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Understanding how proteins fold and interact with each other is key to un-

derstanding virtually all biological processes. Recent advances in computer power

and modeling techniques make it possible to study proteins and other microscopic

systems on biologically relevant time and length scales, closing the gap between

simulations and experiments. At the same time, the emergence of more accu-

rate models, derived from more rigorous physical principles, allows us to address

a number of fundamental questions. The present work relies on molecular dynam-

ics (MD) simulations to investigate several important aspects of protein behavior.

First, we introduce the associative memory, water mediated, structure and energy

model (AWSEM) and demonstrate its structure prediction capabilities. AWSEM

is a coarse-grained protein force field that consists of many physically motivated

potentials and a bioinformatically based term, which accounts for many-body local

effects by matching its short sequential fragments to the sequences of experimen-

tally resolved structures. We show that the AWSEM force field can be used for



de novo structure prediction, as well as for kinetics and dynamics studies. Next,

we use AWSEM to study protein-protein association. Our results indicate that the

model not only can successfully predict the native dimeric interfaces but can also

correctly reproduce the two and three state behavior of obligatory and nonobliga-

tory dimers. We also find that both monomer geometry and specific non-bonded

interactions play an important role in protein-protein association. Subsequently, we

investigate protein folding under environmental fluctuations with a simple Gō-like

model. More specifically, we study the effect of an oscillating cellular environment

on protein folding dynamics through modulating the strength of inter-residue inter-

actions. The results show that, when occurring at some specific timescales, both

deterministic and random fluctuations significantly accelerate the folding.
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Chapter 1: Introduction and Outline of Thesis

1.1 Introduction

Natural proteins have been specially selected by evolution to perform a vast

variety of different functions inside living organisms. One of the most fascinating

abilities of proteins is the ability to fold into well-defined three-dimensional struc-

tures on surprisingly short time scales. A typical protein consists of several dozen to

several hundred, and sometimes even thousands, of consecutively connected amino

acids. The amino acids themselves are made of amine and carboxylic acid groups,

and a sidechain, which varies with type. Figure 1.1 shows the chemical structures

of the 20 standard amino acid types, classified according to polarity and charge.

The ability of a protein to fold, as well as its native three-dimensional structure, are

largely determined by the properties of individual amino acids in its sequence [1,2].

Since the discovery of the first three-dimensional structure of myoglobin in

1958 [3], until only a few decades ago, there were a number of controversies about

how proteins fold. One of the open questions was how, given the enormous number

of degrees of freedom, proteins fold on biologically relevant timescales of the order

of seconds or less. This controversy is known as the Levinthal’s paradox [4]. He

estimated that even in a simplified imaginary experiment, where a conformation

1



Figure 1.1: The chemical structure of the 20 standard amino acids.
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of a chain is defined by two dihedral angles per residue with 3 possible values for

each, it will require longer than the age of the universe to sample all the possible

states, even if the sampling is done at an extremely fast rate. Later it became

clear that natural proteins were carefully selected and designed by evolution in a

very specific way, which allows them to find their native state without sampling

the vast fraction of the total available phase space. The breakthrough in this so-

called protein folding problem was made with the introduction of energy landscape

theory [5–8]. According to this theory, the energy landscape of a natural protein is

funneled towards its native state, making it energetically favorable and accessible.

The former statement means that at room temperature the landscape does not have

any high barriers that will prevent the protein from folding on biologically relevant

timescales. This is a result of the principle of minimal frustration formulated in

the energy landscape theory, which states that the native conformation has minimal

unfavorable contacts between the amino acids in the sequence.

Besides helping to understand protein folding from a purely theoretical view-

point, the energy landscape theory has a large practical significance. Given the high

multidimensionality of the energy landscape of a protein, it is important to find a

small set of generalized coordinates that can be used to describe the system. Choos-

ing such a set of coordinates is highly non-trivial, as the answer is usually problem

specific and not unique. In particular, as a result of the funneled energy landscape

and the minimal frustration principle, the protein folding process can be often con-

veniently described by a single reaction coordinate. One of the most commonly used

ones is the fraction of native contacts, denoted by Q [9]. The advantage of using Q
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as the folding reaction coordinate is that it is correlated with average contact energy,

which decreases with increasing Q. This allows one to schematically draw the energy

landscape as a funnel, as shown in Figure 1.2. The vertical dimension indicates the

energy relative to the native state, and the width of the funnel corresponds to the

average conformational entropy. At the very top of the funnel the protein is in the

coil state, which possesses high energy and high conformational entropy. This cor-

responds to Q values close to zero. As the protein moves down the folding funnel,

it compacts, making a transition to a molten globule state [10], where it still has

a significant amount of conformational entropy. Molten globule conformations may

have most of the native-like secondary structure formed, but are still not as tightly

packed as the native state. For molten globules the Q is typically lower than 0.5.

At the bottom of the funnel there is a relatively small set of conformations highly

similar to the native state (usually with Q ≥ 0.7). These conformations represent

the so-called functional part of the landscape [11–15].

The emergence of energy landscape theory triggered the computational ex-

ploration of protein folding problem. The key ideas behind it were directly used

to construct models for structure prediction and folding dynamics studies. On the

other hand, recent advances in computational techniques, on both a hardware and

software level, have opened large horizons for studying diverse biological problems

using methods like Molecular Dynamics (MD) [17, 18] and Monte Carlo (MC) [16]

simulations. Throughout my work, I predominantly used MD simulations, thus I

will only talk about those here.

Over the last four decades Molecular Dynamics simulations became a widely
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Figure 1.2: The energy landscape of a protein can be schematically
drawn as a funnel with the native state located at its bottom. The energy
of contacts increases in vertical direction, while the reaction coordinate
Q is correspondingly decreases. The width of the funnel indicates the
average conformational entropy of the state.
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accepted and well established tool for studying various biological systems. The

basic idea behind MD simulations is the determination of individual trajectories

for each atom in the system by numerically solving Newton’s equations of motion,

given the interactions between the atoms. MD simulations allow one to model

small-scale atomic movements and medium scale conformational changes, which

usually cannot be directly observed experimentally. Further, they can be used to

interpret experiments by calculating certain time-averaged macroscopic properties

of the system, which can either be directly compared to the ones obtained from

experiments or used to refine the measurements. The former approach is widely

used in X-ray crystallography and NMR spectroscopy structure determination.

Historically the first all-atom Molecular Dynamics simulation of a small protein

bovine pancreatic trypsin inhibitor (BPTI) 58 residues long was performed in 1977

[19]. The length of this simulation was less than 10 picoseconds. From that time on,

both computers and numerical algorithms evolved drastically, allowing for longer

and larger scale simulations, carried out with increased accuracy. Of particular

interest are the two recent developments, both with very promising perspectives.

The first of them is related to the design of special hardware, customized for MD

simulations, and the second to the use of graphics processing unit (GPU) cards.

A typical all-atom simulation of a small protein, with only a few tens of

residues, immersed in the solvent, involves a few tens of thousands of atoms. Each

of those atoms are propagated in space in discrete time steps (usually on the order

of femtosecond). On each timestep all interaction energies and forces on individual

atoms need to be calculated. This requires an enormous number of calculations

6



of bonded (including angles and dihedrals) and non-bonded interactions, with non-

bonded interactions taking the vast majority of the computational time. Thus,

all-atom simulations are usually done in parallel, using several tens or hundred of

general-purpose central processing units (CPU). Commonly, this makes it possible

to achieve a performance of up to several tens of nanoseconds per day for a typical

system discussed above. General-purpose CPUs, though, are not ideal for heavily

parallelized and calculation rich MD simulations. A large portion of a CPU chipset

is dedicated to memory management, rather than arithmetical calculations. A spe-

cial design hardware, on the other hand, can enable better performance by several

orders of magnitudes. The best example in this regard is the massively-parallel su-

percomputer called Anton, which was introduced by D. E. Shaw Research [20, 21].

With the focus on faster non-bonded calculations and data exchange between in-

dividual computing unites (called Application-specific integrated circuit; ASIC),

Anton achieves rates up to several tens of microseconds per day for MD simulation

containing tens of thousands of atoms. This new hardware, along with specially

designed novel algorithms, enables all-atom MD simulations to be used for many

new interesting biological problems, including conformational changes of a voltage-

gated potassium channel between activated and deactivated states [22], and folding

of small, fast-folding proteins [23].

Another revolutionary idea which gets more and more attention is the use of

GPU cards for MD simulations. GPUs where initially designed to calculate and

render two and three dimensional computer graphics. Over time, with increasing

demand for better resolution computer interfaces, they evolved into multithreaded

7



computing devices. In modern GPUs the majority of the logic is dedicated to

arithmetical calculations, with each of them containing hundreds of arithmetic units.

This makes GPUs highly attractive for numerically intensive parallelizable scientific

calculations, such as MD modeling. Even in the cases when calculations are only

partially ported to GPU, as is done in many standard MD packages including NAMD

[24], GROMACS [25], AMBER [26], and LAMMPS [27–29] (with usually only per

particle force calculations done on GPU), performance up to twenty times of a single

CPU’s can be achieved for all-atom simulations. This is, however, not nearly the

limit of what one can attain. In works of Zhmurov A. et al. [30, 31] the up to 200

times acceleration of MD simulations (compared to single CPU) made it possible

to carry out implicit solvent force-extension simulations using experimental pulling

speeds. The most challenging issue for GPU computing is the implementation of

long-range electrostatic interactions. This requires Ewald summation, which unlike

other calculations included in MD, is not well parallelizable because it involves

Fast Fourier transformation. Nevertheless, several attempts to implement Ewald

summation have been made, reporting the overall speed of all-GPU MD simulations

equivalent to up to 40 CPUs [32, 33]. In conclusion, this is a promising direction,

which even today offers the best performance to cost ratio, and is highly supported

by the scientific community and hardware manufacturers. For instance, responding

to the recent trend, NVIDIA released a series of GPUs called Tesla and a set of

tools (Tesla Bio Workbench) specifically designed for scientific calculations.

Many important biological processes involve conformational changes in pro-

teins and protein complexes of several hundred and even thousand amino acids,
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which occur on millisecond or second timescales. One such example is the 393

amino acid long tumor suppressor p53 protein, which was originally discovered in

1979, and is known to play a crucial role throughout the cell cycle. p53 can prevent

tumor formation by either activating DNA repair mechanisms, stopping cell cycle

or, in desperate case, initiating self-destruction of the cell [34–37]. To stop a cell

cycle, p53 undergoes a conformational change, transitioning into an active state, in

which it can bind DNA. It is also known that p53 mutants are expressed by more

than half of the human cancer cells [38]. In addition, larger proteins usually require

much longer time to fold; reaching to seconds or even minutes. Unfortunately state

of art computer technology today does not allow to access the length and time scales

necessary to study those processes with all-atom simulations. Therefore, a number

of attempts have been made to construct simplified, coarse-grained (CG) models

for proteins. In CG models the number of degrees of freedom of the system are

significantly reduced by means of grouping atoms and treating most or all of the

solvent implicitly. The interactions between the resulting effective ”atoms” (usually

called beads) are then derived based on underlying key physical concepts, experi-

mental data and sometimes even all-atom simulations. One of the most apparent

advantages of using CG simulations is that they can often be directly compared

with experimental results, because they allow to reach length scales and timescales

accessible to today’s single-molecule experiments.

Designing a coarse-grained model one need to make a compromise between sim-

plicity, accuracy and transferability. In the recent years a large number of protein

CG models have been introduced. Aimed to approach a wide variety of problems,
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they highly differ in their level of coarse-graining and the degree of specificity; the

amount of target specific information they employ. For instance, the models where

each amino acid is represented with only one bead usually rely on one or more

reference structures, which can either be the native state or any other desirable

configuration. The structure of the chain is then biased towards those configura-

tions using bonded and non-bonded potentials. One of the early entirely structure

based models was the Gō model [39]. Despite its extreme simplicity the Gō model

often correctly reproduces kinetics of protein folding. This surprising result is the

consequence of the principle of minimal frustration, according to which the fold-

ing rate is strongly coupled with the native state topology [40–42]. The Gō-like

approach was also recently used to construct an all-heavy atom model, which due

to the steric constraints was able to reproduce some important sequence-dependent

effects [43, 44].

The low resolution of the one bead representation does not allow to completely

eliminate the need for reference structure. Nevertheless, many attempts have been

made to introduce more sophisticated terms to the Gō model and several similar

potentials, while retaining some or all biasing terms [45–51].

Inclusion of more beads per amino acid makes it possible to directly account

for such important aspects of protein physics as backbone geometry, sequence speci-

ficity, hydrogen bonding, and solvation effects without seriously relying on use of

reference structures. One key advantage of this is the full or partial transferability

of the model from one amino acid sequence to another. Besides the number of beads

used to describe backbone and sidechain conformations, those models can also be
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distinguished by the methods which have been employed to obtain the interaction

parameters. While the complexity of inter-protein interactions make it extremely

hard to explicitly derive those parameters from purely physical perspective, the

large amount of the available experimental data in form of RCSB Protein Data

Bank (PDB) [52] about tens of thousands of proteins and their native folds, makes

it very practical to do the parametrization using the occurrence of certain structural

and sequential motives in proteins which were already resolved. The models param-

eterized this way are usually called knowledge-based models. The first attempt

to construct a knowledge-based protein model dates back to 1970s [53]. In many

cases this is just the first step in model building, followed by further optimization

of the energy function either by using a training set of representative experimental

structures [54,55] or by matching the model’s behavior to all-atom simulations [56].

In the recent years a number of multi-bead protein CG models have been in-

troduced [57–61]. Here, I will briefly discuss the particular model I used throughout

my work, dubbed AWSEM.

The Associative memory, Water mediated, Structure and Energy Model

(AWSEM) has been introduced and fully described in our recent work published

in [62] (see also Chapter 2 and Appendix A). According to AWSEM, each amino

acid is described with two beads per backbone and one bead per sidechain (except for

Glycine), placed in the center of Cα, Cβ, and the carboxylic oxygen (see Figure 1.3).

It is primarily based on the Associated Memory Hamiltonian (AMH) developed

over many years by Professor Peter Wolynes and his group at the University of

Illinois at Urbana-Champaign and University of California in San Diego [63–69].
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Figure 1.3: According to the Associative memory, Water mediated,
Structure and Energy Model (AWSEM) each amino acid is described
by three beads placed in the center of Cα, Cβ and O. The figure shows
the placement of those beads (grey spheres) on Alanine Lysine Tyrosine
tri-peptide.

After addition of the contact and water-mediated interactions in 2004 by Papoian,

Wolynes and co-workers [70,78,79], it was renamed AMW. AMH/AMW was derived

and optimized based on the energy landscape theory and the principle of minimal

frustration. Unlike the early versions of AMH, AWSEM does not heavily rely on the

knowledge-based part of the Hamiltonian. The interactions are dominated by the

physical components, with exception of only one knowledge-based term, which biases
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the local structure within nine residue fragments, using a large number (usually up

to 20) of conformations found in proteins containing analogous fragment sequences.

This model was recently successfully used to study protein-protein association [71]

and misfolding in multidomain proteins [72].

Current coarse-grained models are still not as accurate and predictive as all-

atom force-fields. However, they make it possible to investigate complex bimolecular

systems on several order of magnitudes larger time and length scales. This makes

them an extremely valuable tool for interpreting mesoscopic and macroscopic ex-

perimental results, where the low to medium experimental resolution makes the use

of all-atom simulations excessive.

1.2 Outline of Thesis

In Chapter 2 we present our results on protein structure prediction using

AWSEM; a primarily physical protein coarse-grained model with knowledge-based

local structure biasing term. As the discussed combination of the alpha-helical hy-

drogen bonding potential and the knowledge-based term has not been used before,

we evaluated the structure prediction capability of AWSEM on 13 alpha-helical pro-

teins. The three different levels of global homology between the target sequence and

those proteins used for local structure biasing were tested, showing from medium

to high quality predictions. Generally, AWSEM calculations produce structural

predictions that are somewhat improved compared with the previous models. The

inclusion of a small number of structures from homologous sequences improves struc-
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ture prediction only marginally, but, when the fragment search is restricted to only

homologous sequences, AWSEM can perform high resolution structure prediction

and can be used for kinetics and dynamics studies.

In Chapter 3 we discuss the capability of AWSEM to predict protein-protein

association. The non-bonded term of the potential was initially parameterized using

a database of dimeric interfaces, but was later optimized to fold individual proteins.

However, the ability of the model to predict binding interfaces was not previously

tested. The present results demonstrate that the model indeed is able to predict

the native interfaces of 8 homodimers and 4 heterodimers. We further discuss the

importance of the monomer geometry and flexibility, and the significant role of non-

native intermonomeric contacts in the association process for the homodimers. We

find that even though the monomer geometry is important for correct association, it

is a necessary, but not sufficient condition. Using a uniform inter-monomer contact

potential, results in sampling of geometrically preferred misbound states, which

are, however, energetically disfavored by AWSEM. Non-native contacts may play

different roles in the association process, depending on the stability of the monomers.

They can either stabilize a productive, on-pathway intermediates, catalyzing binding

through a fly-casting mechanism in the case of unstable monomers, or create an off-

pathway trap that obstruct binding. It has also been found that AWSEM correctly

reproduces the two and three state behavior of obligatory and nonobligatory dimers.

In Chapter 4 we report on our work on protein folding in the presense of

background noise. The one-bead Gō model was used to investigate the folding of

two proteins in case of applied correlated random noise or harmonic fluctuations
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of the strength of inter-residue interaction potential. The MD simulations show

that existence of resonance in mean first-passage time of folding in both cases.

When applied, correlated random noise or harmonic fluctuations result in increase

transition rate for certain values of the characteristic parameter. In the case of the

harmonic noise the resonance occurs when the fluctuation frequency approaches the

folding rate of the unperturbed system. The former result was recently validated

experimentally by Martin Gruebele and Max Platkov at University of Illinois at

Urbana-Champaign using time-resolved Förster resonance energy transfer (FRET)

technique. Despite the significantly smaller fluctuation amplitudes used, their results

are consistent with the existence of the resonance.

The Chapter 5 is dedicated to further theoretical discussion of the phenomenon

described in Chapter 4. In the first part we present the analytical kinetic theory

of protein folding and unfolding under applied harmonic temperature wave (as it

was done in the experiments), which does not explain the resonance phenomenon.

