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We consider asymptotic problems for diffusion processes that rely on large

deviations.

In Chapter 2, we study the long time behavior (at times of order exp(λ/ε2))

of solutions to quasi-linear parabolic equations with a small parameter ε2 at the dif-

fusion term. The solution to a partial differential equation (PDE) can be expressed

in terms of diffusion processes, whose coefficients, in turn, depend on the unknown

solution. The notion of a hierarchy of cycles for diffusion processes was introduced

by Freidlin and Wentzell and applied to the study of the corresponding linear equa-

tions. In the quasi-linear case, it is not a single hierarchy that corresponds to an

equation, but rather a family of hierarchies that depend on the time scale λ. We de-

scribe the evolution of the hierarchies with respect to λ in order to gain information

on the limiting behavior of the solution of the PDE.

In chapter 3, we study the asymptotic behavior of diffusion processes, with



a small diffusion term. This process is constrained to move within some bounded

domain D with instantaneous reflection on hitting the boundary ∂D of D. Such

processes have applications in asymptotic questions related to linear parabolic PDEs

with the Neumann boundary condition. Similar problems were previously studied in

[1] by Anderson and Orey. We expand on Anderson’s and Orey’s work by considering

different equilbra in the interior of D, similarly to the problem studied in chapter

2. However, some equilibra also appear on the boundary ∂D. We use the results of

Anderson and Orey together with the work of Freidlin and Wentzell to investigate

the invariant measure of the process and describe the transitions of the process

between the attractors. The knowledge of the invariant measure of the process

and the transition rates (in the logarithmic scale) allow us to study the long term

behavior of the solution to the corresponding linear parabolic PDE as the diffusion

parameter goes to zero.
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Chapter 1: Introduction

There is a close relationship between the theory of second-order partial dif-

ferential equations and Markov processes with continuous trajectories. One of the

earlier formulations of this relationship can be found in the work of Kolmogorov [2]

where the parabolic equations for transition probability were written down. It was

established that the mean value of some functionals of the trajectories of diffusion

processes are the solutions of the boundary value problems for the corresponding dif-

ferential equations. It was possible to draw conclusions on Markov processes based

on the behavior of the solutions of differential equations. These equations also ap-

pear in the physics literature [3]. Later progress on direct probabilistic methods for

examining Markov processes made it possible to construct and study them indepen-

dently of the differential equations. The construction and analysis of the trajectories

of the corresponding diffusion processes via direct probabilistic methods, enable the

construction of the solutions to differential equations and the study of properties of

those solutions.

1.1 Stochastic Differential Equations

We consider the dynamical system
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ẋt = b(xt), x0 = x ∈ Rd. (1.1)

Its stochastic perturbation is defined as

dXx,ε
t = b(Xε

t )dt+ εσ(Xx,ε
t )dWt; Xx,ε

0 = x ∈ Rd, (1.2)

where ε > 0 is a small parameter, σ(x) = (σij(x)), i = 1, . . . , d; j = 1, . . . , `; Wt is a

`−dimensional Wiener process, i.e. , its component are independent and satisfy the

following properties:

1. W i
t are continuous functions of t almost everywhere.

2. W i
0 = 0 almost everywhere.

3. 0 < t1 < t2 =⇒ W i
t2
−W i

t1
is a Gaussian random variable with zero mean and

variance t2 − t1.

4. Random variables W i
t0
,W i

t1
−W i

t0
, . . . ,W i

tk
−W i

tk−1
are independent for every

k ≥ 1 and 0 = t0 ≤ t1, . . . ,≤ tk.

We also assume that |σij(x)− σij(y)| ≤ K|x− y|, and |bi(x)− bi(y)| ≤ K|x− y|.

Under these assumptions on b and σ, the solution of (1.2) is defined, and if ε is

small, then on any final time interval T , the trajectories of the process Xx,ε
t defined

in (1.2) are close to the corresponding non-perturbed trajectory defined in (1.1) with

probability close to 1. It is proved in [4] that for all T > 0 and for all δ > 0 we have

lim
ε→0

P

{
sup

0≤ t≤T
|Xx,ε

t − xt| > δ

}
= 0. (1.3)
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It follows from (1.3) that if a subset A of the space C[0, T ] of continuous functions on

the interval from [0, T ] to Rd contains a δ−neighborhood of xt in this space, then the

main contribution to the probability P{Xx,ε
. ∈ A} is given by this δ−neighborhood;

the remaining part of the event {Xx,ε
. ∈ A} has small probability. It is possible

to show that this probability is exponentially small as ε ↓ 0. As will be discussed

below, under certain assumptions on A, there exists a function ϕ ∈ A such that the

principal part of the probability measure of A is concentrated near ϕ. In particular,

we just saw that if A contains the trajectory of the dynamical system x. then ϕ =

xt, t ∈ [0, T ].

1.2 Action Functional

Let (aij) be the matrix whose elements satisfy aij(x) =
∑̀
k=1

σik(x)σjk(x) and

(aij) be the the inverse of the matrix (aij) The action functional of the process Xx,ε
t

is defined as

S0T (ϕ) =
1

2

∫ T

0

d∑
i,j=1

aij(ϕt)(ϕ̇
i
t − bi(ϕt))(ϕ̇

j
t − bj(ϕt))dt, T ≥ 0, ϕ ∈ C([0, T ],Rd)

for absolutely continuous ϕ and S0T (ϕ) =∞ for ϕ that are not absolutely continu-

ous.

The action functional of ϕ helps one to estimate the probability of the process Xx,ε
t

being in the neighborhood of ϕ.

Define ρ0T (ϕ, ψ) = sup0≤t≤T (ϕt, ψt); ϕ ∈ C([0, T ]), ψ ∈ C([0, T ]).

It is proved in [4] that for a compact set K, and any δ and γ > 0 there exists
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a positive ε0 such that for all ε < ε0

P{ρ0T (Xx,ε, ϕ) < δ} ≥ exp{−ε−2[S0T (ϕ) + γ]} (1.4)

ϕ ∈ C([0, T ], ϕ0 = x, provided that x ∈ K .

It is also proved in [4] that for s0 > 0

P{ρ0T (Xx,ε,Φ(s)) ≥ δ} ≤ exp{−ε−2[s− γ]}, (1.5)

where Φ(s) = {ϕ : ϕ0 = x, S0T (ϕ) ≤ s}, s ≤ s0, and

ρ0T (ϕ,Φ(s)) = inf
φ∈Φ(s)

ρ0T (ϕ, ψ), x ∈ K.

The inequality (1.4) gives a lower estimate of the probability that the process Xx,ε
t

passes through a δ−ball about ϕ; while the inequality (1.5) gives the upper estimate

of the probability that a trajectory of the process Xx,ε
t moves far from the set of

functions with small action functional.

Assume now that the vector field b has r asymptotically stable equilibrium points

O1, O2, . . . , Or; that is, for every neighborhood Vi of Oi, i ∈ 1 . . . r, there exists a

smaller neighborhood Ui ⊆ Vi such that the trajectories of the dynamical system

(1.1) starting in Ui converge to Oi without leaving Vi. For x ∈ Di , the basin of

attraction of Oi, the trajectories of the non-perturbed system (1.1) that start at x

enter Ui in finite time. It follows from (1.3) that the solution Xx,ε
t of (1.2) is close

to the corresponding non-perturbed system with probability close to 1. Therefore,

with high probability Xx,ε
t enters a Ui before leaving Di. It is also clear that for any

fixed time the probability that the process Xx,ε
t that starts in Di stays in Di with

4



probability close to 1. Let τ εi = min{t : Xx,ε
t ∈ ∂Di}, for x ∈ Di be the first time

when Xx,ε
t reaches the boundary of Di. This time is of particular interest as it helps

study the transition of the process Xx,ε
t between different basins of attraction. By

studying these different transitions, we can determine the long time behavior of the

process Xx,ε
t as ε goes to 0.

The quasi-potential is defined as

V (x, y) = inf
T,ϕ
{S0,T (ϕ) : ϕ ∈ C([0, T ],Rd), ϕ(0) = x, ϕ(T ) = y}, x, y ∈ Rd.

As the action functional of a function ϕ helps one to estimate the probability of

the process Xx,ε
t being in some some tube around ϕ, the quasi-potential will be

helpful in estimating the time it takes to go from x to a small neighborhood of y.

In particular, if x and y are different equilibrium points, the transition from a small

neighborhood of x = Oi to a small neighborhood of y = Oj is explained in details in

chapter 3 and is quite complex. If x ∈ Di and y = Oi then V (x, y) = 0. It is proved

in [4] that ε2 ln τ εi converges in probability as ε ↓ 0 to V i
0 = min

y∈∂Di
V (Oi, y)

1.3 Linear equations

The statements made at the end of the previous section imply various results

for PDE’s with a small parameter at the second order derivatives.

There is a connection between the stochastic differential equation (1.2) and the dif-

ferential operator Lε defined as

Lε = ε2

2

∑d
i,j=1 aij(x) ∂2

∂xi∂xj
+ b(x) · ∇x, x ∈ Rd,

where aij(x) as in defined in section (1.2) and b(x) is the same as in equation (1.1)
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and (1.2). If a function uε belongs to the domain of the operator Lε and Xx,ε
t is the

same as in the stochastic differential equations (1.2), then applying the Itô’s formula

to uε(Xx,ε
t ) yields

uε(Xx,ε
t )− uε(x) =

∫ t

0

(∇uε(Xx,ε
s ), σ(Xx,ε

s )dWs) +

∫ t

0

Lεuε(Xx,ε
s )ds (1.6)

where ∇uε is the gradient function of uε, and (∇uε, σdW ) is the scalar product.

Using properties of the stochastic integral and the assumptions on b and σ, it is

proved that

lim
t↓0

1

t
(Euε(Xx,ε

t )− uε(x)) = lim
t↓0

1

t

∫ t

0

Lεuε(Xx,ε
s )ds = Lεuε(x). (1.7)

Equation (1.7) is equivalent to the Feynman Kac formula which states that Eg(Xx,ε
t )

is a solution to the following Cauchy problem:

∂uε(t, x)

∂t
=
ε2

2

d∑
i,j=1

aij(x)
∂2uε(t, x)

∂xi∂xj
+ b(x) · ∇xu

ε(t, x), x ∈ Rd, t > 0, (1.8)

uε(0, x) = g(x), x ∈ Rd. (1.9)

The main focus of this work is the study of (a) more general quasi-linear-

equastions, and (b) the Neumann problem for parabolic equations. First, however,

let us briefly discuss the long time behavior of the solution to the Cauchy problem

(1.8)-(1.9), while b is assumed as in section (1.2) to have several equilibria. Let the

function t : R+ → R be such that ln(t(ε)) ∼ λ/ε2 as ε ↓ 0 with λ > 0.

It is proved in [4] that lim
ε↓0

Xx,ε
t(ε) = Oi, for λ < V i

0 , and x ∈ Di,
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where V i
0 is defined as in section (1.2). It follows from the Feynman Kac formula

and the continuity of g that

lim
ε↓0

uε(t(ε), x) = g(Oi), for x ∈ Di and λ < V i
0 . (1.10)

Define Vij = V (Oi, Oj); if b has exactly two equilibria Oi and Oj, then the difficulty

of passage from Di to Dj is explained solely by Vij. If we also assume without loss of

generality that Vij < Vji then for Vij < λ < Vji The processXx,ε
t that starts in x ∈ Di

has enough time to transition from Di to Dj, but for x ∈ Dj, there is not sufficient

time for the process to transition to Di. It follows that lim
ε↓
uε
(
x, exp(Vij/ε

2)
)

=

g(Oj). for those values of λ and x ∈ Di∪Dj. This limit does not change for λ > Vji.

However, it is important to notice that at those time scales the process Xx,ε
t will

make make many transitions between Di and Dj, and will be found in Dj with

probability close to 1. If b has more than two equilibria, then the knowledge of Vij

alone is not enough to determine the difficulty of transition from Di to Dj. For a

general case of multiple equilibria, the time scale at which the transition from Di

to Dj occurs is explained more precisely in chapter 3. The knowledge of different

time scales at which the transitions occur between different equilibria allows one to

describe the asymptotic of uε.

1.3.1 Cauchy problem with boundary Neumann condition

Let D ⊂ Rd be a bounded domain with smooth boundary ∂D. We consider

the Cauchy problem with the Neumann boundary condition and a small parameter
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ε > 0:

∂uε

∂t
= Lεuε ≡ ε2

2

d∑
i,j=1

aij(x)
∂2uε

∂xi∂xj
+

d∑
i=1

bi(x)
∂uε

∂xi
,

uε(0, x) = g(x) , x ∈ D ∪ ∂D ;

∂uε

∂γ
(t, x) = 0 , x ∈ ∂D , t ≥ 0 .

(1.11)

where γ(x) the conormal, is the vector such that < γ(x), T (x) >a−1= 0 for T (x)

tangential to the boundary. The scalar product with respect to the matrix a−1 = aij

is defined as < u, v >a−1=
d∑

i,j=1

aij(x)u(x)v(x). It is proved that to the Cauchy

problem with Neumann boundary condition (1.11) there corresponds the stochastic

process

dXx,ε
t = b(Xx,ε

t )dt+ εσ(Xx,ε
t )dWt + 1∂D(Xx,ε

t )γ(Xx,ε
t )dξx,εt , Xx,ε

0 = x , ξx,ε0 = 0,

(1.12)

where ξx,εt , the local time at the boundary, is a continuous process which only grows

when Xx,ε
t is on the boundary. The long time behavior of the solution to problem

(1.11), will be considered in chapter 3 and will be shown to similar to the long time

behavior of problem (1.8) and (1.9).

1.3.2 Quasi-linear equations

In chapter 2 we consider the quasi-linear problem

∂uε(t, x)

∂t
=
ε2

2

d∑
i,j=1

aij(x, u
ε)
∂2uε(t, x)

∂xi∂xj
+ b(x) · ∇xu

ε(t, x), x ∈ Rd, t > 0, (1.13)

uε(0, x) = g(x), x ∈ Rd. (1.14)
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We still assume that b has multiple equilibria. This problem is equivalent to the

system

dX t,x,ε
s = b(X t,x,ε

s )ds+ εσ(X t,x,ε
s , uε(t− s,X t,x,ε

s ))dWs, s ≤ t,X t,x,ε
0 = x ,

uε(t, x) = Eg(X t,x,ε
t ),

(1.15)

with unknown X t,x,ε
. and uε. The process X t,x,ε

s can be viewed as a nonlinear stochas-

tic perturbation of the dynamical system (1.1). Though the process X t,x,ε
s is defined

implicitly because of the dependence of its diffusion coefficient σ on the unknown

PDE uε, the inequality (1.3) still holds as long as b and σ satisfy the Lipschitz

condition. This implies that for x ∈ Di, X
t,x,ε
s is close to Oi if ε is small and is

large ( but not exponentially large as ε ↓ 0). This could also be seen by looking at

the action functional, which is still zero along the trajectories of the unperturbed

system. The process X t,x,ε
s stays around a very small neighborhood of Oi for a very

long time before eventually leaving as a result of large deviations. Intuitively, during

this time, the process is close to the following one

dX t,x,ε
s = b(X t,x,ε

s )ds+ εσ(X t,x,ε
s , g(Oi))dWs, s ≤ t,X t,x,ε

0 = x, x ∈ Di . (1.16)

Thus it can be defined autonomously of uε, while uε(t, x) = Eg(X t,x,ε
t ).

