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Abstract

This paper addresses the gradient estimation of transfer lines comprising two machines separated by a buffer
of finite capacity. A continuous flow model is considered, where machines are subject to operation-dependent
failures, i.e., a machine cannot fail when it is idle. Both repair times and failure times may be general, i.e.,
they need not be exponentially distributed. The system is hybrid in the sense that it has both continuous
dynamics, as a result of continuous material flow, and discrete events: failures and repairs. The purpose
of this paper is to estimate the gradient of the throughput rate with respect to the buffer capacity. Both
IPA estimators and SPA estimators are derived. Simulation results show that IPA estimators do not work,
contradicting the common belief that IPA always works for continuous flow models.
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1 INTRODUCTION

A transfer line consists of a set of machines arranged in a serial configuration and separated by buffers. A part
to be processed arrives to the first machine as raw material from outside the system. After being processed
by the first machine, it queues in the first buffer, waiting to be processed by the second machine. It continues
in this manner through all machines and reaches the inventory of finished products after being processed by
the last machine. The rate at which a machine processes a part is called the machine’s production rate.

The performance of a transfer line is adversely affected by machine failures. While a machine is being
repaired, it is unable to process parts, thus disrupting the flow of the transfer line. During this down time,
the level of the machine’s downstream buffer decreases while the level of its upstream buffer increases. If the
repair takes a long time, then the downstream buffer may empty out — starving the downstream machine,
and/or the upstream buffer may fill to capacity — blocking the upstream machine. In either case, the affected
machine is said to be forced down.

The machine failures may be either operation dependent or time dependent. Operation-dependent failures
can only occur while a machine is processing a part, whereas time-dependent failures can occur even if
it is forced down. Both types of failures have been considered in the literature. Operation-dependent
failures are commonly considered in performance analysis of production lines, and time-dependent failures
are usually assumed in the flow control of failure-prone manufacturing systems. Excellent literature surveys
on performance evaluation of production lines can be found in Buzacott and Shanthikumar (1992) and
Dallery and Gershwin (1992), though here only closely related work will be reviewed. We note here that for
the most part little has been done for systems with generally distributed failure and repair times.

In this paper, we limit ourselves to transfer lines composed of two machines separated by a buffer of finite
capacity. A continuous flow model is considered. The maximal production rates of the two machines are the
same. Times to repair and times to failure of the machines are random variables with general distributions.
Machines are subject to operation-dependent failures, and a machine cannot fail if it is forced down. Due to
the generality of the failure/repair mechanisms, transfer lines considered in this paper are not analytically
tractable, so that performance evaluation requires simulation. The purpose of this paper is to evaluate the
gradient of the throughput rate with respect to the buffer capacity. Both infinitesimal perturbation analysis
(TPA) estimators and smoothed perturbation analysis (SPA) estimators are derived. We show that the IPA
estimators are biased, because certain event order changes cause significant jumps in the performance of the
line. Thus, this is an example of a simple continuous flow model in which IPA does not apply, contradicting
the common belief that TPA is always applicable to continuous flow models. It is worth noting, however,
that TPA does work in the setting presented here if failures are instead time dependent (see Xie 1998).

Most related to this paper are works on performance evaluation and optimization of continuous production
lines with operation-dependent failures (e.g., Plambeck et al. 1996, Shi et al. 1998, and Suri and Fu 1994).
In particular, Suri and Fu (1994) proposed a GSMP model for representing the underlying stochastic process

of a continuous production line, and perturbation analysis with respect to maximal production rates was



considered in Shi et al. 1998.

The transfer line model considered in this paper is a piecewise deterministic control system (PDCS).
Piecewise deterministic control systems have been addressed by many authors. Most of the existing works
are motivated by the optimal control of manufacturing flow and consider time-dependent failures. Among
them, convergence of stochastic approximation algorithms coupled with perturbation analysis was addressed
in Haurie et al. 1994 under a fairly general framework. However, conditions of that paper are difficult to check
and its results difficult to apply. Perturbation analysis was also applied in Caramanis and Liberopoulos (1992)
to the flow controller design of manufacturing systems without internal buffers and with constant demand
rates. A two-machine production line with constant demand rate was considered in Yan et al. (1994), where
sample gradients of inventory cost with respect to control parameters were defined and proved to be strongly
consistent. Perturbation analysis was also conducted in Brémaud et al. (1997) for a single-machine/single-
item production system having multiple machine states. It is worth mentioning as well the work of Wardi
and Melamed (1996), in which the gradient estimation for loss measures in continuous flow models of a
single-queue system was addressed using IPA.

The rest of the paper is organized as follows. Notation and basic relations for continuous production
lines are presented in Section 2. Section 3 presents the IPA estimators. Section 4 derives unbiased SPA
estimators for the finite time horizon case, and Section 5 extends them to the long-run case. In Section 6,

numerical results for two simple examples are presented. Section 7 concludes.

2 NOTATION AND BASIC RELATIONS

We consider a production line composed of two machines M; and M separated by a buffer of capacity c. We
assume the synchronous case where the maximal production rate of both machines is the same, and without

loss of generality assumed to be 1. The following notation will be used throughout the paper (with i =1, 2):

Xk = k-th time to failure of machine M;,
Y;rx = k-th time to repair of machine M;,
F;(resp. G;) = distribution function of X;; (resp. Yir),
fi(resp.g;) = density function of X, (resp. Yir),
Ai, pi = failure rate and repair rate, i.e., \; = 1/E[X;;] and p; = 1/E[Yig],

oy =  state of machine M; at time ¢; 1 if up and 0 otherwise,

riy = remaining lifetime (until failure or repair) of machine M; in state a;; at time ¢,
a;y = age (since last failure or repair) of machine M; in state a;; at time ¢,
P;; = cumulative production of M; up to time ¢,
ry = buffer level at time ¢,
er = k-th event € {F1, Ry, Fa, Re, BF, BE},



tr = epoch of event ey,

s, = state of the system at time ¢ = (aix, asx, T1x, T2k Tk,
T, = time from ex_1 to e = 7 — TE_1,
#(k,e) = number of occurrences of event e in ejes...ex.

In the above notation, for the sake of simplicity, xy is used to denote z,. This will not lead to confusion,
since throughout the paper only x; denotes the inventory level at time ¢ and, in all other cases, xo, denotes
in fact ;4. The same abuse of notation is often followed for ok, 7k, @ik, Tk, and si.

We take the initial condition ag = (1,1) and g = 0, i.e., the system begins empty with both machines
up. The performance measure considered in this paper is the throughput rate of the system defined as
follows:

L = lim Py/t,
t—oo

which is assumed to exist w.p. 1. Three finite-time estimators will be considered:

Ly = Pyt
L, = P2tw(n)/tw(n)’
Ln = P2tn/tna

where e,,(,) is the n-th repair of M.

