dXy...d2) I ET DL INCEPLINCA DAREE

--.:(I) 4 ) e B 4 A L
k(xn)mﬁ(Yn)qm(zn).]rabc (Xy» Yq Zl>"'1kam(xn’Yn"n) L)




ds after normal ordering,

T denotes time ordering of the free fiel

i.e. the fields in [ ] above are split into positive and négative

frequency parts, normal ordered in each triplet of fields, and then
eft of all operators

reordered so that every operator stands to the 1

in other triplets that have an earlier time variable.

4

Our fundamental approximation is to neglect time differences

petween fields in H; for the purpose of iterating the U matrix

equation. Our motivation is physical, and with this approximation

we have made a great simplification in the U matrix without much

attention to mathematical rigor. But our method is not as drastic

as it may seem. Eq.-(6 .4) preserves the Lorentz covariance of the

theory, because the time ordering of free local fields and the overlap‘

functions szm are covariant. We will verify this in the S matrix

elements below. In Section 77 we will establish the unitarity of

our approximation, provided that we consistently apply this approxi-

matlon in the time ordering prescription’ of Eq (6 .4);
Our immediate task is to reduce Eq (6.4) to diagramatic

rules of calculation. We denote the time ordered contraction

of free local fields by

<0l (X)8, (110>

b=
~~
ke
-
L=
©
Y
)
~
"

k
ié iP. (X-Y)
= -0 e
8, b (X-Y; smy ) = Gy j P = — . (6.5)
P —HH{FlE
It follows from Wick's theorem that
. n l
o =00 = b —lg- — i M ) .
U(e,~) =1 +n£l [ 6) al J dxl...dzn.{¢a(xl)...qm(zn),
o (X )b (Y,)8 (28 (X o
+ a()\l) )b( 1) c l) d( 2) s (Z ) + e all allowed}
cont_ract1on<

’Fabd(xl'Yl’zl)' o XY 2y) (6 .6)

es not contain contractions between fields

The bracket { } above do



of the same triplet :¢k®2®m:'

Let us consider a single contraction summed over all quantum

pnumbers n on the. contracted field ®n(Z) and integrated over the

contracted variables:

, F . (4,B,0)
[ dz dA Fy p, (X,Y,2) Qn(z)éan) nrs * 07

P L

~ o~ o

= i[ d7dAdXdYdzdAdBdC f, (X-X, Z-Y) fz(Y—§, X~Z) £_(2-Z Y-X)

Ay (z—A;mn)fn(A-A, C-B) £ (B-B, A-C) £ (c-C, B-A)

-1 J d%dYd7dAdBACAZdAdPAQAQ" [£, £, £ £ 1P+ (2-8)
(_2“_)12 r s

;Q—mﬁ2+ie

1D g%y4 (a, T U 6 Do (@, EB)]

(after using Eq. (4 .36)).

When we carry out the Z, A integrations we get momentum delta

(6 .7)

functions, which allows us to carry out the P, Q' integrations;

Eq.(6.7) becomes
$,(Q,Y-X)¢_(Q,C-B)e

iQ(Z-A)

i J dRda¥aZdkdBdC £, £ £ £ J dq

(2704 2°r’s 2 2

-m  + i
Q N ie

The contraction of any two fields in Eq. (6 .4) produces the factor

in brackets [ ] above. Some properties of this factor are

discussed in Appendix B.

In Eq. ( 6.7) we only integrate over the contracted variables

7,A. Variables X,Y,B,C are nicely separated, each in its own fk

function in Eq. ( 6.8). 1If the fields oqs Oy 2., 9, are also

contracted away (possibly with some other fields not present in

-53-
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Eq. ( 6.7))then their contractions (after integration) will give another
factor like [ ] in Eq. (6 .8), with the appropriate variables in
the oscillator wavefunctions.

When we calculate a matrix element of U(»,-») between free meson
states, the uncontracted fields annihilate the mesons. By writing

the Fa c functions as the overlap integral of three f functions and

b
integrating over the dummy variables of the normal ordered (uncon-—

tracted) fields it follows that every state IP,a> is annihilated by

-iP.X
@5P, £)e .

