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Abstract

In this report, we look at the problem of packing a number of arrays in memory efficiently. This is known
as the dynamic storage allocation problem (DSA) and it is known to be NP-complete. We develop some
simple, polynomial-time approximation algorithms with the best of them achieving a bound of 4 for a sub-
class of DSA instances. We report on an extensive experimental study on the FirstFit heuristic and show
that the average-case performance on random instances is within 7% of the optimal value.

1 Introduction

Formally, the DSA problem is the following:

Definition 1: Let be the set of intervals (corresponding to the arrays). Let , the number of ele-

ments in . For each , is the time at which it becomes live, is the time at which it dies,

and is thewidth of interval ; the width represents, for example, the size of an array that needs allo-

cation. Note that theduration of an interval is . Given the values for each , and

an integer , is there an allocation of these intervals that requires total storage of units or less? By an

allocation, we mean a function such that for each , and

if two intervals and intersect; i.e, if or , then

or . The allocation function is also called acoloring

sometimes.

The “dynamic” in DSA refers to the fact that many times, the problem is online in nature: the allo-

cation has to be performed as the intervals come and go. Our interest in this problem stems from schedul-

ing dataflow graphs [7]. The subset of dataflow that we are interested in [7][1], called synchronous

dataflow (SDF) [5], can be scheduled statically at compile time. Hence, the problem is not really

“dynamic” since the lifetimes and size of all the arrays that need to be allocated are known at compile time;

thus, the problem should perhaps be called static storage allocation. But we will use the term DSA since

this is consistent with the literature.
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Theorem 1:[2] DSA is NP-complete, even if all the widths are 1 and 2.

2 Some notation

An instance is a set of lifetimes. Anenumerated instanceis an instance with some ordering of

the intervals. For an instance, we have associated with it aweighted interval graph (WIG )

where is the set of intervals, and is the set of edges. There is an edge between two intervals iff they

overlap in time. The graph is node-weighted by the widths of the intervals. For any subset of nodes ,

we define the weight of , to be the sum of the widths for all . Themaximum clique

weight (MCW ) in the WIG is the clique with the largest weight, and is denoted . We also denote

the clique of the largestsize(MCS) (i.e, number of nodes) by . The MCW corresponds to the

maximum number of values that are live at any point. The MCS corresponds to the maximum number of

arrays that are live at any point. Thechromatic number (CN), denoted , for is the minimum

such that there is a feasible allocation in definition 1.

Theorem 2:[4] ,

where the supremum is taken over all instances of the DSA problem. What this means is that there exist

instances where the chromatic number is at least 5/4 times the MCW, but for any instance, the chromatic

number is less than 6 times the MCW. The upper bound in theorem 2 is not tight.

Theorem 3:If all of the widths are the same, then

.

First fit (FF) is the algorithm that performs allocation for an enumerated instance by assigning the

smallest feasible location to each interval in order. It does not reallocate intervals, and it does not consider

intervals not yet assigned. The pseudocode for this algorithm is shown in figure 1. As can be seen, building

the interval graph takes time in the worst case (all intervals overlap with each other), and the first-

Fit procedure takes time in the worst case if every interval overlaps with every other inter-

val.

Theorem 4: FF on an enumerated instance where all the widths are the same, ordered by start times, is

optimal.

Proof: Theorem 3 and 4 are classic [3] and follow easily from the observation that FF will assign the th

interval location if and only if there is some interval live at every location in . But this

means that the MCW must be at least .

GB V E,( )=

V E

U V⊂

U w U( ) w v( ) u U∈

ω̃ GB( )

ω GB( )

χ GB( ) G K

5
4
--- supB

χ GB( )
ω̃ GB( )
----------------

 
 
 

6≤≤

B

ω̃ GB( ) χ GB( )=

O N2( )

O N2 N( )log⋅( )

i

I M 0 … M 1–, ,{ }

M w I( )+



Some notation

3 of 15

When all the intervals have the same size, FF by start times can be made to run in time

, where is the number of intervals. The time is dominated by the sorting step; without the

sorting, the running time is actually . The pseudocode is shown in figure 2; notice that we do not

