UNDERGRADUATE
REPORT

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

U.G. 89-1
Formerly TR 89-97

Determination of the Static Friction
Present in Each Finger of a Three
Fingered Modular Dextrous Hand

by J.A. Uber

UNDERGRADUATE
REPORT

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

Research support for this
report has been provided
partially by a NASA-USRA
Design project grant

U.G. 89-1
Formerly TR 89-97

Determination of the Static Friction
Present in Each Finger of a Three
Fingered Modular Dextrous Hand

by J.A. Uber

Determination of the Static Friction
Present in Each Finger of a Three
Fingered Modular Dextrous Hand’

by

John A. Uber

" This work was supported in part by the National Science Foundation's Engineering Research

Centers Program: NSF CDR 8803012 and by a NASA-USRA Design project grant.

Table of Contents

INTFOTUCHION ettt sttt st e s e st s srare e re s s v srenes 1
Miscellaneouscceceveneene \+eeerneneesiarienreeeeesatee e araeetaabeteeiabratabeeee st aeseesansessaaaeaees 1
ADOUL THE HANA ettt et ae s ettt e 2
Experimental AlGOrithm .c..cov ettt 5
Outling Of EXPEAMENT ..ottt r e eee s srs e bbb e ens 10
Controlling PrOGram ..ot sesssesesttneesssses s e serassassassssssessnessnssssassessaens 11
D/A Board and AMPLIfIEr ...t re s stessnaeersee e e e e s aenbeens 13
Decoder Gircuitcvcevvrenisenccnereirinncssnens et et s s s b s s s e sean s 16
Digital SIgNal PrOCESSOr ..c.cvuiveuieiiiirinisenecsinintinee s etesstntsassesesesessesessassssasesasenses 20
Flexible BEam ADPPAratuScccocerierreeieeneereennesinssssssseseeessecsessnsssssssessessessessesans 21
Preliminary Observations oo 22
REFEIEINCES .ottt sssanesrs s sesnaesessesan 23
APPENGIX A ceoeereecvereeesersseesscssssssssssnssssssssssssssssssssnsssssssssssesassssssssssossssasessseneonses. &b
APPENAIX B ettt et st s sr e s s et e s en s et ne 26
APPENAIX € ettt et srse et ee st ese s e e s saasm et s s se e sme b be e sensannns 29
APPENAIX D ottt e 38
lAppendix B et s s et e a s s b e 44

APPENAIX F ot ae et s s re st st s b et e e e sa e et e bt e b e be e aanenesestanee 49

INTRODUCTION

The purpose of this experiment was to determine the static friction
(stiction) present in each finger of a three fingered modular hand and
determine the torque required to break away from a stuck position. The
static friction is a function of both position and direction of movement of
the motor driving the finger. Upon completion of enough trial runs from
each position in each direction the results obtained will be averaged
together to produce a mapping of the static friction of each finger of the
gripper as a function of position and direction. This stiction data base
will then be incorporated as a torque look-up table into the open loop
control systems architecture of the hand. This compensation has been
used in other robotics control experiments to produce a significantly more
accurate open loop movement, greatly easing the operational burden of the
eventual closed loop control.

MISCELLANEOUS

The ideas for this experiment were in principle borrowed from the
documentation of other previous experiments. The basic testing premise
was obtained from Brian S. R. Armstrong's doctoral thesis entitled
"Dynamics for Robot Control" Stanford, 1988 [1]. It is intended that this
paper will serve as a detailed report of all the work done and to provide a
record outlining the details of the existing physical set-up of the
experiment. Although this paper does outline and explain all of the testing
algorithms used in the experiment it is not intended to serve as a research
thesis, and is written with the intention that it will present an
elementary description of the theories behind this experiment. '

The physical layout of the experiment was designed to be as modular
as possible, with all connecting cables being detachable at some form of
connector. The pinouts of these connectors along with a diagram outlining
the layout of the set-up are included for reference in appendix A. All of
the code written for this experiment is fully explained in this report, and
included in its entirety in thoroughly commented form in various
appendices noted later. The schematic diagram of the circuit used in this
experiment is included along with a flow chart describing the function of
the circuit in various figures in this report.

Many thanks to Amir Sela for his help in enabling the DSP board,
writing the code to interface it, and in making me "clean up" my programs
so others could understand what they were doing. Also many thanks to Dr.
Josip Loncaric who helped me immeasurably along the way with almost
every facet of the experiment and who provided most of the mathematic
algorithms used in the experiment. Thanks also to Dr. P.S. Krishnaprasad
for allowing me to finish this project at my leisure and for providing the
parts and equipment used in developing this experiment.

AVATIV TACAY NI e ~eXITHENINATEA L~ ant” WMND” MOV IAEN ™ 1MUY UTr Ui NIab TS &G E T T oo rirs

ABOUT THE HAND

The robotic hand used in this experiment was designed and
constructed by Dr. Josip Loncaric and colleagues at the University of
Maryland's Systems Research Center, SRC TR 89-31 [2]. It was designed
as an alternative to existing anthropomorphic dextrous hands with the
goal of simplifying some of the aspects of robotic hand technology.
Although the Stanford/JPL and Utah/MIT hands have proven to be
extremely dextrous, full complexity mechanisms, the complicated inverse
kinematics resulting from their fingers' multiple joints make the grippers
difficult to control. The hand built at UM-SRC has attempted to simplify
the control systems architecture required by basing the design of the hand
on the division of function principle.

The hand was intended to provide two independent modules; a fine
manipulation stage and a "three degrees of freedom" grasping stage. This
grasping stage functions as a medium complexity hand, with its grasp
based on the "three points of contact with friction" idea. The grasping and
manipulation of objects results from the actuation of each of the hands'
three revolute finger joints. Although this gripper is nonanthropomorphic,
and certainly lacks the dexterity of a human hand, it is anticipated that
its mechanical simplicity, modular nature, and decoupled control
strategies will make it an optimal choice for fine manipulation robotics.-

The hand (see figure 1) has three "L" shaped fingers which can grasp
and manipulate any arbitrarily shaped object up to eleven inches in
diameter. Each finger is located five and three-sixteenths inches apart
and is driven by a Pitman GM9633G102 motor with a gear down ratio of
24:1. This gear ratio is achieved through a two stage planetary gear
configuration. The imprecision of this gearing linkage allows the finger
to wobble back and forth, introducing an error of as much as one degree of
movement from its intended position. "

There is an HP HEDS-9100 optical shaft encoder precision mounted
on each motor with an HEDS-5100-A03 encoder wheel which can be used
to determine the speed, direction of movement, and current position of the
motor shaft to within nine fiftieths of a degree. Since the finger is
geared to the motor at 24:1 the position of the finger can be determined to
1/24 * 9/50 = 1/133.33 of a degree. The gripper has a set pin for each
finger, which is used to reset the counter to its correct position after
power up. This pin also limits the rotation of the finger to 316 degrees.

The motors are each capable of applying ten pounds of force at the
fingertips normal to their direction of movement, and can withstand fifty
pounds of force perpendicular to the direction of motion. A pliant
spherical fingertip is mounted on the end of each finger to ease in the
grasping of smooth metallic or oddly shaped objects. The entire hand
weighs less than six pounds and is intended for use on the end of a General
Electric GP110 robotic arm (see figure 2).

[- Coe [T [! o e T iy

Fmg»er‘tip TUbes)

Frgure |

i v rrittivy

BRat ey

N - - W A T € g — «

i
£
E
-

EXPERIMENTAL ALGORITHM

Essentially what the experiment should be is this: set the voltage of
the motor driving the finger to zero, read the position of the encoder,
increment the voltage, and read the encoder again. If the position didn't
change then continue to increment the voltage and read the position until
it has moved. Once it has moved, record the position it broke free from
and the voltage applied when it broke free. Unfortunately this simple test
procedure wouldn't work with the modular hand due to the multiple stages
of stiction present in the assembly linkage between the motor and the
finger.