2
2

a & (X,8) field, leaving a factor of ——2375————
a (2m) QPO)

Now we see the structure of the matrix elements of any O(gn) term
in the Wick expansion of U(w,-»), Eq. (6 .6). After contracting

fields and annihilating all initial and final particles we are left

with 3n oscillator wavefunctions. Each wavefunction carries a momentum

variable (possibly a dummy momentum to be integrated over, as in

Eq. ( 6.8))and spacetime variables. The spacetime variables are
the tilded variables of Eq. (5.14); they are grouped into triplets
by the szm functions. All these variables are integrated over, but
the integration for each triplet may be done separately. The result

of one integration is

[ dxdydz e T(F-¥HQ-Y4R-Z)

8, (B,2-V)¢, (Q,%-2)$_ (R,Y-2)
= 4
- (277) 6(P+Q+R) Vabc (P9Q’R)) ( 6 '9)

the bare vertex function. Some or all the momenta in Vabc may be
virtual momenta that come from contractions, as in Eq. ( 6.8); the

virtual momenta and their Feynman denominators must be integrated

over.
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If we use the orbital basis of wavefunctions.instead of the
Hermite basis,‘we must use a different vertex function because the
wavefunction associated with the positive frequency part of the
field is ¢a(P), while the negative frequency part of the field has
¢§(P). In the orbital basis we denote momenta 1eaving‘a vertex by
a superscript, momenta entering a vertex by a subscript. For example,

vaﬁy(_P,Q,R)means the overlap integral of states (Q,B) and (R,v)

entering and (P,a) leaving the vertex, Figure 5:

. *
Vaey(—P’Q’R) =_l_éj dedn o (QERM) ¢ (P,€)¢B(Q‘,n)¢Y(R,-E—n) (6.10)

Now we can write graphical rules for the nth order S matrix element

- in our approximation, Eq.(6 .4). Draw all-connected graphs with n

vertices and the appropriate number of external lines. With each

line and vertex is associated a factor in momentum space, Figure 6.




dQ
(2m)™

We integrate J over all virtual momenta, and sum over all

possible quantum numbers carried by internal lines. Note that the
factor Eﬁ;ﬁfiin Eq. (6 .4) drops out because each graph corresponds
to 6% n! terms in Eq. (6 .6) that differ only by a reordering of the
triplets (Xl,Yl,Zl)... (Xn,Yn,Zn) or a reordering among variables
inside each triplet.

With the normalization adopted in Sec. 4 , the S matrix element

<8> 1is related to the differential scattering cross section do

for two initial mesons as follows:
<S> =1 -i(21r)4 §(total momentum) <T>

emi0 2 .
do = i:f—gf— s8(total momentum)[<T>| d(final momenta), (6 .11)
\Y4

17V,
where ]?l-?z is the relative speed of the initial particles and

1
v,!
3 J

with vj particles of type j. The rate dT for a single meson to decay

is the statistical factor for an initial or final state

is

dr = (2w)7s §(total momentum) I<T>|2 d(final momenta) . (6.12)

The Lorentz covariance of the S matrix can be verified explicitly.
The graphical rules give us —i(Zﬁ)AG(total momentum) <T>. If we
Lorentz transform the initial and final mesons and then calculate
<T> we must put in kinematic factors and a rotation matrix QQB[M]
for each external meson (see Eq. ( 4.19)). All other factors in
momentum space are Lorentz scalars, because for any Lorentz

transormation A,
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* %
§‘¢Q(P,E) ¢Q(P,n) = 5 ¢d(AP, A€)¢G(AP, An), (6 .13)
where the sum runs over o with N(a), L(a) fixed. It follows that

<AP_,05.. .APB,BlS[APu,u; R

P°...PSP°...P°
o

= B n v ann [M(A,Pa)]"'QEB.[M(A,PB)]Quuy[M(A,PU)
AP°. . .AP2AP®, ., . AP°
o By v

\] ] 1
seeQ o [M(ALP ) I<P Y05 .PB"B'ISIPu',u; . AR (6 .14)

and therefore

uCh) sty = s . (6 .15)

Note that if l<T>I2 is summed over initial and final spins, we get
a Lorentz scalar function of external momenta multipled by the
phase space factors E%Eu‘ Of course, this Lorentz covariance is
achieved only because we use Lorentz covariant wavefunctions.

To gain further insight into our theory, let us consider the
second order graphs for two initial and final mesons. These are
the annihilation graph, Figure 7, and the exchange graphs, Figure g.

~ig26(P, \+P, -
ige6( ) P P

ORIORIOY

2 o L] o =]
R O N 2

Py Py, VISIP oy 2R gy 0> -

(6 .16)
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The first term in the bracket { } is the annihilation contribution;
the second and third terms are exchange contributions.

