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Abstract

Nonlinear Model Predictive Controllers determine appropriate control actions by solv-
ing an on-line optimization problem. A nonlinear process model is utilized for on-line
prediction, making such algorithms particularly appropriate for the control of chemical
reactors. The algorithin presented in this paper incorporates an Extended Kalman
Filter, which allows operations around unstable steady-state points. The paper pro-
poses a formalization of the procedure for tuning the several parameters of the control
algorithm. This is accomplished by specifying time-domain performance criteria and
using an interactive multi-objective optimization package off-line to determine param-
eter values that satisfy these criteria. Three reactor examples are used to demonstrate

the effectiveness of the proposed on-line algorithm and off-line tuning procedure.
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1 Overview

In order to meet the increasing needs of designing control systems that take into account
the nonlinear process characteristics, a number of Model Predictive Control (MPC) al-
gorithms have emerged in the last decade, which directly utilize nonlinear models for
on-line prediction. A description of various MPC algorithms is given in a review pa-
per by Bequette'. Nonlinear MPC (NLMPC) has received a lot of interest due to its

success in simulated tests and some industrial applications?

. However, performance
may deteriorate in the presence of model-plant mismatch especially for open-loop un-
stable processes with slow dynamics. Moreover, theoretical analysis for robustness in
these cases is extremely difficult. This situation led researchers to incorporate process
estimation algorithms for improving the accuracy of the model prediction.

Wright et al., Li and Biegler*, and Eaton and Rawlings® coupled their NLMPC algo-
rithms with an optimization-based parameter estimation method to reduce the adverse
effects due to parametric error as well as unmeasured disturbances. Both the unknown
model parameters and the load disturbances are estimated on-line by minimizing a dis-
crepancy between the past measurements and predictions of the process output using
available optimization software.

Another attempt is the combined parameter and state estimation via nonlinear pro-
gramming. This algorithm is proposed by Jang et al® to continuously provide the
controller with updates of the model parameters and estimates of the initial conditions

of the state variables. Sistu and Bequette” satisfactory implemented the same estima-

tion method to NLPC algorithm to control an open-loop unstable system corrupted by
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disturbances and imprecise parameter values.

A simple alternative way to compensate for the impact of model uncertainty is by
augmenting the controller with a state estimator by Kalman Filtering as proposed
by Ricker® for linear MPC. This approach was successfully extended by Gattu and
Zafiriou® to Nonlinear Quadratic Dynamic Matrix Control (NLQDMC) for disturbance
rejection of open-loop unstable processes.

In this study, we couple our NLMPC algorithm with on-line Extended Kalman Filter
(EKF). The purpose is to improve the closed-loop performance of processes with slow
dynamics and stablize open-loop unstable processes in the presence of unmeasured
disturbances. This approach uses, every sampling time, linearized model dynamics
along with preassumed characteristics of the unmeasured disturbances and measure-
ment noise to evaluate the steady state filter gain. Knowing the filter gain and only
the output measurement at the current sampling time, an additive correction term is
computed and used in conjunction with the nonlinear process model to correct the
current states and the predicted states over the future horizon.

As far as robust stability and performance conditions are concerned, little theoretical
progress has been made for the case of nonlinear process. For unconstrained systems, Li
et al.'’®, and Gattu and Zafiriou!! used the concept of contraction mapping to establish
sufficient closed-loop stability conditions for their algorithms for the case of open-loop
stable plants. For nonlinear models, however, these conditions are not useful from a
practical point of view, since they are usually conservative!!. The situation is much

more complicated when constraints are included in the on-line optimization. For linear



process dynamics, Zafiriou and Marchal'? proved that the presence of hard constraints
in the MPC algorithm can lead to instability, even though the unconstrained algorithm
may be stable. The contraction mapping technique was successfully utilized in this case
due to the linear process models. Muske and Rawlings!® have also obtained stability
results by using an infinite prediction horizon.

The great difficulties in developing theoretical conditions that guarantee stability and
good performance of NLMPC, especially in the presence of disturbances, model uncer-
tainty, and output constraints, lead designers to trial-and-error tuning of the NLMPC
parameters. The prediction horizon and the control horizon can be used to adjust
the speed of the response. Weights on the change of manipulated variables reduce the
aggressiveness of the control action. For multi-output processes, the weights on the
error for each output trade the performance of one output to another. The trade-off
problem, however, for several competing objectives can be quite complex, especially,
when one has to also include possible errors and disturbances.

