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With the rapid development of the Internet of Things (IoT), wireless sensing

has found wide applications from wellbeing monitoring, activity recognition, to

indoor tracking. In this dissertation, we investigate the problem of wireless sens-

ing for IoT applications using only ambient radio signals, e.g., WiFi, LTE, and

5G. In particular, our work mainly focuses on passive speed estimation, motion

detection, sleep monitoring, and indoor tracking for wireless sensing.

In this dissertation, we first study the problem of indoor speed estimation

using WiFi channel state information (CSI). We develop the statistical electro-

magnetic (EM) wave theory for wireless sensing and establish a link between

the autocorrelation function (ACF) of the physical layer CSI and the speed of a

moving object. Based on the developed statistical EM wave theory for wireless

sensing, we propose a universal low-complexity indoor speed estimation system

leveraging CSI, which can work in both device-free and device-based situations.

The proposed speed estimator differs from the other schemes requiring strong



line-of-sight conditions between the source and observer in that it embraces the

rich-scattering environment typical for indoors to facilitate highly accurate speed

estimation. Moreover, as a calibration-free system, it saves the users’ efforts from

large-scale training and fine-tuning of system parameters. The proposed speed

estimator can enable many IoT applications, e.g., gait monitoring, fall detection,

and activity recognition.

Then, we also study the problem of indoor motion detection using CSI. The

statistical behaviors of the CSI dynamics when motion presents can be character-

ized by the developed statistical EM theory for wireless sensing. We formulate

the motion detection problem as a hypothesis testing problem and also derive

the relationship between the detection rate and false alarm rate for motion detec-

tion, which is independent of locations, environments and motion types. Thus,

the proposed motion detection system can work in most indoor environments,

without any scenario-tailored training efforts. Extensive experiments conducted

in several facilities show that the proposed system can achieve better detection

performance compared to the existing CSI-based motion detection systems while

maintaining a much larger coverage and a much lower false alarm rate.

This dissertation also focuses on sleep monitoring using CSI. First, we build

a statistical model for maximizing the signal-to-noise (SNR) ratio of breathing

signal, which accounts for all reflecting and scattering multipaths, allowing high-

ly accurate and instantaneous breathing estimation with best-ever performance

achieved on commodity devices. Our results demonstrate that the proposed

breathing estimator yields a median absolute error of 0.47 bpm and a 95%-tile



error of only 2.92 bpm for breathing estimation, and detects breathing robustly

even when a person is 10m away from the WiFi link, or behind a wall. Then, we

apply machine learning algorithms on the extracted features from the estimated

breathing rates to classify different sleep stages, including wake, rapid eye move-

ment (REM), and non-REM (NREM), which was previously only possible with

dedicated hardware. Experimental results show that the proposed sleep moni-

toring system achieves sleep staging accuracy of 88%, outperforming advanced

solutions using contact sensor or radar.

The last work of this dissertation considers the problem of indoor tracking

using CSI. First, we leverage a stationary and location-independent property of

the time-reversal (TR) focusing effect of radio signals for highly accurate mov-

ing distance estimation, which plays a key role in the proposed indoor tracking

system. Together with the direction estimation based on inertial measurement

unit and location correction using the constraints from the floorplan, the pro-

posed indoor tracking system is shown to be able to track a moving object with

decimeter-level accuracy in different environments.
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Chapter 1: Introduction

1.1 Motivation

With the development of wireless technologies in the era of the Internet of

Things (IoT), people are paying more and more attention to understand the who,

what, when, where, and how of everything happening surrounding them with

wireless technologies. Human activities can affect wireless signal propagations

surrounding them, and information about their activities is in turn embedded

in the signals. This makes one wonder whether one can extract meaningful in-

formation through wireless sensing by analyzing various features embedded in

wireless signals.

By deploying wireless transceivers indoors, macro changes due to human

activities and moving objects can be extracted from the wireless signals, which

can help infer the real-time location of a moving object, and facilitate application-

s in manufacturing asset tracking, intelligent transportation, and home/office

security systems. In addition, micro changes generated by gestures and vital sig-

nals can also be captured without requiring people to wear any device, which is

especially useful for providing assistance to the disabled and elderly people in

smart home applications.
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The traditional wireless sensing systems utilize dedicated devices, e.g., UW-

B [97], Doppler RADAR [30], FMCW RADAR [8], etc., to monitor human activ-

ities in the environment. However, these devices are very costly and need to be

well-calibrated before use, which is not easy for ordinary people to use.

A very natural question then arises: instead of using specialized wireless

systems, can we utilize the readily available ubiquitous wireless signals, e.g.,

WiFi signals, to sense the environment in which we live? Motivated by this ques-

tion, in this dissertation, we will explore its answer from the perspectives of the

following important IoT applications — passive speed estimation, motion detection,

sleep monitoring and indoor tracking:

1. Passive speed estimation enables a large number of important indoor appli-

cations such as indoor fitness tracking, fall detection, gait monitoring, etc.

Especially, fall detection is important to the seniors who live alone in their

homes, as the system can detect falls which impose major threats to their

lives.

2. Motion detection plays a fundamental role in many applications, including

security surveillance, in-home activity monitoring, smart building analysis,

etc. Nowadays, motion detection systems are often employed for intruder

monitoring, elder care, and event detection, etc.

3. Sleep monitoring plays a vital role in assessing the quantity and quality of

an individual’s sleep, which is fundamentally related to health risks like

cardiovascular disease, stroke, kidney failure, diabetes, and adverse mental

2



conditions, etc.

4. Indoor tracking has received an increasing attention in recent years. Tech-

navio forecasts the global IPIN market to grow to USD 7.8 billion by 2021 [3],

and more than ever before, enterprises of all sizes are investing in indoor

tracking technology to support a growing list of applications, including pa-

tient tracking in hospitals, asset management for large groceries, workflow

automation in large factories, navigation in malls, appliance control, etc.

1.2 Related Works

This dissertation is widely related to RF-based (especially WiFi-based) hu-

man activity sensing, viral sign monitoring, and localization. The related works

are reviewed in the following subsections, respectively.

1.2.1 Human Activity Sensing

Existing works on WiFi-based human activity sensing techniques using com-

mercial WiFi include gesture recognition [5, 11, 77, 81, 103], human behavior

recognition [107, 113, 114], motion tracing [9, 96], passive localization [78, 88],

vital signal estimation [6, 24, 60], indoor event detection [126] and so on. These

approaches are built upon the phenomenon that human motions inevitably dis-

tort the WiFi signal and can be recorded by WiFi receivers for further analysis. In

terms of the principles, these works can be divided into two categories: learning

based and modeling based. Details of the two categories are elaborated below.
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Learning-based: These schemes consist of two phases, namely, an offline

phase, and an online phase. During the offline phase, features associated with

different human activities are extracted from the WiFi signals and stored in a

database; in the online phase, the same set of features are extracted from the

instantaneous WiFi signals and compared with the stored features so as to clas-

sify the human activities. The features can be obtained either from channel s-

tate information (CSI) or the Received Signal Strength Indicator (RSSI), a readily

available but low granularity information encapsulating the received power of

WiFi signals. For example, E-eyes [114] utilizes histograms of the amplitudes

of CSI to recognize daily activities such as washing dishes and brushing teeth.

CARM [107] exploits features from the spectral components of CSI dynamics to

differentiate human activities. WiGest [5] exploits the features of RSSI variations

for gesture recognition. After the features are obtained, then different machine

learning methods, such as SVM, deep neural network, HMM, etc., are applied to

implement classification.

A major drawback of the learning-based approach lies in that the extracted

features are susceptible to the external factors, such as the changes in the envi-

ronment, the heterogeneity in human subjects, the changes of device locations,

etc., which might violate their underlying assumption of the reproducibility of

the features in the offline and online phases.

Modeling-based: Based on the adopted techniques, they can be classified

into multipath-avoidance and multipath-attenuation. The multipath-avoidance

schemes track the multipath components only reflected by a human body and

4



avoid the other multipath components. Either a high temporal resolution [7] or

a “virtual” phased antenna array is used [9], such that the multipath compo-

nents relevant to motions can be discerned in the time domain or in the spatial

domain from those irrelevant to motions. The drawback of these approaches

is the requirement of dedicated hardware, such as USRP, WARP [67], etc., to

achieve a fine-grained temporal and spatial resolution, which is unavailable on

WiFi devices. Note that on commercial main-stream 802.11ac WiFi devices, the

maximum bandwidth is 160MHz, much smaller than the 1.69GHz bandwidth in

WiTrack. Meanwhile, commercial WiFi devices with multiple antennas cannot

work as a (virtual) phased antenna array out-of-box before carefully tuning the

phase differences among the RF front-ends.

In the multipath-attenuation schemes, the impact of multipath components

is attenuated by placing the WiFi devices in the close vicinity of the monitored

subjects, so that the majority of the multipath components are affected by the

subject [78, 81, 96]. The drawback is the requirement of a very strong LOS work-

ing condition, which limits their deployment in practice.

1.2.2 Vital Sign Monitoring

Many works exploit WiFi signals to estimate breathing [47, 70, 74, 104, 112,

116] and/or sleep monitoring [60, 61]. Despite that only controlled and short

studied are conducted, these works cannot learn sleep stages due to large es-

timation errors. For example, the approaches proposed in [60] produce 95%-
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tile error of >10 bpm, as evaluated by [42]. To increase the tracking ability of

the breathing estimation, a time-domain-based method is also proposed in [60],

which uses a peak detector on the smoothed CSI amplitudes of the selected sub-

carriers. FMCW radar [10,43,142] is also leveraged to monitor breathing. Among

them, [43,142] is capable of staging sleep, which, however, rely on specialized ra-

dios, rendering them not ubiquitously applicable.

1.2.3 Indoor Localization and Tracking

Table 1.1 summarizes typical WiFi-based localization systems. In general,

these works can be classified into two categories: modeling-based approach and

fingerprinting-based approach. The features utilized in these approaches can

be obtained either from the RSSI readings and the timestamps of the received

packets at the receiver (RX) or from the CSI.

In the modeling-based schemes, either the distance [33] [89] [15] [122] or

the angle [52] [34] [90] between an anchor point and the device can be estimated

and the device can be localized by performing geometrical triangulation. The dis-

tance between the anchor point and the device can be estimated from the decay

of RSSI [132] or from the time of arrival (ToA) of the transmitted packets which

can be extracted from the timestamps of the received packets [125]. The angle in

between can be obtained by examining the features of the CSI received by multi-

ple receive antennas, and then, the angle of arrival (AoA) of the direct path to the

target can be calculated. ToA-based methods typically require synchronization
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between the anchor point and the device and thus are very sensitive to timing

offsets [35]; AoA-based methods require an array of phased antennas which are

not readily available in commercial WiFi chips [34]. Recently, a decimeter-level

tracking system, Widar, is proposed in [79] and [80], however, the system can

only work in a small area with the constraint of LOS. The main challenges for

the modeling-based approaches are the blockage and reflection of the transmit-

ted signal since only the signal coming from the direct path between the anchor

point and the device is useful for localization.

The fingerprinting-based schemes consist of an offline phase and an on-

line phase. During the offline phase, features associated with different loca-

tions are extracted from the WiFi signals and stored in a database; in the on-

line phase, the same features are extracted from the instantaneous WiFi signals

and compared with the stored features so as to classify the locations. The fea-

tures can be obtained either from the vector of RSSIs [132] [21] or the detailed

CSI [111] [110] [119] from a specific location to all the anchor points in range.

A major drawback of the fingerprinting-based approaches lies in that the fea-

tures they use are susceptible to the dynamics of the environment. For exam-

ple, the change of furniture or the status of doors may have a severe impact on

these features and the database of the mapped fingerprints need to be updated

before it can be used again. In addition, the computational complexity of the

fingerprinting-based approaches scales with the size of the database and thus

they are not feasible for low-latency applications, especially when the number of

the collected fingerprints is large.

7



Table 1.1: Summary of typical WiFi-based localization systems

Method Existing Solutions

Modeling-

based

ToA CAESAR [33], ToneTrack [125]

AoA ArrayTrack [124], SpotFi [52], Phaser [34]

RSSI RADAR [15]

CSI FILA [118]

Fingerprinting-

based

RSSI Horus [132], Nibble [21]

CSI PinLoc [92], TRIPS [119], DeepFi [111]

1.3 Dissertation Outline and Contributions

Considering the limitations of current studies discussed in Section 1.2, we

are motivated to develop new radio analytic techniques that can not only fully

utilize the information embedded in radio signals, but also support simple im-

plementation with commercial WiFi devices.

In this dissertation, we first introduce the primer of wireless sensing in

Chapter 2, i.e., the wireless channel models for wireless sensing and the tech-

niques for information extraction from the multipaths. Then, we presents four

different indoor monitoring systems, that is, a passive indoor speed estimation

system, an indoor motion detection system, a sleep monitoring system, and an

indoor tracking system. that exploit CSI with different radio analytic method-

s, in Chapter 3, Chapter 4, Chapter 5, and Chapter 6, respectively. Chapter 7

concludes the dissertation.

The contributions and outline of Chapter 3–6 are described as follows.
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1.3.1 Speed Estimation: a Statistical Electromagnetic Approach

(Chapter 3)

In this chapter, we present WiSpeed, a universal low-complexity indoor

speed estimation system leveraging radio signals, such as commercial WiFi, LTE,

5G, etc., which can work in both device-free and device-based situations. By

exploiting the statistical theory of electromagnetic waves, we establish a link be-

tween the autocorrelation function of the physical layer channel state informa-

tion and the speed of a moving object, which lays the foundation of WiSpeed.

WiSpeed differs from the other schemes requiring strong line-of-sight conditions

between the source and observer in that it embraces the rich-scattering environ-

ment typical for indoors to facilitate highly accurate speed estimation. Moreover,

as a calibration-free system, WiSpeed saves the users’ efforts from large-scale

training and fine-tuning of system parameters. In addition, WiSpeed could ex-

tract the stride length as well as detect abnormal activities such as falling down,

a major threat to seniors that leads to a large number of fatalities every year.

Extensive experiments show that WiSpeed achieves a mean absolute percentage

error of 4.85% for device-free human walking speed estimation and 4.62% for

device-based speed estimation, and a detection rate of 95% without false alarms

for fall detection.
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1.3.2 Robust Whole-Home Motion Detection With a Single WiFi

Link (Chapter 4)

In this chapter, we propose WiDetect, a highly accurate, calibration-free,

and low-complexity wireless motion detector. By exploiting the statistical theory

of electromagnetic waves, we establish a link between the autocorrelation func-

tion of the physical layer channel state information (CSI) and human motion in

the environment. Temporal, frequency and spatial diversities are also exploit-

ed to further improve the robustness and sensitivity of WiDetect. Extensive ex-

periments conducted in several facilities show that WiDetect can achieve better

detection performance compared to a commercial home security system, while

with much larger coverage and lower cost.

1.3.3 Sleep Staging via Respiratory Rate Monitoring (Chapter 5)

In this chapter, we present the model, design, and implementation of S-

MARS, the first practical Sleep Monitoring system that exploits Ambient Radio

Signals to recognize sleep stages and assess sleep quality. This will enable a fu-

ture smart home that monitors daily sleep in a ubiquitous, non-invasive and con-

tactless manner, without instrumenting the subject’s body or the bed. The key

enabler underlying SMARS is a statistical model that accounts for all reflecting

and scattering multipaths, allowing highly accurate and instantaneous breathing

estimation with best-ever performance achieved on commodity devices. On this

10



basis, SMARS then recognizes different sleep stages, including wake, rapid eye

movement (REM), and non-REM (NREM), which was previously only possible

with dedicated hardware. We implement a real-time system on commercial WiFi

chipsets and deploy it in 6 homes, resulting in 32 nights of data in total. Our

results demonstrate that SMARS yields a median absolute error of 0.47 bpm and

a 95%-tile error of only 2.92 bpm for breathing estimation, and detects breathing

robustly even when a person is 10m away from the link, or behind a wall. SMARS

achieves sleep staging accuracy of 88%, outperforming advanced solutions using

contact sensor or radar. The performance is also validated upon a public sleep

dataset of 20 patients. By achieving promising results with merely a single com-

modity RF link, we believe that SMARS will set the stage for a practical in-home

sleep monitoring solution.

1.3.4 Indoor Tracking: a Time-Reversal Focusing Ball Approach

(Chapter 6)

In this chapter, we propose WiBall, an accurate and calibration-free indoor

tracking system that can work well in non-line-of-sight based on radio signal-

s. WiBall leverages a stationary and location-independent property of the time-

reversal focusing effect of radio signals for highly accurate moving distance es-

timation. Together with the direction estimation based on inertial measurement

unit and location correction using the constraints from the floorplan, WiBall is

shown to be able to track a moving object with decimeter-level accuracy in d-

11



ifferent environments. Since WiBall can accommodate a large number of users

with only a single pair of devices, it is low-cost and easily scalable, and can be a

promising candidate for future indoor tracking applications.
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Chapter 2: Primer of Wireless Sensing

In wireless sensing, wireless channel models play a paramount role as it can

depict how human activities or environmental dynamics can affect the received

radio signals. In this chapter, we first introduce the wireless channel models,

which include the model of the propagation of radio signals, the model of the

noise measurements of wireless channels in practical system, and the methods

to deal with the noise. Then, we introduce two multipath diversity harvesting

approaches, time-reversal technique and statistical EM wave theory, to extract

the environmental information embedded in each multipath from the received

wireless signals.

2.1 Wireless Channel Models for Wireless Sensing

Given a wireless transmission pair each equipped with omnidirectional an-

tennas, the channel impulse response (CIR) at time t can be expressed as

h(τ, t) =
∑
l∈Ω

al(t)δ(τ − τl(t)), (2.1)

where al(t) and τl(t) denote the complex channel gain and propagation delay

of the l-th multipath component (MPC), respectively, Ω denotes the set of MPCs,

and δ(·) denotes the Dirac delta function [98]. The propagation delay is a function
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of the propagation distance: τl(t) = dl(t)
c , where c is the speed of light and dl(t) is

the traveled distance of the l-th MPC.

In practice, the complex channel gains and propagation delays are usually

slowly varying functions of frequency, however, we are primarily interested in

transmitting over bands that are narrow relative to the carrier frequency, and

over such ranges the dependency on the frequency can be ignored. It should be

noted that although the individual channel gains and delays are assumed to be

independent of the frequency, the overall channel response can still vary with

frequency due to the fact that different multipaths have different delays.

For the time-varying impulse response h(τ, t), we can further define a time-

varying channel frequency response (CFR), also called Channel State Information

(CSI), as follows.

H(t, f ) =
∑
l∈Ω

al(t)exp(−j2πf τl(t)), (2.2)

where f denotes the particular frequency where the channel is measured. For

example, in an OFDM-based communication system, such as WiFi, LTE, 5G, etc.,

the CSI is measured at each subcarrier with frequency f .

CSI depicts how radio signals propagate from a transmitter (Tx) to a re-

ceiver (Rx), e.g., reflected or scattered off all reflectors in the space such as the

walls, furniture, human bodies, etc., and is highly sensitive to environmental

perturbations. Any environmental dynamics, including walking, gestures and

even minute human chest and abdomen movements, will alter the paths of sig-

nal propagation and thus modulate the wireless signal before it arrives at the
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receiver, allowing wireless sensing technologies to capture these activities from

the measured CSI time series.

In principle, the MPCs can be classified into two sets: Ωs(t) and Ωd(t),

where Ωs(t) denotes the set of time-invariant MPCs, e.g., reflected off the floor

and walls, and Ωd(t) denotes the set of time-varying MPCs, e.g., reflected off the

human body.

When the channel sampling rate Fs is large enough, it is reasonable to as-

sume that both the sets Ωs(t), Ωd(t) and the complex amplitude of each MPC al(t)

are time-invariant within a sufficiently short period. Thus the CSI can be written

as

H(t, f ) =
∑
ls∈Ωs

als exp(−j2πf
dls
c

) +
∑
ld∈Ωd

ald exp(−j2πf
dld (t)
c

)

, Hs(f ) +Hd(t, f ), (2.3)

whereHs(f ) andHd(t, f ) denote the contribution of the time-invariant MPCs and

time-varying MPCs, respectively.

In real measurements, H(t, f ) is often corrupted by the phase noise, caused

by the timing and frequency synchronization offsets, and the additive thermal

noise n(t, f ), and the reported CSI H̃(t, f ) can be expressed as

H̃(t, f ) = exp(−j(α(t) + β(t)f ))H(t, f ) +n(t, f ), (2.4)

where α(t) and β(t) are the random initial and linear phase distortions at time t,

respectively.

Since the information of environmental dynamics is embedded in the time-

varying MPCs Hd(t, f ), the core of wireless sensing technologies is to extract
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Hd(t, f ) from the noisy measurements. In literation, there are two approaches

to deal with the phase distortions: phase cleaning [25,78,91,128] and phase elimi-

nation [107, 113, 138].

For the phase cleaning approach, the phase distortions are partially removed

and both the phase information and amplitude information are used. Take the

phase φ̃(f ) of the measured CSI H̃(t, f ), and for f = 1, . . . ,F, we have

φ̃(f ) = α(t) + β(t)f + ∠n(t, f ). (2.5)

Since the thermal noise is much smaller than the CSI, the phase distortion in-

curred by the thermal noise can be ignored and we have the approximation:

φ̃(f ) ≈ α(t) + β(t)f , (2.6)

where f = 1, · · · ,F. Then, a simple linear regression can be applied to estimate

the slope of the linear phase distortion β(t) at time t. However, the initial phase

offset α(t) can not be removed.

