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This dissertation documents research of the optical properties of chip-based

nonlinear waveguides to assess their suitability for all-optical processing in the

telecommunications spectrum. Three related topics are presented: (1) enhanced

continuous-wave four-wave mixing in AlGaAs waveguides; (2) a new method to char-

acterize nonlinear refraction and loss in waveguides; and (3) the non-instantaneous

optical nonlinearity of a hydrogenated amorphous silicon waveguide.

For topic (1), enhancements of the continuous-wave four-wave-mixing effi-

ciency and bandwidth are accomplished by engineering the growth and fabrication

of AlGaAs waveguides. The bandgap of the core-layer alloy is tailored to suppress

nonlinear absorption and the fabrication is optimized to produce small-mode-area,

dispersion-engineered waveguides with sub-dB/cm propagation losses. A four-wave-

mixing conversion efficiency of -6.8 dB is observed in an AlGaAs waveguide that

exhibits a propagation loss of 0.56 dB/cm. This conversion efficiency is among

the highest reported for any passive semiconductor or glass waveguide. Another



low-loss AlGaAs waveguide is featured, which is dispersion-engineered to produce a

measured conversion-bandwidth of 63.8 nm with a pump wavelength of 1550 nm.

For topic (2), a new technique is described for accurately measuring the ratio

between the imaginary part and the real part of a waveguide’s third-order nonlin-

earity. Unlike most other methods, it does not depend on precise knowledge of the

coupling efficiencies, the optical propagation loss, or the optical pulse shape. The

method is applied to measure the nonlinear loss tangents of a GaAs waveguide, two

bandgap-engineered AlGaAs waveguides, a large-area crystalline silicon waveguide,

a crystalline silicon nanowire waveguide, and a hydrogenated amorphous silicon

nanowire waveguide.

For topic (3), pump-probe spectroscopy and continuous-wave cross-phase- and

cross-amplitude-modulation measurements are used to study the optical nonlin-

earity of a hydrogenated amorphous silicon nanowire waveguide. The results are

compared to those of a crystalline silicon waveguide of similar dimensions. The

hydrogenated amorphous silicon nanowire shows essentially zero instantaneous two-

photon absorption, but it displays a strong, long-lived non-instantaneous nonlinear-

ity that is both absorptive and refractive. Power-scaling measurements show that

the non-instantaneous nonlinearity of the hydrogenated amorphous silicon scales as

a third-order nonlinearity. Phase-transient measurements show that the refractive

component possesses the opposite sign to that expected for free-carrier dispersion.
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Chapter 1: Introduction

Today’s computing devices are limited not by the performance of individual

processors, but by the rate at which processors can exchange data with the outside

world [1]. During the early 2000s, the old-school approach to achieving perfor-

mance gains – increasing the processor’s clock-frequency and increasing the density

of transistors on-chip – began to reach fundamental limits. To maintain Moore’s law

scaling in the performance of individual computing components, the semiconduc-

tor industry began to introduce chip multiprocessors (CMPs, also called multi-core

processors) [2].

The CMP consists of several individual processor-cores networked together on

a single integrated circuit die. Performance gains are reaped by implementing par-

allel code execution using multiple threads across the cores. This technology has

advanced to the point that CMPs now resemble highly parallel computing systems,

integrated on a single chip [3]. But scaling-up this approach to continue the pace of

progress is leading to new limitations. The central problem now is how to make in-

dividual cores in the CMP communicate efficiently, among themselves on-chip, with

off-chip components (like RAM), and even over longer-reach rack-to-rack distances;

Traditional metallic interconnects can no longer provide the bandwidth and heat-

1



dissipation requirements necessary to drive what amount to complicated, full-scale

networks on a single chip [4].

It is now generally accepted that the future solutions to these problems will,

in one form or another, consist of augmenting chip-based electronics with integrated

photonics [1–5]. The idea is to shrink to the chip-scale the many advantages that

optical fibers have brought to the interconnection of computers at the large scale,

most importantly the huge bandwidth and low per-bit-transmitted power-cost. A

future CMP might consist of numerous processor-cores, which talk to one another

and with RAM via a miniature but full-fledged integrated optical network. Indeed,

the concept of the photonic “Network-on-Chip” is so enticing that the Defense Ad-

vanced Research Projects Agency (DARPA) is running an active project specifically

to address the integration of on-chip photonic components (the project is called

“POEM” [6]).

To simplify the operation of proposed integrated photonic systems, there is

a strong desire to be able to perform “all-optical” signal processing – switching,

routing, multiplexing, de-multiplexing, logic operations, etc. – by operating di-

rectly on optical signals in the optical domain. Doing so will prevent slow, power-

hungry optical-to-electronic-to-optical (OEO) conversions, which are complicated

and space-consuming to implement. To paraphrase Monat et al. in [7], the goal

is the complete integration of all-optical signal generation, signal processing, and

signal detection on a single chip.

Any all-optical processing scheme will rely on the nonlinear response of the

medium to the applied field. Therefore, the viability of chip-based nonlinear pho-
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tonics hinges on the ability to engineer and mass produce low-loss sub-micron1

nonlinear waveguides, which can integrate with existing electronics. For the ob-

vious reason that silicon waveguides can readily integrate with the all-pervasive

silicon-on-insulator (SOI) platform, the overwhelming majority of work in this field

has focused on using SOI waveguides for nonlinear processing [5, 8]. Fortunately,

crystalline silicon is transparent in the telecommunications spectral window (near

λ = 1.55 µm), and it has been possible for a long time to make high-quality, low-loss,

dispersion-engineered, sub-micron SOI waveguides.

However, though crystalline silicon waveguides are certainly adequate for many

nonlinear photonics applications [9], the material has two key deficiencies. First, it

is an indirect-gap semiconductor, and it is therefore difficult to make integrated

silicon-based lasers which operate in the telecom spectrum (though some attempts

have been successful, see [10]). Second is a deficiency that is highly related to the

work presented in this dissertation: nonlinear absorption in the telecommunications

spectrum is unavoidable in crystalline silicon – a direct result of the crystal’s rather

narrow bandgap [11]. Any form of optical loss is problematic for a nonlinear waveg-

uide because loss decreases the applied optical field and therefore diminishes the

nonlinear effect.

This dissertation presents experimental studies of the optical nonlinearity of

competing semiconductor waveguide systems. The intent is to characterize their

utility for chip-based nonlinear optical processing. The focus is mainly on bandgap-

engineered AlGaAs waveguides and hydrogenated amorphous silicon waveguides,

1Meaning the cross-sectional dimensions are sub-micron in size.

3



principally because these materials should exhibit the desirable combination of a

large nonlinearity and negligible nonlinear absorption. Results obtained from GaAs

and SOI waveguides are also presented for comparison.

The dissertation is arranged according to the following format. Chapter 2 ex-

plores the basic physics used to describe third-order optical nonlinearities in semi-

conductor waveguides. It is meant to serve as a nonlinear optics refresher and it cul-

minates with a derivation of the coupled-wave equations which describe continuous-

wave four-wave mixing in nonlinear waveguides. These equations are used frequently

in the subsequent chapters to model the observed nonlinear responses of waveguides.

This chapter lays the foundation for the rest of the work.

Chapter 3 focuses on the nonlinear optical process of wavelength conversion

using AlGaAs waveguides. It begins with a description of what wavelength conver-

sion is and why it is needed. A review of the wavelength-conversion performance of

other waveguide systems is provided. The experimental and computational appara-

tus used to characterize the AlGaAs waveguides is fully explained, and the chapter

concludes by presenting measurements of the power-dependence and spectral band-

width of wavelength conversion using continuous-wave four-wave mixing.

Chapter 4 discusses a new experimental method devised to measure the non-

linear loss tangent: the ratio of nonlinear loss to nonlinear refraction in a waveguide.