Then, we discuses the results of the Brownian Dynamics (BD) simulations, which

model the protein folding under the same conditions, and fully explain the results

of the MD simulations. The comparison of the two approaches allows to inter-

pret the experiments, and connect them to the results of the Molecular Dynamics

simulations.
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Chapter 2: AWSEM-MD: Protein Structure Prediction Using Coarse-

grained Physical Potentials and Bioinformatically Based

Local Structure Biasing

The chapter is based on the published work of the author:

A. Davtyan, N.P. Schafer, W. Zheng, C. Clementi, P.G. Wolynes, G.A. Papoian;

J. Phys. Chem. B 116(29), 8494–8503 (2012)

2.1 Introduction

Over the last decades what has been called “the Protein Folding Problem” [73]

has evolved dramatically. Throughout this period both the practical and philosoph-

ical aspects of the problem have changed in the minds of scientists. Practical people

want to find the structure of a protein from its sequence alone by whatever means

necessary. Those of a more philosophical bent have been intrigued by the puzzle

presented by a chain molecule organizing itself to a small family of structures in

the face of incessant thermal buffeting, seemingly violating our notions of entropy.

How this happens is probed in the laboratory through studies of folding kinetics,

often by mutating various residues in the protein [74], to explore their contribution
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to folding.

The hope has always been that conceptually understanding the physical pro-

cess of folding will help in the practical task of structure prediction. Like the en-

twined histories of thermodynamics and the steam engine the interaction of the

practical and theoretical sides of the folding problem has been mutually supportive.

Interestingly, many of the key physical forces driving the folding process, in partic-

ular the hydrophobic interactions and the necessity for backbone hydrogen bonds,

were predicted by Pauling and Kauzmann before crystal structure determination of

proteins [75, 76]. It has turned out that many other more subtle interactions also

contribute to precise sculpting of folding landscapes, with unique native basins that

are kinetically accessible and these have been learnt in the process of improving

structure prediction algorithms. Among these subtle forces, it has been shown that

water-mediated interactions between hydrophilic residues are used as weak but spe-

cific forces that complement hydrophobic interactions and help guide early folding

events [70, 77–79]. In addition, water-mediated interactions may allow larger pro-

teins to partition into foldons, stabilizing intra-protein hydrophilic interfaces. We

see there has been a decades long quest to identify key interactions stabilizing the

native basins of globular proteins, which, in turn, has lead to subsequent improve-

ments in the quality of structure prediction efforts.

The most powerful tool for practically predicting tertiary structure, however,

remains homology: structure evolves more slowly than sequence so structures can be

predicted if closely related molecules have already had their structures determined.

This conservation of structure seems to be a consequence of the funneled nature of
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real protein energy landscapes. Thus, while prediction by analogy does not explicitly

use an understanding of the physical folding process, the funneled nature of the

folding landscape is crucial. The funnel landscape ultimately is also responsible for

the cooperativity of folding and is thus an essential feature of models of the folding

process in the laboratory [80, 81]. Energy landscape theory allows the funneled

nature of a landscape to be quantified [82–84]. Using this quantification, energy

landscape theory has led to a way of learning the forms and parameters of energy

functions for modeling folding kinetics and structure prediction by studying the

database of existing structures. The main idea of the learning algorithm is that the

folding landscape should be as strongly funneled as possible, while still remaining

transferable from one sequence to another. Over the years this approach has led

to a family of energy functions whose simulated dynamics mimics many observed

features of laboratory folding and that also allow low resolution prediction of protein

tertiary structure from sequence, even when no homology information is known (“de

novo prediction”). In this paper, we report on a further development of this family

of methods that uses local sequence similarity to encode structure short range in

sequence while a coarse-grained water mediated interaction is used to determine

tertiary structural themes.

The Associative memory, Water mediated, Structure and Energy Model

(AWSEM) force field, presented in this work, is a direct successor in a series of

protein structure prediction models [63–69] called early on the Associative Memory

Hamiltonian (AMH) model because of its similarity to neural network models [85]

and in later works was called the AMW model, to emphasize the addition of water-
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mediated interactions [70, 78, 79]. The key idea behind AMH is to simultaneously

sculpt deep folding funnels for multiple unrelated proteins, using the same set of

parameters, which then produces a transferrable protein folding force field. The

physical principle from landscape theory that drives the optimization learning al-

gorithm in AMH/AMW is the maximization of the ratio of folding temperature1

over glass transition temperature2 for each training protein. While this key prin-

ciple has remained steady over two decades, the underlying force field components

have substantially grown in scope. Specifically, while the earlier versions of AMH

had to rely almost entirely on the knowledge-based part of the Hamiltonian derived

from global homology to memory proteins, the later iterations emphasized more and

more the role of physical interactions, such as hydrogen bonds and water-mediated

interactions which have a novel character going beyond Kauzmann’s hydrophobicity.

The AWSEM force field of the current work continues this tradition, and is actu-

ally dominated by the physical interactions. The only explicitly knowledge-based

component of the AWSEM Hamiltonian is a term which biases local sequences that

are of length nine residues or shorter, towards conformations found in proteins con-

taining analogous fragment sequences. A related local fragment based approach has

been successfully used by Baker and coworkers in a variety of works to assemble

candidate conformations for protein structure prediction [86].

Even for this knowledge-based component based on peptide fragments, there

exists a sound physical justification based on modern ideas of coarse-graining [87–

1At the folding temperature, the populations of the folded state and unfolded states are equal.
2Below the glass transition temperature, the dynamics of the protein chain is arrested.

19



89]. In the three-bead per residue structural model adopted in AWSEM, the vast

number of original atomic degrees of freedom have been integrated out, both from

the solvent and the protein. Hence, a priori, one expects this integration to result in

a coarse-grained force field that contains a large number of complicated many-body

terms, especially at the local in sequence level, where detailed interactions of specific

neighboring sidechains may favor one local conformation over another. In terms of

model building, the choice here is to either to determine explicitly what these many-

body potentials are [90] and determine a huge number of associated parameters,

or, alternatively, use similarity to local sequences in other proteins to infer the

same many-body interactions using a knowledge-based approach. The latter is the

strategy adopted in AWSEM and it seems to be a useful compromise that one needs

to make for coarse-grained protein structure prediction in the foreseeable future.

The idea that a significant amount of the funneling of the folding landscape

lies in the short range in sequence details is consistent with our knowledge of the

thermodynamics of peptide fragments. Saven and Wolynes [91] showed that local

structural signals which only weakly bias the helical state of peptides become much

more effective when the protein chain has collapsed and, indeed, if they are not

in conflict with tertiary structure should provide more than a third of the native

structure seeking energy gap in the folding funnel. In this regard, local fragment

energy terms are also appropriate as a realistic first step in describing laboratory

kinetics faithfully.

While the efficacy of combining fragment energy terms with water mediated

interactions has already been established [92], the specific combination of elements
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in the current combination of physical potentials, such as the alpha-helical hydro-

gen bonding potential along with the locally determined fragment memory potential

have not been studied before. In addition, as a significant technological improve-

ment in its computer implementation, AWSEM has been written from ground up as

new software in C++, leveraging the popular LAMMPS molecular dynamics pack-

age [27]. This flexible implementation, in turn, provides opportunities for applying

AWSEM to modeling situations that were difficult to program because of the limita-

tions of the previous FORTRAN codes for AMH and AMW. In particular, assembly

of multi-protein complexes, interactions of proteins with coarse-grained models of

DNA [93], mechanical pulling [94], and many other studies now become straight-

forward. The AWSEM MD package is available for download as an open source

software (http://code.google.com/p/awsemmd/).

In this work, we have benchmarked the AWSEM code by predicting folding

of 13 alpha-helical proteins which we have studied before with earlier versions of

the AMW [78]. Not surprisingly, the quality of predictions depends on the fraction

of global homologs that are similar to the particular target protein in the fragment

memory database. To quantitatively explore this issue, we prepared three database

versions that mimic practical situations one encounters in real life structural pre-

diction: 1) homologs excluded, 2) homologs allowed, and 3) homolog-only. The

homologs excluded version is tantamount to the situation one faces in predicting

a new fold, a fold currently unrepresented in the structural database. For smaller

proteins, such “novel” folds are becoming ever more rare. We found that for “ho-

mologs excluded” databases, the predictions from AWSEM were slightly improved
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over previous AMW results, where for two proteins, 1R69 and 3ICB, impressive

improvements are achieved. Especially for larger proteins, over 100 residues, inclu-

sion of a few homologs can result in somewhat better predictions but for smaller

proteins the effect is marginal. Allowing the inclusion of some homologs mimics the

practical situation where one may be unaware there are, in fact, structural homologs

available because they haven’t been singled out by the alignment scheme. Finally,

when the fragment memory database consists of only homologs, even distant ones,

surprisingly high resolution predictions are made even for larger proteins. This ho-

mology only instantiation represents a common practical situation these days for

smaller proteins where such distant homologs can often be recognized with sensi-

tive alignment tools. Although specialized homology modeling algorithms, such as

MODELLER [95–97], are already able to produce structures that are within 1 to

2 Å RMSD to the native structures vs. the 2 to 3 Å structures that are gener-

ated with AWSEM with “homologs only” fragment memories, the former very high

quality results are based on a complete atomistic structural representation, while

AWSEM is rather coarse-grained, with only three beads representing each residue.

Because of its coarse-grained representation, AWSEM can be used to study the dy-

namics of real protein systems on experimentally relevant time scales using ordinary

computer hardware. AWSEM provides an appealing alternative to purely structure

based models, which are efficient and can be accurate but lack non-native interac-

tions, and all atom simulations, which, while increasingly reliable, require specially

designed computer hardware to access experimental time scales.
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2.2 Methods

2.2.1 Model

According to AWSEM, the position and orientation of each amino acid residue

is dictated by the positions of its Cα , Cβ and O atoms (with the exception of glycine,

which lacks a Cβ atom). The positions of the other atoms in the backbone are

calculated assuming an ideal peptide bond. A complete description of the structural

model and the force field is given in the Appendix A. For the current study, we

used only the alpha helical part of hydrogen bonding potential [70] and a variation

of the associative memory term (herein denoted FM for “fragment memory”), which

imposes a local bias using short, overlapping fragments of 9 residues or less. The

total energy function is given in Equation 2.1,

Vtotal = Vbackbone + Vcontact + Vburial + Vhelical + VFM (2.1)

Vbackbone is responsible for maintaining protein-like backbone geometries. The full

form of the backbone potential is shown in Equation 2.2.

Vbackbone = Vcon + Vchain + Vχ + Vrama + Vexcl (2.2)

Vcon ensures the chain connectivity through number of harmonic bonds. The correct

bond angles are achieved by the Vchain potential. Vχ, Vrama, and Vexcl are responsible

for chirality of the Cα atom, correct dihedral angle distribution, and inter-bead

excluded volume interactions respectively.

Vcontact, Vburial, and Vhelical are each based on a different aspect of protein
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physics. Vcontact is an amino acid type dependent tertiary interaction term. It acts

between pairs of residues which are 9 or more residues apart in sequence. In addi-

tion to being amino acid type dependent, the strength of the Vcontact potential also

depends on distance separation and a local density. In the case of low local density,

we say that the interactions are water-mediated and that they are protein-mediated

in the opposite case. The burial term represents the preference of an amino acid of

a specific type to be buried inside the protein or to be on the surface. Parameters

for Vcontact and Vburial potentials were obtained by self-consistent optimization which

maximizes the ratio of the folding temperature to the glass transition temperature

for the model,
Tf
Tg

[78].

Vhelical is an explicit hydrogen bonding term that acts between the carbonyl

oxygen of residue i and the amide hydrogen of residue i+4. The strength of the

interaction depends on the helical propensity of both residues participating in the

interaction. This potential was recently introduced in the work of V. Oklejas et

al [70].

VFM is a purely bioinformatical term, and makes use of available experimental

information from the RCSB PDB [52]. The form of VFM is given in Equation 2.3

VFM = −λFM
∑
m

∑
ij

exp

[
−

(rij − rmij )2

2σ2
ij

]
(2.3)

where the outer sum is over aligned memory fragments, and the inner sum is over all

possible pairs of Cα and Cβ atoms within the memory fragment that are separated

by two or more residues. rij is the instantaneous distance between the atoms,

rmij is the corresponding distance in the memory fragment, λFM is a scaling factor
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that can be used to change the strength of VFM relative to other terms, and σij is a

sequence separation dependent width, which is given explicitly in the Supplementary

Information.

2.2.2 Fragment Library

To generate the fragment memory libraries, we first used the online protein

sequence culling server PISCES [98] to generate a database of sequences that has

known structures in the PDB [52] with a resolution of 3 Å or better, and a specified

maximum mutual sequence identity (MMSI). Two databases were generated for 80%

and 95% MMSI. We then divided each target sequence into overlapping 9-residue

segments and used PSI-BLAST [99] to find the 20 best matching fragments in the

databases described above. We used PSI-BLAST’s E-value to determine the quality

of an alignment.

For each target sequence, we generated three different fragment libraries. For

the first library, we excluded all related sequences from the search by setting an

E-value cutoff in PSI-BLAST of 0.005. This typically leaves only those sequences

with less than 20% sequence identity with the target sequence. We refer to this

as the “homologs excluded” (HE) library. Predictions made with this library are

similar to “free modeling” predictions, where no globally homologous sequences have

experimentally resolved structures. For the second library, we will call “homologs

allowed” (HA), we excluded a sequence from fragment search if and only if it had

95% or higher sequence identity with the target sequence. For the first two libraries,
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we used PSI-BLAST to search the sequence database with 80% MMSI. For the third

library, we used the sequence database with 95% MMSI and chose memory fragments

only from sequences related to the target sequence, but again excluded sequences

with 95% or higher sequence identity to the target sequence. We will refer to this

library as the “homologs only” (HO) fragment library. As the number of related

sequences in the database was typically small, we adjusted the strength of the VFM

term based on the average number of fragment memories found.

2.2.3 Targets

We looked at 13 alpha-helical proteins which were considered in an earlier

work [78]. Some of them were used in past Critical Assessment of protein Structure

Prediction (CASP) contests. The length of the target sequences ranged from 63 to

172 residues. Information about the target proteins is summarized in Table 2.1.

2.2.4 Simulation Protocol

All simulations were carried out using the LAMMPS molecular dynamics pack-

age [27], where we implemented the AWSEM force field. To evaluate the de novo

structure prediction capability of our model, we first performed simulations with the

“homologs excluded” fragment libraries for all target sequences. Next, to determine

the effect of including fragments from globally homologous sequences, we performed

a set of “homologs allowed” simulations on a subset of the proteins (see Figure 2.1).

Finally, for seven of the target sequences, including the six largest, we performed
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Table 2.1: Target sequences information.

Code CASP Length Homologs

Contest Database with Database with

80% MMSI 95% MMSI

Count Best Count Best

1R69 63 1 52.38% 1 52.38%

1UZC CASP5 69 1 40.00% 1 40.00%

1UTG 70 2 57.35% 2 57.35%

3ICB 75 15 78.67% 16 78.67%

1BG8 CASP3 76 0 0

1N2Xb1 CASP5 101 1 51.92% 1 51.92%

256B 106 0 2 88.68%

4CPV 108 13 79.63% 19 79.63%

1CCR 111 14 64.08% 21 66.99%

1JWE CASP3 114 4 48.21% 4 48.21%

2MHR 118 2 45.76% 2 45.76%

1MBA 146 20 31.03% 26 32.64%

2FHA 172 16 83.14% 21 94.77%

1b indicates domain

“homologs only” simulations, where the fragment memory search included only the

homologs of the target sequence found in the database with 95% MMSI (see Fig-

ure 2.5 and Table 2.1). For each target sequence/fragment library combination, we

ran 20 molecular dynamics annealing simulations starting from an extended con-

formation. We used the Nose-Hoover thermostat to cool the simulations over 4

million steps from above to below the folding transition temperature and recorded

the coordinates every 1000 steps.
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2.2.5 Analyses

To evaluate the predictive capability of our model, we calculated the struc-

tural similarity of all snapshots from the 20 trajectories of a given target sequence

against the corresponding experimentally determined structure. As specific mea-

sures of similarity, both Q and RMSD were used, where Q is an order parameter

which compares pairwise distances among residues between two structures, as elab-

orated below. It varies between 0 and 1, with higher values corresponding to higher

similarity between the structures. The form of Q is given in Equation 2.4,

Q =
2

(N − 2)(N − 3)

∑
i<j−2

exp

[
−

(rij − rNij )2

2σ2
ij

]
, (2.4)

where N is the total number of residues, rij is the instantaneous distance between Cα

atoms of residues i and j, rNij is the same distance in the experimentally determined

structure and σij is given as σij = (1 + |i− j|)0.15.

To demonstrate the prediction quality for each of our targets, we have plotted

the best Q values from each of the 20 annealing runs, sorting them in descending

order (see Figures 2.2, 2.3, 2.4, 2.9). These plots show how stable the predictions

are, i.e., what maximum Q values could be expected if fewer simulated annealing

runs were performed.

We used the CE alignment server [100] to align the maximum Q structures

with native structures for visual comparison; see Figures 2.5, 2.6, 2.7.
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Figure 2.1: Maximum Q score versus sequence length for “homologs
excluded” AWSEM (AWSEM-HE, light blue squares) and AMW-1
(green diamonds) models. Maximum Q scores for “homologs allowed”
(AWSEM-HA, dark blue triangles) and “homologs only” (AWSEM-HO,
red triangles) are also shown where available.

2.3 Results

We have summarized our structure prediction results in Figure 2.1, wherein

we have plotted the maximum Q value achieved for a particular target sequence

versus its sequence length. The 3 data sets are for the “homologs excluded” (light

blue squares), “homologs allowed” (dark blue triangles) and “homologs only” (red

triangles) fragment libraries. We have also plotted the AMW-1 results [78] (green

diamonds) for comparison.

The results from both the “homologs excluded” and “homologs allowed” frag-

ment libraries are overall slightly improved compared to the results of the AMW-1

model. The “homologs only” library, which we generated only for sequences with
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Figure 2.2: Prediction quality for 1UZC, including and excluding disor-
dered region. For each of the 20 annealing simulations, the maximum
Q values obtained are plotted in descending order. Blue circles corre-
spond to “homologs excluded” predictions and red squares to “homologs
allowed” predictions when the disordered region is included in the cal-
culation of Q. Green triangles correspond to “homologs excluded” pre-
dictions and orange diamonds to “homologs allowed” predictions when
the disordered region is excluded from the calculation of Q.

a sufficient number of homologs in our culled database, significantly outperformed

the AMW-1, “homologs excluded” and “homologs allowed” models for all target

sequences except 1MBA and 3ICB.

Maximum Q values for each of the 20 annealing runs (sorted in descending

order) are shown in Figure 2.3 and Figure 2.4. These figures show that, in most cases,

the predictions are stable, meaning that performing only 5 to 10 annealing runs

would have yielded a similar maximum Q value. Two exceptions worth mentioning

here are the “homologs only” prediction for 1JWE, and the “homologs excluded”

prediction for 1UZC. For the former, the maximum Q value of 0.7 is the only point

above Q = 0.4. For the latter, there is a more modest “jump” from Q = 0.45 to

Q = 0.47 and 0.49. A close examination of the results for 1UZC indicated that a
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disordered region on the N-terminal was likely responsible for the erratic results.