Setting αi = g(Oi), the action functional corresponding to this process is

defined as

Sαi0,T (ϕ) =
1

2

∫ T

0

d∑
i,j=1

aij(ϕt, αi)(ϕ̇
i
t−bi(ϕt))(ϕ̇

j
t−bj(ϕt))dt, T ≥ 0, ϕ ∈ C([0, T ], Di)

9



for absolutely continuous ϕ defined on [0, T ] with values inDi, and ϕ0 = x. Sαi0,T (ϕ) =

∞ if ϕ is not absolutely continuous or if ϕ0 6= x. We define

V αi(x, y) = inf
T,ϕ
{Sαi0,T (ϕ) : ϕ ∈ C([0, T ], Di), ϕ(0) = x, ϕ(T ) = y}, x, y ∈ Di,

and V αi
0 = min

y∈∂Di
V αi(Oi, y). Similarly to (1.10), we obtain

lim
ε↓0

uε(t(ε), x) = g(Oi), for x ∈ Di, and λ < V αi
0 .

Thus uε(t(ε), x) is nearly constant as a function of x ∈ Di if λ < V αi
0 . It turns out

that the constant does not depend on the time scale λ either, provided that λ < V αi
0 .

We will show that, the solution to the system (1.13)-(1.14) is nearly constant on Di

for every time scale t(ε) ∼ exp(λ/ε2) although the constant will depend on λ, in

general. In chapter 2, we provide in the description of the evolution of the solution

of the system (1.13)- (1.14) together with the corresponding process at time scales

of order λ > V αi
0 .
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Chapter 2: Quasi-linear equations with a small diffusion term and

the evolution of hierarchies of cycles

2.1 Introduction

Consider the Cauchy problem for the quasi-linear equation with a small pa-

rameter at the second order term

∂uε(t, x)

∂t
=
ε2

2

d∑
i,j=1

aij(x, u
ε)
∂2uε(t, x)

∂xi∂xj
+ b(x) · ∇xu

ε(t, x), x ∈ Rd, t > 0, (2.1)

uε(0, x) = g(x), x ∈ Rd. (2.2)

Equations with diffusion coefficients that depend on particle concentration uε

arise naturally in many applications, in particular in population genetics. The situa-

tion when the drift b depends on both x and uε, with certain additional assumptions,

can also be considered, but we assume here that b depends only on x for the sake

of simplicity.

We assume that the coefficients of equation (2.1) are Lipschitz continuous

and bounded; the matrix (aij(x, u)) is assumed to be uniformly positive definite.

Under these conditions, problem (2.1)-(2.2) has a unique solution for any continuous

bounded g(x) (see, for instance, [5]).

We’ll be interested in the asymptotics of the solution uε to the problem (2.1)-
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(2.2) at times of order exp(λ/ε2) for λ > 0 and ε ↓ 0. Before we study the quasi-linear

equation, it is helpful to discuss the linear case, i.e., when aij do not depend on uε.

Then the Cauchy problem takes the form

∂uε(t, x)

∂t
=
ε2

2

d∑
i,j=1

aij(x)
∂2uε(t, x)

∂xi∂xj
+ b(x) · ∇xu

ε(t, x), x ∈ Rd, t > 0, (2.3)

uε(0, x) = g(x), x ∈ Rd. (2.4)

Let Xx,ε
t be the corresponding family of diffusion processes, namely

dXx,ε
t = b(Xx,ε

t )dt+ εσ(Xx,ε
t )dWt, Xx,ε

0 = x ∈ Rd, (2.5)

where σ is assumed to be Lipschitz continuous and to satisfy a(x) = (aij(x)) =

σ(x)σ∗(x).

Suppose for a moment that the vector field b has just one asymptotically stable

equilibrium point O such that all the points get attracted to O and (b(x), x−O) ≤

−c|x−O| for some positive constant c and all sufficiently large |x|. Then it is easy

to check that

lim
(ε,t)→(0,∞)

P(Xx,ε
t ∈ U) = 1

for any neighborhood U of the equilibrium O. Taking into account that the solution

uε of (2.3)-(2.4) can be written in the form uε(t, x) = Eg(Xx,ε
t ) and the continuity

of g, we conclude that

lim
(ε,t)→(0,∞)

uε(t, x) = g(O).

The situation becomes more complicated if the dynamical system ẋ(t) =

b(x(t)) has more than one asymptotically stable attractor. Assume, for brevity,

that all the stable attractors are equilibriums O1, ..., Or. Let Di be the basin of Oi,
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1 ≤ i ≤ r, and assume that the set Rd \ (D1 ∪ ... ∪Dr) belongs to a finite union of

surfaces of dimension d− 1. The long time behavior of Xx,ε
t and uε(t, x) depends on

the way in which (ε, t) approaches (0,∞) and is now determined by the transitions

of Xx,ε
t between the attractors O1, ..., Or. More precisely, let T ε(λ) = exp(λ/ε2). In

the generic case, there is a finite set Λ ⊂ (0,∞) such that for each x ∈ D1 ∪ ...∪Dr

and each λ ∈ (0,∞) \ Λ, one equilibrium OM(x,λ) is defined such that the measures

µε(Γ) = P(Xx,ε
T ε(λ) ∈ Γ) converge weakly to the δ-measure concentrated at OM(x,λ).

The state OM(x,λ) is called the metastable state for the initial point x and the time

scale T ε(λ). From the representation uε(t, x) = Eg(Xx,ε
t ) it follows that

lim
ε↓0

uε(T ε(λ), x) = g(OM(x,λ)). (2.6)

It is worth noting that for all sufficiently large λ, the metastable state OM(x,λ) does

not depend on x. Therefore, the solution uε(T ε(λ), x) tends to a constant as ε ↓ 0

for all sufficiently large λ.

The theory of metastability (of sublimiting distributions) was developed in [6]

(see also [7], [4], [8]). The notion of a hierarchy of cycles, which is discussed below,

was introduced there. Let S0,T (ϕ) be the action functional for the family Xx,ε
t in

C([0, T ],Rd) as ε ↓ 0 ( [4]):

S0,T (ϕ) =
1

2

∫ T

0

d∑
i,j=1

aij(ϕt)(ϕ̇
i
t − bi(ϕt))(ϕ̇

j
t − bj(ϕt))dt, T ≥ 0, ϕ ∈ C([0, T ],Rd)

for absolutely continuous ϕ, S0,T (ϕ) = +∞ for ϕ that are not absolutely continuous.

Here aij are the elements of the inverse matrix, that is aij = (a−1)ij. The quasi-

potential is defined as

V (x, y) = inf
T,ϕ
{S0,T (ϕ) : ϕ ∈ C([0, T ],Rd), ϕ(0) = x, ϕ(T ) = y}, x, y ∈ Rd.
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Note that while the term “quasi-potential” is normally applied to the function V of

the variable y with x being a fixed equilibrium point, we use the same term for the

function of two variables. The hierarchy of cycles is determined by the numbers

Vij = V (Oi, Oj), 1 ≤ i, j ≤ r.

The equilibriums O1, ..., Or are the cycles of rank zero. In the generic case, for

each Oi there exists a unique “next” equilibrium Ol = N (Oi) defined by Vil =

mink:k 6=i Vik. For each sufficiently small δ > 0, with probability close to one as ε ↓ 0,

the process Xx,ε
t that starts in a δ-neighborhood of Oi will enter a δ-neighborhood

of N (Oi) before visiting the basins of any of the equilibriums other than Oi and

N (Oi). The time before the process enters the neighborhood of Ol = N (Oi) is

logarithmically equivalent to exp(Vil/ε
2). If the sequence Oi, N (Oi), N 2(Oi) =

N (N (Oi)), ...,N n(Oi), ... is periodic, that is N n(Oi) = Oi for some n, then a cycle

of rank one appears. It contains the cycles of rank zero Oi,N (Oi), ...,N n−1(Oi). If

N n(Oi) 6= Oi for any n ≥ 1, we say that Oi forms a cycle of rank one. The entire

set of equilibriums is decomposed into cycles of rank one, which will be denoted by

C1
1 , ..., C

1
m1

. Note that some of the cycles of rank one may consist of one cycle of

rank zero.

Next, the transitions between cycles of rank one can be considered. Namely,

in the generic case, for each cycle C1
i there is a different cycle N (C1

i ) of rank one

determined by Vij, 1 ≤ i, j ≤ r, with the following property: if the process starts at

one of the equilibrium points in C1
i , then, with probability close to one as ε ↓ 0, it

will enter a δ-neighborhood of one of the equilibrium points inside the cycle N (C1
i )
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before visiting basins of any of the equilibriums outside C1
i and N (C1

i ). This leads

to the decomposition of the set of cycles or rank one into cycles of rank two. This

procedure can be continued inductively until we arrive at a single cycle of finite rank

R that contains all the equilibrium points.

Let C be a cycle of rank less than R. In the generic case, the process goes from

C to N (C) in the following fashion: there is an equilibrium point O ∈ C such that,

with probability close to one as ε ↓ 0, the basin of attraction of O is the last one

(among the basins of equilibriums that belong to C) visited by the process before

the process reaches a δ-neighborhood of N (C), provided that the process Xx,ε
t starts

in a δ-neighborhood of one of the equilibriums that belong to C. We’ll say that the

process exits C though the equilibrium O and will use the notation O = E(C) in

this situation.

It has been shown (see [4]) that for each cycle C within the hierarchy, the

transition from C to N (C) happens at an exponential time scale. More precisely,

let τx,ε be the first time when the process Xx,ε
t enters a δ-neighborhood of N (C).

Then there is λ(C) such that ε2 ln τx,ε → λ(C) almost surely as ε ↓ 0, provided that

x belongs to a δ-neighborhood of one of the equilibriums within C.

Now we can introduce a directed labeled graph G associated with the above

hierarchy of cycles. The vertices of the graph are the equilibrium points O1, ..., Or.

We’ll say that G contains an edge e leading from Oi to Oj if there is a cycle C

within the hierarchy such that Oi = E(C) and Oj = N (C). We’ll use the notation

e = R(C) to indicate that e is the edge leading out of C. With each edge e of the

graph, we’ll associate a transition time scale λe = λ(C). The meaning is that it
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takes the process time exp(λe/ε
2) (approximately, up to a sub-exponential factor)

to make a transition along the edge e, i.e., from E(C) to N (C). The transition time

scales λe can be expressed through linear combinations of Vij.

Let us return to the non-linear problem (2.1)-(2.2). The first thing to observe

is that representation (2.6) is not immediately available now - metastable states need

to be replaced by metastable distributions (see [9]), whose dependence on λ needs to

be explored. The family of diffusion processes corresponding to a nonlinear problem

is also more complicated due to the dependence of the coefficients on time (through

the unknown function uε). Namely, taking into account the representation of the

solution of the (linear) Cauchy problem as the expected value of an appropriate

functional of the process, the family corresponding to the problem (2.1)-(2.2) is

defined by the following system on the unknown family of processes and unknown

function uε (see [10], Ch. 5):

dX t,x,ε
s = b(X t,x,ε

s )ds+ εσ(X t,x,ε
s , uε(t− s,X t,x,ε

s ))dWs, s ≤ t, X t,x,ε
0 = x, (2.7)

uε(t, x) = Eg(X t,x,ε
t ), (2.8)

where the entries σij of the matrix σ(x, u) are Lipschitz continuous and σσ∗ = a.

Under the above assumptions on the coefficients and the function g, the solution of

the system (2.7)-(2.8) exists and is unique.

While the transition scales were determined by the time-independent coeffi-

cients in the linear case, now we will consider a family of transition scales λe(z).

These are obtained by formally replacing the unknown function uε by a constant z

in the second argument of the diffusion coefficient in the equation (which, formally,
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gives us a linear equation). The motivation is, roughly speaking, that in each time

scale T ε(λ) the solution is close to a constant in each of the domains Di.

We see that now the transition scales evolve in time due their dependence on

the (unknown) solution uε. Consider, however, a time interval [T ε(λ − δ), T ε(λ)],

where δ is small. As will be seen, uε typically does not change much in time on this

time interval, and the large deviation theory still applies without drastic modifica-

tions, which allows us to express the limit of uε(T ε(λ), x), as ε ↓ 0, in terms of the

limit of uε(T ε(λ − δ), x) and the functions λe(z). This is the main idea that will

allow us to study the evolution in λ of the limit of uε(T ε(λ), x).

In Section 2.2 we discuss some a priori estimates for processes with time-

dependent coefficients, assuming that the coefficients can be obtained via a small

perturbation of time independent functions. These estimates will be needed for

the processes corresponding to the nonlinear problem. In Section 2.3 we review

the case of two equilibrium points. This has been considered in an earlier paper

( [9]), and we include it here so that to illustrate the technique in the simplest

case, when the hierarchy of cycles does not change. The main result, including an

inductive description of the changes in the hierarchies of cycles, is stated and proved

in Sections 2.4 and 2.5.
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2.2 Diffusion processes with time dependent coefficients

Let α(x) be a symmetric d × d matrix whose elements αij(x) are Lipschitz

continuous with Lipschitz constant L and satisfy

k|ξ|2 ≤
d∑

i,j=1

αij(x)ξiξj ≤ K|ξ|2, x ∈ Rd, ξ ∈ Rd. (2.9)

Let αij be the elements of the inverse matrix, that is αij = (α−1)ij, and σ be a

square matrix such that α = σσ∗. We choose σ in such a way that σij are also

Lipschitz continuous.

We assume that all the attractors of the bounded Lipschitz continuous vector

field b are equilibriums O1, ..., Or. Assume that their domains of attraction D1, ..., Dr

are such that the set Rd \ (D1 ∪ ... ∪ Dr) belongs to a finite union of surfaces of

dimension d− 1. We also assume that there are r > 0 and c > 0 such that

(b(x), x−Oi) ≤ −c|x−Oi|2 (2.10)

whenever x is in the r-neighborhood of Oi, 1 ≤ i ≤ r.

Let Sα0,T be the normalized action functional for the family of processes Xx,ε
t

satisfying

dXx,ε
t = b(Xx,ε

t )dt+ εσ(Xx,ε
t )dWt, Xx,ε

0 = x, (2.11)

where b is a bounded Lipschitz continuous vector field on Rd. Thus

Sα0,T (ϕ) =
1

2

∫ T

0

d∑
i,j=1

αij(ϕt)(ϕ̇
i
t − bi(ϕt))(ϕ̇

j
t − bj(ϕt))dt

for absolutely continuous ϕ defined on [0, T ], ϕ0 = x, and Sα0,T (ϕ) = ∞ if ϕ is not

absolutely continuous or if ϕ0 6= x (see [4]).
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We’ll be interested in the long-time behavior of processes whose diffusion coef-

ficients are time-dependent, but are close to functions that do not depend on time.

Let α̃ε(t, x) be a uniformly positive definite symmetric d × d matrix whose

elements α̃εij are continuous in (t, x) and Lipschitz continuous in x. Let σ̃ε be a

square matrix such that α̃ε = σ̃ε(σ̃ε)∗. We choose σ̃ε in such a way that σ̃εij are also

continuous in (t, x) and Lipschitz continuous in x.

Let X̃x,ε
t satisfy X̃x,ε

0 = x and

dX̃x,ε
t = b(X̃x,ε

t )dt+ εσ̃ε(t, X̃x,ε
t )dWt, (2.12)

where b is the same as above. The law of this process depends on σ̃ε only through

α̃ε = σ̃ε(σ̃ε)∗. We will assume that the diffusion coefficients for the process X̃x,ε
t are

close to those of Xx,ε
t . Namely, let us assume that

sup
(t,x)∈R+×Rd

|α̃εij(t, x)− αij(x)| ≤ κ, (2.13)

where κ is small. The reason to introduce the process X̃x,ε
t is that we would like to

study the behavior of the process X t,x,ε
s given by (2.7)-(2.8) on a time interval where

the variable uε found inside the diffusion coefficient of (2.7) does not change much.