The dynamics of the system can be characterized similar to a generalized semi-Markov process (GSMP)
model: starting from sp, the next event e; is determined and the state of the system is updated as to be
described. Then the system evolves in the same way starting from its new state s;.

Machine M is said to be blocked in state sy = (@1k, Qok, 71k, T2k, Tk) if a = (1,0) and 2, = ¢. Machine
M is said to be starved in state sy if ap = (0,1) and x = 0. In either case, the machine is said to be forced
down. When a machine M; is forced down, it cannot produce, it cannot break down, and its remaining time
to failure r;; remains unchanged as long as it is forced down. Thus, in terms of the usual GSMP terminology,
the noninterruption condition is violated; in this case, the corresponding events are not cancelled, but merely
suspended.

For the two-machine systems, the following events are possible: the failure of Mj, the repair of My, the
failure of My, the repair of Ms, buffer full, and buffer empty, denoted respectively by Fy, Ry, F», Rs, BF,
BE. The determination of the next event ey is as follows. The time to state change of machine M; for

i=1,2,is as follows:
Tk, if M; is not forced down in sg;
T, = .
oo, otherwise.

The time to buffer full event is:

T = €k, ifar =(1,0) Axg <
Fk = 0, otherwise.



The time to buffer empty event is:

PRI % if ag = (1,0) Axg > 0;
EE =1 o0, otherwise.

As a result, the next event epoch ty11 =t + 7 with
7 = min{Tx, Tor, Trr, Tek}-

The next event is defined as follows:

F, ifr, =T Aoy =1,

. R;, if 1o = T A oy = 0;
% = BF, if 7, = Ty
, if 1 = Tgy.

The next state can be updated as follows:

Tk, if Myor Ms> is forced down in s,
x = .
i 2k + (Q1k — Qog) Tk, otherwise;
a _ a1k, if €k+1 ¢ {Fl,Rl};
k+1 1 — aqp, otherwise;
a _ Oégk7 lf €k+1 ¢ {F27R2};
2k+1 1 — ag, otherwise;
sample(Y1), if epy1 = Fy;
, - sample(X1), if exy1 = Ruy;
ML T1k, if M, is blocked in sy;
Tk — Tk, otherwise;
sample(Y1), if epy1 = Fy;
, - sample(X1), if exqy1 = Ra;
AL Tk, if My is starved in sy;
T2k — Tk, otherwise.

From the above equations, e;11 = Ry if M; is blocked, and ex4+1 = Ry if Ms is starved.

3 IPA ANALYSIS

For the purpose of perturbation analysis, we compare the sample path of the system having buffer capacity c,
called the nominal system, with that of the system having buffer capacity c+ A, A > 0, called the perturbed
system. As usual in TPA, we assume that the event sequence is identical for both system up to the k-th

event, i.e.,
(A1) er(c+ A) =ei(e), ..., ex(c+ A) = ex(c).
Under this assumption, the following holds:

ap(c+A) = ag(c),

aix(c+A)+rp(c+A) = aple)+rx(c),Vi=1,2. (1)



Figure 1 HERE

Figure 1: A typical sample path

More relations between the nominal and perturbed systems can be obtained by detailed sample path analysis.

For this purpose, consider the sample path of Figure 1 and let

= min{n >1:e, = BF},

O = min{n > H :e, = BE}.
Clearly H and O define an operation cycle of the system. At event ep41, both machines are up and the
buffer is empty, and the system starts a similar cycle as at time 0. Hence it is natural to first conduct the
perturbation analysis for the first cycle, and then extend the results to the other cycles. However, we note

that except for the case where times to failure of machine Ms are exponential, the points are not in fact

regenerative points. Five cases are considered for the first cycle.

Theorem 1. Under assumption (A1), the following hold:
o If k < H:tp(c+A) =tr(c),xk(c+ A) = xp(c), rix(c + A) = rig(c), Vi =1, 2.
o Ifk=H:tp(c+A) =tr(c)+ A zp(c+ A) = zx(c) + Ay ri(c+ A) = rip(c) — A Vi=1, 2.

e If H <k < O and e € {Fp,Ra} : tp(c+ A) = ti(c),zi(c + A) = xi(c) + a1, r1ik(c + A) =
rig(c) — A, rop(c + A) = rap(c).

o If H<k<Oandep=BF :tg(ct+A) =tg(c), zr(c+A) = zr(c) + A, rix(c+ A) = rig(c) — A, rog(c+
A) = TQk(C).

o If H <k <O andep € {F,Ri}: ti(c+ A) =tr(c) = A,zp(c+ A) = zp(c) + anl, rip(c + A) =
rik(c), rox(c + A) = rop(c) + A.

e Ifk=0:tp(c+A)=tr(c),zx(c+ A) =zk(c) =0,r1x(c+ A) = r1x(c) — A, rop(c + A) = rap(c).

Ifhk=0+1:t(c+A)=tr(c) — A, zi(c+ A) = zi(c) = 0,r16(c+ A) = r1x(c), rox(c + A) = rop(c).

Proof. Case 0 < k < H is obvious since, from t = 0 to ty, the buffer level is always below H, so the sample
paths of the nominal and perturbed systems are identical. Case k = H is a trivial consequence of case
0 < k < H. The results concerning cases H < k < O will be proved later. Consider the case k = O. In
this case, ag—1 = ax = (0,1) and ex_1 € {F1, R2}. Only the proof for e,_; = F} is given, since that for
ex—1 = Ro is similar. If eg_; = Fy, then tp_1(c+ A) = tx—1(c) — A and zx_1(c+ A) = xp_1(c) + A. As a
result, tx(c+ A) = tp_1(c+ A) + xp—1(c + A) = tr_1(c) + zp—1(c) = tx(c), i.e., tx(c + A)— tp_1(c + A) =
tr(c) — tg—1(c) + A. Hence, r1p(c+ A) = rix(c) — A, rog(c + A) = rox(c). Finally, the result for the case



k=0 + 1 is a trivial consequence of the case k = O, since for k = O + 1, under assumption (Al), ex = Ry,
and machine M5 is starved from ep_1 to ey.