For the phase elimination approach, only the amplitude information is used

and the phase information is discarded. Define the channel power response G(t, f )

as the square of the magnitude of H̃(t, f ):

G(t, f ) , |H̃(t, f )|2

= |H(t, f )|2 + 2Re{n∗(t, f )H(t, f )

exp(−j(α(t) + β(t)f ))}+ |n(t, f )|2

, |H(t, f )|2 + ε(t, f ) (2.7)

where the superscript ∗ denotes the operator of complex conjugate, the operator
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Re{x} denotes the real part of x, and ε(t, f ) is defined as the noise term, which can

be approximated as additive white Gaussian noise (AWGN) with variance σ2(f )

and is statistically independent of H(t, f ). The approximation implicitly exploits

the fact that the magnitude of thermal noise is usually much smaller than that of

CSI.

2.2 Multipath Diversity Harvesting

The performance of wireless sensing depends greatly on the richness of in-

formation that can be extracted from the radio signals, while the information

richness is often dictated by the channel bandwidth through which the radio

signals are transmitted. With more and more bandwidth available for the wire-

less systems nowadays, many more smart IoT applications and services only-

imagined today may be possible in the near future, because richer information

becomes available with a wider bandwidth. For example, one can see many more

multipaths in indoors with a much larger bandwidth, which can serve as hun-

dreds of virtual antennas/sensors.

How to utilize these multipaths to meet our needs for smart IoT applica-

tions? In this dissertation, we propose two multipath harvesting and manipula-

tion schemes, that is, statistical EM wave theory and time-reversal technique, to

extract the information embedded in each multipath from the received wireless

signals. Inspired by the above two multipath harvesting schemes, various types

of analytics, referred to as radio analytics, based on the wireless channel state
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information can be developed to enable many cutting-edge IoT applications that

have been envisioned for a long time, but have never been achieved.

The first approach is to resort to the statistical EM wave theory [40]. Radio

propagation in a building interior is in general very difficult to be analyzed be-

cause that the EM waves can be absorbed and scattered by walls, doors, windows,

moving objects, etc. However, buildings and rooms can be viewed as reverbera-

tion cavities in that they exhibit internal multipath propagations. Hence, instead

of deterministic models, e.g., ray-tracing, we apply the statistical theory of EM

fields developed for reverberation cavities to analyze the statistical properties of

the multipaths. Environmental dynamics can be thus reflected by the change of

the derived statistical metrics. We take the first approach in the following appli-

cations: fall detection [138], motion detection [137], and sleep monitoring [139].

The second multipath harvesting approach is to resort to the time reversal

(TR) phenomenon [102, 127, 135]. TR technique treats each path of the mul-

tipath channel as a distributed virtual antenna and provide a high resolution

spatial-temporal resonance, commonly known as the focusing effect [26, 46, 65].

In physics, the TR spatial-temporal resonance can be viewed as the result of the

resonance of electromagnetic (EM) field in response to the environment. When

the propagation environment changes, the involved multipath signal varies cor-

respondingly and consequently the spatial-temporal resonance also changes. We

take the second approach in the application of indoor tracking [136].
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Chapter 3: Speed Estimation: a Statistical Electromagnetic Ap-

proach

As people are spending more and more their time indoors nowadays, un-

derstanding their daily indoor activities will become a necessity for future life.

Since the speed of the human body is one of the key physical parameters that can

characterize the types of human activities, speed estimation of human motions

is a critical module in human activity monitoring systems. Compared with tra-

ditional wearable sensor-based approaches, device-free speed estimation is more

promising due to its better user experience, which can be applied in a wide va-

riety of applications, such as smart homes [48], health care [76], fitness track-

ing [86], and entertainment.

Nevertheless, indoor device-free speed estimation is very challenging main-

ly due to the severe multipath propagations of signals and the blockage between

the monitoring devices and the objects under monitoring. Conventional ap-

proaches of motion sensing require specialized devices, ranging from RADAR,

SONAR, laser, to camera. Among them, the vision-based schemes [106] can only

perform motion monitoring in their fields of vision with performance degrada-

tion in dim light conditions. Also, they introduce privacy issues. Meanwhile, the
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speed estimation produced by RADAR or SONAR [37] varies for different moving

directions, mainly because of the fact that the speed estimation is derived from

the Doppler shift which is relevant to the moving direction of an object. Also,

the multipath propagations of indoor spaces further undermine the efficacy of

RADAR and SONAR.

In this chapter, we present WiSpeed, a robust universal speed estimator for

human motions in a rich-scattering indoor environment, which can estimate the

speed of a moving object under either the device-free or device-based condition.

WiSpeed is actually a fundamental principle which requires no specific hardware

as it can simply utilize only a single pair of commercial off-the-shelf WiFi devices.

The rest of this chapter is organized as follows. Section 3.1 introduces the

statistical theory of EM waves in cavities and its extensions for wireless motion

sensing. Section 3.2 presents the basic principles and detailed designs of WiS-

peed. Experimental evaluation is shown in Section 3.3. Section 3.4 discusses the

parameter selections and the computational complexity of WiSpeed and Section

3.5 summarizes this chapter.

3.1 System Model

In this section, we first decompose the received electric field at the Rx in-

to different components and then, the statistical behavior of each component is

analyzed under certain statistical assumptions.
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3.1.1 Decomposition of the Received Electric Field

To provide an insight into the impact of motions on the EM waves, we con-

sider a rich-scattering environment as illustrated in Fig. 3.1(a), which is typical

for indoor spaces. The scatterers are assumed to be diffusive and can reflect the

impinging EM waves towards all directions. A transmitter (Tx) and a receiver

(Rx) are deployed in the environment, both equipped with omnidirectional an-

tennas. The Tx emits a continuous EM wave via its antennas, which is received

by the Rx. In an indoor environment or a reverberating chamber, the EM waves

are usually approximated as plane waves, which can be fully characterized by

their electric fields. Let ~ERx(t, f ) denote the electric field received by the receiver

at time t, where f is the frequency of the transmitted EM wave. In order to ana-

lyze the behavior of the received electric field, we decompose ~ERx(t, f ) into a sum

of electric fields contributed by different scatterers based on the superposition

principle of electric fields

~ERx(t, f ) =
∑
i∈Ωs(t)

~Ei(t, f ) +
∑

j∈Ωd(t)

~Ej(t, f ), (3.1)

where Ωs(t) and Ωd(t) denote the set of static scatterers and dynamic (moving)

scatterers, respectively, and ~Ei(t, f ) denotes the part of the received electric field

scattered by the i-th scatterer. The intuition behind the decomposition is that

each scatterer can be treated as a “virtual antenna” diffusing the received EM

waves in all directions and then these EM waves add up together at the receive

antenna after bouncing off the walls, ceilings, windows, etc. of the building.
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Figure 3.1: Illustration of wave propagation with many scatterers.

When the transmit antenna is static, it can be considered to be a “special” static

scatterer, i.e., T x ∈ Ωs(t); when it is moving, it can be classified in the set of

dynamic scatterers, i.e., T x ∈ Ωd(t). The power of ~ET x(t, f ) dominates that of

electric fields scattered by scatterers.

Within a sufficiently short period, it is reasonable to assume that both the

sets Ωs(t), Ωd(t) and the electric fields ~Ei(t, f ), i ∈ Ωs(t) change slowly in time.

Then, we have the following approximation:

~ERx(t, f ) ≈ ~Es(f ) +
∑
j∈Ωd

~Ej(t, f ), (3.2)

where ~Es(f ) ≈
∑
i∈Ωs(t)

~Ei(t, f ).

3.1.2 Statistical Behaviors of the Received Electric Field

As is known from the channel reciprocity, EM waves traveling in both di-

rections will undergo the same physical perturbations (i.e. reflection, refraction,

diffraction, etc.). Therefore, if the receiver were transmitting EM waves, all the
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scatterers would receive the same electric fields as they contribute to ~ERx(t, f ), as

shown in Fig. 3.1(b). Therefore, in order to understand the properties of ~ERx(t, f ),

we only need to analyze its individual components ~Ei(t, f ), which is equal to the

received electric field by the i-th scatterer as if the Rx were transmitting. Then,

~Ei(t, f ) can be interpreted as an integral of plane waves over all direction an-

gles, as shown in Fig. 3.2. For each incoming plane wave with direction angle

Θ = (α,β), where α and β denote the elevation and azimuth angles, respective-

ly, let ~k denote its vector wavenumber and let ~F(Θ) stand for its angular spec-

trum which characterizes the electric field of the wave. The vector wavenumber

~k is given by −k(x̂ sin(α)cos(β) + ŷ sin(α)sin(β) + ẑcos(α)) where the correspond-

ing free-space wavenumber is k = 2πf
c and c is the speed of light. The angular

spectrum ~F(Θ) can be written as ~F(Θ) = Fα(Θ)α̂+Fβ(Θ)β̂, where Fα(Θ), Fβ(Θ) are

complex numbers and α̂, β̂ are unit vectors that are orthogonal to each other and

to ~k. If the speed of the i-th scatterer is vi , then ~Ei(t, f ) can be represented as

~Ei(t, f ) =
∫ 2π

0

∫ π

0

~F(Θ)exp(−j~k·~vit)sin(α)dαdβ, (3.3)

where z-axis is aligned with the moving direction of scatterer i, as illustrated in

Fig. 3.2, and time dependence exp(−j2πf t) is suppressed since it does not affect

any results that will be derived later. The angular spectrum ~F(Θ) could be either

deterministic or random. The electric field in 3.3 satisfies Maxwell’s equations

because each plane-wave component satisfies Maxwell’s equations [40].

Radio propagation in a building interior is in general very difficult to be an-

alyzed because that the EM waves can be absorbed and scattered by walls, doors,
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Figure 3.2: Plane wave component ~F(Θ) of the electric field with vector

wavenumber ~k.

windows, moving objects, etc. However, buildings and rooms can be viewed

as reverberation cavities in that they exhibit internal multipath propagations.

Hence, we refer to a statistical modeling instead of a deterministic one and apply

the statistical theory of EM fields developed for reverberation cavities to analyze

the statistical properties of ~Ei(t, f ). We assume that ~Ei(t, f ) is a superposition

of a large number of plane waves with uniformly distributed arrival direction-

s, polarizations, and phases, which can well capture the properties of the wave

functions of reverberation cavities [40]. Therefore, we take ~F(Θ) to be a random

variable and the corresponding statistical assumptions on ~F(Θ) are summarized

as follows:
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Assumption 1 For ∀Θ, Fα(Θ) and Fβ(Θ) are both circularly-symmetric Gaussian

random variables [99] with the same variance, and they are statistically independent.

Assumption 2 For each dynamic scatterer, the angular spectrum components arriv-

ing from different directions are uncorrelated.

Assumption 3 For any two dynamic scatterers i1, i2 ∈ Ωd , ~Ei1(t1, f ) and ~Ei2(t2, f )

are uncorrelated, for ∀t1, t2.

Assumption 1 is due to the fact that the angular spectrum is a result of many

rays or bounces with random phases and thus it can be assumed that each orthog-

onal component of ~F(Θ) tends to be Gaussian under the Central Limit Theorem.

Assumption 2 is because that the angular spectrum components corresponding to

different directions have taken very different multiple scattering paths and they

can thus be assumed to be uncorrelated with each other. Assumption 3 results

from the fact that the channel responses of two locations separated by at least

half wavelength are statistically uncorrelated [23] [119], and the electric fields

contributed by different scatterers can thus be assumed to be uncorrelated.

Under these three assumptions, ~Ei(t, f ), ∀i ∈ Ωd can be approximated as a

stationary process in time. Define the temporal ACF of an electric field ~E(t, f ) as

ρ~E(τ,f ) =
〈~E(0, f ), ~E(τ,f )〉√
〈|~E(0, f )|2〉〈|~E(τ,f )|2〉

, (3.4)

where τ is the time lag, 〈 〉 stands for the ensemble average over all realizations,

〈~X, ~Y 〉 denotes the inner product of ~X and ~Y , i.e., 〈~X, ~Y 〉 , 〈~X · ~Y ∗〉 and ∗ is the

operator of complex conjugate and · is dot product, |~E(t, f )|2 denotes the square
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of the absolute value of the electric field. Since ~E(t, f ) is assumed to be a station-

ary process, the denominator of 3.4 degenerates to E2(f ) which stands for the

power of the electric field, i.e., E2(f ) = 〈|~E(t, f )|2〉, ∀t, and the ACF is merely a

normalized counterpart of the auto-covariance function.

For the i-th scatterer with moving velocity ~vi , 〈~Ei(0, f ) · ~E∗i (τ,f )〉 can be de-

rived as [40]

〈~Ei(0, f ) · ~E∗i (τ,f )〉

=
∫

4π

∫
4π
〈~F(Θ1) · ~F(Θ2)〉exp(j~k2·~viτ)dΘ1 dΘ2

=
E2
i (f )
4π

∫
4π

exp(jkviτ cos(α2))dΘ2

= E2
i (f )

sin(kviτ)
kviτ

, (3.5)

where we define
∫

4π
,

∫ 2π
0

∫ π
0

and dΘ , sin(α)dαdβ, and E2
i (f ) is the power

of ~Ei(t, f ). With Assumption 3, the auto-covariance function of ~ERx(t, f ) can be

written as

〈
(~ERx(0, f )− ~Es(f )) · (~E∗Rx(τ,f )− ~E∗s(f ))

〉
=

∑
i∈Ωd

E2
i (f )

sin(kviτ)
kviτ

, (3.6)

and the corresponding ACF can thus be derived as

ρ~ERx(τ,f ) =
1∑

j∈Ωd
E2
j (f )

∑
i∈Ωd

E2
i (f )

sin(kviτ)
kviτ

. (3.7)

From 3.7, the ACF of ~ERx is actually a combination of the ACF of each moving

scatterer weighted by their radiation power, and the moving direction of each dy-

namic scatterer does not play a role in the ACF. The importance of 3.7 lies in the
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fact that the speed information of the dynamic scatterers is actually embedded

in the ACF of the received electric field.

3.2 Theoretical Foundation and Design of WiSpeed

In this section, we introduce the theoretical foundation and the detailed

design of WiSpeed.

3.2.1 Theoretical Foundations of WiSpeed

In the following, we have derived the ACF of the received electric field at

the Rx, which depends on the speed of the dynamic scatterers. If all or most of

the dynamic scatterers move at the same speed v, then the right-hand side of 3.7

would degenerate to ρ~ERx(τ,f ) = sin(kvτ)
kvτ , and it becomes very simple to estimate

the common speed from the ACF. However, it is not easy to directly measure the

electric field at the Rx and analyze its ACF. Instead, the power of the electric

field can be viewed equivalent to the power of the channel response that can

be measured by commercial WiFi devices. In this section, we will discuss the

principle of WiSpeed that utilizes the ACF of the CSI power response for speed

estimation.

Without loss of generality, we use the channel response of OFDM-based

WiFi systems as an example. Let X(t, f ) and Y (t, f ) be the transmitted and re-

ceived signals over a subcarrier with frequency f at time t. Then, the least-square

estimator of the CSI for the subcarrier with frequency f measured at time t is
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H(t, f ) = Y (t,f )
X(t,f ) [28]. In practice, the obtained estimation of the CSI suffers from

the synchronization errors, which mainly consists of channel frequency offset

(CFO), sampling frequency offset (SFO) and symbol timing offset (STO) [23]. Al-

though the WiFi receivers perform timing and frequency synchronization, the

residual of these errors cannot be neglected. However, the impact of synchro-

nization errors on the amplitude of CSI is insignificant and thus WiSpeed only

exploits the amplitude information of the measured CSI.

We define the power response G(t, f ) as the square of the magnitude of CSI,

which takes the form

G(t, f ) , |H(t, f )|2 = ‖~ERx(t, f )‖2 + ε(t, f ), (3.8)

where ‖~E‖2 denotes the total power of ~E, and ε(t, f ) is assumed to be an additive

noise due to the imperfect measurement of CSI.

The noise ε(t, f ) can be assumed to follow a normal distribution. To prove

this, we collect a set of one-hour CSI data in a static indoor environment with

the channel sampling rate Fs = 30Hz. The Q-Q plot of the normalized G(t, f )

and standard normal distribution for a given subcarrier is shown in Fig. 3.3(a),

which shows that the distribution of the noise is very close to a normal distri-

bution. To verify the whiteness of the noise, we also study the ACF of G(t, f )

that can be defined as [95] ρG(τ,f ) = γG(τ,f )
γG(0,f ) , where γG(τ,f ) denotes the auto-

covariance function, i.e., γG(τ,f ) , cov(G(t, f ),G(t − τ,f )). In practice, sample

auto-covariance function γ̂G(τ,f ) is used instead. If ε(t, f ) is white noise, the

sample ACF ρ̂G(τ,f ), for ∀τ , 0, can be approximated by a normal random vari-
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Figure 3.3: The Q-Q plot and sample ACF of a typical CSI power response.

able with zero mean and standard deviation σρ̂G(τ,f ) = 1√
T

. Fig. 3.3(b) shows the

sample ACF of G(t, f ) when 2000 samples on the first subcarrier are used. As we

can see from the figure, all the taps of the sample ACF are within the interval of

±2σρ̂G(τ,f ), and thus, it can be assumed that ε(t, f ) is an additive white Gaussian

noise, i.e., ε(t, f ) ∼N (0,σ2(f )).

In the previous analysis in Section 3.1, we assume that the Tx transmits con-

tinuous EM waves, but in practice the transmission time is limited. For example,

in IEEE 802.11n WiFi systems operated in 5GHz frequency band with 40MHz

bandwidth channels, a standard WiFi symbol is 4µs, composed of a 3.2µs useful

symbol duration and a 0.8µs guard interval. According to [101], for most office

buildings, the delay spread is within the range of 40 to 70ns, which is much s-

maller than the duration of a standard WiFi symbol. Therefore, we can assume

continuous waves are transmitted in WiFi systems.
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Based on the above assumptions and 3.2, 3.8 can be approximated as

G(t, f ) ≈ ‖~Es(f ) +
∑
i∈Ωd

~Ei(t, f )‖2 + ε(t, f )

=

∥∥∥∥∥∥∥∥
∑

u∈{x,y,z}

Esu(f )û +
∑
i∈Ωd

Eiu(t, f )û


∥∥∥∥∥∥∥∥

2

+ ε(t, f )

=
∑

u∈{x,y,z}

∣∣∣∣∣∣∣∣Esu(f ) +
∑
i∈Ωd

Eiu(t, f )

∣∣∣∣∣∣∣∣
2

+ ε(t, f )

=
∑

u∈{x,y,z}

(
|Esu(f )|2 + 2Re

E∗su(f )
∑
i∈Ωd

Eiu(t, f )


+

∣∣∣∣∣∣∣∣
∑
i∈Ωd

Eiu(t, f )

∣∣∣∣∣∣∣∣
2 )

+ ε(t, f ), (3.9)

where x̂, ŷ and ẑ are unit vectors orthogonal to each other as shown in Fig. 3.2,

Re{·} denotes the operation of taking the real part of a complex number, and Eiu

denotes the component of ~Ei in the u-axis direction, for ∀u ∈ {x,y,z}. Then, the

auto-covariance function of G(t, f ) can be derived as

γG(τ,f ) = cov(G(t, f ),G(t − τ,f ))

≈
∑

u∈{x,y,z}

2|Esu(f )|2
∑
i∈Ωd

cov(Eiu(t, f ),Eiu(t − τ,f ))

+
∑

i1,i2∈Ωd
i1≥i2

cov(Ei1u(t, f ),Ei1u(t − τ,f )) ·

cov(Ei2u(t, f ),Ei2u(t − τ,f ))

+ δ(τ)σ2(f ), (3.10)

where Assumptions 1-3 and 3.3 are applied to simplify the expression and the

detailed derivations can be found in Appendix 3.6.1.

According to the relation between the auto-covariance and autocorrelation,
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γG(τ,f ) can be rewritten in the forms of ACFs of each scatterer as

γG(τ,f ) ≈
∑

u∈{x,y,z}

 ∑
i∈Ωd

2|Esu(f )|2E2
i (f )

3
ρEiu (τ,f )

+
∑

i1,i2∈Ωd
i1≥i2

E2
i1

(f )E2
i2

(f )

9
ρEi1u (τ,f )ρEi2u (τ,f )

+ δ(τ)σ2(f ), (3.11)

where the right-hand side is obtained by using the relation E2
iu(f ) =

E2
i (f )
3 , ∀u ∈

{x,y,z}, ∀i ∈Ωd [40]. The corresponding ACF ρG(τ,f ) of G(t, f ) is thus obtained

by ρG(τ,f ) = γG(τ,f )
γG(0,f ) , where γG(τ,0) can be obtained by plugging ρEiu (0, f ) = 1

into 3.11. When the moving directions of all the dynamic scatterers are approx-

imately the same, then we can choose z-axis aligned with the common moving

direction. Then, the closed forms of ρEiu (τ,f ), ∀u ∈ {x,y,z}, are derived under

Assumptions 1-2 [40], i.e., for ∀i ∈Ωd ,

ρEix(τ,f ) = ρEiy (τ,f )

=
3
2

[
sin(kviτ)
kviτ

− 1
(kviτ)2

(
sin(kviτ)
kviτ

−cos(kviτ)
)]
, (3.12)

ρEiz(τ,f ) =
3

(kviτ)2

[
sin(kviτ)
kviτ

− cos(kviτ)
]
. (3.13)

The theoretical spatial ACFs are shown in Fig. 3.4(a) where d , viτ . As we can

see from Fig. 3.4(a), the magnitudes of all the ACFs decay with oscillations as the

distance d increases.

