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A vehicle holding method is proposed for mitigating the effect of service disruptions 

on coordinated intermodal freight operations. Existing studies are extended mainly by 

(1) modeling correlations among vehicle arrivals and (2) considering decision risks 

with a mean-standard deviation optimization model.  It is shown that the expected 

value of the total cost in the proposed formulation is not affected by the correlations, 

while the variance can be miscomputed when arrival correlations are neglected. Some 

implications of delay propagation are also identified when optimizing vehicle holding 

decisions in real-time. General criteria are provided for determining the boundary of 

the affected region and length of the numerical search, based on the frequency of 

information updates. Theoretical analyses are supported by three numerical examples. 
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1. Introduction 

This study is motivated by the insufficient understanding of the impact of correlated arrivals on 

vehicle holding decisions. In the literature, inbound vehicle arrivals are assumed to independent 

for the sake of mathematical convenience and simplification. However, this clearly sacrifices 

realism because correlations are pervasive in the real world. Inclement weather or congestion 

might affect all vehicle arrivals in a certain region.  A group of vehicles may be delayed 

temporarily due to roadway construction activities. Vehicles may arrive through a “gate” with 

limited capacity, such as a runway. All these factors could contribute to arrival correlations. 

When correlations are positive, delayed vehicles tend to arrive together in “platoons” or 

“bunches”. The effect of arrival correlations on vehicle holding decisions is still unexplored in 

the literature and thus unclear. The primary contribution of this thesis is to analytically 

incorporate such effects into vehicle holding studies. 

In substantial freight transportation systems, as well as in air transport of passengers and public 

transit, it is uneconomical to provide direct services for each origin and destination pair. Freight 

operators design and maintain transfer-dependent networks where cargos must make connections 

at transfer hubs. In addition, operators provide a range of services, such as local collection trucks 

and main-haul by rail or road, to cater to specific demand markets on different parts of their 

networks (Macharis and Bontekoning 2004). For instance, as shown in Figure 1-1, to serve 

cargos originating from the Washington-Baltimore area to the New York area, freight carriers 

might not provide a point-to-point long-haul truck service. Instead, shipments are collected by 

local trucks and transferred to trains at intermodal transfer stations. Then, most cargo shipments 

are consolidated on the train link between Baltimore and New York City. Significant cost 
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reductions are expected if large volumes of cargos are transported by trains rather than long-

distance trucks. Nonetheless, compared to direct services, such transfer-based services incur 

additional costs (e.g., waiting and handling) at intermodal transfer stations.  Those additional 

costs can be reduced significantly if we can coordinate (i.e. synchronize or nearly synchronize) 

vehicle arrivals at intermodal transfer stations.  

Due to various stochastic elements, such as demands and traffic congestion, coordinated transfers 

are difficult to achieve, unless safety margins, also called slack times, are built into the 

coordinated schedules. In addition to pre-planning which seeks to generate coordinated 

schedules, operational controls at intermodal terminals are required to maintain a reasonable 

level of successful connections. This thesis focuses on a specific control measure - vehicle 

holding.  The term “vehicles” can represent here aircraft, ships, trucks and trains.  

Destination Baltimore

Truck

Columbia, MD

College Park, MD

Destination New York

Truck

Jersey City, NJ

Arlington, VA

Destination Baltimore

Truck

Washington, DC

Destination
New 

Jersey

Truck

Newwark, NJ

New York, NY

Main-haul by rail

Intermodal 
Transfer

Intermodal 
Transfer

Baltimore Philadelphia New York

 

Figure 1-1 Intermodal freight network 
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Suppose that vehicle arrivals on two feeder routes (one serving southern Maryland and the other 

serving downtown Washington DC, as shown in Figure 1-1) are coordinated with the departure 

of a Baltimore-Philadelphia-New York train. When the train is ready to be dispatched, the 

vehicle on one feeder route is delayed and still on the way to the Baltimore Intermodal Station. 

In this case, we must decide whether to hold the train and wait for the late vehicle. Holding may 

be justified to allow cargos on the late vehicle to make the connection; otherwise, a missed-

connection cost is incurred and left over cargos have to be carried by the next available train. On 

the other hand, vehicle holding might increase the waiting by the ready cargos at a downstream 

station such as Philadelphia. If we hold the train, it will probably run behind its schedule and 

timed transfers at downstream stations (e.g., New York City) will consequently be disrupted. 

Therefore, a systematic method is needed to facilitate the vehicle holding decisions by 

considering additional waiting costs and connection failure costs.  

In the literature, although there are essential relations between schedule coordination (also called 

schedule synchronization or timed transfer) and vehicle holding, relevant studies are usually 

grouped into two categories, depending on the application purpose, namely pre-planning or real-

time control. After briefly reviewing the first stream of studies and examining vehicle holding 

studies in detail, one would find: 

(1) Far fewer studies are devoted to freight transport systems compared to public transit 

systems, although vehicle holding should have better applicability in goods transportation 

systems.  

(2) There is one critical shortcoming within current vehicle holding models, which assume 

independent vehicle arrivals. The neglect of arrival correlations can cause inferior vehicle 

holding decisions.   

(3) Significant uncertainties in the objective, which is random, are ignored, with only the 

expected value being optimized. 
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(4) Implications of delay propagation effects are not sufficiently addressed.  

Therefore, this study presents a more realistic vehicle holding model for managing service 

disruptions in intermodal freight systems, especially by explicitly modeling vehicle arrival 

correlations.  

The remainder of this thesis is as follows. Chapter 2 reviews relevant studies on both schedule 

coordination and vehicle holding in air, public transit and freight transportation systems. Chapter 

3 presents basic assumptions, formulations of various cost functions, and the complete vehicle 

holding model. It also briefly discusses solution methods. Chapter 4 presents a simplified 

example and Chapter 5 provides larger scale case studies to demonstrate the effectiveness of the 

proposed method. 
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2. Literature Review 

2.1. Schedule Coordination 

When a vehicle holding decision is considered, it is implicitly assumed that the held vehicle is 

coordinated with other vehicle arrivals in a transfer-dependent network. Such practice, which is 

called “Schedule Coordination”, is abundant in public transit (Ting and Schonfeld 2005, Zhao et 

al. 2006), freight (Jeong et al. 2007, Chen and Schonfeld 2010) and air transportation systems. 

For example, FedEx Express operates a huge hub-and-spoke network with Memphis 

International Airport as its “Super Hub”, which collects millions of packages from feeder flights 

and distributes them to hundreds of domestic and international destinations in a few hours every 

night. Compared to a direct point-to-point service network, such a transfer-based network can 

greatly reduce the capital and operating costs because origin-destination pairs in the network can 

be served with significantly fewer routes. However, it is inconvenient to make transfers for some 

cargos, especially when the transfer time is long and unreliable. By synchronizing vehicle 

arrivals and departures at hubs or transfer terminals, the following benefits can be obtained: 1) 

improving users’ transfer experiences with significant transfer time savings; 2) reducing storage 

requirements and inventory costs; and 3) reducing handling costs, e.g. due to more direct 

vehicle-to-vehicle transfers. Nonetheless, such benefits might be voided when random events 

force vehicles off the pre-optimized schedule, leading to a connection failure in a probabilistic 

system.   

To maintain the transfer reliability at a reasonable level, safety margins called slack times are 

built into the schedule in order to absorb the randomness of the system. Different kinds of 
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models (analytical or simulation) for various systems are proposed by Hall (1985), Abkowitz et 

al. (1987), Lee and Schonfeld (1991),  Chowdhury and Chien (2002), Ting and Schonfeld 

(2005), Zhao et al. (2006) and Kim and Schonfeld (2014).  

The pre-optimized schedule, which is obtained with methods developed in the above studies, 

may become suboptimal or even infeasible when random delays strike the system operation 

dynamically. Real-time control is needed to mitigate the impact of random incidents and bring 

the operation back on schedule. The following reviews, under three subheadings (i.e., air, public 

transit and freight), thus focus on the operational control.  

2.2. Aircraft Holding  

Major airlines develop and operate their hub-and-spoke networks (Figure 2-1). For example, 

Delta’s hubs within the U.S. include Atlanta, Boston, Detroit, Los Angeles, Minneapolis/St. 