Since a-priori we don’t know much about the behavior of the diffusion coefficients

in (2.7) (other than that they don’t significantly change in time on a certain time

interval), it is convenient to consider a generic process whose diffusion coefficients

are close to functions that don’t depend on time.

Given a domain D and δ > 0, we define

Dδ = {x ∈ D : dist(x, ∂D) ≥ δ, |x| ≤ 1/δ}.
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Let x0 be an asymptotically stable equilibrium of b and D be a domain attracted to

x0. Let

v = inf
T,ϕ
{Sα0,T (ϕ) : ϕ ∈ C([0, T ], D), ϕ(0) = x0, ϕ(T ) ∈ ∂D}.

Lemma 2.2.1. Suppose that b is fixed, α is Lipschitz continuous with Lipschitz

constant L, α̃ε is continuous in (t, x) and Lipschitz continuous in x, and

k|ξ|2 ≤
d∑

i,j=1

αij(x)ξiξj ≤ K|ξ|2 for x ∈ D, ξ ∈ Rd,

k|ξ|2 ≤
d∑

i,j=1

α̃εij(t, x)ξiξj ≤ K|ξ|2 for (t, x) ∈ R+ ×D, ξ ∈ Rd. (2.14)

For each δ > 0 there are κ > 0 and a function ρ(ε) (that depend on α and α̃ through

L, k and K) such that limε↓0 ρ(ε) = 0 and

sup
(t,x)∈[T ε(δ),T ε(v−δ)]×Dκ

P(|X̃x,ε
t − x0| < δ, X̃x,ε

s ∈ D for s ≤ t) ≥ 1− ρ(ε),

provided that

sup
(t,x)∈R+×Dκ

|α̃εij(t, x)− αij(x)| ≤ κ.

This lemma was proved in [9]. The main idea was to show that Sα serves

a purpose similar to the action functional for the process X̃x,ε
t , even though the

diffusion coefficients for the process are time-dependent.

The next simple lemma does not require the proximity of α̃ε to α, but only

the boundedness of the entries of α̃ε. It can be proved by standard arguments from

large deviation theory (compare with chapter 3 of [4]).

Lemma 2.2.2. Suppose that b is fixed and α̃ε is continuous in (t, x) and Lipschitz

continuous in x and satisfies (2.14). For any compact M ⊂ D, there is v0 > 0 which
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depends on α̃ε only through K such that for each δ ∈ (0, v0) there is a function ρ(ε)

such that limε↓0 ρ(ε) = 0 and

sup
(t,x)∈[T ε(δ),T ε(v0)]×M

P(|X̃x,ε
t − x0| < δ, X̃x,ε

s ∈ D for s ≤ t) ≥ 1− ρ(ε).

The next lemma implies that the solution of (2.1)-(2.2) is nearly constant

inside each of the domains Dδ
i = {x ∈ Di : dist(x, ∂Di) ≥ δ, |x| ≤ 1/δ}, δ > 0,

1 ≤ i ≤ r, for ε small enough.

Lemma 2.2.3. Let uε be the solution of (2.1)-(2.2). For every positive λ0 and δ

there is a positive ε0 such that

|uε(T ε(λ), x)− uε(T ε(λ), Oi)| ≤ δ (2.15)

whenever x ∈ Dδ
i , ε ≤ ε0 and λ ≥ λ0.

For a proof of this lemma we refer the reader to [11], where the same statement

was proved in the case of a single domain. The main idea is to express the solution

at time T ε(λ) in terms of the solution at a slightly earlier time T ε(λ)− t as follows

uε(T ε(λ), x) = Euε
(
T ε(λ)− t,XT ε(λ),x,ε

t

)
,

uε(T ε(λ), Oi) = Euε
(
T ε(λ)− t,XT ε(λ),Oi,ε

t

)
.

If t is chosen appropriately, then both X
T ε(λ),x,ε
t and X

T ε(λ),Oi,ε
t belong to a small

neighborhood of Oi with overwhelming probability. Therefore, the right hand sides

in the expressions above are very close due to a priori estimates on solutions of

quasi-linear PDEs ( [12]).
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2.3 The case of two equilibrium points

In this section we assume that there are two asymptotically stable equilibrium

points O1, O2 ∈ Rd. Let D1 ⊂ Rd be the set of points in Rd that are attracted to O1

and D2 ⊂ Rd the set of points attracted to O2. We assume that D1 ∪D2 ∈ Rd \ S,

where S is a (d− 1)-dimensional manifold. Note that in the case of two equilibrium

points, the hierarchy of cycles is always the same: O1 and O2 are cycles of rank zero,

and there is one cycle of rank one which contains both O1 and O2.

Let gmin = infx∈Rd g(x) and gmax = supx∈Rd g(x). Let G be the graph with two

vertices O1 and O2 and two directed edges: e going from O1 to O2 and h going from

O2 to O1. Define the functions λe, λh : [gmin, gmax]→ R via

λe(z) = V
a(·,z)
O1,O2

, λh(z) = V
a(·,z)
O2,O1

,

where in the right hand side we have quasi-potentials for the linear problem obtained

by inserting constant z instead of the variable uε in the diffusion coefficient. An

example with the graphs of these functions is shown in Figure 2.1.

Without loss of generality we may assume that g(O1) ≤ g(O2). Let λ1 =

λe(g(O1)) and λ2 = λh(g(O2)). In order to formulate the results on the asymptotics

of uε(T ε(λ), x), we need the functions z1(λ) and z2(λ), λ > 0, defined as follows:

z1(λ) =


g(O1), 0 < λ < λ1,

min{g(O2),min{z : z ∈ [g(O1), g(O2)], λe(z) = λ}}, λ ≥ λ1,

(2.16)
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Figure 2.1: The case of two equilibrium points

z2(λ) =


g(O2), 0 < λ < λ2,

max{g(O1),max{z : z ∈ [g(O1), g(O2)], λh(z) = λ}}, λ ≥ λ2.

(2.17)

Let λ3 = inf{λ : z1(λ) ≥ z2(λ)}. Assume that the functions z1 and z2 are

continuous at λ3. Let z∗ = z1(λ3) = z2(λ3). Let u1(λ) = min(z1(λ), z∗) and

u2(λ) = max(z2(λ), z∗). On Figure 2, the graphs of u1 and u2 are denoted by the

thick and the dotted lines, respectively.

The asymptotics of uε(T ε(λ), x) is described by the following theorem.

Theorem 2.3.1. Let the above assumptions be satisfied. Suppose that the function

u1(λ) is continuous at a point λ ∈ (0,∞). Then for every δ > 0 the following limit

lim
ε↓0

uε(T ε(λ), x) = u1(λ)
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is uniform in x ∈ Dδ
1. Suppose that the function u2(λ) is continuous at a point

λ ∈ (0,∞). Then for every δ > 0 the following limit

lim
ε↓0

uε(T ε(λ), x) = u2(λ)

is uniform in x ∈ Dδ
2.

Before we proceed with the proof of the theorem, let us briefly discuss Fig-

ure 2.1. Observe that there are several “special” time scales, where the behavior

of the functions u1(λ) and u2(λ) changes qualitatively. Namely, these functions are

constants (equal to g(O1) and g(O2), respectively) for small values of λ. By drawing

the vertical segment through the point (g(O1), 0) in the (z, λ) plane till the intersec-

tion with the graph of λe, we locate the time scale λ1. After the time scale λ1, the

function u1 is just the inverse of the function λe for a certain range of values of λ.

(The time scale λ2 plays the same role for the function u2.) Then, after λ3, which

corresponds to the intersection of the graphs of λe and λh, the functions u1(λ) and

u2(λ) become constant again. Note that there is also a point of discontinuity for

u1(λ), which corresponds to a local maximum of λe.

In the general case (more than two equilibriums) we’ll encounter several type

of special time scales. In particular, some will correspond to the intersections of

vertical lines going through (g(Oi), 0) with the graphs of λe, others will correspond

to intersection points between λe and λh, yet others will correspond to local maxima

of λe for some e (and there will be other special time scales that are not found in

this example).

24



Proof of Theorem 2.3.1. Let us show that if z1 is continuous at λ, then

lim sup
ε↓0

sup
x∈Dδ1

uε(T ε(λ), x) ≤ z1(λ). (2.18)

Similarly, if z2 is continuous at λ, then

lim inf
ε↓0

inf
x∈Dδ2

uε(T ε(λ), x) ≥ z2(λ). (2.19)

Due to Lemma 2.2.3, in order to prove (2.18), it is sufficient to show that

lim sup
ε↓0

uε(T ε(λ), O1) ≤ z1(λ), (2.20)

Note that by Lemma 2.2.2 and (2.8) there is a positive v0 such that for every

0 < δ < v0 there is ε0 > 0 such that

|uε(T ε(λ), x)− g(Oi)| ≤ δ (2.21)

whenever x ∈ Dδ
i , 0 < ε ≤ ε0 and δ ≤ λ ≤ v0.

If (2.20) fails for a certain value of λ, then due to continuity of the functions

uε(t, Oi) in t, it follows from (2.21) that for an arbitrarily small δ′ > 0 there are

sequences εn ↓ 0 and λn ∈ [δ′, λ] such that

uεn(t, O1) ≤ z1(λ) + δ′, T εn(δ′) ≤ t ≤ T εn(λn)

and

uεn(T εn(λn), O1) = z1(λ) + δ′.

Take δ′′ ∈ (0, δ′) which will be specified later. Due to the continuity of uεn(t, O1) in

t, we can find a sequence µn ∈ [δ′, λn) such that

uεn(T εn(µn), O1) = z1(λ) + δ′′
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and

uεn(t, O1) ∈ [z1(λ) + δ′′, z1(λ) + δ′] for t ∈ [T εn(µn), T εn(λn)]. (2.22)

We can express uεn(T εn(λn), O1) in terms of the processX
T εn (λn),O1,ε
s and the solution

at the earlier time T εn(µn) as follows

uεn(T εn(λn), O1) = Euεn
(
T εn(µn), X

T εn (λn),O1,εn
T εn (λn)−T εn (µn)

)
. (2.23)

Since z1 is continuous at λ, there are arbitrarily small δ′ > 0 such that λe(z
1(λ) +

δ′) > λe(z
1(λ)) = λ. Since λn ≤ λ, a process starting at O1 and satisfying (2.11)

with

σσ∗(x) = a(x, uεn(T εn(λn), O1)) = a(x, z1(λ) + δ′))

will be in an arbitrarily small neighborhood of O1 at time T εn(λn) − T εn(µn) with

probability which tends to one when εn ↓ 0. By Lemma 2.2.1, this remains true

if the constant uεn(T εn(λn), O1) is replaced by a function which is sufficiently close

to this constant in Dδ
1, where δ is sufficiently small. Therefore, due to (2.22) and

Lemma 2.2.3, we can choose δ′′ sufficiently close to δ′ so that X
T εn (λn),O1,εn
T εn (λn)−T εn (µn) will

be in a small neighborhood of O1 with probability which tends to one when εn ↓ 0.

With δ′ and δ′′ thus fixed, we let εn ↓ 0 in (2.23). The left hand side is equal to

z1(λ)+δ′, while the right hand side tends to z1(λ)+δ′′. This leads to a contradiction

which proves that (2.20) holds, which in turn implies that (2.18) holds. The proof

of (2.19) is completely similar.

Note that the arguments used to prove (2.20) also lead to the following state-
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ment: for each λ0 > 0

lim sup
ε↓0

sup
λ′∈[λ0,λ]

uε(T ε(λ′), O1) ≤ lim
λ′↓λ

z1(λ′), (2.24)

now without assuming that z1 is continuous at λ. Similarly, for each λ0 > 0

lim inf
ε↓0

inf
λ′∈[λ0,λ]

uε(T ε(λ′), O2) ≥ lim
λ′↓λ

z2(λ′). (2.25)

Let us show that if z1 is continuous at λ, then

lim inf
ε↓0

inf
x∈Dδ1

uε(T ε(λ), x) ≥ min(z1(λ), lim
λ′↓λ

z2(λ′)). (2.26)

Similarly, if z2 is continuous at λ, then

lim sup
ε↓0

sup
x∈Dδ2

uε(T ε(λ), x) ≤ max(z2(λ), lim
λ′↓λ

z1(λ′)). (2.27)

Due to Lemma 2.2.3, in order to prove (2.26), it is sufficient to show that

lim inf
ε↓0

uε(T ε(λ), O1) ≥ min(z1(λ), lim
λ′↓λ

z2(λ′)). (2.28)

If (2.28) fails, then for each λ0 > 0 there is δ′ > 0 and a sequence εn ↓ 0 such that

uεn(T εn(λ), O1) < z1(λ)− δ′. (2.29)

uεn(T εn(λ), O1) < inf
λ′∈[λ0,λ]

uεn(T εn(λ′), O2)− δ′. (2.30)

These two inequalities can not hold at the same time as follows from Lemma 3.11

of [11], where an analogue of (2.29) is ruled out for the case of the initial-boundary

value problem with one equilibrium point inside the domain. Now the boundary

condition is replaced by the presence of the second equilibrium point, but due to

(2.30) the proof goes through without major modifications. We have thus justified

(2.26), and (2.27) is absolutely similar.
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Note that (2.18), (2.19), (2.26), and (2.27) imply the statement of the theorem

for 0 < λ < λ3. Expressing the solution at time T ε(λ) in terms of the solution at

an earlier time T ε(λ′) (similarly to (2.23)), we see that if

lim inf
ε↓0

inf
x∈Dδ1

uε(T ε(λ′), x) ≤ lim sup
ε↓0

sup
x∈Dδ2

uε(T ε(λ′), x),

then

lim inf
ε↓0

inf
x∈Dδ1

uε(T ε(λ′), x) ≤ lim inf
ε↓0

inf
x∈Dδ1∪Dδ2

uε(T ε(λ), x) ≤

≤ lim sup
ε↓0

sup
x∈Dδ1∪Dδ2

uε(T ε(λ), x) ≤ lim sup
ε↓0

sup
x∈Dδ2

uε(T ε(λ′), x).

As follows from the definition of the functions u1(λ) and u2(λ), this allows us to

extend the result to λ ≥ λ3.

Remark. If λ > λ3, then u1(λ) = u2(λ) = z∗. It is possible to show that the limit

lim
ε↓0

uε(T ε(λ), x) = z∗

is uniform in (x, λ) ∈ B1/δ × [λ,∞) for each λ > λ3, where B1/δ is the ball of radius

1/δ centered at the origin. Therefore, for each δ > 0 and λ > λ3 there is ε0 > 0

such that

|uε(t, x)− z∗| ≤ δ

whenever ε ∈ (0, ε0), x ∈ B1/δ and t ≥ T ε(λ).
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2.4 General case: preliminary considerations, notations and assump-

tions

We assume that there are r equilibrium points O1, ..., Or. Recall that their

domains of attraction are denoted by D1, ..., Dr. As follows from Lemma 2.2.3, for

a fixed value of λ > 0 and ε ↓ 0, the solution uε(T ε(λ), x) is nearly constant inside

each of the domains Di. We’ll prove that under certain assumptions there is a finite

set Λ = {λ0, ..., λN} such that there are limits

ui(λ) = lim
ε↓0

uε(T ε(λ), x), x ∈ Di, λ ∈ (0,∞) \ Λ. (2.31)

The functions ui are continuous on (0,∞)\Λ and are determined by the coefficients

of the equation through the quasi-potential. They will be described inductively: first

we’ll explain how to define each ui(λ) on the interval (0, λ1), then, given the values

of limλ↑λ1 u
i(λ) for all i, we define limλ↓λ1 u

i(λ), then define ui(λ) for λ ∈ (λ1, λ2),

etc. As a by-product of our construction, we’ll see that ui(λ) does not depend on

either i or λ for λ > λN , that is the solution of the PDE tends to a constant in the

appropriate time scale.

