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Abstract

This paper addresses the gradient estimation of transfer lines comprising two machines separated by a buffer
of finite capacity. A continuous flow model is considered, where machines are subject to operation-dependent
failures, i.e., a machine cannot fail when it is idle. Both repair times and failure times may be general, i.e.,
they need not be exponentially distributed. The system is hybrid in the sense that it has both continuous
dynamics, as a result of continuous material flow, and discrete events: failures and repairs. The purpose
of this paper is to estimate the gradient of the throughput rate with respect to the buffer capacity. Both
IPA estimators and SPA estimators are derived. Simulation results show that IPA estimators do not work,
contradicting the common belief that IPA always works for continuous flow models.
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1 INTRODUCTION

A transfer line consists of a set of machines arranged in a serial configuration and separated by buffers. A part

to be processed arrives to the first machine as raw material from outside the system. After being processed

by the first machine, it queues in the first buffer, waiting to be processed by the second machine. It continues

in this manner through all machines and reaches the inventory of finished products after being processed by

the last machine. The rate at which a machine processes a part is called the machine’s production rate.

The performance of a transfer line is adversely affected by machine failures. While a machine is being

repaired, it is unable to process parts, thus disrupting the flow of the transfer line. During this down time,

the level of the machine’s downstream buffer decreases while the level of its upstream buffer increases. If the

repair takes a long time, then the downstream buffer may empty out – starving the downstream machine,

and/or the upstream buffer may fill to capacity – blocking the upstream machine. In either case, the affected

machine is said to be forced down.

The machine failures may be either operation dependent or time dependent. Operation-dependent failures

can only occur while a machine is processing a part, whereas time-dependent failures can occur even if

it is forced down. Both types of failures have been considered in the literature. Operation-dependent

failures are commonly considered in performance analysis of production lines, and time-dependent failures

are usually assumed in the flow control of failure-prone manufacturing systems. Excellent literature surveys

on performance evaluation of production lines can be found in Buzacott and Shanthikumar (1992) and

Dallery and Gershwin (1992), though here only closely related work will be reviewed. We note here that for

the most part little has been done for systems with generally distributed failure and repair times.

In this paper, we limit ourselves to transfer lines composed of two machines separated by a buffer of finite

capacity. A continuous flow model is considered. The maximal production rates of the two machines are the

same. Times to repair and times to failure of the machines are random variables with general distributions.

Machines are subject to operation-dependent failures, and a machine cannot fail if it is forced down. Due to

the generality of the failure/repair mechanisms, transfer lines considered in this paper are not analytically

tractable, so that performance evaluation requires simulation. The purpose of this paper is to evaluate the

gradient of the throughput rate with respect to the buffer capacity. Both infinitesimal perturbation analysis

(IPA) estimators and smoothed perturbation analysis (SPA) estimators are derived. We show that the IPA

estimators are biased, because certain event order changes cause significant jumps in the performance of the

line. Thus, this is an example of a simple continuous flow model in which IPA does not apply, contradicting

the common belief that IPA is always applicable to continuous flow models. It is worth noting, however,

that IPA does work in the setting presented here if failures are instead time dependent (see Xie 1998).

Most related to this paper are works on performance evaluation and optimization of continuous production

lines with operation-dependent failures (e.g., Plambeck et al. 1996, Shi et al. 1998, and Suri and Fu 1994).

In particular, Suri and Fu (1994) proposed a GSMP model for representing the underlying stochastic process

of a continuous production line, and perturbation analysis with respect to maximal production rates was

2



considered in Shi et al. 1998.

The transfer line model considered in this paper is a piecewise deterministic control system (PDCS).

Piecewise deterministic control systems have been addressed by many authors. Most of the existing works

are motivated by the optimal control of manufacturing flow and consider time-dependent failures. Among

them, convergence of stochastic approximation algorithms coupled with perturbation analysis was addressed

in Haurie et al. 1994 under a fairly general framework. However, conditions of that paper are difficult to check

and its results difficult to apply. Perturbation analysis was also applied in Caramanis and Liberopoulos (1992)

to the flow controller design of manufacturing systems without internal buffers and with constant demand

rates. A two-machine production line with constant demand rate was considered in Yan et al. (1994), where

sample gradients of inventory cost with respect to control parameters were defined and proved to be strongly

consistent. Perturbation analysis was also conducted in Brémaud et al. (1997) for a single-machine/single-

item production system having multiple machine states. It is worth mentioning as well the work of Wardi

and Melamed (1996), in which the gradient estimation for loss measures in continuous flow models of a

single-queue system was addressed using IPA.

The rest of the paper is organized as follows. Notation and basic relations for continuous production

lines are presented in Section 2. Section 3 presents the IPA estimators. Section 4 derives unbiased SPA

estimators for the finite time horizon case, and Section 5 extends them to the long-run case. In Section 6,

numerical results for two simple examples are presented. Section 7 concludes.

2 NOTATION AND BASIC RELATIONS

We consider a production line composed of two machines M1 and M2 separated by a buffer of capacity c. We

assume the synchronous case where the maximal production rate of both machines is the same, and without

loss of generality assumed to be 1. The following notation will be used throughout the paper (with i = 1, 2):

Xik = k-th time to failure of machine Mi,

Yik = k-th time to repair of machine Mi,

Fi(resp. Gi) = distribution function of Xik (resp. Yik),

fi(resp.gi) = density function of Xik (resp. Yik),

λi, µi = failure rate and repair rate, i.e., λi = 1/E[Xik] and µi = 1/E[Yik],

αit = state of machine Mi at time t; 1 if up and 0 otherwise,

rit = remaining lifetime (until failure or repair) of machine Mi in state αit at time t+,

ait = age (since last failure or repair) of machine Mi in state αit at time t+,

Pit = cumulative production of Mi up to time t,

xt = buffer level at time t,

ek = k-th event ∈ {F1, R1, F2, R2, BF, BE},
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tk = epoch of event ek,

sk = state of the system at time t+k = (a1k, a2k, r1k, r2k, xk),

τk = time from ek−1 to ek = τk − τk−1,

#(k, e) = number of occurrences of event e in e1e2...ek.

In the above notation, for the sake of simplicity, xk is used to denote xtk . This will not lead to confusion,

since throughout the paper only xt denotes the inventory level at time t and, in all other cases, x• denotes

in fact xt•. The same abuse of notation is often followed for αik, rik, aik, τk, and sk.

We take the initial condition α0 = (1, 1) and x0 = 0, i.e., the system begins empty with both machines

up. The performance measure considered in this paper is the throughput rate of the system defined as

follows:

L = lim
t→∞P2t/t,

which is assumed to exist w.p. 1. Three finite-time estimators will be considered:

Lt = P2t/t,

Ln = P2tw(n)/tw(n),

Ln = P2tn/tn,

where ew(n) is the n-th repair of M2.

The dynamics of the system can be characterized similar to a generalized semi-Markov process (GSMP)

model: starting from s0, the next event e1 is determined and the state of the system is updated as to be

described. Then the system evolves in the same way starting from its new state s1.

Machine M1 is said to be blocked in state sk = (α1k, α2k, r1k, r2k, xk) if αk = (1, 0) and xk = c. Machine

M2 is said to be starved in state sk if αk = (0, 1) and xk = 0. In either case, the machine is said to be forced

down. When a machine Mi is forced down, it cannot produce, it cannot break down, and its remaining time

to failure rik remains unchanged as long as it is forced down. Thus, in terms of the usual GSMP terminology,

the noninterruption condition is violated; in this case, the corresponding events are not cancelled, but merely

suspended.

