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Abstract

We use a model of processing in the human auditory system to develop
robust representations of signals. These reduced representations are then
presented to a neural network for training and classification.

Empirical studies demonstrate that auditory representations compare fa-
vorably to direct frequency (magnitude spectrum) representations with re-
spect to classification performance (i.e. probabilities of detection and false
alarm). For this comparison the Receiver Operating Characteristic (ROC)
curves are generated from signals derived from the standard transient data
set (STDS) distributed by DARPA/ONR.

1 Introduction

To a human subject the sound of a car door slamming or a finger snapping 1s
easily recognizable. Humans demonstrate the ability to classify transient signals
like these even in active (noisy) acoustic environments with little or no effort. Yet to
an automaton or computer the task of transient recognition is far more formidable.

With the notion that the auditory system inherently represents acoustic signals
in a robust manner, a promising approach to the goal of automatic transient clas-
sification seems to lie in the mimicking of that process. Fortunately the auditory
system has been studied in detail. Recent research [9] has indicated an analytically
appealing model of human auditory processing in its early stages.

In this paper we study two different approaches to the transient classification
problem. First is a conventional approach based solely on spectrum analysis of the
transient signals. That is signals are classified based on their respective spectral
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content. Second is an approach based on the processing of acoustic signals in the
auditory system. We look to the auditory system for signal representations which
must in some sense be optimally designed by evolution.

In both approaches we maintain an identical classifier structure which we will
refer to heretofore simply as the classifier system. The classifier system may be
thought of simply as a cascade of two main components: (i) a transformation
component and (ii) a neural associator component which takes as input the patterns
generated in (i). The two approaches differ fundamentally only in their stage (i)
transformations.

Both neural systems are trained on data derived from the standard transient
data set (STDS). It is a compilation of transient signals of differing character in
various noise environments (provided by DARPA/ONR) in order to standardize

classification attempts. Basic training and testing sets are generated from this
data.

This paper is organized as follows. In Section 2 we describe the STDS. An
overview of the entire neural classification scheme is presented in section 3. Section
4 presents a detailed description of the auditory-like model on which the pattern
transformations are based. Implementation details are covered in Section 5. A
comparison of the auditory versus a spectral based classifier is presented in Section
6. Performance of the two classifier schemes is examined in Section 7. And finally
Section 8 presents a discussion of the results.

2 The Standard Transient Data Set

Provided by DARPA, the standard transient data set consists of a compilation
of six different transient signals as recorded in different (noisy) environments. De-
picted in Figure 1 are examples of the six basic transient signals in a 40ms window.
The sampling rate of this data is 25kHz. In addition the data set also contains files
with pure ocean noise.

Table 1 reports where in time and frequency each of the basic six transient
signals resides.

In the interest of (computer) time, we restrict ourselves to the first three of the
basic transient signals. However, we believe that our approach can be applied to
the entire set.

3 Classification Overview

Figure 2 depicts the basic classifier scheme to which we adhere. In the figure
it can be seen that the classifier system consists of two main components. It
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i Signall Frequency (kHz) | Duration (ms)J

A 3
B >3
C 3
D 3
E 0.1
F 0.15

13
8
10
100
1000-8000
1000-8000

Table 1: Transient Data

4@[‘1’ T i T ] T 7 T T l T T T i ‘ ] T T 1 Tj
' 3
ZE—' qu “ % : ] , l\}-—— 3
:E | )xl \ I s e J,'?W:ﬂa
- \
4 3
R S T S BN NP o
0 10 ﬁmzo( , 30 40
e (Ins
l T 1. T T l L T T I T T 1 T T T T T I;J
4 =
—3 .k %
_: '“l ‘ ‘ ( ! . 3
- El
_.4 l L ! l IL! ] I 1 14 1 1 ! 1 S J_l;Jj
0 10 20 30 40
time (ms)
_l ] ! R 1 T 1 1 l L L fl’ T T T T ]_‘
.5_— =
- l —C 3
0 E— |» k4 ‘ f’www ._:
-sE 2
:l 1 ] L 1 Ll . 1 l n 1 L 1 l 1 1 1 1.
0 10 20 30 40
time (ms)

n

o

L
w

o

| ]t,rf;i‘*u l‘] il E
R
%':"www #i M w%j

Figure 1: The six basic transient signals (in noise)

is the first component, the pattern transformation component, which takes the
raw input data from the environment and transforms via sensory apparatus to an
alternative representation. This representation is then presented to a the second
component of the system for higher level processing. As depicted in the diagram
we implement this high level processor as a feed forward neural network. Acting
as a pattern associator, this neural network learns (during training) to perform the

desired classification.