This paper attempts a formalization of what is currently a trial-and-error procedure
for NLMPC parameter tuning. The real-valued parameters of the algorithm are deter-
mined by an off-line optimization. While the integer parameters such as the prediction
horizon and the control horizon are found by grid search. By modifying the NLMPC
algorithm, the prediction horizon can also be treated as a continuous real variable
which simplifies the grid search to one variable search. The objective of the off-line
optimization is to ensure that certain performance specifications, e.g., required speed

of response and limited overshoot, are satisfied in the presence of modeling error and



disturbances that lie within certain maximum bounds. The off-line problem is solved
with an interactive multi-objective optimization tool called CONSOLE, developed by
Tits et al.'*. Such a multi-objective approach has been used by Seaman et al.'® to tune
a PID controller.

Section two discusses the NLMPC algorithm and the state estimation by EKF algo-
rithm. Section three describes the off-line tuning of the parameters. Section four uses

three examples to illustrate the effectiveness of the proposed algorithm.

2 NLMPC Algorithm

2.1 On-line Optimization

In this paper we use a Model Predictive Control algorithm that utilizes a nonlinear
dynamic model of the process for predicting future outputs and states. The algorithm
finds a sequence of M future manipulated variables by minimizing on-line an objective
function based on the desired output trajectories over a prediction horizon P. After
the optimization, the first element of this future sequence is implemented. Then at the
next sampling time, after a new measurement has been obtained, a new optimization

is carried out. The objective function is as follows:

P

min 37 | Teftind) 2+ 3 I Au(tesica) | (1)

w(tg) et (tip M—1) =1

Where k denotes the current sampling point, ¢; = T with T the sampling time, and
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|| . || the Euclidean vector norm. The predicted error is defined as

e(test) = y(trp) — r(trs) + d(tesr) (2)

where r is the setpoint, y is the model output, and d is the deviation of the process
measurement from the model output. Since future measurements are not known, the
disturbance d(tx4:), for { = 1,..., P, is considered constant in the future and equal to
d(tr). The inputs u are constant between sampling points. Au indicates the change in
manipulated inputs (Au(tx41) = w(tr41) — u(tg41-1)). The inputs are assumed constant
after k + M — 1, ie., Au(try;) = 0,0 > M. T and A are diagonal matrices of weights
on the outputs and the change of manipulated variables respectively. Constraints on
both v and Awu are also included in the optimization problem. The optimization is
carried out with the NPSOL software, written by Gill et al.'®, which uses a Successive
Quadratic Programming (SQP) algorithm.

The output prediction is obtained via numerical integration of the model differential
equations for specified inputs, using the software package DASSL!?. Incorporation of
state estimation in the output prediction to compensate for model-plant mismatch and
disturbances is discussed in the following section.

In section three it will be shown that tuning the integer parameters M and P is achieved
by grid search because the off-line optimization algorithm accepts only continuous real
variables. However, in our NLMPC formulation, P represents the integration horizon

for output prediction, therefore we are not limited to using integer P. Hence the grid



search can be simplified to one variable search by treating P as a real variable. To allow

such a non-integer P, the objective function in equation (1) is modified as follows:

Tiy M
min E F?éi(tk_;_]:)/T + Z “ AAu(tk+1_1) ”2 (3)
u(tg)s . ul(tiy m—1) = oy

where n, denotes the number of outputs, and I'; denotes the i, element of I'. &(trp)
is obtained by the simultaneous solution of the original model equations (with a state

estimation correction term as described in the next section) and of

G(t) = (ui(t) — (1) + ()i =1,...,n, (4)

The numerical integration start at ¢, and ends at ends at ¢;.p. The solution is obtained
by repeated integration for one sampling interval using specific constant u for each
sampling interval and constant d over the whole prediction horizon. When P is non-
integer, the last integration interval is not equal to the sampling interval. Once again
the inputs, u, are assumed constant after k+M —1. The computed error is then divided
by the sampling time in order to get the same order of magnitude as the discrete error
used in equation (1). Henceforth we shall refer to the NLMPC formulation with integer

P as the standard NLMPC and to the one with non-integer P as the modified NLMPC.

2.2 State Estimation

In practice, the performance of NLMPC may become poor in the presence of model-

plant mismatch, especially for open-loop unstable systems, where the model states



may diverge away from the actual states. A state estimator can be combined with the
on-line optimization to reset the model states.