For the two-machine systems, the following events are possible: the failure of M1, the repair of M1, the

failure of M2, the repair of M2, buffer full, and buffer empty, denoted respectively by F1, R1, F2, R2, BF ,

BE. The determination of the next event ek+1 is as follows. The time to state change of machine Mi for

i = 1, 2, is as follows:

Tik =
{

rik, if Mi is not forced down in sk;
∞, otherwise.

The time to buffer full event is:

TFk =
{

c− xk, if αk = (1, 0) ∧ xk < c;
∞, otherwise.
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The time to buffer empty event is:

TEk =
{

xk, if αk = (1, 0) ∧ xk > 0;
∞, otherwise.

As a result, the next event epoch tk+1 = tk + τk with

τk = min{T1k, T2k, TFk, TEk}.

The next event is defined as follows:

ek =


Fi, if τk = Tik ∧ αik = 1;
Ri, if τk = Tik ∧ αik = 0;
BF, if τk = TFk;
BE, if τk = TEk.

The next state can be updated as follows:

xk+1 =
{

xk, if M1or M2 is forced down in sk,
xk + (α1k − α2k)τk, otherwise;

α1k+1 =
{

α1k, if ek+1 /∈ {F1,R1};
1− α1k, otherwise;

α2k+1 =
{

α2k, if ek+1 /∈ {F2,R2};
1− α2k, otherwise;

rk+1 =


sample(Y1), if ek+1 = F1;
sample(X1), if ek+1 = R1;

r1k, if M1 is blocked in sk;
r1k − τk, otherwise;

r2k+1 =


sample(Y1), if ek+1 = F2;
sample(X1), if ek+1 = R2;

r2k, if M2 is starved in sk;
r2k − τk, otherwise.

From the above equations, ek+1 = R2 if M1 is blocked, and ek+1 = R1 if M2 is starved.

3 IPA ANALYSIS

For the purpose of perturbation analysis, we compare the sample path of the system having buffer capacity c,

called the nominal system, with that of the system having buffer capacity c+∆, ∆ > 0, called the perturbed

system. As usual in IPA, we assume that the event sequence is identical for both system up to the k-th

event, i.e.,

(A1) e1(c + ∆) = e1(c), ..., ek(c + ∆) = ek(c).

Under this assumption, the following holds:

αk(c + ∆) = αk(c),

aik(c + ∆) + rik(c + ∆) = aik(c) + rik(c), ∀i = 1, 2. (1)
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Figure 1 HERE

Figure 1: A typical sample path

More relations between the nominal and perturbed systems can be obtained by detailed sample path analysis.

For this purpose, consider the sample path of Figure 1 and let

H = min{n ≥ 1 : en = BF },
O = min{n ≥ H : en = BE}.

Clearly H and O define an operation cycle of the system. At event eO+1 , both machines are up and the

buffer is empty, and the system starts a similar cycle as at time 0. Hence it is natural to first conduct the

perturbation analysis for the first cycle, and then extend the results to the other cycles. However, we note

that except for the case where times to failure of machine M2 are exponential, the points are not in fact

regenerative points. Five cases are considered for the first cycle.

Theorem 1. Under assumption (A1), the following hold:

• If k < H : tk(c + ∆) = tk(c), xk(c + ∆) = xk(c), rik(c + ∆) = rik(c), ∀i = 1, 2.

• If k = H : tk(c + ∆) = tk(c) + ∆, xk(c + ∆) = xk(c) + ∆, rik(c + ∆) = rik(c)−∆, ∀i = 1, 2.

• If H < k < O and ek ∈ {F2, R2} : tk(c + ∆) = tk(c), xk(c + ∆) = xk(c) + α1k∆, r1k(c + ∆) =

r1k(c) −∆, r2k(c + ∆) = r2k(c).

• If H < k < O and ek = BF : tk(c+∆) = tk(c), xk(c+∆) = xk(c)+∆, r1k(c+∆) = r1k(c)−∆, r2k(c+

∆) = r2k(c).

• If H < k < O and ek ∈ {F1, R1} : tk(c + ∆) = tk(c) − ∆, xk(c + ∆) = xk(c) + α2k∆, r1k(c + ∆) =

r1k(c), r2k(c + ∆) = r2k(c) + ∆.

• If k = O : tk(c + ∆) = tk(c), xk(c + ∆) = xk(c) = 0, r1k(c + ∆) = r1k(c)−∆, r2k(c + ∆) = r2k(c).

• If k = O + 1 : tk(c + ∆) = tk(c) −∆, xk(c + ∆) = xk(c) = 0, r1k(c + ∆) = r1k(c), r2k(c + ∆) = r2k(c).

Proof. Case 0 < k < H is obvious since, from t = 0 to tH , the buffer level is always below H , so the sample

paths of the nominal and perturbed systems are identical. Case k = H is a trivial consequence of case

0 < k < H . The results concerning cases H < k < O will be proved later. Consider the case k = O. In

this case, αk−1 = αk = (0, 1) and ek−1 ∈ {F1, R2}. Only the proof for ek−1 = F1 is given, since that for

ek−1 = R2 is similar. If ek−1 = F1, then tk−1(c + ∆) = tk−1(c) −∆ and xk−1(c + ∆) = xk−1(c) + ∆. As a

result, tk(c + ∆) = tk−1(c + ∆) + xk−1(c + ∆) = tk−1(c) + xk−1(c) = tk(c), i.e., tk(c + ∆)− tk−1(c + ∆) =

tk(c) − tk−1(c) + ∆. Hence, r1k(c + ∆) = r1k(c) −∆, r2k(c + ∆) = r2k(c). Finally, the result for the case
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k = O + 1 is a trivial consequence of the case k = O, since for k = O + 1, under assumption (A1), ek = R1,

and machine M2 is starved from ek−1 to ek.

We now prove the cases H < k < O by recursion on k = O, O+1, .... Consider first the case ek ∈ {F2, R2}.
By definition of H and O, the buffer level is always positive from tH−1 to tO. As a result of Case 0 < k < H ,

machine M2 fails and is repaired at the same time over period (tH−1, tO). As a result, tk(c + ∆) = tk(c).

Consider first the case ek = F2. Hence, r2k(c + ∆) = r2k(c) = sample(Y2), αk−1 = (·, 1) and ek−1 ∈ {F1,

R1, R2}. For each possible ek−1, by recursive assumption, tk(c + ∆) = tk−1(c + ∆) + r2k−1(c + ∆) =

tk−1(c)+ r2k−1(c) = tk(c), xk(c +∆) = xk−1(c + ∆)+ (α1k−1− 1)(tk(c + ∆)− tk−1(c +∆)) = xk(c)+α1k∆,

r1k(c + ∆) = r1k(c) −∆. The results for the case ek = R2, i.e. αk−1 = (·, 0)and ek−1 ∈ {F1, R1, R2, BF },
can be established in a similar way by considering each possible event ek−1.