Figure 2.2 shows the results when this 11 residue segment was excluded from the

calculations of Q. Without this region, the prediction is better on average and

significantly more stable.

Finally, we compared our “homologs only” results with the popular compar-

ative structure prediction package MODELLER [95–97] using the same homologs

that were used for the “homologs only” simulations. The results are summarized

in Figure 2.8, where blue squares are the best RMSD values for “homologs only”

AWSEM, and orange diamonds are the MODELLER results.

2.4 Discussion

As shown in Figure 2.1, the predictions made by AWSEM using the “ho-

mologs excluded” fragment library are in general improved compared to the AMW-1

results [78]. Before giving a more comprehensive comparison, we will briefly men-

tion the key differences between AWSEM and AMW-1. The two models share the

same backbone, direct contact, protein/water-mediated contact and burial poten-

tials. However, AMW-1 used globally aligned protein sequences to specify associa-

tive memory interactions, whereas AWSEM uses short fragments to bias the local

conformational search. In addition, AWSEM includes an explicit helical hydrogen

bonding potential, and does not use a radius of gyration biasing term. The latter

was shown to play an important role in correctly predicting the structure of large,

non-spherical proteins [79].

31



(a) 1R69 (b) 1UZC

(c) 1UTG (d) 3ICB

(e) 1N2Xb (f) 256B

Figure 2.3: Prediction quality for 1R69 (a), 1UZC (b), 1UTG (c), 3ICB
(d), 1N2Xb (e), and 256B (f). Blue circles correspond to “homologs
excluded” predictions, red squares to “homologs allowed” predictions
and orange diamonds correspond to “homologs only” predictions.
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(a) 4CPV (b) 1CCR

(c) 1JWE (d) 2MHR

(e) 1MBA (f) 2FHA

Figure 2.4: Prediction quality for 4CPV (a), 1CCR (b), 1JWE (c),
2MHR (d), 1MBA (e), and 2FHA (f). Blue circles correspond to “ho-
mologs excluded” predictions, red squares to “homologs allowed” predic-
tions and orange diamonds correspond to “homologs only” predictions.

33



Figure 2.5: Structural alignments and comparative contact maps of the
maximum Q score structures obtained from “homologs excluded” pre-
dictions for 1R69 (on the left, Q = 0.74, RMSD 1.6Å ) and 3ICB (on
the right, Q = 0.703, RMSD 2.4Å ).

For 1R69 and 3ICB, maximum Q values of ∼ 0.75 and ∼ 0.7 are highly

significant improvements of ∼ 0.3 and ∼ 0.15, respectively, compared to the AMW-

1 predictions. Figure 2.5 shows an alignment of the predicted and native structures,

and comparative contact maps for 1R69 and 3ICB, which indicate precise prediction

of all secondary structure elements as well as good agreement of the global folds.

AWSEM predictions of 1BG8, 2MHR and 2FHA were slightly worse than those of
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Figure 2.6: Structural alignments and comparative contact maps of the
maximum Q score structures for 2FHA, with the “homologs excluded”
prediction on the left (Q = 0.319, RMSD 12.383Å) and the “homologs
allowed” prediction on the right (Q = 0.476, RMSD 8.781Å).

AMW-1.

The number of homologs available for each sequence varied from one to twenty

(see Table 2.1). By performing predictions with the “homologs allowed” fragment li-

brary, we determined that the effect of including fragments from globally homologous

sequences among other fragments from non-homologous sequences on the quality of

prediction is small. In fact, the improvement was statistically significant for four

proteins, of which only two had a change in the maximum Q value of 0.1 or more.
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Figure 2.7: Structural alignments and comparative contact maps of the
maximum Q score structures for 4CPV, with the “homologs excluded”
prediction on the left (Q = 0.396, RMSD 5.8Å) and the “homologs only”
prediction on the right (Q = 0.784, RMSD 1.3Å).

Specifically, the maximum Q values for 1CCR and 2FHA improved by 0.1 (from

0.33 to 0.43) and by 0.16 (from 0.319 to 0.474), respectively. The improvement

for 2FHA can be seen in the structural alignment and contact maps in Figure 2.6.

Unlike the “homologs excluded” prediction, wherein only 3 of the 5 helices are well

formed, in the “homologs allowed” prediction all helices are formed and 4 of them,

with the exception of the small C-terminal helix, have the correct mutual orienta-
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tion and packing. This is particularly impressive given the size (172 residues) and

non-symmetric shape of 2FHA.

For five of the seven targets predicted using the “homologs only” library,

AWSEM achieved a maximum Q greater than 0.7. For 2MHR, a maximum Q = 0.62

and minimum RMSD of 3.44Å was obtained. For 1MBA, the maximum Q obtained

was 0.4. To evaluate these results, we compared them with structure prediction

results obtained using the MODELLER package. This package can do all-atom

comparative modeling of proteins using experimentally determined structures, and

their sequence alignments with the target sequence by satisfying spatial restraints.

MODELLER was able to predict the structure of all larger proteins within 2Å

RMSD resolution (Figure 2.8). Except for 1MBA, the difference in RMSD between

the AWSEM prediction and the MODELLER prediction is between 1 and 2 Å .

This implies that, despite being a coarse-grained model lacking explicit side chains,

AWSEM can be used to make high resolution predictions for sequences that have

homologs with experimentally determined structures.

There are several possible contributing factors to AWSEM’s relatively poor

prediction of 1MBA. Of all the target sequences, 1MBA has the homologs with the

lowest sequence identity, with a maximum of 32.64%. As a result, even though there

are 26 homologs in the database with 95% MMSI, the number of fragments assigned

per position varied from 0 to 14 with an average value of 3. This inhomogeneity

cannot be overcome simply by scaling the strength of the fragment memory term.

In such cases it would be useful to introduce a smarter normalization and weighting

scheme within the fragment memory potential based on the number of interactions
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Figure 2.8: Comparison of MODELLER (green diamonds) and AWSEM
(blue squares) prediction quality, showing RMSD in Å to the experimen-
tal structure versus sequence length in amino acids.

per residue, fragment length and alignment quality. The fragment memory potential

could also potentially be improved by optimizing with respect to the fragment length

and fragments per position. We did not test these possibilities here. Finally, unlike

MODELLER, AWSEM lacks all-atom side chains, which may play an important

role in 3 dimensional packing. This type of effect might accumulate and become

particularly important for large proteins, such as 1MBA (146 residues). On the

other hand, we should also bear in mind that MBA has a heme cofactor which is

entirely omitted in our present simulations.

Another important factor to consider when analyzing the quality of prediction

results is the presence of disordered and flexible terminal regions (or tails). Because

these regions lack a static structure, “errors” in the prediction of these regions will
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Figure 2.9: Prediction quality for 1N2X, including and excluding the first
22 residues, a disordered region. For each of the 20 annealing simulations,
the maximum Q values obtained are plotted in descending order. Blue
circles correspond to the maximum Q values when the disordered region
is included and the red squares correspond to the maximum Q value
when the disordered region is excluded from the calculation of Q.

have the effect of artificially lowering and broadening the distribution of Q values

and RMSD scores we get. This broadening effect is apparent in Figure 2.2, where

exclusion of the flexible tail from Q calculations of 1UZC collapses the “homologs

excluded” and “homologs allowed” results, causing them to both be more similar

to each other and making them individually more stable. Similarly, excluding the

flexible tail (first 22 residues) from the Q calculations of 1N2X (see Figure 2.9)

systematically increases the maximum we obtain Q in each simulation by 0.1.

2.5 Conclusions

Steady progress has been made in the last two decades in addressing the

practical aspect of the “Protein Folding Problem”, namely predicting the three-

dimensional structures of proteins from their sequence. While early efforts were
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almost exclusively based on knowledge-based potentials, more recent work uses a

mix of physical and bioinformatic approaches. The rapid advances in designing and

building specialized computer hardware already allow the use of all-atom explicit

solvent simulations to successfully predict structures of some small proteins [21].

Nevertheless, given that the average human protein is over 400 residues, and many

important and poorly understood biological processes involve complex multi-protein

or nucleic acid assemblies, it will be rather difficult to apply atomistic simulations to

routinely address these large length- and time-scales processes for some time. Hence,

there remains a significant need for the development of coarse-grained, yet prefer-

ably accurate protein force fields. Most prior kinetic and mechanistic studies using

coarse-grained protein force fields relied on native structure based approaches, which

assign favorable interactions to native contacts, giving in concrete terms a folding

funnel. While such approaches are physically meaningful, rooted in the energy land-

scape theory of protein folding, they can underestimate or often completely ignore

the role of non-native interactions, cannot be used for proteins without solved struc-

ture, and also cannot be directly applied without modification to partially or fully

disordered proteins. The above discussion underlines a need for development of a

coarse-grained protein force field which is substantially based on known physical

interactions, is amenable to Molecular Dynamics simulations and can be used for

both de novo protein structure prediction as well as for probing protein folding and

dynamics.

AWSEM, which is a successor to the AMH and AMW approaches to protein

structure prediction, represents one such force field. It combines a large number
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of physical interactions, from backbone terms to direct- and water-mediated inter-

actions and hydrogen bonding, with structural biases that are local in sequences,

based on the alignments of fragments of nine-residues or less of the target protein

to the local segments found in a protein database. The force field was implemented

from the ground up in C++, leveraging the LAMMPS molecular dynamics package.

It can be used not only for protein structure prediction, but also, for example, to

study protein folding kinetics, functional dynamics of the native state, and binding

and folding processes. In ongoing works, our research groups plan to explore the

extensions of AWSEM to simulate disordered proteins and interactions of proteins

with membranes and DNA.

In this work, we have shown that the best structures produced by AWSEM

in the “blind prediction mode”, where we ensured that no global homologs were

included in the local fragments database, were either comparable in quality or im-

proved over the prior AMW efforts in blind prediction. We have also analyzed the

consistency of prediction runs. We find that when poorly-defined loops or tails are

excluded from the structural comparisons, then there is considerable consistency

between different runs for almost all proteins. For some proteins, such as 1R69 and

3ICB, impressive predictions were achieved, with 1.6 Å and 2.4 Å RMSDs to the

corresponding native structures. For larger proteins, over 100 residues, the consis-

tency of predictions has somewhat improved compared to AMW. For these larger

proteins, AWSEM obtains maximal Q values in the range of 0.35 to 0.4. This is

often indicative of many native-like structural elements and even a roughly correct

overall fold in some cases, but with a number of packing defects among the secondary
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structural elements. How to take de novo structure prediction of large proteins to

the high-resolution levels that are achievable for many smaller proteins is a chal-

lenging question, no doubt requiring further efforts in force field development and

parameter optimization.

If the goal is not blind protein structure prediction, but instead investigation

of protein folding kinetics and protein function, it may be advisable to bias the

fragment library with homologs of the target protein, even distant ones. While

exploring this possibility, we have shown in this work that even large proteins (on

the order of 200 residues) fold to structures that are similar to the corresponding

native structures within 1-3 Å RMSD. Hence, by appropriately tuning the fragment

library, one may use AWSEM-based coarse-grained modeling of proteins either for de

novo structure prediction, or in cases where the structures of distant homologs are

known, kinetics and dynamics can be the main aims of the study. As an alternative

to using experimentally determined structures for memories, snapshots of highly

populated states sampled in atomistic simulations can be used as fragment memories

for subsequent AWSEM coarse-grained simulations of the same protein [101].

Since AWSEM is an open-source package, many groups may choose to con-

tribute to its further development and applications to new areas of research. The

comprehensive description of the AWSEM force field, along with all force field pa-

rameters, are elaborated in the supplemental Information of [62] (also Appendix A),

allowing the possibility of reimplementing AWSEM in alternative programming en-

vironments.
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Chapter 3: Predictive Energy Landscapes for Protein-Protein Asso-

ciation

The chapter is based on the published work of the author:

W. Zheng, N. Schafer, A. Davtyan, G.A. Papoian, P.G. Wolynes; Proc. Natl. Acad.

Sci. USA 109(47), 19244–19429 (2012)

3.1 Introduction

Protein-protein interfaces encode information that is key to a molecular un-

derstanding of biological functions. The folding of proteins is well understood in the

framework of energy landscape theory and its principle of minimal frustration. Are

binding landscapes also funneled? Mechanistic consequences of funneled binding

landscapes have been investigated using structure based models [47, 102–105]. The

agreement of these mechanisms with observation suggests that binding landscapes

are generally funneled, explaining why topology is indeed a major factor in deter-

mining binding mechanisms [47]. A statistical analysis of a large database of protein

complexes revealed that for many of the complexes the binding energy gap is indeed

larger than expected knowing the variance of the binding energy [106], the hallmark

feature of a funneled landscape [80]. Further testing this idea, Papoian et al. dis-
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covered that for other complexes, in order to have a funneled landscape for binding,

unanticipated water-mediated interactions were required. They developed a water-

mediated potential encoding these interactions [77]. This transferable potential was

later optimized to create funneled folding landscapes that successfully predict the

structure of monomeric proteins [62, 78]. Therefore there is considerable support

for the idea that, like folding landscapes, protein-protein recognition landscapes are

funneled.

In this paper, we test whether the AWSEM potential can predict binding

interfaces, the problem which motivated its original invention. Unlike rigid docking

programs [107–109], our approach uses molecular dynamics with simulated annealing

to search for structures energetically favored by the AWSEM potential. While many

docking protocols entail multiple stages [110] to accomplish interface prediction,

including rigid body search to locate regions of interest [107,109,111] and refinement

of docked structures and selecting the best models [108,112,113], simulated annealing

of the AWSEM potential proves directly able to predict the binding interface of the

dimers we have tested. The molecular dynamics implementation allows one also to

compute free energy profiles in order to predict mechanisms. Using this predictive

transferable potential model we now revisit the role of topology in determining

binding mechanisms and explore the additional role played by non-native contacts

in coupled folding and binding reactions.
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3.2 Binding Interface Prediction

We used AWSEM to predict the binding interfaces of 8 homodimers and 4

heterodimers. The homodimers were previously studied with pure structure based

models [47]. The only structural information used by AWSEM was local backbone

information of the monomers from the PDB structure of the dimeric complex - no

information about dimeric contacts was included. The tertiary contacts within the

monomers are also not used as input. The input of native monomeric informa-

tion guides only local-in-sequence structure formation. Both the tertiary contacts

within the monomers and between the two monomers are determined by the same

transferrable tertiary contact potential, which is described briefly in the Methods

section and in full detail in the supplementary information of the paper of Davtyan

et al. [62]. The starting states of all simulations consisted of two completely un-

folded and unbound monomers, and molecular dynamics with simulated annealing

was performed to search for the bound state.

As shown in Figures 3.1 and 3.2, the binding interfaces for the 12 dimers are

generally very well predicted. One can argue that the interfaces of homodimers

might be easier to predict because their binding interactions are usually stronger

due to symmetry [114, 115]. Homodimers are in general observed in a symmetric

binding geometry, where strong contacts on the interface are doubled. We therefore

also tested 4 heterodimers with relatively weak interfaces, and AWSEM was able

to predict the interfaces to similar accuracy as the homodimers discussed herein.

The heterodimers that we tested have mostly hydrophilic interfaces, which are rel-
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Figure 3.1: Snapshots of best predicted structures (yellow) using
AWSEM, compared with the PDB structure (blue). The name of the
proteins, their PDB ID and the number of residues are shown in the
figure. The first 8 dimers are homodimers, the last 4 are heterodimers.

atively weak when compared to hydrophobic interfaces, and are therefore harder to

predict. The water-mediated interactions (see Methods section) play a major role

in predicting hydrophilic interfaces. When it is turned off, the prediction quality of

dimers with hydrophilic interfaces get significantly worse, as shown in Figures B.3

and B.4. Having successfully passed the prediction test for both homodimers and

heterodimes, AWSEM was applied to study the mechanism of homodimer binding

in greater detail in the following part of the paper.

In Figure 3.2, the seemingly worst prediction in our test set is for the home-

odomain of LFB1 (PDB ID: 1LFB). Its intermonomeric contacts in the PDB struc-
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Figure 3.2: The accuracy of the AWSEM predictions is measured by Q
and RMSD of the Cα atoms of the complex. PDB codes for homodimers
and heterodimes are in black and blue, respectively. Qcomplex is shown
as a star symbol and Qinterface a square symbol. Note that for 1LFB,
there is a relatively large difference between the two Q values. This
can be explained by its very small ratio of the number of interfacial
contacts to the number of total contacts, as shown in Figure B.1. Dimer
size refers to the number of residues in the dimer complex. 20 or 40
independent annealing runs were performed for each dimer, starting from
two monomers completely unfolded and separated. The final structure
obtained at the end of the annealing runs with the best Q is selected for
each dimer.

ture are weaker than for all other proteins in the test set. Significant native or non-

native contacts only form at temperatures well below the binding temperatures1 of

the other proteins. The PDB structure with which we compared our prediction is in

fact only a model, not a directly determined crystal structure, proposed by Ceska et.

al. [116] and involves a simple 2-fold rotation of the crystallographically determined

monomer structure. It has been suggested that the homeodomain might be dimeric

when bound to DNA [117,118]. But we have been unable to find a crystal structure

of the homeodomain of LFB1 in dimeric form in the presence or absence of DNA.

1At the binding temperature, the populations of the bound state and dissociated state are equal.
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Inspired by the principle of minimal frustration, AWSEM was optimized by

maximizing the ratio of the folding temperature2 to the glass transition tempera-

ture3, similar to the Z-score optimization algorithm. But the parameters found by

optimization were developed using a training set containing only monomers. The

success of the model in actually predicting binding structures buttresses the idea

that the same energy landscape principles are applicable to binding processes as to

monomeric folding. For Arc repressor (1ARR) and Lambda repressor (1LMB), Fig-

ure 3.4 shows the total energy of the predicted complex at the end of each annealing

simulation as a function of Qinterface, the fraction of native contacts formed on the

interface. Low energy structures are seen to correspond to near native states and

there appear to be few competing (low energy but low Qinterface) traps.

3.3 Experimental and Theoretical Descriptions of Protein Dimers

Homodimers are often categorized as being either obligatory or nonobligatory

dimers, meaning that the monomers must associate to complete folding (obliga-

tory) or are stably folded in isolation at physiological temperature (nonobligatory).

This distinction can be made in the laboratory by performing equilibrium denatu-

ration experiments. In these experiments, obligatory dimers show only two states -

one with both monomers unfolded (or partially folded) and the other with the na-

tive dimer structure - and are therefore sometimes referred to as two-state dimers.