Procedure FirstFit(enumerated instance I)

G = buildIntervalGraph(I)
Vector allocate //allocate is an array to contain the allocations

foreach interval i in I do

 //initial allocation at 0

foreach neighbor j of i from G
if (j appears before i in I)

fi
end for

sort( )

foreach allocation

if  conflicts with
//width(a) = width of interval with allocation a

fi
end for

end for

allocate i( ) 0←
neighborsAllocations { }←

neighborsAllocations neighborsAllocations allocate j( ){ }∪←

neighborsAllocations

a neighborsAllocations∈
allocate i( ) a

allocate i( ) a width a( )+←

Fig 1.Pseudocode definition of the FirstFit heuristic.

Procedure buildIntervalGraph(enumerated instance I)

sort I by start times

number of intervals in I
// G is an adjacency list representation containing N rows
// and list pointer at each G(i)
Graph G

foreach i in {1,...,N}

while (start time of I(j) < end time of I(i))

end while
end for

N ←

j i 1+←

G i( ) G i( ) j{ }∪←
G j( ) G j( ) i{ }∪←
j j 1+←

O N N( )log⋅( ) N

O N( )
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need to create the interval graph, and it does not matter whether we assign the smallest possible space to an

interval (so the algorithm is not technically “first” fit, but the idea is the same).

3 Approximation algorithms

Since the general problem is NP-complete, we have to resort to heuristics. The best known approx-

imation guarantee for DSA is 6 [8][4]. In this section, we will develop a number of very simple approxima-

tion results that do not necessarily improve on the bound of 6 for all cases, but do so for certain, data-

dependent cases.

Procedure FirstFitStart(instance I)

array of start and stop times from I
// in the sorting below, if two elements of L have the same value, and
// one is a stop time and one is a start time, then the stop time comes
// first in the sorted order

// for an element e of L,  is the interval in I with
// start time or stop time given by e
foreach element e of L

if (e is a start time)

if ( )

pop an element from
else

fi

assign  to interval(e)
fi
if (e is a stop time)

add location assigned to  to
fi

end for

L ←

L sort L( )←

availableLocations { }←
maxLoc 1←

interval e( )

availableLocations ∅≠
loc ← availableLocations

loc maxLoc←
maxLoc maxLoc 1+←

loc

interval e( ) availableLocations

Fig 2.First fit by start times on instances where all widths are the same.
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3.1 Separate color (SC)

The simplest approximation algorithm is to sort the intervals by width into sets, where is the

number of distinct widths in the instance. We then apply FF by start times on each of these instances.

Denote this algorithm as separate color (SC).

Theorem 5:SC has a performance guarantee of .

Proof: Let the instances be denoted . Clearly, we have for each . The

total amount of memory used by SC is . Hence, we get the guarantee of .

If there are fewer than 6 distinct widths, then this bound beats the general bound!

3.2 Separate color with rounding (SC-R)

Since SC would have a bound of 2 if there are only 2 distinct widths, we can ask what happens if

we “round” an instance with distinct widths to 2 widths. Clearly, the rounded instance with 2 widths

will have an MCW bigger than the original instance. Denoting the MCW of the original, and the MCW of

the rounded instance as  respectively, the rounding will pay off if .

Suppose the instance is sorted by widths . Define

(EQ 1)

Theorem 6:SC-R has a performance guarantee given by .

Proof: Let the distinct widths be in sorted order: . Let be the that mini-

mizes the maximum in the expression for above. The algorithm SC-R then rounds the widths to and

; these are then allocated using separate coloring (SC). Let the MCW for the instance be

, for some , where is the number of intervals having

width . After the rounding, we have . This

may not be the maximum clique weight anymore in the rounded instance; there could exist some other

clique of greater weight. Let this clique have value given as

.
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Notice that we have represented the weights that multiply and has partitions into and non-

negative integers respectively. However, these integers  must satisfy

since the sum on the right is the maximum clique weight, and the sum on the left represents a clique

weight. (Note that the rounding does not change the topology of the interval graph; a clique in the rounded

graph is also a clique in the original graph and vice versa. Hence the partition arise naturally when trans-

lated back to the corresponding clique in the original graph.) So the question is, how much bigger can these

 be? Specifically, we want to solve

subject to (EQ 2)

First we prove a lemma; this will be used to prove the theorem.