Our approach uses an Extended Kalman Filter (EKF) which allows an additive state
correction formulation. State estimation by EKF is easy to implement and requires
less computational effort than approaches using nonlinear programming for solving a
coupled parameter and estimation problem. The construction of the EKF for nonlinear

models is discussed in Lewis!®

. Here we extend the calculational procedure of the
continuous-discrete filter gain!® to evaluate its steady state value which will be used
for the standard NLMPC. The correction term is then equal to the product of the
calculated steady state filter gain with the deviation of the current predicted output

from its actual measured value.

To design the filter gain, assume that the model equations can be represented by:

= f(z,u,t)+w (5)

y="h(z)+v (6)

where w ~ (0,Q) and v ~ (0, R) are white Gaussian noise processes assumed to be
independent of each other, and to characterize the unmeasured disturbances and the
measurement noise respectively. ) and R are the respective covariances of w and v
and they are assumed to be diagonal matrices of the form @ = ¢%*I and R = r’I.
In the absence of accurate knowledge of the disturbance and noise characteristics, we

further simplify the filter tuning method. Defining 0% = ¢%/r? and letting r? = 1.0 will



uniquely determine the Kalman Filter gain and simplify its tuning to determining only
one parameter'®. Although the trivial simplification of the covariance matrices is not
optimal, it provides simple treatment against disturbance injection in the plant. This
parameter can then provide a closed-loop observer, without which an MPC algorithm
applied to an open-loop unstable process would be unstable. Therefore o is used to
provide stability and robustness in the presence of modeling error, disturbances, and
measurement noise. One should note, however, that the assumption that w and v
are white noise will result in biased state and/or output estimates in the presence
of persistent disturbances, e.g., step-like input or output disturbances. This can be
corrected with appropriate augmentation of the system of (5) and (6), but then a
different “type” of model would have to be used for different cases. To avoid this,
and since significant simplification is already accepted for () and R, we use a simple
additional correction of the output with the current disturbance estimate. This is
accomplished by including the d term in (2) and (4). This concept was used by Ricker®
for linear MPC and also by Gattu and Zafiriou® for NLQDMC.

The model output prediction for a set of M future values of u, which is determined by
the online optimization loop, is described by the following steps:

step 1: Initialization. Known at the current sampling point, k, are the plant mea-

surement §(t1), the model state vector x(ty), the manipulated variable vector u(ti_q).

Set PkZI.
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step 2: Linearization. Obtain the following jacobians:

Ak = Va:f(x) u, t) lw::v(tk),u=u(tk_1),t=tk (7)

Hk = Vzh(:’;) |1‘=1‘(tk) (8)

step 3: Time update. Integrate numerically the error covariance equation:

P(t) = AuP(t) + P(t) AL + Q (9)

for one sampling interval using DASSL, with initial condition P = Py. Define the
solution as Pi.

step 4: Measurement update. Compute the Kalman Gain:

K. = P.HT[H . P.H + R]™! (10)

and update the error covariance:

Pk = [] — I&,ka]pk (11)

Repeat steps 3 and 4 till steady state value of Py is reached.

step 5: Correction factor. Compute the Kelman Filter correction factor :

Fyy = IG[j(t) — h(a(ti))] (12)

10



step 6: Output prediction. Set &(t;) = x(tx) + Fi and integrate the state equation
over one sampling time to get x(ty41), then reset the value of the new state to &(try1)
by adding F, and evaluate the output y(tr41) = h(Z(tk41)). Repeat the last step over
the prediction horizon P. During the integration the manipulated variables are allowed
to vary at M discrete times, specifically at tr,tiyr,. .. them—1-

Addition of Fj, to the model states is used to compensate for modeling error. In addi-
tion, a constant prediction of the disturbance, d, is essentially added to the predicted
output to eliminate steady state offset as indicated by the d term in (2) and (4). Several
techniques for obtaining the limiting solution of (9) are discussed in the literature?®?!:22,
The method of direct numerical integration is used here for simplicity. The choice of
an initial value of P = I (step 1) does not affect the steady state value of P, and Ky,
obtained by the repetition of steps 3 and 4. The steady state value of Py is the unique
solution of the corresponding Ricatti equation'®.