We now prove the cases H < k < O by recursion on k = O, O+1, .... Consider first the case e, € {F», Ra}.
By definition of H and O, the buffer level is always positive from tg_1 to to. As aresult of Case 0 < k < H,
machine M; fails and is repaired at the same time over period (tg_1,to0). As a result, t;(c+ A) = tx(c).
Consider first the case e, = Fy. Hence, rop(c + A) = rog(c) = sample(Ya), ag—1 = (-,1) and ex_; € {F1,
Ry, Ry}. For each possible e;_1, by recursive assumption, ti(c + A) = tp_1(c + A) + rap—1(c + A) =
te—1(c) +rop—1(c) =tr(c), zp(c+ A) = xp_1(c+ A)+ (1p—1 — D) (tx(c+ A) — tp_1(c+ A)) = zx(c) + a1 A,
rig(c+ A) = r1k(c) — A. The results for the case e, = Ra, i.e. ay—1 = (-,0)and ex_1 € {F1, Ry, Ra, BF},
can be established in a similar way by considering each possible event ef_1.

For the case ey, = BF, a1 = o, = (1,0), 25_1(c+ A) < c+ A, xi_1(c) < ¢, and ex_1 € {F», R1}. Only
the case ex_1 = R is considered, since the proof is similar for ex_1 = Fy. Since ex_1 = Ry, tp—1(c+ A) =
te—1(c) — A, zr_1(c + A) = zp_1(c), rig—1(c + A) = rip_1(c), rog—1(c + A) = rop_1(c) + A. Hence,
te(c+A) =tp_1(c+A)+c+A—xp_1(c+A) =tp_1(c)+c—xk—_1(c) = tg(c). Hence tx(c+A)—tp_1(c+A) =
tr(c) —t—1(c) + A, rig(c+ A) = rip(c) — A, rop(c + A) = rog(c). Finally, zx(c+ A) = c+ A = z(c)— A.

For the case ey € {F1, R1}, ex—1 # BF and neither M; nor My is forced down from e to e. If ex_1
€ {F1, R}, then ty_1(c + A) = tp_1(c)— A, 2p—1(c + A) = zp_1(c) + agp—14A, r1p—1(c + A) = r1x_1(c),
rok—1(c+A) = rop_1(c)— A. Further agp = aop—1, t = th—1 +7r1p—1 and x = 1+ (Q1p—1 — Q2K —1)T1k—1-
As aresult, tg(c+A) = tr(c) — A, xp(c+A) = zp(c) + ask A, r1p(c+A) = r1x(c), rop(c+A) = rog(c) + A. If
er—1 € {Fa, Ra}, then tj_1(c+A) = ti—1(c), 2p—1(c+A) = zp_1(c) + @114, rig—1(c+A) = r1p_1(c) — A,
rok—1(c + A) = rap_1(c). Further anp = 11, ty = ty—1 + rap—1and ¥ = Tp—1 + (Q1k—1 — QO2K—1)72% -1

The results can then be established. ]

It should be noted that at the occurrence of ep41, the sample path of the perturbed system can be derived
from the one of the nominal system as above and the only difference is that the event epochs tx(c + A) is

further shifted leftward by A. To generalize the results, we decompose the sample path into cycles as follows:
H,, = min{n=0,_1:e, = BF},
O,, = min{n=H,, :e, = BE},

where Og = 0. Clearly, H,, > Op,—1 + 1 and O,, > H,,, + 1.

Theorem 2: Assume that assumption (A1) holds and that ey is an event of cycle m + 1 with m > 0, i.e.

Om+ 1<k <Opg1 + 1. Then the following hold:
o If k< Hppy : ti(c+ A) =tp(c) — mA, zp(c+ A) = xp(c), rin(c + A) = rip(c), Vi =1, 2.

o If k = Hpp1 and e = BF : tp(c+ A) = ti(c) — (m — DA zp(c + A) = zi(c) + A, rip(c + A) =
ri(c) — A Vi =1,2.



o If Hyy1 <k <Opyrande, € {Fo, Ro} i tr(c+A) = tp(c)—mA, i (c+A) = xp(c)+arpA, rk(c+A) =
rig(c) — A, rop(c + A) = rag(c).

o If Hyy1 <k < Opg1 and e = BF : t(c + A) = ti(c) — mA, zi(c + A) = zi(c) + A, rip(c + A) =
rig(c) — A, rop(c + A) = rap(c),

e If Hyy1 <k < Opyr and e € {F1, Ry} @ tp(c+ A) = tp(e) — (m + 1A zx(c + A) = zx(c) +
oA, T1p(c+ A) = rip(c), rop(c + A) = rog(c) + A.

o If k = Opy1 and e, = BE : ti(c + A) = ti(c) — mA,xp(c + A) = zx(c) = 0,r15(c+ A) = rix(c) —
A, rap(c+ A) = rap(c).

e If k =041 +1and e = Ry : ti(c+ A) =tp(c) — (m+ DA zk(c+ A) = z5(c) = 0,rx(c + A) =
rix(c), rak(c + A) = rog(c).

From the above results, we can derive the sensitivities of the performance measures.

Theorem 3: Consider the estimator L,, = Pay,,,, /tw(n)- Assume that assumption (A1) holds 1 < k < w(n)

where w(n) is the n-th occurrence of Rs. Then,

L,(c)A
tw(n) (C) /Qw(n) - A’

where Qi is the number of cycles defined above completed by the k—th event.

L,(c+A)—L,(c) =

Proof. From the definition of w(n), we have:
n
P2tw(n) (C + A) = P2tw(n) (C) = Z XQk‘)
k=1

where X for 1 < k < n are times to failure of machine Ms. From Theorem 2,

tw(n)(c + A) = tw(n) (C) - QnA

The combination of the two relations gives:

Psy, ., (C) Psy, .\ (c) Pay ) () QnA Ln(c)A
n A) — L,(c) = (n) — A\ ) _ .
L (C * ) L (C) tw(n) (C) - QnA tw(n) (C) tw(n) (C) (t'w(n) (C) - QnA) tw(n) (C)/Qw(n) - A

O

Theorem 4: Consider the estimator L; = Py;/t. Assume that assumption (A1) holds 1 < k < N(¢) + 1,
where N (t) is the number of events up to time ¢, i.e. N(¢) = inf{k : ¢, < t}. Further, assume that N(t) is

the same for both perturbed and nominal systems. Then,

Qat7y2t Ut
= A+ —A,
t/Qn) t

where ~9; = 1 if machine M, is not starved at time ¢ and ~; = 0 otherwise, and v; is a random variable

Lt(c —|— A) — Lt(C)

such that —2 < v, < 2.



Proof. Clearly,
#(N(t),F2)

Py = Z Xop + at(aan@) +v2e(t = tny))-
k=1

We note that y2; can be derived from the event sequence up to ey as follows:

ayg, if In< N(t)/en, = BE Ne, € {F1,R1},Vn < k < N(¢);
Vat= 1 otherwise;

As a result, under the condition of the theorem, aoi(c+ A) = ag¢(c) and yoi(c + A) = v94(c). Therefore,
Pai(c+ A) = Pa(c) = azt(azn(p (e + A) = aan(p)(c)) — aayae(tne (e + A) =ty ().