Lemma 1:There is a solution  to the above with .

Proof: Suppose that is any solution. Let for some . Suppose . Con-

sider the new solution

It satisfies the constraint:

and satisfies
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since . Since the solution maximized the objective function, the new solution cannot give

a bigger objective function; hence, there is equality in the equation above:

.

However, as shown,  in the new solution.

We can continue in this manner, each time picking a non-zero component and constructing a new

solution that zeros that component out. The process ends when for all . Similarly, to

zero out the rest of the , we can pick an for some , and construct the new solu-

tion:

.

Identical arguments show that this new solution satisfies the constraint and also maximizes the objective

function.QED.

Hence, we can assume that the maximal solution has for all . Equation 2

becomes:

subject to (EQ 3)

Let us consider the linear relaxation of the above integer program. It’s clear that the maximal solution will

meet the constraint through equality since we could increase both the objective function and the function in

the constraint were it not the case. Let

.
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The solution to the linear relaxation of equation 3 is the pair

.

The objective function becomes

.

Letting

,

we see that if , then the function will be maximized when is maximized. is maximized if

, making . Hence the maximum value of  is

.

If , then  is the maximum value.

Finally, if , then the maximum value of occurs at , and the value is . In

summary, we can state that

(EQ 4)

It is clear that introducing the integer constraint will only make the integer solution pair less than

or equal to

since all feasible points have to lie inside the polytope formed by the line , and the

axes, in the first quadrant of . Hence, the maximum value of the objective function will be less than or

equal to .

The theorem is proven now by observing that

.

QED.

In fact, we could even round to one width, , and allocate that optimally. Define

. (EQ 5)
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Theorem 7:Rounding to one width, and allocating that instance optimally gives a performance guarantee

of .

Proof: The integer program that we need to solve becomes:

subject to (EQ 6)

By lemma 1, we can again assume that there is a maximal solution to equation 6 with for all .

Hence, the solution is simply

, , .

So

.

QED.

If we redefine SC-R to be the algorithm that tries both types of rounding, and also the separate

color, and takes the best, our approximation guarantee becomes

.

Example 1:Suppose we have an instance with 4 distinct widths: 2,3,6,9. This example comes from a non-

uniform filterbank implementation in SDF [6]. For this example, clearly , and the guarantee

becomes

.

Note that this guarantee holds for all instances that have these widths, regardless of starting and ending

times.
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3.3 Sorted width coloring (SWC)

In this algorithm, following [4], we first round each width to the nearest power of two, and then

sort in order of decreasing width. This is done to make the sorted width sequence divisible; i.e, each width

will be divisible by widths smaller than it. If the width sequence is divisible to begin with, the rounding

will not be needed. Note that the rounding procedure will increase the size of the MCW by two times at

most. Denote the distinct widths by .

The algorithm is to simply apply FF on this enumerated instance. The advantage of the rounding is

the following observation:

Observation 1: If an interval of width , with start and end times , is allocated by FF at location , it

must be the case that for every location , there is some interval , with start and end times

, occupying that location with . Basically, this means that there cannot be any

location interval  that is free in the time interval .

Proof: (sketch) For contradiction, suppose there is such a location interval . When

widths of type are allocated, any fragmentation that results must have location widths that are multiples

of . When an interval of width is allocated, intervals that have already been allocated are either of

width , or of width . Since , any fragmentation that had occurred would have a loca-

tion width that would be a multiple of , meaning could have been allocated there. Since FF chooses

the smallest feasible location, this contradicts the fact that location  was chosen instead.

For each width , let be the set of intervals having width . Also, for an interval , let

denote the start and end times respectively. Now suppose that this enumerated sequence also sat-

isfies the following condition: for any interval , and any interval , either

or . In other words, cannot be a proper subset of . An enumerated instance

that satisfies this condition is calledsubset-free.