The nonlinear loss tangent is a key parameter that determines the suitability of a

material or waveguide for nonlinear optical processing. The method is applied to

measure the nonlinear loss tangents of four waveguides, where one is composed of

GaAs, two more are composed of AlGaAs alloys, and a fourth is composed of crys-

4



talline silicon. The test of the crystalline silicon waveguide is used as a benchmark

to verify the validity and accuracy of the technique.

Chapter 5 presents several measurements of the delayed nonlinear response

of a hydrogenated amorphous silicon waveguide. This material system, which is a

relative newcomer to nonlinear photonics, is thought to be very promising because

it is compatible with the SOI platform and it possesses negligible two-photon ab-

sorption. The measurements presented in Chap. 5 confirm that the waveguide lacks

instantaneous nonlinear absorption, but that it does demonstrate strong, long-lived,

delayed nonlinear absorption. The observations show that the nature and origin of

the delayed nonlinearity of hydrogenated amorphous silicon is more complex than

is ordinarily assumed for crystalline silicon, and that existing models for the nonlin-

earity must be re-examined before the material can be deemed suitable for nonlinear

optical processing.

Chapter 6 gives a conclusion to the dissertation. The major results of this

work are summarized, and the importance of these results is explained in the larger

context of chip-based nonlinear photonics. Several directions for future work are out-

lined, pertaining to both nonlinear AlGaAs waveguides and nonlinear hydrogenated

amorphous silicon waveguides.
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Chapter 2: Third-Order Nonlinearity in Optical Waveguides

2.1 Overview

This chapter explores the basic physics used to describe third-order optical

nonlinearities in waveguides. It begins with discussion as to how an applied elec-

tromagnetic field induces a nonlinear polarization in a medium. The polarization is

then inserted into Maxwell’s equations to derive the nonlinear wave equation, which

describes how the nonlinear polarization feeds-back to the applied field.

A specific scenario is worked out in detail: the interaction of three monochro-

matic fields in a nonlinear waveguide. Starting from first principles, simplified

coupled-wave equations are derived to describe this situation. These equations and

the discussion leading to them are useful for understanding the experimental results

documented in the subsequent chapters. The physical origins of relevant nonlin-

ear processes – two-photon absorption, Kerr refraction, free-carrier absorption and

free-carrier dispersion – are discussed in the context of semiconductor waveguides

operating at telecommunications wavelengths.
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2.2 The Nonlinear Polarization

For a linear and time-invariant dielectric medium, an applied electric field E(t)

induces a polarization, P(t), according to a convolution integral of the form

Pj(t) = ε0

∫ ∞
−∞

χjk(τ)Ek(t− τ) dτ (2.1)

where ε0 is the free-space permittivity and Einstein notation has been used for

compactness. Here, the linear susceptibility χjk is a second-rank tensor (in a 3D

space) that, roughly speaking, is a proportionality constant relating the component

of the polarization pointing in the ĵ-direction to the components of the applied field

pointing in each of the k̂-directions. The dependence of χjk on the time-argument τ

indicates the “memory” of the system: the polarization occurring at time t depends

on the instantaneous electric field at t, but also on the electric field that was present

before t. Applying the Fourier transform to translate Eq. (2.1) into frequency space,

it becomes

P̂j(ω) = ε0χjk(ω)Êk(ω) (2.2)

where P̂j(ω) and Êk(ω) represent the Fourier transforms1 of Pj(t) and Ek(t), respec-

tively. Likewise – even though it lacks a “hat” in this notation – the tensor χjk(ω)

is the Fourier transform of the time-domain impulse response χjk(t). In the time

domain, χjk(t) relates the two real-valued functions Pj(t) and Ek(t), and must there-

fore be real-valued itself. In turn, in the frequency domain, the elements of χjk(ω)

1The following conventions are adopted for the Fourier transform (FT) and its inverse (IFT):

FT: F̂ (ω) ≡
∫ ∞
−∞

F (t)eiωt dt IFT: F (t) ≡ 1

2π

∫ ∞
−∞

F̂ (ω)e−iωt dω

7



are permitted to be complex but are restricted such that [χjk(ω)]∗ = χjk(−ω).

When the applied field becomes sufficiently strong, the dependence of the

polarization on the electric field becomes nonlinear. As a conceptual guide, the

nonlinear polarization tends to become important when the strength of the applied

electric force approaches that of the attractive electric forces among electrons and

nuclei inside the atoms or molecules comprising the medium. At this point, the

restoring forces supplied to charges in the dielectric begin to deviate significantly

from Hooke’s Law. The polarization can be expanded in powers of the applied field,

P(t) = P(1)(t) + P(2)(t) + P(3)(t) + ... (2.3)

where P(n)(t) is the nth-order response in the applied field.

The first term on the RHS of Eq. (2.3) represents the linear response of the

medium via the linear susceptibility according to Eq. (2.1). The subsequent terms

represent the various orders of the nonlinear response. In general, the nth-order

term in the expansion of the polarization relates to the applied field via a nonlinear

susceptibility tensor of rank n + 1. For a time-invariant medium, the nth-order

polarization is given by

P
(n)
j (t) = ε0

∫
· · ·
∫
χjx1...xn(τ1, . . . , τn)Ex1(t− τ1) . . . Exn(t− τn) dτ1 . . . dτn (2.4)

This dissertation mainly deals with third-order nonlinear phenomena, which

are manifest by the third-order polarization, P
(3)
j (t).2 The third-order nonlinearity

of a material is characterized by its third-order susceptibility, which is sometimes

2Non-centrosymmetric crystals (like AlGaAs) also exhibit second-order nonlinearities via the

second-order polarization, P
(2)
j (t). However, it is typically difficult to phase-match second-order

processes and we therefore neglect to address them here.
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written as χ(3) and sometimes as χjklm. The χ(3) of a given medium is a rank-4

tensor consisting of 81 elements (though the number of distinct, non-zero elements

can be reduced using symmetry arguments). As a special case of Eq. (2.4), the

third-order polarization is described by the following triple convolution integral

P
(3)
j (t) = ε0

∫∫∫
χjklm(τ1, τ2, τ3)Ek(t− τ1)El(t− τ2)Em(t− τ3) dτ1dτ2dτ3 (2.5)

It is sometimes easiest to work with the nonlinear polarization expressed in

the frequency domain. This can be achieved by first Fourier-transforming Eq. (2.5)

to obtain

P̂
(3)
j (ω) = ε0

∫∫∫
χjklm(τ1, τ2, τ3) (2.6)

×Ek(t− τ1)El(t− τ2)Em(t− τ3)eiωt dτ1dτ2dτ3dt,

and then substituting the inverse-Fourier-transform representations of Ek, El and

Em:

P̂
(3)
j (ω) =

ε0
4π2

∫
dω1

∫
dω2

∫
dω3 Êk(ω1)Êl(ω2)Êm(ω3) (2.7)

×
[∫∫∫

χjklm(τ1, τ2, τ3)ei(ω1τ1+ω2τ2+ω3τ3) dτ1dτ2dτ3

]
×
[

1

2π

∫
ei(ω−ω1−ω2−ω3)t dt

]

where the first bracketed quantity in Eq. (2.7) is identified as the frequency-domain

version of the third-order susceptibility,

χjklm(ω1, ω2, ω3) ≡
∫∫∫

χjklm(τ1, τ2, τ3)ei(ω1τ1+ω2τ2+ω3τ3) dτ1dτ2dτ3 (2.8)

Using the delta function identity, 1
2π

∫
eiνtdt = δ(ν), along with the definition of the

9



frequency-domain susceptibility, Eq. (2.7) simplifies to

P̂
(3)
j (ω) =

ε0
4π2

∫∫∫
χjklm(ω1, ω2, ω3)Êk(ω1)Êl(ω2)Êm(ω3) (2.9)

× δ(ω − ω1 − ω2 − ω3) dω1dω2dω3

This is the frequency-domain expression for the third-order polarization, analogous

to the time-domain expression given in Eq. (2.5). Written in this form, it is more

clear that the third-order polarization has interesting properties – the integral in

Eq. (2.9) mixes the input frequencies in various combinations. Unlike the linear

polarization, the third-order polarization can contain terms that oscillate at new

frequencies, distinct from any of the frequencies of the input electromagnetic waves.