Paul, New York-JFK, New York-LaGuardia, Seattle and Salt Lake City. These hub airports serve 

as transfer terminals for passengers from and to various spoke flights. To improve the transfer 

efficiency (e.g., reducing the layover times), airlines usually schedule aircraft arrivals and 

departures at their hubs in “banks”, which represent waves or batches of flights. For example, 

passengers from three incoming flights, i.e., Norfolk to Atlanta, Tampa to Atlanta, and Nashville 

to Atlanta, are scheduled to transfer to outgoing flight “Atlanta - Seattle” at the Atlanta airport. 

Three hub-bound flights thus form an arriving bank. They land in a narrow time window, limited 

mainly by the airport’s capacity. Similarly, departing flights from the hub to various destinations 

would also be scheduled soon after the arrival bank exchanges passengers and baggage among its 

flights.  
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Figure 2-1 Domestic Route map of Delta Air Lines (Modified version) 

Source: http://www.delta.com/content/dam/delta-www/pdfs/route-maps/us-route-map.pdf
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Due to various factors, such a timed transfer could be disrupted. For instance, if the arrival 

capacity of the Atlanta airport is reduced by inclement weather, three incoming flights cannot 

land on schedule. A ground holding control is thus justified to hold aircraft at their departure 

gates to avoid more costly and dangerous airborne holding. This generally falls into the realm of 

air traffic management. Ground holding studies have been published by, among others, Odoni 

(1987), Richetta and Odoni (1993), Vranas et al (1994), Hoffman and Ball (2000). Various 

models, static vs dynamic, deterministic vs probabilistic, single-airport vs multi-airport have 

been well documented in the literature. Because en-route travel times are assumed to be 

predicted with sufficient accuracy, researchers are only interested in optimizing the controlled 

arrival time of each incoming flight at the adversely affected airport. After the controlled time of 

arrival is determined, the controlled time of departure can be computed and the ground delay is 

thus determined (Hoffman and Ball 2000).  

The ground holding problem can be illustrated with a basic mathematical program. Let F  be the 

set of incoming flights whose arrival slots have to be assigned. If a binary variable ftx  is used to 

denote whether the flight f F  is assigned to a discrete time interval t, the objective is 

formulated as min ft ft
f F t T

c x
 
 , where ftc  is a linear cost function with respect to the decision 

variable ftx . Usually these resulting problems are large-scale integer programs, which require 

quite sophisticated solution techniques.  However, it is noticeable that costs are additive for each 

flight, i.e., no correlations are modelled.  

This is true in the contexts of air and marine transportation systems whose capacities are usually 

constrained by point capacities, such as airports and ports, while their link capacities are often 

unconstrained. For other transportation modes, such as rail, highway or public transit, links could 
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easily become capacity bottlenecks. In such cases, vehicle movements through the shared links 

tend to be correlated.  

Even when no arrival/departure correlations are considered in the air traffic management 

literature, these integer programs modeling ground holding problems are already difficult to 

solve. Because the consideration of correlations is likely to introduce nonlinearities, which can 

significantly complicate existing models, it would be much easier to make decisions for each 

flight independently without considering their correlations in ground holding problems. 

Aircraft holding studies are not reviewed in detail here due to the focus of this study on 

intermodal freight operations. Interested readers may refer to Bertsimas et al. (2011) for more 

discussions regarding air traffic flow management.  

2.3. Transit Vehicle Holding 

There are two streams of bus holding studies, which are compared in Table 2-1. Figure 2-2 and 

Figure 2-3 show their clear differences in terms of network structure. The objective of the first 

group is to reduce the bus bunching effect. In such models, a rolling horizon approach is 

explicitly considered in Eberlein et al. (2001) to approximate the stochastic problem with a 

deterministic model.  Eberlein et al. (2001) consider the effect of holding on subsequent bus trips 

and the horizon length is determined to be 3 in their analysis. They also suggest that the number 

of affected stations depends on scheduled layovers. In a more recent study by Sánchez-Martínez 

et al. (2016), the rolling horizon approach is also used and the contribution of their work is to 

account for bus running-time and demand dynamics. Since this study falls into the second group 

where timed transfers are involved, these relevant studies are reviewed in detail. 
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Table 2-1 A comparison of two types of bus holding studies 

Criteria Group 1 Group 2 

Network Structure Mostly single route Multi-route network 

Passenger Transfer Not involved Timed transfer 

Service Frequency High, e.g., 5 runs/hr, equivalent to 

a headway of 12 minutes 

Low 

Optimization Objective Improve headway regularity; 

Reduce bus bunching  

Improve schedule adherence 

Research Methods Mostly through simulations Mostly analytical 

Sample Studies Eberlein et al. (2001), Sun and 

Hickman (2008), Daganzo (2009), 

Daganzo and Pilachowski (2011), 

Delgado et al. (2012), Muñoz et al. 

(2013) 

Lee and Schonfeld (1994), 

Hall et al. (2001), Chowdhury 

and Chien (2001), Dessouky et 

al. (2003), Ting and Schonfeld 

(2007) 

 

 

(a) Eberlein et al. (2001) 
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(b) Sun and Hickman (2008) 

 

(c) Delgado et al. (2012) 

 

(d) Muñoz et al. (2013) 

Figure 2-2 Sample networks used in the first type of transit holding studies 
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(a) Chowdhury and Chien (2001) 

 

(b) Ting and Schonfeld (2007) 

Figure 2-3 Sample networks used in the second group of transit holding studies 
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In Lee and Schonfeld (1994), the holding time at a transfer terminal is optimized by minimizing 

the operator’s cost of holding the vehicle, onboard passenger waiting and missed connection 

costs of passengers on delayed incoming vehicles. The implications of holding at downstream 

transfer stations are not considered.  

Dessouky et al. (1999) evaluate the benefits of using bus tracking technologies in making 

dynamic bus dispatching decisions for timed transfer transit systems.  They employ simulation 

models to compare several holding strategies and find that bus tracking technology can 

significantly reduce passenger delays when there is a major bus delay and the number of 

connecting buses is relatively small.  

Chowdhury and Chien (2001) study the bus holding problem analytically. A time varying total 

cost which is a function of the holding time is minimized for a ready vehicle at a transfer station. 

Only one transfer terminal is considered in a simple network where four routes interconnect at 

one point.  

Hall et al. (2001) study a class of bus dispatching policies to decide whether a bus should be 

dispatched immediately or held until some criteria are satisfied. They find that at most one non-

boundary local minimum of holding time exists when connecting vehicles’ arrivals are 

identically and normally distributed. (Their boundary point is the one where the holding time is 

zero, i.e., immediate dispatch.) They also recommend that when the forecast lateness is 

sufficiently large, the vehicle should be dispatched immediately.  

Dessouky et al. (2003) further explore the benefit of introducing advanced communication, 

tracking and passenger counting technologies in making bus dispatching decision for a 

coordinated system. Through simulation tests, they demonstrate that these technologies can 

provide considerable benefits, especially when the schedule slack is zero, the service frequency 
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is low and the number of connecting buses is large.  It should be noted that in this simulation 

study, costs at downstream stations due to the vehicle holding at the current station are 

considered. 

Ting and Schonfeld (2007) extend previous analytical bus holding studies (e.g., Lee and 

Schonfeld 1994, Chowdhury and Chien 2001) by considering a multi-hub transit network where 

the vehicle holding decision can increase passenger waiting at downstream stations and disrupt 

coordinated connections at other transfer terminals. Their numerical results show that a hold is 

justified when the arrival variance of incoming vehicles is small and large transfer volumes are 

expected on delayed vehicles.  

In summary, as an effective measure to improve the transit service reliability, the bus holding 

problem has been extensively studied, especially to mitigate the bus bunching effect. Another 

stream of studies which seek to improve successful transfer connections in coordinated transit 

operations has evolved at least since the 1990s and significant methodological improvements 

have been achieved. There is no consensus regarding how the “downstream region” which is 

affected by the holding decision should be determined. In Hall et al. (2001) and Chowdhury and 

Chien (2001), no downstream stations are considered; Dessouky et al. (2003) seem to consider 

all downstream stations and Ting and Schonfeld (2007) only consider the  next adjacent hub.   