[nitially the shaft of the motor won't turn due to the stiction
present in the motor alone. As the incrementation of the voltage
continues, the torsional force of the motor will eventually overcome the
force of the friction and the shaft will turn, changing the position of the
encoder. But as the shaft spins it will cause the first set of the gears to
become engaged. These gears were at rest so their stiction will again
stop the motor shaft. When the motor shaft stops it will redevelop. the
static friction within the motor housing at this new position. As the

 motor voltage is incremented further, the applied torque must now break

the stiction of both the motor and the first gear section.

This start-stop motion will continue until finally all of the stages
of the gearing and the finger have become engaged, with each individual
piece stuck by its own static friction. To now break free the applied
torque must overcome the resistive forces of all the individual
components, the total stiction of the finger assembly. Once this is
broken, the only forces acting against movement are the kinetic frictions
inherent to each piece of the assembly. Since kinetic friction is always a
smaller force than static friction, the finger will continue to spin once it
has broken the total static friction barrier. '

The total static friction of the finger consists of the combined
static friction of each individual component of the finger assembly. From
the configuration of the two stage planetary gear system (see figure 3) it
is apparent that the map of the static friction of the finger should be
comprised of five separate pieces; 1) the stiction of the finger itself due
to its internal bearings and its contact with the mounting plate of the
hand, 2) the stiction within the motor housing due to its own internal
brushes and bearings, and 3,4,5) the stiction within the three different
stages of the 24:1 gear down ratio between the motor and the finger.

Lower Stage 4:1 Planetary Gear Configuration

figure 3

Simple dynamics can be used to determine that the gear
ratio of a planetary gear configuration is just

Nsun J
2 1
[N planetary ¥

for each section of the assembly. Plugging in the number for the
appropriate wheel of each section it turns out that the upper section
operates at 6:1 and the lower section produces another 4:1.

For each rotation of the finger, the: motor and the lower sun gear
each turn 24 times, the lower planetary and upper sun gears turn 6 times,
and the upper planetary gears and finger housing each turn once. Thus in
the total friction map of the 360 degrees of motion of the finger there
should be the stiction of the finger mapped once, the stiction of the motor
mapped 24 times, the stiction of the first reduction set of the planetary
gears mapped 6 times, and the second reduction set mapped 24 times (see
figure 4).

Thus while the controlling program of the experiment must
increment the voltage and watch for a change of position, it must also
ignore any small movements of the encoder while all the individual pieces
of the finger are winding up. The logic flow diagram of the stiction
detection/measurement algorithm is shown in figure 5. The delays in the
program serve two purposes. They allow the new voltage applied to the
motor time to mechanically turn the motor shaft and they also allow the
shaft to continue to turn after the final breakaway so that in the check for
a second consecutive motion the program can detect the change in the
position of the shaft.

This second time delay is set up such that the sample time between
the first and second detected motions is 25 milliseconds. To ensure that
only the static and not the kinetic friction is acting against the finger at
breakaway it is necessary that the experiment always begin from a
settled position. Also, to minimize the errant effects of the play in the
gears, it is essential that the final movement of the finger before each
run be in the same direction as the intended breakaway. There is an
algorithm incorporated into the controlling program which checks for the
correct direction of movement, and then waits for 0.2 seconds of no
movement before each run of the experiment.

0° finger housing) 360°

00 upper planetary gears 360°
00 upper sun gear 360°
00 lower planetary gears 360°
NURERENERNNANEEELE

0° | " Iower su gar 360°
aididnusaaaninnenEs

00 motor asembly 360°

figure 4

Let Finger Settle

Delay

v

*

Read Position

Increment Voltage

A

Has It Moved

4

Forward Yet?

Read Position Again

Moved Forward Again ?

Record Break Away
Position And Applied
Voltage Necessary

v

W

Figure 5.

10

OUTLINE OF THE EXPERIMENT

Preparation for this experiment included the implementation of four
main parts. The most important part of the experiment was the
controlling "C" program used to run the experiment on an IBM AT PC and
collect the stiction data generated. In addition to running the stiction
detection algorithm noted before it must also set up all the other
programs and circuitry of the experiment. It must reset the encoder after
power up, enable all I/O boards, reposition the finger at the end of each
run, check for executiort errors, and store the accumulated data.

The second aspect of the experiment is the outputting of the motor
voltage from the controlling program to the servo amplifier. This output
voltage is generated by the DDA6 D/A output board of the PC and is then
amplified by a bipolar operational power supply before being applied to
the motor. This amplifier functions as a voltage controlled current
source, using the analog voltage output of the DDA6 board to control the
current applied to the motor. The board was addressed and controlled
from within the controlling "C" program, and then outputs the analog
voltage through D/A port #3.

The third part of the experiment was the design and construction of
a digital logic circuit to decode the data from the encoder, convert the
position count data from parallel to serial format, and output this data to
the DSP board of the PC. This circuit ran off a clock supplied by the DSP
board which it decaded, inverted, and manipulated in order to provide the
correct rising and falling edges to the appropriate devices at the
necessary times. These "shift" and "load" clocks were re-input to the DSP
board so the board could repartition the position count from the serial
input data. This circuit also required a "one shot" high strobe to enable
the output latch of the decoder after power up.

The final part of the experiment was the programming of the AT&T
DSP-32 board in its own machine code. This board was programmed to
provide a 2 MHz clock to the circuit, and to continually read the serial
input data through its serial input port and asynchronously present the
data to the controlling program whenever it was requested. The DSP board
must also maintain an absolute count which watches the count from the
circuit and adjusts itself accordingly each time the circuit count flips
over in either direction. The incorporation of this board into the set-up
also gives future users the flexibility of processing the input data before
presenting it to the PC, which greatly increases the speed and numerical
processing power of the system. The downloaded assembly programs
which enable the DSP board's external clock and continually read serial
data are included in appendix B.

CONTROLLING PROGRAM

This program (BREAKAWAY.c) was used to determine the breakaway
voltage and breakaway position as noted before, but must also set up each
run of the experiment. Before the experiment can begin it is extremely
important that the power to both the circuit and the amplifier is off. The
circuit must be powered up before the amplifier is, and only after the
program has begun so that it can immediately accept and generate control
strobes to and from the PC. Failure to have the power to the circuitry on
when requested may result in the accumulation of erroneous data and
improper position initialization, but failure to have the power to the
amplifier off could result in damage to the hand or an injury to the user.

To achieve an applied voltage of zero volts at the motor it is
necessary for the program to output the variable "zerovolt" (~2060) to the
DDA6 board. Therefore the program must output this number to the board
before the amplifier is turned on or the DDA6 board will see the decimal
number 0000 being output from the PC. This is converted into a negative
9.74 volts by the board which will drive the motor in the
counterclockwise direction with enough force to possibly snap off the
reset pin of the finger, and crush any human fingers which may be in the
way. The first function of the program is to step through the possible
values of "zerovolt" in order to determine which "user selected" number
produces the voltage closest to zero at the output of the D/A board.

Once the program has begun, it will immediately instruct the user to
properly position the other fingers of the hand to keep them from
interfering in the experiment. It then systematically orders the user to

power up the 5V power supply and then the amplifier once the necessary

boards have been enabled and properly initialized. Next the user is told

how to output enable the position decoder circuit, and then the program’

checks to make sure that the circuit is indeed enabled. The finger is then
exercised back and forth to warm up the mechanism and reduce any
overnight settling effects in the grease and bearings. Once instructed, the
program will continually perform the stiction detection algorithm in each
direction for as many iterative runs as are desired.