For a WiFi system with a bandwidth of 40MHz and a carrier frequency of

5.805GHz, the difference in the wavenumber k of each subcarrier can be neglect-

ed, e.g., kmax = 122.00 and kmin = 121.16. Then, we can assume ρ(τ,f ) ≈ ρ(τ),

∀f . Thus, we can improve the sample ACF by averaging across all subcarri-
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Figure 3.4: Theoretical spatial ACF for different orthogonal components of EM

waves.

ers, i.e., ρ̂G(τ) , 1
F

∑
f ∈F ρ̂G(τ,f ), where F denotes the set of all the available

subcarriers and F is the total number of subcarriers. When all the dynamic s-

catterers have the same speed, i.e., vi = v for ∀i ∈ Ωd , which is the case for

monitoring the motion for a single human subject, by defining the substitutions

E2
su ,

2
F

∑
f ∈F |Esu(f )|2, E2

d ,
1

3F
∑
i∈Ωd

∑
f ∈F E

2
i (f ), ρ̂G(τ) can be further approxi-

mated as (for τ , 0)

ρ̂G(τ) ≈ C
∑

u∈{x,y,z}

(
E2
d ρ̂

2
Eiu

(τ) +E2
suρ̂Eiu (τ)

)
, (3.14)

where C is a scaling factor and the variance of each subcarrier is assumed to be

close to each other.

From 3.14, we observe that ρG(τ) is a weighted combination of ρEiu (τ) and

ρ2
Eiu

(τ), ∀u ∈ {x,y,z}. The left-hand side of 3.14 can be estimated from CSI and

the speed is embedded in each term on the right-hand side. If we can separate

one term from the others on the right-hand side of 3.14, then the speed can be

estimated.
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Taking the differential of all the theoretical spatial ACFs as shown in Fig. 3.4(b)

where we use the notation ∆ρ(τ) to denote dρ(τ)
dτ , we find that although the ACF-

s of different components of the received EM waves are superimposed, the first

local peak of ∆ρ2
Eiu

(τ), ∀u ∈ {x,y}, happens to be the first local peak of ∆ρG(τ)

as well. Therefore, the component ρ2
Eiu

(τ) can be recognized from ρG(τ), and

the speed information can thus be obtained by localizing the first local peak of

∆ρ̂G(τ), which is the most important feature that WiSpeed extracts from the noisy

CSI measurements.

To verify 3.14, we build a prototype of WiSpeed with commercial WiFi de-

vices. The configurations of the prototype are summarized as follows: both WiFi

devices operate on WLAN channel 161 with a center frequency of fc = 5.805GHz,

and the bandwidth is 40MHz; the Tx is equipped with a commercial WiFi chip

and two omnidirectional antennas, while the Rx is equipped with three omni-

directional antennas and uses Intel Ultimate N WiFi Link 5300 with modified

firmware and driver [38]. The Tx sends sounding frames with a channel sam-

pling rate Fs of 1500Hz, and CSI is obtained at the Rx. The transmission power

is configured as 20dBm.

All experiments in this chapter are conducted in a typical indoor office en-

vironment as shown in Fig. 3.5. In each experiment, the LOS path between the Tx

and the Rx is blocked by at least one wall, resulting in a severe NLOS condition.

More specifically, we investigate two cases:

1. The Tx is in motion and the Rx remains static: The Tx is attached to a
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Figure 3.5: Experimental settings in a typical office environment with different

Tx/Rx locations and walking routes.

cart and the Rx is placed at Location Rx #1 as shown in Fig. 3.5. The cart

is pushed forward at an almost constant speed along Route #1 marked in

Fig. 3.5 from t = 3.7s to t = 14.3s.

2. Both the Tx and the Rx remain static and a person passes by: the Tx and

Rx are placed at Location Tx #1 and Rx #1 respectively. A person walks

along Route #1 at a speed similar to Case (1) from t = 4.9s to t = 16.2s.

Since the theoretical approximations are only valid under the short dura-

tion assumption, we set the maximum time lag τ as 0.2s. In both cases, we com-

pute the sample ACF ρ̂G(τ) every 0.05s.

Fig. 3.6 demonstrates the sample ACFs for the two cases. In particular,

Fig. 3.6(a) visualizes the sample ACF corresponding to a snapshot of Fig. 3.6(e)

for different subcarriers given a fixed time t with the time lag τ ∈ [0,0.2s], and
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Fig. 3.6(c) shows the average ACF ρ̂G(τ), which is much less noisy compared with

individual ρ̂G(τ,f ). In this case, the Tx can be regarded as a moving scatterer with

a dominant radiation power compared with the other scatterers, giving rise to

the dominance of E2
dρ

2
Eiu

(τ), u ∈ {x,y,z} over the other components in 3.14. Addi-

tionally, ρ2
Eiz

(τ) decays much faster than ρ2
Eix

(τ) and ρ2
Eiy

(τ), and ρ2
Eix

(τ) = ρ2
Eiy

(τ).

Thus, a similar pattern between ρ̂G(τ) and ρ2
Eix

(τ) (ρ2
Eiy

(τ)) can be observed with a

common and dominant component sin2(kvτ)
(kvτ)2 , where v is the speed of the cart and

the person. The experimental result illustrated in Fig. 3.6(c) matches well with

the theoretical analysis in the sense that only the component ρ2
Eix

(τ) dominates

the obtained ACF estimation and the impacts of the other components can be

neglected.

Similarly, for Case (2), Fig. 3.6(b) shows the sample ACF ρ̂G(τ,f ) for differ-

ent subcarriers and Fig. 3.6(d) shows the average sample ACF ρ̂G(τ), which is a

snapshot of Fig. 3.6(f) given a fixed time t with the time lag τ = [0,0.2s]. Clearly,

the pattern of the component ρ2
Eiu

(τ), u ∈ {x,y}, in the sample ACF is much less

pronounced than Case (1) shown in Fig. 3.6(c) and Fig. 3.6(e). This can be justi-

fied by the fact that the radiation power E2
d is much smaller than that in Case (1),

as the set of dynamic scatterers only consists of different parts of a human body

in mobility. Consequently, the shape of ρ̂G(τ) resembles more closely to ρEiu (τ),

∀u ∈ {x,y,z}with a dominant component sin(kvτ)
kvτ . Note that the component sin(kvτ)

kvτ

oscillates two times slower than the component sin2(kvτ)
(kvτ)2 does. From Fig. 3.6(d),

we can observe that the obtained ACF is a result of a weighted sum of these two

components. We also observe that the slow-varying trend of the ACF follows the
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shape of the component sin(kvτ)
kvτ and the component sin2(kvτ)

(kvτ)2 is only embedded in

the trend, the weight of sin(kvτ)
kvτ should be larger than that of sin2(kvτ)

(kvτ)2 . Note that

the embedded component sin2(kvτ)
(kvτ)2 has a similar pattern compared with Case (1)

since the moving speeds in the two experiments are similar to each other.

3.2.2 Design of WiSpeed

Based on the theoretical results derived above, we propose WiSpeed, which

integrates three modules: moving speed estimator, acceleration estimator, and

gait cycle estimator. The moving speed estimator is the core module of WiSpeed,

while the other two extract useful features from the moving speed estimator to
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Figure 3.6: ACFs for the two scenarios.

detect falling down and to estimate the gait cycle of a walking person.

3.2.2.1 Moving Speed Estimator

WiSpeed estimates the moving speed of the subject by calculating the sam-

ple ACF ∆ρ̂G(τ) from CSI measurements, localizing the first local peak of ∆ρ̂G(τ),

and mapping the peak location to the speed estimation. Since in general, the

sample ACF ∆ρ̂G(τ) is noisy as can be seen in Fig. 3.6(e) and Fig 3.6(f), we devel-

op a novel robust local peak identification algorithm based on the idea of local

regression [29] to reliably detect the location of the first local peak of ∆ρ̂G(τ).

For notational convenience, write the discrete signal for local peak detec-

tion as y[n], and our goal is to identify the local peaks in y[n]. First of all, we

apply a moving window with length 2L+ 1 to y[n], where L is chosen to be com-

parable with the width of the desired local peaks. Then, for each window with

its center located at n, we verify if there exists any potential local peak within

the window by performing a linear regression and a quadratic regression to the
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data inside the window, separately. Let SSE denote the sum of squared errors for

the quadratic regression and SSEr denote that for the linear regression. If there

is no local peak within the given window, the ratio α[n] , (SSEr−SSE)/(3−2)
SSE/(2L+1−3) can be

interpreted as a measure of the likelihood of the presence of a peak within the

window, and has a central F-distribution with 1 and 2(L− 1) degrees of freedom,

under certain assumptions [87]. We choose a potential window with the center

point n only when α[n] is larger than a preset threshold η, which is determined

by the desired probability of finding a false peak, and α[n] should also be larger

than its neighborhoods α[n − L],...,α[n + L]. When L is small enough and there

exists only one local peak within the window, the location of the local peak can

be directly obtained from the fitted quadratic curve.

We use a numerical example in the following to verify the effectiveness of

the proposed local peak identification algorithm. Let y(t) = cos(2πf1t + 0.2π) +

cos(2πf2t + 0.3π) +n(t), where we set f1 = 1Hz, f2 = 2.5Hz, and n(t) ∼N (0,σ2) is

additive white Gaussian noise with zero mean and variance σ2. The signal y(t) is

sampled at a rate of 100Hz from time t = 0s to t = 1s. When the noise is absent,

the true locations of the two local peaks are t1 ≈ 0.331s and t2 ≈ 0.760s and the

estimates of our proposed local peak identification algorithm are t̂1 ≈ 0.327s and

t̂2 ≈ 0.763s, as shown in Fig. 3.7(a). When the noise is present and σ is set to 0.2,

the estimates are t̂1 ≈ 0.336s and t̂2 ≈ 0.762s, as shown in Fig. 3.7(b). As we can

see from the results, the estimated locations of the local peaks are very close to

those of the actual peaks even when the signal is corrupted with the noise, which

shows the effectiveness of the proposed local peak identification algorithm.
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Figure 3.7: An illustration of the peak identification algorithm.

Then, the speed of the moving object can be estimated as v̂ = d1
τ̂ , where d1

is the distance between the first local peak of ∆ρ2
Eix

(d) and the origin, and τ̂ is

the location of the first local peak of ∆ρ̂G(τ). The distance d1 can be obtained by

solving the equation

∂2

∂d2ρ
2
Eix

(d,f ) = 0, (3.15)

where ρEix(d,f ) denotes the theoretical spatial ACF as shown in Fig. 3.4(a). As

3.15 does not have a closed-form solution, we evaluate the second smallest root

of 3.15 numerically which leads to about 0.54λ. A median filter is then applied

to the speed estimates to remove the outliers. The proposed speed estimator is

summarized in Algorithm 1.

3.2.2.2 Acceleration Estimator

Acceleration can be calculated from v̂ obtained above. One intuitive method

of acceleration estimation is to take the difference of two adjacent speed estimates
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Algorithm 1 The proposed speed estimator

Input: T consecutive CSI measurements before time t: H(s, f ), s = t − T−1
Fs
, ..., t −

1
Fs
, t, and f ∈ F ;

Output: Speed estimation at t: v̂(t).

1: Calculate the CSI power response: G(s, f )← |H(s, f )|2;

2: Calculate the ACF of each subcarrier f : ρ̂G(τ,f ) ←

1
T

∑t
s=t− T−1

Fs
+τ

(
G(s − τ,f )− Ḡ(f )

)(
G(s, f )− Ḡ(f )

)
, where Ḡ(f ) is the sam-

ple mean;

3: Aggregate ACF across all the subcarriers: ρ̂G(τ)← 1
F

∑
f ∈F ρ̂G(τ,f );

4: Calculate the differential ACF: ∆ρ̂G(τ)← ρ̂G(τ)− ρ̂G(τ − 1
Fs

);

5: Apply the proposed peak identification algorithm to estimate the location of

the first local peak of ∆ρ̂G(τ): τ̂ ;

6: Speed estimation at time t: v̂(t)← 0.54λ
τ̂ .
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and then divide the difference of the speeds by the difference of their measure-

ment time. However, this scheme is not robust as it is likely to magnify the

estimation noise. Instead, we leverage the fact that the acceleration values can be

approximated as a piecewise linear function as long as there are enough speed

estimates within a short duration. `1 trend filter produces trend estimates that

are smooth in the sense of being piecewise linear [49] and is well suited to our

purpose. Thus, we adopt an `1 trend filter to extract the piecewise linear trend

embedded in the speed estimation and then, estimate the accelerations by taking

differential of the smoothed speed estimation.

Mathematically, let v̂[n] denote v̂(n∆T ), where ∆T is the interval between

two estimates, and let ṽ[n] denote the smoothed one. Then, ṽ[n] is obtained by

solving the following unconstrained optimization problem:

min
ṽ[n],∀n

N∑
n=1

(ṽ[n]−v̂[n])2+λ
N−1∑
n=2

∣∣∣∣ṽ[n− 1]−2ṽ[n]+ṽ[n+ 1]
∣∣∣∣, (3.16)

where λ ≥ 0 is the regularization parameter used to control the trade-off between

smoothness of ṽ[n] and the size of the residual |ṽ[n]−v̂[n]|, andN denotes the size

of the speed estimates that need to be smoothed. Then, we obtain the acceleration

estimation as â[n] = (ṽ[n]−ṽ[n−1])
∆T . As shown in [49], the complexity of the `1 filter

grows linearly with the length of the data N and can be calculated in real-time

on most platforms.
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3.2.2.3 Gait Cycle Estimator

When the estimated speed is within a certain range, e.g., from 1m/s to 2m/s,

and the acceleration estimates are small, then WiSpeed starts to estimate the

corresponding gait cycle. In fact, the process for walking a single step can be

decomposed into three stages: lifting one leg off the ground, using the lifted leg

to contact with the ground and pushing the body forward, and keeping still for

a short period of time before the next step. The same procedure is repeated until

the destination is reached.

In terms of speed, one cycle of walking consists of an acceleration stage fol-

lowed by a deceleration stage. WiSpeed leverages the periodic pattern of speed

changes for gait cycle estimation. More specifically, WiSpeed extracts the lo-

cal peaks in the speed estimates corresponding to the moments with the largest

speeds. To achieve peak localization, we use the persistence-based scheme pre-

sented in [53] to formulate multiple pairs of local maximum and local minimum,

and the locations of the local maximum are considered as the peak locations.

The time interval between every two adjacent peaks is computed as a gait cycle.

Meanwhile, the moving distance between every two adjacent peaks is calculated

as the estimation of the stride length.

3.3 Experimental Evaluation

In this section, we first introduce the indoor environment and system se-

tups of the experiments. Then, the performance of WiSpeed is evaluated in two
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applications: human walking monitoring and human fall detection.

3.3.1 Environment

We conduct extensive experiments in a typical office environment, with

floorplan shown in Fig. 3.5. The indoor space is occupied by desks, computers,

shelves, chairs, and household appliances. The same WiFi devices as introduced

in Section 3.2 are used during the experiments.

3.3.2 Experimental Settings

Two sets of experiments are performed. In the first set of experiments, we

study the performance of WiSpeed in estimating the human walking speed. For

device-free scenarios, it shows that the number of steps and stride length can

also be estimated besides the walking speed. Estimation accuracy is used as the

metric which compares the estimated walking distances with the ground-truth

distances, since measuring walking distance is much easier and more accurate

than measuring the speed directly. Different routes and locations of the devices

are tested and the details of experiment setup are summarized in Tab. 3.1 and

Tab. 3.2. In the second set of experiments, we investigate the performance of

WiSpeed as a human activity monitoring scheme. Two participants are asked

to perform different activities, including standing up, sitting down, picking up

things from the ground, walking, and falling down.
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Table 3.1: Exp. settings for device-free human walking monitoring

Setting

Config.
Tx loc. Rx loc. Route index

Setting #1 Tx #1 Rx #1 Route #1/#2

Setting #2 Tx #1 Rx #2 Route #1/#2

Setting #3 Tx #2 Rx #1 Route #1/#2

Setting #4 Tx #3 Rx #2 Route #3/#4

Setting #5 Tx #4 Rx #2 Route #3/#4

Setting #6 Tx #3 Rx #3 Route #3/#4

Table 3.2: Exp. settings for device-based speed monitoring

Setting

Config.
Tx loc. Rx loc. Route index

Setting #7 moving Rx #1 Route #1/#2

Setting #8 moving Rx #4 Route #1/#2

Setting #9 moving Rx #1 Route #3/#4

Setting #10 moving Rx #4 Route #3/#4
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3.3.3 Human Walking Monitoring

Fig. 3.8 visualizes one of the experimental results under Setting #1 of Route

#1, i.e., both the Tx and Rx are static and one experimenter walks along the spec-

ified route. Fig. 3.8a–c show three snapshots of estimated ACFs at different time

instances marked in Fig. 3.8d. From Fig. 3.8, we can conclude that although the

ACFs are very different, the locations of the first local peak of ∆ρ̂G(τ) are highly

consistent as long as the ACFs are calculated under similar walking speeds.

Fig. 3.8d shows the results of walking speed estimation for the experiment,

and we can see a very clear pattern of walking due to the acceleration and decel-

eration. The corresponding stride length estimation is shown in Fig. 3.8e. The

estimated walking distance is 8.46m and it is within 5.75% of the ground-truth

distance of 8m. On the other hand, the average stride length is 0.7m and very

close to the average walking stride length of the participants.

Fig. 3.9 shows two typical speed estimation results both under Setting #7 of

Route #1 where the Tx is attached to a cart and one experimenter pushes the cart

along the specified route. The cart moves at different speeds for these two real-

izations, and Fig. 3.9(a) and Fig. 3.9(b) show the corresponding speed estimates,

respectively. As we can see from the estimated speed patterns, there are no peri-

odic patterns like the device-free walking speed estimates as in Fig. 3.8d. This is

because when the Tx is moving, the energy of the EM waves reflected by the hu-

man body is dominated by that radiated by the transmit antennas and WiSpeed

can only estimate the speed of moving antennas. The estimated moving distance
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Figure 3.8: Experimental results for human walking monitoring under Setting

#1 and Route #1.

for the case that Tx moves at a higher speed is 8.26m and the other one is 8.16m,

where the ground-truth distance is 8m. Note that the speed estimators, proposed

in [135] and [136], can also obtain the similar results under the same condition,

however, they cannot work for device-free scenarios.

Fig. 3.10 summarizes the accuracy of the 200 experiments of human walk-
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Figure 3.9: Speed estimation for a moving Tx.
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ing speed estimation. More specifically, Fig. 3.10(a) shows the error distribution

for Setting #1 – #6, and Fig. 3.10(b) demonstrates the corresponding error dis-

tribution for Route #1 – #4; Fig. 3.10(c) shows the error distribution for Setting

#7 – #10, and Fig. 3.10(d) demonstrates the corresponding error distribution for

Route #1 – #4. The bottom and top error bars stand for the 5% percentiles and

95% percentiles of the estimates, respectively, and the middle of point is the

sample mean of the estimates. The ground-truths for Routes #1–#4 are shown

in Fig. 3.5. From the results, we find that (i) WiSpeed performs consistently for

different Tx/Rx locations, routes, subjects, and walking speeds, indicating the

robustness of WiSpeed under various scenarios, and (ii) WiSpeed tends to over-

estimate the moving distances under device-free settings. This is because we use

the route distances as baselines and ignore the displacement of the subjects in the

direction of gravity. Since WiSpeed measures the absolute moving distance of the

subject in the coverage area, the motion in the gravity direction would introduce

a bias into the distance estimation.

In summary, WiSpeed achieves a MAPE of 4.85% for device-free human

walking speed estimation and 4.62% for device-based speed estimation, which

outperforms the existing approaches, even with only a single pair of WiFi devices

and in severe NLOS conditions. Note that WiDar [78] can achieve a median speed

error of 13%, however, they require multiple pairs of WiFi devices and strong

line-of-sight operating condition, i.e., the object being tracked should be within

the fields of vision of both the transmitters and receivers.
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Figure 3.10: Error distribution of distance distance estimates under different

conditions.

3.3.4 Human Fall Detection

In this subsection, we show that WiSpeed can differentiate falling down

from other normal daily activities. We collect a total of five sets of data: (i) falling

to the ground, (ii) standing up from a chair, (iii) sitting down on a chair, and (iv)

bowing and picking up items from the ground, (v) walking inside the room. Each

experiment lasts for 8s. We collect 20 datasets of the falling down activity from

two subjects, and 10 datasets for each of the other four activities from the same

two subjects. The experiments are conducted in Room #5, and the WiFi Tx and

Rx are placed at Location Tx #1 and Rx #2 as shown in Fig. 3.5. Fig. 3.11 shows a

snapshot of speed and acceleration estimation results for different activities and
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subjects.

Realizing that the duration of a real-world falling down can be as short

as 0.5s and the human body would experience a sudden acceleration and then
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a deceleration [14], we propose two metrics for falling down detection: (i) the

maximum change in acceleration within 0.5s, denoted as ∆a, and (ii) the maxi-

mum speed during the period of the maximum change of acceleration, written as

vmax. Fig. 3.12 shows the distribution of (∆a,vmax) of all activities from the two

subjects. Obviously, by setting two thresholds: ∆a ≥ 1.6m/s2 and vmax ≥ 1.2m/s,

WiSpeed could differentiate falls from the other four activities except one outlier,

leading to a detection rate of 95% and zero false alarm, while [114] requires ma-

chine learning techniques. This is because WiSpeed extracts the most important

physical features for activity classification, namely, the speed and the change of

acceleration, while [114] infers these two physical values indirectly.

3.4 Discussion

In this section, we discuss the system parameter selections for different ap-

plications and their impact on the computational complexity of WiSpeed, and

the behavior of WiSpeed when multiple objects are present.