For the case ek = BF, αk−1 = αk = (1, 0), xk−1(c + ∆) < c + ∆, xk−1(c) < c, and ek−1 ∈ {F2, R1}. Only

the case ek−1 = R1 is considered, since the proof is similar for ek−1 = F2. Since ek−1 = R1, tk−1(c + ∆) =

tk−1(c) − ∆, xk−1(c + ∆) = xk−1(c), r1k−1(c + ∆) = r1k−1(c), r2k−1(c + ∆) = r2k−1(c) + ∆. Hence,

tk(c+∆) = tk−1(c+∆)+c+∆−xk−1(c+∆) = tk−1(c)+c−xk−1(c) = tk(c). Hence tk(c+∆)−tk−1(c+∆) =

tk(c) − tk−1(c) + ∆, r1k(c + ∆) = r1k(c)−∆, r2k(c + ∆) = r2k(c). Finally, xk(c + ∆) = c + ∆ = xk(c)− ∆.

For the case ek ∈ {F1, R1}, ek−1 6= BF and neither M1 nor M2 is forced down from ek−1 to ek. If ek−1

∈ {F1, R1}, then tk−1(c + ∆) = tk−1(c)− ∆, xk−1(c + ∆) = xk−1(c) + α2k−1∆, r1k−1(c + ∆) = r1k−1(c),

r2k−1(c+∆) = r2k−1(c)− ∆. Further α2k = α2k−1, tk = tk−1+r1k−1 and xk = xk−1+(α1k−1−α2k−1)r1k−1.

As a result, tk(c+∆) = tk(c)−∆, xk(c+∆) = xk(c)+α2k∆, r1k(c+∆) = r1k(c), r2k(c+∆) = r2k(c)+∆. If

ek−1 ∈ {F2, R2}, then tk−1(c+∆) = tk−1(c), xk−1(c+∆) = xk−1(c)+α1k−1∆, r1k−1(c+∆) = r1k−1(c)−∆,

r2k−1(c + ∆) = r2k−1(c). Further α1k = α1k−1, tk = tk−1 + r2k−1and xk = xk−1 + (α1k−1 − α2k−1)r2k−1.

The results can then be established. 2

It should be noted that at the occurrence of eO+1, the sample path of the perturbed system can be derived

from the one of the nominal system as above and the only difference is that the event epochs tk(c + ∆) is

further shifted leftward by ∆. To generalize the results, we decompose the sample path into cycles as follows:

Hm = min{n = Om−1 : en = BF },
Om = min{n = Hm : en = BE},

where O0 = 0. Clearly, Hm > Om−1 + 1 and Om > Hm + 1.

Theorem 2: Assume that assumption (A1) holds and that ek is an event of cycle m + 1 with m ≥ 0, i.e.

Om + 1 < k ≤ Om+1 + 1. Then the following hold:

• If k < Hm+1 : tk(c + ∆) = tk(c)−m∆, xk(c + ∆) = xk(c), rik(c + ∆) = rik(c), ∀i = 1, 2.

• If k = Hm+1 and ek = BF : tk(c + ∆) = tk(c) − (m − 1)∆, xk(c + ∆) = xk(c) + ∆, rik(c + ∆) =

rik(c)−∆, ∀i = 1, 2.
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• If Hm+1 < k < Om+1 and ek ∈ {F2, R2} : tk(c+∆) = tk(c)−m∆, xk(c+∆) = xk(c)+α1k∆, r1k(c+∆) =

r1k(c) −∆, r2k(c + ∆) = r2k(c).

• If Hm+1 < k < Om+1 and ek = BF : tk(c + ∆) = tk(c) − m∆, xk(c + ∆) = xk(c) + ∆, r1k(c + ∆) =

r1k(c) −∆, r2k(c + ∆) = r2k(c),

• If Hm+1 < k < Om+1 and ek ∈ {F1, R1} : tk(c + ∆) = tk(c) − (m + 1)∆, xk(c + ∆) = xk(c) +

α2k∆, r1k(c + ∆) = r1k(c), r2k(c + ∆) = r2k(c) + ∆.

• If k = Om+1 and ek = BE : tk(c + ∆) = tk(c) − m∆, xk(c + ∆) = xk(c) = 0, r1k(c + ∆) = r1k(c) −
∆, r2k(c + ∆) = r2k(c).

• If k = Om+1 + 1 and ek = R1 : tk(c + ∆) = tk(c) − (m + 1)∆, xk(c + ∆) = xk(c) = 0, r1k(c + ∆) =

r1k(c), r2k(c + ∆) = r2k(c).

From the above results, we can derive the sensitivities of the performance measures.

Theorem 3: Consider the estimator Ln = P2tw(n)/tw(n). Assume that assumption (A1) holds 1 ≤ k ≤ w(n)

where w(n) is the n-th occurrence of R2. Then,

Ln (c + ∆)− Ln (c) =
Ln (c)∆

tw(n) (c) /Qw(n) −∆
,

where Qk is the number of cycles defined above completed by the k−th event.

Proof. From the definition of w(n), we have:

P2tw(n)(c + ∆) = P2tw(n)(c) =
n∑

k=1

X2k,

where X2k for 1 ≤ k ≤ n are times to failure of machine M2. From Theorem 2,

tw(n)(c + ∆) = tw(n)(c)−Qn∆.

The combination of the two relations gives:

Ln(c + ∆)− Ln(c) =
P2tw(n)(c)

tw(n)(c) −Qn∆
− P2tw(n)(c)

tw(n)(c)
=

P2tw(n)(c)Qn∆
tw(n)(c)(tw(n)(c)−Qn∆)

=
Ln(c)∆

tw(n)(c)/Qw(n) −∆
.

2

Theorem 4: Consider the estimator Lt = P2t/t. Assume that assumption (A1) holds 1 ≤ k ≤ N(t) + 1,

where N(t) is the number of events up to time t, i.e. N(t) = inf{k : tk ≤ t}. Further, assume that N(t) is

the same for both perturbed and nominal systems. Then,

Lt(c + ∆)− Lt(c) =
α2tγ2t

t/QN(t)
∆ +

vt

t
∆,

where γ2t = 1 if machine M2 is not starved at time t and γ2t = 0 otherwise, and vt is a random variable

such that −2 ≤ vt ≤ 2.
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Proof. Clearly,

P2t =
#(N(t),F2)∑

k=1

X2k + α2t(a2N(t) + γ2t(t− tN(t))).

We note that γ2t can be derived from the event sequence up to eN(t) as follows:

γ2t=

{
α1k, if ∃n ≤ N(t)/en = BE ∧ ek ∈ {F1, R1}, ∀n < k ≤ N(t);

1 otherwise;

As a result, under the condition of the theorem, α2t(c + ∆) = α2t(c) and γ2t(c + ∆) = γ2t(c). Therefore,

P2t(c + ∆)− P2t(c) = α2t(a2N(t)(c + ∆)− a2N(t)(c)) − α2tγ2t(tN(t)(c + ∆)− tN(t)(c)).

From relation (1), a2N(t) = X2,#(N(t),F2)+1 − r2N(t). This relation together with Theorem 2 leads to −∆ ≤
a2N(t)(c + ∆) − a2N(t)(c) ≤ ∆. Furthermore, from Theorem 2, −(QN(t) + 1)∆ ≤ tN(t)(c + ∆) − tN(t)(c) ≤
−(QN(t) − 1)∆. Since α2t, γ2t ∈ {0, 1}, it holds that −2 ≤ vt ≤ 2 with

vt =
P2t(c + ∆)− P2t(c)− α2tγ2tQN(t)∆

∆
.