While constructing the set Λ of “special” time scales, we’ll make certain as-

sumptions on the coefficients of the equation. These assumptions will be satisfied

in a wide range of situations.

For a fixed value of z ∈ R, we consider the family of processes obtained from

(2.7) by formally setting uε to be identically equal to z. We drop the superscript

corresponding to the initial time (since the coefficients are now time-independent)
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and insert the superscript z to indicate the dependence of the coefficients on the

choice of the constant, denoting the resulting process by Y z,x,ε
t . Thus

dY z,x,ε
t = b(Y z,x,ε

t )dt+ εσ(Y z,x,ε
t , z)dWt, Y z,x,ε

0 = x, (2.32)

We can construct the hierarchy of cycles corresponding to Y z,x,ε
t , provided that the

“next” equilibrium point can be defined uniquely for each of the cycles. Observe

that different values of z may result, in principle, in different hierarchies of cycles.

We’ll in interested in the values of z that belong to the interval [gmin, gmax], where

gmin = infx∈Rd g(x) and gmax = supx∈Rd g(x), since it will be seen that the values of

the limits in (2.31) also belong to this interval. In the generic situation, there will be

a finite set of points Z = {z1, ..., zK} ⊆ (gmin, gmax) such that the notion of the “next”

equilibrium is defined uniquely for z ∈ [gmin, gmax] \ Z and the hierarchy doesn’t

change on each of the segments I1 = (gmin, z1), I2 = (z1, z2), ..., IK+1 = (zK , gmax).

The hierarchy corresponding to a given value of z ∈ Ik will be denoted by

Hk. Recall that Hk can be viewed as a directed graph. For an edge e ∈ Hk,

we define C−k (e) to be the cycle such that e connects Ek(C−k (e)) with Nk(C−k (e)).

The notation E(C) and N (C) has been introduced in Section 2.1. Here we use an

additional subscript k to stress that the hierarchy corresponds to z ∈ Ik.

We define C+
k (e) to be the smallest cycle that contains e. Let λe(z) be the

transition scale along the edge e ∈ Hk for the processes Y z,x,ε
t .

Let us spell out some of the assumptions on the functions λe(z). Since λe(z)

can be expressed in terms of aij(·, z) and b(·), these are essentially assumptions on

the coefficients of the equation. We assume that if λe(z) is defined on Ik, then it
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can be continued to the end-points of the segment in such a way that it is a smooth

function of z for z ∈ Ik, where Ik is the closure of Ik. We’ll assume that each λe has

only a finite number of critical points (i.e., where the derivative is zero) and that

these points do not coincide with the end-points of Ik. We do not, however, exclude

the possibility that λe is defined on both Ik and Ik+1, and when continued to the

common end point of the two segments dλe(z)/dz has two different values (possibly

of opposite signs).

Later, as we consider specific cases, we’ll introduce additional assumptions.

Changes in the Hierarchy.

It is important to understand how the quantities λe(z) behave and how the

hierarchy changes when z passes through a point zk ∈ Z. What causes a change

in the hierarchy, is that the notion of the “next” cycle, which is uniquely defined

for z immediately to the left of zk, is not unique for z = zk for one of the cycles.

We assume that for each zk only one cycle gets thus affected (possibly leading to

creation or destruction of another cycle, as will be discussed below). Let e ∈ Hk

be the edge that connects Ek(C−k (e)) with Nk(C−k (e)). Let g ∈ Hk+1, g 6= e, be the

edge that connects Ek+1(C−k+1(g)) with Nk+1(C−k+1(g)), where C−k (e) = C−k+1(g). In

other words, it is the cycle C−k (e) = C−k+1(g) that gets affected by the change in the

notion of the next equilibrium when z passes through zk.

We’ll assume that if an edge h 6= e, g is represented in the hierarchy Hk (or

Hk+1), then it is also represented in Hk+1 (or Hk). We also assume that λh(zk) is

distinct from limz↑zk λe(z) = limz↓zk λg(z) and that λh1(zk) 6= λh2(zk) for h1 and h2

31



that are different from e and g.

We distinguish three ways in which a change in the hierarchy can take place.

(a) Assume that Nk+1(C−k+1(g)) ∈ C+
k (e). In this case, the only difference

between Hk and Hk+1 is that Hk+1 contains the extra edge g. For Hk+1, the edge

e connects C+
k+1(g) with Nk+1(C+

k+1(g)). We’ll say that the hierarchy undergoes the

restructuring of the first kind at zk in this case. (See Figure 2.2.)

Figure 2.2: Restructuring of the first kind - the hierarchies Hk and Hk+1.

(b) Another possibility is that Nk+1(C−k+1(g)) /∈ C+
k (e), but Nk(C−k (e)) ∈

C+
k+1(g). In this case, the only difference between Hk and Hk+1 is that Hk+1 does

not contain the edge e. For Hk, the edge g connects C+
k (e) with Nk(C+

k (e)). We’ll

say that the hierarchy undergoes the restructuring of the second kind at zk in this

case. (See Figure 2.3.)

(c) Finally, it is possible that Nk+1(C−k+1(g)) /∈ C+
k (e) and Nk(C−k (e)) /∈

C+
k+1(g). In this case, Hk and Hk+1 contain the same edges, but the notion of

the next cycle changes, i.e., Nk(C−k (e)) 6= Nk+1(C−k+1(g)). For Hk, g connects C+
k (e)

with Nk(C+
k (e)). For Hk+1, e connects C+

k+1(g) with Nk+1(C+
k+1(g)). We’ll say that
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Figure 2.3: Restructuring of the second kind - the hierarchies Hk and Hk+1.

the hierarchy undergoes the restructuring of the third kind at zk in this case. (See

Figure 2.4.)

Figure 2.4: Restructuring of the third kind - the hierarchies Hk and Hk+1.

Observe a certain symmetry: a restructuring of the first (second) kind can be

viewed as a restructuring of the second (first) kind, respectively, as we go from Hk+1

to Hk. A restructuring of the third kind remains a restructuring of the third kind

as we go from Hk+1 to Hk.

Special time scales.
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Now let us describe the set Λ of special time scales and the corresponding set

Π ⊂ R× R+ of points in the (z, λ) space. We define

Λ0 = {0}, Π0 = {(g(O1), 0), ..., (g(Or), 0)}.

We’ll assume that all the g(Oi) are distinct.

Let z ∈ Ik. We’ll say that z is a maximum point if there is e ∈ Hk such that

the function λe(·) has a local maximum at z. Let’s denote the set of maximum

points by M . We’ll assume that M is finite and that no two functions λe1 , λe2 have

a local maximum at the same point z ∈ Ik for distinct e1, e2. Define

Λ1 = {λe(z) : z ∈M, λe has a local maximum at z},

Π1 = {(z, λe(z)) : z ∈M, λe has a local maximum at z}.

We assume that the number of elements in Λ1 is the same as in M , i.e., no two

maximum points result in the same value of λe.

We’ll say that z ∈ Ik is an intersection point if there are e, g ∈ Hk such that

λe(z) = λg(z). We’ll assume that the set of intersection points is finite and that

each intersection point arises as an intersection of exactly two functions (i.e., there

are no triple intersections). Let’s denote the set of intersection points by N . Define

Λ2 = {λe(z) : z ∈ N, λe(z) = λg(z) for e 6= g},

Π2 = {(z, λe(z)) : z ∈ N, λe(z) = λg(z) for e 6= g}.

We assume that the number of elements in Λ2 is the same as in N , i.e., no two

intersection points result in the same value of λe.
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Define

Λ3 =
K⋃
k=1

Λk
3 =

(
K⋃
k=1

{lim
z↑zk

λe(z), e ∈ Hk}

)⋃(
K⋃
k=1

{lim
z↓zk

λe(z), e ∈ Hk+1}

)
,

i.e., Λ3 is determined by the intersections of the graphs of λe for all e with the vertical

lines given by z = zk for all k. We’ll assume that Λk1
3 and Λk2

3 do not intersect for

distinct k1 and k2. Define

Π3 =
K⋃
k=1

{(zk, λ), λ ∈ Λk
3}.

We’ll assume that Λ0, ...,Λ3 are disjoint.

The cascade of special time scales.

So far, we operated with the hierarchies Hk corresponding to the process (2.32)

for different values of z. The motivation is that processes of this type come up if

we consider the value of the function uε in (2.7) to be fixed and identically equal to

z. The full picture is somewhat more complicated. For each value of λ, the solution

is approximately constant in each of the domains Di, yet the constants may be

different from one domain to another. Moreover, at a given timescale λ, the process

might or might not be able to exit a domain Di (or a larger cycle) in time exp(λ/ε2).

At each time scale, we’ll be interested in whether the process can or can not exit

a cycle, and below we’ll classify individual cycles within the hierarchy accordingly.

The time scales where this classification may change form the “special” set that

includes the union of Λ1, ...,Λ3. Besides the sets Λ1, ...,Λ3, there are other “special”

time scales that we’ll now define inductively.
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Let Λ = Λ0 ∪ ... ∪ Λ3 and Π = Π0 ∪ ... ∪ Π3. Let p = (z, 0) ∈ Π0. We’ll say

that p is a point of the first generation. For each point p of the first generation,

we consider the ray l that goes vertically upward in the (z, λ) plane starting at

p. All the intersection points of l with the graphs of λe (for all e) are considered

points of the second generation. We assume that the vertical rays (here and in the

construction below) don’t intersect any of the graphs at a point where the tangent

to the graph is horizontal.

Let l̃ be the horizontal ray in the (z, λ) plane that starts at a point of the

second generation (intersection of l with the graph of λe) and goes in the direction

where the function λe decreases. All the other intersection points of the ray l̃ with

the graphs of λg (for all g, where λg is defined on the closure of Ik for some k) are

considered the points of the third generation. We continue the process inductively by

alternating between the vertical rays and the horizontal rays in the direction where

the corresponding λe decreases. The set of points of all generations obtained in this

way will be called the cascade of points generated by p. We assume that none of

the points of the cascade belongs to Λ, other than the point of the first generation.

Moreover, we assume that the same point of the cascade can’t be obtained by

following two distinct sequences of horizontal and vertical rays originating at p.

The definition of a cascade starting at p ∈ Π2 is the same. The cascade starting

at p ∈ Π1∪Π3 is defined similarly but starting with the union of two horizontal rays.

We’ll assume that the cascades generated by distinct points p ∈ Π do not contain

common points. The union of cascades will be denoted by Π. The projection of Π

on the λ axis will be denoted by Λ.

36



The set of points of Π that were obtained by intersecting the horizontal rays

with the graphs of λe will be denoted by Πh, the set of points of Π that were obtained

by intersecting the vertical rays with the graphs of λe will be denoted by Πv. Thus

Π = Π ∪ Πh ∪ Πv.

Lemma 2.4.1. Under the above assumptions on the functions λe, the number of

points in Π is finite.

Proof. We assumed that the number of cascades (which is the number of points in

Π) was finite. Each cascade may be viewed as a tree-like graph rooted at a point of

the first generation. The edges of the graph are formed by connecting points of k-th

generation with the corresponding points of k + 1-st generation via horizontal or

vertical segments. If a vertical ray emanating from a point of k-th generation does

not cross any of the graphs of λe, then the ray itself is also considered a semi-infinite

edge of the graph.

By a path we’ll mean a sequence of edges connecting a point of the first

generation with a corresponding point of the second generation, then with a point

of the third generation, etc.; the last edge of the path may be semi-infinite.

Let us show that each path terminates with a semi-infinite edge (i.e., there

can’t be paths with infinite number of edges) and that the number of paths is finite.

This will imply that the number of points in a cascade is finite since each point of

a cascade belongs to a path.

Since the functions λe are continuous on Ik (each function is defined on a union

of some of the segments), there is a constant K such that supλe < K for all e (the
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supremum is taken over the domain where λe is defined). For a point p ∈ Π2 ∪ Π3,

let Sp(δ) denote the square in the (z, λ) plane with side δ and centered at p. For

each p = (z′, λ′) ∈ Π2 ∪ Π3 we can take δ > 0 such that:

(a) λe(z) is monotonic on [z′−δ/2, z′] whenever e is such that limz↑z′ λe(z) = λ′,

(b) λe(z) /∈ [λ′ − δ/2, λ′ + δ/2] for z ∈ [z′ − δ/2, z′] whenever e is such that

limz↑z′ λe(z) 6= λ′,

(c) λe(z) is monotonic on [z′, z′+δ/2] whenever e is such that limz↓z′ λe(z) = λ′,

(d) λe(z) /∈ [λ′ − δ/2, λ′ + δ/2] for z ∈ [z′, z′ + δ/2] whenever e is such that

limz↓z′ λe(z) 6= λ′,

(e) Sp(δ) does not contain other points of Π2 ∪ Π3.

Since the number of points in Π2 ∪ Π3 is finite, we can take the same δ for

all p ∈ Π2 ∪ Π3. Moreover, since all the points of Π2 ∪ Π3 are at different heights

(different values of λ), we can choose δ sufficiently small so that [λ′ − δ/2, λ′ + δ/2]

does not overlap with [λ′′− δ/2, λ′′ + δ/2], where λ′ and λ′′ are the λ-coordinates of

p′, p′′ ∈ Π2 ∪ Π3.

The purpose of this construction was to cut out small neighborhoods of all

the points of Π2 ∪ Π3. Since all the functions λe are continuous and intersect only

at the points of Π2 ∪ Π3, there is a positive constant κ such that a vertical edge

starting outside ∪pSp(δ) is longer than κ. Also note that a path that enters Sp(δ)

will leave it after going along at most two vertical edges due to the monotonicity of

the functions λe that was a part of our construction (see Figure 2.5).

The next time the path returns to Sp(δ) (if it returns at all), it will be higher by

at least κ than when it left Sp(δ). Therefore, each path will have at most 2(1 + δ/κ)
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Figure 2.5: A path passing through Sp(δ) - the dotted line represents a part of the

path.

vertical segments that intersect with Sp(δ). Let n be the number of points in Π2∪Π3.

Then a path can have at most 2(1 + δ/κ)n vertical segments that intersect with

∪pSp(δ). All the other vertical segments are longer than κ. Since supλe < K for all

e, there are no vertical segments that start above the level λ = K. Therefore the

number of vertical segments in a path is bounded from above by 2(1+δ/κ)n+K/κ.

It is now easy to show that the total number of paths is also finite. Since

there is a finite number of functions λe and each is piece-wise monotonic, a given

horizontal edge can be followed by only a finite number of different vertical edges (not

exceeding the number of monotonicity intervals for all the functions λe, which will

be denoted by L). A given vertical edge can be followed by only a finite number of

different horizontal edges (not exceeding the number of different functions λe, which

is bounded from above by L). Therefore, the total number of paths is bounded from

above by L2[2(1+δ/κ)n+K/κ], which completes the proof.
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2.5 Inductive construction and the main result

Recall that Λ = {λ0, ..., λN} is the set of special time scales constructed in the

previous section. We list them in the increasing order: 0 = λ0 < ... < λN . Our

main result is the following.

Theorem 2.5.1. For each λ ∈ (0,∞) \ Λ there are limits

ui(λ) = lim
ε↓0

uε(T ε(λ), x), x ∈ Di, (2.33)

where the functions ui are continuous on (0,∞) \ Λ.

First, we’ll identify the limits for λ ∈ (0, λ1). In particular, we’ll get the

limits limλ↑λ1 u
i(λ), which will be denoted by ui−(λ1). Using those, we’ll determine

ui+(λ1) = limλ↓λ1 u
i(λ), which, in turn, will allow us to define the limits ui(λ) for

λ ∈ (λ1, λ2). The procedure will then continue by induction till we reach the interval

(λN ,∞).