3.4.1 Tracking a Fast Moving Object

In order to track fast speed-varying object, we adopt the following equa-

tion with a reduced number of samples to calculate the sample auto-covariance

function:

γ̂G(τ,f ) =
1
M

T∑
t=T−M+1

(
G(t − τ,f )− Ḡ(f )

)(
G(t, f )− Ḡ(f )

)
, (3.17)
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where T is the length of the window, M is the number of samples for averaging,

and Ḡ(f ) is the sample average. 3.17 shows that to estimate a moving subject

with speed v, WiSpeed requires a time window with a duration T0 = 0.54λ
v + M

Fs

seconds. Essentially, WiSpeed captures the average speed of motion in a period of

time rather than the instantaneous moving speed. For instance, with v = 1.3m/s,

Fs = 1500Hz, fc = 5.805GHz, and M = 100, T0 is around 0.12s. In case that the

speed changes significantly within a duration of T0, the performance of WiSpeed

would degrade. To track the speed of a fast-varying moving subject, a smaller T0

is desirable, which can be achieved by increasing the channel sampling rate Fs or

increasing the carrier frequency to reduce the wavelength λ.

3.4.2 Computational Complexity

The main computational complexity of WiSpeed comes from the estimation

of the overall ACF ρ̂G(τ), giving rise to a total of FMT0Fs multiplications where

F is the number of available subcarriers. For motions with slow-varying speeds

such as walking and standing up, a lower channel sampling rate suffices which

could reduce the complexity. For example, in our experiments of human walking

speed estimation and human fall detection, Fs = 1500Hz, fc = 5.805GHz, F =

180, and M = 100, the total number of multiplications for WiSpeed to produce

one output is around 3 million. This leads to a computational time of 80.4ms on

a desktop with Intel Core i7-7500U processor and 16GB memory, which is short

enough for real-time applications.
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3.4.3 Impact of Multiple Moving Objects

WiSpeed is designed to estimate the speed of a single moving object in the

environment. If there exist multiple moving objects within the coverage of WiS-

peed, WiSpeed would capture the highest speed among the objects. This is be-

cause WiSpeed uses the first local peak of the obtained ACF differential to es-

timate the speed and the component of ACF contributed by the object with the

highest moving speed has the closest peak to the origin.

An experiment is conducted to illustrate the conjecture. Under Setting #4 as

described in Section 3.3.2, two subjects first walk along Route #3, and then, they

turn around at the same time and repeat the process along Route #4. For each

Route, Subject #1 walks with a lower speed and starts to walk earlier than Subject

#2, and Subject #2 walks with a higher speed and stops earlier than Subject #1.

Fig. 3.13 shows that WiSpeed first captures the walking speed of Subject #1 while

Subject #2 keeps static, and then, it captures the speed of Subject #2 when the

speed of Subject #2 exceeds that of Subject #1.

One potential solution for detecting the speeds of multiple moving objects

is to deploy multiple transmission pairs of WiSpeed. The coverage of each pair

can be tuned by varying the distance between the transmitter and receiver. The

environment can thus be divided into multiple small regions and it is reasonable

to assume that there is only a single person within each small region.
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3.5 Summary

In this chapter, we propose WiSpeed, a universal indoor speed estimation

system for human motions leveraging commercial WiFi, which can estimate the

speed of a moving object under either device-free or device-based condition.

WiSpeed is built upon the statistical theory of EM waves which quantifies the

impact of human motions on EM waves for indoor environments. We conduct

extensive experiments in a typical indoor environment which demonstrates that

WiSpeed can achieve a MAPE of 4.85% for device-free human walking speed

monitoring and a MAPE of 4.62% for device-based speed estimation. Meanwhile,

it achieves an average detection rate of 95% with no false alarms for human fall

detection. Due to its large coverage, robustness, low cost, and low computation-

al complexity, WiSpeed is a very promising candidate for indoor passive human

activity monitoring systems.

53



3.6 Appendix

3.6.1 Derivation of 3.10

First, we can rewrite G(t, f ) as

G(t, f ) =
∑

u∈{x,y,z}
Gu(t, f ) + ε(t, f ), (3.18)

where Gu(t, f ) , |Esu(f )|2 + 2Re
{
E∗su(f )

∑
i∈Ωd

Eiu(t, f )
}

+
∣∣∣∑i∈Ωd

Eiu(t, f )
∣∣∣2. Then,

the covariance of G(t, f ) can be written as

γG(τ,f ) = cov
(
G(t, f ),G(t − τ,f )

)
=

∑
u∈{x,y,z}

cov
(
Gu(t,f ),Gu(t − τ,f )

)
+cov

(
ε(t, f ), ε(t−τ,f )

)
=

∑
u∈{x,y,z}

cov
(
Gu(t, f ),Gu(t−τ,f )

)
+δ(τ)σ2(f ), (3.19)

which is due to Assumptions 2-3 and the assumptions of the noise term. Thus, in

the following, we only need to focus on the term γGu (τ,f ) , cov
(
Gu(t, f ),Gu(t −

τ,f )
)
, that is, for ∀u ∈ {x,y,z}, we have the equation 3.20.

γGu (τ,f ) =
〈
Gu(t, f )− 〈Gu(t, f )〉,Gu(t − τ,f )− 〈Gu(t − τ,f )〉

〉
=

〈
2Re

{
E∗su(f )

∑
i∈Ωd

Eiu(t, f )
}

︸                         ︷︷                         ︸
A1

+
(∣∣∣ ∑
i∈Ωd

Eiu(t, f )
∣∣∣2 − 〈∣∣∣ ∑

i∈Ωd

Eiu(t, f )
∣∣∣2〉)

︸                                         ︷︷                                         ︸
A2

,

2Re
{
E∗su(f )

∑
i∈Ωd

Eiu(t − τ,f )
}

︸                              ︷︷                              ︸
A3

+
(∣∣∣ ∑
i∈Ωd

Eiu(t − τ,f )
∣∣∣2 − 〈∣∣∣ ∑

i∈Ωd

Eiu(t − τ,f )
∣∣∣2〉)

︸                                                   ︷︷                                                   ︸
A4

〉
.(3.20)

We begin with the term
〈
A1,A3

〉
. For notational convenience, define Eiu(t, f ) ,
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ai(t) + jbi(t) and Esu(f ) , u + jv, for ∀i ∈ Ωd , ∀u ∈ {x,y,z}, and ai , bi , u, v are all

real. Then, we have

〈
A1,A3

〉
= 4

〈
u
∑
i∈Ωd

ai(t)+v
∑
i∈Ωd

bi(t),u
∑
i∈Ωd

ai(t−τ)+v
∑
i∈Ωd

bi(t − τ)
〉

= 4u2
∑
i∈Ωd

〈
ai(t),ai(t − τ)

〉
+4v2

∑
i∈Ωd

〈
bi(t),bi(t − τ)

〉
= 4(u2 + v2)

∑
i∈Ωd

〈
ai(t), ai(t − τ)

〉
, (3.21)

where we apply the assumption that the real and imaginary parts of the electric

field have the same statistical behaviors. At the same time, we have

cov(Eiu(t, f ),Eiu(t − τ,f ))

=
〈
Eiu(t, f ),Eiu(t − τ,f )

〉
=

〈
ai(t), ai(t − τ)

〉
+
〈
bi(t),bi(t − τ)

〉
= 2

〈
ai(t), ai(t − τ)

〉
. (3.22)

Thus, we have

〈
A1,A3

〉
= 2|Esu(f )|2

∑
i∈Ωd

cov
(
Eiu(t,f ),Eiu(t−τ,f )

)
. (3.23)

Next, we derive the term
〈
A1,A4

〉
as shown in 3.24. According to the integral

representation of the electric field in 3.3, we have

|Eiu(t, f )|2

=
"

4π
Fiu(Θ1)F

∗
iu(Θ2)exp(−j(~k(Θ1)−~k(Θ2))·~vit)dΘ1dΘ2, (3.25)
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〈
A1,A4

〉
= 2

〈
u

∑
i∈Ωd

ai(t)+v
∑
i∈Ωd

bi(t),
( ∑
i∈Ωd

ai(t−τ)
)2

+
( ∑
i∈Ωd

bi(t−τ)
)2
−〈

∣∣∣ ∑
i∈Ωd

Eiu(t−τ,f )
∣∣∣2〉〉

= 2
〈
u

∑
i∈Ωd

ai(t) + v
∑
i∈Ωd

bi(t),
( ∑
i∈Ωd

ai(t − τ)
)2

+
( ∑
i∈Ωd

bi(t − τ)
)2〉

= 2u
∑
i∈Ωd

〈
ai(t), a

2
i (t − τ)

〉
+ 2v

∑
i∈Ωd

〈
bi(t),b

2
i (t − τ)

〉
. (3.24)

and thus, the covariance between Eiu(t, f ) and |Eiu(t − τ,f )|2 can be expressed as

cov(Eiu(t, f ), |Eiu(t − τ,f )|2)

=
〈
Eiu(t, f )−〈Eiu(t,f )〉,|Eiu(t−τ,f )|2−〈|Eiu(t−τ,f )|2〉

〉
=

〈
Eiu(t, f ), |Eiu(t − τ,f )|2

〉
=

$
4π

〈
Fiu(Θ1),Fiu(Θ21)F

∗
iu(Θ22)

〉
exp(−j~k(Θ1)·~vit)

exp(−j(~k(Θ21)−~k(Θ22))·~vi(t−τ))dΘ1 dΘ21 dΘ22

=
∫

4π

〈
Fiu(Θ1), |Fiu(Θ1)|2

〉
exp(−j~k(Θ1) · ~vit)dΘ1

=
∫

4π

(〈
Re

{
Fiu(Θ1)

}
,Re

{
Fiu(Θ1)

}2〉
+

j
〈
Im

{
Fiu(Θ1)

}
,Im

{
Fiu(Θ1)

}2〉)
exp(−j~k(Θ1)·~vit)dΘ1

= 0, (3.26)

since 〈X3〉 ≡ 0 for any Gaussian random variable with zero mean. At the same

time, we have

〈
Eiu(t, f ), |Eiu(t − τ,f )|2

〉
=

〈
ai(t), a

2
i (t−τ)

〉
+j

〈
bi(t),b

2
i (t−τ)

〉
, (3.27)
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〈
A2,A4

〉
= cov

(( ∑
i∈Ωd

ai(t)
)2

+
( ∑
i∈Ωd

bi(t)
)2
,
( ∑
i∈Ωd

ai(t − τ)
)2

+
( ∑
i∈Ωd

bi(t − τ)
)2

)
= cov

(( ∑
i∈Ωd

ai(t)
)2
,
( ∑
i∈Ωd

ai(t − τ)
)2

)
+ cov

(( ∑
i∈Ωd

bi(t)
)2
,
( ∑
i∈Ωd

bi(t − τ)
)2

)
= 2

∑
i1,i2∈Ωd

cov
(
ai1(t)ai2(t), ai1(t − τ)ai2(t − τ)

)
= 2

∑
i∈Ωd

cov
(
a2
i (t), a2

i (t − τ)
)

+ 2
∑

i1,i2∈Ωd
i1,i2

cov
(
ai1(t)ai2(t), ai1(t − τ)ai2(t − τ)

)
.(3.29)

and thus, we have
〈
ai(t), a

2
i (t−τ)

〉
= 0. Plugging this result in 3.24, we can obtain

〈
A1,A4

〉
= 0. (3.28)

Similarly, we can also derive that
〈
A2,A3

〉
= 0. At last, we derive the term〈

A2,A4

〉
as shown in 3.29. Since for any two Gaussian random variables, X and

Y , with zero mean, the expectations can be evaluated by using of the following

relationship [72]:

〈
X2Y 2

〉
=

〈
X2

〉〈
Y 2

〉
+ 2

〈
XY

〉2
, (3.30)

then, we have, ∀i ∈Ωd ,

cov
(
a2
i (t), a2

i (t − τ)
)

=
〈
a2
i (t)−

〈
a2
i (t)

〉
, a2
i (t − τ)−

〈
a2
i (t − τ)

〉〉
=

〈
a2
i (t), a2

i (t − τ)
〉
−
〈
a2
i (t)

〉〈
a2
i (t − τ)

〉
= 2

〈
ai(t), ai(t − τ)

〉2

=
1
2

cov
(
Eiu(t, f ),Eiu(t − τ,f )

)2
. (3.31)
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For i1, i2 ∈Ωd and i1 , i2, we have

cov
(
ai1(t)ai2(t), ai1(t − τ)ai2(t − τ)

)
=

〈
ai1(t)ai2(t), ai1(t − τ)ai2(t − τ)

〉
=

〈
ai1(t)ai1(t − τ), ai2(t)ai2(t − τ)

〉
=

〈
ai1(t), ai1(t − τ)

〉〈
ai2(t), ai2(t − τ)

〉
=

1
4

cov
(
Ei1u(t, f ),Ei1u(t − τ,f )

)
cov

(
Ei2u(t, f ),Ei2u(t − τ,f )

)
. (3.32)

Therefore,
〈
A2,A4

〉
can be derived as

〈
A2,A4

〉
=

∑
i1,i2∈Ωd
i1≥i2

cov
(
Ei1u(t, f ),Ei1u(t − τ,f )

)
cov

(
Ei2u(t, f ),Ei2u(t − τ,f )

)
. (3.33)

Finally, we can obtain the result shown in 3.10.
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Chapter 4: Robust Whole-Home Motion Detection With a Single

WiFi Link

Motion detection plays a fundamental role in many applications, including

security surveillance, in-home activity monitoring, smart building analysis, etc.

Nowadays, motion detection systems are often employed for intruder monitor-

ing, elder care, and event detection, etc.

Unfortunately, compared with the Internet of Things advances for physical

environment sensing (e.g., temperature, humidity, pressure, etc), human motion

sensing technology is far from mature. Existing approaches based on cameras,

infrared, RFID, etc., not only require specialized hardware but also suffer from

several drawbacks that prevent them from ubiquitous adoption. For example, the

mainstream video-based methods, which dominate the current markets with a

number of products like Foscam, Dropcam, and Nest Cam, are vulnerable to non-

motion environmental changes in daytime (e.g., sunlight condition, air flow close

to heating or cooling vents), resulting in frequent false alarms. They cover only

limited Line-Of-Sight (LOS) areas. To achieve whole-home coverage, they resort

to multiple devices installed at different locations. In addition, a video-based

approach raises significant privacy concerns and is not feasible for ubiquitously
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passive motion sensing.

The WiFi-based approach naturally circumvents the shortcomings such as

directive coverage and privacy intrusiveness that are inherent in previous meth-

ods.

In this chapter, we present the model, design, and implementation of WiDe-

tect, the first practical whole-home motion detection system that achieves almost

zero false alarms using only a single WiFi link. The key breakthrough lies in

our investigation from a statistical perspective towards hundreds of scattering

multipath components indoors. To the best of our knowledge, we are the first

to explore the statistical behaviors, rather than geometrical properties, of CSI for

motion sensing. Accordingly, we build a statistical model that comprehensively

leverages all existing multipath components for motion detection.

The rest of this chapter is organized as follows. Section 4.1 introduces the

system model, and Section 4.2 presents the design and implementation of WiDe-

tect. Section 4.3 shows the extensive experimental evaluations of WiDetect. Sec-

tion 4.4 summarizes this chapter.

4.1 System Model

To avoid the impact of synchronization errors on the measured CSI H̃(t, f ),

in the following, we only use the power response G(t, f ), defined in Section 2.1,
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which takes the form

G(t, f ) , |H̃(t, f )|2

= |H(t, f )|2 + 2Re{n∗(t, f )H(t, f )

exp(−j(α(t) + β(t)f ))}+ |n(t, f )|2

, |H(t, f )|2 + ε(t, f )

= µ(t, f ) + ε(t, f ), (4.1)

where µ(t, f ) denotes the part contributed by the signal propagations, and ε(t, f )

denotes the additive measurement noise.

According to the discussions in Section 3.2, the ACF of the term µ(t, f ) can

be approximated as

ρµ(τ,f ) ≈ 1

E2
d (f )

∑
u∈{x,y,z}

 ∑
i∈Ωd

2E2
s,u(f )E2

i (f )
3

ρEi,u (τ,f )

+
∑

i1,i2∈Ωd
i1≥i2

E2
i1

(f )E2
i2

(f )

9
ρEi1,u (τ,f )ρEi2,u (τ,f )

. (4.2)

where E2
i (f ) denotes the radiation power of the i-th scatterer, E2

s,u(f ) denotes the

radiation power contributed by all the static scatterers along the direction û, and

E2
d (f ) denotes the variance of µ(t, f ).

The impact of the motion of each individual dynamic scatterer on the prop-

agation of EM waves has been quantified in 4.2 based on the ACF of the power of

the received electric field, and the influence of each dynamic scatterer on ρµ(τ,f )

is determined by the power of the electric field contributed by that scatterer. An

important observation is that when τ → 0, we have ρµ(τ,f )→ 1. This is because
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ρEi,u (τ,f ), for ∀i ∈Ωd and ∀u ∈ {x, y, z}, is continuous at point τ = 0. In addition,

the variance E2
d (f ) measures the power reflected by all the dynamic scatterers

and it can be expressed as a function of the power reflected by each individual

dynamic scatterer:

E2
d (f ) =

∑
u∈{x,y,z}

 ∑
i∈Ωd

2E2
s,u(f )E2

i (f )
3

+
∑

i1,i2∈Ωd
i1≥i2

E2
i1

(f )E2
i2

(f )

9

. (4.3)

As µ(t, f ) is due to the propagations of EM waves and ε(t, f ) is due to the

imperfect measurements of CSI, it can be assumed that µ(t, f ) and ε(t, f ) are un-

correlated with each other, i.e., cov(µ(t1, f ), ε(t2, f )) = 0, for ∀t1, t2, Therefore, the

auto-covariance function of G(t, f ) can be expressed as

γG(τ,f ) , cov
(
µ(t, f ) + ε(t, f ),µ(t − τ,f ) + ε(t − τ,f )

)
= E2

d (f )ρµ(τ,f ) + σ2(f )δ(τ), (4.4)

where δ(·) is Dirac delta function. The corresponding ACF of G(t, f ) can thus be

expressed as

ρG(τ,f ) =
E2
d (f )

E2
d (f ) + σ2(f )

ρµ(τ,f ) +
σ2(f )

E2
d + σ2(f )

δ(τ). (4.5)

When there exists motion and τ → 0, with the knowledge of ρµ(τ,f ) → 1, we

know ρG(τ,f ) → E2
d (f )

E2
d (f )+σ2(f )

> 0; when there is no motion and τ → 0, we have

ρG(τ,f ) = 0 since E2
d (f ) = 0. Therefore, limτ→0ρG(τ,f ) is a good indicator of

the presence of motion, which is only determined by E2
d (f ) incurred by motion

and the power of the measurement noise σ2(f ). We will exploit this important

observation in the following design of WiDetect.
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4.2 Design of WiDetect

In this section, we present how to design a whole-home motion detection

system using commercial WiFi based on the proposed model. Specifically, we

propose novel motion statistics as a measure of the likelihood of the presence of

motion and accordingly design a simple yet powerful motion detector.

4.2.1 Motion Statistics

Note that when time lag τ approaches 0 and the environment is dynamic,

according to (5.8), for each subcarrier f ∈ F , we have

lim
τ→0

ρG(τ,f ) = lim
τ→0

E2
d (f )

E2
d (f ) + σ2(f )

ρµ(τ,f ) =
E2
d (f )

E2
d (f ) + σ2(f )

. (4.6)

If the environment is static, we have limτ→0ρG(τ,f ) = 0, since ρµ(τ,f ) = 0 for

∀τ , 0. Therefore, the quantity limτ→0ρG(τ,f ) is a good indicator of the presence

of the motion in the environment, which is only determined by the power of

motion E2
d (f ) and the power of measurement noise σ2(f ) and is independent of

the moving speed of the dynamic scatterers. However, limτ→0ρG(τ,f ) cannot be

measured directly due to the limitation of the channel sampling rate Fs. Instead,

we use the quantity ρG
(
τ = 1

Fs
, f

)
as an approximation of limτ→0ρG(τ,f ) as long

as Fs is large enough, and the motion statistic φ(f ) on subcarrier f is thus defined

as

φ(f ) , ρG

(
τ =

1
Fs
, f

)
, (4.7)
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which can be estimated from the power response measurements G(t, f ) as

φ̂(f ) =
γ̂G

(
τ = 1

Fs
, f

)
γ̂G(τ = 0, f )

, (4.8)

where γ̂G(τ,f ) is the sample covariance. When there is no motion in the envi-

ronment, we have φ(f ) = 0; when there is motion, we have φ(f ) ∈ (0,
E2
d (f )

E2
d (f )+σ2(f )

)

and φ(f ) approaches to
E2
d (f )

E2
d (f )+σ2(f )

only when both the sampling rate Fs and the

number of samples are sufficiently large.

Assume that the channel is sampled with equal intervals and there are T

measurements in total. Without loss of generality, we can arrange the measured

power responses as G(t, f ), for t = 0, 1
Fs
, ..., T−1

Fs
and f = 1, ..., F. When there is

no motion in the environment, it is already shown in Section 3.2 that the power

response on each subcarrier f follows a Gaussian distribution with a constant

mean, i.e., G(t, f ) ∼N (µ(f ),σ2(f )), where we define the constant as µ(f ) , µ(t, f ),

for ∀t. Furthermore, when T is large enough, the sample ACF ofG(t, f ) can be ap-

proximated as a Gaussian random variable with mean − 1
T and 1

T as the variance,

i.e., ρ̂G(τ,f ) ∼ N (− 1
T ,

1
T ) for ∀τ , 0. Specifically, for the case τ = 1

Fs
, the distri-

bution of the estimation of the proposed motion statistic φ(f ) is thus obtained

as φ̂(f ) ∼ N (− 1
T ,

1
T ). Since the noise term ε(t, f ) is independent for different sub-

carriers, the estimated motion statistics φ̂(f ), ∀f ∈ F , are thus independent and

identically distributed random variables. Note that the distribution of φ̂(f ) is

only a function of the sample size T and is not affected by the variance of mea-

surement noise σ2(f ). Therefore, the variation of σ2(f ) due to the imperfection

of the circuits will not affect the statistical behaviors of φ̂(f ) when no motion is
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present in the environment.