As a result,

Lt(c + ∆)− Lt (c) =
α2tγ2t

t/QN(t)
∆ +

vt

t
∆. 2

Similarly, it can be proved that:

Theorem 5: Consider the estimator Ln = P2tn/tn. Assume that assumption (A1) holds 1 ≤ k ≤ n. Then,

Ln(c + ∆)− Ln (c) =
Ln(c)Qn + vt

tn(c + ∆)
∆,

where tn(c+∆) = tn(c)−(Qn +un)∆, vn and un are random variables such that −2 ≤ vn ≤ 2,−1 ≤ un ≤ 1.

By taking the limit of the above gradient estimators, we obtain:

IPA1 = lim
n→∞ lim

∆→0

Ln (c + ∆)− Ln(c)
∆

=
L∞(c)

C
w.p.1,

IPA2 = lim
t→∞ lim

∆→0

Lt (c + ∆)− Lt(c)
∆

=
α2∞γ2∞

C
w.p.1,

IPA3 = lim
n→∞ lim

∆→0

Ln (c + ∆)− Ln(c)
∆

=
L∞(c)

C
w.p.1,

where C is the average length of the cycles. Note that IPA1 and IPA3 are constants, whereas IPA2 is a

random variable. Since P (α2∞γ2∞ = 0) > 0, if a long simulation is performed to estimate IPA2, we can

expect that IPA2 is sometime equal to 0 and sometime equal to 1/C and the related estimator does not

converge. The relationship between the estimators can be established as follows. Since α2tγ2t = 1 if and

only if machine M2 is producing, P (α2∞γ2∞ = 1) is equal to the throughput rate of the system. As a result,

E [IPA2] =
P (α2∞γ2∞ = 1)

C
=

L

C
= IPA1 = IPA3.

Unfortunately, because event changes that occur when assumption (A1) is violated can lead to large (non-

infinitesimal) jumps in the performance measure (as confirmed by the numerical simulation experiments
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described in Section 6, IPA1 and IPA3 are not strongly consistent, i.e., IPA1 = IPA3 6= dL/dc. This

means that event changes need to be considered in the derivation of gradient estimators, which leads to the

SPA analysis considered in the following section.

4 SPA ANALYSIS: FINITE HORIZON

The purpose of this section is to derive SPA estimators following the approach proposed by Fu and Hu (1997).

Only the performance measure Lt = P2t/t is considered here. Under the framework of Fu and Hu (1997),

the sample path space is partitioned into sets (probability events) A(∆) and Ac(∆), where A(∆) contains

the sample paths that experience no event changes due to a perturbation of size ∆, and the complement set

Ac contains the sample paths on which event changes do occur as a result of the perturbation. Using this

partition,

dE [Lt]
dc

= lim
∆→0

E

[
Lt(c + ∆)− Lt(c)

∆
|A

]
P (A) + lim

∆→0
E

[
Lt(c + ∆)− Lt(c)

∆
|Ac

]
P (Ac)

= E

[
dLt

dc

]
+ E

[
lim
∆→0

E [(Lt(c + ∆)− Lt(c))|z,Ac] lim
∆→0

P (Ac|z)
∆

]
= E

[
dLt

dc

]
+ E

[(
Ez

[
LPP

]− Ez

[
LDNP

]) dPz

dc

]
,

where Ez

[
LPP

]
= lim

∆→0
E [Lt (c + ∆) |z,Ac]

Ez

[
LDNP

]
= lim

∆→0
E [Lt (c) |z,Ac]

dPz

dc
= lim

∆→0

P (Ac|z)
∆

,

where dPz/dc is the probability rate of event changes, z is a set of sample path quantities selected to smooth

the effect of event changes, LDNP is the performance measure of a so-called degenerated nominal path

denoted by DNP, LPP is the performance measure of a so-called perturbed path, denoted by PP. PP is

identical to DNP up to time, say tk, where an event change occurs. At this instant, an event occurs on both

nominal and perturbed paths; however, the event on the nominal path differs from the one on the perturbed

path.

In the following, we examine the possible event changes, select the characterization and determine the

effect of event changes, i.e., LPP − LDNP . Assume that the k-th event changes, i.e.,

e1(c + ∆) = e1(c), ..., ek−1(c + ∆) = ek−1(c), ek(c + ∆) 6= ek(c).

Clearly the above assumption implies that the state of the machines αk−1 is identical for both nominal

and perturbed systems. Consider as well the following indicator of the buffer state βk = (β1k, β2k) with

β1k = 1{xk = c} and β2k = 1{xk = 0}. βk−1 is also identical for both nominal and perturbed systems since

it is totally determined by the sequence of events up to ek−1 as follows:

β1k−1 =
{

1, if ∃n ≤ k − 1/en = BF ∧ ei ∈ {F2, R2}, ∀n < k ≤ k − 1;
0 otherwise;
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β2k−1 =
{

1, if ∃n ≤ k − 1/en = BE ∧ ei ∈ {F1, R1}, ∀n < k ≤ k − 1;
0 otherwise.

A change of the k-th event with the next event is not possible if machine M1 is blocked in state sk−1 or M2

is starved in state sk−1, i.e., αk−1 = (1, 0)∧ βk−1 = (1, 0) or αk−1 = (0, 1)∧ βk−1 = (0, 1), because only one

event (R2 in the first case and R1 in the second case) is feasible. For a third case with αk−1 = (1, 1) and

βk−1 = (0, 1), an event change is not possible, because there are only two competing events, and the relative

remaining lifetimes of both are unchanged by a change in c.

Case B: αk−1 = (1, 1) ∧ βk−1 = (0, 0). According to Theorem 2, an event change is possible only if

Hm+1 < k − 1 < Om+1 and ek−1 = R2 or ek−1 = R1. As a result, either r1k−1(c + ∆) = r1k−1(c) − ∆ ∧
r2k−1(c+∆) = r2k−1(c) or r1k−1(c+∆) = r1k−1(c)∧r2k−1(c+∆) = r2k−1(c)+∆. The only event change is:

ek(c + ∆) = F1 ∧ ek(c) = F2 under conditions r1k(c)−∆ < r2k(c) < r1k(c) or r2k(c) < r1k(c) < r2k(c) + ∆.

Since βk−1 = (0, 0), i.e. 0 < xk < c and, for small enough ∆, ek+1(c + ∆) = F2 ∧ ek+1(c) = F1. In

the limiting case, i.e. ∆ → 0, rik−1(c + ∆) = rik−1(c) and the two sample paths PP and DNP become

identical everywhere except at time tk where F1F2 occurs in PP and F2F1 occurs in DNP. As a result,

LPP − LDNP = 0.

By similar reasoning, results for the remaining cases can be established, and we summarize all the cases here:

• Case A: αk−1 ∧ βk−1 = (1, 0)∧ (1, 0), (0, 1)∧ (0, 1):

No event change possible.