For the case of modified NLMPC, the steady state Kalman gain calculation remains
the same. However, the objective function does not explicitly utilize output prediction
at each sampling point. Instead error prediction at k + P (i.e., the value of é(txp)) is

needed. Therefore, step 6 is replaced by:

step 6: Error prediction. Inlegrate simultaneously the differential equations:

i = f(z,u,t) + F/T (13)

é = (y(t) — (1) + d(1))? (14)
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from the sampling point k up to k + P with initial conditions z = z(t) and € = €(tx).
During the integration the manipulated variables are allowed to vary at M discrete
times, specifically at tg,tgq1, ..., thpm—1. Denote the solution as €(tr+p).

For small T', K /T approximates the continuous Kalman gain that should be used in

(11). This approximation is used for simplicity.

3 Tuning Procedure

This section formulates the tuning parameter selection problem as an off-line opti-
mization carried out with the interactive CONSOLE software?®. This is a flexible
formulation that allows one to use several types of performance criteria.

CONSOLE has been used for controller design in the past. For example, it was used to
obtain the parameters of PID controllers?*?®. Here we extend the same idea to tuning
the NLMPC parameters. The off-line optimization can, e.g., determine the parameter
values that make the closed-loop response stay within a preset constraint envelope
over defined time domain as shown in Fig. 1. The envelope is used to represent various
performance objectives. For example, constraints can be used to limit overshoot or
undershoot, and/or maintain desired response speed. The values of constraints can
be specified as functions of the setpoint change values, e.g., proportional to them.
Alternatively one could choose to directly minimize the maximum possible overshoot
24,25

The procedure can be described by the loop shown in Fig. 2 The desired performance

specification, e.g., the envelope of Fig. 1 are given to CONSOLE. Also, possible setpoint
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changes, disturbances, model parameter errors etc, can be specified. By discretizing
the range of possible values of these quantities one can define multiple objectives or
constraints for CONSOLE, each of which corresponds to a particular set of values, and
require that the specified performance criteria be satisfied or optimized. CONSOLE
will then find suitable tuning parameter values that force every NLMPC response
obtained for different discretized value of modeling error, setpoints, or disturbances to
lie within the maximum bounds.

During the optimization carried out by CONSOLE, simulations of the closed-loop con-
trol system under NLMPC have to be run repeatedly for different tuning parameters,
setpoints, disturbances, as well as model and plant. CONSOLE determines the next set
of values to be tried, based on rigorous optimization theory, instead of trial-and-error.
An added feature of CONSOLE is its interactive nature, which allows the designer
to specify “good” and “bad” values for each performance constraint specification and
interactively change them if CONSOLE can not find tuning parameter values to satisfy
them. The good and bad values are used to scale the performance constraint specifica-
tions by dividing the deviation from the good value by the difference between the good
and the bad values. If the difference between good and bad values is selected equal to
unity, the corresponding constraint is not scaled. This concept is discussed in detail
by Nye and Tits?®. Note that we treat performance constraints as soft constraints in
this paper.

It is also important to mention the concept of CONSOLE’s set of parameters called

nominal variations. The user should provide a nominal variation for each design pa-

13



rameter, besides its initial guess, to indicate his confidence in the initial guess. In
fact it is a way to scale different design parameters so that when they are changed
by amount equal to their nominal variation, they are expected to have an equal effect
on the most active constraints and objectives. Therefore proper choice of the nominal
variation may help accelerate the progress of the optimization process® .

It should be emphasized that CONSOLE treats all design variables as continuous real
variables. The control horizon M, and for standard NLMPC, the prediction horizon
P are integer variables. Such variables can be usually approximated by continuous
variables if their values are large. However, we wish to keep M and P as small as
possible, while satisfying the specifications, in order to avoid unnecessary increasing
the computations of the on-line optimization that NLMPC requires.

Therefore, when standard NLMPC algorithm is used, M and P are determined by
performing grid search. For each grid point (i.e., each fixed values of M and P)
CONSOLE is used to determine the real-valued parameters. On the other hand, with
modified NLMPC, which allows for a non-integer P, only M has to be fixed, while the
remaining parameters including P are determined by CONSOLE.

Note, that in addition to the usual MPC tuning parameters, the sampling time (T),

and the covariance ratio (o) can also be used as such parameters.