Nonobligatory dimers have three populated states under physiological condition -

2At the folding temperature, the populations of the folded state and unfolded states are equal.
3Below the glass transition temperature, the dynamics of the protein chain is arrested.
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Figure 3.3: Free energy surfaces of folding and binding of obligatory (two-
state) and nonobligatory (three-state) dimers obtained using AWSEM.
Free energy surfaces are plotted as a function of the fraction of native
contacts within the individual subunit QA (QB), Qinterface, Q of the com-
plex and the distance between the centers of mass of the two subunits
distanceCOM . State U refers to the unfolded and unbound state, state N
is the native bound state. The intermediate state I is observed only in
the free energy plot of the non-obligatory dimer 1LMB. For 1LMB, the
marcobasins that contain a mixture of different states are left unlabeled.
The simulations reproduce the binding mechanism inferred from exper-
imental and previous theoretical modeling results [47]. The free energy
surfaces are calculated at the temperature where the heat capacity has
a peak as a function of temperature.

49



Figure 3.4: The total energies of the final complexes at the end of an-
nealing simulations are plotted against Qinterface. Near native bound
structures have lower energy than non-specific bound structures.

one with unfolded monomers, another with folded but unbound monomers, and yet

another with the folded monomers bound together.

The binding-folding mechanism has been found to correlate with several global

characterizations of the native dimer structure: interface hydrophobicity and the

ratio of the number of interfacial contacts to the number of intramonomeric contacts

being most important. A dimer with a highly hydrophobic interface and a large ratio

of interfacial to monomeric contacts is typically two-state. Dimerization in these

cases is, in some ways, reminiscent of monomeric protein folding in so far as the

dimer as a whole can be thought of as a single domain folding cooperatively with the

interface playing the part of the hydrophobic core. This type of folding mechanism is

sometimes referred to as involving “induced fit” [119,120], meaning that the presence

of the binding partner is needed to induce the monomer to adopt its folded structure.

Nonobligatory dimers typically have more hydrophilic interfaces and smaller ratios
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of interfacial contacts to monomeric contacts. These dimers associate via a lock and

key type mechanism [121] wherein complementary interfacial geometry and favorable

contact energies drive association.

Knowing the size and shape of the interface has often proved sufficient to

determine whether a homodimer will associate via a two-state or three-state mech-

anism [47]; Using a structure-based model with uniform contact energies for only

native interfacial contacts and native monomeric contacts, Levy et al. were able

to accurately reconstruct the experimentally determined binding mechanisms for 11

homodimers. As shown in Figure 3.3, the current model also correctly reproduces

the observed pattern of two-state and three-state behaviors for these examples.

Two stable states are observed for two-state dimer Arc repressor, the unfolded, un-

bound state U and the native bound state N . There is no stable intermediate state,

indicating a folding-upon-binding mechanism. For the three-state dimer Lambda

repressor, on the other hand, there is an additional intermediate state I which con-

sists of an ensemble of a variety of encounter complexes. These complexes have only

one monomer folded and partially bound or are complexes in which both monomers

have folded but remain unbound. The free energy surfaces calculated using AWSEM

are consistent with the experimental observations and previous theoretical model-

ing results. Unlike the previously employed structure-based model, however, the

current model which can predict dimer interfaces can also shed light on the role of

non-native interactions in the association process.
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Figure 3.5: The AWSEM predictions vs. the predictions using a non-
optimized energy function with uniform intermonomer contact strength
for Troponin C site III (1CTA) and Arc repressor (1ARR). In the plots
on the left, the energies of the final configurations from all simulations
are plotted as a function of Qinterface. Blue and red colors are for the
AWSEM predictions and the uniform predictions, respectively. In the
plots on the right, the distribution of the number of samples collected
from 20 simulations is plotted along Q. For 1CTA, the native bound
state N is energetically less favored for uniform contact energy function
than for AWSEM. For 1ARR, on the other hand, the native bound state
is the lowest energy state for both energy functions. However, uniform
intermonomeric contacts create an intermediate state I which drastically
reduces the binding efficiency.
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3.4 Role of Monomer Geometry in Interface Determination

One might argue that the successful predictions of dimer interfaces could be

due to geometrical factors related to the limited number of ways that two dimers

of prescribed geometry can associate. In this case of course the monomer is flexible

so doesn’t have a fixed tertiary structure a priori. Nevertheless, to investigate the

possible role of monomer geometry by itself, we changed the strength of any contacts

between monomers to have a residue-independent, uniform value while retaining the

transferable potential within the monomers. The strength of the intermonomeric

interaction is rescaled so that the stability of the native bound state was the same

as with the AWSEM potential. New prediction simulations using the uniform inter-

monomer contact strength with the same annealing schedule were performed. The

simulations using the uniform intermonomer contact energy were significantly worse

than the AWSEM predictions that used the optimized potential. Interestingly, the

effects of changing the intermonomer contact strength to a uniform value are dif-

ferent for different dimers. For example, as shown in Figure 3.5, for Troponin C

(1CTA), with uniform contact energies the native bound state is no longer an en-

ergetically favored state. Instead there are numerous misbound states with more

favorable binding energies than the native. For Troponin C the native bound state

is not the state with the maximal number of intermonomeric contacts. On the other

hand, for arc repressor (1ARR), the native bound state does still remain the lowest

energy state when the contacts have uniform weight. Nevertheless, uniform inter-

monomeric contacts create an intermediate state I in this system which drastically
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reduces the binding efficiency.

The structure of the arc repressor monomer in the bound dimer consists of two

helices and a beta strand, and the resulting dimer interface forces the two monomers

to significantly intertwine. The large size of the interface allows the uniform inter-

action energy described above to still favor the correct bound structure, albeit with

a rougher landscape as indicated by the presence of misbound structures encoun-

tered during annealing. Energetic heterogeneity is not the only contributor to high

binding efficiency. In instances where the native binding interface geometry forces

the monomers to interweave, the flexibility of the local structure of the monomers

also modulates the binding efficiency, as shown in Figure B.2. When the strength

of the energetic term encoding the local in sequence structure bias is decreased, the

percentage of successful binding simulations at first increases but finally decreases

when the local bias becomes too weak. This is consistent with the suggestion that

flexibility allows proteins to adjust to achieve optimal fit upon binding in order to

perform specific biological functions [122]. Binding is a dynamic process on a fun-

neled landscape; Geometry of the monomers alone does not completely explain the

binding process.

3.5 Role of Nonnative Contacts in Dimer Formation and the Fly-

casting Mechanism

The water-mediated potential in AWSEM is a transferable potential that can

be used to model the intermonomer tertiary interactions. This part of the model
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allows us to study the role of non-native intermonomeric contacts in dimer formation.

In order to discuss the role of non-native interactions, it is informative to single out a

special class of non-native contacts called swapped contacts. The name comes from a

type of intermonomer contact pair that is observed in domain-swapped dimers [123,

124]. Swapped contacts are defined as non-native intermonomeric contacts formed

between the ith residue in monomer A and jth residue in monomer B that correspond

to i and j being a native contact pair within the monomer. Note that sometimes

there are pairs of residue indices (i, j) corresponding to a native monomer contact

pair that are also native interfacial contact pairs. These contact pairs are excluded

from the computation of the number of swapped contacts since they are considered

to be native contacts. The swapped contacts are of special importance in dimer

association because they are on average stronger than other random contacts that

have no analog in the native monomer structure. According to the principle of

minimal frustration, the native contacts within a stable monomeric protein are on

average stronger than other random contacts so, likewise, swapped contacts are more

stable than random ones.

Non-native interactions play different roles for obligatory and non-obligatory

dimers as seen in Figure 3.6. An example of an obligatory dimer, Arc repressor,

is shown on the top of Figure 3.6. States stabilized by non-native interactions cor-

respond to on-pathway intermediates that catalyze the association process through

a fly-casting mechanism [125]; The individual monomers, which are both in ex-

tended conformations before the association, have significantly larger capture radii

than those of the folded monomers. The large capture radius increases the rate of
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Figure 3.6: For Arc repressor (top) and Lambda repressor (bottom), free
energy surfaces at the folding temperature are plotted as a function of
the number of non-native intermonomeric contacts Nnon−native, QA and
Q of the complex. I, U and N stand for intermediate, unbound and
native bound states, respectively. Non-native interactions have different
consequences for obligatory and non-obligatory dimers; In the case of
obligatory dimers, as shown on the top of the figure, states stabilized
by non-native interactions correspond to on-pathway (indicated as gray
arrow) intermediates that can catalyze the association process through
fly-casting mechanism. In the case of non-obligatory dimers, these states
appear to be off-pathway (indicated as red arrow) and can thereby im-
pede binding by acting as a trap.
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Figure 3.7: Free energy surfaces as a function of Nswapped for Lambda
repressor (1LMB). A) Similar as in Figure 3.6, we observe an off-pathway
intermediate state, stabilized by the swapped contacts. B) There is a
linear increase of the number of swapped contacts when the number
of non-native contacts increases. The ratio of the number of swapped
contacts to the number of non-native contacts is about 10 ∼ 20% . These
suggest that the intermediate state stabilized by non-native contact pairs
contains a significant number of swapped contacts.

binding. In the case of non-obligatory dimers, however, the states with non-native

contacts appear to be off-pathway and impede binding by acting as kinetic traps.

We investigated further these off-pathway intermediates for the case of Lambda re-

pressor (1LMB). In Figure 3.7, free energy surfaces of Lambda repressor are plotted

as functions of the number of swapped contacts Nswapped, Q and Nnon−native. As in

Figure 3.6, we observe an off-pathway intermediate state stabilized by swapped con-

tacts in the left plot of Figure 3.7. The plot on the right shows a linear increase in

the number of swapped contacts when the number of non-native contacts increases.

Figure 3.7 suggests that the intermediate state I consists of a significant number of

swapped contact pairs. These intermediate states stabilized by swapped contacts
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are kinetic traps in the binding of non-obligatory dimers. If both of the monomers

of a non-obligatory dimer are significantly unfolded when they encounter each other,

they may fall into the trap state I as shown in Figures 3.6 and 3.7.

To summarize the roles of the different types of contacts during binding, we

plot their average contact strength and their contributions to the total binding en-

ergy against Q in Figure 3.8. As the complex approaches the native state, as shown

in Figure 3.8A, the major contributor to the binding energy switches from being

non-native contacts to native contacts, as expected. This change of contribution

is steep around Q = 0.5, near the transition state region. At low Q region, total

energy of swapped contacts is about 20% of the total binding energy. Consistent

with the principle of minimal frustration, swapped contacts are on average stronger

than other non-native contacts throughout the whole binding process, as shown in

Figure 3.8B. At low Q, where the two monomers are first coming into contact, the

average strength of the swapped contacts is even larger than the strength of the na-

tive contacts alone, suggesting their important role in stabilizing non-specific bound

structures at the start of the binding process. As binding progresses, the strengths

of both swapped and non-native contacts decrease, while the strength of the native

contacts is, interestingly, more or less constant. These observations of the ubiquity

of domain swapping are consistent with the experimental observation by Oliveberg

of the universality of transient aggregation at high protein concentration [126].
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Figure 3.8: For all three different types of contacts, their contributions to
the total binding energy and their average strength are plotted against
Q of the Lambda repressor complex. Native contacts, swapped con-
tacts and non-native contacts excluding swapped contacts are in triangle,
square and circle symbols, respectively. A) As the complex approaches
the native state, the major contributor to the binding energy switches
from non-native contacts to native contacts. This change of contribution
is steep around Q = 0.5 , near the transition state region. Total energy
of swapped contacts is about 20% of the total binding energy at the
low Q region. B) Swapped contacts are on average stronger than other
non-native contacts throughout the whole Q region. As Q increases, the
average strengths of both swapped and non-native contacts decrease,
while the strength of the native contacts is more or less constant. At
low Q region where the two monomers are in initial encountering, the
average strength of the swapped contacts is even larger than the native
contacts.

3.6 Conclusions

The intent of this study was to investigate the extent to which protein-protein

association is funneled by the same forces that determine the landscapes of monomeric

proteins. We see that the association is well described by a funneled model but that

there are residual effects of energetic frustration which allow non-native interac-

tions to play a role. The picture which emerges from the study is that folding
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and binding are dynamic processes that are often coupled and that both take place

via diffusion on rugged but nevertheless largely funneled energy landscapes. In-

teractions that successfully predict the structure of monomeric proteins also prove

sufficient to predict native dimeric interfaces. Monomer geometry alone does not

lead to the successful prediction of binding modes: both energetic heterogeneity and

flexibility of the monomers are important. Non-native interactions can stabilize on-

pathway or off-pathway conformations depending on the stability of the monomers,

and swapped contacts in particular are stronger than other, non-specific, non-native

contacts, in accordance with the principle of minimal frustration. Swapped con-

tacts play an important role in stabilizing non-specific bound structures at the start

of the association process. Other non-native interactions, on the other hand, also

sometimes play a role but in general dimeric proteins have evolved so as to eliminate

traps on the combined folding and binding landscape.

3.7 Methods

AWSEM was described in detail in the supplementary material of a recent

paper [62]. The tertiary contact potential Vcontact consists of two terms, the direct

contact Vdirect and the mediated contact Vwater. In simulations with multiple chains,

the associative memory potential VAM , acts only locally in sequence within each

monomer. On the other hand, Vcontact, the burial potential and the beta hydrogen

bonding terms act both within and among the monomeric chains. When calculating

the local density of residues, which is used by the helix and burial potentials as well
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as Vcontact , all chains are included. VAM is determined by a single memory, which

is the structure of the monomer in the experimentally determined dimer structure.

As mentioned previously, this interaction includes only those pairs of residues that

have a sequence separation of less than or equal to 9. No information about contacts

within the monomers or on the dimer interface is included.

The predictions were performed using molecular dynamics with simulated an-

nealing. The annealing simulations were initialized by completely unfolding the

individual monomers and separating them. The temperature is then lowered to

below the empirically determined binding temperature and a weak bias is applied

between the centers of mass of the two monomers to ensure that contact is made

during the course of the simulation. The free energy surfaces were calculated using

the Weighted Histogram Analysis Method (WHAM) [127] on the data collected from

constant temperature simulations with umbrella sampling along Q.
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Chapter 4: The Role of Micro-environmental Fluctuations in Protein

Folding

4.1 Introduction

Protein folding experiments in vitro have taught us a great deal about various

folding mechanisms. In particular, the early puzzle about protein folding timescales

being unreasonably short, based on a naive expectation of very long search times

on a random landscape, have been resolved using the modern language of energy

landscapes, invoking, among other physical ideas, the key idea of the principle of

minimal frustration [5, 128]. The latter postulates that the energetic correlations

among various conformations of a globular protein sculpt a funnel with the native

basin residing deep, at the bottom, which allows many unfolded conformations to

glide down during folding. Additionally, residual frustration renders transient traps

along the folding pathway. However, the ruggedness of energy landscapes of evolved

protein sequences should not be too large, such that folding dynamics is not ar-

rested in these traps. Interestingly, one source of frustration is very difficult to

do away using sequence change via evolution, namely the topological frustration of

chain segments not being able to cross each other. For proteins with large contact
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order, which often have complicated folds and function, topological misfolding may

represent a major source of slowdown towards the native state.

Although major advances have been made in the last three decades in under-

standing protein folding in vitro, only recently folding in vivo has attracted con-

siderable attention. In particular, there are two effects that have been throughly

investigated: 1) the role of excluded volume effects, induced by crowding inside

a cell, which may affect not only folding rates but also result in misfolding and

aggregation [129]; 2) the role of chaperons that help to prevent misfolding and ag-

gregation through various means. Even proteins which are capable of autonomously

folding into their native structure in vitro very often need chaperon assistance in

vivo [130–132]. A number of mechanisms were suggested for the physical basis

of chaperon action, including iterative annealing [133] and confined space mecha-

nisms [134,135].

It has recently been discussed that in a dense environment folding may be

affected not only through excluded volume interactions, but also through formation

of transient, yet chemically specific, contacts with the crowding agent. In the context

of a biological cell, this becomes even more complicated, since there are thousands

of crowding agents present, and the composition of molecules evolves in time and

space. Hence, from the viewpoint of any specific protein which undergoes folding,

the chemical environment around it is fluctuating on either one or, more likely,

multiple timescales. In this work, we address the question of whether transient

fluctuations of chemical micro-environment of a protein may significantly affect its

folding and unfolding dynamics.
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A large extent of interactions between protein residues are solvent mediated,

such as the hydrophobic effect or electrostatic and water-mediated interactions be-

tween hydrophilic residues. Hence, when the chemical composition of the solvent

changes, one expects that the strength of attraction between the protein residues

will vary as well. Since the chemical composition varies spatially within a biological

cell, and the composition in one spatial location fluctuates temporally, the strength

of inter-residue interactions of any particular protein in the cell will fluctuate in sync.

In analogy to various barrier crossing problems studied in other fields of condensed

matter physics, one expects that these fluctuations under certain conditions may

induce a stochastic resonance, accelerating both folding and unfolding kinetics. In-

deed, this is what we have discovered in our numerical simulations of protein folding

using a simple coarse-grained model. We found that both deterministic and random

fluctuations of the strength of inter-residue interaction potential, when occurring

at some specific timescale, significantly accelerate the folding dynamics. Hence, we

suggest a new mechanism which may accelerate protein folding in the dense cellular

environment, assisted by transient fluctuations of the chemical micro-environment

for any protein that undergoes folding and unfolding. This mechanism may be help-

ful for larger proteins that are difficult to fold, particularly due to having significant

topological frustration, providing an assistance pathway complementing the action

of chaperons.
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4.2 Results and Discussion

In this work, we investigated the effect of correlated random noise and har-

monic fluctuations on protein folding dynamics. Using Molecular Dynamics (MD)

simulations we showed that both harmonic and random noise increase the transition

rate if applied at a certain characteristic frequency or correlation time, respectively.

In our computational studies, we looked at two structures; a 53 residue 1SRL

and a 415 residue PGK (see Figure 4.3). We modeled the environmental noise

by inducing fluctuations of native binding interactions (see Methods section). The

results summarized in the Figure 4.1 illustrate the dependence of average first-

passage time of folding from the harmonic period θ and correlation parameter τ for

different noise amplitudes (corresponding to the root-mean-square deviation values
√
〈δε2〉
ε

). The horizontal solid line in each of the graphs corresponds to the average

folding time in the absence of any noise.