Being learned associations, all the classifications proposed here are required
to have a training set of data on which to learn. All the neural learning imple-
mented here is accomplished by standard gradient descent learning methods (i.e.
backpropagation). For a complete reference the reader may consult [6].
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Figure 2: Classification System

4 Auditory Representation

In this section we present a brief review of the auditory model on which our
pattern transformations are based. The interested reader is referred to [9] for the
details.

When a signal enters the ear it creates a pattern of activity (displacement)
along the basilar membrane. This membrane has a length and hence a spatial axis
associated with it which extends from its base (s = 0) towards its apex (s > 0).
The magnitude of activity at any particular spatial location, s, on the membrane
may be modeled as the output of a linear (bandpass) filter with impulse response

hs(+).

Because of the physical nature of the membrane the filters {h; : s > 0} are
related to one another in a special way. Physically this is reflected in the fact
that the basilar membrane actually provides a tonotopic (logarithmic) mapping of
the acoustic spectrum. One might think of the basilar membrane as acting like
a bank of bandpass filters where the center frequency of the filter H(-) is related
logarithmically to s. As it will be seen, this type of relationship can be described
nicely in terms of wavelet transformations.

Figure 3 depicts the auditory processing model in block form. In the first
block the basilar membrane action is modeled as a wavelet transformation. Later

stages incorporate complex nonlinear transformations which culminate in a greatly
abbreviated representation of the input ‘acoustic’ signal.

4.1 Stage I: Wavelet Transformation

The wavelet transform (WT) provides a mapping of one dimensional (e.g. time)
functions into a two-dimensional space (e.g. time and frequency). A detailed
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Figure 3: Auditory Model

discussion of wavelets and wavelet theory can be found in [3]. Simply, the WT can
be thought of as a parallel bank of linear filters in which the filter responses share
a special relationship. Namely they are related by dilations of a nominal response
called the basic analyzing wavelet or mother wavelet. 1

In these terms the wavelet output of the auditory model is a continuous ensem-
ble of signals indexed by s which can be simply described as

ys(t) = (2 * hs)(2). (4.1)

Discretizing the s-axis the filter impulse responses, hi(t) are related by dilations
of the ‘mother” wavelet denoted by ho(t):

hi(t) = af ho(akt) (4.2)

where ag 1s a given discretization parameter.

4.2 Later Stages

The later stages of auditory processing consist of several non-linear and complex
transformations. It is out of the scope of this paper to describe in detail the
justification for each of these processing blocks. Rather we include a functional
description merely for consistency. The reader should consult [9] for further insight.

After the WT the next two operations are again linear operations, differentiation
in time and then along the s axis, to yield the mixed partial derivative

0%y, (t
ms(t) = 0tds ) '

(4.3)

Next the mixed partial ensemble is placed through an extrema (associated with
the wavelet transform y,(t) in t) filter. That is the mixed partial derivative is
sampled at the location of extrema in y,(t) as a function of t. In mathematical
notation we may write the output of the extrema filter as

es(t)-_—-{ ms(t), t€E (4.4)

0, else

Ho(w) 2

1The mother wavelet is subject to the admissibility condition f_oooo -~

dw < co.

-
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where £ is the set of extrema associated with y,(-):

g 2 {t: aygit) :o}. (4.5)

After the extrema filter the resulting pattern is then half-wave rectified and
integrated over a small window of time to achieve the final pattern. Denoting a,(t)
the resulting auditory pattern (in s) we write

a, = /T max {e(t), 0} d, (4.6)

where T, is the length of the window of integration.