Since an optical shaft encoder loses its position when it loses
power, the counter must be reset by the program after the initial power
up. Upon approval of the user, the finger is rotated counterclockwise
(from above), which decrements the count, until it engages the reset pin.
The finger is forced against the pin by a motor current of one-half of an
ampere, and the DSP board's internal position count is read. This count
bias is then subtracted from all subsequent readings to compensate for
the encoder's count bias and provide a relative "zero" position. This count
bias will not be reinitialized until the power cycles off and on again.

Before each run, the program must make sure that the last movement
of the finger is in the same direction as the finger will try to move in the
experiment. It is also imperative that each successive run begin from a

hiae will nnt ha romnthialivad 11ANH The naower cveles olr dna on aagam. ~—" "~~~ = — - -

11

12

completely stopped position. Once the finger has broken free the motor is
stopped as quickly as possible in order to fit as many trials in as possible
in each arc swing of the finger. Upon completion of each test run, the
program must store the breakaway position and final applied torque
(calculated from the applied voltage) to be later average in to the stiction
value for that particular position. The actual "C" code used in the
experiment is thoroughly commented and included for reference in
appendix C.

The timing between successive reads was one of the more critical
aspects of the experim&nt. Armstrong's thesis recommended sampling at
40 Hz and indeed it was determined that 25 millisecond delays generated
the most accurate data. In order to ensure that the hand had time to move
it was necessary to incorporate a 25 millisecond delay between
successive position readings. By enabling the system clock of an existing
DASH-16 /O board in the IBM it was possible to create a series of
arithmetic functions which required 0.990 milliseconds to complete. Thus
the delay_msec function is just a DO-LOOP which performs as many one
millisecond iterations as it is told to by the passed variable.

Once the stiction detection algorithm is complete the program sends
a 10 millisecond burst of power to the motor to drive the finger a tiny
distance further to prevent the finger from continually rolling back into.a
large stiction "valley". Once the finger reaches this new forward position
the program enters a 200 millisecond delay to allow the static friction
within the hand to redevelop to its full value. This ensures that each run
of the experiment will only be opposed by the forces of static friction,
and that dynamic friction will not be a factor in the experiment.

Since there are over 42,000 positions in each sweep of the finger it
will take tens of thousands of passes before the program has recorded a
number of breakaway torque values for each position. To allow for this
the program has a subroutine incorporated into it which checks for the
finger being stuck clockwise against the pin, and then continues the
experiment back in the counterclockwise direction. When the finger again
hits the reset pin in this direction it will be briefly exercised, returned to
the original reset position, and then the program will continue again in
clockwise direction. It it thus possible to set the experiment going and
let it run all night unattended to collect tremendous amounts of data.

There are five main subroutines used by the controlling "C" program,
they include:

delay_msec() implements the () millisecond delay

get_current_pos() reads position from DSP board

output_voltage() outputs voltage thru D/A board

hand_settled() checks for no movement of hand

warm_up_hand() exercises gears and bearings in hand
All of these are thoroughly commented and included at the end of the
BREAKAWAY .c program in appendix C.

BEASRELET TS

D/A OUTPUT BOARD AND AMPLIFIER

The purpose of the Metrabyte DDA6 board is to serve as a D/A output
port which converts a number from within the IBM to a voltage to be
applied to an external device. This voltage is then used to adjust the
current being applied to the motor by the amplifier. A program which
output a voltage through the port already existed from a previous
experiment. The program and hard wiring was modified to make use of the
open D/A port #3 (pins 12 & 13 of the DDA6 board).

The Kepco BOP 50-4M bipolar operational power supply was chosen
to amplify the signal to be applied to the motors because it can be
operated as a VCIS with applied voltage and current limiters. The voltage
across the motor is proportional to the angular velocity of the motor, but
since friction is acting as a resistive torque it is necessary to measure
the applied torque required to break the static friction. The amplifier is
thus used in current mode because the torque within a motor is directly
proportional to the current passing through it. The voltage limiter is set
to 10 volts and the current limiter is set to one-half of an amp so as to
avoid high speeds and strong torques.

There was a simple linear relationship existing between the
inputted number of the DDA6 board and the outputted voltage to the
amplifier. Similarly, it was possible to determine the "applied voltage to
outputted current” characteristics of the amplifier. Using these two
relations along with the torque constant of the motors it was possible to
determine the resistive torque of (and thus the static friction existing in)
the motor by knowing only the number being sent to the DDA6 board by the
PC. These relations and the algorithm used to calculate the static friction
from the IBM's decimal voltage variable is included in appendix D.

When the amplifier was first connected to the motor, it began to
oscillate and create a high pitched whine. The amplifier is modeled as a
high shunt impedance, low capacitance current source and the motor is
modeled by a low impedance, high inductance load. These models, with the
specifications obtained from their manufacturers, are shown in figure 6.
If a shunt resistor is placed in parallel with the load, the resulting circuit
can be easily placed in state space form. The resulting state space model
is observable and controllable from the resistor R4 and is shown below.

INe
i
(@]
-+ ps
E-9
po O
w
IN
+
o
'—
<
i}
1
o
L1
l_

13

e e it PP LR L P F el JUNTE el S v o T T I A R P T T T IY TTANARAN AL S Y 6 T Rt Tk TR

14

O
+
i R1 §36 Kilohms C ;F_: 0.1 microfarads Vout
O
Current Source
O O O-
+
R3 § 6.3 ohms
Reo § Vin L 5.3 millihenries
+
Vemf
@ O O
shunt resistor motor load

>

+

where R4 = R1]| R2

figure 6

O
R3
Vout
L
O

The transfer function of the circuit is easily obtained to be

1 Rs
3

Z = R Rs 1

1
2 3 —_ —_
se+s(T +Cr) *ICR, T IC

Placing the characteristic equation of the transfer function in Root Locus
form we have

-

R
(s+ 7))
1+ Yy RS > = 0
2 3 —_
s2+8 [+ ¢

ol

Simple math shows that multiple roots occur at (-44625.922, j0). The
complete locus is shown below with Y4=1/R4 as the gain parameter.

(-594,]43433)

optimal damping

<

multiple roots
critical damping
(-44625,j0)

x| (-594,-j43433)

Solving for critical damping we find a gain of Y4 = 0.0088063 which yields
a value for resistor Ro of 113.9 ohms. Similarly if we solve for an
optimal damping coefficient of 0.7, we find an R, resistor value of 163.6
ohms. The complete math and drawings is included in appendix E.

16

DECODER CIRCUIT

The function of the digital logic circuitry is to take the data from
the encoder, decode it, convert it from parallel to serial, introduce the
proper delay time, and input it into the serial input port of the AT&T DSP-
32 board. The decoder must sampie the A and B channels of the encoder at
2 MHz to ensure that it never misses a state transition of the encoder
wheel. In this application only the lower eight bits of the encoder's
internal twelve bit counter are monitored. This count would flip over
before the finger has even moved two degrees. Thus we choose to sample
the decoder's output position count at a frequency of 128 KHz and update
the master counter within the assembly code of the DSP board accordingly.

The logic flow diagram of this circuit is shown in figure 7, the
actual hard wiring schematic is shown in figure 8. The 2.048 MHz clock
was obtained from the DSP board and was used to provide a 2 MHz "shift
bits" clock and then divided down to generate a 128 KHz "load word" clock.
The A and B channels of the decoder are sampled on each rising edge of the
2 MHz clock, and the decoder's internal count is adjusted depending on. the
direction of movement of the finger.

To ensure that the count is not read during a transition, the count is
loaded into the first shift register using a reconfigured 128 KHz clock.
The falling edge of this clock (same as the falling edge of the 2 MHz clock)
will parallel load the eight bit shift register 0.5 microseconds after the
previous count update, thus ensuring its stability. These eight bits are
then shifted out on the rising edge of the 2 MHz clock as serial data to the
delay shift register. In contrast to the parallel to serial shift register,
the delay shift register runs off of an inverted version of the 2 MHz clock
and is used to delay the serial data stream by two bits for the DSP board.