2.4. Freight Vehicle Holding 

Compared to the extensive studies of vehicle holding for public transit systems, fewer studies are 

reported for freight and logistics systems. Actually, to some extent, vehicle holding should have 

better applicability in such systems because there is more complete information about both the 

user and vehicle. With the adoption of some intelligent transportation system technologies, 

transit operators might access the real-time location information about vehicles, as well as the 
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number of boarding and alighting passengers at the stop level. However, they are still unlikely to 

know travelers’ destinations unless transit riders register their destinations in advance, as 

assumed by Ting and Schonfeld (2007). Dessouky et al. (2003) present a method for predicting 

passenger loads at downstream stops. The forecast of continuing passenger numbers depend on 

the fraction of passengers remaining on board. However, such a fraction, which could probably 

be estimated from historical data, is hard to obtain for real-time decisions. When the expected 

transfer volume from a late vehicle to the held vehicle is hard to estimate or the forecast is 

unreliable, the effectiveness of holding decision is largely diminished.  

In contrast to public passenger transportation systems, goods and freight vehicles are moving in a 

data-rich environment. Vehicle and shipping tracking is not new to freight and logistic systems. 

For example, Zhu et al. (2012) provide a comprehensive review of Radio Frequency 

Identification technology (RFID) for its ability to identify, trace and track information 

throughout the supply chain. An example is shown in Figure 2-4. Moreover, compared to the 

passenger transport system, goods are moving in a more passive and centralized manner, which 

enables the design of effective control measures. 
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Figure 2-4 An application of the RFID tracking technology 

Source: http://www.danbygroup.com/uploads/images/RFID_Factory.gif 

 

The freight vehicle holding problem is largely unexplored in the literature. Since this study is 

concerned with intermodal transfers, several review articles of intermodal freight transport in the 

past decade can be cited as evidence. Bontekoning et al. (2004) investigated 92 publications 

(mainly on the rail-truck mode) in order to identify the characteristics of the intermodal freight 

research field. Although they mentioned the synchronized schedule between different modes as 

one major characteristic of the rail-truck freight transport, no relevant studies on either 

preplanned schedule coordination method or real time vehicle control strategies were found. In 
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2008, Caris et al. provided an overview of planning models in intermodal freight transport and 

noted that research interest in this area was growing rapidly. They found that strategic planning 

problems such as terminal design and infrastructure network configuration had been extensively 

studied while the number of scientific publications at the operation level remained limited or 

non-existent. Neither schedule coordination nor vehicle holding was discussed. SteadieSeifi et al. 

(2014) presented the most recent review of multimodal freight transportation planning from the 

perspective of operations research. Research efforts from 2005 onward were categorized and 

reviewed separately at three levels: strategic, tactical and operational. Similarly to Caris et al. 

(2008), they found that there were remarkably fewer studies on operational planning than on the 

tactical and strategic planning problems.  

Two tactical studies by Andersen et al. (2009) and by Chen and Schonfeld (2010) are noted here. 

Andersen et al. (2009) explore how the synchronization of multiple collaborating services can 

reduce the throughput time of the demand in the freight system. By noticing many similarities 

between public transit and freight system operations, Chen and Schonfeld (2010) present one 

optimization model for coordinating vehicle movements and cargo transfers at intermodal 

terminals. They optimize service frequencies and slack times for a multi-hub network and 

coordinated operations are compared with uncoordinated ones.   

For real-time vehicle dispatching control, only Chen and Schonfeld (2011) is found. They 

develop a vehicle control method for determining whether each ready vehicle should be 

dispatched immediately or held waiting for delayed connecting vehicles, when the coordinated 

freight operations are disrupted by random events.  

Thus, while there are abundant vehicle holding applications in the public transit area, far fewer 

studies are devoted to the freight and logistics system even though the holding control might be 
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more applicable and useful in such systems. These methods developed for the public transit 

operations should be adapted to improve service disruption management in coordinated freight 

operations. 

2.5. Research Needs 

(1) Freight Operations 

More efforts should be made for improving service disruption management in 

coordinated intermodal freight operations. Methods developed for public transit systems 

can be adapted due to the similarities between these two transportation modes. Although 

there are also numerous aircraft holding studies in the literature, it seems that the aircraft 

ground holding problem has evolved into a specialized and isolated research topic with 

very few references to either public transit or freight systems, possibly due to the distinct 

operating characteristics of air transport. 

(2) Correlated Vehicle Arrivals 

The impact of correlated vehicle arrivals on the holding decision should be explicitly 

considered. The modeling of various costs can be greatly simplified when vehicle arrivals 

are assumed to be independent. However, this assumption is often wrong in reality, 

especially for public transit and freight systems.  

(3) Decision Risks  

Existing vehicle holding studies examine only the expected value of the objective, with 

little attention to the degree of uncertainty in the decision outcomes. In other words, 

decision makers are unaware of how reliable their decision will be. For risk-neutral 

operators, the existing methods suffice. However, for a risk-averse operator, an enhanced 

method considering decision uncertainties is preferred.  
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(4) Delay Propagation 

The implications of delay propagations are not sufficiently addressed. Since the holding 

decision would affect transfers at downstream hubs, costs at downstream hubs should be 

included in the analysis. However, it is still unclear how the boundary of the affected 

region should be defined for making the decision. Is it feasible or justified to consider all 

downstream hubs even if there are highly efficient optimization methods?   

Therefore, this thesis presents a more realistic vehicle holding model for managing service 

disruptions in intermodal freight systems. The contributions are also in the above four aspects. 

The foremost one is that the existing assumption of independence among vehicle arrivals is 

relaxed. 

.
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3. Model 

The proposed model is used to optimize the vehicle holding decision by considering various 

types of costs, e.g., extra operating cost, additional waiting cost and missed connection cost. 

Decisions are made whenever a vehicle is ready to be dispatched according to the preset 

schedules and updated whenever new information, such as a new vehicle arrival prediction, 

becomes available.  

3.1. Assumptions 

The following assumptions are provided to facilitate the development of the vehicle holding 

model. 

(1) Vehicle schedules are pre-optimized but vehicle movements might be disrupted, i.e., 

vehicle arrivals are subject to random delays. 

(2) Vehicle arrivals at a certain station can be described with a multivariate probability 

density function, which can be estimated and thus assumed to be known.  

(3) When a scheduled transfer is missed, cargos on the connecting vehicle will be picked up 

by the next scheduled receiving vehicle on that route. Such an assumption is valid in 

cases of moderate or routine disruptions. In extreme scenarios, e.g., demand surges, the 

assumption does not hold since the next receiving vehicle is already full and cannot pick 

up any left-behind cargos.  

(4) The holding decision is conducted independently for each outbound vehicle in the order 

of dispatch ready time, while neglecting the effect of future decisions. Such an 
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assumption might be relaxed to consider the interrelation between the current and future 

decisions. 

3.2. Arrival Distribution  

When vehicle arrivals are assumed to be independent, each vehicle’s arrival is described with a 

univariate distribution. Although other distributions, theoretical or empirical, are usable, 

generally two families of distributions are considered: log-normal and normal (Chowdhury and 

Chien 2001). One cited advantage of log-normal distributions is the absence of long left tails, 

which allow negative arrival times. Other researchers (Hall et al. 1999, Chowdhury and Chien 

2002, Ting and Schonfeld 2007, Chen and Schonfeld 2011) prefer the most widely used general 

purpose distribution, i.e. the Normal Distribution. Although its left-hand limit is negative 

infinity, the issue of negative arrival times should be manageable if distribution parameters (i.e., 

mean and variance) are properly calibrated.  In other words, the chance for the arrival time to be 

negative is negligible in practical analyses. In line with the majority of existing studies, normal 

distributions are used in this study. 

Similarly to the one-dimensional normal distribution used for describing one vehicle’s arrival, 

the multivariate normal distribution is introduced when correlations among multiple vehicle 

arrivals are considered. An N -dimensional normal distribution is characterized by two set of 

parameters: (1) a mean vector   of length N , and (2) a symmetric variance-covariance matrix 

 . The entry in row i  and column j  of   represents the covariance between iT  and jT . If  T  

is used to denote the N -dimensional vector 1 2, , , NT T T , the probability density function of 

random variable T  is: 
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11 ( ) ( )

( ) exp[ ]
2(2 ) | |N

T T
p T

 


  
 


 (1) 

where | |  is the determinant of  . Since we need to find the inverse of  , we should ensure   

is invertible. ( )T    is the transpose of ( )T  . 