From relation (1), aan()y = Xo,#(N(t),F2)+1 — T2n(t)- This relation together with Theorem 2 leads to —A <
asn(y(c+ A) — aan@y(c) < A. Furthermore, from Theorem 2, —(Qn@) + 1)A <ty (c+ A) —typ(c) <
—(@n() — 1)A. Since gy, v2¢ € {0,1}, it holds that —2 < v, < 2 with

_ Polc+ A) = Py(c) — anr2QnnA
= A .

Ut

As a result,
Q2¢72¢ Ut

_ — ZEAL O

Similarly, it can be proved that:

Theorem 5: Consider the estimator L,, = Py /t,. Assume that assumption (A1) holds 1 < k < n. Then,

Ln(C)Qn + vt
ta(c+A4A)

where ¢, (c+A) = t,(c) — (Qn +un)A, v, and u,, are random variables such that —2 < v, <2, -1 < wu, < 1.

Ly(c+A)—L,(c)=

By taking the limit of the above gradient estimators, we obtain:

Ln(c+A)—Ly(c)  Los(c)

IPA1 = nlirrgo ilin»o A =0 w.p.1,
. . Li(c+A)=Li(c)  a2e07200

IPA2 = tlir& glino A = C w.p.1,
- . Lp(c+A)—Ly(c)  Loo(c)

IPA3 = nlirrgo ilin»o A =—C w.p.1,

where C' is the average length of the cycles. Note that TPA1 and IPA3 are constants, whereas IPA2 is a
random variable. Since P(a2c0Y200 = 0) > 0, if a long simulation is performed to estimate P A2, we can
expect that TPA2 is sometime equal to 0 and sometime equal to 1/C and the related estimator does not
converge. The relationship between the estimators can be established as follows. Since asiy2: = 1 if and

only if machine Ms is producing, P(a2scY200 = 1) is equal to the throughput rate of the system. As a result,

Plazocnoee = 1) _L — JPAl = IPAS.

E[IPA2] =
[1PA2] c G

Unfortunately, because event changes that occur when assumption (A1) is violated can lead to large (non-

infinitesimal) jumps in the performance measure (as confirmed by the numerical simulation experiments



described in Section 6, TPA1 and IPA3 are not strongly consistent, i.e., IPAl = IPA3 # dL/de. This
means that event changes need to be considered in the derivation of gradient estimators, which leads to the

SPA analysis considered in the following section.

4 SPA ANALYSIS: FINITE HORIZON

The purpose of this section is to derive SPA estimators following the approach proposed by Fu and Hu (1997).
Ounly the performance measure L; = Py;/t is considered here. Under the framework of Fu and Hu (1997),
the sample path space is partitioned into sets (probability events) A(A) and A°(A), where A(A) contains
the sample paths that experience no event changes due to a perturbation of size A, and the complement set

A€ contains the sample paths on which event changes do occur as a result of the perturbation. Using this

partition,
AL _ hmE[Lt C+A ()|A] P(A) + 1imE[Lt(c+A)_Lt(c)|AC] P(A%)

dc A0 A=0 A

_ [st]+ [hmE[(Lt(c+A)—Lt(c))|z,.AC] Jim M]
A0 A
_ dLy PP] DNP @
_[] [L]EZ[L ])dc,
where E, [L7F] = ngE[Lt(c—l—AHz,.AC]
E. [LPNF] = iigOE[Lt(cHz,.AC]
dP. .. P(A°~2)
PP o

where dP, /dc is the probability rate of event changes, z is a set of sample path quantities selected to smooth
the effect of event changes, LPNP is the performance measure of a so-called degenerated nominal path
denoted by DNP, L is the performance measure of a so-called perturbed path, denoted by PP. PP is
identical to DNP up to time, say ti, where an event change occurs. At this instant, an event occurs on both
nominal and perturbed paths; however, the event on the nominal path differs from the one on the perturbed
path.

In the following, we examine the possible event changes, select the characterization and determine the

effect of event changes, i.e., L'P — LPNP  Assume that the k-th event changes, i.e.,
er(c+A)=ei(c),...,ex—1(c + A) = ep_1(c), ex(c + A) # ex(c).

Clearly the above assumption implies that the state of the machines «j_; is identical for both nominal
and perturbed systems. Consider as well the following indicator of the buffer state 8y = (01, G2r) with
ik = H{ay, = ¢} and B, = 1{zy = 0}. Br_1 is also identical for both nominal and perturbed systems since
it is totally determined by the sequence of events up to ex_; as follows:

3 . 1, ifﬂngk—l/enzBF/\eiE{FQ,RQ},Vn<k§k—1;
=179 0 otherwise;
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3 . 1, ifﬂngk—l/enzBE/\eiE{Fl,Rl},Vn<k;§k;—1;
2k=1= 1 0 otherwise.

A change of the k-th event with the next event is not possible if machine M; is blocked in state sp_; or Mo
is starved in state sg_1, i.e., ag—1 = (1,0) A Bk—1 = (1,0) or ap—1 = (0,1) A Bx—1 = (0, 1), because only one
event (Ry in the first case and R in the second case) is feasible. For a third case with ax_1 = (1,1) and
Br—1 = (0,1), an event change is not possible, because there are only two competing events, and the relative
remaining lifetimes of both are unchanged by a change in c.

Case B: ax—1 = (1,1) A Bg—1 = (0,0). According to Theorem 2, an event change is possible only if
Hyp1 <k—1<Opyr and eg—1 = Ry or eg—1 = Ry. As a result, either r1x_1(c + A) = rip—1(c) — A A
rog—1(c+A) =rop_1(c) or rip_1(c+A) = rig—1(c) Arog—1(c+A) = rop_1(c) + A. The only event change is:
ex(c+ A) = Fy ANeg(c) = Fp under conditions r15(c) — A < rax(c) < r1x(c) or rax(c) < rix(c) < rog(c) + A.
Since Bx—1 = (0,0), i.e. 0 < xp < ¢ and, for small enough A, exr1(c + A) = Fo Aegyi(c) = Fi. In
the limiting case, i.e. A — 0, rx—1(c + A) = rix_1(c) and the two sample paths PP and DNP become

identical everywhere except at time ¢, where F}Fy occurs in PP and FyF; occurs in DNP. As a result,

LPP _ LDNP =0.