The DSP board is supplied with the inverted 2 MHz clock on its ICK’
pin because it reads the serial line on the rising edge of this clock, and
this read must occur in the middle of each bit. The nonharmonic 128 KHz
clock marks the start of each word to the ILD pin of the DSP board and is
thus set up to go low and trigger the start of a new word when the LSB of
the next word becomes available on the line. In order to create a "+" sign
bit to be read by the DSP board before the LSB is read, it was necessary to
delay the serial data stream by two clock cycles. These clock signals,
timing considerations, and stable data periods are shown in further detail
in figure 9.

Upon power up of the board, it is necessary for the user to generate
a five volt, "one shot" pulse of at least 900 nanoseconds in duration. This
is accomplished by setting switch #8 ON and then OFF again. This single
high strobe is sampled during the falling edge of the 2 MHz clock and
signals the decoder to reset the internal inhibit logic of the chip. Once
this line goes low again, the decoder's counter is output enabled on the
next falling edge of the 2 MHz clock. The chip is then forever output
enabled until power down as long as the /OE line is never again sent high.

UTE T UECTTE™ 10" 1 B8 U i e TIET 1 (TTTT OIS Ul o= uiigr e =""" "~ <O

ITmMo OOz m

read lines read count
at 2 MHz at 128 KHz
position count
(paralle! data)
DO)
D D1 > PARALLEL
E D2
A)
SEAT N o D3 y T
O D4
B
———Pp D D5 n SERIAL
E D6)
R D7 > CONVERTER

figure 7

position count
(serial data)

h 4
DELAY
data in
SHIFT ——P
REGISTER

T »w O

OITP>POW

18

MO0
aio
Qa
390 — Vi —
48l e VOl H10¢ .NF
AS ; g0t H101 >
an; ' 4 S Q0! SSA >
aleds 51 GOt O0A f—— A+
aJjeds —jVve
sieds .m% vOc¢ aoe —
0.0 —1 902 o0¢ p— - @
G- 2 | 0t 6 = o
A+ 80 €6£S Y. E
aND 4 wyoy 04
Al NG+ -
IWH WO S HNI - yAQ| 1 5 JAQ! 40/ ;
7 SSA A0 3 ; av od 1 o1 9d A0 >
T PRE Toor salo e wel
S = ! vi A > -
e E-] e < 1 R
(6] ! 139 v ’ NG+ IHOO> +a ’ i ¢ g HO ° g HO
2 21 2 91 S Gl L
vog =7 YO NIS 1 5 0,9) od S 1 0d vV HO S VY HO
dSd g6S1vL GoISTIVL 000¢ dH

19

AL 1L o
+ % an 4sd
vomxm”omxmomxfomxoomx%_my (ubw) sua Buiuesy xmoqx@o,xmn_«xvo*mozElxco*wmx g0 S8,

ATO G6.
(o)}
momxmo*vomxmomxwo*omxoow (ubwy) suq Buiwey \AB*Q@?*B/xmodxmo,qxpo,qxoo«x 0D S9L. @
o

d0 S91L.

_|+ _|+I9\ S9l.

HNI G991,

e,

e

20

DIGITAL SIGNAL PROCESSOR

The DSP board was programmed to produce a 2.048 MHz clock at its
OCK clock out port, input data through its serial input data port and then
output this position to the IBM whenever the "C" program tried to read.
The assembly code to enable the DSP board (POSITION.s) is included for
reference in appendix D. The DSP input/output control register was loaded
with the value 182, causing the board to read serial 16 bit input data and
produce the 2 MHz clock as an output on the OCK pin. This clock was used
by the circuit to generate the ICK and ILD clocking signals which were
then reinput to the DSP board. The ioc register was also set to look for an
external SY signal, produce no serial output data, clear the sanity, and
never operate in DMA mode.

Since the eight bit data word is being transmitted in a sixteen bit
word, the loaded data word is first masked in the assembly code to
remove the higher order framing bits. As was noted before, this eight bit
counter will flip over before the finger has even moved two degrees, thus
after each read the counter checks for a flip in the circuit's eight bit
count. If the count has changed by more than 27 = 128 between successive

readings (taken at 128 KHz) then the circuit's counter must have flipped

over. The DSP board's. absolute counter is then incremented or
decremented accordingly, depending on the direction of the flip in the
count (up or down). This scheme thus creates a one-to-one mapping of the
position of the finger to the count being read in the BREAKAWAY.c
program.

When BREAKAWAY.c is first begun, the finger is forced against the
reset pin and the current count in the DSP board (which may even be
negative) is read into the BREAKAWAY.c variable count_bias. This value is

then subtracted from all subsequent readings in the "C" program to

produce a relative zero position of the finger. Thus the manipulation of
the circuit's position count is done in two levels, the DSP board adjusts
for flips in the circuit's count and the "C" program removes the bias in the
DSP count. In order to disable some of the features hardwired into the
DSP board, it was necessary to remove jumper pack #2 from the board.
The instruction manual detailing the DSP board is included with the
literature on the DDA6 board and all other relevant handouts in appendix F.

Y e TS T Iy R EF A T T N WaTE R AT T T e N T T T T N W T N T e ¥ ¥ w3 —

e

FLEXIBLE BEAM APPARATUS

While waiting for the decoder chips to arrive from a long overdue
parts order, the program was written and tested on an existing flexible
beam apparatus (see figure 10). This set-up had an optical position
encoder and an amplifier to drive the motor already connected to the IBM.
All the assembly code for the required boards existed from a previous
doctoral thesis project [3], so it was a perfect arrangement to detect
programming errors. The flexible beam set-up had its own special
problems however, including the inconvenience of having an absolute
encoder mounted on its motor. An absolute encoder will retain its true
position even if the arm is moved while the power is off, once again
generating the correct position following power up.

The flexible beam also had unlimited rotation, there is no set pin to
determine the relative position of the motor. Thus it was impossible to
test the encoder reset portion of the program on the flexible beam. The
flexible beam was direct-driven by the motor so some of the logic to
compensate for the windup of the finger's gears couldn't be thoroughly
tested. Also, since the motor was direct-driven, there was a significant
amount of ripple torque inherent to the motor assembly. This was an
added constriction on the movement of the arm in that instead of the
forces opposing motion disappearing when the arm broke free, they
actually increased as the position moved further forward.

Flezible Beam Accelerometer

JQ/

Shaft IBM PC/AT

Encoder
Output
-

/ Servo Electronics

Tachometer
Output

J

DDA0S Filter

Terminal DASH16
| Terminal

figure 10

21

22

The flexible beam experiment transmitted the encoding of the
position from its decoder to the IBM PC along three foot long parallel data
lines. These parallel lines, in conjunction with some extremely noisy
filter and amplification circuitry, left open the opportunity for external
noise to introduce a tremendous number of errors into the position
reading. With the motors, power supply and other sources operating,
erroneous readings were detected in almost 16% of the samples taken.

It was noticed that due to the existing hard wiring of the board, the
position was loaded in the upper four bits, with a 0010 being sent
continuously along the “parallel lines into the lower four bits. This was
used to develop a crude error detection/correction scheme. |If any reading
was not a multiple of 16 + 2 (n16 + 2) then it was a noise induced error
and the position was immediately reread until an (n16 + 2) multiple was
obtained.

PRELIMINARY OBSERVATIONS

Although a formal analysis of the data has yet to be completed, it is
obvious from the accumulated data that the stiction was extremely
position .dependent and had a repeating pattern which oscillated
approximately 21 times during each 316 degree rotation of the finger. It
was also discovered that the stiction was even more direction dependent
than position dependent. |If it took a force F to break from position x in
the clockwise direction it usually required a force very close to F to break
from position x+1 or x-1 in the clockwise direction. However the required
force to break from x in the counterclockwise direction was usually
nowhere near F, or at least had no correlation with it.