It should be noted that the original signal, z(t), can be reconstructed from the
acoustic representation a, [9] . So that we can think of the acoustic representation
as a data compaction; that is, there is no loss of information in the transformation.

5 Implementation

Presumably a real classification system would take an incoming data stream
and continuously perform its classification. Because of the amount and expense of
computation this would require, however, we do not fully process every frame of
data. Instead we first pass each frame of data through a crude signal detector. The
purpose of the detector is only to determine the existence of a signal and provide
its starting position in the given frame. Its purpose is not to classify it. Should
the detector decide that there is indeed a signal present then the the frame will be
subject to further processing else it is discarded.

5.1 Detection on Sectors

A region S in the wavelet time-frequency plane can be chosen based on knowl-
edge of where in frequency the signals to be detected lie. From Table 1 it can be
seen that the regions for the signals of interest, namely A, B, and C, can be taken
to be identical. For simplicity we take S to be a rectangle around the frequencies
of interest (e.g. 3kHz).

For an arbitrarily long input signal, z(¢), a uniform partition in time is estab-
lished with a frame or sector length of Tr so that

zi(t) = { z(t), t € [iTr, (14 1)TF]

0, else

(5.1)

So for the transient signals A,B and C the length of the rectangle S is Tr.



We form the detector function d(-) : L(R) — Ly(IR) by
dz)(t) = [ y2(0)ds (5.2)

where y,(-) is as in Equation 4.1. A signal is deemed present by a simple thresh-
olding of the detector function:
3t 3d(z:)(t) > tinesn = signal present. (5.3)

The set of potential starting times of a signal is , Z,...., is determined as
d
Toare = {t 0 d(z;)(t) = tincesns Et-d(xi) > 0} . (5.4)
t

Figure 4 illustrates the detector function for one of the signals (A) in the STDS.
The figure displays in the bottom graph the wavelet transformation computed on
S as well as the detector function itself plotted at the very top of graph. In the
top graphs is displayed the signal on T and the mother wavelet ho(t).
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Figure 4: Detection on S

5.2 Auditory Model

The choice of mother wavelet in all the simulations is fixed as

ho(t) = te™*/% cos(wot) (5.5)
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where wp is a modulation constant. This choice is not strictly faithful to the
auditory model since it is well know that the auditory filters are asymmetric in
the frequency domain (and Ho(w) is symmetric). We note that the shape of these
filters is a key area of further investigation. For the purposes of this paper we shall
not address this issue. The choice of the modulation constant wg is discussed in
Section 6.

Another implementation issue is the choice of the fundamental processing win-
dow size, T,,. Choosing T, too large would have the effect of smoothing out fast
transitions on the final output, a; of the auditory model (equation 4.6). Choosing
T, too small might cause necessary information about the signal to be lost. Clearly
the window size must be chosen to be on the scale of the events in which one is
interested. Since we are interested in the range of around f =3kHz a good choice
of window size might be T, = 107y = 3ms. (An order of magnitude larger than
the period of the phenomenon in which we are interested).

Outputs of various stages of the auditory model can be found in the Appendix.
The Appendix shows the wavelet transformations of the three example transients
A, B, and C taken from the STDS. In the figures the parameter ap = 1.15 and &
takes integer values in the range [—7,7].

For convenience we list in Table 2 the values of all parameters used in the
classification schemes we have discussed.

[ Parameter l Description L Valuej
Tr sector window size 200ms
tenresh detector threshold 0.15
Tw fundamental window size | 3ms
ag dilation base 1.15

Table 2: Parameters of Implementation

5.3 Neural Network

The function of the neural network is to learn an association which performs
the desired classification of the input signals. Mapping abilities of feed-forward
networks have been well established and studied in the literature [4], [1].

In the simulations we use three layer (one hidden) neural networks with the
topology as n; input nodes, n;/2 hidden nodes, and six output nodes for both the
spectral and auditory based patterns. The number of input nodes, n;, is determined
by the number of points in the representation of interest. We choose six output
nodes to accommodate each of the six basic transient signals (A-F) although we
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Figure 5: Example Patterns for Auditory Classification

only use the first three in this study. The training set is designed so that only one
output (corresponding to the signal’s true class) is active.