2.3 The Nonlinear Wave Equation

The preceding section briefly described how an electromagnetic wave polar-

izes a medium. This section deals with how, once induced, the polarization couples

back to the field. The medium is assumed to be non-magnetic (i.e., B = µ0H)

and sourceless, as is the case with the materials studied for this dissertation. The

starting point is Maxwell’s equations:

∇ ·D(r, t) = 0 (2.10)

∇× E(r, t) = −∂B(r, t)

∂t
(2.11)

∇ ·B(r, t) = 0 (2.12)

∇×H(r, t) =
∂D(r, t)

∂t
(2.13)

The vector displacement, D(r, t), contains the polarization according to the con-
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stitutive relation

D(r, t) = ε0E(r, t) + P(r, t), (2.14)

where, in general, the polarization includes linear and nonlinear terms:

P(r, t) = P(1)(r, t) + P(NL)(r, t) (2.15)

The P(1)(r, t) considered here is the same linear polarization stated in Eq. (2.1) (but

generalized to include spatial dependence).

The wave equation is derived by combining Eqs. (2.11) and (2.13) to calculate

∇×∇× E,

∇×∇× E(r, t) + µ0
∂2

∂t2
D(r, t) = 0 (2.16)

and then using Eq. (2.14) to eliminate D(r, t):

∇×∇× E(r, t) + µ0
∂2

∂t2
[ε0E(r, t) + P(r, t)] = 0 (2.17)

The role of the nonlinear polarization is made explicit by using Eq. (2.15)

∇×∇× E(r, t) + µ0
∂2

∂t2
[
ε0E(r, t) + P(1)(r, t)

]
= −µ0

∂2

∂t2
P(NL)(r, t) (2.18)

Equation (2.18) is the general form of the nonlinear wave equation expressed in

the time domain, but it can usually be simplified further. The vector formula

∇×∇×E(r, t) = ∇(∇·E(r, t))−∇2E(r, t) can be used to expand the first term in

Eq. (2.18). Luckily, in most cases of practical interest, the quantity ∇(∇ · E(r, t))

is either identically zero as is the case for plane-waves, or is much smaller than the

quantity−∇2E(r, t) [12]. Therefore, Eq. (2.18) typically reduces to (or approximates

to)

∇2E(r, t)− µ0
∂2

∂t2
[
ε0E(r, t) + P(1)(r, t)

]
= µ0

∂2

∂t2
P(NL)(r, t) (2.19)
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Consider the theoretical limit of a lossless, dispersionless, optically isotropic

medium. In this case, the linear portion of the vector displacement, D(1) = ε0E(r, t)+

P(1)(r, t), relates to the applied electric field via a scalar, real, dimensionless, frequency-

independent relative permittivity, εr, according to ε0E(r, t)+P(1)(r, t) = ε0εrE(r, t).

This allows further simplification of Eq. (2.19) to the form

∇2E(r, t)− n2

c2

∂2

∂t2
E(r, t) = µ0

∂2

∂t2
P(NL)(r, t) (2.20)

where n =
√
εr is the refractive index of this idealized non-magnetic, isotropic,

dispersionless, lossless medium. In the form of Equation (2.20), it is particularly

obvious that the nonlinear polarization acts as a driving term to the usual linear

wave equation.

For the more general case of a dissipative, dispersive, anisotropic medium,

the relative permittivity must be treated as a complex, frequency-dependent tensor

of rank 2. However, in the experiments presented later, the interacting waves are

always polarized along only one of the waveguide’s polarization eigenstates. So

in the following derivation of the coupled-wave equations, the relative permittivity

will be treated simply as a (real) scalar quantity, which describes the frequency-

dependent refractive index specific to a particular polarization eigenstate. Optical

loss will be accounted by phenomenologically inserting loss into the equations once

the derivation is complete.
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2.4 The Coupled-Wave Equations for Four-Wave Mixing

In this section, the third-order polarization is inserted into the nonlinear wave

equation to construct coupled nonlinear differential equations. There are many pos-

sible χ(3) processes – e.g., third-harmonic generation, stimulated Brillouin scattering,

stimulated Raman scattering, etc. Specifically, this section constructs the coupled-

wave equations necessary to describe the processes of self-phase modulation (SPM),

self-amplitude modulation, cross-phase modulation (XPM), cross-amplitude modu-

lation (XAM), and partially degenerate continuous-wave four-wave mixing (FWM).

The equations we are about to derive are commonly stated as a starting point

in many academic papers related to this dissertation (e.g., [13–15] and many more)

and they are useful to describe the results presented later. By construction, they

describe the interactions among three waves, conventionally called the pump, the

signal, and the idler waves. As is the case in many of the experiments presented

later, the waves are assumed to be approximately monochromatic, occurring at the

frequencies ωp, ωs and ωi, respectively. The complete derivation of the equations is

given to highlight important physics and to point out all the assumptions inherent

to the derivation.

In partially degenerate four-wave mixing, the pump wave and the signal wave

interact via the third-order polarization to generate the idler at a distinct frequency.

From a quantum mechanics perspective, partially degenerate four-wave mixing hap-

pens when two pump photons with frequency ωp are annihilated and an idler and

a signal photon are generated with frequencies ωi and ωs, respectively (the inverse

13



ωp

(a) (b)

χ(3)
ωs

ωsp2ω ω = i –
ωi

ωs
ωp

ωp

Figure 2.1: (a) Geometry of partially degenerate four-wave mixing. (b) Energy-
level diagram describing partially degenerate four-wave mixing.

is also possible). The process, which is illustrated schematically in Fig. 2.1, will

occur in a χ(3)-medium as long as energy conservation and momentum conservation

(a.k.a. “phase-matching”) are satisfied. Thus, from the outset, we will enforce en-

ergy conservation and set ωi = 2ωp − ωs. The requirements for phase-matching will

naturally fall out of the derivation and are discussed in detail in Sect. 3.6.

For monochromatic fields, it is easiest to work with the time-domain polariza-

tion, which is found by applying the inverse Fourier transform to Eq. (2.9):

P
(3)
j (r, t) =

ε0
8π3

∫∫∫
χjklm(ω1, ω2, ω3) (2.21)

×Êk(r, ω1)Êl(r, ω2)Êm(r, ω3)e−i(ω1+ω2+ω3)t dω1dω2dω3

The electric field is assumed to be a superposition of monochromatic fields,

Ej(r, t) =
1

2

∑
ωn>0

[
Ej(r, ωn)e−iωnt + E∗j (r, ωn)eiωnt

]
(2.22)

where the complex amplitude Ej(r, ωn) includes the label ωn in parentheses as a

reminder that it represents the component of the field oscillating at frequency ωn.