On average, the voltage had to be incremented 33.28 times (done at
0.012846 ounce-inches per 25 milliseconds) to produce a breakaway
movement in the clockwise direction. ' This translates to an average value
of 0.4275 ounce-inches of torque to develop motion in the clockwise
direction. An average incrementation of 32.69 counts results in an
average breakaway torque of 0.4199 ounce-inches in the counterclockwise
direction. This difference could be due to an insufficient number of data
points sampled, a slight bias from zero in the current delivered by the
amplifier, or simply due to the intrinsic properties of the motor assembly.

It was noted that the required breakaway torque could be as low as
0.2697 ounce-inches or as high as 0.5395 ounce-inches, and that the full
range of this difference could show up in samples only a few degrees
apart. It was not possible to detect some of the more subtle harmonic
variations in the friction, but it is fully expected that a more thorough
accumulation and analysis of data will be able to document these
abnormalities as well as other as of yet undiscovered idiosyncrasies in
the hand. Among these was an inability of the hand to mechanically settle
into certain locations.

1Y) I EAIIY TS ALJCWLLICYY 1 1Y 1T A Y™ o 1rriZwivaroivsry oo

REFERENCES

[1] Armstrong, Brian S. R. "Dynamics for Robotic Control: Friction Modeling
and Ensuring Excitation During Parameter ldentification." Doctoral Thesis,
Stanford University, May 1988.

(2] J. Loncaric, F. de Comarmond, J. Bartusek, Y. C. Pati, D. Tsakiris, R. Yang
"Modular Dextrous Hand." SRC TR 89-31, University of Maryland, 1989.

[3] Wang, Li-Sheng "Control System Design for a Flexible Arm." Master's
Thesis, University of Maryland, 1987.

[4] Communications, Automation & Control, D3EMU Software Emulator for
AT&T's DSP32 Floating Point Digital Signal Processor and Hardware
Reference Manual for the DSP32-PC Plug-In Board for the PC/XT/AT.

Release 1.7.
[5] Metrabyte Corporation, DDA-06 Manual. 1984.

[6] Metrabyte Corporation, DASH-16 Manual. 1984.

23

24

APPENDIX A

Apparatus Connector Pin Outs

DDAG 25

board

28

Yellow Enc. CH B

IBM

DSP

VCIS
25 pin 15 pin
connector
connector
28 pin
connector
1——DSPOBE circuit
2}—— DSP DI
3}————DSP ILD
44— DSP ICK
5}——DSP OCK
S DSP+oV 1|—— Dsp oBE
7 DSP GND
8 circuit GND 2——DbspPDi
9f—— circuit +5V S DSPILD
4+———DSP ICK
1 ?—‘ spere 5l DSP OCK
- spare 6——— DSP DO
i3 IBE 7——DSP SY
{a— spare 8——DSPOLD
18— spare 9}——— DSP +5V
1 0}——— DSP GND
1 §——/OEN 11}—— DSP -5V
1 7—— Red Enc. GND 1o spare
18 Red Enc. CH A 19— DSPIBF
19 Red Enc. +5V
20 Red Enc. CH B 1 g: :S o
21 Blue Enc. GND
22 Blue Enc. CHA
23 Blue Enc. +5V
24 Blue Enc. CHB
25 Yellow Enc. GND
26 Yellow Enc. CH A
27 Yellow Enc. +5V

board

Red Enc. GND
Red
Red Enc. CHA

0O N OO O WD =

O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Red Enc. +5V

Red Enc. CHB
Blue motor GND
Blue motor power
empty

Yellow Enc. GND
Yellow

Yellow Enc. CH A
Yellow Enc. +5V
Yellow Enc. CH B
Red motor power
Red motor GND
empty

Blue Enc. CH B
Blue Enc. +5V
Blue Enc. CH A
Blue

Blue Enc. GND
empty

Yellow motor powe
Yellow motor GND
empty

=SR] ¢ >y

Ciopalr position
.global flag
/* Position.s */

27

/* Program DSP chip to read data from serial port */

loc = 0x182

ré = 0
r7 =1
r4 = 0
r5 = position
r8 = flag
ro9 = 0
loop: if (ibe) goto lo
nop
*rg = ré
r9 = ibuf
nop
r9 = r9 & OxFF
r3 =r4
nop
r3 = r3 & OxEE
nop
r3 = r3 + 0x80
nop

r3 =r9 - r3

/* SY external, OCK makes SY, no SY clock

op

/*
/*
/*

ICK external, ILD external, 16bit in,
OCK internal=CKI/8, OLD external, no output
clear sanity, no DMA */

’

False */
True
16 bit position register */
16 bit position counter */
Semaphore flag */

recent low order 8 bits */

*/

Start position update by locking via flag */
read

r9
r3

r3
r3

r3

nop
if (pl) goto skipdown

nop
r3 = r3 + 0x100 /* r3
nop
if (mi) goto skipup
nop
goto newpos
nop

skipdown:
r4 = r4 - 0x100 /* down
nop
goto newpos
nop

skipup: r4 = r4 + 0x100
nop

newpos: r4 = r4 & OxEEQO

nop
rd =r4 | r9
nop
*r5 = r4
*r8 = r7
nop
r3 = 0x100
nop

wait: r3 =r3-1

nop

serial input */

new low order 8 bits */
old count */

old low order 8 bits */
old low bits + 128 */

new - old - 128 */

new - old + 128 */

by 256 */

/* up by 256 */

/* high order 8 bits of position */
/* splice in new low order bits */

/* update position count in memory */
/* unlock position */

/* wait loop follows */

if (pl) goto wait
nop
28 goto loop
nop
position: int 1
flag: int 1

APPENDIX C

BREAKAWAY.c, Controlling "C" Program

29

30

main(breakaway.c)

*******ti*##I#l*****l**#*t*i*l*i*#***#*l#*t#t#*ﬁ*##I***lt**#*t*&**ﬁ**/

t*l**t*#lﬁ***&it*l##*##***#*#*#tlrt*#llr***#I*lbﬁ#*#lﬁ***#*I*-ﬁﬁ##l**##***i#/

FAHRH K F AR AR

PRAREEEE BREAKAWAY.C KN AW

PRLLLA KEAOAbA]

JHFRRERE This program compules the torque required to FAREERRA]

JAHFEXRRE break this static friclion ezisting within the uhkdadd}

[FEEEEEE molor assembly of the 3 fingered modular hand FEAFEER]

] RREE AR FAF AR
M R 10

/**#**********#**************t**r*******#******#***l******************/

#include <conio.h>

#i

nclude <process.h>

#include <math.h>

Fi

nclude "dsp_util.c"

extern int dda6();

int check = 0;

13
13
.
.
.

nt

mnt trials = 0;

int stopctr, settlpos, movedone, movedtwo, totalpos;
int breakvol, base, chan, xh, x1, flag val, i, ii, iiii;
int count_bias = 0;

pinflag = 0;

int moved = 0;

int zerovolt = 0;
float torque;

un
un
un
un

signed int pos_ad;
signed int flag_ad;
signed int iii;
signed int startpos;

void delay_msec(loops)
int loops;

{

int i, j;
float value;

for (i = 0; i < loops; i++) {
} = abs(i);
value = pow(i,5);

}

return;

}

main()

{

int voltage;

12:38 Aug 21 1989

1

20
30
/* performs N millisecond delay */
40
/* abs() takes 19 microseconds */
/* pow() takes 971 microseconds */
50
main

Page 1 of breakaway.c

default_addr();

if (1dsp_dl_exec("position™}) exit(l);
dsp_run();
pos_ad=get_addr("position");
flag_ad=get_addr("flag");

printf("Move all fingers away from the center ");
printf("of the hand and enter a 1\n");
do { scanf("%d",&check); } while (check !=1);

printf("The DSP board has been enabled, please turn on\n");
printf("the 5V power supply and enter a 2\n"});
do { scanf(*%d" &check); } while (check != 2);

startpos = get_current_pos();

output_voltage{ 2055);

printf("The D/A board has been enabled and zeroed out.\n");
printf("Turn on the Kepco amplifier and enter a 3\n");

do { scanf("¥%d",&check); } while (check != 3);

do {

set_zero_voltage();