6 Spectral vs. Auditory Representations

In order to make a fair assessment of the relative merits of between spectral
and auditory representations it is necessary to insure that the underlying filters
have equivalent frequency resolution at the frequency of interest. In the following
we compare the spectral and auditory representations and explain the details of
‘matching’ bandwidths at the frequency of interest.

6.1 Spectral Representation

Suppose we have a continuous bandlimited signal z with Fourier transform
X. Further suppose we have sampled version of a z denoted z* which has been
uniformly sampled at the rate T}:

z;, = z(kTy). (6.1)

If T, is at least as large as the Nyquist rate then an N-point discrete Fourier
transform (DFT), {X.}, on the sampled signal, z*, will yield samples of X with

) A )
resolution wa = #T—, l.e.

X, = X(XQ%- ) = X(kwa). (6.2)
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Figure 6: Example Patterns for Spectral Classification

Thus, an N-point DFT can be thought as a bank of linear filters, { Hy}, where each
filter response, Hg, is an impulse at the kth harmonic of wy

Hi(w) = 6(w — kwa). (6.3)

We think of the wa as the frequency resolution of the filter bank.

6.2 Auditory Representation

Section 4 details a functional view of the auditory representation of signals. Of
main concern here is the initial wavelet transform since it is this first linear stage
which is responsible for segregation in frequency. Taking the view of the WT as a
bank of linear filters with impulse responses generated by the mother wavelet given
in equation 5.5 (repeated here for convenience)

ho(t) = te~?/? cos(wot), (6.4)

we see that the entire filter bank is parameterized by wy. Thinking of the filter
responses on the frequency axis it is easy to see that wp controls the position of the
entire filter bank.

6.3 Comparison: choosing wy

As mentioned earlier, in order to make a fair comparison between the spectral
and auditory representations it is necessary to insure that the auditory filter at

10



the frequency of interest w* (=3kHz for the STDS) has its bandwidth equal to the
resolution of the spectral filters, i.e. wa. By choosing wg properly the bandwidth
of the spectral filter at a specific frequency, w*, can be adjusted to a value within
the precision allowed by the resolution of the dilation lattice {aé’}. In other words
any filter in the auditory bank {H.} may be translated to the location w* by the
choice of wgy. This idea of matching bandwidth to resolution is illustrated in Figure

7.

DFT T T boaw 4 T

W
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I\ II
|HO(W)I
Yo A
'. | —
W W

Figure 7: Spectral vs. Auditory Filters

7 Performance Evaluation

7.1 Training

Let e;,7 = 1,...6 denote the ith standard vector in IR®, i.e. e; € R® has a 1 at
the tth position and zeros everywhere else. Given a windowed signal z of length
T, from one of the basic transient signals in the STDS, a corrupted version of z is
formed as

z =z + an, (7.1)
where n is a frame of noise chosen at random from the STDS signal 2836. The
parameter « represents the noise level. Given a signal z and a noise level a a

whole set of M signals may be generated via Equation 7.1. We call this random
set TM(z).

A training set, T, of data is formed as

T={(z,e) : 2 € T2 s:), @ =1,2,3} (7.2)

1=1

11



where s; = A, sy, = B,s3 = C are signals (respectively 2837, 2841, 2845) from the
STDS. Similarly, a testing set S is formed as

S = U {(:r,e,') cz € TH(s), a= 1...9}. (7.3)

Once these sets are formed they are fixed and used in both methods of detection.

After the network has learned the desired association the output to a member
of class ¢ would ideally be e;. Generally speaking the network output will not be
e; but something close to it. For this reason it is necessary to introduce a network
decision function, d,(-) : R® = {A,B,C,...,NS} (i.e. it takes the output of the
network and assigns to it a label). Given an output pattern of the network z € R®
the network decision rule which we have used here is given as

_ sy mz2T ozp<T, Vi £
dT(z)—{ NS, else ) (7.4)

where 0 < 7 < 1 is a threshold.