Every expression in Eq. ( 6.16) has a simple physical
. . . ey . o
interpretation. For example, in the annihilation term ch (P(A)’P(o)’
—P(u)—P(v)) is the probability amplitude that the incoming mesons

lP(A)’A> and ‘P(C)’G> form the virtual meson with momentum P(u)+P(v)
and quantum numbers o. This virtual meson is a virtual bound state
of two quarks described by the wavefunction ¢u(P(u)+P(v))' Although
this virtual meson is off the mass shell, in its rest frame it
has the same internal structure (wavefunction) as a physical meson
with the same quantum numbers. The Feynman denominator propagates
the virtual meson to the next vertex. V&uv is the probability
amplitude that the virtual state becomes the outgoing mesons
]P(u),ﬁ> and lP(y)’v>'

We interpret the second and third terms in { } as the exchange
of a virtual meson between the vertices. The theta functions on
the exchange terms arise because virtual bound states with spacelike
momentum do not exist in our theory. We excluded such states
because if we extend the internal wavefunction ¢a(Q) off mass
shell to spacelike Q we do not know how to give this wavefunction
a covariant probability interpretation (or, in fact, any reasonable
physical interpretation). Since the wavefunctions and vertex
functions are only defined for timelike momenta, we could drop
the theta functions from our formulae; we keep them only to remind
us of this new feature in our theory. Since our graphs have no

spacelike lines, for elastic scattering with A=p and o=v the graph
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in Fig. 8a does not contribute, and the graph in Fig. g8b contributes
only when A#0 and only in a limited phase space.

We close this Section with “wo remarks about the relation between
our theory of extended mesons and ordinary local QFT, First,
at the level of practical S matrix calculation our field theory has
many formal similarities with the standard field theory. 1In fact, if
we replace the internal wavefunction ¢k(P,£) by 8(£) then we recover
ordinary :¢3: (Hurst-Thirring) QFT in Eq. (5.18) or Eq. ( 6.4) (after
we replace the triple integral for szm by a double integral, so as
not to integrate ®(x) over all x twice). So our theory is more general
QFT since in this sense it includes the usual

than the regular

theory as a special case. Second, if we reduce the size of the bound
state we do not approach ordinary local QFT in the limit that meson
size +~ zero; our field theory always exhibits some aspect of the
composite nature of the meson. For example, if w - = the bound state
shrinks to a point, but the bare vertex function VkEm does not
approach a constant because the bound state wavefunction is defined
for timelike momentum only and also the Lorentz contraction effect
between wavefunctions (Fig. 1) is w independent[39].The ordinary field
theory is a special case but not a limiting case of our theory. Our

field theory shows a fundamental difference between the dynamics of

bound states (regardless of size) and of elementary point particles.
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7. UNLITARITY

The exact S matrix, Eq.(5.24), is unitary because HO and

H, are hermitean hamiltonians. But we do not know how to solve

1

the exact theory, even perturbatively, because(unlike ordinary

QFT)we have a nonlinear intergrodifferential equation for th

e

U matrix, Egs.(5.23) and (5.25). Using our physical insight we

have replaced the exact U matrix equation with the approximate

Eq.( 6.3) and we have calculated U approximately by

Eq. (6..4), We will soon see that naive application of Eq.

(6.4)

seems to violate unitarity. This apparent nonunitarity arises

because Eq.( 6.4) is not cowmpletely consistent with the physical

principle of our approximation. When we fully implement the

physical approximation we will find the S matrix is indeed

a

unitary.

We begin the analysis of unitarity with some general for-

malism, For any theory we assume S can be expanded in powers

of the coupling constant g:
2 g

S =n£0 oy [ dxl...dxn b(xl,...,xn) ,

where § = 1 and Sn is a symmetric operator function of its
, 3
arguments. In the Hurst-Thirring :¢~: local QFT
noneeg3 I .
Sn(xl,...,hn) =1 T(:¢ (xl).....¢> (xn).) .

In our extended meson theory, xi represents the triplet

(7 .1)

( 7.2




(Xi’ Yi’ Zi) and
_ (iyn .53 . . 33 .
S Gryy vers %) = @0 T GO0 s G 0)

F(Xl) « o F(Xn)’ ( 7 03)

where :@3(}{1); means :@a(Xi)@b(Yi)tbc(Zi):, F(xi) means Fabc(xi’Yi’zi)

and Eq. ( 7 .3) includes implicitly a sum over the subscripts a,b,c,

etc. TIn this notation the unitarity of S is expressed as

LI )
8§ =1= I Eﬁ?f:ETT f dxl . dxn Sm(xl, . Xm)

m, n=0

+ )
. veey X ) 7 .
Sn_m (X Il’ » ['1) ( 4)

The O(gn) term for n > 0 must vanisH33]:

5 1 : e
x TN IXm .« dxn Sm(Xl, veay Xm)
mn = o M @m:

.t. _
Snm (x 17 the Xn) = 0.