31

main(breakaway.c)

/* Download POSITION.s o the DSP board */

60

/¥ Clear fingers out of the way */

/* Turn on the +5 volt supply */

/* Set up DSP ioc register */

/* Turn on the amplifier */

/¥ Select value of zerovolt */

print{("Is this an acceptable value of zerovolt? (1=Yes, O=No) ");

scanf("%d",&check);
} while (check!=1);

printf("Enable the circuit by moving switch #8 ON and\n");
printf("then OFF again, then enter a 5\n");
do { scanf("%a",&check); } while (check != 5);

print{("To reset the finger position counter enter a 6\n");
do { scanf("%a",&check); } while (check != 6);

output_voltage(zerovolt — 300);

hand_settled();

count_bias=get_current_pos() ;

printf("Settled reset position is %d\n" count_bias);
output_voltage(zerovolt);

printf("To exercise the finger enter a 7\n");
do { scanf("%d",&check); } while (check != 7);
warm_up_hand();

output_voltage(zerovolt);

printf("Each run takes approximately 1.6 seconds,\n");
printf(*10,000 trials can be done in 275 minutes\n\n");
printf("How many iterations to be performed? \n");
do { scanf("%d"&trials); } while (trials == 0);

output_voltage(zerovolt — 50);

12:31 Aug 21 1989

30

/* Enable the position circuit */

/* Determine count bias offset */

/* Rewind finger */ 90
/* Read unbiased count */
/* Relaz the motor */

/* Ezercise the finger */
/* Kill the motor */

100
/* Determine number of trials */

/* Rewind finger until settled ¥/

Page 2 of breakaway.c

32

hand_settled();

startpos = get_current_pos();
printf("Current position is %u\n" startpos);
printf("Count bias is Y%d\n",count_bias);

print{("To begin the repetitive experiment enter an B8\n");
do { scanf("%a",&check); } while (check != 8);

print{("Friction detection algorithm has begun\n"});

for (it = 1; ii <= trials; li++) {

do {

12:31 Aug 21 1989

printf("# %d: “, ii);
delay_msec(25);
hand_settled();

startpos = get_current_pos();
moved=0;

voltage = zerovolt;
output_voltage(voltage);

do {

delay_msec(25);

movedone = get_current_pos(});

if (movedone > startpos) {
delay_msec(25);
movedtwo = get_current_pos();
if (movedtwo > movedone) {

moved = 1;

break;
else {

startpos = movedtwo;
voltage++;

else {
startpos = movedone;
voltage+-+;
output_voltage(voltage);
} while (voltage < (zerovolt + 150));
ii4+;
if(voltage >= (zerovolt + 149)) pinflag = 1;

breakvol = voltage — zerovolt;
torque = breakvol * 0.012846153;

S DR

main(breakaway.c)

/* Display position and bias */
110

/* Begin the cxperiment */

/¥ Begin ilerative trials ¥**¥¥/

120

/* Set up next clockwise run */

/* Set voltage to zero */
130

/* Moved forward */
/* Moved forward again */

140

] * Ezperiencing wind up. */

/* Still completely stuck */

/* Apply incrementediamltage */

/* While finger not against pin */

/* Finger is againsi pin */

Page 3 of breakaway.c

if (moved 1) {
output_voltage(voltage + 15),
delay_msec(15);
output_voltage(zerovolt);
delay_msec(200);
print{("%Bu " startpos);
printf("%4d " breakvol);
printf("%9.56¢ ounce-inches\n" torquc);
}
else {
) printf("\n");
output_voltage(zerovolt);

}

voltage = zerovolt;

} while (pinflag != 1);

pinflag = 0;

do {

12:31 Aug 21 1989

1T 1 MMOVAPAOLWO < 1rioveaone 1 4

e

print{("# %d: ", ii);
delay_msec(25);

hand settled();

startpos = get_current_pos();
moved = 0;

voltage = (zerovolt — 1);
output_voltage(voltage);

do {
delay_msec(25);
movedone = get_current_pos();
if (movedone < startpos) {
delay_msec(25);
movedtwo = get_current_pos();
if (movedtwo < movedone) {

moved = 1;
break;
else {
startpos = movedtwo;
voltage——;
}
else {
startpos = movedone;
voltage——;

output_voltage(voltage);

} while (voltage > (zcrovolt — 150));

wioved j1or1vwadrad aguain 7

33

main(breakaway.c)

160

[* Burst of power after it broke free */

/¥ Kill the motor */

/* Outpul the data */

170

/¥ Stuck against pin, no oulpul */

/* Continue until against pin */

/* Resetl against—pin flag */
180

/* Set up counterclockwise run */

/* Set voltage 1o zero */
190

/* Moved forward */

/* Moved forward again */

200

/* Ezperiencing wind up */

/* Still completely stuck */

/* Apply incremented2umltage */

/* While finger not aganst pin */

Page { of breakaway.c

34

main-get_current_pos(breakaway.c)

i+
if(voltage <= (zerovolt ~ 99)) pinflag = 1; /¥ Finger is against pin */
breakvol = voltage — zcrovolt;

torque = breakvol * 0.012846153;
220
if (moved == 1} {
output_voltage(voltage — 15); /* Burst of power after it broke free */
delay_msec(15);

output_voltage(zerovolt); /* Kill the motor */
delay_msec(200);
printf("%5u " startpos); /* Output the data */

printf("%44" breakvol);
printf("%9.5f ounce-inches\n" torque);

else { 230
printf("Hand is being exercised \n"); /* Stuck against pin, no oulput */
output_voltage(zerovolt + 250); /* Ezercise the finger */

hand_forward(36000);
output_voltage(zerovolt — 250 };
hand_backward(5000);
output_voltage(zerovolt + 250);
hand_forward(33000);

output_voltage(zerovolt — 150); /* Return to resel position */
hand_settled();
output_voltage(zerovolt); 240

}

voltage = zerovolt;

} while (pinflag != 1); /* Continue until against pin */
pinflag = 0; /¥ Reset against—pin flag */
}
250,

***********************#***4’*****4’**************#******t/

[*¥*¥** Subroutine to read posilion from the DSP board ****/
[FREERERRE R RRER R EERRERERRRRRERRR TR RRRARASAARRER KK |

get_current_pos() get_current_pos

while (1) { 260
flag_val=dsp_up_int(flag ad);
if (flagval == 1) {
lii= dsp_up_int(pos_ad);
dsp_dl_int(flag_ad,0);
ili = iii — count_bias; /* Remove the DSP board’s count bias */

12:31 Aug 21 1989 Page 5 of breakaway.c

return iii;
}
}
)

270
get_addr(s) get_addr
char
{

unsigned int iii;
if ((iii=find_label name(s)) == —1){
printf("Global label ’%s’ missing from DSP32 program\n',s);
exit(1);
}
return iii; 280
}
[ERREEEER R IR ARK IR RRRRRRRRERERR |
[**** Output voltage subroutine ****/
[FRRRRERRR RN RERERRRRRAASRRA
output_voltage(voltage) ' output_voltage
int voltage;
{ 290
base = 774;
xh = voltage/256;
x1 = voltage — xh * 256;
outp(base, x1};
outp(base+1, xh);
}
300,
EERRRRERREREEIRRRRRERIRERERRARRNRE |
J**** Ezercise hand subroutine *¥**/
[EEEERE AR IR SRR FRRREERRAAARRARRE
warm_up_hand() Warm_up_ha.nd
for (iiii = 0; il < 10; ili4+) { /¥ Perform 10 times */
output_voltage(zerovolt + 50);
hand _settled(); 310

get_current_pos—warm_up_hand(breakaway.c)

output_voltage(zerovolt — 50);
hand_settled();

output_voltage(zerovolt + 50);
hand_settled();

output_voltage(zerovolt — 50);
hand_backward(8000);
output_voltage(zerovolt + 50);
hand_forward(38000);