It will be clear from our construction that ui(λ) do not depend on λ for λ ∈

(λN ,∞). Let us denote these values by ui. Fix a value λ > λN , and observe that on

the interval [T ε(λ),∞) the function uε satisfies the equation that is almost linear,

i.e., the diffusion matrix in (2.1) is close to a(x, ui) for x ∈ Di. We can consider

equation (2.1) on the interval [T ε(λ),∞) with initial data that is close to ui on Di.

It is not difficult to show that, as in the linear case, the solution tends to a

constant in the time scale T ε(λ) if λ is sufficiently large. This implies that ui do not

depend on i. Therefore, we have the following corollary.
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Corollary 2.5.2. There is a constant u such that for each λ > λN and each x ∈ Rd

there is the limit

lim
ε↓0

uε(T ε(λ), x) = u.

Strictly speaking, the fact that ui(λ) do not depend on i implies the statement

for x ∈ ∪iDi, but then it is not difficult to extend it to x ∈ Rd \ ∪iDi since the

process X t,x,ε
s starting at such x will reach the interior of one of the domains Di in

sub-exponential time.

The construction below generalizes the situation with two equilibrium points

considered in Section 2.3. Our emphasis is on providing the algorithm for construct-

ing the functions ui found in the left hand side of (2.33). The fact that the limits

in (2.33) coincide with the constructed functions can be justified similarly to the

case of two equilibrium points (with additional notational complications due to the

induction), and so this part of the proof will not be repeated.

Preliminary description of the graphs Gn and G∗n.

As a part of the inductive construction, we’ll need to introduce a sequence of di-

rected labeled graphs, G0, G1, ..., GN associated to the segments (0, λ1), (λ1, λ2), . . . ,

(λN ,∞), and a sequence of directed labeled graphs G∗1, ..., G
∗
N associated to the

points λ1, ..., λN . They will be constructed inductively: G∗n, n = 1, ..., N , will be

determined by Gn−1 and the values of ui−(λn), while Gn will be determined by G∗n

and the values of ui−(λn).
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The vertices of the graphs are the equilibrium points O1, ..., Or. The directed

edges are labeled as either active, engaged (to the right or to the left), or conflicted.

We’ll separate each graph into classes of equivalence (clusters) by saying that Oi

and Oj are in the same equivalence class if they are connected by a chain of active

edges to the same equilibrium (each equilibrium is considered to be connected to

itself by an empty chain of edges). As a part of the inductive construction, we’ll see

that each graph has only three types of clusters:

(a) The only edges leading out of the points of a cluster are the active edges.

In this case we’ll say that this is a sleeping cluster.

(b) There is one equilibrium Oi within a cluster with an engaged edge e leading

out of Oi. This edge leads to a point outside the cluster. The rest of the edges leading

out of the points of the cluster are active. The vertex Oi can be reached from any

of the points of the cluster by following a chain of active edges. In this case we’ll

say that this is an engaged cluster.

(c) There is a cycle C within a cluster such that there are two conflicted edges

leading out of C. These edges lead to two distinct points outside the cluster. The

rest of the edges leading out of the points of the cluster are active. The cycle C can

be reached from any of the points of the cluster by following a chain of active edges.

In this case we’ll say that we have a conflicted cluster.

We’ll say that a vertex Oi is subordinated to Oj if we can reach Oj from Oi

by following a chain of active edges.

Let us briefly discuss the properties of the graphs Gn (which will follow from

our inductive construction). Let λ ∈ (λn, λn+1), 0 ≤ n ≤ N , where we put λ0 = 0
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and λN+1 = ∞. Assume that ui(λ) has been defined. Consider the hierarchy of

cycles corresponding to the linear equation (2.7) with the second argument in σ

replaced by ui(λ) for x ∈ Di. We can view this hierarchy as a directed graph,

which will be denoted by Gn. It will be seen that Gn does not depend on the choice

of λ ∈ (λn, λn+1). The values of ui(λ) may in general be different for different i,

and therefore the hierarchy Gn may be different from either of the hierarchies Hk

constructed earlier. The notion of a next equilibrium for some of the cycles of the

hierarchy Gn may be not correctly defined. Namely, it may happen that for a given

cycle C there are two edges e and g connecting C with the equilibria Oi and Oj such

that λe = λg, where λe and λg are the transition scales.

We’ll say that an edge e ∈ Gn is active if e = R(C) for some C (the edge

leading out of C), N (C) is defined uniquely and satisfies λe < λ. We’ll say that

e and g are conflicted if e = g = R(C) (i.e., the notion of next is not uniquely

defined) and λe = λg < λ. We’ll say that e is engaged to the right (engaged to the

left) if e = R(C), N (C) is uniquely defined, λe = λ, and e connects Oi to Oj with

ui(λ) < uj(λ) (ui(λ) > uj(λ)). We’ll say that e is passive if λe > λ. We’ll see that

each of the edges belongs to one of these four types and the type does not depend

on λ ∈ (λn, λn+1). We define Gn to contain those edges of Gn that are either active,

conflicted, or engaged (i.e., we dispose of passive edges).

We’ll see that for λ ∈ (λn, λn+1) the values ui(λ) do not depend on i for all

Oi within a given cluster. For a sleeping cluster, we’ll see that ui(λ) do not depend

on λ ∈ (λn, λn+1) for Oi that belong to the cluster. Moreover, for a sleeping cluster

ui(λ) is equal to the projection of some point p ∈ (Π0 ∪Π2 ∪Πh)∩ {(z, λ) : λ < λn}
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onto the z-axis.

For an engaged cluster, there is one equilibrium Oi within a cluster with an

engaged edge e leading out of Oi. We’ll see that λe(u
i(λ)) = λ, while uj(λ) = ui(λ)

for the other points Oj within the cluster.

For a conflicted cluster, there is a cycle C within a cluster such that there are

two conflicted edges e and g leading out of C to some vertices Oj1 and Oj2 , respec-

tively. We’ll see that the values of ui(λ) do not depend on λ for Oi that are within

the cluster. These values are equal to zk ∈ Z for some k, while uj1(λ) < zk < uj2(λ)

for λ ∈ (λn, λn+1). Moreover, C is a cycle in Hk for which the notion of “next”

changes at z = zk.

Inductive construction.

Now we formulate the basis of the induction process. We put ui+(λ0) = g(Oi).

By Lemma 2.2.2, (2.31) holds for λ ∈ (0, δ) with the right hand side equal to g(Oi)

for some positive δ, which explains our definition of ui+(λ0). We put G0 to be the

graph with the vertices at O1, ..., Or and with no edges. It is clear that this trivial

graph has all the properties that we claimed should hold for the graphs Gn.

The inductive step will consist of three parts.

Part I. First, we define ui(λ) for λ ∈ (λn, λn+1) while assuming that we know

Gn and ui+(λn) for all i. Namely, consider first Oi such that there is an engaged

edge e between Oi and Oj with E(C) = Oi and N (C) = Oj. Assume that e is

engaged to the right. It will follow from the inductive construction of Gn that λe(z)

is defined for z immediately to the right of ui+(λn) and is strictly increasing for
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z ∈ (ui+(λn), ui+(λn) + δ) for some positive δ. We can therefore define ui(λ) for λ ∈

(λn, λn+δ′) for some δ′ > 0 as the inverse function to λe(z), z ∈ (ui+(λn), ui+(λn)+δ).

Let’s examine how large δ′ can be chosen. By the definition of the sets Λ1 and Λ3,

the function λe(z) will keep increasing till it reaches the value λn+1. This means

that ui(λ) can be defined for λ ∈ (λn, λn+1). The case when e is engaged to the left

is only different in that we need to look at values of λe(z) for z to the left of ui+(λn).

If there is no engaged edge starting at Oi but Oi is subordinated to Oj with

an engaged edge leading out of Oj, then we define ui(λ) = uj(λ) for λ ∈ (λn, λn+1),

where the right hand side has been defined in the previous step. When we discussed

the structure of the clusters, we noted that there is at most one such Oj for a given

Oi, so this is a correct definition. If Oi does not have an engaged edge starting from

it and is not subordinated to any Oj with an engaged edge starting at Oj, then we

define ui(λ) = ui+(λ) for λ ∈ (λn, λn+1). To sum up this construction, the values of

ui(λ) are defined to be the same within a cluster. They depend on λ ∈ (λn, λn+1) if

the cluster has a vertex with an engaged edge coming out of it, otherwise the values

ui(λ) are constant in λ ∈ (λn, λn+1) and are equal to ui+(λn).

Finally, we define ui−(λn+1) = limλ↑λn+1 u
i(λ) for all i. The first part of our

inductive construction is complete.

Part II. Now let’s define G∗n while assuming that we know Gn−1 and ui−(λn).

The description will depend on the type of point λn is (i.e., whether it belongs to

Λ1, Λ2, Λ3, or is obtained as a part of the cascade) and what type of an edge is

affected.

Recall thatGn−1 can be separated into clusters, which will be called Γ1,Γ2, ...,ΓM .
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Each sleeping cluster has no engaged edges leading out of it, each engaged cluster

has one engaged edge leading out of it, each conflicted cluster has two conflicted

edges leading out of it.

Case 1. Suppose that λn ∈ Λ1. Then we define G∗n = Gn−1.

Case 2. Now consider the case λn ∈ Λ2. This means that there is z ∈ Ik for

some k and e, g ∈ Hk such that λe(z) = λg(z), with e 6= g. Different scenarios are

possible:

1) Suppose that e and g are engaged edges leading out of engaged clusters

(say Γm1 and Γm2 , respectively) such that ui−(λn) = z for Oi ∈ Γm1 ∪ Γm2 . Suppose

also that e leads to a vertex in Γm2 , while g leads to a vertex in Γm1 . Then both e

and g become active for G∗n (i.e., the clusters Γm1 and Γm2 merge forming a sleeping

cluster).

2) Suppose that everything is as above, except that e leads to a vertex in Γm2 ,

while g leads to a vertex outside Γm1 . In this case only e becomes active, while g

stays engaged (i.e., the clusters merge forming an engaged cluster).

3) Suppose that e is engaged leading out of an engaged cluster Γm, while g is an

active edge within Γm leading out of Oj. Suppose that ui−(λn) = z for Oi ∈ Γm. In

this case g becomes engaged, while the other edges are unaffected (i.e., the cluster

Γm falls apart in two engaged clusters). It becomes engaged to the right if λg is

increasing at z and engaged to the left if λg is decreasing at z.

4) If neither of the scenarios 1)-3) takes place, then we define G∗n = Gn−1.

Case 3. Now consider the case λn ∈ Λ3. This means that there is a cycle

C in the hierarchy Hk such that the notion of “next” is not defined uniquely for it
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at z = zk and (zk, λn) ∈ Π3. Let us assume that ui−(λn) = zk for the equilibria Oi

within C, otherwise we define G∗n = Gn−1. Again, we go through different scenarios

in all of which we assume that C is the cycle for which the notion of “next” changes

at zk.

1) Suppose that C was a part of an engaged cluster Γ and e is the edge leading

out of C for Hk, i.e., Rk(C) = e. Let g be the edge leading out of C for Hk+1 to an

equilibrium Oj, i.e., Rk+1(C) = g, Nk+1(C) = Oj. Suppose that Γ is engaged to the

right for λ ∈ (λn−1, λn) (the case of Γ engaged to the left is treated similarly).

If uj−(λn) < zk (which implies that Oj /∈ Γ), then the cycle C together with

all the vertices subordinated to it forms a new cluster that is conflicted for G∗n. The

remaining part of the cluster Γ stays engaged to the right. The difference between

Gn−1 and G∗n is that the edge g is present in G∗n (the edges e and g are conflicted),

while only e is present in Gn−1 (either engaged or active).

If uj−(λn) > zk (which implies that Oj /∈ Γ), then a new cluster forms consisting

of C and all the vertices subordinated to it. The cluster is engaged to the right via

the edge g. The remaining part of the cluster Γ stays engaged to the right, while

the edge e disappears.

Suppose that uj−(λn) = zk. In this case Oj must belong to Γ as follows from

the earlier assumptions on the function λe. If g was not represented in Gn−1, then

it gets added to the cluster Γ, which remains engaged to the right for G∗n (g remains

in the cluster if it was represented in Gn−1). Whether e remains represented in G∗n

depends on whether zk corresponds to the restructuring of the first, second, or third

kind. Namely, in the cases of restructuring of the first and third kind, e remains in
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Γ if and only if Oj is subordinated to C in Gn−1. In the case of restructuring of the

second kind, e is not represented in G∗n.

2) Suppose that C was a part of a conflicted cluster Γ. Suppose that there

are two conflicted edges e and g leading out of C to some vertices Oj1 and Oj2 ,

respectively, such that uj1(λ) < zk < uj2(λ) for λ ∈ (λn−1, λn). Suppose that

Oj1 belongs to a cluster Γm1 and Oj2 belongs to a cluster Γm2 for the graph Gn−1.

Suppose that Γm1 is engaged to the right via an edge h and ui−(λn) = zk for Oi ∈ Γm1

(the case when Γm2 is engaged to the left and ui−(λn) = zk for Oi ∈ Γm2 is treated

similarly).

In this case the clusters Γm1 and Γ from the graph Gn−1 become one cluster

for the graph G∗n. If h leads to a vertex within the cluster Γ, then e and h becomes

active edges within the larger cluster Γ∪Γm1 . The cluster Γ∪Γm1 becomes engaged

to the right via the edge g in the graph G∗n. If h leads to a vertex outside the

cluster Γ, then it stays an engaged edge within the larger cluster, g disappears, and

e becomes an active edge within Γ ∪ Γm1 .

Suppose now that ui−(λn) < zk for Oi ∈ Γm1 and ui−(λn) > zk for Oi ∈ Γm2 .

Suppose also that there is a cluster Γm3 in Gn−1 that is engaged via an edge h to

a vertex in Γ and is such that ui−(λn) = zk for Oi ∈ Γm3 . In this case the clusters

Γm3 and Γ from the graph Gn−1 become one cluster for the graph G∗n. The edge h

becomes active and the cluster Γ ∪ Γm1 is conflicted in G∗n.

3) If neither of the scenarios 1)-2) takes place, then we define G∗n = Gn−1.

Case 4. Finally consider the case when λn was obtained as a part of a cascade.

Namely, assume that there is z ∈ Ik such that (z, λn) is obtained as the intersection
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of a vertical ray with the graph of λe(z), where e is an edge represented in Hk.

Suppose that Gn−1 contains a sleeping cluster Γ such that ui−(λn) = z for Oi ∈ Γ.

1) Suppose that the edge e (represented in Hk, but not in Gn−1) leads from

a vertex in Γ to a vertex Oj. If uj−(λn) = z (in which case Oj belongs to Γ), then

e is added as an active edge, and Γ with this extra edge remains a sleeping cluster

within G∗n. If uj−(λn) < z (or uj−(λn) > z), then the edge e is added as an engaged

edge and Γ becomes engaged to the left (right) in G∗n.

2) Suppose that Gn−1 contains a cluster Γm distinct from Γ such that ui−(λn) =

z for Oi ∈ Γm. Suppose that Γm is engaged to a vertex in Γ via an edge h. Then

Γm and Γ from the graph Gn−1 become one cluster for the graph G∗n. The edge h

becomes active and the cluster Γ ∪ Γm1 is sleeping in G∗n.

3) If neither of the scenarios 1)-2) takes place, then we define G∗n = Gn−1.

Part III. Now let’s define Gn and ui+(λn) while assuming that we know G∗n

and ui−(λn). Let Γ be a cluster within G∗n such that ui−(λn) = z∗ for Oi ∈ Γ. Suppose

that Γ is engaged via an edge e.