C 7.5)

To symmetrize the integrand, we introduce the symbol

1
P (r_f)

1
R n. 3 -
which represents the sum OVer the i o—m) 1 vays of dividing the set

of points {x ..., X_} into two subsets of m and n-m points. Then we
n

l’
we can rewrite Eq. ( 7 . 5) in the symmetric form

n_ o + _
fmg P(H>Sm(xl’ veny xm) Sn_m (anl-l’ cea, xn) = 0. ( 7.6)

In ordinary QFT we can set the symmetric integrand equal to zero




S (k)5 wees X)) H s:(xl, ey X ) 4
(7 .2
n~1 n ]
I P (= ' =
(n) Sm(xl, s ey Xm) Sn_m<x l; * 0y Xn)"Oq

m=1
At the nth order of perturbation theory the unitarity condition is

L}

that Eqs. ( 7 .7) or ( 7 .6) are satisfied.
It is easy to relate Eq. ( 7 .7) to the standard analysis of

unitarity which relies on physical intermediate states. When we

apply Wick's theorem to the fields in SmSZ-m we pick up some normal

(not time ordered) contractions. For example, the normal con-

traction of a hermitean scalar field ¢ (x) is

$(x)9(y) = <0|9(x)¢(y)]0> = A, (x=y;3m), (7 .8)
—-d
where A, (x-y;m) = [ _dp _ d(pz—mz)e(po)e—ip'(X—Y) <7 .9
+ , (2103

The structure of A+ makes it clear why these contractions correspond

to converting some internal lines in a Feynman diagram into on mass

shell, positive energy (i.e. physical) intermediate states.

Next, we compare the unitarity properties of Hurst-Thirring

QFT with our field theory by applying Eq. (7 .7) to Egs. (7 .2),

(7 .3). We begin with the simplest case, the second order tree
diagram of Figure 9. For :¢3: theory the unitarity condition is

2 { 1
(D7 oo x)brp)dGip)s | 6 0x)é(rp) =0 Gxp) b (xy)
[ S|

(7 .10)
t hermitean conjugate = 0
|
Since ¢(x))9(x,) = e(xf—xg)ifc}.)j(xz) 00y = %6 xD)o(x)) (7 .11)
e
(7 .12)

and 1A(x-y;m) = ¢(x)o(y) - $(y)o(x) ,
| S beeeJ

the ‘unitarity condition for the second order tree is




2
(1)7 :9dd¢: B(xg - xg) iA(xz—xl;m) + hermitean conjugate = 0. (7 .12)

Eq. ( 7 .12) is satisfied trivially because the A function is pure real.
For our extended meson theory the unitarity condition is formally

identical,

2 N S VN )
O R IC R EICILIC LI [uxl)@(xz)—wxlw(xz):] FGeIPGy)  ( 7.13)

+ hermitean conjugate = 0

where we are using an abbreviated notation (indicated by " ") in

, { !
which @(xi) means <I>a(Xi or Yi or Zi), ®(xi)®(xj) means

%gxi or Yi or Zi)ééxj or Yj or Zj)’ a sum over permutations of the variables

is implied, and each variable occurs once and only once in each operator
—

(e.g. :¢a(xl)¢b(Yl)¢k(Xz)¢l(Y2):QC(Xl)QC(ZZ) is not allowed). Eq. ( 7.13)

is satisfied because Fa and A are pure real functions.

bec

Therefore, the second order trce diagram of our theory, Figures 7
and 8, is unitary.

This reasoning may be extended to the nth order tree
diagram. It is not hard to show that in’our theory a tree diagram of
any order satisfies the corresponding unitarity condition.

Problems with unitarity occur in loop diagramg. To illustraté
the problem, we consider-the second order loop Figure 10. In Hurst-
Thirring QFT this diagram is logarithmically divergent, but this will
not affect our result, while using a higher order kconvergent) loop

wouldvneedlessly complicate our discussion. The unitarity condition

is

(i)2 o (%) (x,) [:¢( D)) 0 (x, ) (%)= (x )b (%) d(x )b (x,)
to(x X))t x x X X)) = (x x X x
1 2 1 2 1 2 1 | 2 { l_l 2
+ hermitean conjugate = 0. (7 .14)



The bracket { ] above is equal to

9(xélx£B{?(XZ)?(xl)?(XZ??(Xl)-¢(xl)¢(x2)¢(xl)¢(x2)}. (7 .15)

%
Since ¢(x)¢(y) = ¢(y)¢(x), the bracket { } above is pure imaginary,
fon | S—
and therefore Eq. ( 7 .14) is satisfied.
In our theory, the unitarity condition for the second order loop
is

2 "0k, )0(x) : [é( )@ (x,) ()0 (3,) = (x, ) @ (%)) B () 0 )]"F i
(1" %) (xy): %) 2(29) 0 (x,)0(x, ' Xy ' Xy 3 xq ; X, (Xl) (Xz)

+ hermitean conjugate = 0. (7 .16)

The abbreviated notation here stands for a sum over many terms with
similar structure. To prevent any confusion at this stage, we pick out

one term of this sum, viz.