3.3. Cost Classification 

While it is straightforward to compute the operator’s cost due to the holding decision, the users’ 

cost is much more complicated to analyze because different types of cargos tend to have various 

functional forms of costs. As shown in Figure 3-1, for each specific location (or station 

interchangeably), goods can be categorized into four types: feeder, loading, unloading and 

receiver. If there are no feeder or receiver routes associated with the location, the station is 

intermediate; otherwise, the station is also called a transfer terminal or a hub. Feeder cargos are 

those collected by inbound vehicles and eventually carried by main-haul vehicles to other 

destinations, while receiver cargos are distributed among outbound vehicles. Loading and 

unloading cargos are not transferred to either feeder or receiver routes. Loading cargos originate 

from the station itself and unloading cargos have the station as the final destination. Since 

loading/unloading cargos are not involved in coordinated operations, they have no missed 

connection costs. Both feeder and receiver goods suffer from such losses when scheduled 

connections are lost.  

 

Figure 3-1 Types of cargos associated with a location 
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For a specific ready vehicle at a location, all stations on the study route can be divided into: 

upstream, current and downstream ones. All cargos associated with upstream stations, regardless 

of the type, are already reflected in the on-board cargos. When the study vehicle is ready for 

dispatch according to the pre-determined schedule, it is implicitly assumed that all loading and 

unloading operations have been completed and receiver cargos have also been transshipped. 

Therefore, all cargos except for those from feeder routes are also included in on-board cargos. 

Goods on these delayed feeder routes can suffer from either extra waiting if finally they are able 

to make the connection during the vehicle holding or missed connection cost if the ready 

outbound vehicle has been released by the time they arrive at the current location. If a transfer 

connection is missed, left-over cargos are assumed to be picked up by the next scheduled vehicle 

on that route. At downstream hubs, cargos from feeder routes might wait if feeder vehicles arrive 

before the held vehicle’s arrival and miss the held vehicle otherwise. Similarly, at downstream 

hubs, transshipments from the held vehicle to receiver routes can have either additional waiting 

time or a missed connection cost. For these cargos which are to be loaded from the downstream 

station to the held vehicle, there is only waiting cost because the held vehicle will arrive after the 

ready time of these cargos. For unloading cargos from the held vehicle to a downstream station, 

no cost is incurred at these locations because extra waiting costs (if any) have been calculated 

when loaded at the downstream station’s preceding stations.  

Costs borne by various types of cargos are specified in Table 3-1.  
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Table 3-1 Costs for each cargo category 

 Upstream Stations Current Location Downstream Station j

Feeder Routes 

 

Wait/Miss 
fC  Wait/Miss f

jD  

Loading 
On-board Cargos 

Wait 
oC  

Wait l
jD  

Unloading - 

Receiver Routers Wait/Miss r
jD  

 

The costs at the current hub and downstream hubs are analyzed separately below.  

3.4. Costs at the Current Hub 

3.4.1. Extra operating cost oE  

Extra operating cost is defined as the extra operators’ cost of holding the ready vehicle a certain 

amount of time h . If the unit operating cost per vehicle is denoted as b , the extra operating cost 

is simply written as:  

 oE bh  (2) 

3.4.2. On-board cargos oC   

The cargos on the subject vehicle have the following waiting cost: 

 oC vhQ  (3) 

where v  is time value of cargos and Q  is the amount of cargos on board the subject vehicle.  

3.4.3. Cargos on delayed feeder vehicles fC   

Costs for cargos on late feeder vehicles are analyzed in following three scenarios. 
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One-vehicle scenario  

To make the model analytically tractable, it is assumed 
0

( ) 0Tf t dt


  and ( ) 0T

H

f t dt


 , 

meaning that a feeder vehicle can only arrive within the range (0, ]H , where ( )Tf t  is the 

marginal distribution of a vehicle’s arrival time T  and H  is the headway of the held route. For 

notational brevity, one might omit the T  notation and use ( )f t  instead of ( )Tf t . The time when 

the decision must be made is defined as 0t  . 

The waiting time faced by the feeder vehicle is also a random variable, whose value depends on 

whether the vehicle can arrive before the departure of the held vehicle, i.e., (1) making the 

connection or (2) missing it. If the random waiting is denoted as Y , we have: 

 
(1)

(2)

, 0

,

Y h T T h
Y

Y H T h T H

    
   

 (4) 

Implicitly, the first dispatch policy as described in Hall et al. (2001) is used here. The vehicle is 

held until the dispatch time even the vehicle arrives prior to the optimal dispatch time. When T  

falls into the region (0, ]h , the connection is made; otherwise, the cargos on this late vehicle will 

be carried by the next vehicle departing at H . The probability density of the arrival time T  

given 0 T h   is:   

 
(1)( )

( | 0 )
( ) (0)

g t
f t T h

F h F
  


 (5) 

where ( )F t  is the cumulative distribution function of T , (1) ( ) ( )g t f t  for all 0 t h  , and 

(1) ( ) 0g t   everywhere else. Note (0) 0F  , meaning the vehicle cannot arrive earlier than 0.  

Such a conditional distribution obtained when a random variable is bounded below or above is 
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also called a truncated distribution. Since the extra waiting time h T  is a linear function of T , 

its probability density function is given by: 

 
(1)

(1) ( )
( )

( )

g h y
f y

F h


  (6) 

Similarly, when h T H  , the missed connection cost H T  has the following probability 

density: 

 
(2)

(2) ( )
( )

1 ( )

g H y
f y

F h





 (7) 

where (2) ( ) ( )g t f t  for all h t H  , and (2) ( ) 0g t   everywhere else. 

Combing two cases, the probability density of Y  is as follows: 

 (1) (2)( ) ( ) ( ) (1 ( )) ( )f y F h f y F h f y    (8) 

which is a mixture distribution, where ( )F h  and (1 ( ))F h  are mixture weights.  

An example of the arrival distribution and a waiting time distribution are shown in Figure 3-2. In 

this example, the mean of the arrival time is 6 and the standard deviation is 1. The holding time 

7h   and the headway of the held route 20H  . 



 

27 

 

P
ro

ba
bi

lit
y 

D
en

si
ty

 g
(t

)
P

ro
ba

bi
lit

y 
D

en
si

ty
 g

(y
)

 

Figure 3-2 Arrival and waiting time distributions – one vehicle case 

Proposition 1: The mean and variance of waiting time Y  can be calculated as follows: 

 ( ) ( ) (1 ( ))Y E Y h H         (9) 

 2 2 2( ) ( )(1 ( ))( ) 2 ( )( )Y Var Y h H h H             (10) 
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where   is the mean of T ,   is the standard deviation of T , ( ) /h    , ( )   is the 

probability density function of the standard normal distribution and ( )   is its cumulative 

density.  

Proof: 

The mean and variance of the truncated normal distribution (Greene 2012) are as follows: 

 
( )

( | 0 )
( )

E T T h
  


   


 (11) 

 2 2( ) ( )
( | 0 ) (1 ( ) )

( ) ( )
Var T T h

    
 

    
 

 (12) 

 
( )

( | )
1 ( )

E T h T H
  


   


 (13) 

 2 2( ) ( )
( | ) (1 ( ) )

1 ( ) 1 ( )
Var T h T H

    
 

    
 

 (14) 

Because (1) (2),Y Y  are linear with respect to T , we can obtain their means and variances. 

 (1)

(1) ( )
( )

( )Y
E Y h

   


   


 (15) 

 (1)

2 (1) 2 2( ) ( )
( ) (1 ( ) )

( ) ( )Y
Var Y

     
 

   
 

 (16) 

 (2)

(2) ( )
( )

1 ( )Y
E Y H

   


   


 (17) 

 (2)

2 (2) 2 2( ) ( )
( ) (1 ( ) )

1 ( ) 1 ( )Y
Var Y

     
 

   
 

 (18) 

Since Y  is obtained by mixing (1)Y  and (2)Y  with weights ( )F h  and (1 ( ))F h , it is obtained 

that:  
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 ( ) ( ) (1 ( ))Y E Y h H         (19) 

by noting ( ) ( )F h  . 

While the mean of the mixture distribution is simply the weighted average of the conditional 

mean, the unconditional variance of Y  is more complex to calculate.  