Figure 4.1 clearly shows that, for both proteins, and for both harmonic fluctua-

tions and correlated random noise, there exists a range of values of the characteristic

parameter (τ or θ) for which the average first-passage times are smaller compared to

the unperturbed system. Furthermore, for each value of the harmonic or correlated

random noise amplitude, there exists an optimal τ or θ value for which the effect is

maximal. For the harmonic noise the optimal fluctuation frequency (ν = 1/θ) is in

close order to the transition rate of the unperturbed system. This is in agreement

with earlier theoretical calculations for resonance of nonlinear systems of differen-

tial equations, which applies to a wide class of problems including equations of
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Figure 4.1: a) 1SRL. Harmonic fluctuations. Plot of average first-passage

time vs θ period for root-mean-square deviations

√
〈δε2〉
ε

=0.03, 0.04, 0.05,
0.06, 0.07, 0.1; blue circles, red squares, green diamonds, yellow trian-
gles, magenta down triangles, cyan hexagons correspondingly. b) 1SRL.
Correlated random noise. Plot of average first-passage time vs τ cor-

relation time for root-mean-square deviations

√
〈δε2〉
ε

=0.04, 0.05, 0.06,
0.08, 0.09, 0.1; blue circles, red squares, green diamonds, yellow trian-
gles, magenta down triangles, cyan hexagons correspondingly. c) PGK.
Harmonic fluctuations. Plot of average first-passage time vs θ period

for root-mean-square deviations

√
〈δε2〉
ε

=0.03, 0.05, 0.07; blue circles, red
squares, green diamonds correspondingly. d) PGK. Correlated random
noise. Plot of average first-passage time vs τ correlation time for root-

mean-square deviations

√
〈δε2〉
ε

=0.03, 0.05, 0.07; blue circles, red squares,
green diamonds correspondingly. The horizontal line in each plot corre-
sponds to the average folding time in the absence of noise. Folding time,
τ and θ are in units of femtoseconds.
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Figure 4.2: a) 1SRL. Plot of θmin vs. noise amplitude. R2 = 0.883. b)
PGK. Plot of θmin vs. noise amplitude. R2 = 0.995.

motion [136, 137]. We also showed that, for the harmonic fluctuations, the optimal

θ value decreases with increasing noise amplitude (see Figure 4.2). On the contrary,

in the case of correlated random noise, the optimal τ value does not seem to depend

on noise amplitude.

In other words, our computational results show the existence of a resonance

when the driving frequency approaches the folding rate of the unperturbed system.

For PGK, this finding was recently validated experimentally using time-resolved

Förster resonance energy transfer (FRET) technique. In the experiments done by

Martin Gruebele and Max Platkov at University of Illinois at Urbana-Champaign,

the temperature of the aqueous solution of PGK was harmonically modulated around

average temperature T0 = 37.0 ◦C with amplitudes δT = ±1± 2 ◦C [138,139].

T (t) = T0 + δT sin[2πνt] (4.1)

The melting temperature and the folding/unfolding relaxation rate of the PGK
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construct used in the experiments are 39.0 ◦C and 0.5 Hz, respectively [140]. The

applied temperature wave will induce folding and unfolding, affecting the donor and

acceptor intensities. At low frequencies, they will follow the temperature modula-

tion, but they will lag behind when the frequency of modulation approaches the

reaction rate [141,142]. In principle, measuring the phase difference between donor

and acceptor intensities (φ = φA−φD) should make it possible to detect the change

in reaction rate. However, the small temperature signal used in the experiments

only make it possible to examine the ∆φ difference between two amplitudes.

According to our estimates (see Section C.2), ±1 and ±2 ◦C correspond to
√
〈δε2〉
ε

= ∓0.0033 and ∓0.0066, respectively. This is approximately 10 times weaker

then the signal we applied in our simulations. (±2 ◦C is an experimental limit).

Using interpolation technique (see Section C.3) we estimated

ln

tminf

(√
〈δε2〉/ε = 0.0066

)
tminf

(√
〈δε2〉/ε = 0.0033

)
 = −0.085 (4.2)

This is in agreement with the estimate made from the experimentally measured ∆φ

vs. frequency dependence.

It is important to note that the experimentally observed folding times and the

times obtained from simulation differ in order significantly. This is in result of using

a Gō-like model (see Methods) for the computational studies. Such models allow us

to explore the folding dynamics of rather big proteins, PGK for example, through

the use of reduced representation and by smoothing the energy landscape [42]. This

results in a significant reduction of physical folding time for a protein.

Our computational studies (see Figure 4.1) also show that, for both harmonic
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Figure 4.3: Left: SH3 domain of tyrosine kinases (PDB ID: 1SRL). 56
residues. Right: Phosphoglycerate kinase (PGK). 415 residues.

and correlated random noise, the average first-passage time increases relative to

the unperturbed system before and after the system experience resonance. This

is due to the exponential nature of the partition function; fluctuations of an equal

strength do not cancel each other if they have opposite signs. In the case of harmonic

noise, the average first-passage time first increases rapidly when the period becomes

greater than the folding time of the unperturbed system. It further levels out to

a certain constant value. In the latest case, when the period becomes much larger

than the folding time, the applied wave acts like a constant driving force instead.

Because the phase of the harmonic wave is randomly chosen at the beginning of

the simulation, and because of the non-linearity of the system, this results in the

average first-passage time being above its value in the absence of noise. In the case

of correlated random noise, we always started from the desired average value of the

ε. Thus, for large correlation times, the average first-passage time coincides with its

value for the unperturbed system.

69



A further theoretical discussion of the phenomenon described here, in the

context of the experimental measurements, is presented in Chapter 5.

4.3 Conclusions

Using a simple computational model, we showed the existence of resonance in

the protein folding reaction. Our simulations directly indicate that both harmonic

fluctuations and correlated random noise increase the transition rate for certain

values of the characteristic parameters. In the case of harmonic noise, we found

that resonance occurs when the fluctuation frequency approaches the folding rate

of the unperturbed system. This former result was validated experimentally, where

resonance was also observed near the natural folding rate. Another interesting

feature we saw from the simulations was the increase of resonance frequency with

the amplitude of the harmonic wave, while, in the case of the correlated random

noise, the resonance correlation time did not depend on the amplitude.

4.4 Methods

4.4.1 Gō-like Model

For this study we used a Cα only Gō-like model developed by Onuchic and

coworkers [42]. According to this model, the energy of a specific conformation of a
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protein is,

VGo−model =
∑
bonds

Kr(r − r0)2 +
∑
angles

Kθ(θ − θ0)2

+
∑

dihedrals

∑
n=1,3

K
(n)
φ (1 + cos[n(φ− φ0)])

+
∑
i<j−3

εi,j

[
5

(
σij
rij

)12

− 6

(
σij
rij

)10
]

+
∑

ε
′

i,j

(
σij
rij

)12

(4.3)

where r and r0 are the distances between two subsequent Cα atoms in current and

native states. Similarly θ and θ0 are angles between three subsequent Cα atoms and

φ and φ0 are dihedral angles between four subsequent Cα atoms. The last two terms

describe non-local native interactions and short range repulsion between non-native

pairs. εi,j = ε > 0 and ε
′
i,j = 0 if i and j are in contact in native state, and εi,j = 0

and ε
′
i,j = ε2 > 0 in the opposite case. σij is taken to be equal to the distance

between Cαi and Cαj for native pairs and 4Å for non-native ones. K parameters

are taken to be Kr = 100ε, Kθ = 20ε, Kφ = ε and Kφ = 0.5ε. We choose ε and ε2,

equal to the same ε0, so that the folding temperature1 falls between 300 and 350K.

4.4.2 Simulations

We performed molecular dynamics simulations of the SH3 domain of tyrosine

kinases (PDB ID: 1SRL) and phosphoglycerate kinase (PGK) protein. We used

Gō-like model described above, but with modified ε for the native contact term.

This way, we aim to model the environmental noise present in realistic biological

environment. We modeled ε in two ways: 1) as a random process with some char-

acteristic correlation time τ , using the Langevin equation, 2) as a sinusoidal wave

1At the folding temperature, the populations of the folded state and unfolded states are equal.
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Figure 4.4: a) Free energy of 1SRL vs. the ratio of native contact Q. b)
Free energy of PGK vs. the ratio of native contact Q.

with period θ. In both cases, the average value of ε was equal to the original value

of ε0. We computed the average first-passage time of folding for different values of

standard deviation of ε, and the characteristic correlation time τ in the 1st case and

period θ in the 2nd case.

In the case of correlated random noise, εeff = ε+ δε, where δε is a solution of

the equation

dδε

dt
= −ξδε+ ω2η(t) (4.4)

where η(t) is Gaussian white noise. ξ and ω determine properties of the random

process, namely τ correlation time and
√
〈δε2〉 standard deviation (see Section C.1

for more details). In the case of sinusoidal wave, εeff = ε+ δε√
0.5

sin(2πt
θ

+ φ0) where

δε now is a numerical parameter. φ0 is the initial phase of the wave, which was

uniformly randomized for all simulations with harmonic noise.
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For the 1SRL protein, we chose ε0 = 0.56kcal/mol. This resulted in the free en-

ergy barrier of approximately 1.5kcal/mol or 2.5kBT . For PGK, we chose a slightly

higher ε0 = 0.58kcal/mol. In this case, the free energy barrier was approximately

0.9kcal/mol or 1.5kBT (see Figure 4.4).

For each data point we ran 1000 MD simulations and found the dependence of

the average first-passage time of folding from noise amplitude and the characteristic

parameters. We considered a protein folded if the fraction of native contacts (Q)

formed was above 0.8.
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Chapter 5: Further Discussion of Fluctuation-induced Resonance Phe-

nomenon in Protein Folding

5.1 Introduction

Here we further discuss the phenomenon described in Chapter 4. First, we

present a simple kinetic theory of folding under applied temperature wave. We find

the number fraction of folded (and unfolded, respectively) population vs. time, and

its phase shift relative to the driving wave. As expected, at slow modulation we see

that the reaction closely follows the temperature fluctuations and lags behind them

at higher frequencies. Knowing the folded population allows us to estimate the phase

shift between donor and acceptor fluorescence intensities in FRET experiments.

Even though the kinetic theory does not explain the emergence of the resonance in

the folding reaction, it helps to understand the general effect of the temperature

fluctuations on experimental measurements. Next, we approach the same problem

using Brownian Dynamics (BD) simulations of a particle moving on a two-state

free energy landscape. Varying the frequency and the amplitude of the applied

temperature wave, we get very similar results to the ones obtained with our MD

simulations (see Chapter 4), including the decrease of average first-passage time of
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folding and resonance near the frequency value corresponding to the transition rate

of the unperturbed system. Then again, we calculated the phase shifts between

the folded population and the temperature wave, and between donor and accepter

intensities. The comparison of BD results to the ones from the kinetic theory allows

us to understand the effect of resonance on those phase shifts and to interpret the

experimental results.

5.2 Kinetic Theory. Analytical Solutions

5.2.1 Finding folded and unfolded fractions

Let’s assume we have a homogenous protein solution, and that the protein

itself is a two-state system (see Figure 5.1) with folding temperature1 Tm = 312K.

We will denote the number fractions of folded and unfolded proteins by F and U.

Then, we can describe the evolution of F with the following kinetic equation:

dF

dt
= k+U − k−F (5.1)

where k+ and k− are the folding and unfolding rates respectively. They can be

written as

k+ = k0e
−∆GUF

kBT , k− = k0e
−∆GFU

kBT (5.2)

We are interested in the case when there is a harmonic temperature wave applied

to the system:

T (t) = T0 + δT sin(2πνt) (5.3)

1At the folding temperature, the populations of the folded state and unfolded states are equal.
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Figure 5.1: Free energy of a two-state protein.

where T0 = 310K and δT is either ±1 or ±2K. As a result of the applied temper-

ature wave, ∆GUF and ∆GFU , and thus k+ and k−, will depend on time. In the

linear approximation

∆Gf = ∆GUF −∆GFU = ∆G
(1)
f (T (t)− Tm)

∆GUF = ∆G(0) + ∆G
(1)
UF (T (t)− Tm)

∆GFU = ∆G(0) + ∆G
(1)
FU(T (t)− Tm)

(5.4)

The exact analytical solution of Equation 5.1 cannot be found. Thus, we will first

discuss the analytical solution of the equation, which we found through a number

of approximations. As we will show next, this analytical solution is a good first

order approximation, which explains the phase shift vs. frequency dependence well

but fails to explain the dependence of the phase shift on the temperature wave

amplitude.

Using Equation 5.4 and taking into account that U + F = 1, we can rewrite Equa-
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tion 5.1 in the following way:

dF

dt
= k

′

0

[
(1− F )e

−
∆G

(1)
UF

(T (t)−Tm)

kBT (t) − Fe−
∆G

(1)
FU

(T (t)−Tm)

kBT (t)

]
(5.5)

where k
′
0 = k0e

−∆G(0)

kBT is the slow changing prefactor, which we will assume to be

constant. By taking into account that δT
T0
� 1, the expressions in the exponents can

be simplified in the following manner

∆G
(1)
UF (T (t)− Tm)

kBT (t)
=

∆G
(1)
UF

kB

[
1−

Tm

T0 + δT sin(2πνt)

]
≈

∆G
(1)
UF

kB

[
1−

Tm

T0

]
+

∆G
(1)
UF

kB

TmδT

T 2
0

sin(2πνt).

Accordingly, we will get

dF

dt
= k

′

0

[
(1− F )µ1e

−
∆G

(1)
UF

kB

TmδT

T2
0

sin(2πνt)
− Fµ2e

−
∆G

(1)
FU

kB

TmδT

T2
0

sin(2πνt)

]
(5.6)

where µ1 and µ2 are time independent constants given by the equations

µ1 = e
−

∆G
(1)
UF

kB

[
1−Tm

T0

]
, µ2 = e

−
∆G

(1)
FU

kB

[
1−Tm

T0

]
. (5.7)

After Taylor expanding Equation 5.6 (assuming ∆G(1)

kB

TmδT
T 2

0
� 1) we will get the

equation of the following form

dF

dt
= a0 + a1 sin(2πνt) + a2F + a3F sin(2πνt) (5.8)

where

a0 = k
′
0µ1,

a1 = −k′0µ1∆G
(1)
UF

TmδT
kBT

2
0
,

a2 = −k′0(µ1 + µ2),

a3 = k
′
0

(
µ1G

(1)
UF + µ2G

(1)
FU

)
TmδT
kBT

2
0
.

(5.9)

The solution of the Equation 5.8 can be written as

F (t) = C0e
a2t−a3 cos(2πνt)

2πν + ea2t−a3 cos(2πνt)
2πν

∫ t

0
e−a2τ+

a3 cos(2πντ)
2πν [a0 +a1 sin(2πντ)]dτ (5.10)
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The first term of this expression has a multiplier ea2t, where a2 < 0 (see Equa-

tion 5.9), and will vanish with t→∞. We are only interested in the steady solution,

thus we can throw the first term away. By doing Taylor expansion under the integral

in respect of a3 cos(2πντ)
2πν

� 1 we will get

F (t) = ea2t−a3 cos(2πνt)
2πν

∫ t

1

e−a2τ

(
1 +

a3 cos(2πντ)

2πν

)
[a0 + a1 sin(2πντ)]dτ. (5.11)

After integrating, we will find the following steady expression for F (t),

F (t) = e−
a3 cos(2πνt)

2πν

[
−a0

a2

+
a0a3 − a1a2

a2
2 + 4π2ν2

sin(2πνt)− a0a2a3 + 4π2ν2a1

2πν(a2
2 + 4π2ν2)

cos(2πνt)

− a1a2a3

4πν(a2
2 + 16π2ν2)

sin(4πνt)− a1a3

a2
2 + 16π2ν2

cos(4πνt)

]
. (5.12)

Expanding further we will finally get

F (t) =

(
1− a3 cos(2πνt)

2πν

)[
−a0

a2
+
a0a3 − a1a2

a2
2 + 4π2ν2

sin(2πνt)− a0a2a3 + 4π2ν2a1

2πν(a2
2 + 4π2ν2)

cos(2πνt)

− a1a2a3

4πν(a2
2 + 16π2ν2)

sin(4πνt)− a1a3

a2
2 + 16π2ν2

cos(4πνt)

]
. (5.13)

After opening the brackets and throwing away the terms with smaller multipliers,

we will find

F (t) = Feq + A [sin(2πνt) +B cos(2πνt)] , (5.14)

where

Feq = −a0

a2

=
k0

+

k0
obs

=
1

1 + e
∆G

(1)
f

(T0−Tm)

kBT0

, (5.15)

A =
a0a3 − a1a2

a2
2 + 4π2ν2

= −
k0

+k
0
−

(k0
obs)

2 + 4π2ν2

∆G
(1)
f TmδT

kBT 2
0

, (5.16)

B =
2πν

a2

= −2πν

k0
obs

. (5.17)
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Figure 5.2: Kinetic theory, analytical solution. Phase shift of the folded
population relative to the driving wave vs. frequency.

Here k0
+ = k

′
0 µ1, k0

− = k
′
0 µ2 and k0

obs = k
′
0(µ1 + µ2) are the folding, unfolding and

observed reaction rates at the temperature T0, correspondingly. Equation 5.14 can

be rewritten as

F (t) = Feq + A
′
sin(2πνt+ φF ) (5.18)

where

A
′
= −A

√
1 +B2 =

k0
+k

0
−

k0
obs

√
(k0
obs)

2 + 4π2ν2

∆G
(1)
f TmδT

kBT 2
0

(5.19)

φF = π − arctan

[
2π

ν

k0
obs

]
. (5.20)

In Equation 5.18, φF is the phase shift of the folded population relative to the

driving temperature wave. As expected, it depends on the ν
k0
obs

ratio. Equation 5.20

shows, that at zero frequency of the driving wave, the phase shift is equal to 180

degrees (folded population decreases with increasing temperature). As the frequency

79



increases, the phase shift asymptotically decreases to 90 degrees. This is illustrated

in Figure 5.2. It is also important to note, that according to Equation 5.20, φF does

not depend on δT .