Theorem 8: For subset-free enumerated instances, FF has a performance guarantee of 4 (2 if the sorted

width sequence was divisible to begin with—i.e, did not require rounding to powers of 2).

Proof: Consider an interval that was allocated at location . By observation 1, we have that there is

some interval that is alive in at every location in . Since the enumerated instance

is subset-free, these intervals in overlap with either at , or overlap at . The sum of

the widths of the intervals that overlap with at or has to be less than the MCW. Hence, we

must have
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.

Since this is true for every interval , the overall guarantee is 2. If the rounding to powers of 2 was done to

make the sequence divisible, then the guarantee becomes 4.

3.4 The case where widths are 1 and X.

Finally, we consider instances where the widths have value 1 or , ordered by starting times. For

these, FF has the following guarantee:

Theorem 9:For instances with widths of 1 or , ordered by starting times, FF has a guarantee of

Proof: (Sketch) Consider the instance shown in figure 3. After a little thought, it is evident that this is the

sort of instance that will cause FF to behave in the worst possible way. The long instances of 1 originate

from the “OPT” region; OPT is not one big single interval; it is simply the point at which the maximum

clique weight is. The idea is that in the worst possible case, we could pick a point where the allocation is

fragmented, and keep going up until we reach a point where there is no fragmentation. In the worst case,

the point of no fragmentation could be as wide as the maximum clique weight. Now suppose that there are

blocks of width that are placed as shown by FF. They are placed that way presumably because a) the

memory under the OPT region gets fragmented, and the worst possible way for this to occur would be for

there to be blocks of width 1, spaced apart, forcing any block of that arrives later to be

placed outside the region, and b) because the region after till the point of placement is also

filled. At the point where the last block of begins, there must be blocks filling up the region com-

pletely as otherwise the last block would not have been placed where it is. The space outside of can-

A I( ) w I( ) 2ω̃ GB( )≤+

I

X

X

2 1
X
----–

OPT

x

x

x

x
111

x x x

OPT/x

Fig 3.A worst case instance for FF with only two sizes, 1 and X.

n X
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OPT OPT
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not contain any blocks of width 1 since these can be placed under the region; it can only contain

blocks of width . Hence, we have the following inequality at the point where the last block of width

begins:

since is the maximum clique weight, and the clique weight anywhere else cannot be greater. Since

 is the allocation achieved by FF, it follows that the approximation bound is

.

QED.

So if (recall that even the case where the widths are 1 or 2 is NP-complete), then the guar-

antee is 1.5, and this bound is tight.

It is interesting to note that the two-size case comes up frequently in many DSP implementations

of image processing systems where there might be a basic vector or matrix data type, and a basic number

data type.

3.5 Worst case behavior

The interesting question of a guarantee, if any, of FF on enumerated instances ordered by starting

times is not known. We can give the following example to show that the guarantee cannot be better than

2.5; i.e, a lower bound on the guarantee. It would also be interesting if this lower bound could be improved

OPT

X X

OPT
X

------------ nX OPT≤+

OPT

OPT nX+

OPT nX+
OPT

-------------------------- 2 1
X
----–≤

X 2=

20

1

20

1

20

1

20

1

20

1

60

60

60

60

31

31

180+165
165

> 2

s=

P

OPT

Fig 4. Example to illustrate that FF can have performance that is more than twice as bad
as the optimum value.
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(presumably by constructing an example that causes FF to achieve an allocation of worse ratio, say 3, than

the one in this example). Note that the example below can be scaled to achieve a ratio of at most 2.5. By

scaling, we mean replacing the width of size 20 by , or giving a different value for (in this example,

it has a value of 60) and so on. This is because the inequality has to hold, since we are assuming

that the width indicated as OPT is the point of maximum overlap. Since , we have the ine-

quality. So , and the performance ratio is given by .