By similar reasoning, results for the remaining cases can be established, and we summarize all the cases here:
e Case A: ag—1 A Br—1 = (1,0) A (1,0),(0,1) A (0, 1):
No event change possible.

e Case B: ap_1 = (1,1) A Bg—1 = (0,0)

ex(c+A) =Fy Aep(c) = Fy and LFP — LPNP =

e Case C: aj—1=(1,1) A Br—1 = (1,0) :

ex(c+ A) = F) Aep(c) = Fy and LPP — LPNP £

e Case D: ag—1 = (0,0) A Br—1 = (z,z),z € {0,1} :

ex(c+ A) =Ry Aep(c) = Ry and LPP — LPNP =
e Case E: a—1 = (0,1) A Br—1 = (0,0) or ag—1 = (0,1) A Bx—1 = (1,0):
(i) ex(c+ A) = Ry Aex(c) = Fy and LFP — LPNP —
(ii) er(c+ A) = Ry Aex(c) = BE and LPT — LPNP —;
e Case F: ag—1 = (1,0) A Br—1 = (0,z),z € {0,1} :

(i) ex(c+ A) = Ra A eg(c) = BF and LPP _ [DNP — 0;
(11) If x = 0, ek(c+ A) = Fl A @k(C) — R2 and LPP _ LDNP =0 (Only 2 =0is pOSSible);

(iii) ex(c+ A) = Fy Aer(c) = BF and LF — LPNP £ ;

11



Figure 2 HERE

Figure 2: A critical event change

e Case G: Interchange of the last event and the end of horizon:

enw(c+ A) >t Aenp(c) <tand LPP — LPNP =,

Thus, only event changes of Case C and Case F(iii) need to be further considered, i.e., these correspond
to the critical event changes. These event changes are important, since machine M; is blocked in state sy,
and the event F is suspended until the repair of My in DNP, whereas it is under repair in PP (see Figure
2).

The characterization for smoothing the discrete changes is the set of all random variables except Xy.:
2k = {Xin,Vi =1,2An> 1}\{X1k*},

where X« is the newest time to failure of M; sampled prior to eg. As a result, the probability rate for
event change can be determined as follows:

Case C: ex(c+ A) = Fi A eg(c) = Fy implies that ryx_1(c + A) = rog—1(c+ A) and rop—_1(c) < rig—1(c).
From Theorem 2, ex(c + A) = F; © r1p—1(c) — A < rop_1(c) and ex(c) = Fo < rop—1(c) < r1x—1(c). Since
Xik = ik + i, ex(c+A) = F1 & Xip_1(c) = a1x—1(c) + rap—1(c) + A and ex(c) = Fo & Xix(c) >
a1k—1(¢) + rak—1(c). As a result, the rate of event change is

Py, _ lim P(Xix < aip—1+rop—1+ Al X1k > aip—1+721-1)
de A—0 A

filarg—1 + rop—1)
1 — Fi(aik—1+726-1)

Case F(iil): By similar arguments as in case C,

aPu _ P(Xiy <ap—1++c+ A — x| Xug > arp—1 + ¢+ xp-1)
de A—0 A
filark—1+c—xK—1)
1— Fi(ak—1+c—xp—1)

Since NP and DN Py, are identical up to t;, with e, = BF for case F(iii) and e, = F» for case C, then it
holds for DN Py, and NP that aip = ajx—1 + ¢ — xp—1 in case F(iii) and a1x = a1x—1 + r2x—1 in case C. As

a result, it holds in both cases that:
db;, _ _ filaix)
de 1-— F1 (alk) '

Combining the above results, we obtain the following gradient estimator:

st(C)+ Z (LPP,k_LDNP,k)M (2)

de kEBFS 1 = Fi(aix)

where BF'S = {k|ay = (1,0) Az, = ¢} is the set of blocking states.
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In order to establish unbiasedness of the estimator we define some sets of sample paths that are char-
acterized by their behavior when a perturbation of size A is introduced. Denote a sample path by w. For

k=1,2,...,n= N(t), let

U (A) = {w:e(c+A)=¢ei(c), -, ex(c+ A)=er(c)},
Vi(A) = {w:ei(c+A)=ei(c), -, ex(c+ A) #er(c)}.

By definition, V, = Ui_1\Ui. The set U, contains sample paths that experience no change in their event
sequence through the kth transition, due to the introduction of a perturbation of size A. In particular, the
set Uy, contains sample paths that experience no change in their entire event sequence due to the introduction
of a perturbation of size A. On the other hand, the set V; contains sample paths in which the first change
occurs in the event sequence at the kth transition. Since w is usually understood, its explicit display will
henceforth be omitted except when used in defining new sets of sample paths. Also, the dependence of Uy
and Vi on A is usually omitted for notational brevity. To take into account the time horizon, we further

partition the set of sample paths as follows:

A = {welnwpe : N(t,c+A)=N(tc)},
B, = {weVy:k<N(0)},
C = {welnge :N(t,c+A)> N(t,c)}.

Since A, By, k = 1,2, ..., and C partition the set of possible sample paths, by conditioning on whether or
not A causes a change in the event sequence, we write
E[Li(c+ A)] = E[Lt(c)] = E[(Li(c+A) = Li(c)1(A)] + E[(Li(c+ A) — Li(c))1(C)]

[e e}

+ ) _(E[Li(c+ A)L(By)] — E[Li(c)1(By)]).
k=1

Dividing by A and then taking the limit, we have

dE[L(c)] E[(Li(c + A) = Li(c))1(A)]

de - glini) A
+ i Flale+8) = L((€)]
A0 A
LS i BlLet ALBD)] - BIL(L(By)]
£~ A0 A '

We now establish

Theorem 6. If F)(-) is Lipschitz continuous with Lipschitz constant K and density fi(-), then the estimator
given by (2) is an unbiased estimator for dE[L:(c)]/dc.

Proof. We can further partition By, into the various cases to consider, i.e., B}, where a corresponds to a

particular case. We need to show the following:
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(@ lim E[(Li(c+ A)A— Li()1(A)] _ [dLCZC(C)] |
(b) lim E[(Li(c + A)A— Li(e)1C)] _,
(c) iif}o E[(Li(c+ A); Li(c)1(By)] - E [%(LfP,k(oz) _ LtDNP,k((y)) ,

where the (o) indicates the dependence on the case, zx = {Xin, Yin, i = 1,2,n > 1}\{ X1k}, and Xij. is the
value of X1; active at e,. All three parts are established via the dominated convergence theorem.

A bound for part (a), the IPA portion of the estimator, can be established using Theorem 4, since
|ve| < 2, agpyer < 1, and from the definition of a cycle, it takes at least ¢ time units to go from empty to full

and c time units to go from full to empty, so Qn )/t < 1/2¢, which leads to

Lt(c —|— A) — Lt(C)

E A 1(A)H <

1 2
sup + ;

c€(Cmin,Cmax)

— )
2Cmin

where ¢pin and ¢pq, denote the lower and upper bounds, respectively, of the buffer capacity. Applying the
dominated convergence theorem completes the proof of part (a).