5.2.2 FRET Donor and Acceptor Intensities

In the FRET experiment, the donor and acceptor fluorescence intensities can

be written down as

D(T ) = γDIexcD0(T )(1− E(T ))

A(T ) = γAIexcD0(T )A0(T )E(T )

(5.21)

where γD and γD are constants that depend on collection efficiency and fluorescence

filters, Iexc is the excitation laser intensity, D0 and A0 are the donor and acceptor

quantum yields, and E is the FRET efficiency [142]. In the range of interest, the

dependence of D0 and A0 from temperature is strictly linear. The FRET efficiency

E = E[ρ(R, T )] is given by the following formula

E[ρ] =

∫ ∞
0

dR
1

1 +
(
R
R0

)6ρ(R) (5.22)

where R is the donor-acceptor distance, R0 is the Förster distance, and ρ(R, T ) is

the protein population at the given temperature. For a two-state protein we can

write E(T ) as

E(T ) = EFF (T ) + EUU(T ) = (EF − EU)F (T ) + EU . (5.23)
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If we represent D0(T ) and A0(T ) as

D0(T ) = p1 + p2T

A0(T ) = q1 + q2T

(5.24)

and plug in the expression 5.14 for F (t), we will get the following expressions for

D(T ) and A(T ):

D(T ) = γDIexc[Deq +D1 sin(2πνt) +D2 cos(2πνt)]

A(T ) = γAIexc[Aeq + A1 sin(2πνt) + A2 cos(2πνt)]

(5.25)

where

Deq = (1− EU − (EF − EU)Feq)(p1 + p2T0)

D1 = δT (1− EU − (EF − EU)Feq)p2 − A(EF − EU)(p1 + p2T0)

D2 = −AB(EF + EU)(p1 + p2T0)

Aeq = (EU + (EF − EU)Feq)(p1 + p2T0)(q1 + q2T0)

A1 = δT (EU + (EF − EU)Feq)((p1 + p2T0)q2 + (q1 + q2T0)p2)

−A(EF − EU)(p1 + p2T0)(q1 + q2T0)

A2 = AB(EF + EU)(p1 + p2T0)(q1 + q2T0).

(5.26)

Here we threw away all square terms (by p2, q2 and A) using the fact that p2 and q2

are orders of magnitude smaller then p1 and p2. The phase shifts of D and A will

obey the following expressions.

φD = −arctan
[

A∗B(EF−EU )(p1+p2T0)
(1−EU−(EF−EU )Feq)p2−A∗(EF−EU )(p1+p2T0)

]
φA = arctan

[
A∗B(EF+EU )(p1+p2T0)(q1+q2T0)

(EU+(EF−EU )Feq)((p1+p2T0)q2+(q1+q2T0)p2)+A∗(EF−EU )(p1+p2T0)(q1+q2T0)

]
.

(5.27)

Here A∗ = A/δT and is independent of δT . Thus φD and φA are also independent of

δT . In reality φF , φD and φA weakly depend on δT . For φF , for example, between
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(a) (b)

Figure 5.3: Kinetic theory, analytical solution. a) Donor (blue) and
accepter (red) phase shifts vs. frequency. b) Phase shift between donor
and accepter intensities vs. frequency.

δT equals 1 and 2 the difference is less then 0.5%. We will show this below by

numerically solving the Equation 5.1.

5.3 Kinetic Theory. Numerical Solutions

5.3.1 Finding folded and unfolded fractions

Here we will discuss the numerical solution of Equation 5.1, which reveals the

dependence of the phase shift on the temperature wave amplitude. We used the fol-

lowing assumptions ∆G
(1)
UF = λ∆G

(1)
f , ∆G

(1)
FU = (λ−1)∆G

(1)
f , ∆G

(1)
f = 1.5kJ/mol/K

and λ = 0.3 [143]. The folding and unfolding rates at 312K are equal to 0.5 Hz.

Thus, k
′
0 = k0e

−∆G(0)

kBT = 0.5 Hz.

We numerically solved Equation 5.1 for a range of driving frequencies ν =

0.01 − 4Hz and for the amplitudes δT = ±1,±2K. Figure 5.4 illustrates one such
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Figure 5.4: Numerical solution for folding population F (t) for ν = 1Hz,
δT = 2K and F (0) = 0.5.

solution. As expected, starting from its initial value at t = 0, F (t) soon equilibrates

to a harmonic function, which has the same frequency as the driving wave but is

phase-shifted. At low frequencies, this phase shift will be equal to π, and it will

asymptotically decrease to π
2

with increasing frequency. The unfolded population

U(t) = 1−F (t) will fluctuate in-phase with the driving wave at low frequencies and

approach π
2

with increasing ν. To find the phase shift of F (t) at a given frequency,

we fitted the equilibrated part of the F (t) solution with a sinusoidal function. The

dependence of the phase shift of F (t) from ν for amplitudes δT = ±1,±2K, and the

difference between them are shown in Figure 5.5. As it can be seen, the phase shift

difference is very small (less than 1 degree), but is not monotonic, with a maximum

at about ν = 0.16Hz.
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Figure 5.5: Kinetic theory, numerical solution. Phase-shift of folded
population F (t) vs. frequency ν (Hz) for δT = ±1,±2K (blue and red
curves respectively). The insert shows the difference between the curves.

5.3.2 FRET Donor and Acceptor Intensities

Similar to the case of the analytical solution described in Section 5.2, we used

the obtained numerical solutions of Equation 5.1 to find the phase shifts of donor

and accepter intensities relative to the driving frequency. For that, we plugged the

found F (t) into Equation 5.23, and then into Equation 5.21. We used the following

numerical parameters:
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Figure 5.6: Kinetic theory, numerical solution. Donor (curves in the top)
and accepter (curves in the bottom) phase shifts relative to driving wave
vs. frequency.

p1 5.72 p2 -0.016

q1 4.422 q2 -0.0116

EF 1.0 EU 0.1

The dependence of donor and acceptor phase shifts vs. driving frequency are shown

in Figure 5.6. The phase shifts between donor and accepter (φ = φA − φD) for

two different amplitudes are shown in Figure 5.7. The insert in Figure 5.7 shows

the difference of the donor/accepter phase shifts between two driving amplitudes

δT = ±1,±2K. Same as in the case of ∆φF , ∆φ has a maximum, but around

0.5Hz.
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Figure 5.7: Kinetic theory, numerical solution. Phase shift between
donor and accepter intensities vs. frequency (δT = ±1,±2K blue and
red respectively). The insert shows the difference between the curves.

5.4 Brownian Dynamics

The kinetic transition theory described above does not explain the resonance

phenomenon seen in our MD simulations. The average first-passage time (AFPT)

calculations show a frequency independent acceleration compared to the unper-

turbed case when no wave is applied. Thus, to explain the phenomena we saw

previously and to connect them to the experiments, we carried out a serious of

Brownian Dynamics (BD) simulations of particles diffusing on a two-state free en-

ergy landscape.
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5.4.1 Brownian Dynamics Simulations

Figure 5.8: Energy landscape for Brownian particle moving along coordi-
nate q at T=312K (solid) and T=311K (dashed). The unites of U(q) are
kJ/mol. Right and left wells correspond to folded and unfolded states
respectively.

In order to simplify the problem, we assumed that our system moves over a

one dimensional energy landscape along a reaction coordinate q (see Figure 5.8). At

the folding temperature of T = 312K, the energy landscape consists of two wells of

equal depth, divided by a barrier of height 5kJ/mol. The right well corresponds to

the folded state of the system, and the left well to the unfolded state. As illustrated

in Figure 5.8, the landscape shifts towards folded state with decreasing temperature.

In high dumping regime, this system can be described using the Brownian equation

of motion. By solving this equation we arrive to Equation 5.28,
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Figure 5.9: The figure shows the plot of Average First-Passage Time
(AFPT) τ vs. temperature T . The blue circles correspond to the kinetic
theory and the red squares to Brownian Dynamics results.

q(t+ ∆t) = q(t) +
1

γ
U
′
[(q(t), T (t)]∆t+

√
2kBT (t)∆t

γ
η(t) (5.28)

where γ is the friction coefficient, kB is the Boltzmann constant, T (t) is the current

temperature, η(t) is a random number from the normal distribution, and U
′

=

∂U/∂q. We chose the time step ∆t equal to 0.001s, which is more then 2 orders of

magnitude smaller then the fastest characteristic timescale in our system. The γ

friction coefficient and the rate of the change of the landscape were chosen so that

the AFPT at T = 312K equals to the experimentally known value of 2s, and the

AFPT vs. temperature dependence reproduces the one obtained using the kinetic

theory (see Figure 5.9). The corresponding value of the friction coefficient used was

γ = 13.5× 103 kg s−1 mol−1.
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Figure 5.10: Brownian Dynamics results. Average First-Passage Time
(AFPT) τ vs. fluctuation frequency ν for wave amplitudes 1K (blue
circles), 2K (red squares), 3K (orange diamonds), 4K (green triangle)
and 5K (blue inverted triangle). The horizontal line corresponds to the
value of AFPT of unperturbed system.

5.4.2 Average First-Passage Time

To calculate AFPT, we run BD simulations for a system of one “particle”

starting from a randomized unfolded state. The first time the system crossed the

barrier, we recorded it and terminated the simulation. For each data point, we

averaged over 100, 000 runs. Figure 5.9 shows the AFPT values for a range of

constant temperatures from 308K to 312K.

We calculated AFPT for the case of an applied harmonic temperature wave

with average temperature T0 = 310K and amplitudes δT = 1 − 5K (see Equa-
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Figure 5.11: Brownian Dynamics results. Folded fraction population
F (t) vs. time for ν = 1Hz, δT = 2K and F (0) = 0.5.

tion 5.29) for the range of fluctuation frequencies from 0.1Hz to 10Hz. For each

run, the value of the initial phase ψ0 was randomly chosen. Each data point in this

case was averaged over 1, 000, 000 trajectories. The results illustrated in Figure 5.10

are similar to the ones obtained from MD protein folding simulations. In both cases,

we clearly see a decrease in AFPT around frequency values ν ≈ kf . Also, in both

cases the AFPT increases for low frequency fluctuation. In the former case, the

applied temperature wave acts like a slowly increasing or decreasing driving force,

depending on the initial phase ψ0. The positive and negative contributions do not

balance each other, resulting in the increase of AFPT relative to the unperturbed

system.

T (t) = T0 + δT sin(2πνt+ ψ0) (5.29)
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Figure 5.12: Brownian Dynamics results. Phase shift of folded popu-
lation F (t) vs frequency ν (Hz) for δT = ±1K,±2,±3K,±4K,±5K.

5.4.3 Calculations of Folded Fractions and Phase Shifts

To compare Brownian Dynamics simulations with the kinetic theory described

previously, we computed the evolution of folded fractions over time for a range of

values of driving frequencies and temperature wave amplitudes. For that reason,

we ran BD simulations for a system containing 1, 000, 000 particles for each case.

Figure 5.11 illustrates folded fraction F (t) for driving frequency ν = 1Hz and

amplitude δT = 2K. In all the cases, we used initial phase ψ0 = 0.

We fitted the equilibrated portion of F (t) curves with a harmonic function and

determined the phase shift of F (t) relative to the driving temperature wave T (t).

Figure 5.12 shows the phase shift φF for a range of amplitudes.
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Figure 5.13: Brownian Dynamics results. Donor (curves in the top)
and acceptor (curves in the bottom) phase shifts relative to temperature
wave vs. frequency ν (Hz) for δT = ±1K,±2,±3K,±4K,±5K.

5.4.4 Donor and Acceptor Intensities and Phase Shifts

Using calculated F (t) Brownian Dynamics trajectories and Equations 5.21,

5.23 and 5.24, we calculated corresponding FRET donor and accepter fluorescence

intensities. For EF , EU , p1, p2, q1 and q2 we used the same values from Section 5.3.2.

Here again, we estimated phase shifts relative to temperature wave from the equi-

librated portions of D(t) and A(t) curves. Figures 5.13 and 5.14 show φA and φD

phase shifts, and φ = φA − φD phase-shift difference vs. frequency over a range of

amplitudes 1 − 5K. The shape of these curves are very similar to ones obtained

from the kinetic calculations.
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Figure 5.14: Brownian Dynamics results. Phase shift between
donor and acceptor intensities vs. frequency ν (Hz) for δT =
±1K,±2,±3K,±4K,±5K.

5.4.5 Comparison to the Kinetic Theory

The kinetic theory described in Sections 5.2 and 5.3 predicts a weak depen-

dence on the driving wave amplitude for the phase shift φF between the folded

population and driving temperature wave, and the phase shift φ between donor and

acceptor fluorescence intensities. This is illustrated in Figure 5.15 where a) and

b) show how φF and φ depend on frequency for a range of amplitudes from 1K

to 5K. c) and d) show the phase shift differences between 2K, 3K, 4K, 5K and

1K amplitudes for φF and φ, plotted over driving frequency. In general, the φF

and φ obtained from BD simulations show somewhat similar dependence for both

frequency and amplitude. For lower frequencies in particular, the agreement is very
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(a) (b)

(c) (d)

Figure 5.15: Kinetic theory, summary of numerical results. a) and b)
phase shift φF between folded population and driving temperature wave,
and phase shift φ between donor and acceptor fluorescence intensities
respectively vs. frequency ν(Hz) for temperature wave amplitudes δT =
1K, 2K, 3K, 4K, 5K c) and d) the differences between temperature wave
amplitudes 2K, 3K, 4K, 5K and 1K (blue circles. red squares, orange
diamonds, and green triangles correspondingly) for φF and φ respectively
vs. frequency ν(Hz).
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Figure 5.16: Difference of donor/acceptor phase shifts between temper-
ature wave amplitudes 2K, 3K, 4K, 5K and 1K (circles, squares, dia-
monds and triangles correspondingly). The solid curves correspond to
kinetic theory and the dotted curves to BD simulations.

good, while for higher frequencies, and in particular for ν ∼ kf , we see a relatively

large deviation due to resonance, which, contrary to the kinetic theory, is observed

in BD simulations (see Figure 5.9). For example, when we compare the φF (ν) curves

(see Figures 5.11 and 5.15(a)), we see a plateau at around ν = 1Hz, which suggests

that the folding reaction accelerates near that frequency range. This is supported

by the fact that the average first-passage time calculations also show a minimum

around that frequency value.

The experiments measure the difference of donor/acceptor phase shifts be-

tween different amplitudes. Thus, next we compared ∆φ curves obtained from

kinetic theory and BD simulations. As can be seen in Figure 5.15(d), ∆φ calculated

with the kinetic theory has a well pronounced minimum in the region of higher
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Figure 5.17: Difference of donor/acceptor phase shift between tempera-
ture wave amplitudes 2K and 1K calculated from Brownian Dynamics
simulations.

frequency for all temperature wave amplitudes. This is not due to resonance, since

the kinetic theory does not explain it. Figure 5.16 compares ∆φ curves obtained

from the kinetic theory to the ones from BD simulations. At lower frequencies, both

sets of curves follow the same trend, but, for higher frequencies, BD curves invert,

each showing a minimum at ν ∼ 0.5Hz and then a maximum at ν ∼ 3.0Hz. This

is consistent with the experimental results where the phase shift difference between

amplitudes 2K and 1K also shows a minimum and a maximum of a similar magni-

tude near the same frequency values. The corresponding curve obtained from BD

simulations is shown again in Figure 5.17.
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5.5 Conclusion

Here we showed that Brownian Dynamics (BD) simulations of a particle mov-

ing on one dimensional energy landscape fully explain the results we obtained from

Molecular Dynamics (MD) simulations of protein folding. They both show the exis-

tence of resonance under an applied harmonic wave when the fluctuation frequency

approaches the folding rate of the unperturbed system. We also discussed the kinetic

transition theory, which, as expected, does not explain the resonance phenomenon,

but allows us to connect the BD simulations, and thus our MD results, to the ex-

periments.
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Chapter A: Supporting Information for Chapter 2

A.1 Introduction

Below we present the details of a coarse-grained model for protein simulations

dubbed the Associative memory, Water mediated, Structure and Energy Model

(AWSEM). This model has been continually developed over approximately two

decades and successfully applied to many problems in protein physics [54,55,63–69,

77–79,83,84,92,101,106,144–159].

In this text and in our calculations in general we use kcal/mol for units of

energy, Angstroms for length and radians for angles.

A.2 Description of the Coarse-grained Protein Chain

According to AWSEM, the position and orientation of each amino acid residue

is dictated by the positions of its Cα, Cβ and O atoms (with the exception of glycine,

which lacks a Cβ atom). The positions of the other atoms in the backbone are
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calculated assuming an ideal geometry (Equation A.1).

rNi = 0.48318rCαi−1
+ 0.70328rCαi − 0.18643rOi−1

rC′i = 0.44365rCαi + 0.23520rCαi+1
+ 0.32115rOi

rHi = 0.84100rCαi−1
+ 0.89296rCαi − 0.73389rOi−1

(A.1)

The third line in Equation A.1 gives the position of the hydrogen atom that is

attached to the backbone nitrogen. Side chains and solvent are not explicitly present

in the model; instead, the effects of side chains and solvent are aliased onto various

interactions described in the next section.

A.3 The AWSEM Hamiltonian

The solvent averaged free energy function of the protein chain is given in

Equation A.2.

Vtotal = Vbackbone + Vcontact + Vburial + VHB + VAM + VDSB (A.2)

The backbone term, Vbackbone, is responsible for restricting the chain to “protein-like”

conformations. It consists of several parts, which are shown in Equation A.3.

Vbackbone = Vcon + Vchain + Vχ + Vrama + Vexcl (A.3)

The connectivity of the protein chain is maintained by Vcon, which is a sum of

harmonic potentials. Its explicit form is given in Equation A.4, and a schematic of

several amino acids is shown in Figure A.1.

Vcon = λcon
∑N

i=1[(rCαiOi − r0
CαiOi

)2 + (rCαiCβi − r0
CαiCβi

)2]

+ λcon
∑N−1

i=1 [(rCαiCαi+1
− r0

CαiCαi+1
)2 + (rOiCαi+1

− r0
OiCαi+1

)2]

(A.4)
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Figure A.1: The connectivity of the chain is maintained by a combination
of harmonic potentials. The distances constrained by Vcon are shown as
dashed lines and the distances constrained by Vchain are shown as double
headed arrows.

The values of λcon and the equilibrium distances are given in Table A.1. In Equa-

tion A.4 and elsewhere, unless otherwise noted, i and j are residue indices and N is

the total number of residues in the chain.

The correct bond angles around the Cα atom are also achieved using harmonic

potentials, as shown in Equation A.5. The values of the parameters in Equation A.5

are given in Table A.1.

Vchain = λchain

[
N∑
i=2

(rNiCβi − r0
NiCβi

)2 +
N−1∑
i=1

(rC′iCβi − r0
C′iCβi

)2 +
N−1∑
i=2

(rNiC′i − r0
NiC′i

)2

]
(A.5)

The chirality term, Vχ, given in Equation A.6, ensures the correct orientation

of the Cβ atom relative to the plane formed by the C ′, Cα and N atoms. A value

of χ0 = −0.83Å3, corresponding to an L-amino acid, is used for all residues except

Glycine, which is excluded from this potential because it lacks a Cβ atom. The
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Table A.1: Protein backbone potential parameters

Parameter Value Unites

λcon 10.0 kcal/Å2 mol

λchain 5.0 kcal/Å2 mol

λχ 20.0 kcal/Å6 mol
λrama 2.0 kcal/mol

λexcl 20.0 kcal/Å2 mol

r0
CαiCαi+1

3.80 Å

r0
CαiCOi

2.43 Å

r0
COiCαi+1

2.82 Å

r0
CαiCβi

1.54 Å

r0
NiCβi

2.46 Å

r0
C′iCβi

2.70 Å

r0
NiC′i

2.46 Å

χ0 -0.83 Å3

values of the parameters in Equation A.6 are given in Table A.1.