Eventually, we will restrict ωn to belong to the set {ωp, ωs, ωi}, but we will keep the

discussion more general for the moment. In this notation, all the spatial dependence

of the field has been absorbed into the complex amplitude. Applying the Fourier

14



transform to Eq. (2.22) yields

Êj(r, ω) = π
∑
ωn>0

[
Ej(r, ωn)δ(ω − ωn) + E∗j (r, ωn)δ(ω + ωn)

]
(2.23)

Now we can insert Eq. (2.23) into Eq. (2.21) to obtain

P
(3)
j (r, t) =

ε0
8

∑
ωλ

∑
ωµ

∑
ων

∫∫∫
χjklm(ωa, ωb, ωc)e

−i(ωa+ωb+ωc)t (2.24)

× [Ek(r, ωλ)δ(ωa − ωλ) + E∗k(r, ωλ)δ(ωa + ωλ)]

× [El(r, ωµ)δ(ωb − ωµ) + E∗l (r, ωµ)δ(ωb + ωµ)]

× [Em(r, ων)δ(ωc − ων) + E∗m(r, ων)δ(ωc + ων)] dωadωbdωc

where the sums extend only over positive frequencies. Computing the integrals in

Eq. (2.24) leaves the following expression

P
(3)
j (r,t)=

ε0
8

∑
ωλ,ωµ,ων

{
χjklm(ωλ, ωµ, ων)Ek(r, ωλ)El(r, ωµ)Em(r, ων)e

−i(ωλ+ωµ+ων)t (2.25)

+χjklm(ωλ,ωµ,−ων)Ek(r, ωλ)El(r, ωµ)E∗m(r, ων)e
−i(ωλ+ωµ−ων)t

+χjklm(ωλ,−ωµ,ων)Ek(r, ωλ)E∗l (r, ωµ)Em(r, ων)e
−i(ωλ−ωµ+ων)t

+χjklm(ωλ,−ωµ,−ων)Ek(r, ωλ)E∗l (r, ωµ)E∗m(r, ων)e
−i(ωλ−ωµ−ων)t

+χjklm(−ωλ,ωµ,ων)E∗k(r, ωλ)El(r, ωµ)Em(r, ων)e
−i(−ωλ+ωµ+ων)t

+χjklm(−ωλ,ωµ,−ων)E∗k(r, ωλ)El(r, ωµ)E∗m(r, ων)e
−i(−ωλ+ωµ−ων)t

+χjklm(−ωλ,−ωµ,ων)E∗k(r, ωλ)E∗l (r, ωµ)Em(r, ων)e
−i(−ωλ−ωµ+ων)t

+χjklm(−ωλ,−ωµ,−ων)E∗k(r, ωλ)E∗l (r, ωµ)E∗m(r, ων)e
−i(−ωλ−ωµ−ων)t

}
In the time domain, χ(3)(τ1, τ2, τ3) is purely real. This implies the following

symmetry for the frequency-domain χ(3)

[χjklm(ωλ, ωµ, ων)]
∗ = χjklm(−ωλ,−ωµ,−ων) (2.26)
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In other words, taking the complex conjugate of the frequency-domain susceptibility

is equivalent to reversing the sign associated with each of its frequency arguments.

Using Eq. (2.26), Eq. (2.25) simplifies to

P
(3)
j (r,t)=

ε0
8

∑
ωλ,ωµ,ων

{
χjklm(ωλ,ωµ,ων)Ek(r,ωλ)El(r,ωµ)Em(r,ων)e

−i(ωλ+ωµ+ων)t (2.27)

+ χjklm(ωλ, ωµ,−ων)Ek(r, ωλ)El(r, ωµ)E∗m(r, ων)e
−i(ωλ+ωµ−ων)t

+ χjklm(ωλ,−ωµ, ων)Ek(r, ωλ)E∗l (r, ωµ)Em(r, ων)e
−i(ωλ−ωµ+ων)t

+ χjklm(−ωλ, ωµ, ων)E∗k(r, ωλ)El(r, ωµ)Em(r, ων)e
−i(−ωλ+ωµ+ων)t

+ c.c.
}

where “c.c.” represents the complex conjugates of the preceding terms.

It is now assumed that the electromagnetic field consists of only 3 frequency

components: ωp, ωs and ωi (= 2ωp − ωs). In general, other frequency components

will be generated via the χ(3) nonlinear interaction. For example, third-harmonic

generation will lead to new field components at 3ωp, 3ωs and 3ωi. However, unless

care is taken to ensure phase matching for the generation of a specific new frequency

component, it will typically remain very weak and can therefore be neglected (this

is the same reason we are neglecting to consider second-order nonlinear processes

here). The inserted field is defined to be

Ej(r, t) =
1

2
Ej(r, ωp)e

−iωpt +
1

2
Ej(r, ωs)e

−iωst +
1

2
Ej(r, ωi)e

−iωit + c.c. (2.28)

A similar notation is adopted to describe the third-order polarization in terms of its

constituent Fourier components

P
(3)
j (r, t) =

1

2

∑
ωn

[
P

(3)
j (r, ωn)e−iωnt + c.c.

]
(2.29)
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After inserting Eq. (2.28) into Eq. (2.27), the third-order polarization is found

to contain 108 terms (and their complex conjugates). In the case considered here,

the frequency components of interest are those which oscillate at ωp, ωs and ωi. As

an example, consider P
(3)
j (r, ωp), the complex amplitude of the component ringing

at ωp. This component contains 21 terms (plus complex conjugates), but for brevity,

only the first three terms are given here:

P
(3)
j (r, ωp) =

ε0
4
χjklm(−ωp;ωp, ωp,−ωp)Ek(r, ωp)El(r, ωp)E∗m(r, ωp) (2.30)

+
ε0
4
χjklm(−ωp;ωp,−ωp, ωp)Ek(r, ωp)E∗l (r, ωp)Em(r, ωp)

+
ε0
4
χjklm(−ωp;−ωp, ωp, ωp)E∗k(r, ωp)El(r, ωp)Em(r, ωp)

+ 18 more terms + c.c.

A new frequency label has now been inserted into each χjklm(ωσ;ωλ, ωµ, ων), ap-

pearing before each semicolon. This label is not a functional argument – it is a

bookkeeping device to keep track of the oscillation-frequency generated by that

term. Energy conservation requires that ωσ + ωλ + ωµ + ων = 0.

The nonlinear susceptibilities χjklm(ωσ;ωλ, ωµ, ων) exhibit intrinsic permuta-

tion symmetry [12]. This means that the three indices (k, l,m) may be permuted

so long as the corresponding frequency arguments (ωλ, ωµ, ων) are permuted in the

same way. For example, applying intrinsic permutation symmetry allows the three

terms shown in Eq. (2.30) to be re-written as one:

3ε0
4
χjklm(−ωp;ωp, ωp,−ωp)Ek(r, ωp)El(r, ωp)E∗m(r, ωp)

After applying intrinsic permutation symmetry to simplify P
(3)
j (r, ωp), P

(3)
j (r, ωs)
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and P
(3)
j (r, ωi) as much as possible, they reduce to the following forms:

P
(3)
j (r, ωp) =

3ε0
4
χjklm(−ωp;ωp, ωp,−ωp)Ek(r, ωp)El(r, ωp)E∗m(r, ωp) (2.31a)

+
3ε0
2
χjklm(−ωp;ωp, ωs,−ωs)Ek(r, ωp)El(r, ωs)E∗m(r, ωs)

+
3ε0
2
χjklm(−ωp;ωp, ωi,−ωi)Ek(r, ωp)El(r, ωi)E∗m(r, ωi)

+
3ε0
2
χjklm(−ωp;ωs, ωi,−ωp)Ek(r, ωs)El(r, ωi)E∗m(r, ωp)

P
(3)
j (r, ωs) =

3ε0
4
χjklm(−ωs;ωs, ωs,−ωs)Ek(r, ωs)El(r, ωs)E∗m(r, ωs) (2.31b)

+
3ε0
2
χjklm(−ωs;ωs, ωp,−ωp)Ek(r, ωs)El(r, ωp)E∗m(r, ωp)

+
3ε0
2
χjklm(−ωs;ωs, ωi,−ωi)Ek(r, ωs)El(r, ωi)E∗m(r, ωi)