4 Illustrations

In this section three chemical reactor examples are used. The first two examples

are open-loop unstable processes, and illustrate the capability of EKF to stablize the
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system when disturbances and parametric error exist. They also demonstrate the
effectiveness of the tuning parameter selection procedure. The last example uses a
pH control problem to demonstrate how the off-line tuning procedure can be used to
maximize the sampling time while maintaining the best attainable performance. In all
simulations, the effect of the upper and lower performance constraints are balanced by
equating the difference between their “good” and “bad” values. In this case CONSOLE
will try to satisfy both bounds equally. In the first two examples the optimization
problem is formulated as a functional constraint problem. For the pH example we have
an objective function for maximizing the sampling time. The results reported in this
paper correspond to the case where the “bad” values are selected so that the absolute
value of their difference from the “good” value is unity, thus using no special scaling of
the constraints, as explained in section 3. We did examine the use of appropriate scaling
for both examples in section 4.1 and 4.2, but the results were essentially identical to
those where no scaling of the constraints was used.

For each off-line optimization solved with CONSOLE we report the total number of
NLMPC simulations. Several NLMPC simulations ( corresponding to different values
of disturbances and modeling error) are required every time that a new point in the
variable space (NLMPC tuning parameter space) has to be tried. This includes simula-
tions made for numerical derivative computations. CONSOLE uses a forward difference
formula for each parameter. The number of total NLMPC simulations is provided as
an alternative to CPU time. The type of software that one uses for solving the on-line

NLP has a significant effect on CPU time for each simulation. Several authors have
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tried to reduce the on-line computations by taking into account the specific nature of
NLMPC optimization?®?°, We have not attempted to do so and we are simply using
the NPSOL package'®. By looking at the number of of NLMPC simulations, this factor

is neutralized and we can study the convergence speed of CONSOLE.

4.1 Catalytic CSTR Example

This example is taken from the paper by Brengel and Seider?®. An exothermic catalytic

reaction in the form of A+ B — P is taking place. The reactor model is:

i1 = uy + uy — 0.227° (15)

(Cb] - (L‘g)ul n (Cw — :L'g)’(tz _ klfL'z
T 1 (1 4 kox,)?

.’I',‘2=

(16)

The process outputs are y; = z; (tauk level), and y; = 5 (concentration of B in the
reactor). Cj;, Cpy are the concentrations in the inlet feeds of concentrated and dilute
B respectively. The manipulated variables are the corresponding flow rates u; and us.
The model parameter values are ky = ky = 1, Cyy = 24.9, and Cy = 0.1. The control
goal is to move the process from initial stable steady state conditions of u; = uy = 1,
y1 = 40, and y; = 0.4, to a new unstable steady state at y; = 100 and y, = 2.787
by manipulating u; and uy. This step change test is carried out in the presence of a
disturbance at the inlet concentration Cj1, and physical constraints on the manipulated
variables between 0 and 10. For this situation the concentration response suffers from

excessive overshoot and slow disturbance rejection as reported by Brengel and Seider.
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Tuning of the NLMPC parameters is necessary in order to reduce the overshoot, reject
disturbances, and maintain proper speed of the response. In order to impose these
desired properties with CONSOLE, they are translated into transient upper and lower
bounds on the response of the process outputs y; and yz. For y; tight upper bounds
of 2.86 and 2.8 for the intervals 0-10 and 10-30 min respectively are employed to
prevent overshoot. Lower bounds of 2.6 aud 2.73 for the intervals 5-10 and 10-30
man respectively, are also imposed to avoid sluggishness and ensure convergence of the
response to its final steady state. For y; a constant upper bound of 101 and a lower
bound of 99 from time 10 to 30 min were used to avoid performance degradation due
to penalty weight variation. The performance bounds are represented by the solid lines
in Figs. 3 to 5.

Grid search along with CONSOLE is used to determine the optimal values of M,
P, o, A, and the weight on the second output (I';) that simultaneously force the
responses of the setpoint change under three different values of disturbances to fulfill
the performance constraints. Note that I'; was not tuned because the others are simply
relative to it. In particular step disturbances of magnitude 5.0, 0, and -5.0 on Cy; were
used. The results of this search, which uses a sampling time of 1min, are summarized in
Table 1. At each fixed value of M and P, the parameters o, A, and I'; in Table 1 are the
final values found by runing CONSOLE with initial values of (0,diag[0,0],1) and nominal
variation values of (1,diag[1,1],1) respectively. The table indicates whether the three
responses at the obtained parameter values satisfy the bounds or not. Since for M =1,

values were found for the other tuniug parameters that satisfy the specifications, there

17



is no need to try larger values for M. Note that small M is desirable for computational
reasons. The table also shows the total required NLMPC simulations which have been
used for each grid point.