.\ 2 r ! . '
()70 (x1)9, (x,): [:¢b(Yl)éb(Yz)éc(Zl)éc(ZZ) - ®b(Yl)?b(Yz)?c(zl)¢c(22{]

Fo B2y ((X)5Y952,) + hermitean conjugate. (7 .17)

There are 35 other terms that differ from ( 7 .17) by permutation

inside the triplets (Xl’Yl’Zl) and (XZ’Y2’22)°
The bracket [ ] above can be written as
0 (v-vQ0(zd-zD)o (v)2 (1,010 (Z))0 (2)-0 (2)0 (Z,)}
1 "2 271 b ) 1 c s )¢
0_0 0_40
+ (Y ~YDo(zr-zhe (z)e (Z,){e (Y.)e (Y.)-0 (Y.)® (¥,)}
271 172 LS 1  © 2 |b 2 Ib 1 |b 1 lb 2

+ 0(¥%-v%ez%2z0) (e, (v.)2 (¥.)0 (z.)0 (2. )-8 (Y,)0, (Y,)¢ (Z.)d (2.)}.
R L R L L L A P L D

(7 .18)

The third term in ( 7 .18) is pure imaginary and gives no contribution

to ( 7 .17) when we take its hermitean part. The first and second terms
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do give a contribution, viz.
:@a(Xl)®k(X2):Fabéxl,Yl,Zl) Fkbc(XZ’YZ’Zz)

.[Aret(Yl_YZ;mb>Aret(ZZ—Zl;mc) + Aadv(Yl—Yz;mb)Aadv(zz‘zl;mc)],
( 7.19)

where

A () = S0 A, B g ) = 0(-x)E). ( 7 .20)

Expression ( 7 .19) does not satisfy Eq. ( 7.16), so the second order

loop in our theory naively violates unitarity. In the abbreviated

notation the sum of all 36 terms on the left side of ( 7 .16) is
n;@(xl)@(xz):F(Xl)F(xz)[Aret(xl—xz)Aret(Xz_xl)

_ n
b g, (rmxg) gy (R x 1T (7 .21)

The hermitean terms in expression (7 .18) do not occur in :¢3:

the point interaction of :¢3: theory sets X, = Y, = Z

theory because 5 : .

in ( 7 .18), which makes those terms vanish. But our theory has a non-

pointlike interaction in which the real and/or virtual states reach

the vertex at three different times. For a tree diagram the naive

application of the time ordering prescription in Eq. ( 6.4) gives

only one time relation between any two vertices, so the diagram is

formally identical to the :¢ : case. The existence of the internal

time coordinate in the meson, which makes the vertex spread in time,
has no effect in the tree diagram, so the trees are unitary. But for

a loop diagram, naively time ordering the fields in Eq. (6 .4) gives

several time relations between some vertices. TIf the vertices overlap

;;;;;
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in time, then time ordering between the vertices is ambiguous —-

one vertex may be both earlier and later than another. 1In this
condition a "loop" does not appear to act physically like a loop,
because the two lines of the "loop" may propagate both virtual states
forward in time (or both backward in time); see Figure 11. This is
the extra contribution to loop diagrams, not present in theories

like :¢3: with point vertices. The inconsistency of expressions

( 7.16) and (7 ..21) is the result of our naive approach to the time
ordering in Eq. (6 .4).

Let us recall our approximation scheme for the U matrix. To
make Eq. (5.23) the basis of a perturbation theory we had to linearize
it by removing U from the integrand in Eq. (5.25). Then we iterated
Eq. (5.23), regarding "®9¢F" as a point interaction. Therefore, in
our approximation propagation between vertices ignores the time spread
of the vertices. 8o to be physically consistent the time ordering
prescription of Eq. (6 .4) should implicitly neglect the extra con-
tributions like expression ( 7 .21) which come from ambiguous time
orderings as in Figure 11. Then our approximation, carefully executed,
preserves the unitarity of S.

In performing calculations of § in this approximation, we can
carry out the naive time ordering of fields in Eq.(6 .4) as an
intermediate step by applying the diagramatic rules of Sec. 6, and
then subtract out the contribution arising from the overlaping of
vertices in time. In most cases we can write down this subtraction
simply by inspection of the possible time ordering ambiguities in the

loop diagrams. For example, in the third order loop diagrams we must
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subtract from the S matrix

()7 +0Gry )0 Gry) () 1 G F (1) Py 16 (=22, 6 (3,220 gy )