Vχ = λχ

N−1∑
i=2

(χi − χ0)2

χi =
(
rC′iCαi × rCαiNi

)
· rCαiCβi

(A.6)

To reproduce the experimental distribution of backbone dihedral angles, we use

a Ramachandran potential, Vrama, shown in Equation A.7. The resulting potential

is plotted in Figure A.2. The value of λrama used is given in Table A.1. All other

parameters are given in Table A.2, where φ0 and ψ0 are given in radians and W , σ,

ωφ and ωψ are unitless weights.

Vrama = −λrama
N−1∑
i=2

∑
j

Wje
−σj(ωφj (cos(φi−φ0j)−1)2+ωψj (cos(ψi−ψ0j)−1)2) (A.7)

The first, last and glycine residues are not included in this potential. φi is the

dihedral angle between the C ′i−1, Ni, Cαi and C ′i atoms, and ψi is the dihedral angle
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between the Ni, Cαi , C
′
i and Ni+1 atoms.

Table A.2: Ramachandran potential parameters

General Case Alpha Helix Beta Sheet Proline

W 1.3149 1.32016 1.0264 2.0 2.0 2.17 2.15
σ 15.398 49.0521 49.0954 419.0 15.398 105.52 109.09
ωφ 0.15 0.25 0.65 1.0 1.0 1.0 1.0
φ0 -1.74 -1.265 1.041 -0.895 -2.25 -1.153 -0.95
ωψ 0.65 0.45 0.25 1.0 1.0 0.15 0.15
ψ0 2.138 -0.318 0.78 -0.82 2.16 2.4 -0.218

The first three columns of Table A.2 represent the set of the parameters for the

general case of non-proline residues. These three columns correspond to right handed

helix, left handed helix and β regions of the Ramachandran plot (see Figure A.2).

Parameters from the next two columns can be used to bias the secondary structure

towards right handed alpha helix or beta sheet based on a secondary structure

prediction server (e.g., JPRED [160]). The final two columns of Table A.2 refer to

proline residues, which are known to have different allowed regions for the dihedral

angles. The index j in Equation A.6 in this case is not a residue index; instead, it

runs over each column of parameters that is appropriate for residue i.

Vexcl is the excluded volume interaction that provides a repulsion between

atoms at short distances, preventing them from overlapping. It has the form given

in Equation A.8 where rCex = 3.5Å for sequence separation less then 5 and 4.5Å

otherwise, whereas rOex = 3.5Å for any sequence separation. The subscript C refers

to both Cα and Cβ atoms. In Equation A.8, i and j are atom indices, which run

over all pairs of C or O atoms that are not directly connected by Vcon. Θ(x) is the
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(a) All residues except proline (b) Proline

(c) Biased toward alpha helix (d) Biased toward beta sheet

Figure A.2: Ramachandran potential, Vrama. Secondary structure bias-
ing is achieved by adding additional wells to the Ramachandran poten-
tial. The colors in (a), (b), (c) and (d) are not normalized to the same
scale.
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(a) (b)

(c) (d)

Figure A.3: (a) Plot of excluded volume potential vs. distance between
two oxygens. (b) Plot of Θ function defined in Equation A.9 for direct
contact well vs. distance between two residues. (c) Plot of burial poten-
tial function for µ = 2 vs. local density value. (d) Plot of desolvation
barrier between two alanines vs. distance between them.

Heaviside step function. The form of Vexcl for single pair of oxygens is plotted in

Figure A.3(a).

Vexcl = λexcl
∑
ij

Θ(rCi,Cj − rCex)(rCi,Cj − rCex)2

+λexcl
∑
ij

Θ(rOi,Oj − rOex)(rOi,Oj − rOex)2

(A.8)

When describing Vcontact, it is useful to define two Cβ-Cβ distance ranges (re-

placed by Cα atom in the case of glycine), hereafter identified by the superscripts I

and II. The first distance range, the “direct contact well”, goes from rImin = 4.5Å
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to rImax = 6.5Å. The second distance range, the “water or protein mediated well”,

goes from rIImin = 6.5Å to rIImax = 9.5Å. If the Cβ atoms of two residues i and j

are separated by a distance between rµmin and rµmax, then the function Θµ
ij, given in

Equation A.9, will be equal to 1; otherwise, it will be 0. It switches smoothly from

1 to 0 near the extremes of the distance ranges (see Figure A.3(b)).

Θµ
ij =

1

4
(1 + tanh [η (rij − rµmin)]) (1 + tanh [η (rµmax − rij)]) (A.9)

By summing Θµ
ij over j, you can obtain the number of residues in the µ-well of

residue i. The local density, ρi, of residue i is defined as ρi =
N∑
j=1

ΘI
ij, which is equal

to the number of residues in its “direct contact well”.

Vcontact is a contact interaction term between residues far apart in sequence [78].

It consists of Vdirect and Vwater. Vdirect is a pairwise additive potential with the form

given in Equation A.10

Vdirect = −λdirect
N∑

j−i>9

γij(ai, aj)Θ
I
ij (A.10)

where rij is the Cβ-Cβ distance between residues i and j, and γ(ai, aj) is a residue

type specific constant. The γ parameters were optimized to maximize the ratio of

the folding temperature1 to the glass transition temperature2 of the model,
Tf
Tg

[78].

In Equation A.10 and elsewhere, ai refers to the residue type of residue i.

Vwater is a many-body interaction term that switches between water-mediated

and protein-mediated interaction weights depending on the local density around the

1At the folding temperature, the populations of the folded state and unfolded states are equal.
2Below the glass transition temperature, the dynamics of the protein chain is arrested.
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Figure A.4: Plot of σwatij in Equation A.12; adapted with permission from [78].

interacting residues. The explicit form is given in Equation A.11

Vwater = −λwater
N∑

j−i>9

ΘII
ij

(
σwatij γwatij (ai, aj) + σprotij γprotij (ai, aj)

)
(A.11)

where σwatij and σprotij are the switching functions defined in Equation A.12.

σwatij = 1
4

(1− tanh [ησ (ρi − ρ0)]) (1− tanh [ησ (ρj − ρ0)])

σprotij = 1− σwatij

(A.12)

σprotij and σwatij switch smoothly from 0 to 1 and 1 to 0, respectively, as either of the

local densities, ρi or ρj, exceeds a threshold ρ0 = 2.6. A plot of σwatij is given in

Figure A.4.
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Table A.3: Potential parameters

Parameter Value Unites Parameter Value Unites

Vdirect

λdirect 1.0 kcal/mol η 5.0 Å−1

Vwater

λwater 1.0 kcal/mol η 5.0 Å−1

ρ0 2.6 ησ 7.0

Vhelical

λhelical 1.5 kcal/mol ρ0 3.0

γprot 2.0
〈
rON

〉
2.98 Å

γwat -1.0
〈
rOH

〉
2.06 Å

η 7.0 Å−1 σON 0.68 Å

ησ 7.0 σOH 0.76 Å

Vβ〈
rON

〉
2.98 Å ηI 1.0 Å−1〈

rOH
〉

2.06 Å ηII 0.5 Å−1

σON 0.68 Å rHBc 12.0 Å

σOH 0.76 Å

VP−AP

γAPH 1.0 kcal/mol η 7.0 Å−1

γAP 0.4 kcal/mol r0 8.0 Å
γP 0.4 kcal/mol

Vburial

λburial 1.0 kcal/mol η 4.0

VAM

λAM 1.0 kcal/mol

VDSB

λDSB 10.0 kcal/mol r0
min 6.0 Å

κDSB 10.0 Å−1 r0
max 7.0 Å
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The burial term, Vburial, given in Equation A.13, is a many body interaction

which is based on a particular residue type’s propensity to be in a low (µ = 1,

ρ1
min = 0.0, ρ1

max = 3.0), medium (µ = 2, ρ2
min = 3.0, ρ2

max = 6.0), or high (µ = 3,

ρ3
min = 6.0, ρ3

max = 9.0) density environment [78]. These propensities are given by

the γburial(ai, ρi) coefficients in Table A.4.

Vburial = −1

2
λburial

N∑
i=1

3∑
µ=1

γburial(ai, ρi) (tanh [η (ρi − ρµmin)] + tanh [η (ρµmax − ρi)])

(A.13)

Table A.4: Burial potential, Vburial, coefficients γburial(ai, ρi)

ai ρi
0.0-3.0 3.0-6.0 6.0-9.0

Ala 0.84 0.88 0.57
Arg 0.94 0.83 0.13
Asn 0.96 0.79 0.25
Asp 0.98 0.75 0.20
Cys 0.67 0.94 0.66
Gln 0.96 0.79 0.24
Glu 0.97 0.78 0.16
Gly 0.94 0.81 0.34
His 0.92 0.85 0.13
Ile 0.78 0.92 0.55

Leu 0.78 0.94 0.46
Lys 0.98 0.75 0.00
Met 0.82 0.92 0.46
Phe 0.81 0.94 0.33
Pro 0.97 0.76 0.25
Ser 0.94 0.79 0.38

Thr 0.92 0.82 0.40
Trp 0.85 0.91 0.34
Tyr 0.83 0.92 0.34
Val 0.77 0.93 0.55

The hydrogen bonding potential, VHB, given in Equation A.14, is a sum of
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three terms.

VHB = Vβ + VP−AP + Vhelical (A.14)

The first two terms of Equation A.14 are β hydrogen bonding terms. The Vβ poten-

tial has the form given in Equations A.15, A.16, A.17, and A.18 where rONij is the

distance from the carbonyl oxygen of residue i to the nitrogen of residue j, and rOHij

is the distance from carbonyl oxygen of residue i to the backbone amide hydrogen

of residue j.
〈
rON

〉
and

〈
rOH

〉
are the corresponding equilibrium bond lengths, and

σNO and σHO are their variances.

V ij
β = −[Λ1(|j − i|)θi,j + Λ2(ai, aj, |j − i|)θi,jθj,i + Λ3(ai, aj, |j − i|)θi,jθj,i+2]νIi ν

II
j

(A.15)

θi,j = exp

[
−

(rONij −
〈
rON

〉
)2

2σ2
NO

−
(rOHij −

〈
rOH

〉
)2

2σ2
HO

]
(A.16)

νµi =
1

2

(
1 + tanh

[
ηµ
(
rCαi−2,i+2 − rHBc

)])
(A.17)

Λ1(|j − i|) = λ1(|j − i|)

Λ2(ai, aj, |j − i|) = λ2(|j − i|)− 0.5α1(|j − i|)lnPHB(ai, aj)

−0.25α2(|j − i|)[lnPNHB(ai+1, aj−1) + lnPNHB(ai−1, aj+1)]

−α3(|j − i|)[lnPanti(ai) + lnPanti(aj)]

Λ3(ai, aj, |j − i|) = λ3(|j − i|)− α4(|j − i|)lnPparHB(ai+1, aj)

−α5(|j − i|)lnPpar(ai+1) + α4(|j − i|)lnPpar(aj)

(A.18)

The first term in the Equation A.15 describes simple pairwise additive hydrogen

bonding interactions. The second term gives additional cooperative stabilization

to anti-parallel β conformations and the third term gives additional cooperative
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stabilization to parallel β conformations. All of the Λk coefficients depend on the

sequence separation of residues i and j, and the coefficients Λ2 and Λ3 are also

amino acid type (ai and aj) dependent. The constants
〈
rON

〉
,
〈
rOH

〉
, σNO, σHO

(see Table A.3) and probabilities, P, for amino acids to be hydrogen bonded (HB)

or not hydrogen bonded (NHB) were extracted from a database of well-resolved

protein structures [69]. The parameters λ and α of Equation A.18 were optimized

to maximize the Tf/Tg ratio [78]. Their values for different sequence separation

classes are given in Table A.5. For |j − i| < 18, λ3 = 0 because parallel hydrogen

bonds rarely form between residues which are less than 18 amino acids apart. The

νi and νj terms ensure that β hydrogen bonding does not occur between residues

that are in the middle of a five residue segment that is shorter than rHBc = 12.0Å,

as β hydrogen bonding networks tend not to form between chain segments that are

not at least somewhat extended.

Table A.5: Hydrogen bonding potential λ and α coefficients, in kcal/mol

sequence separation λ1 λ2 λ3 α1 α2 α3 α4 α5

4 ≤ |j − i| < 18 1.37 3.89 0.0 1.30 1.32 1.22 0.0 0.0
18 ≤ |j − i| < 45 1.36 3.50 3.47 1.30 1.32 1.22 0.33 1.01
|j − i| ≥ 45 1.17 3.52 3.62 1.30 1.32 1.22 0.33 1.01

Vβ will stabilize an already formed β hydrogen bonding network, but small

deviations from an ideal β-sheet geometry will be significantly higher in energy.

However, during secondary structure formation it is necessary to search through

many possible conformations. The “liquid-crystal potential”, VP−AP , enables a pro-
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tein chain to adopt approximate parallel or antiparallel β-sheet conformations before

the hydrogen bonds are fully formed. The strength of this potential is chosen so that

structures can easily fall apart and reassemble. The general form of this potential

is given in Equation A.19.

VP−AP = −γAPH
N−13∑
i=1

min(i+16,N)∑
j=i+13

νi,jνi+4,j−4

−γAP
N−17∑
i=1

N∑
j=i+17

νi,jνi+4,j−4 − γP
N−13∑
i=1

N−4∑
j=i+9

νi,jνi+4,j+4

(A.19)

VP−AP favors contacts between residues i and j if residues i+4 and j+4 (parallel, P)

or i+ 4 and j− 4 (antiparallel, AP) are already in contact. Formation of β-hairpins

(APH) is separate from the general antiparallel case to allow for the possibility of

assigning it a different weight. Two residues are considered to be in contact with

each other if the distance between their Cα atoms is less than r0. Thus, νi,j is defined

as the smooth switching function νi,j = 1
2

(
1 + tanh

[
η
(
r0 − rCαi,Cαj

)])
, where η =

7.0Å−1 and r0 = 8.0Å. γAP and γP usually take the value of 0.4 kcal/mol. Only

in the case when secondary structure prediction information is available and both

residues i and j are predicted to be in a β-strand do we use a value of γAP = γP = 0.6

kcal/mol instead.

The Vhelical term, given in Equation A.20, is responsible for the formation of

alpha helices [161].

Vhelical = −λhelical
N−4∑
i=1

(f(ai) + f(ai+4))(γprotσ
prot
i,i+4 + γwatσ

wat
i,i+4)×

exp

[
−(rONi,i+4−〈rON〉)2

2σ2
ON

− (rOHi,i+4−〈rOH〉)2

2σ2
OH

] (A.20)

In Equation A.20, f(ai) (see Table A.6) is the probability of finding residue i in

a helix. All residue types have positive values between 0 and 1 except for proline,
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as it lacks a backbone amide hydrogen and therefore can only be a hydrogen bond

acceptor, but never a donor. To reflect this we use f(ai+4) = −3.0 if the i+4 residue

is a proline. σprotij and σwatij are the same as in Equation A.12. γprot is the strength of

the interaction when both residues are buried. When residues are exposed to water,

they are allowed to form hydrogen bonds with surrounding water molecules and

forming hydrogen bonds with each other is not as favorable. Thus γwat is negative,

as shown in Table A.3.

Table A.6: f(ai) values

ai ALA ARG ASN ASP CYS GLN GLU GLY HIS ILE

f(ai) 0.77 0.68 0.07 0.15 0.23 0.33 0.27 0.0 0.06 0.23

ai LEU LYS MET PHE PRO SER THR TRP TYR VAL

f(ai) 0.62 0.65 0.50 0.41 0.4/-3.0 0.35 0.11 0.45 0.17 0.14

VAM is the associative memory potential. When combined with known protein

structures and an algorithm for aligning a target sequence to those structures, it can

be used to limit the local (secondary structure) conformational search. Each portion

of a known structure which is aligned to a particular set of residues in the target

sequence is known as a “memory”. In this paper, we have used a “fragment memory”

approach wherein the memories are short (9 residues or less) and the fragments are

chosen using BLAST [99]. The maximum sequence separation of interacting residues

is determined either by the length of the memory or a maximum cutoff, whichever

is shorter. The form of the VAM potential is given in Equation A.21 where i and j

go over all Cα and Cβ atoms up to a maximum sequence separation, which in this
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case includes the entire fragment. In Equation A.21, i and j are not residue indices,

but atom indices. ωm is the weight of the memory, γAM(ai, aj) is a residue type

dependent interaction strength, and rmij is the distance between the i and j atoms in

the memory structure. In the simplest case, as was used in this paper, both ωm and

γAM(ai, aj) are 1.0 for all memories and all residue types. λAM is an overall scaling

factor for the associative memory term, which can be used to adjust the weight of

the term relative to others in the Hamiltonian, and σIJ = |I − J |0.15 is a sequence

separation dependent width.

VAM = −λAM
∑
m

ωm
∑
ij

γij exp

[
−

(rij − rmij )2

2σ2
IJ

]
(A.21)

VDSB is a desolvation barrier potential. When pairs of residues are separated

by a distance that is less than the width of a water, but they are not in direct contact,

there is an energetic barrier that comes from the formation of a vacuum [162]. The

form of the potential is given in Equation A.22 where rij is the Cβ − Cβ distance,

except when a glycine is involved, in which case the Cα coordinates for the glycine

are used.

VDSB = λDSB

N∑
j−i>9

1

2

(
tanh

[
κDSB(rij − rDSBmin (ai, aj))

]
+

tanh
[
κDSB(rDSBmax (ai, aj)− rij)

])
rDSBmin (ai, aj) = r0

min + rshift(ai) + rshift(aj)

rDSBmax (ai, aj) = r0
max + rshift(ai) + rshift(aj)

(A.22)

Typical values for the parameters in Equation A.22 are given in Table A.3.

A sample plot of VDSB interaction potential between two alanines is shown in Fig-
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ure A.3(d). As indicated, the minimum and maximum distances at which the desol-

vation barrier is activated, rDSBmin and rDSBmax , are residue type dependent. The details

of rshift are given in Table A.7.

Table A.7: rshift(ai) values, in Å

ai ALA ARG ASN ASP CYS GLN GLU GLY HIS ILE

rshift(ai) 0.00 2.04 0.57 0.57 0.36 1.11 1.17 −1.52 0.87 0.67

ai LEU LYS MET PHE PRO SER THR TRP TYR VAL

rshift(ai) 0.79 1.47 1.03 1.00 −0.10 0.26 0.37 1.21 1.15 0.39

A.4 Simulation Protocol

We performed all molecular dynamics simulations using the Nose-Hoover ther-

mostat as implemented in the open source simulation package LAMMPS. We re-

cently extended LAMMPS by implementing all of the AWSEM potentials described

in this supplement and adding a special atom style (called peptide), which is suitable

for heteropolymeric systems such as proteins. All of our extensions to LAMMPS,

as well as all analysis tools used for the current study, are available under the GNU

General Public License at http://code.google.com/p/awsemmd/.