From our construction above it follows that G∗n contains at most once such

cluster Γ with the following property: either Γ is engaged to the right and λe(z) < λn

for z ∈ (z∗, z∗ + δ) for some positive δ or Γ is engaged to the left and λe(z) < λn

for z ∈ (z∗ − δ, z∗) for some positive δ. In this case we’ll say that Γ is a “special”

cluster. If G∗n does not contain a special cluster, then we define Gn = G∗n and

ui+(λn) = ui−(λn) for all i.

Assume that G∗n contains a special cluster and that it is engaged to the right

(the case when it is engaged to the left is treated similarly). Let us project the set
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Π on z-axis and list those of the points of the projection that are to the right of z∗

in the increasing order, denoting them by z1, ..., zL.

We’ll describe the transition from G∗n to Gn using a two-part induction proce-

dure, the first part being induction on l = 1, ..., L (the second part of the induction

will be explained below). At each step of induction we’ll have a new “transitional”

graph separated into clusters - the first graph will coincide with G∗n and the last one

will coincide with Gn. For each cluster Γ within a transitional graph, we’ll define

the value u(Γ). The first set of values u(Γ) is just ui−(λn) for Oi ∈ Γ.

Let Γ now denote the special cluster within G∗n. At the fist step of induction

we change the value of u(Γ) to z1. We need to examine the following scenarios to

describe the transitional graph that replaces G∗n.

1)A previously engaged cluster Γm1 attached to the special clusterΓ.

Suppose that G∗n contains an engaged cluster Γm1 with u(Γm1) = z1 such that Γm1

is engaged to a vertex in Γ via an edge h. Suppose that e leads to a vertex in a

cluster Γm2 with u(Γm2) > z1. Then Γm1 and Γ form one cluster in the transitional

graph and the edge h becomes active in this cluster. This larger cluster is special

for the transitional graph.

2)The special cluster Γ merges with a previously engaged cluster Γm

into a sleeping cluster. Suppose that G∗n contains an engaged cluster Γm with

u(Γm) = z1 such that Γm is engaged to a vertex in Γ via an edge h. Suppose that e

leads to a vertex in Γm. Then Γm and Γ form one sleeping cluster in the transitional

graph and the edges e and h become active in this cluster. The new cluster does

not have the “special” property (it is not even engaged).
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3) The special cluster Γ becomes engaged after attaching to an en-

gaged cluster Γm; namely, Suppose that G∗n contains an engaged cluster Γm with

u(Γm) = z1 such that Γm is engaged to a vertex outside Γ via an edge h. Suppose

that e leads to a vertex in Γm. Then Γm and Γ form one engaged cluster in the

transitional graph, which is engaged via the edge h. The edge e becomes active in

this cluster. The new cluster does not have the “special” property.

4) A conflicted cluster Γm merges with the special cluster Γ to form

another special cluster Suppose that G∗n contains a conflicted cluster Γm with

u(Γm) = z1 (in which case z1 coincides with one of the points zk) such that Γm has

conflicted edges g and h. Suppose that g leads to a vertex in Γ. Suppose that e

leads to a vertex in Γm. Then Γm and Γ form one cluster in the transitional graph,

the edge h becomes engaged to the right, while e and g become active in this cluster.

The new cluster still has the “special” property.

5) The special cluster Γ attaches to a conflicting cluster Γm; namely,

Suppose that G∗n contains a conflicted cluster Γm with u(Γm) = z1 (in which case

z1 coincides with one of the points zk) such that Γm has conflicted edges g and h.

Suppose that neither g nor h lead to a vertex in Γ. Suppose that e leads to a vertex

in Γm. Then Γm and Γ form one conflicted cluster in the transitional graph, where

the edge e becomes active. The new cluster does not have the “special” property.

6) The special cluster Γ joins a sleeping cluster Γm; namely, Suppose

that G∗n contains a sleeping cluster Γm with u(Γm) = z1. Suppose that e leads to

a vertex in Γm. Then Γm and Γ form one sleeping cluster in the transitional graph

and the edge e becomes active in this cluster. The new cluster does not have the
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“special” property.

7) A sub cycle Γm of the special cluster Γ becomes engaged; namely,

Suppose that Γ contains a vertex Oi such that an edge g leading out of it (whether

active or engaged) has the property that λg(z1) = λn. Then Oj and all the vertices

of Γ subordinated to it form a new cluster that is engaged to the right via the edge

g but is not special. The remaining part of Γ (if it is non-empty) forms an engaged

special cluster in the transitional graph.

8) Suppose that z1 coincides with one of the points zk. Suppose that Γ contains

a cycle C that is present in both Hk and Hk+1 for which the notion of “next” changes

at zk.

Suppose that e′ is the edge leading out of C for Hk, i.e., Rk(C) = e′. Let

g be the edge leading out of C for Hk+1 to an equilibrium Oj, i.e., Rk+1(C) = g,

Nk+1(C) = Oj.

A sub cycle of Γ becomes conflicted. If Oj ∈ Γm for some Γm 6= Γ with

u(Γm) < z1, then the cycle C together with all the vertices subordinated to it forms

a new cluster that is conflicted for the transitional graph. The remaining part of the

cluster Γ stays engaged to the right. The difference between G∗n and the transitional

graph is that the edge g is present in the transitional graph (the edges e′ and g are

conflicted), while only e′ is present in G∗n. There is at most one special cluster in

the transitional graph.

If Oj ∈ Γm for some Γm 6= Γ with u(Γm) > z1, then a new cluster forms

consisting of C and all the vertices subordinated to it. The cluster is engaged to

the right via the edge g. The remaining part of the cluster Γ stays engaged to the
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right, while the edge e′ disappears. There are now up to two special clusters in the

transitional graph.

Suppose that Oj ∈ Γ. If g was not represented in G∗n, then it gets added to the

cluster Γ, which remains engaged to the right for the transitional graph (g remains

in the cluster if it was represented in G∗n). Whether e′ remains represented in the

transitional graph depends on whether zk corresponds to the restructuring of the

first, second, or third kind. Namely, in the cases of restructuring of the first and

third kind, e′ remains in Γ if and only if Oj is subordinated to C in G∗n. In the case

of restructuring of the second kind, e′ is not represented in the transitional graph.

If neither of the scenarios described above takes place, then the transitional

graph coincides with G∗n. This completes our description of the transitional graph

corresponding to z1. Now we replace G∗n by the transitional graph. If it has no

special clusters, the inductive procedure stops. If it has one special cluster, we

repeat the above construction with z1 replaced by z2. If it has two special clusters,

we repeat the construction applied to one of the clusters with the other special

cluster temporarily fixed. In this way, we proceed from z2 to z3, etc., until we reach

zL. Observe that there are no special clusters with the value zL.

The second part of the inductive construction concerns the fact that once we

reach zL, the resulting graph may still have special clusters. The values u(Γ) for

those clusters belong to the set {z1, ..., zL}, i.e., are to the right of z∗. We can

now apply the above construction to each of the clusters successively, thus making

sure that a transitional graph only has clusters with the values of u(Γ) in the set

{z2, ..., zL}. Continuing by induction on l, we can get rid of all the special clusters.
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The last transitional graph will be denoted by Gn+1 and the values u(Γ) for this

graph give us ui+(λn).

Now, that our inductive construction is complete, let us make an observation

concerning the values of ui(λ) for λ ∈ (λN ,∞). If the graph GN contains an engaged

cluster, then there is an equilibrium Oi within the cluster with an engaged edge e

leading out of Oi such that λe(u
i(λ)) = λ. This implies that supλe > λN . Therefore,

either λe has a maximum that is larger than λN or the graph of λe intersects one

of the vertical lines z = zk at a point that is higher than λN . In either of these

cases, λN can’t be the maximum of the set Λ due to our definition of the sets Λ1

and Λ3. We conclude that GN can’t contain engaged clusters. For all the clusters

that are sleeping or conflicted, the values ui(λ) do not depend on λ ∈ (λN ,∞).

Therefore, ui(λ) = ui for some constants ui, which justifies the discussion preceding

Corollary 2.5.2. Also, by Corollary 2.5.2, the values ui do not depend on i, which

implies that GN contains a single cluster.
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Chapter 3: Random perturbations of dynamical systems with reflect-

ing boundary and corresponding PDE with a small pa-

rameter

3.1 Introduction

Consider the following parabolic initial-boundary value problem with a small

parameter ε > 0 :



∂uε

∂t
= Lεuε ≡ ε2

2

d∑
i,j=1

aij(x)
∂2uε

∂xi∂xj
+

d∑
i=1

bi(x)
∂uε

∂xi
,

uε(0, x) = g(x) , x ∈ D ∪ ∂D ;

∂uε

∂γ
(t, x) = 0 , x ∈ ∂D , t ≥ 0 .

(3.1)

Here D is a d-dimensional bounded domain in Rd with smooth boundary ∂D.

The initial condition g(.) is smooth in D ∪ ∂D. The matrix a(x) = (aij(x))1≤i,j≤d is

positive definite. The functions aij(x) are smooth and uniformly bounded, with

uniformly bounded derivatives. There is a constant θ > 0 such that for any

ξ = (ξ1, ..., ξd) we have θ2|ξ|2Rd ≤
d∑

i,j=1

aij(x)ξiξj ≤ θ−2|ξ|2Rd . The vector field

b(x) = (b1(x), ..., bd(x)) has terms which are uniformly bounded, smooth in [D]
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(here and below [D] is the closure of D in Euclidean metric), and have uniformly

bounded derivatives. The vector field γ(x) = (γ1(x), ..., γd(x)) is the inward co-

normal unit vector field on ∂D with respect to the matrix a−1(x) ≡ (aij(x))1≤i,j≤d =

(aij(x))−1
1≤i,j≤d. That is to say, for any vector v(x) = (v1(x), ..., vd(x)) tangent to ∂D

we have (γ, v)a−1(x) ≡
d∑

i,j=1

aij(x)γi(x)vj(x) = 0. (Here and below (γ, v)a−1(x) is the

inner product with respect to the matrix a−1(x). For a detailed discussion of the

co-normal condition we refer to [13, Section 2.5]). We also have |γ|Rd = 1.

Let us assume that the vector field b(x) is pointing outward to D on a con-

nected subset ∂1D of ∂D, and it is pointing inward on ∂2D ≡ ∂D\∂1D. (It is never

tangent to ∂D.) Let b̄(x) be the field coinciding with b(x) everywhere except at

points of ∂1D. At these points b̄(x) is defined as the projection of b(x) onto the

direction of the boundary. Suppose the dynamical system ẋt = b̄(xt) has some of its

ω-limit sets on ∂1D. These ω-limit sets are points O1, ..., Ol (l ≥ 1).

Our goal in this paper is to describe the long-time behavior of the solution

uε(t, x) of (3.1) as ε → 0 and t → ∞. One can relate problem (3.1) with a certain

diffusion process Xε
t with small diffusion and reflection with respect to γ on ∂D.

This process can be described as a solution of the following stochastic differential

equation:

dXx,ε
t = b(Xx,ε

t )dt+ εσ(Xx,ε
t )dWt + 1∂D(Xx,ε

t )γ(Xx,ε
t )dξx,εt , Xx,ε

0 = x , ξx,ε0 = 0 .

(1.2)
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Here σ(x) is a d × d matrix with smooth terms (and bounded derivatives)

that satisfies σ(x)σT (x) = σT (x)σ(x) = a(x). The function 1∂D(.) is the indicator

function of ∂D. The processes Xε
t and ξεt are continuous time stochastic processes,

adapted to the filtration (Ft)t≥0. They satisfy the following assumptions with prob-

ability 1:

(1) The process Xx,ε
t ∈ [D] ;

(2) The process ξx,εt is non-decreasing in t and increases only at ∆ = {t ; Xx,ε
t ∈

∂D};

(3) The set ∆ has Lebesgue measure zero.

Under these assumptions, it was proved in [1] (also see [14]) that such a pair of

processes (Xx,ε
t , ξx,εt ) exists and is unique (in the sense of probability 1). The process

ξx,εt is called the local time of the process Xx,ε
t on ∂D. (We remark here that this no-

tion of the local time for the multidimensional diffusion process extends the classical

1-dimensional local time in [15]. See [14] for a discussion based on SDE approach.

For other discussions of the local time for multidimensional diffusion process we also

refer to [16] and [17].) The process Xx,ε
t is a strong Markov process in [D] and it

satisfies the Doeblin condition, which leads to the existence and uniqueness of an

invariant measure in [D].

It turns out that the solution uε(t, x) of (3.1) can be represented as uε(t, x) =

Exg(Xx,ε
t ) (see Section 4 for details). Thus the asymptotic behavior of solution

uε(t, x) as ε → 0, t → ∞ is determined by the asymptotic behavior of the pro-

cess Xx,ε
t . However, the latter can be calculated using the Freidlin-Wentzell large
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deviation theory (see [4], [18]).

In Section 2 of the present paper we will give an expression of the action

functional S+
0T of the process Xx,ε

t . By using the large deviation principle for the

family of processes {Xx,ε
t }ε>0 we will give a description of the asymptotic behavior

of Xx,ε
t in Section 3. Since the proof is based on the method of [4, Ch.6] and [18],

we will only prove some key technical lemmas and sketch the result. In particular,

we give the algorithm on the calculation of metastable states. Section 4 provides

the corresponding result for problem (3.1). We point out that a related question for

elliptic boundary value problems was already considered in [19] (also see [4, Section

10.3]). An example is given in Section 5.

3.2 Calculation of the action functional

In this section we give an expression of the action functional corresponding to

the large deviation principle of the process Xx,ε
t . The main proofs and justifications

of our results are contained in [1] (also see [4, Section 10.3]), so we just summarize

the results we need.

In [1], the authors have constructed the process (Xx,ε
t , ξx,εt ) corresponding to

(1.2) by first realizing it in the space Rd
+ using the following stochastic differential

equation:

dY ε
t = b(Γ(Y ε

t ))dt+ εσ(Γ(Y ε
t ))dWt , Y

ε
0 = x ∈ Rd

+. (3.1)

58



Here Γ : C[0,∞)(Rd)→ C[0,∞)(Rd
+) is a functional defined by

Γ(ψt) ≡ (Γ(ψ))t ≡ Γt(ψ) = (ψ1
t − 0 ∧ inf

0≤s≤t
ψ1
s , ψ

2
t , ..., ψ

d
t ), (3.2)

for ψt = (ψ1
t , ..., ψ

d
t ) ∈ C[0,∞)(Rd). It was proved in [1] that in the case of a

half space Rd
+, one can take (Xε

t , ξ
ε
t ) = (Γ(Y ε

t ), (Γ(Y ε
t )− Y ε

t )1).

In the general case when D is a bounded region in Rd with smooth boundary,

one can take a finite covering of D by a set of open neighborhoods {U1, ...,UN}.

Within each Ui (i = 1, ..., N), the process can be constructed via a homeomorphism

between Ui and Rd, or between Ui ∩D and Rd
+ (when Ui ∩ ∂D 6= ∅). In the latter

case we use the construction of the process in half space as above. By appropriately

“gluing” these pieces of the trajectories together one can construct the processes

(Xε
t , ξ

ε
t ). The process Xε

t is the diffusion process with reflection in D and the process

ξεt is the local time on ∂D. For details of this construction we refer to [1], [13, Section

1.6].

It was shown in [1, Section 1.2] that the corresponding action functional for

the family of processes {Xε
t }ε>0 as ε ↓ 0 is given by the formula:

S+
0T (ϕ) =



1

2

∫ T

0

‖ϕ̇s − b(ϕs)− 1∂D(ϕs)ω(s)γ(ϕs)‖2
a−1(ϕs)

ds ,

for ϕ ∈ C[0,T ]([D]) absolutely continuous , ϕ0 = x ;

+∞ , for the rest of ϕ ∈ C[0,T ]([D]) .