4.2.2 Detection Rule

Motion detection can be formulated as a hypothesis testing problem:

H0 : φ̂(f ) ∼N (− 1
T
,

1
T

), ∀f ∈ F ,

H1 : φ̂(f )→
E2
d (f )

E2
d (f ) + σ2(f )

> 0, ∀f ∈ F

where H0 denotes the null hypothesis when there is no motion in the monitored

environment, and H1 denotes the alternative hypothesis when motion happens.

We define the average of motion statistics as ψ̂ = 1
F

∑F
f =1 φ̂(f ). Since φ̂(f )’s

are independent and identically distributed for different subcarriers, the distri-

bution of the sample average of φ̂(f ) over F subcarriers can be approximated as

ψ̂ ∼N (− 1
T ,

1
FT ), that is, the variance of ψ̂ is inversely proportional to the number

of samples T and the number of subcarriers F. At the same time, since the mo-

tion statistic φ̂(f ) is a positive number when there is motion in the environment,

a simple detection rule is proposed for the detection of the presence of motion:

given a preset threshold η, if ψ̂ is greater than or equal to η, than WiDetect re-

ports a detection of motion; otherwise, no motion is detected.

Thus, under the hypothesis H0 and a given preset threshold η, the proba-

bility of false alarm can be approximated as

P
(
ψ̂ > η

)
=Q

(√
FT

(
η +

1
T

))
, (4.9)

where Q(·) denotes the Q-function, which is the tail probability of the standard

normal distribution, i.e., Q(x) = 1
2π

∫∞
x

exp(−u2

2 )du.
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For the detection probability of WiDetect, it is hard to characterize it the-

oretically since φ̂(f ) is determined by E2
d (f ), that is dependent on the location

of motion, and σ2(f ), that is dependent on the working condition of the WiFi

chipsets. However, when there is no motion, the statistical behavior of ψ̂ is only

a function of F and T , which is independent of the variance of the measurement

noise σ2(f ).

4.3 Experimental Evaluation

To evaluate the performance of WiDetect, a prototype based on a pair of commer-

cial WiFi devices is built to detect human motion in two different environments

as shown in Fig. 4.1. The carrier frequency is set to 5.805GHz, and the band-

width is set to 40MHz. Each WiFi device is equipped with 3 omnidirectional

antennas, and each antenna-pair link has a total of 114 subcarriers. To avoid the

correlations among adjacent subcarriers, we take one subcarrier from every two

adjacent ones and only use 58 subcarriers for each link, considering the fact that

the CSI of DC subcarrier is not accessible.

4.3.1 Validation of the Theoretical Analysis

We first verify the theoretical analysis described in Section 4.1, and then verify

the performance of the proposed detection rule of WiDetect using the same WiFi

channel. The sampling rate Fs is set to 180 Hz, and the Tx and Rx of WiDetect

are placed at location Tx #2 and Rx #2, respectively, as shown in Fig. 4.1(a). One
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Figure 4.1: Floorplans of two different environments.

subject first walks inside the conference room for 30 minutes, and then walks

outside the conference room but within the square A − B − C − D indicated in

Fig. 4.1(a) for another 30 minutes. At last, we collect a set of one-hour CSI data

when the environment is static and no one is inside the office.

We calculate the false positive rate using the experimental CSI data and

compare with the theoretical false alarm probability according to (4.9), and the

comparison is shown in Fig. 4.2(a) and Fig. 4.2(d) for different sample sizes T

and different number of subcarriers F, respectively, for varying η. The theoret-

ical curves match well with the experimental ones when η is greater, and the

gap at smaller η is due to the correlation among different subcarriers, which we

assume not existing in the theoretical analysis. As for the detection probability,

Fig. 4.2(b) shows that increasing T improves the detection probability for a fixed

η and Fig. 4.2(e) indicates that increasing F has no effect on the detection proba-

bility. The ROC curves in Fig. 4.2(c) and Fig. 4.2(f) show that the performance of
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WiDetect improves as T and F increase.

From the analysis in Section 4.2, a higher sampling rate Fs is preferred,

and the higher the sampling rate, the larger the motion statistics can be obtained

when motion exists. The normalized histograms of ψ̂ in the above-mentioned

three scenarios with varying channel sampling rate Fs are also shown in Fig. 4.3.

As we can observe from the figure, the average of the motion statistics ψ̂ increas-

es as the sampling rate increases when there exists motion, which facilitates the

detection of the presence of the motion. However, In practice, a higher sampling

rate would incur a larger interference to the existing WiFi network. As a result of

the trade-off, we set channel sampling rate as Fs = 30Hz in the following experi-

ments.

Furthermore, when motion occurs more closely to the one of the devices, ψ̂

becomes larger as well. This is because the energy E2
d of the reflected EM waves

off the moving human body is larger due to a smaller path loss when the human

body is close to the transmission pair.

In the following experiments, the parameters η = 0.1, T = 60 are applied

and all the available subcarriers from the 9 links are utilized in WiDetect.

4.3.2 Coverage Test

In this experiment, to test the coverage of WiDetect, one subject walks in differ-

ent regions of an office and a single house as shown in Fig. 4.1, respectively, and

the positions of the Tx and Rx are also indicated in the floorplan. We define the
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Figure 4.2: Performance of the proposed WiDetect for different window size T

and number of subcarriers F.

empirical detection probability (EDP) of a region as the ratio between the dura-

tion when motion is detected and the total time when motion is present in that

region. The corresponding results are summarized in Fig. 4.4(a) and Fig. 4.4(b),

which show that the motion occurring in most of areas of the office and the house

can be detected by the deployed single pair of WiFi devices except for a few room-

s far away from the transmission pair. In some regions such as Room #1 and #2

in Fig. 4.4(a), motion is not detected all the time. However, as long as there is at

least one motion detected along the subject’s moving trajectory, the presence of

that moving subject can be detected.
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Figure 4.3: The normalized histogram of ψ̂ under three conditions: motion in-

side of the room, motion outside of the room and no motion indoors with T = 60

and F = 58. The sampling rate of (a) - (d) is set to 30 Hz, 60 Hz, 90 Hz, and

180 Hz, respectively.
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(a) The coverage of WiDetect in an office.
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Figure 4.4: The coverage of WiDetect in two different environments.

Table 4.1: Empirical detection probability (EDP) for Different Routes

Route #1 #2 #3 #4

EDP 0.90 0.98 0.83 1

4.3.3 Intrusion Test

In this experiment, one subject tries to “break” into the house following four

different routes as indicated in Fig. 4.1(b), and then leaves the house following

the same route. The subject spends about one minute in the house for each route.

The empirical detection probability for the four routes are shown in Tab. 4.1. The

results show that the presence of the “intruder” can be detected most of the time

for all the routes.
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Figure 4.5: Experimental results for intrusion tests with different preset routes.

4.3.4 Long-Term Test

To evaluate the false alarm rate, we run WiDetect in the same single house for one

week and compare with the detection that deploys 4 PIRs in different areas of the

house. A participant is asked to enter the house every day and keeps a record of

his activity as the groundtruth. The detection results for both WiDetect and the

4 PIRs are shown in Fig. 4.6, where an even decision index 0 indicates that no

motion is detected and 1 indicates that motion is detected. It shows that 99.68%
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Figure 4.6: Experimental results for long-term test compared with PIRs.

percent of the recorded motion has been successfully detected by WiDetect, while

only 86.80% percent of the motion is detected by the PIRs. No false alarms have

been observed for both of the two systems during the whole week. The results

show that WiDetect can achieve comparable detection performance as the PIRs

while having a much larger coverage. In addition, WiDetect achieves a much

higher time resolution in motion detections compared with the commercial PIRs.

Furthermore, WiDetect is also installed in an apartment with a couple liv-

ing normally inside for one month. To show the patterns of daily activities, only

the percentage of the motion detected within each hour is shown in Fig. 4.7. As

we can see from the figure, It turns out that the lifestyle of the couple can be

clearly revealed from the motion detection results of WiDetect.
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Figure 4.7: Motion monitoring for one month.

4.4 summary

In this work, we present the model, design and implementation of WiDe-

tect, the first practical whole-home motion detection system that achieves almost

zero false alarms using only a single WiFi link. A statistical model that com-

prehensively leverages all existing multipath components for motion detection

is proposed and the relationship between the detection rate and false alarm rate

for motion detection is also derived. Extensive experiments show its superiority

over existing motion detection approaches. With extremely high sensitivity and

fairly low false alarms, we believe that the proposed WiDetect can be a promising

practical technology for ubiquitous device-free motion detection, allowing for a

range of critical applications for smart life.
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Chapter 5: Sleep Staging via Respiratory Rate Monitoring

Sleep plays a vital role in an individual’s health and well-being, both men-

tally and physically. It is well recognized that sleep quantity and quality is funda-

mentally related to health risks like cardiovascular disease, stroke, kidney fail-

ure, diabetes, and adverse mental conditions, etc. Unfortunately, in a modern

society, quite a lot of people suffer from sleep disorders. As recently reported,

10% of the population suffers from chronic insomnia (which is even higher a-

mong elders) [71], and 1/3 of Americans do not get sufficient sleep [22]. Sleep

monitoring emerges as an effective mechanism to manage the morbidity and mor-

tality associated with sleep related disorders, in addition to providing insight on

people’s general wellbeing.

Over the past few decades, various sleep monitoring solutions have been

proposed. Typically they measure sleep time, recognize different sleep stages,

e.g., wake, REM (Rapid Eye Movement) and NREM (Non-REM), and assess an

individual’s sleep quality. The medical gold standard is Polysomnography (PSG),

which monitors various physiological parameters such as brain activity, respira-

tion, and body movement by a number of wired sensors attached to the patient.

Albeit accurate and comprehensive, PSG is usually expensive and cumbersome.
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Invasive sensors may cause sleep difficulties, limiting PSG to clinical usage for

confirmed patients. Other approaches including photoplethysmography (PPG)

and actigraphy (ACT) require users to wear dedicated sensors during sleep. Bal-

listocardiogram (BCG) needs to instrument the mattress with an array of EMFi

sensors to measure ballistic force. These approaches provide suitable solution-

s for those who need special cares but are less-than-ideal for the public due to

their cost and complexity. Recent efforts in mobile computing tackle in-home

sleep monitoring using smartphones and wearables. These methods, however,

only provide coarse-grained, less accurate measurements and fail to monitor vi-

tal signs like respiratory rate. In addition, mobiles and wearables are undesirable

for elders and those with dementia.

Different from prevailing solutions, in this chapter, we envision a future

smart home that monitors daily sleep in a ubiquitous, non-invasive, contact-

less, and accurate manner, without instrumenting the body or the bed. While

early works have investigated the feasibility of RF-based breathing estimation

and sleep monitoring, they either rely on specialized hardware like FMCW radar

[10,43,142], or only work in controlled environments [60,61,112,116]. Solutions

based on dedicated radios are usually expensive and not ubiquitously applica-

ble. Solutions using commodity devices typically require the user to lie still on

a bed with radios exceedingly close to his/her chest. These solutions also fail in

presence of extraneous motions or in Non-Line-Of-Sight (NLOS) scenarios. In

addition, none of them can identify different sleep stages due to their limited

accuracy in breathing estimation. Such limitations prevent them from becoming
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practical in-home sleep monitoring application.

In this chapter, we first present the system model of SMARS in Section 5.1,

and then, present the proposed instantaneous breathing rate estimator and the

design of SMARS in Section 5.2 and Section 5.3, respectively. Lastly, extensive

experimental evaluations will also be presented in Section 5.4. Section 5.5 sum-

marizes this chapter.

5.1 System Model

In the following, we will review the model of CSI, especially under the set-

ting of vital sign monitoring.

5.1.1 Modeling CSI

Given a wireless transmission pair each equipped with omnidirectional an-

tennas, the CSI for the fading multipath channel at time t is expressed as

H(t, f ) =
∑
l∈Ω

al(t)exp(−j2πf τl(t)), (5.1)

where al(t) and τl(t) denote the complex amplitude and propagation delay of the

l-th multipath component (MPC), respectively, and Ω denotes the set of MPCs.

The propagation delay is a function of the propagation distance: τl(t) = dl(t)
c ,

where c is the speed of light and dl(t) is the traveled distance of the l-th MPC. f

denotes the particular frequency where the channel is measured. For example,

in an OFDM-based communication system, such as WiFi, LTE, 5G, etc., the CSI

is measured at each subcarrier with frequency f .
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Figure 5.1: The normalized CSI power response matrix with the presence of

breathing signals. To facilitate the visualization, G(t, f ) is smoothed and nor-

malized to the same amplitude over time for each subcarrier.

CSI depicts how radio signals propagate from a transmitter (Tx) to a receiv-

er (Rx), e.g., reflected or scattered off all reflectors in the space such as the walls,

furniture, human bodies, etc., and is highly sensitive to environmental pertur-

bations. Any body motions, including minute chest and abdomen movements,

will alter the paths of signal propagation and thus modulate the wireless signal

before it arrives at the receiver, allowing SMARS to capture these motions and

monitor human’s sleep from the measured CSI time series.

5.1.2 Modeling Motion in CSI

Existing works usually adopt simplified models that make unrealistic as-

sumptions of indoor multipath propagation. Most of them assume one dominate

mirror reflection path from human body under 2-ray models [108, 140] that are

developed for and only hold in outdoor environments [93], and accordingly at-

78



Tx

Rx

Static path
Dynamic path
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tempt to geometrically interpret multipath constructive and destructive interfer-

ences. In reality, however, signals bouncing off human body may reflect, scatter,

and diffract before finally superimposed at the receiver, producing up to hun-

dreds of multipaths indoors [32], as illustrated in Fig. 5.2. As a result, existing

works can only work in clear LOS scenarios with strong breathing in proximity,

where a dominant reflection path exists. A more realistic model is demanded for

practical motion and breathing sensing.

Consider the case when there is a static person breathing indoors with a

cycle of Tb seconds. As shown in Fig. 5.2, the MPCs can be classified into two

sets: Ωs(t) and Ωd(t), where Ωs(t) denotes the set of time-invariant MPCs, e.g.,

reflected off the floor and walls, and Ωd(t) denotes the set of time-varying M-

PCs, e.g., reflected off the human body. Due to the periodic chest or abdomen

movement during normal breathing, the propagation distance dl(t) of each MPC

∀l ∈Ωd(t) changes periodically with the same cycle as the breathing movement,

i.e., dl(t + Tb) = dl(t). Since the amplitude of breathing movement is small, the
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change in the propagation distance for each dynamic path is also small. There-

fore, it is reasonable to assume that both the sets Ωs(t), Ωd(t) and the complex

amplitude of each MPC al(t) are time-invariant within a sufficiently short period.

Thus the CSI can be written as

H(t, f ) =
∑
ls∈Ωs

als exp(−j2πf
dls
c

)

+
∑
ld∈Ωd

ald exp(−j2πf
dld (t)
c

)

, Hs(f ) +Hd(t, f ), (5.2)

whereHs(f ) andHd(t, f ) denote the contribution of the time-invariant MPCs and

time-varying MPCs, respectively.

In real measurements, H(t, f ) is corrupted by the phase noise, caused by

the timing and frequency synchronization offsets, and the additive thermal noise

n(t, f ), and the reported CSI H̃(t, f ) can be expressed as

H̃(t, f ) = exp(−j(α(t) + β(t)f ))H(t, f ) +n(t, f ), (5.3)

where α(t) and β(t) are the random initial and linear phase distortions at time t,

respectively. Define the channel power response G(t, f ) as the square of the magni-

tude of H̃(t, f ):

G(t, f ) , |H̃(t, f )|2

= |H(t, f )|2 + 2Re{n∗(t, f )H(t, f )

exp(−j(α(t) + β(t)f ))}+ |n(t, f )|2

, |H(t, f )|2 + ε(t, f ) (5.4)
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Figure 5.3: The illustrations of ACFs under LOS and NLOS scenarios.

where the superscript ∗ denotes the operator of complex conjugate, the operator

Re{x} denotes the real part of x, and ε(t, f ) is defined as the noise term, which

can be approximated as additive white Gaussian noise (AWGN) with variance

σ2(f ) and is statistically independent of H(t, f ) [138]. From (5.2) and the fact

that dl(t + Tb) = dl(t), ∀l ∈ Ωd , we have |H(t + Tb, f )|2 = |H(t, f )|2. Thus, G(t, f ) is

modeled as a noisy periodic signal with a period of Tb.

As shown in Fig. 5.1, we measure the CSI power response G(t, f ) using a

pair of commercial WiFi devices for both the two cases, when a subject is breath-

ing in a LOS and a NLOS location with respect to the transmission pair, respec-

tively. For the LOS case, the strength of the measured breathing signal is strong

and the periodic pattern can be easily observed by most subcarriers as shown in

Fig. 5.1(a). For the NLOS case as shown in Fig. 5.1(b), however, there are no ap-

parent periodic patterns that can be observed since the breathing signal is much

weaker.

Note that G(t, f ) is a result of numerous multipath components [32] adding

up together in a complex way expressed in (5.2). As shown in Fig. 5.1(a), both the
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Figure 5.4: Breathing rate estimation from ACFs.

amplitudes and the phases of the breathing signal measured by CSI are different

for different subcarriers. Accordingly, it is reasonable to express |H(t, f )|2 in the

following form:

|H(t, f )|2 = g(f )b(t −∆tf ), (5.5)

where b(t) denotes a periodic stationary breathing signal with zero mean, which

is related to the movement of the chest and abdomen, and g(f ) and ∆tf stand

for the gain and the random initial phase of the breathing signal measured at the

frequency f , respectively.

Combining (5.4) and (5.5), the received signal at subcarrier with frequency

f is expressed as

G(t, f ) = g(f )b(t −∆tf ) + ε(t, f ). (5.6)

Breathing estimation is then conducted based on the power response G(t, f ),

which circumvents the use of noisy CSI phase and the usually handcrafted phase

cleaning step.
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5.2 Instantaneous Breathing Rate Estimation

5.2.1 Estimating Breathing Rate

Observing that breathing signal is periodic, previous methods usually per-

form frequency analysis on the CSI data collected in a time window to estimate

breathing rate [60, 61, 116]. These methods require a large delay (e.g., more than

30 seconds) to gain better frequency resolution, and cannot observe immediate

breathing rate changes, since breathing rate is assumed to be constant during the

time window. Differently in SMARS, we adopt a statistical approach by exam-

ining the autocorrelation function (ACF) of CSI power response G(t, f ), which

significantly shortens the time delay and produces instantaneous estimation.

ACF Calculation. The ACF for a stationary signal x(t) is defined as follows:

ρ(τ) =
cov[x(t),x(t + τ)]

cov[x(t),x(t)]
, (5.7)

where τ denotes the time lag, and cov[·] denotes the covariance operator. Thus,

the ACF of G(t, f ) is computed as

ρG(τ,f ) =
g2(f )

g2(f ) + σ2(f )
ρb(τ) +

σ2(f )
g2(f ) + σ2(f )

δ(τ), (5.8)

where ρb(τ) is the ACF of b(t), and δ(τ) denotes the Dirichlet function. Define

k(f ) , g2(f )
g2(f )+σ2(f ) as the normalized channel gain, and for τ , 0, we have

ρG(τ,f ) = k(f )ρb(τ). (5.9)

In practice, the sample ACF is used instead [95], which is an estimate of the
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ACF, and we use n(τ,f ) to stand for the estimation noise of the ACF, i.e.,

ρ̂G(τ,f ) = k(f )ρb(τ) +n(τ,f ). (5.10)

As shown in Fig. 5.3, when there is a breathing signal, the ACF will exhibit a

definite peak at a certain delay (although the peak value may differ over different

subcarriers), contributed by the periodic breathing motions. On the contrary, no

prominent peaks can be observed on any subcarrier when there is no breathing

(i.e., no periodic motions). In principle, as shown in Fig. 5.4, a time delay slightly

longer than one breathing cycle (e.g., 5 to 7 seconds) is sufficient to pick up the

first breathing rate and later on instantaneous estimates can be produced every

one second.

Motion Statistic. Prior to breathing estimation, a key step is to examine

whether there exists any extra large motions. As mentioned previously, breath-
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ing will easily be buried in other large body motions, and should not be estimated

in such case. As shown in Fig. 5.3(a) and (b), the first time lag of the ACF of a

subcarrier, named as the motion statistic in the following, indicates the strength

of total motions, including periodic and non-periodic motions, existing in the

monitored area. A very large motion statistic indicates the presence of large mo-

tions, such as walking and standing up, and a very small motion statistic that is

close to 0 indicates that there is no significant motion in the environment. When

there is only breathing motion in the monitored area, the motion statistic of each

subcarrier shows the sensitivity of that subcarrier to the breathing motion.