+
3ε0
4
χjklm(−ωs;ωp, ωp,−ωi)Ek(r, ωp)El(r, ωp)E∗m(r, ωi)

P
(3)
j (r, ωi) =

3ε0
4
χjklm(−ωi;ωi, ωi,−ωi)Ek(r, ωi)El(r, ωi)E∗m(r, ωi) (2.31c)

+
3ε0
2
χjklm(−ωi;ωi, ωp,−ωp)Ek(r, ωi)El(r, ωp)E∗m(r, ωp)

+
3ε0
2
χjklm(−ωi;ωi, ωs,−ωs)Ek(r, ωi)El(r, ωs)E∗m(r, ωs)

+
3ε0
4
χjklm(−ωi;ωp, ωp,−ωs)Ek(r, ωp)El(r, ωp)E∗m(r, ωs)

Inserting Eqs. (2.31a-c) and (2.28) into the nonlinear wave equation results in

an equation for each Fourier component,

∇×∇× Ej (r, ωσ)− ε (ωσ)µ0ω
2
σEj(r, ωσ) = µ0ω

2
σP

(3)
j (r, ωσ) (2.32)

where σ ∈ {p, s, i}. We will assume that the frequency-dependent permittivity,

ε(ωσ) ≡ ε0[1 + χ(1)(−ωσ;ωσ)], is approximately a purely real quantity. We will also

treat it as a scalar quantity, because the materials studied in this dissertation are
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optically isotropic. As discussed previously, this allows the substantial simplification

∇×∇× E(r, ωσ) ≈ −∇2E(r, ωσ), which leaves us with

∇2Ej(r, ωσ) +
n2

0ω
2
σ

c2
Ej(r, ωσ) = −µ0ω

2
σP

(3)
j (r, ωσ) (2.33)

where n0 represents the frequency-dependent refractive index of the medium. When

Eq. (2.33) is applied to a waveguide as opposed to a bulk medium, n0 becomes a

spatially varying quantity, which is different for the various layers comprising the

waveguide.

Our ultimate intent is to apply the coupled-wave equations to nonlinear pro-

cesses in semiconductor ridge or channel waveguides, where the various frequency

components of the field propagate along the longitudinal axis of the waveguide (the

z-direction), confined laterally to the waveguide’s optical eigenmodes. The waveg-

uides studied for this dissertation tend to support only a single guided mode, or at

most just a few guided modes. Additionally, the rectangular geometry of the waveg-

uides causes the fundamental mode to split into two orthogonal, non-degenerate

polarization eigenstates, one of which is quasi-transverse-electric (TE; Ez ≈ 0 ev-

erywhere) and the other quasi-transverse-magnetic (TM; Bz ≈ 0 everywhere). To

reflect the experimental conditions of the measurements presented later, we will as-

sume from here on that all of the waves excite only the fundamental TE mode of

the waveguide.

Omitting the nonlinear perturbation, Eq. (2.33) becomes

∇2Ej(r, ωσ) +
n2

0ω
2
σ

c2
Ej(r, ωσ) = 0, (2.34)

By assuming that all the field-components display a z-dependence of exp(iβjz),
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this eigenvalue equation can be solved to give the frequency-dependent effective

propagation constant, βj(ωσ), and transverse mode shape, fj(x, y, ωσ), of the un-

perturbed waveguide. As discussed in Sect. 2.4.1, the waveguides considered later

exhibit complex geometries (relative to, say, a cylindrically symmetrical step-index

optical fiber), so computational techniques are used to find the approximate effective

propagation constants (i.e., the βj(ωσ)’s) and eigenfunctions of each waveguide.

In practice, the nonlinear polarization is usually only a small perturbation to

the linear wave equation. We therefore assume the shape of the mode, to first order,

is unaffected by the nonlinear perturbation to the refractive index. This assumption

is especially justified for the type of highly confining waveguides studied for this

dissertation, where the peak nonlinear change in the refractive index might be only

a few parts in 1000 relative to the unperturbed core-cladding index difference. This

assumption allows us to write the electric field of the perturbed system as

Ej(r, ωσ) ≈ fj(x, y, ωσ)Aj(z, ωσ) (2.35)

We have explicitly included the dependence of f(x, y, ω) on ω for completeness.

Later, we will ignore its ω-dependence in the vicinity of some central frequency.

(In Eq. (2.35), the subscript j on the RHS is not an Einstein-index. It is simply a

label to associate fj(x, y, ωσ) with the jth component of A(z, ωσ). Any confusion

potentially caused by this mixing of conventions will be eliminated in a moment by

using the polarization unit vectors.)

Inserting Eq. (2.35) into Eq. (2.33), multiplying through by f ∗j (x, y, ωσ) and
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integrating over the transverse plane gives

∂2

∂z2
Aj(z, ωσ) + β2

j (ωσ)Aj(z, ωσ) = −µ0ω
2
σ

∫∫
f ∗j (x, y, ωσ)P

(3)
j (r, ωσ) dxdy∫∫

|fj(x, y, ωσ)|2 dxdy
(2.36)

where βj(ωσ) is the frequency-dependent eigenvalue. Again, in practice, a finite-

difference modesolver is used to determine the eigenvalue (discussed in Sec. 2.4.1),

but it can be expressed using the following integral equation:

β2
j (ωσ) ≡

∫∫
f ∗j (x, y, ωσ)∇2

Tfj(x, y, ωσ) dxdy∫∫
|fj(x, y, ωσ)|2 dxdy

+
ω2
σ

∫∫
n2

0(x, y, ωσ) |fj(x, y, ωσ)|2 dxdy

c2
∫∫
|fj(x, y, ωσ)|2 dxdy

where ∇2
T = ∂2

∂x2 + ∂2

∂y2 is the transverse Laplacian operator and n0 represents the

spatially varying material refractive index.

We now assume that any changes in the field due to the effects of the nonlinear

polarization occur on a scale much longer than the optical wavelength, in which case:

∂

∂z
Aj(z, ωσ) ≈ iβj(ωσ)Aj(z, ωσ) (2.37)

In other words, we are assuming that the complex amplitude of the wave and the

refractive index change very slowly in z. We may therefore ignore any backward-

propagating waves (i.e., reflected waves) and reduce Eq. (2.36) from second-order

to first-order via the slowly varying envelope approximation (SVEA):

∂2

∂z2
+ β2

j (ωσ) =
( ∂
∂z

+ iβj(ωσ)
)( ∂
∂z
− iβj(ωσ)

)
≈ 2iβj(ωσ)(

∂

∂z
− iβj(ωσ)) (2.38)

Inserting Eq. (2.38) into Eq. (2.36), we obtain

∂

∂z
Aj(z, ωσ) = iβj(ωσ)Aj(z, ωσ) + i

µ0ω
2
σ

2βj(ωσ)

∫∫
f ∗j (x, y, ωσ)P

(3)
j (r, ωσ) dxdy∫∫

|fj(x, y, ωσ)|2 dxdy
(2.39)
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Figure 2.2: The cross-section of a typical ridge waveguide. The
coordinate-system is chosen such that the z-axis is the direction of prop-
agation and the x-axis is aligned horizontally, in the same direction as
the electric field of the TE eigenstate.