According to the law of total variance, we have the following equation: 

 ( ) [ ( | )] [ ( | )]Var Y EVar Y T Var E Y T   (20) 

In addition to the weighted average of the conditional variances, i.e., [ ( | )]E Var Y T , the second 

item [ ( | )]Var E Y T , the variance of the conditional mean, also appears as part of the 

unconditional variance of Y . The uncertainty in the parameter variable T  thus has the effect of 

increasing the unconditional variance of the mixture Y . The variance of Y  is then given by: 

 (1) (1) (2) (2)

2 2 2 2 2( )( ( ) ) (1 ( ))( ( ) )Y Y YY Y Y Y
                (21) 

Simplifying Equation (21) after substituting the  left-hand sides of Equations (15-19) with their 

respective right-hand sides, we obtain:  

 2 2 2( )(1 ( ))( ) 2 ( )( )Y h H h H            (22) 

completing the proof for Proposition 1. 

Remark 1: The variance of Y  is no less than the variance of  T , if parameters of the arrival time 

distribution are properly calibrated.  

Figure 3-3 plots the differences of ( )Var Y  and ( )Var T  , i.e., 2 2
Y  , with respect to the holding 

time h . It shows that 2 2
Y  , especially when the holding time h  is close to the expected 

arrival time  , if parameters of the arrival distribution are properly calibrated according to the 
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stated assumptions, e.g., 
0

( ) 0f t dt


  or (0) 0F  . When 2.5  , we can observe negative 

values of 2 2
Y  . However, in this case, 2 2 0Y   when 0h  , violating (0) 0F  . When 

0h  , i.e., the subject vehicle is released immediately, the incoming vehicle is unable to make 

the connection, thus facing only one possibility of Y H T  . Clearly, Y  should have the same 

variance as T , i.e., 2 2 0Y    when 0h  . Therefore, 2.5   is considered improper, 

because the chance of negative arrival times is no longer negligible in this example.  

 

Figure 3-3 Difference of the waiting variance and arrival variance 

Because 2 2
Y  , especially when the holding time is close to the expected arrival time (which 

is likely to be the optimal holding time), the variance of Y  cannot be neglected in the assessment 

of a holding decision h . It is quite limiting to examine only the expected value of a decision 



 

31 

 

while ignoring its variance, a typical measure of decision risks. For example, in Figure 3-3, 

2 17.03Y   when the holding time is 7. Note that the variance of the arrival time 2  is only 1.0. 

The variance of output Y  is greatly enlarged due to the mixture of two conditional distributions 

of input T . Traditional modeling methods focusing only on the expected value are insufficient 

because (1) the high variance in the output is ignored and (2) the probability of realizing the 

expectation is quite low, as illustrated in Figure 3-2.  

 

Two-vehicle scenario  

Suppose that two inbound vehicles are delayed and their arrivals are correlated. The joint arrival 

distribution is 1 2( , )f t t , where 1t  is the estimated arrival time for vehicle 1 and 2t  is for vehicle 

2. Depending on whether the vehicle can make the connection (“Yes” means the connection is 

successful and “No” represents the opposite side), we have the following four cases in Table 3-2. 

Table 3-2 Possible outcomes for a case of two late arrivals 

Case Associated Probability 
Vehicle 1 Vehicle 2 

Time (wait/miss) Time (wait/miss) 

(Yes, Yes) 
(1)

1 2 1 2

0 0

( , ) d d
h h

p f t t t t    (1)
1 1 1, 0Y h t t h     (1)

2 2 2, 0Y h t t h     

(Yes, No) 
(2)

1 2 1 2

0

( , ) d d
H h

h

p f t t t t   (2)
1 1 1, 0Y h t t h     (2)

2 2 2,Y H t h t H   

(No, Yes) 
(3)

1 2 1 2

0

( , ) d d
h H

h

p f t t t t   (3)
1 1 1,Y H t h t H     (3)

2 2 2, 0Y h t t h     
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(No, No) 
(4)

1 2 1 2( , ) d d
H H

h h

p f t t t t   (4)
1 1 1,Y H t h t H     (4)

2 2 2,Y H t h t H   

 

The joint probability density of the arrival time given that both vehicles make the connection, 

i.e., case (Yes, Yes), is: 

 
(1)

1 2
1 2 1 2

1 2 1 2

0 0

( , )
([ , ]| 0 &0 )

( , )d d
h h

g t t
f t t t h t h

f t t t t

    


 (23) 

where (1)
1 2 1 2( , ) ( , )g t t f t t  for all 10 t h  and 20 t h  ; (1)

1 2( , ) 0g t t  , otherwise. Then, the 

joint distribution of (1) (1)
1 2[ , ]y y  is: 

 
(1)

(1) (1) (1) 1 2
1 2

1 2 1 2

0 0

( , )
([ , ])

( , )d d
h h

g h y h y
f y y

f t t t t

 



 (24) 

In this way, the distributions of ( ) ( )
1 2[ , ]k ky y  in any case {1,2,3,4}k  can be obtained. By mixing 

the four exclusive cases (noting that 
0 0

1 2 1 2( , )d d 0f t t t t
 

   and 1 2 1 2

0 0

( , ) d d 0f t t t t
 

  ), we 

obtain the unconditional distribution of the waiting time vector 2 2[ , ]y y as follows: 

 

(1) (1) (2) (2)
1 2 1 2 1 2

(3) (3) (4) (4)
1 2 1 2

([ , ]) * ( , ) * ( , )

* ( , ) * ( , )

f y y p f h y h y p f h y H y

p f H y h y p f H y H y

      

    
 (25) 

The mixture density 1 2([ , ])f y y  is plotted in Figure 3-4. Clearly, there are four mixture 

components, corresponding to those four cases described in Table 3-2. In Figure 3-2, there are 

only two components, because one vehicle is considered.  
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Figure 3-4 Probability densities of the arrival time and waiting time – two vehicles 

 

Proposition 2: The expectation of , {1,2}iY i  is given by: 

 ( ) ( ) (1 ( )) , {1, 2}
iY i i i iE Y h H i           (26) 
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where i  is the mean of the marginal distribution ( )if t , i  is the standard deviation of ( )if t , 

( ) /i i ih    . Recall that ( )   is the probability density function of the standard normal 

distribution and ( )   is its cumulative density.   

Proof: 

Only the case 1i   is proved while the logic applies also when 2i  . According to the definition 

of the conditional mean, the conditional means of vehicle 1’s arrival time are as follows: 

 

(1) (2)
(1) (2)1 2 1 2
1 1 1 2 1 1 1 2(1) (2)

0 0 0

(3) (4)
(3) (4)1 2 1 2
1 1 1 2 1 1 1 2(3) (4)

0

( , ) ( , )
d d , d d

( , ) ( , )
d d , d d

h h H h

h

h H H H

h h h

g t t g t t
t t t t t t

p p

g t t g t t
t t t t t t

p p

 

 

 

 

  

   
 (27) 

The expectation of vehicle 1’s waiting time 1( )E Y  can be written as follows: 

 
(1) (1) (2) (2)

1 1 1

(3) (3) (4) (4)
1 1

( ) *( ) *( )

*( ) *( )

E Y p h p h

p H p H

 

 

    

  
 (28) 

Simplifying the right-hand side of Equation (28) by noting definitions of ( )p   and ( )g  , one can 

obtain: 

 

1 1 2 1 2 1 2 1 2

0 0 0

1 2 1 2 1 2 1 2

0

1 1 2 1 2 1 1 2 1 2

0 0 0

1 1 2 1 2 1 1 2 1 2

0

( ) ( ( , )d d ( , )d d )

( ( , )d d ( , )d d )

( ( , )d d ( , )d d

( , )d d ( , )d d )

h h H h

h

h H H H

h h h

h h H h

h

h H H H

h h h

E Y f t t t t f t t t t h

f t t t t f t t t t H

t f t t t t t f t t t t

t f t t t t t f t t t t

  

 

 



  

   

  

   

 (29) 

Then, the variable 2T  is marginalized out. 
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 1 1 1 1 1 1 1 1

0 0

( ) ( )d ( )d ( )d
h H H

h

E Y h f t t H f t t t f t t      (30) 

By definitions of ( )i  and i , {1,2}i , we obtain: 

 
1 1 1 1( ) (1 ( ))Y h H        (31) 

Thus the proof for Proposition 2 is complete.  