A+(xl—x2)A+(x2—x3)A+(x3-xl) + 6(x2—xl)e(X3—x2)6(xl—x

3
A—(Xl—xz)A—(XZ-XB)A—(XB_Xl)]"
for Figure 12a and
(i)3 ";@(xl)é(XB)Q(x3):[e(xl—xz)e(xz—xl)e(xz—x3)A+(xl_x2)A+(x2_Xl)

A+(x2—x3) + 6(x2—xl)6(xl—xz)e(xB—XZ)A_(xl—xz)A_(xz—xl)
A_Gey-x ) 1"

for Figure 12b. For the box diagram in two meson scattering the
subtraction is somewhat more complicated to writebut the principle

is the same as in the simpler second and third order loops}
Physically this approximation is good when the main contribution to
the diagram comes from vertices well separated in time, which is

when the virtual states in the diagram are mainly long-lived (compared
to the mesonic time w_l), that is when they are mainly near the mass
shell (compared to the spacing w between mesonic levels).

We have developed an approximation scheme to calculate the S
matrix which is consistent with Lorentz covariance and unitarity. In
this scheme the extended structure of the mesons manifests itself in
the vertex function, but the vertices act like points when they connect
to propagators. To make further progress we must incorporate the

effects of extended meson size on propagations. This requires that
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we deal with the nonlinear effects of propagation over internal time
intervals inside the vertex, Eq. (5.25). These effects become
important when the spacetime separation between vertices is of the
same order as the intrinsic size of the vertex w_l, i.e. when the
vertices overlap. Notice that neglecting these nonlinearities has
given us exact Feynman propagation between vertices (cf. the graphical
rules of Sec. 6). We conjecture that the exact nonlinear theory of

S, based on Eq. (5.25), will modify the propagator at short distances.



8. SUMMARY AND OUTLOOK

Our research grew out of attempts to relate several
outstanding problems of quantum theory to some more recent
discoveries in the subnuclear world, in the hope of making
progress on the theoretical and phenomenological fronts simul-
taneously. The theoretical questions we are refering to are
the problem of a relativistic interpretation of probability and
the problem of the meaning of extended size and localization in
relativistic quantum theory. Of course, these problems were
recognized at the birth of quantum mechanics; their relevance
has not diminished with age [24]. 1In particle physics we are very
interested in understanding the enormous success of SU(3) and
other .symmetry schemes based on the quark picture(such as SU(6))
for hadrons as well as the growing body of evidence for the non-
point nature of hadrons(for example, the evidence from inclusive
lepton reactions for pointlike constituents inside the nucleon).

The mesonic field theory we have developed is a model applicable
to all these problems and more. The field has a new dynamical
degree of freedom £, the spacetime separation of the two constituents
of the meson. The harmonic oscillator wavefunction is a relati-
vistic probability amplitude and a description of a non-point
meson localized in spacetime; it also gives a good description
of mesonic spectroscopy and static properties. The theory

separates external from internal variables, making most of the
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usual formalism of QFT applicable to the external field. The

theory is in lagrangian form, with the usual connection between
symmetries of L and conservation laws. The self interaction

of the field describes meson scattering in two senses: (1) the

external degrees of freedom(associated with the meson as a whole)

interact, and (2) the S matrix is calculated as a perturbation

around states that are already mesons (bound systems of two quarks).
This seems .superior to theories which perturb around free quarks

and model the self interaction of quarks(especially since there is

no evidence that quarks can be free). The internal and external

interactions are related by the bare vertex function Viom OF its

fourier transform Fkkm' The theory is consistent with the accepted

principles of covariance, causality and unitarity in QFT.

The most successful quantum field theory is Quantum Electro-

dynamics for leptons. Tts success is famous and unrivaled by

anything else in physics. QED is a field theory of point particles,

and there is no firm evidence to shake our belief that lepton and

photon are pure point particles. QFT has been much less successful

in explaining the dynamics of hadrons, while there is ample

evidence for their non-point character. Our mesonic field theory

is interesting not because of its possible phenomenological

accuracy (although we seek such accuracy), but rather

because it directly incorporates our fundamental physical ideas

about internal hadron structure into the convenient calculational

formalism of QFT. We feel this is a significant advance for QFT.
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Our field theory suggests several new lines of investigation.
The perturbation theory is a systematic extension of standard quark
model calculations(0(g) of our theory), so we could make the theory
more realistic(by incorporating quark spin and SU(3) wavefunctions)
and explore the accuracy of the theory in higher orders of g. Since
the vertices are complicated functions of momentum and we cannot
use residue calculus to evaluate the integrals, detailed calculation
of high order S matrix elements seems very formidable. But
the form of the vertex function gives a natural cutoff at high
momentum (see Appendix B), so the convergence properties of the

perturbation series(if we could calculate it)might be much better

than in ordinary QFT. This possibility alone justifies further

examination of our theory, independently of predictive accuracy.
Since the experimental data on meson-meson scattering is indirect
and not very certain, it is of interest to extend our theory to
include baryons with meson-baryon interactions in order to compare
the theory with data on baryon-baryon and baryon-meson scattering
and baryon decay. A preliminary calculation that may be the lowest
order in such a baryonic field theory has already been done[41].
Our work can also be extended by a better analysis and approxima~ .
tion of the nonlinear integrodifferential equation for the § matrix,
This equation can be a testing ground for