3.6 Related work

As already mentioned, the best known approximation results for DSA in general have guarantees

of 6 [8][4]. There appears to be a close relationship between the DSA problem, and the problem of devis-

ing online coloring algorithms for enumerated interval graphs where all intervals have the same width. The

latter problem can be solved optimally, as shown in section 2, if the intervals are ordered (enumerated) by

start times. However, an interesting question is how well an online algorithm like FF can do if the intervals

are ordered arbitrarily. Defining to be the number of colors used by an algorithm to color the

(non-weighted) instance , it has been shown by Kierstead and Slusarek that , where

. In [4], Kierstead gives another online algorithm called OIC that has a

performance guarantee of . Slusarek also develops another online algorithm called SCC in [8]

that gives the same performance guarantee of . Again, these bounds are for coloring interval

graphs in an online manner, where the intervals all have the same width, and are ordered arbitrarily.

The approximation algorithm of [4] for DSA is based on a simultaneous recursive formulation that

actually colors an exponentially bigger graph than the weighted interval graph (enumerated by decreas-

ing width); the interval graph is obtained simply by considering an interval of width as

intervals of width . Kierstead uses OIC to color and obtains an approximation guarantee of 6. While

this formulation does not give a polynomial time algorithm, Kierstead states that it can be made to run in

polynomial time with a careful implementation. Slusarek uses a similar approach, basing his algorithm on

SCC.

The question of how bad FF is for DSA if particular orderings are considered, like ordering by

widths, or arrival times seems to be open. Another interesting open issue is whether non-online algorithms

can do better than online algorithms like FF, OIC, and SCC. As our experimental results below show, FF

performs very well on average, so it would be difficult to beat it in practice.
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4 Experimental results

We tested FF on random instances, ordered by arrival times, durations, and widths. Random

instances were created using three parameters: number of intervals ( ), maximum stop time of any inter-

val ( ), and maximum width of any interval ( ). Given these parameters, for each interval , the stop

time is drawn uniformly from , the integer start time is drawn uniformly from

, and the width is drawn uniformly from . Three types of orderings were tested:

sorting by starting times (FFA), sorting by durations (FFD), and sorting by widths (FFW). The amount of

memory required was compared to the MCW in each case. We denote a particular combination of parame-

ters by the tuple . For each combination, the statistics were collected for 500 random instances

with those parameters. The table below shows average and maximum ratios to the MCW, and also with

each other, for several combinations of parameters. As can be seen, FF performs very well in practice, and

it is never off by more than 70% from the optimum. Sorting by durations gives the best results, compared

to sorting by starting times, and widths. Sorting by widths gives the worst results. From these results, it is

Table 1. FirstFit behavior on random interval instances.

(20,20,
20)

(40,40,
40)

(60,60,
60)

(20,40,
60)

(40,80,
120)

(20,100
,500)

(80,500
,1000)

(50,25,
100)

FFA/MCW:
MAX

1.49 1.37 1.32 1.43 1.37 1.49 1.34 1.34

FFA/MCW:
AVG

1.10 1.11 1.12 1.11 1.12 1.12 1.12 1.11

FFD/MCW:
MAX

1.31 1.30 1.21 1.31 1.37 1.39 1.22 1.25

FFD/MCW:
AVG

1.05 1.06 1.07 1.06 1.07 1.06 1.07 1.06

FFW/MCW:
MAX

1.50 1.45 1.68 1.79

FFW/MCW:
AVG

1.15 1.18 1.15 1.15

FFA/FFD:
MAX

1.34 1.29 1.23 1.32 1.31 1.34 1.17 1.23

FFA/FFD:
MIN

0.85 0.90 0.91 0.84 0.89 0.80 0.91 0.91

FFA/FFD:
AVG

1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05

N

K W I

e I( ) 1 K,[ ] b I( )

1 e I( ) 1–,[ ] w I( ) 1 W,[ ]

N K W, ,( )
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clear that first fit on instances sorted by duration times gives allocations that are within 7% of the optimum

value. In fact, this is a pessimistic estimate since the CN can be greater than the MCW, and the (unknown)

CN is the optimum value.

5 Conclusion

We have presented a number of simple approximation algorithms for the NP-complete problem of

dynamic storage allocation. The best of these results achieves a bound of 4 for a subclass of DSA instances

called subset-free instances. We have shown that in practice, the firstfit heuristic gives allocations that are

within 7% of the optimum on average.
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