Remark 2: A vehicle’s expected waiting time depends on the marginal distribution of its arrival 

time rather than the joint arrival distribution.  

In other words, the expectation of a vehicle’s waiting time does not depend on the covariance of 

the joint distribution.  

The total waiting time 1 2Y Y Y   is studied. Although 1Y  and 2Y  are correlated, the mean of Y  is 

given by: 

 
1 2Y Y Y     (32) 

The total waiting time is not affected by the correlations of vehicle arrivals.  

In computing the variance of Y , the correlations between 1Y  and 2Y  are included.  

Proposition 3: ( )Var Y  is given by: 

 

(1)

( 2 )

(3)

( 4 )

2 (1) 2 (1) (1) 2
1 2

(2) 2 (2) (2) 2
1 2

(3) 2 (3) (3) 2
1 2

(4) 2 (4) (4) 2
1 2

( ) *( ( ) )

*( ( ) )

*( ( ) )

*( ( ) )

Y YY

YY

YY

YY

Var Y p h h

p h H

p H h

p H H

    

   

   

   

       

     

     

    

 (33) 

where ( )

2 ( ) ( ) ( ) ( )
1 2 1 2( ) ( ) 2 ( , ), {1,2,3,4}k

k k k k

Y
Var Y Var Y Cov Y Y k     . 
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Note that in any case {1,2,3,4}k , the arrival time ( )k
iT  and waiting time ( )k

iY  of  vehicle 

{1,2}i  have the same variance. Then, the conditional variances ( )
1( )kVar Y , ( )

2( )kVar Y and 

covariances ( ) ( )
1 2( , )k kCov Y Y  in each case {1,2,3,4}k  are provided in Table 3-3.   

Table 3-3 Conditional variances and co-variances – two vehicles 

k  
( )

1( )kVar Y   ( )
2( )kVar Y   ( ) ( )

1 2( , )k kCov Y Y  

1 

(1)
(1) 2

1 1 1 2(1)
0 0

( )
( ) d d

h h g
t t t

p
 


 

(1)
(1) 2

2 2 1 2(1)
0 0

( )
( ) d d

h h g
t t t

p
 


 

(1)
(1) (1)

1 1 2 2 1 2(1)
0 0

( )
( )( ) d d

h h g
t t t t

p
   


 

2 

(2)
(2) 2

1 1 1 2(2)
0

( )
( ) d d

H h

h

g
t t t

p
 


 

(2)
(2) 2

2 2 1 2(2)
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Multi-vehicle scenario 

The analyses can be extended to a multi-vehicle scenario where the set of delayed feeder 

vehicles is F  and the set of all possible cases is FK . We have | || | 2 F
FK   since each vehicle 

i F faces 2 outcomes, i.e., connection made or missed. 

The total waiting time is defined as i
i F

Y Y


 . Then its mean and variance are given by: 

 ( ) ( ( ) (1 ( )) )Y i i i
i F

E Y h H   


       (34) 

 ( )

2 ( ) 2 ( ) ( ) 2( ) ( *( ( ( ) ) ))k

F

k k k
Y i i YY

k K i F

Var Y p    
 

       (35) 
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where ( )

2 ( ) ( )( , ),k

k k
i j FY

i F j F

Cov Y Y k K
 

   and ( )k
i h   if the vehicle i  makes the connection in 

case k ; otherwise, ( )k
i H  . Other symbols have been defined in previous texts. 

The total waiting cost of cargos on delayed connecting vehicles is: 

 f
i i

i F

C vqY


  (36) 

where v  is the value of time and iq  is the amount of cargos on vehicle i . The expectation and 

variance of fC  are given by: 

 ( ) ( ( ( ) (1 ( )) ))f

f
i i i iC

i F

E C vq h H   


       (37) 

 ,( )

2 ( ) 2 ( ) ( ) 2( ) ( ( ( ( ( )) ) ))f f k f

F

f k k k
i i iC C C

k K i F

Var C p vq    
 

       (38) 

where ,( )

2 2 ( ) ( )( , ),f k

k k
i j i j FC

i F j F

v q q Cov Y Y k K
 

  . 

3.5. Costs at Downstream Stations 

The impact of vehicle holding spreads from the current location to downstream hubs and 

coordinated transfer operations at these downstream hubs might be disrupted due to the late 

arrival of the subject vehicle. Theoretically, one disruption can propagate to the ultimate 

boundary of a well-coordinated network, regardless of the network’s scale. In practice, such a 

consideration can easily render existing methods useless due to the size of impact region, 

especially when one needs to evaluate the decision in a real-time manner. It is argued that the 

impact region should be refined due to the reason described below, even if very efficient 

algorithms are already developed.  

Supposing that it takes 30 minutes for the vehicle holding decision at the current location to 

affect vehicle movements in another region (referred to as Region 1) and it is clearly known that 
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updated forecasts of feeder arrivals are available in the next 5 minutes, should we consider 

Region 1 at the current decision time (Time 0)? This seems unadvisable because the holding 

decision should be reevaluated with the new arrival information (probably around Time 5) and 

the consideration of Region 1 at Time 0 is thus futile. Intuitively, we should anticipate and 

consider affected region, but not excessively. Similarly, it does not make much sense to consider 

the delayed feeder vehicles in New Haven when the train is still held at the Baltimore intermodal 

station although cargos from the delayed vehicles are scheduled to be transferred to the train. 

Probably by the time this train arrives at Philadelphia, the feeder vehicle already gets back on 

schedule. Therefore, a guideline can be proposed for determining the size of impact region. 

Guideline 1 

If it takes more time for the delay to propagate to a downstream hub than to receive updated 

forecasting information, the downstream hub may be removed from the impact region.   

Assume the impact region is denoted as J  (a set of affected stations in this study). Only a 

downstream station j J  is analyzed in the following discussion.  

3.5.1. Cargos on feeder routes f
jD  

If a feeder vehicle ji F  with the arrival time it , arrives before the arrival time of the held 

vehicle, i.e., i jt s h  , the extra waiting time is j is h t  ; if the feeder vehicle arrives after 

js h , the missed connection waiting is j is H t  . jF  is the set of feeder vehicles to j  and js  

is the link travel time from the current station to station j J .  

Similarly, the mean and variance of the waiting cost f
jD  can be obtained as follows: 

 ( ) ( ( ( ) (1 ( )) )),f
j

j

f
j i i i j iD

i F

E D vq h H s j J   


         (39) 
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 ,( )

2 ( ) 2 ( ) ( ) 2( ) ( ( ( ( ( )) ) )),f f fk
j j j

F jj

f k k k
j i i j iD D D

k K i F

Var D p vq s j J    
 

         (40) 

where ( ) / ,i j i i jh s i F      . 

3.5.2. Loading cargos l
jD  

For loading cargos jL , the waiting cost is linear with respect to the holding time: 

 ,l
j jD vhL j J    (41) 

3.5.3. Cargos to be received r
jD  

For simplicity, correlations between departing vehicles are not modeled in this study. Departures 

might be correlated due to capacity limits in departing resources, e.g., runways or rail tracks. For 

transferring cargos on the subject vehicle to be picked up by a receiver vehicle ji R  with the 

departure time it , if the held vehicle arrives after the departure time of the receiver vehicle i , 

i.e., i jt s h  , the missed connection waiting is r
i jT s h  , where r

iT  is the departure time of 

the next scheduled receiver run on route i ; if the held vehicle arrives before it , the extra waiting 

is i jt s h  . Figure 3-5 shows an example where parameters are specified as follows:  

40, 5, 60, 46, 1r
j i i is h T       . 
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Figure 3-5 Departure time distribution of a receiver vehicle 

Denoting the waiting time of these transferring cargos to be received by vehicle i  as ,i jZ i R , 

we have: 

 

(1)

(2)

,

,

r
i i j j i j

i r
i i j j i i

Z T s h s t s h
Z

Z t s h s h t T

      
     

 (42) 

Conditional means and variances of ,i jZ i R   can be derived as follows: 

 (1)

(1)( )
i

r
i i jZ

E Z T s h      (43) 

 (1)

2 (1)( ) 0
i

iZ
Var Z    (44) 

 (2)

(2) ( )
( )

1 ( )i

i
i i i jZ

i

E Z s h
   


    


 (45) 
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 (2)

2 (2) 2 2( ) ( )
( ) (1 ( ) )

1 ( ) 1 ( )i

i i
i i iZ

i i

Var Z
     

 
   

 
 (46) 

where ( ) / ,i j i i jh s i R      . Note that when the connection is missed, the waiting time no 

longer depends on the departure time and it is a constant having a zero variance.  