For small values of P the response of y; is so aggressive that CONSOLE was not able
to move from the initial values of the tuning parameters. For large values of P the
response of y; is slower and further decrease of the overshoot was not possible because
it forces the response of y; to violate the lower bounds. Only at M = 1 and P =
optimal tuning parameters that successfully satisfy the desired objectives were found.
Figure 3 shows the setpoint responses of y; and y; at M = 1, P = 3, and the initial
values of the tuning parameters. Figure 4 shows the responses for the same values
of M and P but at the final values of the tuning parameters. The figures also show
the responses at additional disturbances values of +2.0 and -2.0. Since this system has
slow dynamics it takes a longer time to settle down to its final steady state value which
would be clear if longer simulation time was used in the figures.

The use of modified NLMPC that utilizes a non-integer P was also considered. In this
case the value of M has to be fixed and CONSOLE is used to determine the optimal
values of P, A, o, and I';. The results are given in Table 2 for fixed value of M = 1.
It should be noted that the unequal variation values shown in the table helped in
improving the progress of the off-line optimization process. Unfortunately the obtained
parameters were not optimal but they are probably the best ones. The corresponding

simulations at these values are shown in Fig. 5. The bound violations are negligible.

Even though the output bounds were too tight, we got an acceptable solution because
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the bounds are soft. This example illustrates that, even if the bounds were chosen
somewhat arbitrarily, a good solution, not necessarily satisfying the bounds, is not
eliminated.

Different initial guesses of P and o in addition to equal variation values were also tried
but no successful results were obtained.

Finally, one should note that the NLMPC simulations required by CONSOLE would
have been reduced by about one third, if the case of zero disturbance on Cj; was not

used in CONSOLE.

4.2 CSTR Temperature Control Example

This control problem is adapted from Sistu and Bequette”. The objective is to control
the temperature of an exothermic irreversible reaction taking place in a CSTR by

manipulating the cooling jacket temperature. The dimensionless model equations are

given by:
& = —pa1 K (22) + q(z15 — 1) (17)
&9 = Bpz1 K (24) — (q + $)za + su + qzay (18)
y = 3 (19)

where K(z2) = exp(z2/(1 4+ 22/20)), 21 is the dimensionless concentration, x is the
dimensionless temperature, and u is the dimensionless cooling jacket temperature.
Initial conditions are u = 0, z; = 0.856, and z, = 0.8859, which correspond to a

stable steady state point. The nominal values of the model physical parameters are
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B =8.0,s=0.3,¢g=1.0,p =0.072, z1; = 1.0, and x5 = 0.0.

Sistu and Bequette” used coupled parameter and state estimations via a nonlinear pro-
gramming technique in order to address performance deterioration due to modeling
error or disturbances. This example was used to test their parameter estimation al-
gorithm by two simulations. The first one is a setpoint change to the unstable steady
state (y=2.7517) for the case where the values of the dimensionless heat transfer coeffi-
cient, s, are 0.2 for the model and 0.3 for the plant, and u is bounded between -1 and 2.
While the second simulates the response to a +20% feed composition (z5) disturbance
for the same initial conditions and values of s. In both cases M = 1, P = 5, and a
sampling time of 0.25 were used.

In this paper we try to determine NLMPC parameters for which the desired perfor-
mance characteristics are maintained in the presence of modeling error in s, without
the need for changing on-line the model parameter values. For the same simulation
conditions and sampling time, we use CONSOLE to obtain NLMPC parameters that
make the responses fit inside desired performance constraints. These constraints are
chosen to represent similar performance to that obtained by Bequette and Sistu. The
bounds used for the two tests are as follows; for the setpoint change a constant upper
bound of 2.81 and a lower bound of 2.7 between 5 and 20 were implemented. For the
disturbance case upper bounds of 0.9 and 0.887 for the time intervals 0-5 and 5-20 and
a constant lower bound of 0.885 were imposed.

For the purpose of comparison with the results of Bequette and Sistu, the heat transfer

coeflicient s of the plant is fixed at 0.3, while for the model values of 0.2 and 0.3 were
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examined. A summary of the results in the case of integer prediction horizon P for
initial guess of (0,0) and nominal variation of (1,1) is given in Table 3 At M=1, our
search indicated that higher values of P are not favorable. Large values of P make the
setpoint response sluggish and no further improvement can be made by tuning o and
A. At M=2 and P=5 bound satisfaction was obtained.