(2.3)
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Here

ω(s) =
(ϕ̇s − b(ϕs), γ(ϕs))a−1(ϕs)

‖γ(ϕs)‖2
a−1(ϕs)

∨ 0 ,

and ‖v‖a−1(x) = (v, v)
1/2

a−1(x), for vector v ∈ Rd.

We have

1∂D(ϕs)ω(s)γ(ϕs)

= 1∂D(ϕs)γ(ϕs)

(
(ϕ̇s, γ(ϕs))a−1(ϕs)

‖γ(ϕs)‖2
a−1(ϕs)

−
(b(ϕs), γ(ϕs))a−1(ϕs)

‖γ(ϕs)‖2
a−1(ϕs)

)
∨ 0

= −1∂D(ϕs)
γ(ϕs)

‖γ(ϕs)‖2
a−1(ϕs)

[0 ∧ (b(ϕs), γ(ϕs))a−1(ϕs)] for a.s. s ∈ [0, T ] .

Define

b̄(x) = b(x)− 1∂D(x)
γ(x)

‖γ(x)‖2
a−1(x)

[0 ∧ (b(x), γ(x))a−1(x)] . (2.4)

We see that b̄(x) is the field coinciding with b(x) everywhere except at those

points of ∂1D. (Recall that ∂1D is the part of the boundary ∂D on which b(x) is

pointing outward). At these points b̄(x) is defined as the projection of b(x) onto the

direction of the boundary. The action functional for the family of processes {Xε
t }ε>0

can now be formulated as

S+
0T (ϕ) =



1

2

∫ T

0

‖ϕ̇s − b̄(ϕs)‖2
a−1(ϕs)

ds ,

for ϕ ∈ C[0,T ]([D]) absolutely continuous , ϕ0 = x ;

+∞, for the rest of ϕ ∈ C[0,T ]([D]).

(2.5)

The deterministic trajectory X0
t at which the above action functional is 0

is also calculated in [1]. It is given by the system ẋt = b̄(xt), x0 = x, where
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b̄(xt) = b(x) everywhere except at points of ∂1D, and at those points of ∂1D, b̄(xt)

is the projection of b(x) onto the direction of the boundary.

We formulate below the large deviation principle for the family of processes

{Xε
t }ε>0.

Theorem 2.1. (Large deviation principle) For the process Xε
t , we have

(i) The set Φ(s) = {ϕ ∈ C[0,T ]([D]) : S+
0T (ϕ) ≤ s} is compact for every s ≥ 0;

(ii) Given ϕ ∈ C[0,T ]([D]). For any δ > 0 and any γ > 0 there exist an ε0 > 0

such that for any 0 < ε < ε0 we have

P{ρ0T (Xx,ε, ϕ) < δ} ≥ exp[−ε−2(S+
0T (ϕ) + γ)] , (2.6)

where T > 0 and ρ0T (., .) denotes the uniform distance between functions in

C[0,T ]([D]);

(iii) For any δ, γ > 0 and any s > 0 there exists an ε0 > 0 such that for any

0 < ε < ε0 we have

P{ρ0T (Xx,ε,Φ(s)) ≥ δ} ≤ exp[−ε−2(s− γ)] , (2.7)

where ρ0T (ϕ,Φ(s)) = inf
ψ∈Φ(s)

ρ0T (ϕ, ψ).
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3.3 Asymptotic behavior of Xx,ε
t

3.3.1 Estimates on the time to converge to ω-limit sets on the bound-

ary

We now begin our study of the asymptotic behavior of the process Xx,ε
t . First,

since the dynamical system ẋt = b̄(xt) does not have any ω - limit set within D, we

shall expect that as ε is small, the trajectories of Xx,ε
t come to the boundary ∂1D

within finite time. (Notice that at points of ∂1D the vector field b(x) is pointing

outward and at points of ∂2D it is pointing inward. Therefore the deterministic

trajectory X0
t will not come to ∂2D.)

For any x, y ∈ [D], we define

V +(x, y) = inf
ϕ∈C[0,T ]([D])

{S+
0T (ϕ), ϕ0 = x, ϕT = y, ϕt ∈ D ∪ ∂D, 0 ≤ t ≤ T <∞} .

Recall that the dynamical system ẋt = b̄(xt) has all its ω-limit sets on ∂1D.

These ω-limit sets are points O1, ..., Ol (l ≥ 1). Let us suppose, that for any x and

y in [D], x 6= y we have at least one of V +(x, y) and V +(y, x) being > 0.

For each Oi, i = 1, 2, ..., l, by an α-neighborhood Eα(Oi) of Oi, we refer to the

intersection of D with an open ball having center Oi and radius α > 0. We use

the symbol ∂Eα(Oi) to mean the intersection of [D] with the boundary of the open

α-ball centered at Oi. We call ∂Eα(Oi) the boundary of the α-neighborhood of Oi.

Let us choose α > 0 such that the α-neighborhoods Eα(Oi) for all Oi, i = 1, 2, ..., l,

does not intersect each other. We now prove the following:
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Theorem 3.1. There exist positive constants c and T0 such that for all suffi-

ciently small ε > 0 and any x ∈ [D], Xx,ε
0 = x we have

Px{ζα > T} ≤ exp[−ε−2c(T − T0)] ,

where ζα = inf{t : Xx,ε
t ∈

l⋃
i=1

[Eα(Oi)]} .

Proof. We consider the dynamical system ẋt = b̄(xt) on the whole domain

D ∪ ∂D, where vector field b̄(x) is defined as before. Since system ẋt = b̄(xt)

does not have any ω - limit set in D and (b(x), γ(x))a−1(x)|∂2D > 0, we can say

that the time T1(x) that the trajectory xt(x) spends until reaching ∂1D is finite (if

x ∈ ∂1D, let T1(x) = 0). Let y(x) be the point where trajectory first hits ∂1D.

Starting from y(x), the time T2(y(x), α) = T2(x, α) that the trajectory of system

ẋt = b̄(xt) on ∂1D spend to come into
l⋃

i=1

[Eα
2
(Oi)] is also finite (as is the same, if

y(x) ∈
l⋃

i=1

[Eα
2
(Oi)], then T2(x, α) = 0). The function T (x, α) = T1(x) + T2(x, α) is

upper semi-continuous in x (i.e., for x, x0 ∈ [D] we have limx→x0T (x, α) ≤ T (x0, α))

because xt(x) depends continuously on x. Thus there exists T0 = max
x∈[D]

T (x, α) <∞.

The set of functions in C[0,T0]([D]) assuming their values in [D]\
(

l⋃
i=1

Eα
2
(Oi)

)
is

closed and thus S+
0T0

attains a minimum A on this set. Taking into account the

construction of T0 and the form of S+
0T0

in (2.5), we see that A > 0. Let 0 < δ < α
2
.

Let Φx(A/2) = {ϕ ∈ C[0,T0](D), ϕ0 = x, S+
0T0

(ϕ) ≤ A/2}. We see that trajectories

for which ζα > T0 are at a distance ≥ δ from Φx(A/2). Thus by the part (iii) of the

large deviation principle we have

Px{ζα > T0} ≤ exp[−ε−2(A/2− γ)]
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for some 0 < γ < A/2.

Thus by strong Markov property,

Px{ζα > (n+ 1)T0} = Ex[ζα > nT0; PXε
nT0
{ζα > T0}]

≤ Px{ζα > nT0} exp[−ε−2(A/2− γ)] .

So by induction we see that

Px{ζα > T} ≤ Px{ζα >
[
T

T0

]
T0}

≤ exp{−ε−2(A/2− γ)

[
T

T0

]
}

≤ exp{−ε−2

(
T

T0

− 1

)
(A/2− γ)} .

Putting c =
A/2− γ
T0

, we get the desired statement. �

3.3.2 Transition probabilities between neighborhoods of the Oi’s

In this section we study the asymptotic transition probabilities between neigh-

borhoods of the ω-limit sets {O1, ..., Ol}. We first provide several auxiliary lemmas.

Lemma 3.1. There exists a constant L > 0 such that for any x, y ∈ [D]

sufficiently close to each other, there exists a function ϕ ∈ C[0,T ]([D]), ϕ0 = x, ϕT =

y, such that we have S+
0T (ϕ) < L · |x− y|Rd.

Proof. Let x and y be so close to each other that they can be covered by one

coordinate chart U . Let this coordinate chart correspond to a coordinate function
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u : U → Rd( or Rd
+). The function u is smooth with bounded derivatives. Let us

take T = |x− y|Rd ,

ϕt = u−1

(
u(x) +

t

T
(u(y)− u(x))

)
.

We have, for some constant M > 0,

S+
0T (ϕs) =

1

2

∫ T

0

‖ϕ̇s − b̄(ϕs)‖2
a−1(ϕs)

ds

=
1

2

∫ T

0

d∑
i,j=1

a−1
ij (ϕs)(ϕ̇

i
s − b̄i(ϕs))(ϕ̇js − b̄j(ϕs))ds

≤ θ2

2

∫ T

0

|ϕ̇s − b̄(ϕs)|2Rdds

=
θ2

2

∫ T

0

∣∣∣∣ 1

T
(u−1)′

(
u(x) +

t

T
(u(y)− u(x))

)
◦ (u(y)− u(x))− b̄(ϕs)

∣∣∣∣2
Rd
ds

≤ θ2M

{
1

T
|y − x|2Rd + T max

x∈[D]
|b̄(x)|2Rd

}
.

Taking into account that T = |y − x|Rd , we are done. �

Lemma 3.2. For any γ > 0 and any compact subset K ⊆ [D] there exists

T0 such that for any x, y ∈ K there exists a function ϕt, 0 ≤ t ≤ T, ϕ0 = x, ϕT =

y, T ≤ T0 such that S+
0T (ϕ) ≤ V +(x, y) + γ.

Proof. We choose a finite δ-net {xi} of points in K; we connect them with

curves at which the action functional assumes values differing from the infimum by

less than δγ
2

and complete them with end sections using Lemma 3.1: from x to a

point xi near x and then from xi to a point xj near y, and from xj to y. By choosing

δ small enough we get the desired result. �
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We define

Ṽ +(Oi, Oj) = inf
ϕ∈C[0,T ]([D])

{S+
0T (ϕ) : ϕ0 = Oi, ϕT = Oj, ϕt ∈ [D]\

⋃
s 6=i,j

{Os}, 0 < t < T} .

A ”Ṽ +(Oi, Oj) version” of the above Lemma can proved similarly: one can

take the curve ϕ in such a way that it avoids
⋃
s 6=i,j{Os} and such that S0T (ϕ) ≤

Ṽ +(Oi, Oj) + γ. We omit the proof.

Let constant ρ0 > 0 be small. Let constant 0 < ρ1 < ρ0. We denote by C

the set D ∪ ∂D from which we delete the ρ0-neighborhoods of the Oi, i = 1, 2, ..., l;

by Γi the boundaries of the ρ0-neighborhoods of Oi: Γi = ∂Eρ0(Oi); by gi the ρ1-

neighborhoods of the Oi, and by g the union of all the gi.

We introduce the following random times τ0 = 0, σn = inf{t ≥ τn, X
x,ε
t ∈

C}, τn = inf{t ≥ σn−1, X
x,ε
t ∈ ∂g}. We consider the Markov chain Zn = Xx,ε

τn for

n ≥ 0. We see that from n = 1 on Zn ∈ ∂g. Also, Xε
σ0

can be any point of C, all

the following Xx,ε
σn belong to one of the Γi’s. The chain never stops.

We are now ready to prove:

Theorem 3.2. For any γ > 0 there exists ρ0 > 0 (which can be chosen

arbitrary small) such that for any ρ2, 0 < ρ2 < ρ0, there exists ρ1, 0 < ρ1 < ρ2

such that for all x in the ρ2-neighborhood of Oi(i = 1, ..., l) the one-step transition
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probabilities of Zn, Z0 = x satisfy the inequality

exp[−ε−2(Ṽ +(Oi, Oj) + γ)] ≤ P(x, ∂gj) ≤ exp[−ε−2(Ṽ +(Oi, Oj)− γ)]

for some 0 < ε < ε0.

Proof. We can assume Ṽ +(Oi, Oj) < ∞. Set Ṽ +
0 = max

i,j=1,2,...,l
Ṽ +(Oi, Oj).

Choose positive ρ0 small enough. For every pair Oi, Oj for which Ṽ +(Oi, Oj) <∞,

we choose a function ϕi,jt ∈ C[0,T ]([D]), 0 ≤ t ≤ T = T (Oi, Oj), such that ϕi,j0 =

Oi, ϕ
i,j
T = Oj, ϕ

i,j
t does not touch

⋃
s 6=i,j
{Os}, and such that (by Lemma 3.2)

S+
0T (ϕi,j) ≤ Ṽ +(Oi, Oj) + 0.5γ .

We choose positive ρ1 smaller than ρ0
2

, ρ2 and

1

2
min{ρ(ϕi,jt ,

⋃
s 6=i,j

{Os}) : 0 ≤ t ≤ T, i, j = 1, 2, ...l} .

For every x in a ρ2-neighborhood of Oi, we take a curve connecting x with Oi

and for which the value of S+ does not exceed 0.3γ (by Lemma 3.1). We combine

this curve with the curve ϕi,jt and obtain a function ϕt, 0 ≤ t ≤ T, ϕ0 = x, ϕT = Oj

(with a possible small change of T from T = T (Oi, Oj)) such that

S+
0T (ϕ) ≤ Ṽ +(Oi, Oj) + 0.8γ .

From Lemma 3.2 we choose a T0 ≥ T , and extend the curve ϕt to T ≤ t ≤ T0 by

using a trajectory of the dynamical system ẋt = b̄(xt) on ∂1D, without changing the

value of S+
0T0

(ϕ) from that of S+
0T (ϕ). We choose positive δ less than ρ1, ρ0− ρ2. For

a trajectory of Xε
t starting from x, passing at a distance from ϕt smaller than δ for
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0 ≤ t ≤ T0, it must intersect with Γi and reaches the δ-neighborhood of Oj without

getting closer than δ from any of the other Os, s 6= i, j. Moreover, Xx,ε
τ1
∈ ∂gj, thus

P(x, ∂gj)

≥ Px{ρ0T0(X
ε, ϕ) < δ}

≥ exp[−ε−2(S+
0T0

(ϕ) + 0.1γ)]

> exp[−ε−2(Ṽ +(Oi, Oj) + γ)].

Now we turn to the proof of the upper estimates. For any curve ϕt, 0 ≤ t ≤ T

beginning at x, touching the δ-neighborhood of ∂gj, not touching any of the Os, s 6=

i, j, we have

S+
0T (ϕ) ≥ Ṽ +(Oi, Oj)− 0.7γ .

We use Theorem 3.1 to choose T1 such that for any x ∈ [D] \ g we have

Pε
x{τ1 > T1} ≤ exp(−ε−2V +

0 ) for some V +
0 > 0.

Any trajectory Xx,ε
t beginning at x and being in ∂gj at time τ1 either spends

time T1 without touching ∂g or reaches ∂gj over time T1, in this case

ρ0T1(X
x,ε,Φx(Ṽ

+(Oi, Oj)− 0.7γ)) ≥ δ .

Therefore we have

Pε
x{Xx,ε

τ1
∈ ∂gj} ≤ Pε

x{τ1 > T1}+ Pε
x{ρ0T1(X

x,ε,Φx(Ṽ
+(Oi, Oj)− 0.7γ)) ≥ δ}

≤ exp(−ε−2V +
0 ) + exp[−ε−2(Ṽ +(Oi, Oj)− 0.9γ)]

≤ exp[−ε−2(Ṽ +(Oi, Oj)− γ)]

for sufficiently small ε. �
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In an exactly similar way one can also formulate the estimate on transition

probability based on the quantities

Ṽ +(x,Oj) = inf
ϕ∈C[0,T ]([D])

{S+
0T (ϕ) : ϕ0 = x, ϕT = Oj, ϕt ∈ [D] \

⋃
s 6=j

{Os}, 0 < t < T} .