The unconditional mean and variance of ,i jZ i R  are thus given by: 

 (1) (2)( ) ( ) (1 ( ))
i i i

Z i i iZ Z
E Z         (47) 

 (1) (1) (2) (2)

2 2 2 2 2( ) ( )( ( ) ) (1 ( ))( ( ) )
i i ii i i i

Z i Z ZZ Z Z Z
Var Z                 (48) 

The total waiting cost of transferring cargos to be picked up by the set of receiver vehicles jR  is: 

 
j

r r
j i i

i R

D vq Z


  (49) 

where r
iq  is the cargo volume to be picked up by vehicle , ji i R . 

Due to the assumed independent departures, r
jD  has the following mean and variance: 

 r
ij

j

r
i ZD

i R

vq 


  (50) 

 2 2 2(( ) )r
ij

j

r
i ZD

i R

vq 


  (51) 

3.6. Mean-standard deviation model 

When costs at the current station are considered, the total cost 1  is defined as: 

 1
o f

oE C C     (52) 

where oE  is the extra operating cost, oC  is the on-board waiting cost and fC  is the waiting cost 

by cargos on delayed inbound vehicles. As discussed above, oE  and oC  are deterministic and 

fC  is random. 
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When downstream costs are considered, the total cost is: 

 2 ( )o f f l r
o j j j

j J

E C C D D D


       (53) 

The mean-standard deviation optimization problem is as follows:  

 min * ( ) (1 )* ( )E Std      (54) 

subject to 

 0 h H   (55) 

The decision maker minimizes the weighted sum of the expectation and standard deviation. By 

changing the value of   in the domain [0,1] , various types of decision makers can be modelled. 

When 1  , the decision maker minimizes only the expectation, as in exiting vehicle holding 

studies. 0   represents the other extreme case where the decision makers only minimizes the 

decision risk. When    takes other values, a general risk-averse decision maker is modelled.  

In practice, the holding time might be subject to other constraints, e.g., the holding should not 

exceed the reserved slot time in cases of limited departure resources (e.g., gate or track). In such 

a case, the held vehicle might be dispatched earlier than its optimal holding time because another 

vehicle needs to use the gate/track/runway occupied by the held vehicle. 

Although there is only one decision variable, the solution of this optimization problem is difficult 

due to the non-convexity of the objective. That means any search algorithm might terminate at a 

local optimum. Hall et al. (2001) proved that the number of local optima is finite for an ideal 

case. Ting and Schonfeld (2007) proposed checking each local optimum numerically. This study 

adopts the same method and employ a direct search to find the optimal solution within a region, 

when the numerical evaluation of the objective is not expensive. 



 

43 

 

 

4. Illustrative Example  

Figure 4-1 shows a simplified case where two inbound trucks are delayed when a train is ready 

for departure. The first truck is estimated to arrive at 6 and the second truck is estimated to arrive 

at 9. The variance/covariance matrix is 
2
1 1 2

2
1 2 2

  
  

 
   

 
, where   measures the 

correlation between two vehicle arrivals. For convenience, it is assumed that variances of two 

vehicle arrivals are the same, 2 2
1 2  ; the headway of the held route is 20H  ; other 

parameters 1 2, , ,q q Q v  and b  are assumed to be 1.  

 

Figure 4-1 An example of two delayed arrivals 

The sum of the extra operating cost and the on-board cargos’ waiting cost is 2o
oE C h  . The 

waiting cost of cargos on two delayed vehicles can be calculated with Equation (37). The 

changes of the expected total cost with respect to the holding time is plotted in Figure 4-2 under 

various variances. When the arrival variance is small, implying nearly deterministic arrivals, the 

curve exhibits a saw-tooth pattern and each sharp angle corresponds to one expected vehicle 
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arrival. As the variance increases, curves become smoother and sharp turns can no longer be 

observed. Clearly there are already two local optima in the range [0,14], which is a sub-region of 

the whole solution space. Such a pattern has been reported by Hall et al. (2001) and by Ting and 

Schonfeld (2007), neither of whom modelled arrival correlations. 

While the covariance, i.e., correlation, does not affect the expectation of the total cost, as in 

Remark 2, effects of arrival correlations on the standard deviation of the total cost are clearly 

shown in Figure 4-3, in which the arrival covariance 1 2   changes from -0.3 to 0.6 and the 

arrival variance is fixed at 2 2
1 2 0.8   . When 1 2 0.3    , vehicle arrivals are negatively 

correlated; when 1 2 0   , there are no correlations between arrivals; when 1 2 0.3    or 

1 2 0.6   , there are positive correlations.  

When h  is too large (above 12) or too small (below 2) in Figure 4-3, a larger arrival covariance 

leads to a larger standard deviation of the total cost. The case 0h   is analyzed as an example. 

When 0h  , there is only one possibility that both vehicles miss their connections. Therefore, 

the unconditional variance of the total cost equals the conditional variance 

( 4)

2 2 2
1 2 1 22


       . Clearly, the variance of the total cost increases with the arrival 

covariance 1 22  . When 1 2 0.3    , 2 2
1 2 1 22 0.8 0.8 2*0.3 1         , which is 

the lowest standard deviation in Figure 4-3.  

When more cases are possible simultaneously, e.g., vehicle 1 (whose expected arrival time is 6) 

can make the connection and miss it with the same probability when the holding 6h  , positive 

correlations result in a smaller standard deviation.  
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Remark 3: The decision risk (measured by the standard deviation) is lower if feeder vehicle 

arrivals are positively correlated when multiple cases can occur at the same time.  

 

Figure 4-2 Effect of arrival variances on expected total cost 

Figure 4-4 shows the expectation and standard deviation of the total cost when the covariance 

matrix of the joint arrival distribution is given by 
0.8 0.6

0.6 0.8

 
   

 
. The dashed curve has not been 

revealed in existing vehicle holding studies which mainly focus on the expected value. The 

optimal solution obtained by minimizing the expectation is unlikely to be optimal for a risk-

averse decision maker, who simultaneously minimizes the decision risk.  
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Figure 4-3 Effect of covariances on standard deviation of total cost 

 

Figure 4-4 Expectation and standard deviation of the total cost vs holding time 
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5. Case Studies 

Figure 5-1 shows a map of the Northeast Corridor located in the United States. Suppose we study 

one ready vehicle currently at the Baltimore transfer terminal. The vehicle runs on the 

Washington-New York-Boston route, whose interconnected routes and associated 

loading/unloading cargos are all shown is Figure 5-1. The headway of this study route is 45 

minutes. To make the example general, the terminology of “vehicle” is used throughout this 

thesis without specifying whether it is a train (a chain of freight cars) or a truck. The origin-

destination information of cargos is provided in Table 5-1. All times are measured in minutes. 

Table 5-1 Freight origin-destination matrix 

OD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 0 0 0 0 0 5 6 2 0 0 0 0 2 4 16
2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 4
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 5
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
5 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  5
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 5-1 Study network 

To demonstrate the proposed methods, two numerical examples are presented. In the first study, 

delay propagations are not considered, i.e., analyzing costs at the current hub only. In the second 

case, costs at downstream stations in a limited region are further included.  

5.1. Case Study 1 

When the vehicle is ready for dispatch, cargos from Route 6 have been loaded and goods to 

Route 9 have been unloaded.  These transferring cargos to Routes 7 and 8 have also been 
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transshipped. The amount of on-board cargos is thus obtained by summing up 2, 4, 16, and 5, 

which is 27. Values of b  and v  are set to be 12 and 10, respectively. 

Feeder vehicles are still on the way. The four vehicle arrivals can be described with a 4-variate 

normal distribution with a mean vector [2, 4, 5,13]   and a covariance matrix  

 

0.2 0 0 0

0 0.3 0.6 1

0 0.6 2 1.6

0 1 1.6 4

 
 
  
 
 
 

 (56) 

By adopting different values of  , the weighted objective is plotted as a function of holding time 

in Figure 5-2. 