• Case B: αk−1 = (1, 1)∧ βk−1 = (0, 0)

ek(c + ∆) = F1 ∧ ek(c) = F2 and LPP − LDNP = 0

• Case C: αk−1 = (1, 1) ∧ βk−1 = (1, 0) :

ek(c + ∆) = F1 ∧ ek(c) = F2 and LPP − LDNP 6= 0

• Case D: αk−1 = (0, 0) ∧ βk−1 = (x, x), x ∈ {0, 1} :

ek(c + ∆) = R1 ∧ ek(c) = R2 and LPP − LDNP = 0

• Case E: αk−1 = (0, 1)∧ βk−1 = (0, 0) or αk−1 = (0, 1) ∧ βk−1 = (1, 0):

(i) ek(c + ∆) = R1 ∧ ek(c) = F2 and LPP − LDNP = 0;

(ii) ek(c + ∆) = R1 ∧ ek(c) = BE and LPP − LDNP = 0;

• Case F: αk−1 = (1, 0) ∧ βk−1 = (0, x), x ∈ {0, 1} :

(i) ek(c + ∆) = R2 ∧ ek(c) = BF and LPP − LDNP = 0;

(ii) If x = 0, ek(c + ∆) = F1 ∧ ek(c) = R2 and LPP − LDNP = 0 (only x = 0 is possible);

(iii) ek(c + ∆) = F1 ∧ ek(c) = BF and LPP − LDNP 6= 0;

11



Figure 2 HERE

Figure 2: A critical event change

• Case G: Interchange of the last event and the end of horizon:

eN(t)(c + ∆) > t ∧ eN(t)(c) < t and LPP − LDNP = 0.

Thus, only event changes of Case C and Case F(iii) need to be further considered, i.e., these correspond

to the critical event changes. These event changes are important, since machine M1 is blocked in state sk,

and the event F1 is suspended until the repair of M2 in DNP, whereas it is under repair in PP (see Figure

2).

The characterization for smoothing the discrete changes is the set of all random variables except X1k∗:

zk = {Xin, ∀i = 1, 2∧ n ≥ 1}\{X1k∗},

where X1k∗ is the newest time to failure of M1 sampled prior to ek. As a result, the probability rate for

event change can be determined as follows:

Case C: ek(c + ∆) = F1 ∧ ek(c) = F2 implies that r1k−1(c + ∆) = r2k−1(c + ∆) and r2k−1(c) < r1k−1(c).

From Theorem 2, ek(c + ∆) = F1 ⇔ r1k−1(c) −∆ ≤ r2k−1(c) and ek(c) = F2 ⇔ r2k−1(c) < r1k−1(c). Since

Xik = aik + rik, ek(c + ∆) = F1 ⇔ X1k−1(c) = a1k−1(c) + r2k−1(c) + ∆ and ek(c) = F2 ⇔ X1k(c) >

a1k−1(c) + r2k−1(c). As a result, the rate of event change is

dPzk

dc
= lim

∆→0

P (X1k ≤ a1k−1 + r2k−1 + ∆|X1k > a1k−1 + r2k−1)
∆

=
f1(a1k−1 + r2k−1)

1− F1(a1k−1 + r2k−1)
.

Case F(iii): By similar arguments as in case C,

dPzk

dc
= lim

∆→0

P (X1k ≤ a1k−1 + +c + ∆− xk−1|X1k > a1k−1 + c + xk−1)
∆

=
f1(a1k−1 + c− xk−1)

1− F1(a1k−1 + c− xk−1)
.

Since NP and DNPk are identical up to tk with ek = BF for case F(iii) and ek = F2 for case C, then it

holds for DNPk and NP that a1k = a1k−1 + c − xk−1 in case F(iii) and a1k = a1k−1 + r2k−1 in case C. As

a result, it holds in both cases that:
dPzk

dc
=

f1(a1k)
1− F1(a1k)

.

Combining the above results, we obtain the following gradient estimator:

dLt(c)
dc

+
∑

k∈BFS

(
LPP,k − LDNP,k

) f1(a1k)
1− F1(a1k)

. (2)

where BFS = {k|αk = (1, 0)∧ xk = c} is the set of blocking states.
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In order to establish unbiasedness of the estimator we define some sets of sample paths that are char-

acterized by their behavior when a perturbation of size ∆ is introduced. Denote a sample path by ω. For

k = 1, 2, ..., n = N(t), let

Uk(∆) = {ω : e1(c + ∆) = e1(c), · · · , ek(c + ∆) = ek(c)},
Vk(∆) = {ω : e1(c + ∆) = e1(c), · · · , ek(c + ∆) 6= ek(c)}.

By definition, Vk = Uk−1\Uk. The set Uk contains sample paths that experience no change in their event

sequence through the kth transition, due to the introduction of a perturbation of size ∆. In particular, the

set Un contains sample paths that experience no change in their entire event sequence due to the introduction

of a perturbation of size ∆. On the other hand, the set Vk contains sample paths in which the first change

occurs in the event sequence at the kth transition. Since ω is usually understood, its explicit display will

henceforth be omitted except when used in defining new sets of sample paths. Also, the dependence of Uk

and Vk on ∆ is usually omitted for notational brevity. To take into account the time horizon, we further

partition the set of sample paths as follows:

A = {ω ∈ UN(t,c) : N(t, c + ∆) = N(t, c)},
Bk = {ω ∈ Vk : k ≤ N(t, c)},
C = {ω ∈ UN(t,c) : N(t, c + ∆) > N(t, c)}.

Since A, Bk, k = 1, 2, ..., and C partition the set of possible sample paths, by conditioning on whether or

not ∆ causes a change in the event sequence, we write

E[Lt(c + ∆)]−E[Lt(c)] = E[(Lt(c + ∆)− Lt(c))1(A)] + E[(Lt(c + ∆)− Lt(c))1(C)]

+
∞∑

k=1

(E[Lt(c + ∆)1(Bk)]−E[Lt(c)1(Bk)]).

Dividing by ∆ and then taking the limit, we have

dE[Lt(c)]
dc

= lim
∆→0

E[(Lt(c + ∆)− Lt(c))1(A)]
∆

+ lim
∆→0

E[(Lt(c + ∆)− Lt(c))1(C)]
∆

+
∞∑

k=1

lim
∆→0

E[Lt(c + ∆)1(Bk)]−E[Lt(c)1(Bk)]
∆

.

We now establish

Theorem 6. If F1(·) is Lipschitz continuous with Lipschitz constant K and density f1(·), then the estimator

given by (2) is an unbiased estimator for dE[Lt(c)]/dc.

Proof. We can further partition Bk into the various cases to consider, i.e., Bα
k , where α corresponds to a

particular case. We need to show the following:
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(a) lim
∆→0

E[(Lt(c + ∆)− Lt(c))1(A)]
∆

= E

[
dLt(c)

dc

]
;

(b) lim
∆→0

E[(Lt(c + ∆)− Lt(c))1(C)]
∆

= 0;

(c) lim
∆→0

E[(Lt(c + ∆)− Lt(c))1(Bα
k )]

∆
= E

[
dPzk

dc
(LPP,k(α)

t − L
DNP,k(α)
t )

]
,

where the (α) indicates the dependence on the case, zk = {Xin, Yin, i = 1, 2, n ≥ 1}\{X1k∗}, and X1k∗ is the

value of X1j active at ek. All three parts are established via the dominated convergence theorem.

A bound for part (a), the IPA portion of the estimator, can be established using Theorem 4, since

|vt| ≤ 2, α2tγ2t ≤ 1, and from the definition of a cycle, it takes at least c time units to go from empty to full

and c time units to go from full to empty, so QN(t)/t ≤ 1/2c, which leads to

E

[
sup

c∈(cmin,cmax)

∣∣∣∣Lt(c + ∆)− Lt(c)
∆

1(A)
∣∣∣∣
]
≤ 1

2cmin
+

2
t
,

where cmin and cmax denote the lower and upper bounds, respectively, of the buffer capacity. Applying the

dominated convergence theorem completes the proof of part (a).