We started all structure prediction simulations from an extended conforma-

tion at a temperature well above the folding temperature. The simulations ran for

4× 106 steps under non-periodic boundary conditions to a temperature well below

the folding temperature. We used a timestep of 3 femtoseconds and saved the coor-
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dinates of the system every 1000 steps. For each saved snapshot, we calculated Q

and RMSD values relative to an experimentally determined structure.
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Table A.8: Direct contact potential, Vdirect, and Water potential, Vwater,
coefficients γdir(ai, aj), γ

prot(ai, aj), γ
wat(ai, aj)

ai aj γdir γprot γwat ai aj γdir γprot γwat

ALA ALA 0.72 0.09 0.02 ALA ARG -0.27 0.04 -0.00
ALA ASN -0.26 0.01 -0.00 ALA ASP -0.40 0.00 -0.07
ALA CYS 0.62 0.27 0.29 ALA GLN -0.24 -0.02 -0.12
ALA GLU -0.35 0.02 -0.09 ALA GLY -0.11 0.05 -0.04
ALA HIS -0.13 0.03 -0.16 ALA ILE 1.00 0.12 0.21
ALA LEU 1.00 0.10 0.26 ALA LYS -0.45 0.02 0.08
ALA MET 0.51 0.16 0.06 ALA PHE 0.57 0.31 0.31
ALA PRO -0.53 -0.00 -0.00 ALA SER -0.21 -0.00 0.04
ALA THR 0.08 0.05 0.03 ALA TRP 0.40 0.09 -0.08
ALA TYR 0.11 0.19 0.14 ALA VAL 0.92 0.33 0.25
ARG ARG -0.64 -0.05 0.62 ARG ASN -0.28 -0.05 0.64
ARG ASP 0.41 0.02 1.00 ARG CYS -0.40 0.43 0.46
ARG GLN -0.21 -0.04 0.43 ARG GLU -0.03 -0.03 0.97
ARG GLY -0.33 -0.01 0.32 ARG HIS -0.53 -0.06 0.32
ARG ILE -0.14 -0.04 0.07 ARG LEU -0.25 -0.07 -0.04
ARG LYS -0.96 -0.08 0.47 ARG MET -0.02 -0.16 0.14
ARG PHE -0.18 -0.13 -0.11 ARG PRO -0.82 0.01 0.43
ARG SER -0.33 0.01 0.32 ARG THR -0.23 -0.01 0.35
ARG TRP -0.30 -0.20 -0.05 ARG TYR 0.14 0.15 -0.47
ARG VAL -0.17 0.01 0.11 ASN ASN 0.16 -0.03 0.58
ASN ASP 0.02 -0.01 0.28 ASN CYS -0.09 0.16 0.17
ASN GLN -0.19 -0.02 0.39 ASN GLU -0.56 -0.03 0.27
ASN GLY -0.14 0.01 0.10 ASN HIS -0.07 0.00 0.13
ASN ILE -0.72 -0.22 0.24 ASN LEU -0.58 -0.13 0.19
ASN LYS -0.45 -0.05 0.44 ASN MET -0.60 -0.10 -0.10
ASN PHE -0.52 -0.11 0.10 ASN PRO -0.69 -0.01 0.57
ASN SER -0.02 0.00 0.31 ASN THR -0.31 -0.02 0.30
ASN TRP -0.37 0.08 -0.30 ASN TYR -0.27 0.14 -0.45
ASN VAL -0.59 -0.11 -0.00 ASP ASP -0.57 0.00 0.23
ASP CYS -0.37 -0.24 0.52 ASP GLN -0.39 -0.03 0.31
ASP GLU -0.85 -0.04 0.20 ASP GLY -0.30 -0.02 0.25
ASP HIS -0.08 0.01 0.61 ASP ILE -0.72 -0.18 0.27
ASP LEU -0.78 -0.20 0.24 ASP LYS 0.11 -0.03 0.84
ASP MET -0.58 -0.18 -0.02 ASP PHE -0.76 -0.19 0.00
ASP PRO -0.82 -0.02 0.48 ASP SER -0.03 -0.00 0.09
ASP THR -0.22 -0.01 0.18 ASP TRP -0.74 -0.13 -0.14
ASP TYR -0.78 0.05 -0.43 ASP VAL -0.74 -0.15 0.18
CYS CYS 0.98 0.39 0.64 CYS GLN -0.43 0.16 0.66
CYS GLU -0.36 0.15 -0.15 CYS GLY 0.43 0.39 -0.08
CYS HIS 0.69 0.03 -0.04 CYS ILE 0.70 0.33 0.91
CYS LEU 0.98 0.31 0.25 CYS LYS -0.58 -0.01 0.30
CYS MET 0.30 0.73 -0.52 CYS PHE 0.85 0.88 0.77
CYS PRO 0.09 0.39 0.02 CYS SER 0.47 0.52 0.15
CYS THR -0.18 0.34 -0.11 CYS TRP 0.10 0.58 1.00
CYS TYR 0.87 0.52 0.42 CYS VAL 0.95 0.62 0.00
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Table A.8 – continue

ai aj γdir γprot γwat ai aj γdir γprot γwat

GLN GLN -0.29 0.03 0.32 GLN GLU -0.49 -0.04 0.59
GLN GLY -0.37 0.01 0.11 GLN HIS -0.72 0.04 0.57
GLN ILE -0.43 -0.09 0.11 GLN LEU -0.29 -0.13 0.02
GLN LYS -0.49 -0.07 0.44 GLN MET -0.33 -0.13 -0.07
GLN PHE -0.35 0.04 -0.08 GLN PRO -0.60 0.01 0.46
GLN SER -0.34 -0.02 0.33 GLN THR -0.03 -0.03 0.37
GLN TRP -0.56 -0.06 -0.27 GLN TYR -0.21 -0.10 -0.69
GLN VAL -0.28 0.09 -0.02 GLU GLU -0.86 -0.04 0.38
GLU GLY -0.55 -0.01 0.09 GLU HIS -0.50 -0.05 0.40
GLU ILE -0.49 -0.11 0.22 GLU LEU -0.56 -0.26 0.13
GLU LYS 0.13 -0.03 1.00 GLU MET -0.77 -0.23 0.22
GLU PHE -0.75 -0.16 -0.07 GLU PRO -0.78 -0.02 0.48
GLU SER -0.31 -0.01 0.18 GLU THR 0.05 -0.01 0.14
GLU TRP -0.46 0.00 -0.29 GLU TYR -0.32 -0.04 -0.47
GLU VAL -0.38 -0.12 0.14 GLY GLY 0.37 0.09 -0.08
GLY HIS -0.42 -0.03 0.29 GLY ILE 0.04 -0.05 0.17
GLY LEU -0.22 -0.05 0.17 GLY LYS -0.48 -0.03 0.27
GLY MET 0.13 0.21 0.05 GLY PHE -0.05 -0.08 0.32
GLY PRO -0.42 0.06 0.37 GLY SER 0.02 0.03 0.14
GLY THR -0.14 0.02 0.18 GLY TRP 0.04 -0.03 0.13
GLY TYR 0.15 0.08 0.00 GLY VAL -0.11 0.05 0.20
HIS HIS -0.16 0.11 0.76 HIS ILE -0.30 -0.00 0.37
HIS LEU 0.08 -0.00 -0.00 HIS LYS -0.55 -0.10 0.63
HIS MET 0.20 0.09 -0.12 HIS PHE 0.37 0.39 -0.11
HIS PRO -0.60 0.03 0.53 HIS SER -0.03 0.05 0.13
HIS THR -0.09 0.02 0.41 HIS TRP -0.01 0.48 -0.29
HIS TYR 0.26 0.35 -0.28 HIS VAL 0.16 0.03 0.03
ILE ILE 0.98 1.00 1.00 ILE LEU 0.98 1.00 0.38
ILE LYS -0.71 -0.09 0.20 ILE MET 0.74 0.72 0.74
ILE PHE 0.88 0.93 0.35 ILE PRO -0.43 -0.19 0.27
ILE SER -0.43 0.02 0.31 ILE THR -0.02 0.11 0.24
ILE TRP 0.82 0.34 0.37 ILE TYR 0.90 0.23 0.37
ILE VAL 0.98 0.69 0.77 LEU LEU 0.98 1.00 0.37
LEU LYS -0.66 -0.07 0.07 LEU MET 0.85 0.74 0.27
LEU PHE 0.79 0.70 0.25 LEU PRO -0.54 -0.15 0.11
LEU SER -0.34 -0.13 0.29 LEU THR 0.01 0.13 0.26
LEU TRP 0.98 0.38 0.76 LEU TYR 0.69 0.35 0.32
LEU VAL 0.98 0.64 0.43 LYS LYS -0.97 -0.06 0.42
LYS MET -0.70 -0.14 0.06 LYS PHE -0.66 -0.17 -0.26
LYS PRO -1.00 -0.03 0.55 LYS SER -0.62 -0.03 0.33
LYS THR -0.55 -0.03 0.47 LYS TRP -0.40 -0.21 -0.62
LYS TYR -0.18 -0.29 -0.58 LYS VAL -0.62 -0.13 0.03
MET MET 0.52 0.32 -1.00 MET PHE 0.69 0.72 0.30
MET PRO -0.50 0.01 0.13 MET SER -0.33 0.07 -0.03
MET THR -0.09 0.06 0.22 MET TRP 0.12 0.50 -0.85
MET TYR 0.64 0.27 -0.14 MET VAL 0.63 0.40 0.62
PHE PHE 0.98 1.00 0.52 PHE PRO -0.22 -0.21 0.26
PHE SER -0.27 0.01 0.13 PHE THR -0.16 0.12 0.16

117



Table A.8 – continue

ai aj γdir γprot γwat ai aj γdir γprot γwat

PHE TRP 0.67 0.66 0.54 PHE TYR 0.62 0.27 -0.11
PHE VAL 0.78 0.83 0.20 PRO PRO -0.51 -0.01 0.33
PRO SER -0.56 -0.00 0.52 PRO THR -0.47 -0.01 0.07
PRO TRP 0.01 0.47 -0.56 PRO TYR 0.06 -0.07 -0.34
PRO VAL -0.33 -0.10 0.21 SER SER -0.10 0.02 0.23
SER THR -0.10 -0.01 0.19 SER TRP -0.32 0.11 0.05
SER TYR -0.30 -0.03 -0.09 SER VAL -0.25 -0.00 0.10
THR THR 0.16 -0.01 0.37 THR TRP -0.44 0.13 -0.13
THR TYR -0.22 -0.06 -0.37 THR VAL 0.18 -0.10 0.19
TRP TRP 0.07 0.43 -1.00 TRP TYR 0.21 0.15 -0.95
TRP VAL 0.52 0.44 1.00 TYR TYR 0.55 0.21 -0.45
TYR VAL 0.62 0.59 0.38 VAL VAL 0.98 0.73 0.87
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Chapter B: Supporting Information for Chapter 3

The phase diagram below shows the correlation between the binding mech-

anism and the structural properties of the dimers studied in this paper. A two-

state dimer tends to have a hydrophobic interface and a large ratio of interfacial to

monomeric contacts. On the contrary, a three-state dimer usually has a hydrophilic

interface and a small ratio of interfacial to monomeric contacts.
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Figure B.1: A phase diagram that correlates the folding and binding
mechanism of the dimers with their structural properties: interfacial
hydrophobicity and the ratio of the number of interfacial contacts to the
number of total contacts. Green and red colors are for two-state and
three-state homodimers, respectively. The 4 heterodimers studied are
plotted in blue. Typically, a two-state dimer has a highly hydrophobic
interface and/or a large ratio of the number of interfacial contacts to
the number of the total contacts. Three-state dimers usually have more
hydrophilic interfaces and smaller ratios of interfacial to total contacts.
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For Arc repressor with an intertwined dimer structure, the flexibility of the

monomer modulates the binding efficiency.

Figure B.2: The effect of the flexibility of the monomer structure on
the successful rate of binding for Arc repressor (1ARR). kfrag is the
interaction strength for the short range biasing potential acting on the
monomers. Binding rate is calculated as the percentage of successful
binding simulations for 40 independent runs. When kfrag is decreased,
the binding rate first increases but finally decreases when the local bias
is too weak.
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The water-mediated interactions are very important in predicting dimer inter-

faces, especially for dimers with hydrophilic interfaces. The absence of the water-

mediated interactions from the Hamiltonian greatly reduces the prediction quality,

except for dimers with highly hydrophobic interfaces or having beta strands at the

interface.
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Figure B.3: The quality of interface prediction without the presence of
mediated interactions Vwater (see Methods section) is compared with the
prediction quality of the standard AWSEM prediction. Qmax is the Q
of the best predicted structure in annealing simulations. The majority of
the dimers, 8 out of 12, have worse predicted complex structures when
the mediated interactions are turned off. The other 4 dimers, which
are all homodimers and have comparable prediction quality, either have
highly hydrophobic interfaces (2GVB, 1CTA and 2OZ9) or have beta
strands at the interface to stabilize the dimer complex (1COP). The
PDB id of heterodimers are in blue color.
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Figure B.4: Similar as Figure B.3, but the y axis is Qintermax, the best
predicted interface in annealing simulations, instead of Qmax. Note that
the monomer structures are not necessarily well formed when Q of the
interface is high.
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Chapter C: Supporting Information for Chapter 4

C.1 The Theory of Correlated Random Noise

For correlated random noise εeff = ε+δε, where δε is a solution of the following

stochastic equation:

dδε

dt
= −ξδε+ ω2η(t). (C.1)

Here η(t) is Gaussian white noise, and ξ and ω determine properties of the random

process.

We can write the solution of the Equation C.1 in the following recursive form:

δε(t+ dt) = δε(t)− 0.5ξ(δε(t) + δε∗(t))dt+ ω
√

2dtη(t)

δε∗(t) = δε(t)− ξδε(t) + ω
√

2dtη(t),

(C.2)

or in more simplified manner

δε(t+ dt) = δε(t) + (1− 0.5ξδε(t)dt)(ω
√

2dtη(t)− ξdt). (C.3)

The autocorrelation function of the solution C.3 equals to

G(t′) ≡ 〈δε(t)δε(t+ t′)〉 =
ω2

ξ
exp(−ξt′). (C.4)
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Thus the correlation time and the mean-square deviation will be

τcorr =
1

ξ
, 〈δε2〉 =

ω2

ξ
. (C.5)

To find the spectrum of the noise we can use the following formula:

S(Ω) =
1

π

∫ ∞
0

cos(Ω t′)G(t′)dt′. (C.6)

After substituting G(t′) we get

S(Ω) =
1

π

ω2

ξ

∫ ∞
0

cos(Ω t′)e−ξt
′
dt′ =

1

π

ω2

ξ2 + Ω2
. (C.7)

C.2 Connection Between Fluctuations in Potential Strength and Tem-

perature

To connect fluctuations in contact potential strength and temperature, we

calculated the free energy profiles for 1SRL vs. the ratio of native contacts Q for

a variety of ε and T values (see a) and b) of Figure C.1). Then, we calculated the

transition energy ∆G = F (Qfolded) − F (Qunfolded) for each case. For the constant

temperature of 300K we found:

∆Gε(0.54) = 0.70

∆Gε(0.55) = 0.00

∆Gε(0.56) = -0.74

∆Gε(0.57) = -1.46

∆Gε(0.58) = -2.14
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For the constant ε=0.56kcal/mol, we correspondingly found:

∆GT (290) = -2.64

∆GT (295) = -1.66

∆GT (300) = -0.74

∆GT (305) = -0.22

∆GT (310) = 1.28

For both data sets above we did linear fits obtaining ∆G(ε) and ∆G(T ) relationships

(See c) and d) of Figure C.1 ).

∆G(ε) = 39.26− 71.40ε

∆G(T ) = −59.01 + 0.194T

(C.8)

Now, if we take the derivative of the first equation by ε and the second equation by

T, we can write: (
∂∆G

∂ε

)
dε =

(
∂∆G

∂T

)
dT. (C.9)

Using expressions C.8 and C.9 we get dT
dε

= −367.42. Thus, we can estimate the

deviation in temperature ∆T corresponding to the deviation in potential strength

∆ε by the following expression:

∆T = −367.42 ∆ε. (C.10)

In our simulations for PGK we applied the harmonic fluctuations with standard

deviations 0.03ε, 0.05ε and 0.07ε. To get the amplitudes we need to multiply the

standard deviations by
√

2.0. Then, we can get the corresponding temperature

amplitudes.
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∆T = −367.42× 0.58× 0.07×
√

2.0 = −21.10K

∆T = −367.42× 0.58× 0.05×
√

2.0 = −15.07K

∆T = −367.42× 0.58× 0.03×
√

2.0 = −9.04K

Likewise, we can get that the temperature fluctuation amplitudes 1 and 2 ◦C,

used in the experiments, correspond to the standard deviation of potential strengths

of 0.0033ε and 0.0066ε, respectively.

C.3 Experimental vs. MD Results. Quantitative Comparison

To compare our computational results to the results obtained from the exper-

iments, we need to estimate the value of ln

[
tminf (
√
〈δε2〉/ε=0.0066)

tminf (
√
〈δε2〉/ε=0.0033)

]
. From the com-

putational studies we know the tf (θ) dependence for

√
〈δε2〉
ε

=0.03, 0.05, 0.07. In

Figure C.2 we fitted log10(tf ) vs. log10(θ) data with polynomial functions and found

the minimums for each curve (denoted by a star). The obtained log10(tminf ) values

and the linear fit of log10(tminf ) vs.

√
〈δε2〉
ε

dependence is plotted in Figure C.3. Using

it, we can find:

ln

[
tminf (

√
〈δε2〉/ε = 0.0066)

tminf (
√
〈δε2〉/ε = 0.0033)

]
= 0.085. (C.11)
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Figure C.1: a) Free energy plot for different ε values and fixed temper-
ature b) Free energy plot for fixed ε value and different temperatures c)
∆G(ε) plot. T=300K. d) ∆G(T ) plot. ε=0.56kcal/mol
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Figure C.2: The plot shows the polynomial fits of average first-passage

time vs. period dependencies for PGK for

√
〈δε2〉
ε

=0.03, 0.05, 0.07. The
minimums are shown by stars.
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Figure C.3: Plot of log10(tminf ) vs.

√
〈δε2〉
ε

and the linear fit.
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