Or, if we choose to break Aj(z, ωσ) into its slow- and fast-varying parts using

Aj(z, ωσ) = aj(z, ωσ) exp(iβj(ωσ)z), we can write

∂

∂z
aj(z, ωσ) = i

µ0ω
2
σ

2βj(ωσ)

∫∫
f ∗j (x, y, ωσ)P

(3)
j (r, ωσ) dxdy∫∫

|fj(x, y, ωσ)|2 dxdy
e−iβj(ωσ)z (2.40)

In all the experiments presented later, light is launched into the waveguide-

under-test so as to excite only the fundamental TE eigenstate. Thus the state-of-

polarization of the light remains linearly polarized, and does not rotate as a function

of distance along the waveguide. Formally, the polarization of each field is accounted

for using

a(z, ωp) = p̂pap(z) a(z, ωs) = p̂sas(z) a(z, ωi) = p̂iai(z) (2.41)

where the p̂’s represent polarization unit vectors. By construction, the polarization

unit vectors are all aligned parallel to the TE eigenstate:

p̂p = p̂s = p̂i = p̂TE (2.42)
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where p̂TE is the polarization unit vector which points parallel to the direction of the

E-field of the TE eigenstate. For all the waveguides presented later, this happens

to be the horizontal dimension. In general, the polarization unit vectors are defined

to have unit length such that, for example,

p̂∗p · p̂p = 1 (2.43)

In our case, the complex conjugate symbol in Eq. (2.43) is unnecessary because the

polarization unit vectors are describing linearly polarized light, and they can be

chosen to be purely real. Following the coordinate system defined in Fig. 2.2, which

is the convention that will be used throughout this dissertation, we will associate

p̂TE with the x̂ unit vector: p̂TE = x̂.

We now identify fj(x, y, ωσ) as the transverse mode distribution of the TE

eigenstate for the Fourier component at ωσ. To simplify things further, we assume

the distribution is frequency-independent in the spectral range of interest. We can

therefore assign a single distribution to describe the transverse mode, independent

of the optical frequency: fTE(x, y) ≡ fTE(x, y, ωs) ≈ fTE(x, y, ωi) ≈ fTE(x, y, ωp).

Likewise, we identify βj(ωσ) as the eigenvalue associated with the TE eigenstate,

and re-label it βTE(ωσ), where

βTE(ωσ) = nTE(ωσ)
ωσ
c

(2.44)

and nTE(ωσ) is the frequency-dependent effective refractive index of the waveguide’s

TE eigenstate.

To follow the common convention, we choose to re-normalize the amplitudes

appearing in Eq. (2.41). All equations will now be cast in terms of the normalized
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fields um(z) with m ∈ {p, s, i} such that |um(z)|2 represents the total power in the

wave according to the prescription

|um(z)|2 = Pm =

∫
Im dxdy (2.45)

=
1

2
nTE(ωm)ε0c

∫∫
|fTE(x, y)|2|am(z)|2 dxdy

where Pm is the total power carried by um and Im is the intensity. In other words,

for all the Ej(r, ωm) appearing in Eqs. (2.31), we have

E(r, ωm) =

√
2fTEp̂TEum(z)eiβTE(ωm)z√

nTE(ωm)ε0c
[∫∫
|fTE|2 dxdy

]1/2 (2.46)

where, again, m ∈ {p, s, i}, and the spatial dependence of fTE has been suppressed

for brevity.

Using Eqs. (2.41)–(2.46), we can now re-write (as an example) Eq. (2.31a) in

the following form:

P(3)(r, ωp) =
3√
2ε0

χjklm(−ωp;ωp, ωp,−ωp)p̂TE k p̂TE l p̂
∗
TEm(

nTE(ωp)c
)3/2

(2.47)

× fTE|fTE|2

[
∫∫
|fTE|2 dxdy]3/2

|up|2up exp {iβTE(ωp)z}

+ 2
3√
2ε0

χjklm(−ωp;ωp, ωs,−ωs)p̂TE k p̂TE l p̂
∗
TEm√

nTE(ωp)nTE(ωs)c3/2

× fTE|fTE|2

[
∫∫
|fTE|2 dxdy]3/2

|us|2up exp {iβTE(ωp)z}

+ 2
3√
2ε0

χjklm(−ωp;ωp, ωi,−ωi)p̂TE k p̂TE l p̂
∗
TEm√

nTE(ωp)nTE(ωi)c3/2

× fTE|fTE|2

[
∫∫
|fTE|2 dxdy]3/2

|ui|2up exp {iβTE(ωp)z}

+ 2
3√
2ε0

χjklm(−ωp;ωs, ωi,−ωp)p̂TE k p̂TE l p̂
∗
TEm√

nTE(ωp)nTE(ωs)nTE(ωi)c3/2

× fTE|fTE|2

[
∫∫
|fTE|2 dxdy]3/2

u∗pusui exp
{
i
(
βTE(ωs) + βTE(ωi)− βTE(ωp)

)
z
}
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Similar re-normalized equations exist for Eqs. (2.31b) and (2.31c). As long as the

dispersion of the waveguide is relatively small, the effective refractive index will not

change substantially over the spectral range of interest. We are then justified to

replace the refractive indexes appearing in the denominators of Eq. (2.47) with a

single effective refractive index for the TE eigenstate, nTE ≡ nTE(ωp) ≈ nTE(ωs) ≈

nTE(ωi). Using the re-normalized versions of Eqs. (2.31) and Eqs. (2.41)–(2.46) in

Eq. (2.39), we arrive at the following coupled-wave equations:

dup
dz

= i
3ωp

4ε0n2
TEc

2
χ(3)

xxxx(−ωp;ωp, ωp,−ωp)
|up|2

Aeff

up (2.48a)

+ i2
3ωp

4ε0n2
TEc

2
χ(3)

xxxx(−ωp;ωp, ωs,−ωs)
|us|2

Aeff

up

+ i2
3ωp

4ε0n2
TEc

2
χ(3)

xxxx(−ωp;ωp, ωi,−ωi)
|ui|2

Aeff

up

+ i2
3ωp

4ε0n2
TEc

2
χ(3)

xxxx(−ωp;ωs, ωi,−ωp)
1

Aeff

u∗pusuie
i∆βz

dus
dz

= i
3ωs

4ε0n2
TEc

2
χ(3)

xxxx(−ωs;ωs, ωs,−ωs)
|us|2

Aeff

us (2.48b)

+ i2
3ωs

4ε0n2
TEc

2
χ(3)

xxxx(−ωs;ωs, ωp,−ωp)
|up|2

Aeff

us

+ i2
3ωs

4ε0n2
TEc

2
χ(3)

xxxx(−ωs;ωs, ωi,−ωi)
|ui|2

Aeff

us

+ i
3ωs

4ε0n2
TEc

2
χ(3)

xxxx(−ωs;ωp, ωp,−ωi)
1

Aeff

u2
pu
∗
i e
−i∆βz

dui
dz

= i
3ωi

4ε0n2
TEc

2
χ(3)

xxxx(−ωi;ωi, ωi,−ωi)
|ui|2

Aeff

ui (2.48c)

+ i2
3ωi

4ε0n2
TEc

2
χ(3)

xxxx(−ωi;ωi, ωp,−ωp)
|up|2

Aeff

ui

+ i2
3ωi

4ε0n2
TEc

2
χ(3)

xxxx(−ωi;ωi, ωs,−ωs)
|us|2

Aeff

ui

+ i
3ωi

4ε0n2
TEc

2
χ(3)

xxxx(−ωi;ωp, ωp,−ωs)
1

Aeff

u2
pu
∗
se
−i∆βz
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where ∆β ≡ βTE(ωs) + βTE(ωs) − 2βTE(ωp) is the local wave-vector mismatch and

Aeff represents the third-order effective mode area of the TE eigenstate, defined by

Aeff ≡
[∫∫
|fTE|2 dxdy

]2∫∫
|fTE|4 dxdy

(2.49)

2.4.1 Calculating the modes of semiconductor waveguides

A publicly available modesolver called WGMODES [16] is used to compute

the modes of the waveguides studied in this dissertation. WGMODES solves the

eigenvalue equation

∇× (ε−1∇×H)− ω2µ0H = 0 (2.50)

which is the magnetic field analog to Eq. (2.34) (generalized to allow for an optically

anisotropic medium). The modesolver assumes that each field-component exhibits a

z-dependence of exp(iβz). It then uses a full-vector finite-difference method to de-

termine the waveguide’s frequency-dependent effective propagation constant, β(ω),

and the two transverse components of the magnetic field, Hx and Hy, at all ver-

tices in the computational mesh [17]. (The modesolver is designed to solve for

components of H rather than E because enforcing the zero-divergence condition on

H ensures against spurious modes.) All other components of the electromagnetic

fields are subsequently calculated from Hx and Hy. Once calculated, the numerical

representation of the eigenfunction is used to estimate the effective mode area by

numerically integrating Eq. (2.49).