12:81 Auy 21 1989 Page 6 of breakaway.c

35

get_current_pos—warm_up_hand(breakaway.c)

return iii;
}
}
}

270
get_addr(s) get_addr
char *s;

{ .
unsigned int iii;
if ((iii=find_label_ name(s)) == ~1){
printf(""Global "label ’Y%s’ missing from DSP32 program\n",s);
exit(1);
return lii; 280
}
| FRRRER R RRRRR KRR RERRERRNK
[**¥* Qutput vollage subroutine ****/
| FERREEERRRAR KA ARERRRRRRRRRAAARK |
output_voltage(voltage) A output_voltage
int voltage;
{ 290
base = 774;
xh = voltage/256;
x1 = voltage — xh * 256;
outp(base, x1);
outp(base+1, xh);
}
300.
[HEEERR AR R R KRR AR IR
/**** Ezercise hand subroutine *¥**/
| EEERERRRRRRRR R REERRRREREARAEARE
warm_up_hand() Warrn_up_hand
for (iiii = 0; iiii < 10; iili4++) { /* Perform 10 times */
output_voltage(zerovolt + 50);
hand_settled(); 310

output_voltage(zerovolt — 50);
hand_settled();

output_voltage(zerovolt + 50);
hand _settled();

output_voltage(zerovolt - 50);
hand_backward(8000);
output_voltage(zerovolt + 50 };
hand_forward(38000);

12:81 Auy 21 1989 Page 6 of breakaway.c

35

36

-y

warm_up_hand-hand settled(breakaway.c)

output_voltage(zerovolt — 50),

hand_backward(4000), 320
output_voltage(zerovolt + 50);

hand_forward(34000);

output_voltage(zerovolt — 64);

hand_backward(18000);

output_voltage(zcrovolt + 64);

hand_forward(24000);

output_voltage(zerovolt — 84);

hand_backward(14000);

output_voltage(zerovolt + 84);

hand_forward(28000); 330
output_voltage(zerovolt — 150);

hand_backward(10000);

output_voltage(zerovolt + 150);

hand_forward(32000);

output_voltage(zerovolt — 150);

hand_backward(3000);

output_voltage(zerovolt + 150);

hand_forward(35000);

output_voltage(zerovolt — 150);

hand_backward(21000); . 340
output_voltage(zerovolt);

" hand_forward(position) /* Move hand clockwise to (position) */ hand forward
int position;
350
do { startpos = get_current_ pos(); } while (startpos <= position);
output_voltage(zerovolt };
}
hand_backward(position) /* Move hand counierclockwise 1o (position) f/hand_backward
int position;
{
do {
startpos = get_current_pos(); 360
} while (startpos >= position);
output_voltage(zerovolt);
}
JERREEERR R R R AR ARRAEN]
[¥**¥* Check to see if hand has settled ****/
[HHEER R R R AR RRERRRRRKRRRRERRRR |
a70
hand _settled() hand settled
12:81 Aug 21 1989 Page 7 of breakaway.c

MOUE 1T TCTUTUCRAWET T a0 0o e v iv R 3o a0 o v B air Rmr o= m e cmemmmras e i A mmi s e _
LU CT W UTTivge A\ [y ad hali e 7 e el hand RAarrIaAarAal MYASTLIAOTL L

37

hand settled-zero_out_ddaG(breakaway.c)

startpos = get_current_pos();

for (stopetr = 0; stopetr < 30; stopeti++) {

settlpos

= get_current_pos();

if (settlpos != startpos) {

»

stopctr = 0;
startpos = secttlpos;

/* Untl 30 rveadings the same */

/* Hand isn’t settled */

380

/**/

[**** Subrouline to select value of zero_volls ****/

/**/

set_zero_voltage()

{

printf("It is necessary to reselect ’zero_volts’.\n");
print{("Please attatch a voltmeter on the millivolt scale\n");
printf("to the lower right connectors of the amplifier.\n");
printf("Enter a 4 to proceed with the subroutine to choose\n");
printf("the correct value for the variable ’zero_volts’.\n");

set zero_voltage

/¥ Choose value of 2ew0_volls */

printf("You will need to select the number which produces the\n");

printf("smallest non-negative voltage at the comnector.\n");

do { scanf("%d",&check); } while (check != 4);

zerovolt = zero_out_ddab();

printf("Your choice for ’zero_volts’ was 4d\n\n", zerovolt);

}

zero_out_ddag()

int volt;

for (volt = 2030; volt <= 2080; volt++) {

printf("Zero_volts is now set to be : %d\n", volt);

output_voltage(volt);

400

zero_out_ddab

printf("Enter a 0 to select this value of zero_volts. \n"); 410

printf("Enter a 4 to increase zero_volt, \n");

scanf(""%d", &check);
if (check == 0) break;
}

return volt;

12:31 Aug 21 1989

T LCINT OGut Guuuyvr T

Page 8 of breakaway.c

38

APPENDIX D

Decimal Voltage To Applied Torque Conversion

XN D WN

U’!U’!UIU\U’!U'lUl-b«b-b-Dab-b-hbbhww@&m&ww@wml\)l\)l\)l\)mml\)l\)l\)—‘—*—-‘ —

Decimal Number

2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
20186
2017
2018
2019
2020
2021
2022
2023
2024
2025
20286
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2048
2047
2048
2049
2050
2051
2052
2053
2054
2055

Torque Conversion Data

D/A millivolts Amp. milliamps

-292
-287
-282
-277
-272
-267
-262
-257
-252
-247
-242
-237
-232
-227
-222
-217
-212
-208
-203

-198.
-193.
-188.
-183.
-178.
-173.
-169.
-164.
-159.
-154.
-149.
-144.
-139.
-134.
-129.
125,
-120.
-115.
-110.
-105.
-100.
-96.
-90.
-85.
-80.
-76.
-70.
-66.
61,
-56.
-51.
-486.
41,
-37.
-32.
-27.
-22.

QNOO)QJCOUIUI—ANCDN(D(DO’)-*W\JOJCDG)UICOG)I’\)U‘NNMNI\)(OG)@#l\)(.o

-114.
-112.
-110.
-108.
-1086.
-104.
-102.
-100.
-98.
-96.
-94.
-92.
-91.
-89.
-87.
-85.
-83.
-81.
-79.
-77.
-75.
-73.
-71.
-69.
-68.
-66.
-64.
-62.
-60.
-58.
-56.
" -54.
-52.
-50.
-49.
-46.
-44,
-42.
-41.
-39.
-37.
-356.
-33.
-31.
-29.
-27.
-25.
-23.
-21.
-19.43
-17.65
-15.70
-14.11
-11.95
-10.03
-8.12

\Jmm-b-mmmrom—-Amcowowmwwwm—Ar\)—tomooﬂmmmAammauowmmmm\:c’wwcnxl

39

40 Torque Conversion Data

Decimal Number D/A mithvolts Amp milliamps

110 2109 242 95.
111 2110 247 97.