Eqs. (5.23) and (5.25).

new ideas on the relation between ordinary QFT and more general field

theories It has already shown itself to be a good laboratory to

explore the difference between point and extended particles.
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APPENDIX A: HELICITY BASIS

For some applications the orbital basis of wavefunctions

is not the best,

we explicitly construct the helicity basis.
We define a ne
Lorentz transformation along the 3-

around an axis in the 1-2 plane.

—

3 P 3
P P P
- r+ ) ”37-7§ + T - =P
Pi PyHPy
3
p3 | PP 3
T
P
PI+P, pl
¥
I'p
0

In the rest frame the heli

functions ¢u(g) are the same (see Eq. (2 .25)),
¢&(g) 2 Uy ¢k(P) .

Tn an arbitrary frame, for P = C'(P)g,

1 — 1 [} -1
01 (2, B) = 452, C'(®) 7D,

Under a Lorentz transformation A,

9L (AP, AT) = Quq M (A, P)] ¢g (P, E)

where M'(A,P) E c'(AP)'1 AC (D).

-72-

but we can easily transform to other bases.

Here

w complementary set {C'(P)} where C'(P) is a

axis followed by a rotatioﬁ

icity functions ¢&(g) and the orbital

(A.2)

(A.3)

(ML)

(A.5)

(A.1)



When A is a rotation R the Wigner rotation M'(R,P) is a rotation
around the 3-axis[30] by angle B(R,P).
Then

o' (RP, RE) = eiM()B(R,P)
o 3

94 (B58) (A.6)
where M(a) is the 3-component of angular momentum of ¢a(g). if

R is a rotation around F by angle 6, then B(R,P) = 6. The bases ¢a

and ¢& are related by
' _ -1
61 (@) = QIR 14, A.7)

where R(P) is the rotation that transforms the 3-direction into the
i direction. The Wigner rotations M and M' are related by

M'(A,P) = Rfl(AP)M(A,P)R(P). (A.8)
Naturally, all these formulae are equally valid for on~ and off-mass
shell wavefunctions.

We may define helicity creation and annihilation operators as

a’ (P) QBQ[R(P)] aB(P) . (A.9)

Then-
a (B)¢ () = a  (P)¢,(B). (A.10)

A single meson state in the helicity basis is
|p,a>' = alfe)|o> = Q’ga[R(P)]]P,f». (A.11)
For an arbitrary Lorentz transformation A the unitary operator

U(A) defined by Eq. ( 4.19) transforms the helicity creation operators .

as follows: 1/2
vya'te)y vteny = |[AP))’ a'B*'(AP) an [M'(A,P)]. (A.12)
o (P )o
~ (a)

For a rotation R, Eq.(A.12) simplifies to

uwa! @y’ = e—iM(a)B(R’P)a&+(RP) . (A.13)
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APPENDIX B: OFFSHELL CHO AND VERTEX FUNCTIONS

The oscillator wavefunction ¢k(Q) for arbitrary timelike Q is
defined by Eqs. (2.15), (2.17) and (2.18) with m_replaced by Q°.
The subscript k denotes all quantﬁm numbers ﬂeeded to identify
the state, viz. (nl, n,, n3) in Bq. ( 2.15). ¢k(Q) sétisfies
Eq. ( 2.22). ¢a(Q) is defined by Eq. ( '225). The subscript o
denotes (E, L, M) where E is defined by Eq. (2 .12) and where L is
the total and M is the 3-component of angular momentum of ¢a(Q)
in the frame where 6 = 0. It follows immediately from the definitiop
that |¢k(Q,g)| for Q2>O is bounded as a function of Q and &, with
the bound depending on k. We define qbk(Q)‘= 0 for Q2<0-

In its rest frame (6 = 0) ¢R(Q) contains the gaussian factor
w, 2 2 2 2
exp{- Z[go + &)+ g+ 53]} . (B.1)
In an arbitrary Lorentz frame the gaussian becomes

2
expl- O[-g? + 2280y (B.2)

Compare this with the gaussian factor on the mass shell,

: 2
2(Q-&
expl-2[-¢” + ZLE 3, (8.3)
Expression (B.2) is an analytic function of Q everywhere except at
Q2 = 0, where (B.2) has an essential singularity.