For part (b), let us first notice that txy+1 = tx + 7(rg, Tk, ok, V), where 7 is a continuous function of 7y
and xy. For all w € Uy, Theorem 2 implies that tx(c + A) — tx(c), re(c+ A) — ri(c), xp(c+ A) — z(c).
Further, w € Uy implies that ar(c + A) = ar(c) and (¢ + A) = ~k(c). As a result, for all w € C,
tN(t,e)+1(c+ A) = tn(t,e)+1(c). By definition, ¢y, ¢)41(c) > ¢, which implies that tx ¢ cy41(c+A) >t for A

small enough. Therefore,

o[ (Eele+8) — Li@) 1(C)

A0 A =0

The dominated convergence theorem will be used to conclude part (b). To this end, from Theorem 2,
we have tg(c + A) > tr(c) — (Qr + DA, ri(c + A) = rir(c) + uinA, and zx(c + A) = zp(c) + worl, with
i € {—1,0,1} and k = N (¢, c¢). Hence,

ng(c + A) = ng(c) — ugpA.

Furthermore, w € Up t,¢) implies that a;(c+ A) and vy, (c+ A) for t € (tx(c+ A), tp(c+A) +t —tr(c) — A)
are equal to ay(c) and v (c) for ¢ € (tx(c),t). As a result,

Py(c+A) < Poplc+ A)+ aopyor(t —tnee —A)+ (Qr + 1A+ A
= Py(c) —uapA — agpyorA + (Qr +1)A + A

< Pyulc)+ (Qr + 3)A.

Therefore,
(Lile+8) ~ L) 1(C) _ Qut3 _ 1
A -t 2¢

0<

The proof of part (b) is then established by the dominated convergence theorem.
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For part (c¢), we will just consider one « here, Case F(iii), which we will denote by oo = F'3:

Bf*={weB:ex =BF,a1p-1+c¢— 211 < Xigs < @1p-1+Cc+A— 151},

where X corresponds to the time to failure at M1 sampled prior to e;. We note that e, = BF implies
ak—1 = (1,0), Bx—1 = (0,0). The other cases are analogous.

Specifically, we need to show

o EULe+8) = L()1(BE)]
A0 A

filarg + ¢ —xp_1)

=F
1—Fi(aip+c—xK_1)

Y Xipe > arp1 +c— xk_l}(LfP,k(FB) . LtDNP,k(FB))

)

where
pr’k(m) iiglo E[Li(c+ A)l{er = BF} 2k, a1k—1 + ¢ — Tp—1 < X1k < @15-1 +Cc+ A — 211 (Us—1),
LyNPRES) lim B[Li(c){ex = BF}|zt, ane—1 +¢ = wpo1 < Xipe < arems + ¢+ A = w1 Us).

We consider E[(L¢(c + A) — Li(c))1(Bf?)], k = 1,...,n. First we rewrite it as
E[B[(Ly(c + A) = Li())1(B ) 21]);
and consider the inner conditional expectation term.
|E[Li(c+ A)1(B?) ]|
=|E[Li(c+ A)1{ex = BF}|zk,a15-1 + ¢ — -1 < X1k < @11+ ¢+ A — x3_1]

1(Uk—1)P(a1k—1+c— -1 < Xigs < a1p—1+c+ A — xp_1)]

=|E[Li(c+ A)1{ey = BF}zk, 01k—1+ ¢ — Tp—1 < Xigs < @1p—1+c+ A — xp_1)]

1(Uk—1)(Fi(a1k—1+c+ A —xp_1)) — Fi(aig—1 + ¢ — Tp—1))]

< KAE[Lt(C—I- A)|Zk, a1p—1+c—Tp_1 < Xigx < @1p—1+c+A— xk_l].

Also, since Py < t, we have

E [SUPE[Lt(C+ Az, a1p—1 4+ ¢ — Tp—1 < Xige < arp—1+c+A —xp_q]| <1,
(&

so once again invoking the dominated convergence theorem, we have

B[Li(c+ A)1(B(7)]

Ay A
73
- g Elstet SN
A—=0 A
[ . (Fi(arg—1+ec+ A —zp1) — Fi(aik—1+ ¢ — Tp—1))
= F|lim
A0 A

X Emo E[Li(c+ A)1l{ex = BF }|zg, a1p—1+ ¢ — -1 < Xigs < @151+ ¢+ A — 25_1]1(Uk—-1)]

= F [fl(alk—l +c—xp_1)L

_ g [ filarg—1+c—zp_1)
1—Fi(aig—1+c—Tp_1)

PP,k(F‘B)}
t

{X1pe > a1p-1+c— $k—1}LfP’k(F3) .
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Similarly, we can show

lim w - B filag—1+c—2ap_1)
Ac—0 A 1 _Fl(a‘lk—1+c—xk_1)

{X1pe > a1-1+c— $k—1}LtDNP’k(F3) .

5 SPA ANALYSIS: INFINITE HORIZON CASE
5.1 Regenerative case

From Theorem 4, the ITPA term in (2) is given as follows:

dLy (C) QoY Ut
— + =, 3
dc t/QN(t) t 3)

where 72, and v, are defined in Theorem 4. Note that ¢/Qx() is the average length of an operation cycle

defined in Section 3, and aiye; = 1 if and only if machine My is producing at time ¢. We assume that the

steady state exists; more precisely, we make the following assumptions:

(A2) There exists a finite C' > 0 such that lim; .o t/Qn) = C w.p. 1.
(A3) limy—,00 Elaaiyer] = L with L = limy—, o0 Pat/t w.p. 1.

Lemma 1. Under assumptions (A2)-(A3), lim;_,oo E[dL¢(c)/dc) = L/C.

Proof. From relation (3),

5 [st(C)] _ Eloaa] +E [a%wt (QN(” _ i)] +E [ﬁ} :

dc C t C t

Since |vg| < 2, Efvy/t] — 0. From assumption (A2), wy = agye:(@n )/t — 1/C) — 0 with probability 1.
Since agiyor < 1, |wy| < Qnry/t+1/C. From the definition of a cycle, it takes at least ¢ time units to go from
empty to full and ¢ time units to go from full to empty, Qn )/t < 1/2¢, which leads to |w| < 1/2¢+1/C.
Applying the dominated convergence theorem yields Ffw;] — 0. The lemma is then established by combining
the above results and assumption (A3). O

From this result, L;/(t/Qn)) is a strongly consistent estimator of lim; .o, E[dL(c)/dc]. This leads to
the following strongly consistent estimator of dL(c)/dc:

Ly f1 (alk)

(LPP,k _ LDNP,k) - . (4)
tONw o 1 — Fi(aik)
A rigorous proof of strong consistency, though not carried out explicitly here, can be established under the

regenerative assumption below along the lines used in Fu and Hu (1997), since we will show that

hm (LPP7k _ LDNP,k)
t—o00

is a function of rof, only, so the estimator (asymptotically) depends only on aqj and rok within a regenerative
cycle. This regenerative property of the estimator, along with some technical assumptions, are the main

conditions required in such a proof.
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| Figure 3 HERE |

Figure 3: Possible regeneration points

| Figure 4 HERE |

Figure 4: M; still fails at t;4; in PP

The main difficulty in estimating (4) using simulation is the computation of LTP* — LPNPE Ttg evaluation
for the general case is still an open issue. In the following we consider the regenerative case and make the

following assumption:
(A4) The underlying stochastic process of the two-machine line has a regeneration point sr.