For part (b), let us first notice that tk+1 = tk + τ (rk, xk, αk, γk), where τ is a continuous function of rk

and xk. For all ω ∈ Uk, Theorem 2 implies that tk(c + ∆) → tk(c), rk(c + ∆) → rk(c), xk(c + ∆) → xk(c).

Further, ω ∈ Uk implies that αk(c + ∆) = αk(c) and γk(c + ∆) = γk(c). As a result, for all ω ∈ C,
tN(t,c)+1(c + ∆) → tN(t,c)+1(c). By definition, tN(t,c)+1(c) > t, which implies that tN(t,c)+1(c + ∆) > t for ∆

small enough. Therefore,

E

[
lim
∆→0

(Lt(c + ∆)− Lt(c))1(C)
∆

]
= 0.

The dominated convergence theorem will be used to conclude part (b). To this end, from Theorem 2,

we have tk(c + ∆) ≥ tk(c) − (Qk + 1)∆, rik(c + ∆) = rik(c) + uik∆, and xk(c + ∆) = xk(c) + u0k∆, with

uik ∈ {−1, 0, 1} and k = N(t, c). Hence,

P2k(c + ∆) = P2k(c) − u2k∆.

Furthermore, ω ∈ UN(t,c) implies that αt(c + ∆) and γt(c + ∆) for t ∈ (tk(c + ∆), tk(c + ∆) + t− tk(c)−∆)

are equal to αt(c) and γt(c) for t ∈ (tk(c), t). As a result,

P2t(c + ∆) ≤ P2k(c + ∆) + α2kγ2k(t− tN(t,c) −∆) + (Qk + 1)∆ + ∆

= P2t(c)− u2k∆− α2kγ2k∆ + (Qk + 1)∆ + ∆

≤ P2t(c) + (Qk + 3)∆.

Therefore,

0 ≤ (Lt(c + ∆)− Lt(c)) 1(C)
∆

≤ Qt + 3
t

≤ 1
2c

+
3
t
.

The proof of part (b) is then established by the dominated convergence theorem.
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For part (c), we will just consider one α here, Case F(iii), which we will denote by α = F 3:

BF3
k = {ω ∈ Bk : ek = BF, a1k−1 + c − xk−1 < X1k∗ ≤ a1k−1 + c + ∆− xk−1},

where X1k∗ corresponds to the time to failure at M1 sampled prior to ek. We note that ek = BF implies

αk−1 = (1, 0), βk−1 = (0, 0). The other cases are analogous.

Specifically, we need to show

lim
∆→0

E[(Lt(c + ∆)− Lt(c))1(BF3
k )]

∆

= E

[
f1(a1k + c − xk−1)

1− F1(a1k + c − xk−1)
1{X1k∗ > a1k−1 + c− xk−1}(LPP,k(F3)

t − L
DNP,k(F3)
t )

]
,

where

L
PP,k(F3)
t = lim

∆→0
E[Lt(c + ∆)1{ek = BF }|zk, a1k−1 + c− xk−1 < X1k∗ ≤ a1k−1 + c + ∆− xk−1]1(Uk−1),

L
DNP,k(F3)
t = lim

∆→0
E[Lt(c)1{ek = BF }|zk, a1k−1 + c− xk−1 < X1k∗ ≤ a1k−1 + c + ∆− xk−1]1(Uk−1).

We consider E[(Lt(c + ∆)− Lt(c))1(BF3
k )], k = 1, . . . , n. First we rewrite it as

E[E[(Lt(c + ∆)− Lt(c))1(BF3
k )|zk]],

and consider the inner conditional expectation term.

|E[Lt(c + ∆)1(BF3
k )|zk]|

= |E[Lt(c + ∆)1{ek = BF }|zk, a1k−1 + c− xk−1 < X1k∗ ≤ a1k−1 + c + ∆− xk−1]

1(Uk−1)P (a1k−1 + c− xk−1 < X1k∗ ≤ a1k−1 + c + ∆− xk−1)|
= |E[Lt(c + ∆)1{ek = BF }|zk, a1k−1 + c− xk−1 < X1k∗ ≤ a1k−1 + c + ∆− xk−1)]

1(Uk−1)(F1(a1k−1 + c + ∆− xk−1))− F1(a1k−1 + c − xk−1))|
≤ K∆E[Lt(c + ∆)|zk, a1k−1 + c− xk−1 < X1k∗ ≤ a1k−1 + c + ∆− xk−1].

Also, since P2t ≤ t, we have

E

[
sup

c
E[Lt(c + ∆)|zk, a1k−1 + c− xk−1 < X1k∗ ≤ a1k−1 + c + ∆− xk−1]

]
≤ 1,

so once again invoking the dominated convergence theorem, we have

lim
∆→0

E[Lt(c + ∆)1(BF3
k )]

∆

= E

[
lim
∆→0

E[Lt(c + ∆)1(BF3
k )|zk]

∆

]
= E

[
lim
∆→0

(F1(a1k−1 + c + ∆− xk−1)− F1(a1k−1 + c− xk−1))
∆

× lim
∆→0

E [Lt(c + ∆)1{ek = BF }|zk, a1k−1 + c − xk−1 < X1k∗ ≤ a1k−1 + c + ∆− xk−1]1(Uk−1)]

= E
[
f1(a1k−1 + c − xk−1)L

PP,k(F3)
t

]
= E

[
f1(a1k−1 + c− xk−1)

1− F1(a1k−1 + c− xk−1)
1{X1k∗ > a1k−1 + c− xk−1}LPP,k(F3)

t

]
.
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Similarly, we can show

lim
∆c→0

E[Lt(c)1(BF3
k )]

∆
= E

[
f1(a1k−1 + c − xk−1)

1− F1(a1k−1 + c− xk−1)
1{X1k∗ > a1k−1 + c− xk−1}LDNP,k(F3)

t

]
.

2

5 SPA ANALYSIS: INFINITE HORIZON CASE

5.1 Regenerative case

From Theorem 4, the IPA term in (2) is given as follows:

dLt(c)
dc

=
α2tγ2t

t/QN(t)
+

vt

t
, (3)

where γ2t and vt are defined in Theorem 4. Note that t/QN(t) is the average length of an operation cycle

defined in Section 3, and α2tγ2t = 1 if and only if machine M2 is producing at time t. We assume that the

steady state exists; more precisely, we make the following assumptions:

(A2) There exists a finite C > 0 such that limt→∞ t/QN(t) = C w.p. 1.

(A3) limt→∞E[α2tγ2t] = L with L = limt→∞ P2t/t w.p. 1.

Lemma 1. Under assumptions (A2)-(A3), limt→∞E[dLt(c)/dc] = L/C.

Proof. From relation (3),

E

[
dLt(c)

dc

]
=

E [α2tγ2t]
C

+ E

[
α2tγ2t

(
QN(t)

t
− 1

C

)]
+ E

[vt

t

]
.

Since |vt| ≤ 2, E[vt/t] → 0. From assumption (A2), wt = α2tγ2t(QN(t)/t− 1/C) → 0 with probability 1.

Since α2tγ2t ≤ 1, |wt| ≤ QN(t)/t+1/C. From the definition of a cycle, it takes at least c time units to go from

empty to full and c time units to go from full to empty, QN(t)/t ≤ 1/2c, which leads to |wt| ≤ 1/2c + 1/C.