We have not defined ¢k(Q) for Q2 = 0., However, we note that,
for £:Q # 0 and a # 0, as Qo+ |6! along the real line

n 2
lim [—L) exp(~ iZ—[—e;z + 2—(%2—{—)—- 1} =0 (B.4)

Q°+ Q2 | ¢?
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for all n. The momentum space wavefunction ¢k(Q,q) has similar
o] -

behavior as Q - ‘Q|, because the fourier transform of a harmonic

oscillator wavefunction is(up to a scale transformation)the same

wavefunction.

The off mass shell wavefunctlon is used ,only to calculate

the off mass shell vertex function

v (r,Q,R) =

~ v v
i dq(bk (P,C) ¢1(Q,Q+R) ¢m(qu~Q)

16 (2m) ™ [ (8.5)

with P+Q+R = 0, For timelike momenta we can calculate Vkl in a frame
m

. . . 2
where R = 0. Equation (B.4) implies that as P~ or Q2 + 0 (? + 0,

ny

N
6 # 0) the wavefunctions ¢k’ ¢, are large only near the null plane

while by (B.1l) the gaussian in ¢mi3 symmetric around 0; see ?ig. 13. Then

as Pp 4_‘§1 or QO N lal @ # 0, § £ 0) along the real line

szm (P’Q,R) > 0 .

(8.6)
. 2 =4 2 2
Therefore we define, for P* = 0 (P # 0) and Q” or R” > 0
Vklm (¢,Q,R) = 0. (8.7)
In the frame where R = 0,¢m(R,€) is realiy independent of R, and
therefore we define for P2 >0 and P #0
Vk.ﬂlm (P,"P,O) = ng’m (Ps'Pa%) (B.8)

-5
where g is any timelike momentum with g = 0. The limiting value of

Yy om (?,Q,R) as P,Q,R - O depends on the way the momenta approach

zero. However, szm (P,Q,R) is bounded as the momenta approach

zero, so we may arbitrarily set

Vklm (0,0,0) =0 (B.9)

without affecting the result of any of our calculations.



We adopt the definition, consistent with Eq.(B.7), that |
¢k(Q) = 0 for Q2= 0, Q # 0. There still is an ambiguity in ¢k(o),
but this does not affect any of our calculations. Now |¢k(Q,g)|

" defined

by Eq.( 4 .36) is well defined as a‘tempered distribution [42],

is well defined and bounded for all ¢ and all Q # 0, so f

Whenever we contract two local fields. in the S matrix we

encounter the integral

1 JdQ 2% 607 4,.(Q,8) o1 (Q,1)

(2“—)4 2 = DF(X,E,Y); mk) . (B.lO)
2
qQ - my + ie
In ordinary field theory the corresponding integral is
eiq-x
dq = A.(x). ' (B.11
(2“)4 J qz - m2 + de ¥ , )

in momentum space AF and the delta function are well-defined as
tempered distributions. Since ¢k(Q} is bounded, DF is

well defined as a tempered distribution[42]Formulae involving AF may

be evaluated with the residue calculus,'but formulae with DF cannot

be evaluated the same way, because in momentum space DF(Q,g,n; mk) is
not an analytic function of Q. This is because of the O(Qz) and

also the essential singularity of ¢k(Q) at Q2 = 0. The large Q2 effects
of DF cannot be more singular than the large Q2 effects of AF, because

¢k is bounded.
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1. The author acknowledges R. Brandt for pointing out to him the

importance of the box diagram for unitarity.
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FIGURE CAPTIONS

1. Orthogonality relations and Lorentz contraction properties
of covariant harmonic oscillators. "Ortho" means orthogonal.

A similar figure has been published in Phys: Rev. D12,129(1975).

2. Three meson vertex of Kim and Nozz4 as a three quark vertex.

3. Spacetime overlap of six quarks in three mesons. Black

dots locate the meson centers, circles locate the quarks.

4. Three meson vertex in momentum space. This figure shows

the momenta of the participating quarks.

5. Three meson vertex diagram representing the bare vertex
function'VaBY(—P,Q,R) for P = Q + R.

‘6. S matrix diag;ams and the corresponding momentun space factors.
7. Second order annihilation graph for two meson scattering.

8. Second order exchange graphs for two meson scattering.

9. Second order tree diagram in :¢3: theory.

10. Second order loop diagram in :¢3: fheory. -

11. Second order loop diagram of extended vertices. When the v
vertices overlap, time ordering can become ambiguous and a
virtual state can travel forward(or backward)in time around
the whole loop.

12. Third order loop diagrams in extended meson theory.

13. Overlap of momentum space wavefunctions for kam(P,Q,R=—P-Q)
in the frame where ﬁ = 0. As mesons k,£ move faster they are
Lorentz contracted toward the null plane. V receives contri-

km

butions mainly from the small region where all mesons overlap.