Figure 6 gives the responses for the two cases at M = 2 and P = 5 for initial value of
o =0and A = 0. Figure 7 shows the improved responses at the final value of o = 3.53
and A = 0.015. It is clear that the final values of & and A result in excellent responses,
comparable to those of Bequette and Sistu.

The use of non-integer P eliminates the need for a large grid search. In this case we fix
M and use CONSOLE to search for P, o, and A for the modified NLMPC algorithm.
Our results for the case of M = 1 indicated that no solution can be found. This result
agrees with the grid search results for the same value of M. The results for the case
of M = 2 are given in Table 4. For the first initial guess we reported two different
results each with different set of variations values. When a large variation on P is
used, its value changes faster than the other parameters. This made the optimization
end at a local optimum. In the equal variation case the optimization moved towards
a solution that satisfied the bounds. The simulations for these values are shown in
Fig. 8. Although all responses successfully satisfy the constraints, a slight oscillation is
observed in the disturbance-rejection response of the imperfect model. This oscillation
was ignored by CONSOLE since it satisfies the bounds within the specific simulation

time used in CONSOLE. By investigating the same response with longer simulation
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time we found that the response is in fact unstable. One way to eliminate this oscillation
is to try using tighter constraints on the outputs of the imperfect model. Therefore we
reran CONSOLE starting from the previously obtained parameters using new tighter
constraints. The new constraints are the same as before except that in the cases of
imperfect model we imposed additional upper and lower bounds of £5 x 107 from the
setpoints from time 15 to 20. New parameter values and improved stable responses

were obtained as given in Table 4 and shown in Fig. 9.

4.3 pH control Example

This example considers a highly nonlinear process studied in Li et «l.'®. The process
consists of two CSTRs in series and a pH measurement champer. In this example
perfect modeling is assumed. The control objective is to bring the pH value to a

desired setpoint by manipulating the acid flow rate. The process model can be written

as:
E1==5x 107" + 0.1u — (0.05 4+ u)z; (20)
T2 = (0.05 + u)(zy — z2) (21)
&3 = 10(z2 — 23) (22)
y = —log10(0.5(z3 + (23 + 4 x 10714)%%)) (23)

where u is the manipulated variable (acid flow rate; pH=1), 1, x5, and z3 are the dif-

ference in concentrations (H+*—OH ™) in the first tank, second tank, and pH measuring
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champer respectively. The steady state values are u = 0, 7; = 3 = 3 = —107*, and
the new setpoint is y = 7. This control objective is examined by Li et al.}® using a
single-step Newton-type controller with a sampling time (T') = 40sec, where oscillatory
response was observed. Oscillation is eliminated by adding an integral control term
to the Newton-type controller, however a sluggish response is obtained. Here we deal
with this problem by tunning M and P as well as the sampling time.

By adjusting M and P, for a sampling time of 40sec, we found that at M = 1 and
P = 3 a non-oscillatory pH response is obtained as shown by the dashed line in Fig. 10.
Next we seek to maximize the sampling time, for the case where M =1 and P = 3,
in order to reduce the overall online computational effort. Maximization is carried out
by CONSOLE subject to some pH performance constraints as shown by the solid lines
in Fig. 10. Specifically, upper bounds were chosen to be 10, and 7.01 for the intervals
0-400, and 400-500 sec respectively. While a lower bound of 6.95 were set for the whole
interval. These bound correspond to best performance obtained in Li et. al.X°.

By runing CONSOLE the maximum sampling time to preserve our performance re-
quirements is found to be 263.9sec when T is bounded above by 500sec and to be
180sec when bounded by 180sec. The responses at the maximum sampling time are
given by the dot-and-dash and the solid lines in Fig. 10.

Since P can be treated as non-integer variable in the modified NLMPC algorithm, the
above objective, i.e., maximizing the sampling time while satisfying the performance
constraints, is reconsidered by tuning both 7" and P at fixed M for the same upper

bounds on T as above and an upper bound at 10 for P. The results are reported in
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Table 5 and simulations shown in Fig. 10. The maximum T obtained in this case is
larger than what was found in the standard NLMPC for the case when T is bounded
above by 500sec. The reason is that in the modified NLMPC P is allowed to vary.