Applying the dominated convergence theorem yields E[wt] → 0. The lemma is then established by combining

the above results and assumption (A3). 2

From this result, Lt/(t/QN(t)) is a strongly consistent estimator of limt→∞ E[dLt(c)/dc]. This leads to

the following strongly consistent estimator of dL(c)/dc:

Lt

t/QN(t)
+

∑
k∈BFS

(
LPP,k − LDNP,k

) f1(a1k)
1− F1(a1k)

. (4)

A rigorous proof of strong consistency, though not carried out explicitly here, can be established under the

regenerative assumption below along the lines used in Fu and Hu (1997), since we will show that

lim
t→∞

(
LPP,k − LDNP,k

)
is a function of r2k only, so the estimator (asymptotically) depends only on a1k and r2k within a regenerative

cycle. This regenerative property of the estimator, along with some technical assumptions, are the main

conditions required in such a proof.
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Figure 3 HERE

Figure 3: Possible regeneration points

Figure 4 HERE

Figure 4: M1 still fails at tk+1 in PP

The main difficulty in estimating (4) using simulation is the computation of LPP,k−LDNP,k. Its evaluation

for the general case is still an open issue. In the following we consider the regenerative case and make the

following assumption:

(A4) The underlying stochastic process of the two-machine line has a regeneration point sr.

The points A, B, C and D of Figure 3 are possible regeneration points depending on the distribution of

times to failure. If the time to failure X1 of machine M1 has a phase-type distribution, the points A and D

can be used to define regeneration points by extending the definition of a machine state to include the phase.

Similarly, if the time to failure X2 of machine M2 has a phase-type distribution, the points B and C can

be used to defined regeneration points. Of course, A and D are regeneration points if X1 is exponentially

distributed, and B and C are regeneration points if X2 is exponentially distributed.

The estimation of the gradient estimator requires the estimation of LPP,k − LDNP,k. We recall the

relationship between PPk and DNPk. PPk is identical to DNPk up to time tk- where an event change occurs.

At this instant, machine M1 is blocked in the nominal system, whereas it breaks down in the perturbed

system. Clearly, M1 immediately fails in DNPk following the repair of M2 at time tk+1. Furthermore,

xt = c at time t = tk+1 for both PPk and DNPk. Two cases are possible concerning the state of machine

M1 in PP at tk+1 (from DNP ): (i) M1 still failed at tk+1 or (ii) it is repaired at tk+1 (see Figures 4 and 5).

Case (i) occurs w.p. G1(r2k) and case (ii) occurs w.p. G1(r2k). Finally, since ek = BF in both DNPk and

NP , then ek+1 = R2 in both DNPk and NP . As a result, tk+1 is identical for both DNPk and NP , hence

r2k can be taken form NP .

To summarize, the inventory trajectory and the cumulative production are identical for both PPk and

DNPk up to time t = tk+1 (from NP). At this point, xt = c and M2 is just repaired in both PPk and DNPk.

M1 breaks down in DNPk while it is under repair with age r2k with probability G1(r2k) and is just repaired

with probability G1(r2k) in PPk.

In order to estimate LPP,k − LDNP,k, let us consider the following construction of PPk and DNPk (see

Figure 6). For DNPk, a piece of sample path I is inserted at time tk+1 by starting with appropriate initial

state defined above and this piece of sample path stops when the regeneration point sr is met. Similarly, for

PPk, a piece of sample path II is inserted at time tk+1 until the regeneration point sr is met. From there

Figure 5 HERE

Figure 5: M1 is repaired at tk+1 in PP
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Figure 6 HERE

Figure 6: Construction of PP and DNP

on, both DNPk and PPk pursue the same sample path III.

Let

tPP,k
I , P PP,k

I : length and cumulative production of sample path I,

tDNP,k
II , P DNP,k

II : length and cumulative production of sample path II,

tIII = t− tk+1, PIII : length and cumulative production of sample path III.

Under this construction, we have for large t,

LPP,k
t ≈ LPP,k

t+tPP,k
II

=
P PP,k

2,t+tPP,k
II

t + tPP,k
II

=
P2,tk+1 + P PP,k

II + PIII

t + tPP,k
II

,

LDNP,k
t ≈ LDNP,k

t+tDNP,k
I

=
P DNP,k

2,t+tDNP,k
I

t + tDNP,k
I

=
P2,tk+1 + P DNP,k

I + PIII

t + tDNP,k
I

,

leading to

LPP,k
t − LDNP,k

t ≈
tDNP,k
I P PP,k

2,t+tPP,k
II

− tPP,k
II P DNP,k

2,t+tDNP,k
I

+ t
(
P PP,k

II − P DNP,k
I

)
(
t + tPP,k

II

) (
t + tDNP,k

I

)
=

tDNP,k
I LPP,k

t+tPP,k
II

t + tDNP,k
I

−
tPP,k
II LDNP,k

t+tDNP,k
I

t + tPP,k
II

+ t
P PP,k

II − P DNP,k
I(

t + tPP,k
II

) (
t + tDNP,k

I

)
≈ Lt

t
(tDNP,k

I + tPP,k
II ) +

1
t

(
P PP,k

II − P DNP,k
I

)
.

Therefore, we take the following as our long-run gradient estimator:

SPA0 =
Lt

t/QN(t)
+

Lt

t

∑
k∈BFS

f1(a1k)
1− F1(a1k)

(
tDNP,k
I − tPP,k

II

)

+
1
t

∑
k∈BFS

f1(a1k)
1− F1(a1k)

(
P PP,k

II − P DNP,k
I

)
. (5)

When computing the above estimator using simulation, all terms except the two summations can be evaluated

easily. Whenever an event ek leading to a blocking state, extra simulation is performed to construct sample

paths I and II as described above. We then update these two summations. The estimator (5) can be obtained

at the end of the simulation accordingly.

5.2 A particular case

In this subsection, we assume that Y1k and X2k are exponentially distributed and derive strongly consistent

gradient estimators computable without extra simulation. As shown above, the estimation of LPP,k−LDNP,k

requires the consideration of two cases : (i) M1 still fails at tk+1 or (ii) it is repaired at tk+1. Case (i) occurs
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w.p. G1(r2k) and case (ii) occurs w.p. G1(r2k). By using different construction of sample paths, we prove

in the following that

LPP,k − LDNP,k = 0

for case (i) and

LPP,k − LDNP,k ≈ 1− Lt/E2

λ1t

for case (ii), where E2 is the isolated average throughput rate of M2 given by E2 = µ2/ (λ2 + µ2). Our final

gradient estimator for dL/dc is the following:

SPA1 =
Lt

t/QN(t)
+

1− Lt/E2

λ1t

∑
k∈BFS

G1 (r2k)
f1(a1k)

1− F1(a1k)
. (6)

Of course, if X1k are exponentially distributed as well, then f1(x)/(1 − F1(x)) = λ1 for all x ≥ 0, and the

gradient estimator becomes:
Lt

t/QN(t)
+

1− Lt/E2

t

∑
k∈BFS

G1 (r2k) .

If all random variables are exponentially distributed, r2k are exponentially distributed with mean equal to

E[Y2k]. Hence, case (ii) occurs w.p. µ1/(µ1+µ2) and the gradient estimator becomes:

SPA2 =
Lt

t/QN(t)
+ (1− Lt/E2)

µ1

µ1 + µ2

#(t, BF )
t

, (7)

where #(t, BF ) denotes the number of blocking states up to time t.