57 2056 S17.3 -6.30

58 2057 21201 -4.21

59 2058 7.2 .2.38

60 2059 .21 -0.398

61 2060 2.3 1.115

62 2061 7.3 3.33

63 2062 12.1 5.15

64 2063 16.8 6.98

85 2064 21.4 8.81

66 2065 26.7 10.87

67 2066 31.6 12.71

68 2067 35.8 14.45

69 2068 40.7 16.31

70 2069 44.8 17.75

71 2070 49.7 19.91

72 2071 53.3 21.5

73 2072 57.9 23.3

74 2073 63.7 25.7

75 2074 68.5 27.6

76 2075 73.5 29.9

77 2076 79.2 31.8

78 2077 83.9 33.6

79 2078 87.6 35.1

80 2079 92.8 37.1

81 - 2080 95.3 38.2

82 2081 100.1 40.1

83 2082 108.8 43.4

84 2083 110.6 44.3

85 2084 115.7 46.2

86 2085 123.3 49.2

87 2086 128.5 51.1

88 2087 132.1 52.7

89 2088 138.3 55.2

90 2089 143.1 57.0

91 2090 149.2 59.1

92 2091 153.8 61.0

93 2092 158.9 63.0

94 2093 163.8 64.9

95 2094 168.1 66.7

96 2095 173.2 68.7

97 2096 177.9 70.5

98 2097 182.9 72.5

99 2098 188.5 74.8

100 2099 193.3 76.6
101 2100 198.1 78.6
102 2101 203 80.5
103 2102 207 82.4
104 2103 213 84.4
105 2104 218 86.5
106 2105 223 88.4
107 2106 227 90.1
108 2107 232 92.1
109 2108 237 94.0
9

7

D

e

c 212

i

m 210

i

2.08

N

u - 206

m

2 2.04

r

2.02

X

1 2.00

9

3 1.98 t t t t —t

-300 -200 -100 0 100 200 300
D/A millivoits
Data File: Dapper Dam Dependent Variable: Decimal Number
Variable Std. Err. t
Name Coefficient Estimate Statistic Prob > t
Constant 2059.640 0.021 99786.133 0.000
D/A millivolts 0.205 0.000 1568.522 0.000
Data File: Dapper Dam
Sum of Deg. of Mean

Source Squares Freedom Squares F-Ratio Prob>F
Modei 113954.851 1 113954.951 2460260.587 0.000
Error 5.049 109 0.046

Total 113960.000 110

Coefficient of Determination (R*2) 1.000

Adjusted Coefficient (R"2) 1.000
Coefficient of Correlation (R) 1.000
Standard Error of Estimate 0.215
Durbin-Watson Statistic 0.477
1
[]
"
R >
e .
5 wy .
é " SR
4 . ot " - " Tam
g 0 \\WN-" TN e -
a -y £ -~ \
| L
s
-1 t t t t t

1
-300 -200 -100 0 100 200 300
D/A millivolts

42

D
¢ 212
i
m 210
a
! 2.08 -+
N
u 206
'B
e 2.04 +
r
2.02 +

x L]
1 2.00 ¢
2
3 1.98 t t

-200 -100 0 100

Amp. milliamps
Data File: Dapper Dam Dependent Variable: Decimal Number
Variable Std. Err. t
Name Coefficient Estimate Statistic Prob > t
Constant 2059.366 0.020 103697.562 0.000
Amp. milliamps 0.520 0.000 1628.307 0.000
Data Fite: Dapper Dam
Sum of Deg. of Mean

Source Squares Freedom Squares F-Ratio Probs>F
Model 113955.315 1 113955.315 2651384.249 0.000
Error 4.685 109 0.043
Total 113960.000 110

Coefficient of Determination (R"2) 1.000

Adjusted Coefficient (R"2) 1.000

Coefficient of Correlation (R) 1.000

Standard Error of Estimate 0.207

Durbin-Watson Statistic 0.457

1

»
L

R iy
e LY
S s u. s
I F) "
d 8 . - [.
y 0 - M‘ﬂﬁ.\‘-‘. -. -ﬂ 'ﬁ# |
a b M
| - "
s

-1 1 t

-200 -100 0 100

Amp. milliamps

300
D
2004
M 100+
|
i 0]
v
© -100+
t -
S .200+
-300 t t
-200 -100 0 100
Amp. milliamps
Data File: Dapper Dam Dependent Variable: D/A millivolts
Variable Std. Err. t
Name Coefficient Estimate Statistic Prob > t
Constant -1.335 0.034 -38.784 0.000
Amp. milliamps 2.538 0.001 4585.344 0.000

Data File: Dapper Dam

Sum of Deg. of Mean
Source Squares Freedom Squares F-Ratio Prob>F
Model 2715636.159 1 2715636.15921025381.901 0.000
Error 14.078 109 0.129
Total 2715650.237 110

Coefficient of Determination (R"2) 1.000

Adjusted Coefficient (R"2) 1.000
Coefficient of Correlation (R) 1.000
Standard Error of Estimate 0.359
Durbin-Watson Statistic 0.808
2
R 1 -+ . .
e L.
s . W o Iy, 1
d \‘ . L] . [] - [] []
0 -+ . 15. ' .- we " =t "
g \' .--‘ . \._.l"" > u‘. -I: '-:
[’ *
S i »
1 -t .
-2 } —
-200 -100 0 100

Amp. miliamps

43

44

APPENDIX E

Root Locus Stability For Motor Ampilifier

Determination of the value for a shunt resistor to improve
stability of the amplifier driving the finger.

Beginning with the equivalent circuit model,

45

the

R3

-+
i X1 o~ C §R4

_ 21

Vout

where R4 = R1[|R2

we find from summing the currents at the top that

-1 R
X2 =7 Xy - T_sz

and

y = Vour = X4

which becomes just a 2x2 state space matrix on the next page.

46

e
i
(@]
- R
o
Lo
w
I
+
o]
I-
<
i
p
L

_ . 0
C L
Vv
now Z = i"‘” C(SI-A)'B
1 Rj
cls+)
thus Z = RS Ra 1

» g 1
se+s(T +Cm) *ICR, * L[C

, . . 1
and setting the characteristic equation equal to zero, with Y4 = R—4 , We

have

Ry, 1 1R
s+sL LC+Y4(ct C)=O

which in root locus form becomes
1 R3

cls+)

1+ Y4 R 1
2 4+ 2 —
S L *LC

=0

so in order to plot 1 + Y4G(s) = 0, we use

. 1x107 (s + 1188.6792)
(8)=521 5 1188.6792 + 1886792530

which has poles at s = -594.3396 + j43433.159

and a zero at s = -1188.6792

So the entire root locus is then easily constructed.

X| (-594,j43433)

optimal damping

multiple roots /

critical damping
(-44625,j0)

X! (-594,-j43433)

Solving for multiple roots by setting ba' - ab' = 0, we find multiple roots
at

s = 42248.564, and -44625.922

where only the latter is on the root locus. So our only multiple roots
occur at ’

So = -44625 + |0
Solving for critical damping at this point, sq, we know that
1x107 (43437.2432 + 02)5

" 44031.5822 + 43433.1592

|G(s0)] = 113.5549

1 1
and so Y4 = Gisa) = 0.0088063 = R,

47

48

Now since R4 = Ry || Rp, where Ry = 36000

simple math shows that Ry = 113.91422 ohms provides critical damping.

Similarly, for optimal dgmping with a damping coefficient of 0.7 we have

sy = -31133.587 + j31133.587

which produces

1x107 (29944.9082 + 31133.5872)7
1

G(s1)| =
| | (12299.5722 + 30539.2482)5 (74566.7462 + 30539.2482)y

= 162.8357 ohms

1 1
and so Y4 = G(s1)] = 0.0061413 = =

And we still have R4 = Ry || Rz, where Ry = 36000

So in solving we find R, = 163.57134 ohms provides optimal damping.

APPENDIX F

Miscellaneous Handouts and Literature

49

Appendix F references:

(1) Hewlett-Packard Technical Data sheet on "Two Channel Optical
Incremental Encoder Module 11 mm Optical Radius (HEDS-9100 Series)",
December 1986.

(2) Molex Technical Data sheet on KK-Products 2695/6471 Crimp
Terminals and Housing.

(3) Communications, Automation & Control: "D3EMU Release 1.7" and
"Hardware Reference Manual for the DSP32-PC" manuals.