BreathingDetection and Estimation. Based on the calculated ACF, SMARS

first detects the presence/absence of breathing and, if present, it then estimates

the breathing rate. As shown in Fig. 5.5, for a subcarrier with frequency f , we ex-

tract the following five features from ρ̂G(τ,f ) for breathing detection, in addition

to the motion statistic:

1. Peak prominence: the vertical distance between a peak value and the largest

height of the adjacent valleys, which measures the likelihood of the exis-

tence of the peak;

2. Peak width: the horizontal distance between the two adjacent valleys, which

also measures the likelihood of the existence of a peak;

3. Peak amplitude: the height of a peak, which measures the amplitude of the

ACF of the breathing signal and will be comparable to the value of motion

statistic in presence of only breathing motion;
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4. Motion interference ratio: the ratio between the motion statistic and peak

amplitude, which measures the degree of the interference of the non-breathing

motion, such as body movements, walking, standing up, typing keyboard,

etc., in the environment;

5. Peak location: the horizontal distance between the origin and the peak (i.e.,

time lags), which measures the breathing cycle.

In general, the larger the motion statistic, peak prominence, peak width,

peak amplitude and the smaller the motion interference ratio, the more likely is

the presence of the breathing signal. In SMARS, the above six features are joint-

ly fused to determine the existence of a breathing signal and the corresponding

breathing rate. Once there is a breathing signal, the breathing rate can be es-

timated as BR = 60/τ̂ bpm, where τ̂ is the location (i.e., time lags) of the first

dominant peak of ρ̂G(τ,f ).
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5.2.2 Maximizing Breathing Signal

In practice, the SNR of the breathing signal on each subcarrier modulated

by minute breathing motions is very low, especially when the person being moni-

tored is far away from the link, covered by quilts, or behind the wall. As shown in

Fig. 5.3, the SNR of the ACF for NLOS breathing is significantly lower than that

for LOS scenarios. Previous approaches attempt to select a set of best subcarriers

among others, or take an ensemble average over all subcarriers to improve the

quality of the breathing signal strength [60, 61, 112, 116]. However, we make the

following observations that demonstrate the flaws of these methods: 1) Any sin-

gle subcarrier does not produce the optimal estimation, no matter what criteria

is used for selection. 2) CSI amplitude or its variance is not an effective metric

for subcarrier selection. The subcarrier with largest amplitude or variance usu-

ally does not capture the breathing signal to the best. 3) Due to frequency offsets

across different subcarriers, CSI amplitudes responding to the person’s breath-

ing are unsynchronized and contain uncertain offsets (Fig. 5.1). Hence the CSI

on different subcarriers cannot be directly averaged, which does not necessarily

amplify, yet may instead rule out breathing signals. As a consequence, previous

approaches do not produce reliable, not to mention optimal estimation.

To boost the breathing SNR, SMARS devises a novel scheme to combine the

breathing signals measured on multiple subcarriers in an optimal manner. Our

design is based on Maximal Ratio Combining (MRC), a classical diversity com-

bining method in telecommunications that optimizes SNR by combining received
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Figure 5.7: Example of MRC scheme for breathing signal maximization. Subcar-

rier 1, 2 and 3 rank the first, sixth and tenth respectively among the 114 subcar-

riers from a link according to k̂(f ).

signals on multiple antennas [16].

MRC Model. We first review the basic concept of MRC in telecommunica-

tions in the following. Let vector x = [x1, . . . ,xN ]T denote the received signal at N

antennas, which can be written as x = hu +n, where h = [h1, . . . ,hN ]T denotes the

constant channel gains, u denotes the transmitted random signal with unit pow-

er, and n = [n1, . . . ,nN ]T stands for the identically and independently distributed

(I.I.D.) additive white Gaussian noise (AWGN) with variance σ2. Let r denote the

linearly combined signal:

r = wT x = wThu +wTn, (5.11)

where w = [w1, . . . ,wN ]T denotes the normalized weight of each received signal at

each antenna, that is, ‖w‖ = 1. The SNR, denoted as γ , of the output signal r can
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be denoted as

γ =
E[|wThu|2]
E[|wTn|2]

=
|wTh|2

σ2 . (5.12)

By the Cauchy-Schwarz inequality, we have |wTh|2 ≤ ‖w‖‖h‖. The equality is

achieved when w is linearly proportional to h, i.e., w∗ = h/‖h‖, and the maximum

of output SNR can be obtained as the sum of the SNR of received signals at each

antenna, i.e., γ = γ1 + · · ·+γN , where γi = |hi |2/σ2.

MRC on Breathing Signal. In the context of breathing estimation with

CSI, the breathing signal b(t) is measured by multiple subcarriers. The SNR of

the breathing signal, denoted as γ(f ), measured on subcarrier with frequency f

at time t is defined as

γ(f ) =
E[(g(f )b(t −∆tf ))2]

E[ε2(t, f )]

=
g2(f )E(b2(t −∆tf ))

σ2(f )
, (5.13)

where E[·] stands for the expectation operator. For convenience, the average pow-

er of the breathing signal b(t) is normalized to unit power by definition, that is,

E[b2(t)] = 1. Thus we have γ(f ) = g2(f )/σ2(f ).

When applying MRC to exploit subcarrier diversity to maximize the overall

SNR of the measured breathing signal optimally, however, we face three funda-

mental challenges:

1. The variance of the noise term in (5.6) is σ2(f ), which is unknown and

dependent on the frequency f , while MRC assumes the same variance of

the noise for all the receiving elements;
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2. The offset of the breathing signal ∆tf in (5.6) is incoherent for different

subcarriers, while MRC requires that the transmitted signal is the same for

all receiving elements;

3. The channel gain g(f ) in (5.6) is unknown, while MRC relies on the channel

gain to compute the optimal combining weights for the receiving elements.

Fortunately, by using ACF instead of G(t, f ), SMARS successfully trans-

forms the breathing signal into an appropriate form to apply MRC for optimal

subcarrier combining.

Recall Section 5.2.1, when the breathing signal is extremely weak, i.e., k(f )

is close to zero, G(t, f ) is dominated by the white noise and thus, each tap of its

ACF follows a zero-mean normal distribution with equal variance 1/N [95], i.e.,

n(τ,f ) ∼ N (0,1/N ), where N is the number of samples used in the ACF estima-

tion. Thus the variance of n(τ,f ) is identical for different subcarriers, solving the

first challenge.

As shown in Fig. 5.7, the ACF ρb(τ) are inherently synchronized over all

subcarriers and is independent of the time origin. In other words, different sub-

carriers experience the same signal ρb(τ), which addresses the second challenge.

Regarding the third challenge, the channel gain k(f ) can be estimated as

follows. For the case of single subject breathing, recall (5.9), when τ → 0, we

have

lim
τ→0

ρG(τ,f ) = k(f ) lim
τ→0

ρb(τ). (5.14)

Since the movement of chest and abdomen is continuous, the breathing signal

90



0 20 40 60 80 100

Variance of amplitude

Motion statistics

Subcarrier index

Selected 
best subcarrier

Mean of amplitude

Figure 5.8: Comparison of the subcarrier selection schemes. The best subcarriers

selected by the mean and variance are merely ranked 113-th and 95-th, respec-

tively, when considering their motion statistics.

b(t) is also continuous in time and we have limτ→0ρb(τ) = 1, which leads to

limτ→0ρG(τ,f ) = k(f ). As a result, when the channel sampling rate Fs is high

enough, the quantity ρ̂G(τ = 1/Fs, f ) is close to the channel gain k(f ). That is,

k(f ) can be estimated as

k̂(f ) = ρ̂G(τ = 1/Fs, f ), (5.15)

which is the same as the motion statistic. This is a key feature that underpins

the use of MRC; otherwise one can still combine different subcarriers, but not

optimally. To conclude, MRC can now be applied to the ACF of the breathing

signal to maximize the SNR.

Maximizing Breathing SNR. We now maximize the SNR of the ACF of the

breathing signal, instead of the SNR of the breathing signal, as in (5.5), which
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cannot be directly maximized since the channel gain and noise cannot be mea-

sured in CSI.

Recall (5.10) and that the variance of the noise term is approximated as 1/N ,

and thus, the SNR of the ACF of each subcarrier can be estimated asNk̂2(f ). Since

the SNR of the breathing signal after MRC is the additive of the SNR measured

by each subcarrier, the SNR of the combined ACF is expressed as

γ =N
∑
f ∈F

k̂2(f ). (5.16)

Given a fixed number of subcarriers and sample number of N , it will be max-

imized by setting the optimal weight w?(f ) to ρ̂G(τ = 1/Fs, f ) in the following

linear combination: ∀τ ,

ρ̂b(τ) =
∑
f ∈F

w?(f )ρ̂G(τ,f )

=
∑
f ∈F

ρ̂G(τ = 1/Fs, f )ρ̂G(τ,f ). (5.17)

Here ρ̂b(τ) is the ACF of the combined signal.

Fig. 5.6 summarizes the proposed scheme for breathing signal extraction

and maximization. The left part of the figure shows the decomposition of the

measured ACF of the channel power response when a person breathes normally

in the monitored area, and the right part shows the MRC scheme for boosting

the SNR of the ACF of the breathing signal. Fig. 5.7 depicts an illustrative ex-

ample based on real-world measurements, where the SNR of the breathing sig-

nal is amplified by 2.5 dB compared to that obtained by the subcarrier with the

largest variance and by 3.7 dB compared to that obtained by directly averaging
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Figure 5.9: Empirical CDFs for the motion ratio and breathing ratio under two

statuses: wake and sleep.

all subcarriers. Fig. 5.8 further demonstrates the gains of our ACF-based MRC

scheme and confirms our observations in Section 5.2.2 that amplitudes and their

variances are not effective metrics for subcarrier selection. As seen, the subcarri-

er that is the most sensitive to motion (i.e., holding the largest motion statistic)

could experience very small amplitude and low variance.

Given the combined breathing signal with maximized SNR, SMARS then

performs breathing detection and estimation, as described in Section 5.2.1, based

on ρ̂b(τ), the combined ACF, instead of ρ̂G(τ,f ) on a specific subcarrier, as illus-

trated in Fig. 5.4.

5.3 Sleep Monitoring

5.3.1 Sleep Stage Recognition

SMARS divides the continuous motion and breathing estimates of overnight

sleep into 300-second epochs. For each epoch, SMARS recognizes three different
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sleep stages, i.e., wake, REM sleep and NREM sleep. The staging is performed in

two steps: first, SMARS differentiates wake from sleep mainly by body motions;

second, REM and NREM stages are further identified during sleep period.

Sleep/Wake Detection. The key insight to identify the sleep and wake s-

tates is that, more frequent body movements will be observed when a subject is

awake, while mainly breathing motion presents when he/she is asleep. SMARS

utilizes the motion statistic defined in Section 5.2.1 to distinguish between the

two states, since bodily movements are significantly stronger than breathing mo-

tions, and both of them can be easily captured and quantified by it.

Specifically, we define motion ratio as the percentage of time when the mo-

tion statistic, ρ̂b(1/Fs), is larger than a preset threshold. Thus for the wake state, a

higher motion ratio is expected, as shown in Fig. 5.9(a). Similarly, we also define

breathing ratio as the percentage of time when the breathing signal is detected.

Since bodily movements destroy the periodicity of the environmental dynamics,

the breathing ratio will be lower when a subject is awake, as shown in Fig. 5.9(b).

Combining the above two features, SMARS labels an epoch as sleep only

when the motion ratio is smaller than the predefined threshold and the breath-

ing ratio is larger than another threshold. Both thresholds are empirically de-

termined as in Fig. 5.9. Since our model statistically considers all multipaths

indoors, the values of both thresholds generalize to different environments and

subjects.

REM/NREM Recognition. SMARS exploits the following clinical facts [13]

and accordingly extracts two distinctive features from breathing rate estimates
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Figure 5.10: Features for REM-NREM classification. (a) The histogram of the

breathing estimates of a whole night; (b) the distributions of breathing rate devi-

ation and variability for NREM and REM sleep (each dot represents for an epoch).

for REM/NREM stages classification: Breathing rate is usually faster and exhibits

higher variability and irregular patterns for REM stage, while it is more stable

and slower for NREM stage.

Since NREM stage constitutes the majority (about 75% to 80%) of total sleep

for typical healthy adults (Fig. 5.11) [13], the average breathing rate during N-

REM stage can be estimated by localizing the peak of the histogram of overnight

breathing rate estimates, as shown in Fig. 5.10(a). On this basis, we define breath-

ing rate deviation, the distance between the estimated average NREM breathing

rate and the 90%-tile of the breathing rate for each epoch, to quantify the devia-

tion of the breathing rate from the baseline during NREM stage.

To extract the variability of the breathing rate for each epoch, we first es-

timate the trend of breathing rate by applying a low pass filter to the breathing

estimates of the whole night, and obtain the detrended breathing rate estimates

by subtracting the trend from the original breathing rate estimates. Then, the
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Figure 5.11: An example of SMARS monitoring results

breathing rate variability is defined and calculated for each epoch as the variance

of the detrended estimates normalized by the length of epoch.

Fig. 5.10(b) visualizes the distribution of the proposed two features under

NREM and REM sleep, respectively. As seen, the majority of the breathing rate

variability and breathing rate deviation of NREM sleep are much smaller than those

of REM sleep. Based on these two features, we train a support vector machine

(SVM) [20], a widely used binary classifier, to differentiate between REM and

NREM sleep.

To be more specific, the radial basis function (RBF) kernel is used in the

SVM classifier since the boundary of the two clusters appears to be nonlinear.

Since the typical proportion of REM sleep is only about 20% of the total sleep

time, the cost of misclassification for the two classes are also adjusted accord-

ing to their proportion of appearance, that is, the cost of misclassifying REM as

NREM is four times larger than that of misclassifying NREM as REM.
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5.3.2 Sleep Quality Assessment

When we obtain the estimates of wake, REM, and NREM stages of an overnight

sleep, we can assess the elusive sleep quality for a user by following standard ap-

proach used in clinical practice. In particular, we calculate the sleep score for

each night based on the recognized sleep stages as follows. Let TN , TR and TW

denote the durations (measured in hours) of NREM sleep, REM sleep and wake,

respectively. Since there is no standard formula for sleep score calculation, a

simple formula for the sleep score is applied in SMARS [4] [50]:

S = 10 ∗ TN + 20 ∗ TR − 10 ∗ TW , (5.18)

which means that longer sleep time and REM duration, less awake time will re-

sult in better sleep score. According to recent research [57], REM sleep is crucial

for mental recovery, and thus a higher weight has been assigned to REM sleep.

SMARS envisions a practical sleep monitoring for daily in-home use. Al-

though it does not make much sense to compare the sleep score among different

users, the trend or history of the sleep score for a particular user would reflect

the changes of his/her sleep quality. We believe such results provide clinical-

ly meaningful evidences to help diagnose sleep disorders and manage personal

health, in an attractive way.
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5.4 Experimental Evaluation

In this section, we present the system implementation and experimental

evaluation of SMARS. We first conduct field studies to evaluate the performance

of SMARS and compare it with medical PSG devices as well as other commercial

solutions. We then present overnight case studies in 6 homes to show SMARS’s

capability of monitoring and staging sleep in real-world scenarios.

5.4.1 Implementation

We implement a comprehensive system on compact embedded devices for

rapid real-world deployment. The devices run Linux with the 3.18.71 kernel

and are equipped with commodity Atheros WiFi chipsets. We modify the driver

to expose CSI, which is reported with 114 subcarriers for channels on 5.8GHz

WiFi band. Our system consists of a Tx that by default transmits standard WiFi

packets at a rate of 30Hz and an Rx that captures CSI of every packet it received

from the Tx. Unless specified otherwise, the Tx is equipped with 2 antennas and

the Rx has 3 antennas.

We implement our system in C++, which runs in realtime on the Rx device,

calculating the breathing rates and motion statistics as a function of time and

sending the data back to a central server via Internet for visualization and sleep

staging. The code generates new estimates of both motion and breathing every

1 second. To comprehensively evaluate the performance, we also implement a

separate realtime version of Matlab code, in the same logic as the C++ code,
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which runs on a Windows laptop.

5.4.2 Methodology

Data Collection. Our data collection involves two parts: First, we carry

out extensive real-world case studies by deploying our system in 6 homes (in-

cluding typical houses and apartments) with 6 willing participants. We have 1

female participant and 5 males, aging from 12 to 31 and weighted from 115 to

195 lbs. In total, we collect 32 nights (a total of about 234 hours) of sleep data.

Two of the users contribute more than a week’s data. A typical setting of our

devices is shown in Fig. 5.2, which will vary from one night to another and from

one home to another. The receiver is put close to the bed, while the transmit-

ter is placed within the same room for some settings and outside the bedroom

for some others. For every night, the users turn on the system for monitoring

when they go to bed and stop it after they get up. During sleep, the subjects

wear their daily nightgowns and tuck in typical covers like blankets and quilts

as they usually do. In addition, the subjects sleep in a natural way, meaning that

they are not instructed to lie in a certain position for a certain time period. In-

stead, they could move their bodies and change sleep postures at will. Normal

environmental changes occur regarding the bedroom settings including bedding,

tables, closets, etc, during long-term data collection. We note that our study is

conducted in real-world scenarios without making any impractical assumption-

s, completely different from the controlled and short experiments by previous
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works [60, 61, 104, 112, 116, 131, 140]. All human subjects involved in the data

collection were approved by our IRB.

Second, we conduct experiments in our lab, a typical office building, to s-

tudy the coverage of SMARS’s motion and breathing detection and further look

into the factors which impact the performance. The building contains 10 room-

s separated by standard dry walls and furnished with desks, chairs, couches,

shelves and computers. During the experiments, there are normal wireless traf-

fics in the air.

To obtain groundtruth labels of sleep stages, we resort to the medical gold

standard PSG devices [2]. Participants willing to collect PSG data are dressed

with a number of contact sensors that record breathing and sleeping data. During

sleep, these sensors and our system are simultaneously recording measurements.

In total, we have five nights of PSG data. The PSG data (mainly EEG) is annotated

with different sleep stages, according to the AASM specification [1]. Breathing

rate is derived by the nasal airflow sensor of PSG.

Open dataset. We also validate our system on a public open dataset (de-

noted as POD in the following) [41], which was recently released by a real-world

comparative study [42] on four state-of-the-art RF-based respiratory monitoring

systems. The dataset contains 160 hours of overnight sleep data measured from

twenty patients, including 11 male participants and 9 females with respective

median ages of 55 and 60 years old. The CSI is measured from a 2 × 2 MIMO

system at a sampling rate of 9.9 Hz, with 114 subcarriers on each antenna pair.

The PSG data are clinically labeled with detailed sleep stages. In this dataset, all
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the sensing coverage.

four RF testbeds are positioned in an optimal way so that the link line between

Tx and Rx is perpendicular to and on top of the subject’s chest. Further details

about the dataset can be found in [41, 42].

Comparison. As our system outperforms the state-of-the-art RF-based sleep

monitoring works in terms of accuracy, coverage and robustness to diverse work-

ing conditions, we choose to compare with commercial products using radar and

contact sensors. Specifically, we select ResMed, which employs low-power radar

technology, and EMFIT [4], which embeds an array of EMFi sensors into a mat
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that underpins the mattress. The list prices of ResMed (Sleepscore Max) and

EMFIT are $149 and $299, respectively. For comparison, we monitor the partic-

ipant’s sleep with multiple systems simultaneously and compare the overnight

outputs of individual technologies. ResMed only works in a short range of up

to 2 meters. Thus we place it 1 meter away from the subject’s chest during our

experiments. As ResMed only provides stage data but no raw breathing data,

we only compare sleep staging performance with it. As for the open dataset, we

compare the performance of SMARS with the results reported in [42].

5.4.3 Breathing Estimation Performance

5.4.3.1 Overall Performance

We study and compare the overall performance of SMARS with the state-

of-the-art works and commercial products.

Accuracy. We evaluate the accuracy of breathing rate estimation on both

our own measurements and the open dataset. As shown in Fig. 5.12, evaluation

based on our own data demonstrates that SMARS achieves a remarkably high ac-

curacy. In particular, the median error is 0.47 bpm and the 95%-tile error is only

2.92 bpm, using a sampling rate of 30Hz. Fig. 5.12 also shows the results based

on the open dataset, which demonstrates similar performance with a median er-

ror of 0.66 bpm and 95%tile error of 3.79 bpm. The accuracy is slightly worse

since a lower sampling rate of 9.9 Hz is used in the open dataset. As comparison,

the real-world study in [42] reported that the best existing system still produces
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a considerable median error of 2∼3 bpm and a 95%-tile error of about 10 bpm

under the same settings.

Besides exceeding existing research proposals, our solution also produces

considerably better performance than commercial products based on contact sen-

sors. Specifically, as shown in Fig. 5.13, SMARS outperforms EMFIT by 0.39 bpm

in median error and 1.86 bpm in 95%-tile error. The result is somewhat counter-

intuitive since contact sensors should be better in principle. The sensor array of

EMFIT, however, is vulnerable to sleeping position and posture, leading to occa-

sionally unreliable estimates during sleep. In contrast, as detailed subsequently,
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SMARS is more robust regarding sleep position.

Instantaneity. Past works on breathing estimation cannot capture instanta-

neous respiratory rate changes. A person’s breathing rate, however, could change

dramatically, especially during REM stage (as measured by PSG in Fig. 5.11).

Thus it is interesting to understand SMARS’ capability of track instantaneously

varying breathing rate, which is critical to sleep staging. For this purpose, we

compare the respective estimation accuracy in REM stage that usually observes

fast changing breathing and NREM stage that normally observes relatively stable

breathing. As illustrated in Fig. 5.14, SMARS maintains consistently high accu-

racy, regardless of stable or varying breathing. Although the estimation errors

slightly increase with fast changing breathing (during REM stage), the median

error is under 0.7 bpm and, more importantly, the changing trend is precisely

captured (See upper right of Fig. 5.11). SMARS outputs one estimate per second

in realtime. It takes 0.14 s to process one-second data on a laptop with Intel Core

i7 processor and 16 GB memory (Matlab version).