Let us consider now the estimation of LPP,k − LDNP,k. Appropriate sample path constructions will be

used, and Figures 4 and 5 are helpful for understanding what follows. If M1 still fails at tk+1 in PPk, the

states of the machines and the buffer level are the same at tk+1 in both DNPk and PPk. We construct the

portion of sample path following tk+1 as follows. At time tk+1, new samples of Y1k and X2k is generated for

setting the time to repair of M1 and the time to failure of M2 in DNPk. At this point, we also use the same

samples to reset the time to repair of M1 and to set the time to failure of M2 in PPk. As a result, the state

of the system at time t+k+1 is the same in PPk and DNPk. Let us notice that resetting the time to repair

of M1 in PPk is possible due to the exponential distribution of Y1k. As a result of above construction, we

have: LPP,k − LDNP,k = 0.

If M1 is repaired at tk+1 in PPk, then an independent portion of sample path is inserted in PPk until

machine M1 fails. At this point, the portion of DNPk following t+k+1 is added to construct PPk. Clearly the

correctness of this construction is due to the exponential distribution of X2k. For the inserted portion, let

X̃1 be time to failure of M1, N be the number of failures of M2 and Ỹ2k the related times to repair. Let T

be the length of the inserted portion. Since in the inserted portion, M1 is blocked whenever M2 fails. Thus,

T = X̃1 +
N∑

k=1

Ỹ2k,

and the production of M2 during the inserted portion is equal to X̃1. As a result, for large t,

LPP
t − LDNP

t ≈ LPP
t+T − LDNP

t =
P DNP

2t + X̃1

t + T
− P DNP

2t

t
=

X̃1 − TLDNP
t

t + T
≈ X̃1 − TLt

t
.
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By taking expectation with respect to random variables of the inserted portion, we have

E
X̃,Ỹ

[
LPP

t − LDNP
t

] ≈ E[X̃1]−E[T ]Lt

t
.

Notice that {Ỹ2k} are independent of N . Hence,

E [T ] = E
[
X̃1

]
+ E

[
N∑

k=1

Ỹ2k

]
= E

[
X̃1

]
+ E [N ] E

[
Ỹ2k

]
.

Since {X2k} are exponentially distributed, N follows a Poisson distribution, so:

E [N ] = E
[
E

[
N |X̃1

]]
= E

[
λ2X̃1

]
= λ2E

[
X̃1

]
.

The combination of the above results gives:

E
X̃,Ỹ

[
LPP

t − LDNP
t

] ≈ 1− Lt/E2

λ1t
.

6 NUMERICAL RESULTS
We compared the numerical properties of the various estimators by performing simulation experiments on
two examples. The biased IPA estimator and the three SPA estimators – SPA0 given by (5), SPA1 given
by (6), SPA2 given by (7) – are compared with symmetric difference (SD) estimates using common random
numbers and ∆c = 0.05. In all three cases, sample means and 95% confidence half-widths based on 20
independent replications are calculated.

Example 1: All random variables are exponentially distributed with λ1 = λ2 = µ1 = µ2 = 1. Analytical
results are available, which can be used to assess the convergence of the various estimators. The throughput

rate can be found in Dallery and Gershwin (1992) and is equal to L =
(
2 + (1 + c)−1

)−1

, leading to
dL/dc = (3 + 2c)−2. The simulation results are summarized in Table 1, and they confirm that the IPA
estimator is biased, whereas all three SPA estimators converge to the correct value. SPA2 and SPA1 seem to
have a similar convergence rate that is substantially faster than SPA0, the estimator based on regenerative
analysis. The SD estimates fare worse than SPA1/SPA2, but slightly better than SPA0.

Example 2: In this example, Y1k and X2k are exponentially distributed, X1k and Y2k have two-stage Erlang
distributions. All random variables have mean equal to one, i.e., λ1 = λ2 = µ1 = µ2 = 1. Only the case
c = 1 is considered, and the results are shown in Table 2. For this example, an analytical solution is not
available. SPA0 and SPA1 appear to converge to the same limiting value that is consistent with the SD
estimates, whereas the results indicate that SPA2 is biased for this example, which is not surprising, since
not all the random variables are exponentially distributed. Again, the convergence rate of SPA0 appears to
be substantially slower than that of SPA1, and the SD estimates fall between the two.

7 CONCLUSION
In this paper, we have considered a continuous production line with two machines subject to operation-
dependent failures, where failure and repair times have general probability distributions. Estimation of
the derivative of the throughput rate with respect to the buffer capacity has been addressed. Both IPA
estimators and SPA estimators were proposed. Simulation results confirm that IPA does not work, which
contradicts a common belief that IPA always works for continuous flow models.
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c t Lt L dL/dc IPA SPA2 SPA1 SPA0 SD
.5 1000 .3722 .375 .0625 .0304 .0623 .0625 .0658 .0573

(.0045) (.0010) (.0017) (.0018) (.0071) (.0075)
10000 .3740 .375 .0625 .031 .0624 .0625 .0638 .0625

(.0014) (.0003) (.0004) (.0005) (.0034) (.0028)
100000 .3749 .375 .0625 .0312 .0625 .0626 .0629 .0620

(.0005) (.0001) (.0001) (.0001) (.0009) (.0010)
1000000 .3751 .375 .0625 .0313 .0625 .0625 .0624 .0625

(.0001) (.00003) (.00005) (.00004) (.0003) (.0002)
1 1000 .4000 .4 .04 .0197 .0390 .0393 .0432 .0366

(.0050) (.0008) (.0015) (.0015) (.0105) (.0059)
10000 .4001 .4 .04 .0200 .0399 .0399 .0387 .0386

(.0017) (.0003) (.0004) (.0004) (.0033) (.0024)
100000 .4002 .4 .04 .0200 .0399 .0399 .0402 .0404

(.0005) (.00006) (.0002) (.00017) (.0008) (.0006)
1000000 .3999 .4 .04 .0200 .0400 .0400 .0399 .0400

(.0001) (.00003) (.00004) (.00004) (.0002) (.0002)
2 1000 .4276 .4286 .02041 .01028 .02081 .02090 .02582 .02114

(.0048) (.00064) (.00110) (.00117) (.01366) (.00581)
10000 .4274 .4286 .02041 .01022 .02076 .02079 .01980 .02030

(.0016) (.00020) (.00041) (.00043) (.00309) (.00153)
100000 .4284 .4286 .02041 .01018 .02040 .02039 .02016 .02031

(.0005) (.00005) (.00010) (.00010) (.00124) (.00042)
1000000 .4285 .4286 .02041 .01021 .02043 .02043 .02063 .02038

(.0002) (.00001) (.00003) (.00003) (.00047) (.00019)

Table 1: Simulation results for Example 1 (95% confidence half-widths in parentheses)

t Lt IPA SPA2 SPA1 SPA0 SD
1000 .4090 .02120 .04047 .04308 .04748 .04046

(.0040) (.00076) (.00119) (.00146) (.01112) (.00512)
10000 .4104 .02148 .04021 .04295 .04228 .04447

(.0010) (.00015) (.00026) (.00028) (.00271) (.00200)
100000 .4101 .02155 .04041 .04308 .04290 .04318

(.0004) (.00008) (.00008) (.00009) (.00092) (.00048)
1000000 .4100 .02153 .04036 .04304 .04319 .04303

(.0001) (.00003) (.00005) (.00006) (.00030) (.00017)

Table 2: Simulation results for Example 2 (95% confidence half-widths in parentheses)
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