Figures 5 and 6 show respectively the patterns generated by the two transfor-
mations (auditory and spectral) on the training set 7. In the Figures they are
label by their STDS names 2837, 2841, 2845. Different line types are associated
with different noise levels (solid being o = 1).

7.2 Testing: Receiver Operating Characteristics

As a performance measure the receiver operating characteristics (ROC) are
measured. Recall that the ROC 1s a collection of curves describing the probability
of detection as a function of the probability of false alarm for a set of different noise
levels. For the transient problem these probabilities ? are given as

Pp = Prob{4lA |J BIB |J c|c}, (7.5)
and
Pra=Prob{a |J BJ C |NS}, (7.6)

where NS denotes a ‘no signal present’ condition.

For a given signal to noise ratio (SNR) the ROC curve is generated by stepping
the classifier threshold parameter 7 through the interval (0,1) and then estimating
the detection and false alarm probabilities as sample averages. Thus for each value
of 7 € (0,1) a corresponding point (Pra(7), Pp(7)) on the ROC curve is generated.

2Notation: Prob {X|Y} is read ‘the probability that the classifier labels the signal as ‘X’ given
that the signal is “Y”.

12
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Figure 8: ROCs for Classifier Schemes

Figure 8 displays the ROC’s generated for three different values of wa corre-
sponding to N-point DFTs 3 with N = 16, 32, 64. Each ROC contains nine
curves corresponding to the noise levels a = 1,2,...,9. To distinguish the curves
line widths have been made inversely proportional to the noise level which they
represent. So that the fattest line corresponds to a noise level of one and the
thinnest to a noise level of nine. Table 3 gives these noise levels in terms of their

decibel equivalents.

0.0
-6.0
-9.6
-12.0
-14.0
-15.6
-17.0
-18.0
-19.0

© 00 -1 O U WD

Table 3: Noise level: decibel conversion

3of course the DFTs are computed via FFTs
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7.3 Evaluation via ROCs

It is clear that the very best a detector could ever hope to achieve is a simul-
taneous probability of detection of 1.0 and probability of false alarm of 0.0 for
all SNRs. This would correspond to a ROC which consists of a single point at
P L (0,1). With this in mind it seems that a plausible measure of the badness
of a detector would be the extent to which its ROC contains curves far from the
point p*. In other words detectors whose ROCs are close to the point p* can be

considered better then those which are far from it.

Making this notion of badness via the ROC more precise we define a badness
measure on a discrete ROC as

ROC badness =Y. > |lv. (k) — p|1*. (7.7)
ok

Here o indicates a noise level and 4, is the sampled (measured) ROC curve cor-
responding to that noise level. Obviously v, (k) indicates the kth sample of the
curve. Certainly the ROC badness measure is only meaningful as a comparison
among ROCs which have an identical sampling structure.

With the aid of this measure we can compare the ROCs in Figure 8 in a precise
and quantitative way. Since this is a measure of badness then clearly we say that
a detector whose ROC has a small measure compared to one which has a large
measure is ‘better’.

Table 4 lists the results of the computation of the measure 7.7 on the ROCs
of Figure 8. The first column of the table displays the number of points in the
DFT (which directly gives wa). The second and third columns give respectively
the value of the badness measure for the spectral and auditory based classifiers.

[ N | Spectral Badness l Auditory Badness |

16 7.78 4.54
32 5.86 4.11
64 3.66 2.29

Table 4: Comparison via badness measure

Clearly, the table indicates that the auditory based classifier outperforms the
spectral based classifier in every case. Moreover, as the bandwidth of the filters
is decreased (i.e. wa decreased) the performance for the auditory based filters
increases (badness decreases) at a faster rate then for the spectral case. Both of
these facts demonstrate the superiority of the auditory based classifier.

14



8 Conclusion

We have examined the problem of transient signal classification using two dis-
tinct pattern transformations. In the first we looked to a simple (magnitude)
Fourier decomposition of the the transient signals. In the second we implemented
a model based on the processing of acoustic signals in the mammalian auditory
system.

We have empirically demonstrated the superiority of the auditory based classi-
fier over the spectral based classifier.
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