 

Figure 5-2 Effect of weights on weighted objective (Control station only) 

Note that 1   corresponds to the case where only the expected value is minimized. From 

Figure 5-2, the optimal vehicle holding is longer as   decreases, i.e., more weights is given to 
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the minimization of the decision risk. With traditional models which neglect the risk, the optimal 

holding time would be found through Figure 5-3; however, one is unaware of the decision risk 

associated with that holding decision, which is shown in Figure 5-4. A risk-averse agent would 

find that in this example the optimal holding time could be slightly longer to reduce the standard 

deviation of the total cost at the expense of increasing the expectation. In this way, a more 

reliable decision is obtained. Thus, the risk-averse formulation can produce more reliable 

decisions. 

 

Figure 5-3 Expectation vs holding time 
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Figure 5-4 Standard deviation vs holding time 

5.2. Case Study 2 

As discussed in the modeling section, the effect of a holding decision will eventually propa 

Standard deviation vs holding time Standard deviation vs holding time gate to the whole network 

if vehicle movements are well coordinated. Due to reasons already provided, it is justified to 

analyze a temporally and spatially adjacent region, which has a limited size. In Chen and 

Schonfeld (2011), only the one nearest adjacent downstream station is considered. That approach 

can be labelled “one step ahead”. According to the proposed Guideline 1 for determining impact 

region, in this example Wilmington is included first into the impact region; Philadelphia is 

included next.  Other downstream stations thus fall into the unaffected region.  

The link travel times are 80 minutes from Baltimore to Wilmington and from 40 minutes 

Wilmington to Philadelphia. The link travel times are assumed to be deterministic because a 

dedicated (or high) right-of-way is usually provided. For example, in intermodal freight systems, 

the travel time by rail is more controllable. However, this assumption can be relaxed without 
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much difficulty. If the arrival of the held vehicle is random, the total cost, which becomes a 

function of the arrival time, can be further integrated over the range of arrival time.  

Two delayed feeder arrivals (i.e., Routes 12 and 13) to Philadelphia are described with a 

bivariate normal distribution with a mean vector [124,126]    and a covariance matrix 

[1.5, 2;2, 3]  . The departure time distribution of receiver route (i.e., Route 14) is described 

with a univariate normal distribution with a mean 126   and a variance 2 1  . If cargos from 

the held vehicle miss the connection to this run of Route 14, the next scheduled run is at 170. 

When the immediately next downstream station, i.e., Wilmington, is considered, the change in 

the optimal holding time is almost negligible compared to the curve in Figure 5-2. This occurs 

because only loading cargos (whose amount is quite low) are present at Wilmington and there 

are no timed transfers at this station; thus there are no missed connection/extra waiting costs. 

Note only the curve when 0.6   is shown in Figure 5-5 because the change in the weighted 

objective with   has been shown in Figure 5-2. 
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Figure 5-5 Costs at Baltimore (Control station) + Wilmington (Downstream) 

If one additional downstream hub, i.e., Philadelphia, is included, the change is significant. The 

optimal holding time increases to over 8, compared to around 6 in Figure 5-6. The reason is that 

vehicles inbound to Philadelphia are also behind their schedule, justifying a longer hold. 

However, it should be noted that the decision is problem-specific. The vehicle might also be 

released sooner if (1) significant loading cargos are ready, and/or (2) inbound vehicles are on 

schedule. 

One can further add downstream stations into the analysis, up to the boundary station, i.e., 

Boston, in this case study. Nonetheless, considering that the travel time from the control station 

to the system boundary is 8 or 9 hours, the reliability of arrival forecasts at Boston seems low 

and the forecast is almost sure to be updated within some time interval, e.g., 1 or 2 hours. Once 

the new forecast is available, the decision would be reevaluated, making the previous analysis 
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futile. Based on such an argument, it is suggested here that the impact region should be limited, 

i.e., only subset of all downstream stations be included at the decision time.  
W
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Figure 5-6 Costs at Baltimore (Control station) + Wilmington (Downstream) + Philadelphia 

(Downstream) 

Since a direct search is conducted over a range (from 0 to 14 minutes in this example), the global 

optimum is not guaranteed. When the numerical evaluation of the objective is inexpensive, one 

can explore as far as one likes. However, it is unhelpful to search too far if new events (e.g., the 

feeder vehicle on Route 5 arrives) tend to occur or updated forecast information becomes 

available frequently. New events or information should trigger reevaluations of the holding 

decision. Guideline 2 is proposed for determining the extent of the numerical evaluation of the 

decision variable. 

Guideline 2 
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The extent of the numerical search of the holding time should not be longer than the time to 

receive updated forecasting information.   

In light of the above discussions, a rolling horizon approach (Figure 5-7) can be adopted in the 

decision making process. The duration of rolling period depends on the frequency of actual 

vehicle movements or the forecast updates. For example, if vehicle arrivals are updated hourly, it 

makes little sense to determine a rolling period of 5 minutes. A duration nearer to 60 minutes 

would be more suitable. The decision maker also needs to know how far into the future forecasts 

are needed for making the current holding decision. In real time operations, it might take 

considerable time for the information to be sent to the vehicle, i.e., the communication may not 

occur in real-time, which also affects the length of rolling period. These are open questions, 

which are not raised in the existing literature regarding vehicle holding.  

 

Figure 5-7  An illustration of rolling horizon approach
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6. Conclusions 

To improve the transfer reliability of coordinated intermodal freight operations, a model is 

proposed for optimizing the vehicle holding decision in real time. After reviewing both 

preplanning and real-time control studies for various transportation systems, including air, public 

transit and intermodal freight transport, it is found that vehicle arrivals are assumed to be 

independent. To overcome this literature gap, this thesis explores the effect of arrival correlations 

on the vehicle holding decision. It is proved that the expected value of the total cost is not 

affected by the correlations, while the variance can be miscomputed when arrival correlations 

are neglected. Specially, it is observed that the decision risk (measured by the standard 

deviation) is lower if feeder vehicle arrivals are positively correlated when multiple cases are 

possible simultaneously.  

It is also discussed to what extent costs at downstream stations should be considered and suggest 

the size of the affected region should be limited due to both the computational burden and more 

importantly the frequency of information/event updates. In other words, even one is equipped 

with very efficient algorithms for evaluating vehicle holding decisions, it is not justified to 

include all downstream stations in the analysis because new information would require 

reevaluations of decisions before the delay propagates to the system’s boundary. A rolling 

horizon framework is briefly discussed as a viable approach to improving current decision 

making. 
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An illustrative example is presented, followed by larger case studies, to demonstrate the 

effectiveness of the proposed method. Numerical results further support the above stated 

theoretical analyses.  

Although significant improvements are made in this study, especially in incorporating correlated 

vehicle arrivals, this work can be enhanced further in the following aspects: 

1) Currently the vehicle holding decision is made independently in the order in which 

vehicles become ready. This simplifies the problem by allowing us to make separate 

decisions regarding each ready vehicle. This assumption could be relaxed to reflect the 

case where vehicle dispatches require shared resources. For example, train departures 

have to be made on certain tracks of a station and ready flights have to queue up for a 

certain runway.  

2) Although some guidelines are provided, this study does not seek to determine the affected 

region in this study. A rigorous method for determining it would be very useful. 

3) It is generally assumed (including this study) that the vehicle delay due to holding control 

cannot be recovered. Nonetheless, one can explore the potential of taking delay recovery 

measures (e.g., speeding up late vehicles) by trading off delay reductions and extra 

operating costs. This would add one further decision in addition to the holding time 

optimization.  

4) Due to the difficulty of minimizing the nonconvex objective analytically, a simple direct 

method is used to exhaust all solutions in a region. Obviously, such a brute-force method 

can be replaced with more advanced searching algorithms, especially when the objective 

is expensive to evaluate numerically and vehicle arrival updates are frequent. 
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5) The holding decision is evaluated independently for each ready vehicle in the order of 

dispatch time. Unless multiple vehicles are ready simultaneously, only one decision at 

one location is made. However, in some cases where decisions must be made for more 

than two vehicles, holdings at different locations can be jointly considered and 

coordinated. Future work should explore the benefit of such a coordinated decision 

process. 

6) A simple risk measurement, i.e., standard deviation, is used in this study. Other risk 

measures such as the Conditional Value-at-Risk (CVaR) (Rockafellar and Uryasev 2000) 

can be employed in the future. 
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