To calculate the modes of a particular waveguide, the eigenvalue problem is

specified by the user-defined 2D computational mesh, which represents the permit-
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AlxGa1-xAs

Al0.7Ga0.3As
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Figure 2.3: An example of the calculated TE mode of an AlGaAs waveg-
uide for the case x = 0.17. The contours depict the magnitude of the
horizontal component of the electric field in dB relative to the peak value
at the center of the core.
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tivity as a function of the transverse coordinates, x and y. The materials studied

for this dissertation are all optically isotropic, so their permittivity tensors reduce

to scalar quantities, which significantly reduces the computational expense of the

problem.

The modesolver is used extensively in the following chapter to calculate the

dispersion properties of AlGaAs ridge waveguides, which is discussed further in

Sect. 3.3.2. For these waveguides, an empirical model constructed by Gehrsitz et

al., is used to specify the wavelength- and mole-fraction-dependence of AlGaAs’s

refractive index [18]. As an example, Fig. 2.3 shows the horizontal component (i.e.,

the x-component) of the electric field, calculated for the TE mode of an AlGaAs

waveguide where the mole-fraction of aluminum in the core layer is x = 0.17. Related

pictures of the x-, y- and z-components of the electric field for the TE mode of the

same structure are shown in Fig. 2.4. The y- and z-components of the field are

very weak, and the E-field of the TE mode essentially consists of only a horizontal

component.

2.5 The Scalar Effective Susceptibilities, Nonlinear Absorption and

Nonlinear Refraction

We return now to considering the coupled-wave equations, Eqs (2.48a-c). The

χ
(3)
xxxx’s appearing in these equations are the scalar effective susceptibilities for these

particular third-order wave-mixing processes, where all of the waves are co-polarized

along the x-direction. The scalar effective susceptibilities are obtained from the χjklm
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tensor by contracting it using the polarization unit vectors:

χ
(3)
(eff)(ωσ;ωλ, ωµ, ων) ≡ χjklm(ωσ;ωλ, ωµ, ων) p̂

∗
TE j p̂TE k p̂TE l p̂

∗
TEm (2.51)

Here, we have re-named χ
(3)
xxxx as χ

(3)
(eff) to emphasize that similar contracted ver-

sions exist for other scalar effective susceptibilities (for example, χ
(3)
yyyy would be

the scalar effective susceptibility for the case where all the waves excite the TM

eigenstate). In general, the scalar effective susceptibility is a complex quantity,

χ
(3)
(eff) = χ

(3)
(eff)R + iχ

(3)
(eff) I . Roughly speaking, the real part of χ

(3)
(eff) accounts for pro-

cesses which introduce a nonlinear phase change to the optical wave (i.e., nonlinear

refraction), while the imaginary part accounts for processes which introduce a non-

linear change in the magnitude (i.e., nonlinear absorption or gain, depending on the

sign of χ
(3)
(eff) I).

To illustrate the nonlinear effects caused by the scalar effective susceptibility,

consider a single quasi-continuous-wave optical beam with frequency ω propagating

in the TE eigenstate. In this simple case, the signal and idler amplitudes may be

set equal to zero and Eqs. (2.48) reduce to

du

dz
= i

3ω

4ε0n2
TEc

2
χ

(3)
(eff)(−ω;ω, ω,−ω)

|u|2

Aeff

u (2.52)

Representing the complex amplitude in phasor notation, u(z) = m(z)eiφ(z), where m

is the z-dependent magnitude and φ the z-dependent phase, we can split Eq. (2.52)

into its real and imaginary parts to obtain

dm

dz
= −

3ωχ
(3)
(eff) I

4ε0n2
TEc

2

m3

Aeff

dφ

dz
=
ω

c

(
3χ

(3)
(eff)R

4ε0n2
TEc

)
m2

Aeff

(2.53)
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Recalling that m2 is normalized to equal the power of the wave, we can recast

Eqs. (2.53) in terms of the z-dependent average intensity defined as I(z) ≡ P (z)/Aeff:

dI

dz
= −

(
3ωχ

(3)
(eff) I

2ε0n2
TEc

2
I

)
I

dφ

dz
=
ω

c

(
3χ

(3)
(eff)R

4ε0n2
TEc

I

)
(2.54)

Equations (2.54) show that the third-order polarization leads to intensity-

dependent modifications of the waveguide’s absorption and refraction, where the

quantities 3ωχ
(3)
(eff) I I/ (2ε0n

2
TEc

2) and 3χ
(3)
(eff)R I/ (4ε0n

2
TEc) play nonlinear roles anal-

ogous to the waveguide’s linear absorption coefficient and refractive index, respec-

tively. It is therefore natural to associate the imaginary part of the effective sus-

ceptibility appearing in Eq. (2.52) with a nonlinear absorption coefficient, α2, and

the real part with a nonlinear refraction coefficient, n2, according to the following

definitions:

α2 ≡
3ω

2n2
TEε0c

2
Im
{
χ

(3)
(eff)

}
n2 ≡

3

4n2
TEε0c

Re
{
χ

(3)
(eff)

}
(2.55)

It is understood that these coefficients are specific to the particular interaction

described by the χ
(3)
(eff)(−ω;ω, ω,−ω). The notation in Eq. (2.55) is often compacted

even further by assigning a complex nonlinear parameter to the TE eigenstate,

γ=γR + iγI ≡
1

Aeff

(
n2
ω

c
+ i

α2

2

)
(2.56)

Using Eqs. (2.55) and (2.56), Eq. (2.52) becomes

du

dz
= i

1

Aeff

(ω
c
n2 + i

α2

2

)
|u|2u = iγ|u|2u (2.57)

Written in terms of the waveguide’s nonlinear parameter, Eqs. (2.53) become, very

simply,

dm

dz
= −γIm3 dφ

dz
= γRm

2 (2.58)
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Without loss of generality, we can take the initial phase of the wave to be zero for

z = 0, in which case Eqs. (2.58) have the following solutions:

m(z) =
m(0)√

1 + 2γIm2(0)z
φ(z) =

γR
2γI

ln(1 + 2γIm
2(0)z) (2.59)

where m(0) is the magnitude at z = 0. Written in terms of power, these solutions

become

P (z) =
P0

1 + 2γIP0z
φ(z) =

γR
2γI

ln(1 + 2γIP0z) (2.60)

where P0 is the power at z = 0. Alternatively, written in terms of the intensity and

the nonlinear refraction and absorption coefficients, they become

I(z) =
I0

1 + α2I0z
φ(z) =

ω

c

(
n2

α2

)
ln(1 + α2I0z) (2.61)

where I0 represents the average intensity at z = 0. Often, the quantity α2I0z remains

much less than unity. In this case, to first order, the z-dependent nonlinear phase

(the second equation in Eq. (2.61) reduces to

φ(z) =
ω

c
n2I0z (2.62)

For simplicity in the preceding discussion (and for most of the remainder of

the dissertation), we have assumed the optical mode is completely contained within

the core material of the waveguide. If a significant portion of the optical mode

samples the cladding material, then the model used to describe the interaction must

account for a weighted average of the overlap of the mode with the nonlinear coef-

ficients associated with the various layers comprising the waveguide. This becomes

particularly important for very-small-area semiconductor waveguides, where a sig-

nificant portion of the mode can “leak” into the cladding layers. When necessary,
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the nonlinear effects associated with interactions in the cladding can be included

using mode confinement factors (for example, see [19]).