Coverage. SMARS enlarges the sensing coverage to an unparalleled level

thanks to its MRC scheme. To quantitatively understand the effective coverage,

we conduct experiments in a typical office building. We put a Tx and a Rx, sepa-

rate by 8.0 m, and monitor a subject’s breathing when he sits at locations that are

from 1 to 10 meters away to the link line. We use detection rate, defined as the

percentage of time when the breathing rate is successfully picked up to the total

amount of sleep time, to evaluate the coverage. As shown in Fig. 5.15, SMARS

achieves a detection rate above 90% when the subject is 8 meters away and still
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retains 88.7% and 65% at distances of 9m and 10m, respectively. Note that for

distances larger than 6 m, the subject is in another room and has no LOS view

to the Tx-Rx link. The coverage is even better than systems using FMCW radar

that covers 8m [10], not to mention previous WiFi-based approaches that only

work when the Tx and Rx are both positioned next to a person with the formed

link line fairly close to the person’s chest. Although the coverage would be slight-

ly different under different settings (e.g., device placement), our measurements

already demonstrate extraordinary coverage that is more than sufficient for prac-

tical applications.

Robustness. With the goal of staging sleep, it is critical to continuously

monitor breathing throughout the whole night. As verified by [42], however,

previous works have frequent periods when breathing cannot be reliably detect-

ed. Thus, in addition to the accuracy, we would like to understand how robust

SMARS is to natural overnight sleep, during which the subject would change pos-

tures and move body. As shown in Fig. 5.18, SMARS consistently reliably detects

breathing for 6 different subjects at 6 homes that differ not only in device settings

but also in building structure, layout, bedding, and furnitures, etc. In particular,

even in NLOS condition for user 5 and 6 who place the Tx inside the closed clos-

et and outside the bedroom respectively, SMARS yields more than 80% detection

rates. Furthermore, Fig. 5.19 depicts that breathing detection rate for two users’

one week data, which demonstrates robustly high detection rate over different

nights of natural sleeping. These results suggest that our model is independent

of environments and subjects, and is capable of adapting to various scenarios.
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5.4.3.2 Parameter Study

In the following, we examine the key factors that impact the performance

of SMARS’ breathing estimation.

Impact of MRC. MRC is a key module that improves the accuracy, cover-

age, and robustness of SMARS. We examine the benefits of MRC by comparing

with an Equal Gain Combining (EGC) policy, which basically averages over all

subcarriers. As depicted in Fig. 5.15, MRC remarkably boosts the detection rate

in NLOS scenarios (cases with distances >7m in Fig. 5.15) by more than 65%

compared to EGC. Fig. 5.16 further demonstrates significant gains brought by

MRC on overnight data. By using MRC, SMARS consistently maintains high

detection rates of >90%, regardless of sampling rates of 30Hz, 20Hz, or 10Hz.

By comparison, the detection rate of EGC is less than 70% when sampling rate

is 30Hz. While MRC largely improves the detection rate and thus extends the

coverage and facilitates the robustness, it provides marginal improvement in ac-

curacy. Specifically, the median accuracy is improved by 0.1 bpm with MRC

compared to EGC. The reason is that, as long as breathing can be detected, our

ACF-based approach will yield accurate estimate.

Impact of Sampling Rate. We study the impacts of sampling rate on S-

MARS. As shown in Fig. 5.12, the median accuracy of breathing estimation de-

creases from 0.47 bpm to 0.85 bpm when the sampling rate decreases from 30Hz

to 10Hz. The detection rate, as shown in Fig. 5.16, does not change too much

with respect to sampling rate. Note that both the accuracy and detection rate on
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Figure 5.20: Confusion matrix of ResMed, SMARS, and EMFIT.

the open dataset with 9.9Hz sampling rate are better than our self-collected data.

This is because the open dataset was collected in an optimal setting for previ-

ous works, i.e., the Tx and Rx were placed exceedingly close to each other and

to the subject, while we deploy the devices in a natural and comfortable manner

during our data collection. To conclude, a higher sampling rate will yield better

performance while 30Hz or even 10Hz is adequate in practice.

Impact of Effective Bandwidth. We study the impacts of frequency diversi-

ty attributed by antennas via effective bandwidth defined as We ,NsB, where Ns

denotes the number of spatial streams between the Tx and Rx, and B denotes the

bandwidth of each stream (40MHz in our system). Fig. 5.17 shows that with the

increasing of effective bandwidth, the median error and 95%-tile error decrease,

and at the same time, the detection rate increases. The results suggest that a
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2×2 MIMO system (i.e., 160MHz effective bandwidth) is sufficient for SMARS to

achieve a remarkable performance.

5.4.4 Sleep Staging Performance

In this section, we evaluate the performance in sleep staging and compare

with commercial products. We further carry out a two-week case study for long-

term daily sleep monitoring.

5.4.4.1 Sleep Stage Recognition Accuracy

We summarize the accuracy of SMARS compared to two commercial prod-

ucts EMFIT and ResMed in Tab. 5.1. Fig. 5.20 shows the more detailed confusion

matrices. As seen, SMARS yields an overall accuracy of 88.4% in sleep stag-

ing, outperforming commercial solutions EMFIT and ResMed, which use contact

sensors and UWB radar respectively. In particular, SMARS achieves a recogni-

tion accuracy of 87%, 89% and 87% for wake/NREM/REM detection respective-

ly, which is better than EMFIT and ResMed. Note that EMFIT performs staging

with additional heart rate measurements, ResMed further incorporates micro-

phones (from their smartphone App), while SMARS purely relies on breathing

and motion estimation.

Regarding the public open dataset, SMARS does not perform sleep staging

well for those patients, although remarkable accuracy in breathing estimation is

achieved. This is because, for those patients with severe diseases, such as sleep
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Table 5.1: Comparison of different sleep monitoring systems.

Overall Wake Sleep REM NREM

SMARS 88.4% 86.7% 96.3% 86.9% 89.1%

EMFIT 69.8% 76.7% 98.2% 46.3% 74.9%

ResMed 81.2% 52.6% 95.3% 78.9% 87.2%

apnea, their breathing pattern is not only affected by sleep stages but also by the

inherent, erratic chest movement and abnormal respiration caused by the dis-

eases. Fig. 5.21 illustrates the overnight breathing, both the ground truths and

our estimates, for an elderly patient. As seen, the breathing patterns fluctuate

and do not exhibit distinguishable patterns we observed in healthy subjects as

in Fig. 5.11. As a consequence, the natural relationship between breathing pat-

terns and sleep stages no longer holds for this patient. In the future, we intend

to study SMARS on a broad spectrum of patients, ranging from normals to those

with chronic sleep disorders. From these studies, we hope to unveil the capabil-

ities of SMARS as a diagnostic instrument, and also as a supplementary health

monitoring technology.

5.4.4.2 Long-term Daily Sleep Assessment

To demonstrate the capability of SMARS for daily sleep monitoring, we car-

ry out a two-week case study for a specific user. Every night, the participant

sleeps with our system running. During the data collection, the bedroom envi-
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ronments, device locations, in addition to the bedding and his nightclothes will

change from night to night. Here we assess the user’s sleep quality by calculating

the sleep score as specified in (5.18). Fig. 5.22 illustrates the historical scores over

the two-week term. Based on these quantitative sleep quality statistics, SMARS

offers useful data for personal healthcare.

5.5 Summary

This chapter presents the design, implementation, and evaluation of S-

MARS, the first practical sleep monitoring system that exploits ambient radio

signals to recognize sleep stages, without instrumenting users’ body or the bed.

SMARS achieves this goal by monitoring breathing and body movements during

sleep accurately and instantaneously, to a level of performance previously only

attainable with expensive specialized infrastructure. A key enabler behind is a

statistical model that considers all reflection and scattering multipaths indoors

without making unrealistic assumptions. We implement SMARS on commer-

cial WiFi chipsets and validate its performance by extensive experiments with

32 nights data collected in 6 homes. We believe SMARS takes a promising step

towards practical in-home sleep monitoring.
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Chapter 6: Indoor Tracking: a Time-Reversal Focusing Ball Ap-

proach

With the proliferation of the Internet of Things (IoT) applications, Indoor

Positioning and Indoor Navigation (IPIN) has received an increasing attention in

recent years. Technavio forecasts the global IPIN market to grow to USD 7.8 bil-

lion by 2021 [3], and more than ever before, enterprises of all sizes are investing

in IPIN technology to support a growing list of applications, including patient

tracking in hospitals, asset management for large groceries, workflow automa-

tion in large factories, navigation in malls, appliance control, etc.

Although Global Positioning System (GPS) can achieve good accuracy with

a low cost in outdoor real-time tracking, such a good balance between the cost

and performance has not been realized for indoor tracking yet [25].

In this chapter, we propose WiBall, a wireless system for indoor tracking,

that can work well in both none-line-of-sight (NLOS) and line-of-sight (LOS) s-

cenarios and is robust to environmental dynamics as well. WiBall estimates the

incremental displacement of the device at every moment, and thus, it can track

the trace of the device in real time. WiBall adopts a completely new paradigm in

the moving distance estimation, which is built on the proposed discovered physi-
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cal phenomenon of radio signals. In the past, the moving distance estimation can

be done by analyzing the output of IMU that is attached to the moving object.

Accelerometer readings are used to detect walking steps and then, the walking

distance can be estimated by multiplying the number of steps with the stride

length [105]. However, pedestrians often have different stride lengths that may

vary up to 40% even at the same speed, and 50% with various speeds of the same

person [130]. Thus calibration is required to obtain the average stride lengths for

different individuals, which is impractical in real applications and thus has not

been widely adopted. The moving distance can also be estimated by analyzing

radio signals that are affected by the movement of the device. Various methods

have been proposed based on the estimation of the maximum Doppler frequen-

cy, such as level crossing rate methods [73], covariance based methods [85] [120],

and wavelet-based methods [68]. However, the performance of these estimators

is unsatisfactory in practical scenarios. For example, the approach in [120] can

only differentiate whether a mobile station moves with a fast speed (≥ 30km/h)

or with a slow speed (≤ 5km/h).

In WiBall, a new scheme for moving distance estimation based on the time-

reversal (TR) resonating effect [58] [102] is proposed. TR is a fundamental phys-

ical resonance phenomenon that allows people to focus the energy of a trans-

mitted signal at an intended focal spot, both in the time and spatial domains,

by transmitting the TR waveform. The research of TR can be traced back to the

1950s when it was first utilized to align the phase differences caused by multi-

path fading during long-distance information transmissions. The TR resonating
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effect was first observed in a practical underwater propagation environment [84]

that the energy of a transmitted signal can be refocused at the intended loca-

tion because by means of TR the RX recollects multipath copies of a transmitted

signal in a coherent matter.

In this chapter, we present a new discovery that the energy distribution of

the TR focusing effect exhibits a location-independent property, which is only re-

lated to the physical parameters of the transmitted EM waves. This is because the

number of multipath components (MPC) in indoors is so large that the random-

ness of the received energy at different locations can be averaged out as a result

of the law of large numbers. Based on this location-independent feature, WiBall

can estimate the moving distance of the device in a complex indoor environment

without requiring any pre-calibration procedures. To cope with the cumulative

errors in distance estimation, WiBall incorporates the constraints imposed by the

floorplan of buildings and corrects the cumulative errors whenever a landmark,

such as a corner, hallway, door, etc., is met. Combining the improved distance

estimator and the map-based error corrector, the proposed WiBall is shown to be

able to achieve decimeter-level accuracy in real-time tracking regardless of the

moving speed and environment.

The rest of the chapter is organized as follows. Section 6.1 introduces the

system model of the proposed WiBall and also the TR principle for speed es-

timation. Section 6.2 presents an IMU-based moving direction estimator and a

map-based localization corrector, which can correct the accumulated localization

error. Experimental evaluation is shown in Section 6.3 and Section 6.4 summa-
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rizes this chapter.

6.1 System Model

In this section, we first introduce the overall system architecture of WiBall

and the TR radio system. Then, we derive the analytical normalized energy dis-

tribution of the TR focal spot. We show that the normalized energy distribution

is location-independent and can be used to estimate distance. Last, we discuss

the TR-based distance estimator.

6.1.1 Overview of WiBall

WiBall consists of a transmitter (TX) broadcasting beacon signals periodi-

cally to all the RXs being tracked. WiBall estimates the paths that the RX travels,

i.e., the location of the RX ~x at time ti is estimated as

~x(ti) =~x(ti−1) + ~∆(ti), (6.1)

where ~x(ti−1) represents the location of the RX at the previous time ti−1, and ∆(ti)

is the incremental displacement. The magnitude of ~∆(ti), denoted as d(ti), and

the angle of ~∆(ti), denoted as θ(ti), correspond to the moving distance and the

change of moving direction of the RX from ti−1 to ti , respectively. As shown in

Fig. 6.1, the location of the RX at time tn is computed based on the accumulative

displacements from time t0 to tn and the initial start point ~x(t0).

WiBall estimates the moving distance d(ti) based on the TR resonating ef-

fect, which can be obtained from the CSI measurements at the RX. The estimation
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of θ(ti) is based on the angular velocity and gravity direction from IMU, which is

a built-in module for most smartphones nowadays.

X(t0)

Origin

(t0)

X(t1)

X(t2)

X(tn-1)

X(tn)

(t0)

(t1)

Figure 6.1: Illustration of the tracking procedure.

6.1.2 TR Radio System

Consider a rich-scattering environment, e.g., an indoor or metropolitan

area, and a wireless transceiver pair each equipped with a single omnidirectional

antenna. Given a large enough bandwidth, the MPCs in a rich-scattering envi-

ronment can be resolved into multiple taps in discrete-time and let h(l; ~T → ~R0)

denote the l-th tap of the channel impulse response (CIR) from ~T to ~R0, where ~T

and ~R0 denotes the coordinates of the TX and RX, respectively. In the TR trans-

mission scheme, the RX at ~R0 first transmits an impulse and the TX at ~T captures

the CIR from ~R0 to ~T . Then the RX at ~T simply transmits back the time-reversed

and conjugated version of the captured CIR, i.e., h∗(−l; ~R0→ ~T ), where ∗ denotes

complex conjugation. With channel reciprocity, i.e., the forward and backward

channels are identical [119], the received signal at any location ~R when the TR
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waveform h∗(−l; ~R0→ ~T ) is transmitted can be written as [31]

s(l; ~R) =
L−1∑
m=0

h(m; ~T → ~R)h∗(m− l; ~R0→ ~T ), (6.2)

where L is the number of resolved multipaths in the environment. When ~R =

~R0 and l = 0, we have s(0; ~R) =
∑L−1
m=0 |h(m, ~T → ~R0)|2 with all MPCs added up

coherently, i.e., the signal energy is refocused at a particular spatial location at

a specific time instance. This phenomenon is termed as the TR spatial-temporal

resonating effect [135] [127].

To study the TR resonating effect in the spatial domain, we fix time index

l = 0 and define the TR resonating strength (TRRS) between the CIRs of two

locations ~R0 and ~R as the normalized energy of the received signal when the TR

waveform for location ~R0 is transmitted:

η(h(~R0),h(~R))

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
s(0; ~R)√

L−1∑
l1=0
|h(l1; ~T → ~R0)|2

√
L−1∑
l2=0
|h(l2; ~T → ~R)|2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

, (6.3)

where we use h(~R) as an abbreviation of h(l; ~T → ~R), l = 0, ...,L−1, when ~T is fixed.

Note that the range of TRRS is normalized to be [0,1] and TRRS is symmetric, i.e.,

η(h(~R0),h(~R)) = η(h(~R),h(~R0)).

We built a pair of customized TR devices to measure the TRRS at differ-

ent locations, as shown in Fig. 6.2(a). The devices operate at f0 = 5.8GHz ISM

band with 125MHz bandwidth, and the corresponding wavelength is λ = c/f0 =

5.17cm. The RX is placed on a 5 cm× 5 cm square area above a channel probing
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(a) TR prototype and channel probing platform.
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(c) TRRS in time domain.

Figure 6.2: TR prototype and the environment of the measurement, the TRRS

distribution in the spatial domain, and the normalized energy of the received

signal at the focal spot ~R0 in the time domain.

table with 0.5cm resolution, and the center of the square is set to be the focal

spot ~R0. The TRRS distribution around ~R0 in the spatial domain and the nor-

malized received energy at ~R0 in the time domain are shown in Fig. 6.2(b) and

Fig. 6.2(c), respectively. As we can see from the results, the received energy is

concentrated around ~R0 both in spatial and time domains almost symmetrically,

which shows that a bandwidth of 125MHz is able to achieve the TR resonating

effect in a typical indoor environment.
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6.1.3 Energy Distribution of TR Focal Spot

Assume that all the EM waves propagate in a far-field zone, and then each

MPC can be approximated by a plane EM wave. For the purpose of illustration,

the receive antenna is placed in the origin of the space and each MPC can be

represented by a point in the space whose coordinate is determined by its angle

of arrival and propagation distance, e.g., the point A, as shown in Fig. 6.3, where

r stands for the total traveled distance of the MPC, θ denotes the direction of

arrival of the MPC, and G(ω) denotes the power gain with ω = (r,θ). In a rich-

scattering environment, we can also assume that ω is uniformly distributed in

the space and the total number of MPCs is large. When a vertically polarized

antenna is used, only the EM waves with the direction of electric field orthogonal

to the horizontal plane are collected. Then, the received signal is just a scalar

sum of the electric field of the impinging EM waves along the vertical direction.

In the sequel, without loss of generality, we only consider the TRRS distribution

in the horizontal plane since its distribution in the vertical plane is similar.

For a system with bandwidth B, two MPCs would be divided into different

taps of the measured CIR as long as the difference of their time of arrival is larger

than the sampling period 1/B, that is, any two MPCs with a difference of their

traveled distances larger than c/B can be separated. With a sufficiently large

system bandwidth B, the distance resolution c/B of the system is so small that

all of the MPCs with significant energy can be separated in the spatial domain,

i.e., each significant MPC can be represented by a single tap of a measured CIR.
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Figure 6.3: Illustration of the polar coordinates in the analysis.

Assume that the distribution of the energy of each MPC is uniform in direction

θ, i.e., the distribution of G(ω) is only a function of r. Then the energy of MPCs

coming from different directions would be approximately the same when the

number of MPCs is large. Mathematically, for any point ~R in a source-free region

with constant mean electric and magnetic fields, the channel impulse response

when a delta-like pulse is transmitted can be written as [31]

h(t; ~T → ~R)

=
∑
ω∈Ω

G(ω)q(t−τ(ω))ei(2πf0(t−τ(ω))−φ(ω)−~k(ω)·~R), (6.4)

where q(t) is the pulse shaper, τ(ω) = r/c is the propagation delay of the MPC ω,

f0 is the carrier frequency, Ω is the set of MPCs, φ(ω) is the change of phase due
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to reflections and ~k(ω) is the wave vector with amplitude k = c/f0. Accordingly,

the l-th tap of a sampled CIR at location ~R can be expressed as

h(l; ~T → ~R)

=
∑

τ(ω)∈[lT− T2 ,lT+ T
2 )

G(ω)q(∆τ(l,ω))ei(2πf0∆τ(l,ω)−φ(ω)−~k(ω)·~R) (6.5)

where T is the channel measurement interval and ∆τ(l,ω) = lT − τ(ω) for l =

0,1, ...,L − 1. When the TR waveform h∗(−l; ~R0 → ~T ) is transmitted, the corre-

sponding received signal at the focal spot ~R0 can be written as

s(0; ~R)

=
L∑
l=1

∣∣∣∣∣∣∣∣∣
∑

τ∈[lT− T2 ,lT+ T
2 )

G(ω)q(∆τ(l,ω))ei(2πf0∆τ(l,ω)−φ(ω))

∣∣∣∣∣∣∣∣∣
2

. (6.6)

(6.6) shows that the MPCs with propagation delays τ(ω) ∈ [lT − T2 , lT + T
2 ) for each

l would be merged into one single tap, and the signals coming from different taps

would add up coherently while the MPCs within each sampling period T would

add up incoherently. It indicates that the larger the bandwidth, the larger the TR

focusing gain that can be achieved, since more MPCs can be aligned and added

up coherently. When the bandwidth is sufficiently large, the received signal at

each point ~R can be approximated as

s(0; ~R) ≈
L∑
l=1

|G(ω)q(∆τ(l,ω))|2e−i~k(ω)·(~R−~R0). (6.7)

When a rectangular pulse shaper is used, i.e., q(t) = 1 for t ∈ [−T2 ,
T
2 ) and q(t) = 0

otherwise, under the above symmetric scattering assumption the received signal
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s(0; ~R) can thus be approximated as

s(0; ~R) =
∑
ω∈Ω
|G(ω)|2e−i~k·(~R−~R0)

≈
∫ 2π

0
P (θ)e−ikd cos(θ)dθ

= P J0(kd), (6.8)

where the coordinate system in Fig. 6.3 is used, Ω stands for the set of all sig-

nificant MPCs, J0(x) is the 0th-order Bessel function of the first kind, and d is

the Euclidean distance between ~R0 and ~R. Here we use a continuous integral to

approximate the discrete sum and P (θ) = P denotes the density of the energy of

MPCs coming from direction θ. For ~R = ~R0, it degenerates to the case of d = 0

and thus s(0; ~R0) ≈ P . Since the denominator of (6.3) is the product of the energy

received at two focal spots, it would converge to P 2. At the same time, the numer-

ator is approximately P 2J2
0 (kd) as discussed above. As a result, the TRRS defined

in (6.3) can be approximated as

η(h(~R0),h(~R)) ≈ J2
0 (kd). (6.9)

In the following, since the theoretic approximation of the TRRS distribution only

depends on the distance between two points, we use η̄(d) = J2
0 (kd) to stand for

the approximation of TRRS between two points with distance d.