One should note of course that unmeasured disturbances and modeling errors would
probably result in smaller values for T'. The goal of this illustration is to show how addi-

tional designer-defined parameters like the sampling time can be tuned simultaneously

with the NLMPC parameters via CONSOLE.

5 Concluding Remarks

This paper considered the question of tuning a nonlinear Model Predictive Control
algorithm. A differential equation model is assumed for the process and an Extended
Kalman Filter is incorporated to allow stable operation around open-loop unstable
steady state points and better disturbance rejection. This particular type of algorithm
was selected because there are no design techuiques for selecting the tuning parameters
for robust stability and performance. In the absence of robustness conditions, we have
cast the tuning problem as an off-line optimization, with the goal of satisfying time
domain specifications. These specifications may include mixed setpoint tracking and
disturbance rejection requirements, in the presence of modeling error.

The use of the software package CONSOLE proved very effective in obtaining solutions
to the off-line optimization problem. One can expect the technique to work even more
efficiently when applied to problems in which the simulations of MPC algorithms are

less computationally demanding, as, for example, the case of discrete nonlinear models,
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like neural networks, or linear models. Althougl in the case of linear models theoretical
design techniques are available, the time-domain orientation of this approach may be
preferable to a designer.

The illustrating examples have also pointed out certain weaknesses that future work
will have to address. As the temperature control example demonstrated, no stability
guarantees are provided. Caution and careful examination of the solution can help
avoid a problem, but it is no substitute for rigorous theoretical conditions, assuming
such conditions are available. Another problem is the existence of several local optima
for the off-line optimization which may generate the need for repeated runs. One should
note though, that after a set of tuning parameter values is found that satisfies the time-
domain specifications, it is sufficient, regardless of being only a local optimum. Still, a
better understanding of the properties of the off-line optimization is needed.
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Table 1: Results of the tuning parameter search for
example 1 using standard NLMPC.

M|P|T, o A [diag] B |N
T [1]10 [00 |[0,0] No |12
2119 4.0e-9 | [0,0] No |12
3 [108.6 | 0.087 | [15.46,0] | Yes | 147
4 |18.44 {0.097 | [0,0] No | 129
5 1168.6 | 0.109 | [1.8,5.3] No | 363
6 |18.83 | 0.134 | [1.85,13.2] | No | 255
7 19.88 [0.157 |[21.6,13.3] | No | 328

B=Bounds satisfied, N=NLMPC simulations

Table 2: Results of the tuning parameter search for
example 1 using modified NLMPC.

Parameters M=1
Initial | Variation | Final
P 10.0 10 4,943
o 1.0 1 2.524
Aldiag] [0,0] [1,1] [5.4,5.76)
Iy 1.0 10* 37.24
B — — No
N — — 776

B=Bounds satisfied, N=NLMPC simulations

* l"g was used as variable with variation 100.
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Table 3: Results of the tuning parameter
search for example 2 using standard NLMPC.

MiP|o A B (N
1 (11126 |0.0 No | 72
2 1562 |0.0 No | 84
3 (159 |0.0 No | 84
4 [11.5 |0.0 No | 84
5595 |0.0 No | 88
6 {151 |0.0 No | 84
2 12 {104 0.0 No |72
3 (0.922 0.0 No | 72
4 (099 (0.0 No | 72
5 [3.53 ]0.015 | Yes | 184
6 [1.04 |0.0 No | 70

B=Bounds satisfied, N=NLMPC simulations

Table 4: Results of the tuning parameter search for example 2 using modified NLMPC.

Parameters M=2
Initial | Variation | Final Initial Variation | Final
P 10.0 10(1) 2.67(9.506) 9.506 1 9.51
o 1.0 1(1) 1.56(2.52) 2.52 1 2.52
A 0.0 1(1) 9.6x1073(6.1x1073) | 6.1x1072 | 1 1.04x1072
B — — No(Yes) — — Yes
N - — 168(184) — — 265

B=Bounds satisfied, N=NLMPC simulations

Table 5: Results for the tuning parameter

search for example 3 using the modified NLMPC

Parameters M=1
Initial | Tmax=180 | Tmax=500
P 1.0 10.0 10.0
T 40.0 180.0 500.0
B e Yes Yes
N — 15 23

B=Bounds satisfied, N=NLMPC simulations
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