We have

Theorem 3.3. For any γ > 0 there exists ρ0 > 0 (which can be chosen

arbitrary small) such that for any ρ2, 0 < ρ2 < ρ0, there exists ρ1, 0 < ρ1 < ρ2 such

that for all x outside the ρ2-neighborhood of Oi(i = 1, ..., l) the one-step transition

probabilities of Zn, Z0 = x satisfy the inequality

exp[−ε−2(Ṽ +(x,Oj) + γ)] ≤ P(x, ∂gj) ≤ exp[−ε−2(Ṽ +(x,Oj)− γ)]

for some 0 < ε < ε0.

3.3.3 The invariant measure of Xx,ε
t ; sublimiting distribution

In this section we study the invariant measure of the process Xx,ε
t . Based on

the estimates on transition probabilities given above, the proof of the asymptotic

result is the same as that of [4, Ch.6] and [18]. Let us formulate and prove two more

technical lemmas, after which the rest of the proof is just a study of Markov chains

on graphs. The latter part will be omitted since it is the same as [4, Ch.6] and [18].
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Lemma 3.3. For i ∈ {1, 2, ..., l}, define

τEδ(Oi) = inf{t,Xε
0 = x,Xx,ε

t ∈ ∂Eδ(Oi)} .

For any γ > 0, there exist δ > 0 such that for all sufficiently small ε and x ∈ Eδ(Oi)

we have

Eε
xτEδ(Oi) < exp(γε−2) .

Proof. Choose point z ∈ D close to Oi. Put δ = |z−Oi|
2

. Connect x with Oi

and Oi with z with the values of S+ not exceeding γ
4

and γ
2
, the resulting function

is called ϕ̃t. The length of the time interval of ϕ̃t is uniformly bounded by T0 for

all x ∈ G. We extend ϕ̃t up to T0 by using a trajectory of ẋt = b̄(xt) in D ∪ ∂D

without making S+ larger.

Now we have for x ∈ Eδ(Oi),

Pε
x{τEδ(Oi) < T0} ≥ Pε

x{ρ0T0(X
x,ε, ϕ̃) < δ} ≥ exp(−0.9γε−2) .

Using the Markov property we see that

Pε
x{τEδ(Oi) ≥ nT0} ≤ [1− exp(−0.9γε−2)]n .

This yields

Eε
xτEδ(Oi) ≤ T0

∞∑
n=0

[1− exp(−0.9γε−2)]n = T0 exp(0.9γε−2) .

Sacrificing 0.1γ in order to get rid of T0 we get the desired result. �
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Lemma 3.4. For any γ > 0 there exist ρ1 > 0 such that for all sufficiently

small ε and y ∈ ∂gi we have

Eε
y

∫ σ0

0

χgi(X
x,ε
t )dt > exp(−γε−2) .

Proof. Choose ρ1 small. We connect y ∈ ∂gi with Oi using a curve ϕt, extend

it using the trajectory of ẋt = b̄(xt) on ∂D till first exit time σ0 from Eρ0(Oi), with

corresponding S+ less than 0.5γ. All the trajectories at a distance less than ρ1
2

spends a time at least t0 > 0 within gi, uniformly for all y ∈ ∂gi. The probability of

all such trajectories is no less than exp(−0.9γε−2). Thus the expected value is no

less than t0 exp(−0.9γε−2). By sacrificing 0.1γ we can get rid of t0. �

The rest of this section is devoted to the description of the algorithm for the

calculation of the invariant measure and the metastable states. The proof we shall

omit here follows [4, Ch.6] and [18].

Let L be a finite set (in our case L = {1, 2, ..., l}), whose elements are denoted

by letters i, j, k,m, n, etc. Let a subset W be selected in L. A graph consisting of

arrows m → n (m ∈ L\W,n ∈ L, n 6= m) is called a W -graph if it satisfies the

following conditions:

(1) every point m ∈ L\W is the initial point of exactly one arrow;

(2) there are no cycles in the graph.

Intuitively, a W -graph is a graph consisting of arrows starting from each point

m ∈ L\W , and going along a sequence of arrows leading to some point n ∈ W .
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The set of W -graphs is denoted by G(W ). We shall use the letter g to denote

graphs.

Let W (Oi) = min
g∈G{i}

∑
(m→n)∈g Ṽ

+(Om, On). It can be proved that

W (Oi) = min
g∈G{i}

∑
(m→n)∈g

V +(Om, On) .

We have

Theorem 3.4. Let µε be the normalized invariant measure of the process Xε
t .

Then for any γ > 0 there exists ρ1 > 0 such that we have

exp[−ε−2(W (Oi)−min
i
W (Oi) +γ)] ≤ µε(gi) ≤ exp[−ε−2(W (Oi)−min

i
W (Oi)−γ)]

for sufficiently small ε > 0.

We shall say that a set N ⊂ [D] is stable if for any x ∈ N , y 6∈ N we have

V +(x, y) > 0. One can show that for an unstable Oj (j = 1, ..., l) there exist a stable

Oi (i 6= j, i = 1, ..., l) such that V +(Oi, Oj) = 0.

Theorem 3.5. For x ∈ [D] set

W (x) = min[W (Oi) + V (Oi, x)] ,

where the minimum can be taken over either all of O1, ..., Ol or only stable ones.

Let µε be the normalized invariant measure of the process Xε
t . Then for any γ > 0
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there exists ρ̄ > 0 such that for any 0 < ρ < ρ̄ we have

exp[−ε−2(W (x)−min
i
W (Oi)+γ)] ≤ µε(Eρ(x)) ≤ exp[−ε−2(W (x)−min

i
W (Oi)−γ)]

for sufficiently small ε > 0.

Here Eρ(x) is a ρ-neighborhood of x.

The above two theorems roughly say that as first t→∞ and then ε→ 0, the

process Xx,ε
t will be situated in one of the Oi’s which minimizes the values of W (Oi)

(it can be calculated either via all O1, ..., Ol or only via the stable ones). In generic

case, when min
i
W (Oi) is attained at some unique point i, we have for any δ > 0,

lim
ε→0

lim
t→∞

Pε
x{|X

x,ε
t −Oi| > δ} = 0 . (3.1)

A natural question is that how the limiting distribution behaves when we take

the limit in a coordinated way, i.e. take ε → 0 and t = t(ε−2) → ∞. This is the

problem of metastability and sublimiting distributions (see [20]). Let us assume

that T = T (ε) � exp( λ
ε2

) and we consider lim
ε→0

Pε
x{X

x,ε
T (ε) ∈ Γ}. In the generic case

one can define a function K∗(x, λ) ∈ {1, 2, ..., l} such that

lim
ε→0

Pε
x{|X

x,ε
T (ε) −OK∗(x,λ)| > δ} = 0 (3.2)

for any δ > 0.

The algorithm to determine K∗(x, λ) is as follows. First we consider for each

Oi (the rank 0 cycle) the ”next” most probable ω-limit set N (Oi) that we are going
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to jump to. Continuing this determination of ”next” states we form the rank 1

cycle Oi → N (Oi)→ N 2(Oi)→ ...→ Nm1
{i}(Oi). We stop once we get a repetition

N (Nm1
{i}(Oi)) = Oi. Cycles generated by distinct initial points i ∈ {1, ..., l} either

do not intersect each other or coincide: in the latter case the cycle order on them is

one and the same.

We continue by recurrence. Let the cycles of rank (k − 1) be πk−1
1 , ..., πk−1

nk−1
.

Starting from each (k − 1)-cycle πk−1
i one can determine the ”next” most probable

(k − 1)-cycle πk−1

N (πk−1
i )

that we will first jump to. Continuing this determination we

form a rank k cycle πk−1
i → πk−1

N (πk−1
i )
→ ...→ πk−1

N
m
πk−1
i (πk−1

i )
. We stop once we get a

repetition N (N
m
πk−1
i (πk−1

i )) = πk−1
i . Cycles of rank k generated by distinct cycles

of rank k − 1 either do not intersect each other or coincide.

In this way we can continue until the last cycle which is the whole of {O1, ..., Ol}.

The metastable states are determined by the timescale of the cycles that we traverse.

Let us be more precise. Starting from a cycle π, to determine the ”next” cycle

N (π) that we first jump to, we calculate

A(π) = min
g∈G(L\π)

∑
(m→n)∈g

V +(Om, On) . (3.3)

Here L = {1, 2, ..., l}. The minimum of the above expression determines a L\π

graph consisting of chains of arrows leading to the first state in L\π we jump to.

We put

C(π) = A(π)−min
i∈π

min
g∈Gπ{i}

∑
(m→n)∈g

V +(Om, On) . (3.4)
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Here Gπ{i} is the set of {i}-graphs restricted to π. Then the asymptotic exit time

from π is of order � exp
(
C(π)
ε2

)
.

Starting from i = i(x) (which is the label for the first equilibrium among

O1, ..., Ol that we approach in finite time, starting from x), let π, π′,..., π(s) be cycles

of next to the last rank, unified into the last cycle, which exhausts {1, 2, ..., l}. If the

constant λ is greater than C(π), C(π′), ..., C(π(s)), then over time of order exp(λε−2)

the process can traverse all these cycles many times (and all cycles of smaller rank

inside them) and the limiting distribution is concentrated on that one of the cycles

for which C(π), C(π′), ..., C(π(s)) is the greatest. Within this cycle, it is concentrated

on that one of the subcycles for which the corresponding constant C(.) in (3.4) is

the greatest possible, and so on up to points (one point in the generic case) OK∗(x,λ).

This point OK∗(x,λ) is the metastable state in (3.2).

3.4 Application to PDE

The solution of (3.1) can be represented through process (1.2) by the formula

uε(x, t) = Exg(Xx,ε
t ). This is an immediate consequence of the following generalized

Itô’s formula:

Lemma 4.1. Assume process (Xx,ε
t , ξx,εt ) is given by (1.2), Xx,ε

0 = x. Let

u(x, t) be of class C2,1(Rd ×R+) with uniform bounded derivatives up to the second

order in x and up to the first order in t. Then we have
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u(Xx,ε
t , t)− u(x, 0)

=

∫ t

0

(
∂

∂s
+ Lε

)
u(Xx,ε

s , s)ds+

∫ t

0

∇u(Xx,ε
s , s) · γ(Xx,ε

s )dξx,εs +

∫ t

0

∇u(Xx,ε
s , s) · σ(Xx,ε

s )dWs .

For a proof of this theorem see [21, section 3].

Our answer to the problem (3.1) is

Theorem 4.1. Under all our assumptions, in generic case, for T (ε) �

exp( λ
ε2

), we have

lim
ε→0

uε(x, T (ε)) = g(OK∗(x,λ)) ,

where K∗(x, λ) is defined as in section 3.3.

3.5 Example

Consider an example. Let the domain D be a unit disk B(1) = {(y1, y2); y2
1 +

y2
2 < 1} in R2. Let the smooth vector field by(y1, y2) be given such that b̄y(y1, y2) =

(b̄y1(y1, y2), b̄y2(y1, y2)) is as in Fig.1. We consider the problem
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Figure 3.1: An example



∂uε(y1, y2, t)

∂t
=
ε2

2
∆y1,y2u

ε(t, y1, y2) + by(y1, y2) · ∇uε(t, y1, y2) , ε > 0 ;

uε(0, y1, y2) = g(y1, y2) , y2
1 + y2

2 ≤ 1 ;

∂uε

∂r
(t, y1, y2) = 0 , y2

1 + y2
2 = 1 , t ≥ 0 .

(5.1)

Here
∂

∂r
is the derivative with respect to the inward unit normal. The action

functional takes the form

S+
0T (ϕ) =


1

2

∫ T

0

|ϕ̇s − b̄y(ϕs)|2R2ds , ϕ ∈ C[0,T ]([D]) absolutely continuous , ϕ0 = x ;

+∞ , for the rest of ϕ ∈ C[0,T ]([D]) .

(5.2)

We calculate the ”quasi-potential” using (5.2)

V +(x, y) = inf
ϕ∈C[0,T ]([D])

{S+
0T (ϕ), ϕ0 = x, ϕT = y, ϕt ∈ D ∪ ∂D, 0 ≤ t ≤ T <∞} .
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The ω-limit sets of the dynamical system ẋt = b̄y(xt) are the zeros of the vector

field b̄y(x) on ∂D = S1. (And also the origin but it is unstable so that we neglect

it.) In Fig.1 the points O1, O3 and O5 are stable equilibriums are the points O2, O4

and O6 are unstable ones. We can consider only the quasi-potentials between the

stable ones. Suppose we have V +(O1, O3) = 1, V +(O3, O1) = 2, V +(O1, O5) = 6,

V +(O5, O1) = 7, V +(O5, O3) = 3, V +(O3, O5) = 4.

We are concerned with the limit lim
ε↓0

uε(y1, y2, T (ε)) for T (ε) � exp( λ
ε2

). Start-

ing from the initial point (y1, y2), we suppose that we are attracted to O1 first. By

calculating min
g∈G(L\{1})

∑
(m→n)∈g

V +(Om, On) = 1 we see that over time exp( 1
ε2

) we are

going to jump to O3 first. We then calculate min
g∈G(L\{3})

∑
(m→n)∈g

V +(Om, On) = 2 and

we see that over time exp( 2
ε2

) we will jump from O3 back to O1 and we form a cycle

π(1) = {1, 3} of rank 1. We then calculateA(π(1)) = min
g∈G(L\π(1))

∑
(m→n)∈g

V +(Om, On) =

V +(O1, O3)+V +(O3, O5) = 5 and the first state out of cycle π(1) that we are going to

jump to is O5. Within cycle π(1) we are mostly staying in O3. We calculate C(π(1)) =

5− min
i∈{1,3}

min
g∈G{1,3}{i}

∑
(m→n)∈g

V +(Om, On) = 4. This means, that over time exp( 4
ε2

) we

are jumping from O3 to O5. We then calculate min
g∈G(L\{5})

∑
(m→n)∈g

V +(Om, On) = 3

and we see that we are jumping from O5 out to O3 in time exp( 3
ε2

). This implies

that within the cycle π(2) = {1, 3, 5} which exhausts all ω-limit sets, we are mostly

staying in π(1), and within π(1) it is O3.

Our result can be summarized as

lim
ε↓0

uε(T (ε), y1, y2) = g(O1) for T (ε) � exp(
λ

ε2
) and 0 < λ < 1 ;
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lim
ε↓0

uε(T (ε), y1, y2) = g(O3) for T (ε) � exp(
λ

ε2
) and 1 ≤ λ .
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[15] K. Itô and H.P. Jr. McKean. Diffusion Processes and their Sample Paths. New
york Academic Press Inc., 1965.

[16] K. Sato and H. Tanaka. Local times on the boundary for multidimensional
reflecting diffusion. Proc. of Japan Acad., 38(10), 1962.

[17] K. Sato and T. Ueno. Multidimensional diffusion and markov processes on the
boundary. Math., 4, 1965.

[18] M. Freidlin and A. Wentzell. On small random perturbations of dynamical
systems. Russ. Math. Surv., 25(1):1–56, 1970.

[19] Mark I. Freidlin and L. Zhivoglyadova. Boundary value problems with a small
parameter for a diffusion process with reflection. Russ. Math. Surv., 31(5):241–
242, 1976.

[20] Mark I. Freiflin. Sublimiting distributions and stabilization of solutions of
parabolic equations with a small parameter. Soviet. Math. Dokl., 237(5):1042–
1045, 1977.

[21] I. Gikman and A. Skrokhod. The Theory of Stochastic Processes. III. Springer,
1979.

81