To evaluate the above theoretic approximation, we also built a mobile chan-

nel probing platform equipped with stepping motors that can control the gran-

ularity of the CIR measurements precisely along any predefined direction. Ex-

tensive measurements of CIRs from different locations have been collected in the
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Figure 6.4: The distributions of TRRS.

environment shown in Fig. 6.2(a). Fig. 6.4(a) shows two typical experimental re-

sults measured at Location 1 and Location 2 with a separation of 10m as shown in

Fig. 6.2(a). The distance d away from each predefined focal spot increases from

0 to 2λ with a resolution of 1mm. The measured TRRS distribution functions

agree with the theoretic approximation quite well in the way that the positions

of the peaks and valleys in the measured curves are almost the same as those

of the theoretic curve. Although Locations 1 and 2 are far apart, the measured

TRRS distribution functions exhibit similar damping pattern when the distance

d increases.

We also observe that the measured TRRS distribution functions are far above

0. This is due to the contribution of the direct path between the TR devices.

Therefore, the energy density function P (θ) in (6.8) consists of a term which

123



is symmetric in direction due to NLOS components and another term which is

asymmetric in direction due to LOS components. As a result, the TRRS is indeed

a superposition of J2
0 (kd) and some unknown function which is the result of the

asymmetric normalized energy distribution of MPCs in certain directions. Since

the pattern of J2
0 (kd), embedded in the TRRS distribution function, is location-

independent, we can exploit this feature for speed estimation.

A numerical simulation using a ray-tracing approach is also implemented

to study the impact of bandwidth on TRRS distribution. In the simulation, the

carrier frequency of the transmitted signals is set to be 5.8 GHz. 200 scatterers are

uniformly distributed in a 7.5 m by 7.5 m square area. The reflection coefficient is

distributed uniformly and independently in (0,1) for each scatterer. The distance

between the TX and RX is 30 m and the RX (focal spot) is set to be the center of

the square area. Fig. 6.5 shows the distributions of TRRS around the focal spot

when the system bandwidth 40 MHz, 125 MHz and 500 MHz, respectively. As

we can see from the results, as the bandwidth increases, the distribution of TRRS

in the horizontal plane becomes more deterministic-like and converges to the

theoretical approximations.

6.1.4 TR-Based Distance Estimator

Since the shape of the TRRS distribution function η̄(d) ≈ J2
0 (kd) is only de-

termined by the wave number k which is independent of specific locations, it can

be utilized as an intrinsic ruler to measure distance in the space. Consider that
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Figure 6.5: Numerical simulations of the distributions of TRRS with varying

bandwidth.

125



an RX moves along a straight line with a constant speed v starting from location

~R0, and a TX keeps transmitting the TR waveform corresponding to ~R0 at reg-

ular intervals. Then, the TRRS measured at the RX is just a sampled version of

η(d), which would also exhibit the Bessel-function-like pattern, as illustrated in

Fig. 6.4(b).

Take the first local peak of η(d) for example. The corresponding theoretical

distance d1 is about 0.61λ according to the Bessel-function-like pattern. In order

to estimate the moving speed, we only need to estimate how much time t̂ it takes

for the RX to reach the first local peak starting from point ~R0. We use a quadratic

curve to approximate the shape of the first local peak. Combining the knowledge

of the timestamps of each CIR measurement, t̂ can be estimated by the vertex of

the quadratic curve. Therefore, we obtain the speed estimation as v̂ = (0.61λ)/ t̂,

and then, the moving distance can be calculated by integrating the instantaneous

speed over time. One thing to note is that as long as the rate of CIR measurement

is fast enough, it is reasonable to assume that the moving speed is constant dur-

ing the measurement of the TRRS distribution. For example, in Fig. 6.4(b) the

duration is about 0.16 seconds.

In practice, the channel is not measured with a uniform interval and the

empirical probability density function (PDF) of the time interval between ad-

jacent channel measurements is shown in Fig. 6.6. To overcome the imperfect

channel sampling process, we combine multiple realizations of the TRRS distri-

bution function measured at adjacent time slots to increase the accuracy of the

estimation of t̂. For the i-th measurement, first find the data points near the first
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local peak (ti,j , yi,j), i = 1, ...,N , j = 1,2,3, as shown in Fig. 6.4(b), where N is

the number of TRRS distribution functions obtained within the window of chan-

nel measurements. Then fit the data points with a quadratic regression model

yi,j = α+βti,j+γt
2
i,j+ei,j , and thus estimation of the elapsed time is t̂ = −β̂LS/(2γ̂LS),

where β̂LS and γ̂LS are the least-square estimators of β and γ , respectively. Differ-

ent reference points can be used as well, such as the first local valley, the second

local peak and so on, to increase the accuracy of estimation. Therefore, the mov-

ing distance at time t can be estimated as d̂(t) = v̂(t)∆t, where ∆t denotes the time

duration between the current packet and the previous packet. The procedures of

the proposed TR-based distance estimator has been summarized in the flowchart

shown in Fig. 6.7.
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Figure 6.6: Empirical probability density for time intervals between adjacent

packets.

Note that besides taking advantage of TR spatial focusing effect, the pro-

posed distance estimator also exploits the physical properties of EM waves and

thus does not require any pre-calibration, while the estimator presented in our
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Figure 6.7: Flowchart of the TR-based distance estimator.

previous work [135] needs to measure the TRRS spatial decay curve in advance.

6.2 Direction Estimation and Map-Assisted Error Correction

In this section, we introduce the other two key components of WiBall: the

IMU-based moving direction estimator and the map-based position corrector.

6.2.1 IMU-based Moving Direction Estimator

If the RX is placed in parallel to the horizontal plane, the change of moving

direction can be directly measured by the readings of the gyroscope in the z-axis,

i.e., θ(ti) = ωz(ti−1)(ti − ti−1), where ωz(ti−1) denotes the angular velocity of the

RX with respect to z-axis in its local coordinate system at time slot ti−1. However,

in practice, the angle of the inclination between the RX and the horizontal plane

is not zero, as shown in Fig. 6.8, and WiBall needs to transform the rotation of

the RX into the change of the moving direction in the horizontal plane. Since

the direction of the gravity ~g/‖~g‖ can be estimated by the linear accelerometer,

the rotation of the RX in the horizontal plane, which is orthogonal to the ~g/‖~g‖,

can be obtained by projecting the angular velocity vector ~ω = ωxx̂ +ωy ŷ +ωzẑ
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with respect to its local coordinate system onto the direction ~g/‖~g‖. Therefore,

the change of moving direction θ(ti) is obtained as

θ(ti) =
~ωT (ti−1)~g(ti−1)
‖~g(ti−1)‖

· (ti − ti−1), (6.10)

where ~ω(ti−1) and ~g(ti−1) denote the vector of angular velocity and the gravity at

time ti−1, respectively.

gˆ
y
w y

ˆ
x
w x

ˆ
z
w z

Figure 6.8: Transforming the rotation of RX into the moving direction in hori-

zontal plane.

6.2.2 Map-based Position Corrector

Since WiBall estimates the current location of the RX based on the previ-

ous locations, its performance is limited by the cumulative error. However, for

typical indoor environments, there are certain constraints in the floorplan which

can be utilized as landmarks and thus, the cumulative errors may be corrected

correspondingly as long as a landmark is identified. For example, Fig. 6.9 shows
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Figure 6.9: Two possible estimated paths and the ground truth path.

a T-shaped corridor and two possible estimated paths are illustrated in the fig-

ure. The moving distance of path #1 is underestimated and that of path #2 is

overestimated, while the dotted line corresponds to the ground truth path. Both

of the estimated traces would penetrate the wall in the floorplan if the errors are

not corrected, which violates the physical constraints imposed by the structure

of the building. In these two cases, a reasoning procedure can be implemented

and WiBall tries to find the most possible path that can be fitted to the floorplan

where all the border constraints imposed by the floorplan are satisfied. There-

fore, the cumulative errors of both the distance estimations and direction estima-

tions can be corrected when a map-based position correction is implemented.

6.3 Experimental Evaluation

To evaluate the performance of WiBall, various experiments are conducted

in different indoor environments using the prototype as shown in Fig. 6.2(a). In

this section, we first evaluate the performance of the TR-based distance estimator.
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Then, the performance of WiBall in tracking a moving object in two different

environments is studied. At last, the impact of packet loss and system window

length on the proposed system is also discussed.

6.3.1 Evaluations of TR Distance Estimator

The first experiment is to estimate the moving distance of a toy train run-

ning on a track. We put one RX on a toy train as shown in Fig. 6.10(a) and place

one TX about 20m from the RX with two walls between them. The sampling pe-

riod between adjacent channel measurement is set to T = 5ms. CIRs are collected

continuously when the toy train is running on the track. We also set an anchor

point as shown in Fig. 6.10(a) on the train track and collect the CIR when the

train is at the anchor. The TRRS values between all the measured CIRs and the

CIR of the anchor are computed and shown in Fig. 6.10(b). The peaks in the red

line indicate that the train passes the anchor three times. The estimated length

of the track for this single loop is 8.12m and the error is 1.50%, given the actual

length of the train track is 8.00m. The train slows down when it makes turns due

to the increased friction and then speeds up in the straight line. This trend is re-

flected in the speed estimation shown by the blue curve. To show the consistency

of the distance estimator over time, we collect the CIRs for 100 laps in total and

estimate the track length for each lap separately. The histogram of the estimation

results is shown in Fig. 6.11. The mean of the estimation error is about 0.02m and

the standard error deviation is about 0.13m, which shows that the estimation is
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consistent even over a long period.

(a) The toy train and the train track used in

the experiment.
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Figure 6.10: Tracking the speed of the toy train.

The second experiment is to estimate the human walking distance. One RX

is put on a cart and one participant pushes the cart along the line from point A

to point B shown in Fig. 6.2(a) with an approximately constant speed of 1m/s.

To control the walking speed, the participant uses a timer and landmarks placed

on the floor during the experiment. In the upper panel of Fig. 6.12(a), for each

time t, the TRRS values between the CIR measured at time t and those measured

at time t − ∆t, where ∆t ∈ (0s,0.16s], are plotted along the vertical axis. As we

can see from the figure, when the person moves slowly (e.g., at the beginning or

the end of the experiment), the time differences between the local peaks of the

measured TRRS distribution along the vertical axis are greater than that when

the person moves faster. In addition, for t ∈ [0.5s,3.5s], the asymmetric part of

the density function P (θ) of the energy of MPCs is more significant compared

to the case when t ∈ [3s,9.5s] and thus the pattern of J2(kd) is less obvious than
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Figure 6.11: The histogram of the estimated track lengths for a total of 100 ex-

periments.

the latter one. The bottom panel of Fig. 6.12(a) shows the corresponding walking

speed estimation. The actual distance is 8m and the estimated walking distance

is 7.65m, so the corresponding error is 4.4%. The loss of performance is from the

blockage of signals by the human body, which reduces the number of significant

MPCs.

We further let the participant carry the RX and walk for a distance of 2m,

4m, 6m, 8m, 10m and 12m, respectively. The ground-truth travel distances are

measured by a laser distance meter. For each ground-truth distance, the exper-

iment is repeated 20 times with different paths and the walking speed does not

need to be constant. The results are shown in Fig. 6.12(b), where the 5, 25, 75,

and 95-th percentiles of the estimated distances for each actual distance are plot-
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Figure 6.12: Human walking speed/distance estimation.

ted from the bottom line to the top line for each block. We find that when the

ground-truth distance is small, the error tends to be large. This is mainly because

the participant could introduce additional sources of errors which are uncontrol-

lable, such as not following the path strictly, shaking during walking, and not

stopping at the exact point in the end. When the distance is short, the impact

of this kind of error can be magnified greatly. However, when the walking dis-

tance is large, the impact of the uncontrollable errors on the estimation result is

insignificant.

6.3.2 Estimated Traces in Different Environment

We evaluate the performance of indoor tracking using WiBall in two sets of

experiments. In the first set of experiments, a participant walks inside a building

with a large open space. He carriers the RX with him and walks from Point A

on the second floor to point B on the first floor, as shown in Fig. 6.13(a). The TX
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Figure 6.13: Experiment results in different environments.

is placed closed to the middle of the path on the second floor. The dimension

of the building is around 94m× 73m. Although the moving distance of the first

segment of the path is overestimated, the estimated path is corrected when the

participant enters the staircase leading to the first floor.

In the second set of experiments, the participant walks inside an office envi-

ronment. Fig. 6.13(b) demonstrates a typical example of the estimated traces in a

typical office of a multi-storey. One RX is put on a cart and the participant push-

es the cart along the route from Point A to Point B, as illustrated in the figure.

The dimension of the environment is around 36.3m× 19m and the placement of

the TX is also shown in the figure. As we can see from the figure, the estimated

path matches the ground truth path very well because the cumulative errors have

been corrected by the constraints from the floorplan.
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Figure 6.14: The route for the evaluation of statistical errors.

6.3.3 Statistical Analysis of Localization Error

To evaluate the distribution of the localization errors, extensive experi-

ments have been conducted in the same office environment shown in Fig. 6.13(b).

The participant pushes the cart with the RX on the cart, following the route as

shown in Fig. 6.14.

The RX starts from Point A and stops at different locations in the route

shown in Fig. 6.14. The lengths of the chosen paths are 5, 21, 25, 30, 40, 64, and

69m, respectively, and the end of each path is marked with two green circles. For

each specific path, the experiment is repeated for 25 times. The estimation error

for different paths has been analyzed through empirical cumulative distribution

function (CDF), as shown in Fig. 6.15. Based on the results, the median of the

estimation error for the selected paths is around 0.33m, and the 80 percentile

of the estimation error is within 1m. Therefore, WiBall is able to achieve a sub-
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meter median error in this complex indoor environment.

6.3.4 Impact of Packet Loss on Distance Estimation

In the previous experiments, WiBall operates on a vacant band and the

packet loss rate can thus be neglected. However, in practice, the RF interfer-

ence from other RF devices operated on the same frequency band will increase

the packet loss rate. Since WiBall relies on the first peak of the TRRS distribution

for distance estimation, enough samples need to be collected so as to estimate the

first peak accurately, and a high packet loss can affect the peak estimation and

thus increase distance estimation error.

To study the impact of RF interference, a pair of RF devices is configured

to operate in the same frequency band of WiBall to act as an interference source,

and we run the tracking system for 100 times with the ground-truth distance

being 10m. When the interfering devices are placed closer to the transmission
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(b) Standard deviation of the distance esti-

mation.

Figure 6.16: The impact of packet loss on the accuracy of distance estimation.

pair of WiBall, WiBall encounters a higher packet loss rate. Therefore, to obtain

various packet loss rates, the interfering devices are placed at different locations

during the experiment. The average estimated distance and standard deviation

of the estimation under different packet loss rates are shown in Fig. 6.16. It is

seen that a large packet loss rate would lead to an underestimation of the moving

distance and increase the deviations of the estimates.

6.3.5 Impact of Window Length on Distance Estimation

In the following, the impact of window length on the performance of the

proposed TR-based distance estimator is studied. One implicit assumption of

the proposed estimator is that the speed of the moving device is constant within

the observation window of channel measurements. The length of the observation

window should be at least 0.61λ/v, where v is the actual speed of the device. Fur-

thermore, more samples of channel measurements will also improve the accuracy
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of t̂ as described in Section 6.1.4. Therefore, the window length is an important

system parameter of WiBall.

In the following experiments, one RX is put on a toy train whose speed

can be tuned and remains constant during each experiment. One TX is placed

in two different locations: a LOS location where the RX is within the fields of

vision of the TX, and a NLOS location where the direct path between the RX

and TX is blocked by walls. The TX keeps transmitting packets with a uniform

interval of 5 ms. Two experiments are conducted for each location of the TX with

two different speeds of the toy train, 0.72 m/s and 0.63 m/s, respectively, and

each experiment lasts 10 minutes. The 5 and 95-th percentiles and the sample

mean of the estimated speed have been shown in Fig. 6.17 with different window

lengths. It can be observed that when the window length is smaller than 30

samples, the speed estimates have a bias for the both cases; when the window

length is greater or equal to 30 samples, the bias is close to 0 and the range of the

estimates becomes stable. In addition, a higher accuracy can be achieved when

the TX is placed in the NLOS location.

6.4 Summary

In this work, we propose WiBall, which offers an accurate, low-cost, calibration-

free and robust solution for INIP in indoor environments without requiring any

infrastructure. WiBall leverages the physical properties of the TR focusing ball

in radio signals, such as WiFi, LTE, 5G, etc., to estimate the moving distance of an
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Figure 6.17: Impact of window length in terms of speed estimations.

object being monitored and does not need any specialized hardware. It is shown

through extensive experiments that WiBall can achieve a decimeter-level accura-

cy. WiBall is also easily scalable and can accommodate a large number of users

with only a single access point or TX. Therefore, WiBall can be a very promising

candidate for future indoor tracking systems.
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Chapter 7: Conclusion

7.1 Summary

In this dissertation, we first present the primer of wireless sensing, includ-

ing the channel models for radio propagations and the techniques to harvest the

information embedded in hundreds of multipaths indoors.

Then, we have presented four CSI-based indoor wireless sensing systems:

1. passive indoor speed estimation: in Chapter 3, we propose WiSpeed, a uni-

versal indoor speed estimation system for human motion leveraging com-

mercial WiFi, which can estimate the speed of a moving object under either

device-free or device-based condition. WiSpeed is built upon the statisti-

cal theory of EM waves which quantifies the impact of human motion on

EM waves for indoor environments. We conduct extensive experiments in a

typical indoor environment which demonstrates that WiSpeed can achieve

a MAPE of 4.85% for device-free human walking speed monitoring and a

MAPE of 4.62% for device-based speed estimation. Meanwhile, it achieves

an average detection rate of 95% with no false alarms for human fall detec-

tion. Due to its large coverage, robustness, low cost, and low computational
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complexity, WiSpeed is a very promising candidate for indoor passive hu-

man activity monitoring systems.

2. motion detection: in Chapter 4, we present the model, design, and imple-

mentation of WiDetect, the first practical whole-home motion detection

system that achieves almost zero false alarms using only a single WiFi link.

A statistical model that comprehensively leverages all existing multipath

components for motion detection is proposed and the relationship between

the detection rate and false alarm rate for motion detection is also derived.

Extensive experiments show its superiority over existing motion detection

approaches. With extremely high sensitivity and fairly low false alarms, we

believe that the proposed WiDetect can be a promising practical technology

for ubiquitous device-free motion detection, allowing for a range of critical

applications for smart life.

3. sleep monitoring: in Chapter 5, we present the design, implementation, and

evaluation of SMARS, the first practical sleep monitoring system that ex-

ploits ambient radio signals to recognize sleep stages, without instrument-

ing users’ body or the bed. SMARS achieves this goal by monitoring breath-

ing and body movements during sleep accurately and instantaneously, to a

level of performance previously only attainable with expensive specialized

infrastructure. A key enabler behind is a statistical model that considers

all reflection and scattering multipaths indoors without making unrealis-

tic assumptions. We implement SMARS on commercial WiFi chipsets and
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validate its performance by extensive experiments with the 32 nights data

collected in 6 homes. We believe SMARS takes a promising step towards

practical in-home sleep monitoring.

4. indoor tracking: in Chapter 6, we propose WiBall, which offers an accurate,

low-cost, calibration-free and robust solution for indoor positioning and in-

door navigation without requiring any infrastructure. WiBall leverages the

physical properties of the TR focusing ball in radio signals, such as WiFi,

LTE, 5G, etc., to estimate the moving distance of an object being monitored

and does not need any specialized hardware. It is shown through extensive

experiments that WiBall can achieve a decimeter-level accuracy. WiBall is

also easily scalable and can accommodate a large number of users with on-

ly a single access point or TX. Therefore, WiBall can be a very promising

candidate for future indoor tracking systems.

Many important applications can be developed based on the proposed four

systems. In particular, the passive speed estimation system further enables IoT

applications such as fall detection, gait monitoring, and fitness tracking; the mo-

tion detection system enables intrusion detection, human behavior analysis, and

smart home; the sleep monitoring system can be further developed into a contin-

uous time wellbeing monitoring system by incorporating motion detection and

fall detection; the indoor tracking system can facilitate applications in manufac-

turing asset tracking, intelligent transportation, and so on.
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7.2 Future Work

There are several open problems and challenges to be explored and investi-

gated before the successful deployment of the proposed indoor wireless sensing

systems. The exploration of these issues could make the proposed IoT applica-

tions more versatile and useful in real life scenarios.

Firstly, the complexity of the proposed algorithms should be optimized. In

particular, the computational complexity of the proposed passive speed estima-

tor, WiSpeed, in Chapter 3 is quite large, which cannot be accommodated in

low-cost embedded systems. Instead, cloud computing is needed for the com-

putation. However, the bandwidth consumption of the system is larger than the

average capacity of an ordinary residential.

Secondly, in this dissertation, we only consider the scenario where only a

single pair of Tx and Rx is available. However, in the future, multiple pairs

may be deployed in the environment, which will enable the feasibility of passive

motion localization in addition to detection. With the location information of

the motion, the performance of fall detection can also be improved, e.g., in some

locations, such as bathroom and stairs, the likelihood of falls is higher and the

damage can be even more serious.

Lastly, as the WiFi technology is evolving, more bandwidth and more an-

tennas are available compared with the current standard. At the same time, the

frontier of wireless sensing using ambient radio signals can be further explored.

It can be expected that even the minute movement, such as the movement of fin-
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gers and eyeballs, can be detected or tracked, which will enable more interesting

IoT applications in the future.
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