The points A, B, C and D of Figure 3 are possible regeneration points depending on the distribution of
times to failure. If the time to failure X; of machine M; has a phase-type distribution, the points A and D
can be used to define regeneration points by extending the definition of a machine state to include the phase.
Similarly, if the time to failure X, of machine M, has a phase-type distribution, the points B and C can
be used to defined regeneration points. Of course, A and D are regeneration points if X is exponentially
distributed, and B and C are regeneration points if X5 is exponentially distributed.

The estimation of the gradient estimator requires the estimation of L% — LPNPE  \We recall the
relationship between PPy and DN Pj,. PPy is identical to DN Py, up to time tg- where an event change occurs.
At this instant, machine M is blocked in the nominal system, whereas it breaks down in the perturbed
system. Clearly, M; immediately fails in DN Py following the repair of My at time t;4;. Furthermore,
xy = c at time t = tx41 for both PP, and DN Pj,. Two cases are possible concerning the state of machine
My in PP at tgy1 (from DNP): (i) M still failed at t,41 or (ii) it is repaired at tx+1 (see Figures 4 and 5).
Case (i) occurs w.p. G1(r2x) and case (ii) occurs w.p. G1(rax). Finally, since e, = BF in both DN P, and
NP, then ex4+1 = Ro in both DN P, and NP. As a result, t;; is identical for both DN Pj, and N P, hence
r9k can be taken form NP.

To summarize, the inventory trajectory and the cumulative production are identical for both PPy and
DN Py, up to time ¢t = tg41 (from NP). At this point, z; = ¢ and My is just repaired in both PPy and DN Py.
M, breaks down in DN P, while it is under repair with age ro), with probability G (r2x) and is just repaired
with probability G1(ray) in PPy.

In order to estimate LPPF — LPNPE et us consider the following construction of PP, and DN Py (see
Figure 6). For DN Py, a piece of sample path I is inserted at time ¢;41 by starting with appropriate initial
state defined above and this piece of sample path stops when the regeneration point sr is met. Similarly, for

PPy, a piece of sample path II is inserted at time t;11 until the regeneration point sr is met. From there

Figure 5 HERE

Figure 5: M; is repaired at t;41 in PP
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Figure 6 HERE

Figure 6: Construction of PP and DNP

on, both DN P, and PPj, pursue the same sample path III.

Let

tPP k PPP k : length and cumulative production of sample path I,

tDNP k PDNP k, length and cumulative production of sample path II,
trrr =t —tg+1, Prrr: length and cumulative production of sample path III.
Under this construction, we have for large ¢,

PP,k

PPk
LPPkNLPPk - 2,t+tr, F P2,tk+1+PH 4+ Prrr
+tPPE PPk — PPk )
11 t+t; t+t,
DNPk
LDNP,k - LDNP,k 2 t-‘rtDNPk PQ,tk_H + PDNRk + Prrr
! VR T DNPR t 4 tPNEE ’
leading to
DNPk pPPk PPk pDNPk PPk DNPk
[ PPk _ [DNPk b 1A At TP ti P, [t PNPE +i (P - b )
Lo - PPk DNPk
(t+e57F) (22PN
DNP,k y PPk PPk DNPk
_ ty Lt+tPPk Lt_,’_tDNPIc ot P;;Rk o P[DNP,k
- DNPEk PP,k
t+ir t+tr (t+tflpk) (t+tIDNPk)
Ly (DNPk | PPk 1/ ppk DNPk
~ LN + 2 (PR - PPN

Therefore, we take the following as our long-run gradient estimator:

L L
spA0O= Loy fi(aik) (tIDNPk tflpk)

t/Qnwy T keBFsl_Fl(alk)
Ji(a1k PP,k DNPk
N FM(PH - PPNPR). (5)
teprs 1(a1k

When computing the above estimator using simulation, all terms except the two summations can be evaluated
easily. Whenever an event ey, leading to a blocking state, extra simulation is performed to construct sample
paths I and IT as described above. We then update these two summations. The estimator (5) can be obtained

at the end of the simulation accordingly.

5.2 A particular case

In this subsection, we assume that Y7, and Xsp are exponentially distributed and derive strongly consistent
gradient estimators computable without extra simulation. As shown above, the estimation of LF* — [PNPk

requires the consideration of two cases : (i) M still fails at ¢541 or (ii) it is repaired at t;41. Case (i) occurs
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w.p. G1(re) and case (ii) occurs w.p. G1(r2x). By using different construction of sample paths, we prove

in the following that
PPk _ [DNPk _

for case (i) and
[ PPk _ [DNPk - 1-Li/Ey
At

for case (ii), where Es is the isolated average throughput rate of My given by Eo = o/ (A2 + p2). Our final
gradient estimator for dL/dc is the following:

Lt 1-— Lt/EQ fl (a/lk)
SPA1 = + E G R 6
t/Qn) At Ry 1(r2r) 1— Fi(aix) (6)

Of course, if X are exponentially distributed as well, then fi(x)/(1 — Fy(x)) = A1 for all x > 0, and the

gradient estimator becomes:

L 1-L;/FE
ot o/ B Z G1(ran) -
t/Qn ) kEBFS

If all random variables are exponentially distributed, rof are exponentially distributed with mean equal to

E[Ysi]. Hence, case (ii) occurs w.p. p1/(u1+u2) and the gradient estimator becomes:

L t BF
t/Qn) pi+pet

where #(t, BF') denotes the number of blocking states up to time ¢.

SPA2 = (7)

LPPk _ [ DNPE  Appropriate sample path constructions will be

Let us consider now the estimation of
used, and Figures 4 and 5 are helpful for understanding what follows. If M; still fails at t;41 in PPy, the
states of the machines and the buffer level are the same at t;1 in both DN P, and PP;. We construct the
portion of sample path following ¢x11 as follows. At time 41, new samples of Y1 and X, is generated for
setting the time to repair of M; and the time to failure of My in DN Py. At this point, we also use the same
samples to reset the time to repair of M7 and to set the time to failure of Ms in PP,. As a result, the state
of the system at time t;: 41 1s the same in PP, and DN Py, Let us notice that resetting the time to repair
of My in PPy is possible due to the exponential distribution of Y75. As a result of above construction, we
have: LPPF — [PNPE — (),

If M; is repaired at tx41 in PPy, then an independent portion of sample path is inserted in PP} until
machine M; fails. At this point, the portion of DN Py, following t; 41 1s added to construct PFy. Clearly the
correctness of this construction is due to the exponential distribution of Xsg. For the inserted portion, let
f(l be time to failure of My, N be the number of failures of M5 and Y~ék the related times to repair. Let T

be the length of the inserted portion. Since in the inserted portion, M; is blocked whenever My fails. Thus,

N
T=Xi+) Ya,
k=1

and the production of Ms during the inserted portion is equal to X1. As a result, for large t,

[PP _ [DNP  [PP _ [DNP _ PRNP+ X, PRNP :Xl—TLtDNP ~ X1 TL
¢ ¢ . t+T t t+T t
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By taking expectation with respect to random variables of the inserted portion, we have

E[X1] — E[T]L,
PP DNPY
Ezy [Lf7 - L7 =~ —— .

Notice that {?Qk} are independent of N. Hence,
N

S Vi

k=1

E[T]:E[)N(l}+E :E[§1}+E[N]E[S7'2k}.

Since {Xs} are exponentially distributed, N follows a Poisson distribution, so:
E[N]=E [E [N|)~(1H -F [&5{1} = \oFE [)?1} .

The combination of the above results gives:

1-L,/E
PP DNP7 . t/ L2
Byy L7 - 1PN ~ — 0

6 NUMERICAL RESULTS

We compared the numerical properties of the various estimators by performing simulation experiments on
two examples. The biased IPA estimator and the three SPA estimators — SPAO given by (5), SPA1 given
by (6), SPA2 given by (7) — are compared with symmetric difference (SD) estimates using common random
numbers and Ac = 0.05. In all three cases, sample means and 95% confidence half-widths based on 20

independent replications are calculated.

Example 1: All random variables are exponentially distributed with Ay = Ao = pu1 = pe = 1. Analytical
results are available, which can be used to assess the convergence of the various estimators. The throughput
rate can be found in Dallery and Gershwin (1992) and is equal to L = (2—|— (1+ c)_l)_l, leading to
dL/dc = (3 + 2¢)~2. The simulation results are summarized in Table 1, and they confirm that the IPA
estimator is biased, whereas all three SPA estimators converge to the correct value. SPA2 and SPA1 seem to
have a similar convergence rate that is substantially faster than SPAQ, the estimator based on regenerative
analysis. The SD estimates fare worse than SPA1/SPA2, but slightly better than SPAO.

Example 2: In this example, Y1, and Xoi are exponentially distributed, X1 and Y3; have two-stage Erlang
distributions. All random variables have mean equal to one, i.e., Ay = Ay = p1 = po = 1. Only the case
¢ = 1 is considered, and the results are shown in Table 2. For this example, an analytical solution is not
available. SPAO and SPA1 appear to converge to the same limiting value that is consistent with the SD
estimates, whereas the results indicate that SPA2 is biased for this example, which is not surprising, since
not all the random variables are exponentially distributed. Again, the convergence rate of SPAO appears to
be substantially slower than that of SPA1, and the SD estimates fall between the two.

7 CONCLUSION

In this paper, we have considered a continuous production line with two machines subject to operation-
dependent failures, where failure and repair times have general probability distributions. Estimation of
the derivative of the throughput rate with respect to the buffer capacity has been addressed. Both TPA
estimators and SPA estimators were proposed. Simulation results confirm that IPA does not work, which

contradicts a common belief that IPA always works for continuous flow models.
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c t Ly L  dL/de  IPA SPA2  SPA1  SPAO SD
5 1000 3722 375 0625  .0304 10623 10625 10658 0573
(.0045) (.0010)  (.0017)  (.0018)  (.0071)  (.0075)

10000  .3740  .375  .0625  .031 0624 .0625 0638 .0625
(.0014) (.0003)  (.0004)  (.0005)  (.0034)  (.0028)

100000 3749  .375  .0625  .0312 .0625 .0626 .0629 .0620
(.0005) (.0001)  (.0001)  (.0001)  (.0009)  (.0010)

1000000 .3751  .375  .0625  .0313 0625 .0625 0624 0625
(.0001) (.00003)  (.00005) (.00004) (.0003)  (.0002)

1 1000  .4000 .4 04 0197 .0390 0393 0432 .0366
(.0050) (.0008)  (.0015)  (.0015)  (.0105)  (.0059)

10000 .4001 .4 04 .0200 .0399 .0399 0387 10386
(.0017) (.0003)  (.0004)  (.0004)  (.0033)  (.0024)

100000 4002 4 04 .0200 .0399 .0399 .0402 0404
(.0005) (.00006)  (.0002)  (.00017) (.0008)  (.0006)

1000000 3999 .4 04 .0200 .0400 .0400 .0399 .0400
(.0001) (.00003)  (.00004) (.00004) (.0002)  (.0002)

2 1000  .4276 .4286 .02041 .01028  .02081  .02090  .02582  .02114
(.0048) (.00064) (.00110) (.00117) (.01366) (.00581)

10000 4274 4286 .02041 .01022  .02076  .02079  .01980  .02030
(.0016) (.00020)  (.00041) (.00043) (.00309) (.00153)

100000 4284 4286 .02041 .01018  .02040  .02039  .02016  .02031
(.0005) (.00005)  (.00010) (.00010) (.00124) (.00042)

1000000 4285 4286 .02041  .01021  .02043  .02043  .02063  .02038
(.0002) (.00001)  (.00003) (.00003) (.00047) (.00019)

Table 1: Simulation results for Example 1 (95% confidence half-widths in parentheses)

t L, IPA SPA2  SPA1  SPAO SD

1000 4090  .02120  .04047  .04308  .04748  .04046
(.0040)  (.00076) (.00119) (.00146) (.01112) (.00512)

10000  .4104  .02148  .04021  .04295  .04228  .04447
(.0010)  (.00015) (.00026) (.00028) (.00271) (.00200)

100000 4101  .02155  .04041  .04308  .04290  .04318
(.0004) (.00008) (.00008) (.00009) (.00092) (.00048)

1000000 4100  .02153  .04036  .04304  .04319  .04303
(.0001) (.00003) (.00005) (.00006) (.00030) (.00017)

Table 2: Simulation results for Example 2 (95% confidence half-widths in parentheses)
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