For the semiconductor waveguides presented in this dissertation, the most

important physical mechanisms responsible for the nonlinear response are Kerr re-

fraction and two-photon absorption (2PA), and free-carrier absorption (FCA) and

dispersion (FCD). Kerr refraction and two-photon absorption are nearly instanta-

neous, meaning they respond to the applied field on a timescale similar to the period

of an optical cycle. On the other hand, free-carrier absorption and dispersion are

non-instantaneous nonlinearities which persist throughout the free-carrier lifetime.

These effects are discussed in more detail in the following subsection.

2.5.1 Two-photon absorption, free carriers, and the Kerr effect

As the name implies, two-photon absorption occurs when the medium simulta-

neously absorbs two photons from the applied field to transition to an excited state.

The two photons can be absorbed from the same Fourier component of the applied

field (degenerate two-photon absorption), which leads to self-induced change of that

component’s amplitude. Or, if the applied field is not monochromatic, each pho-

ton can be absorbed from different Fourier components (non-degenerate two-photon

absorption), which leads to cross-modification and interaction between the compo-

nents. Two-photon absorption in a particular material or waveguide is characterized

by χ
(3)
(eff) I , and α2 is commonly referred to as the two-photon-absorption coefficient.

Two-photon absorption is deleterious to many applications of nonlinear op-
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Figure 2.5: Simplified zone-center band-diagrams showing: (a) two-photon absorp-

tion is allowed when 2h̄ω exceeds the bandgap; (b) it is not allowed when the bandgap

exceeds 2h̄ω. The case depicted is that of a direct-gap semiconductor like GaAs.

tics [20]; optical loss of any kind depletes the field, which then reduces the nonlinear

response. In semiconductors, the strength of two-photon absorption is largely de-

termined by the proximity of the two-photon energy to the bandgap. So, one way

to minimize two-photon absorption in a semiconductor waveguide is to engineer

the bandgap-energies of the constituent materials to be significantly larger than the

two-photon energy.

In the technologically important telecommunications C-band (1530–1565 nm),

the two-photon energy exceeds the bandgaps of both GaAs and crystalline silicon

(the two-photon energy for 1550-nm light is 2h̄ω = 1.60 eV). Therefore, these mate-

rials, which otherwise have very desirable properties for making waveguides, display

relatively large two-photon absorption in the spectral range of interest for optical

communications [21]. In other words, the ratio γI/γR is of order unity for waveg-

uides composed of these materials. The case for GaAs, a direct-gap semiconductor,

is illustrated by the simplified band-diagram in Fig. 2.5(a), where the two-photon
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transition is allowed because the two-photon energy exceeds the bandgap, Eg. On

the other hand, when the ratio h̄ω/Eg is less than 0.5, the two-photon transition

becomes disallowed. This is the case illustrated in Fig. 2.5(b).

When it can occur (i.e., when h̄ω/Eg > 0.5), two-photon absorption excites

an electron to the conduction band and a hole to the valence band, which constitute

a pair of free carriers. For passive sub-micron waveguides composed of silicon, the

free-carrier lifetime is typically on the order of nanoseconds (but can be as short

as hundreds of picoseconds – the rate of recombination in waveguides is enhanced

relative to that of the bulk material due to surface recombination). Once created,

the free-carrier pair leads to an enhancement of the nonlinear absorption. While they

survive, the electron and/or hole can absorb even more photons from the applied

field, which is called free-carrier absorption. In addition to the absorptive effect,

the phase of the applied field is also modified due to dispersion from the plasma

of free carriers, a process called free-carrier refraction. Both these effects scale in

proportion to the local density of free carriers, which in turn scales with the local

rate of two-photon absorption.

The nonlinear effects caused by a free-carrier plasma are “non-instantaneous”

or “delayed” in the sense that they persist long after the impulse-like two-photon

absorptions that generate the free carriers. Free-carrier nonlinearities can be very

important in semiconductor waveguides, particularly when the applied field is strong

enough to cause substantial two-photon absorption (and therefore a large density of

free carriers) and when the duration on the applied field is of the same order or longer

than the free-carrier lifetime. In this case, free carriers generated by the leading
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Figure 2.6: (Reproduced from [22]) Calculated dependence of (a) degen-
erate two-photon absorption and (b) Kerr refraction on the photon en-
ergy, based on a two-band model. The material-dependence of the coef-
ficients has been normalized-out. These curves describe the wavelength-
dependence of the nonlinear coefficients of a wide class of semiconductor
crystals. The normalization factors K and Ep are material independent,
while n0 and Eg represent the frequency-dependent refractive index and
the bandgap of the material, respectively.

36



edge of the pulse-envelope can strongly absorb power from the trailing portions of

the envelope, which leads to undesirable patterning of optical pulses [23]. In the

context of the four-wave mixing experiments presented later, free-carrier absorption

becomes especially important when the applied field is continuous-wave. In this case,

the free-carrier population approaches a constant steady state, and free carriers are

always present to absorb light from the applied field, which leads to saturation of

the achievable four-wave-mixing conversion efficiency.

As an alternative to GaAs or crystalline silicon, AlxGa1−xAs is a promising

semiconductor material for nonlinear waveguides because it has a large third-order

susceptibility and its bandgap can be adjusted by controlling the mole fraction

x in the alloy [24, 25]. The measurements presented later show that for x greater

than about 0.18, two-photon absorption in the telecommunications C-band becomes

immeasurably small. In and of itself, the reduction of two-photon absorption benefits

most nonlinear optical processes. But reduced two-photon absorption also provides

the added benefit that fewer free-carriers are generated, and therefore free-carrier

effects become less observable as two-photon absorption is decreased.

Kerr refraction (or the optical Kerr effect) happens when the nonlinear polar-

ization effectively changes the refractive index of the medium in a manner directly

proportional to the optical intensity. The intensity-dependent refractive index then

modifies the phase of the optical field. As with two-photon absorption, Kerr refrac-

tion can be a self-induced effect where a single beam modifies the refractive index it

is sampling itself, or it can be a cross-modification effect where an intense beam at

one wavelength changes the refractive index sampled by a probe at another wave-
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length. The strength of nonlinear refraction is characterized by χ
(3)
(eff)R, and n2 is

commonly called the Kerr refraction coefficient. Nonlinear refraction is typically the

physical effect exploited for all-optical processing applications, and therefore a large

n2 is usually considered desirable.

Sheik-Bahae, et al., performed an in-depth study of the dispersion of bound

electronic nonlinearities in semiconductors [22]. They constructed a quantum me-

chanical theory that successfully describes the sub-bandgap dependence of n2 and

α2 on the ratio h̄ω/Eg for a wide class of materials (semiconductors and some wide-

gap dielectrics). Their theoretical predictions are depicted in Fig. 2.6, which plots

the dependence of the (material-normalized) α2 and n2 coefficients on the photon

energy. Both n2 and α2 tend to decrease as the bandgap increases beyond the two-

photon-absorption resonance (alternatively, as h̄ω/Eg decreases less than 0.5). Thus,

for nonlinear optical signal processing, careful selection of the nonlinear medium is

important. For many applications, the ideal material exhibits large nonlinear re-

fraction but essentially no nonlinear absorption – an engineering requirement that

can be difficult to meet.

2.5.2 Further simplification of the coupled-wave equations

We return now to the scalar effective susceptibilities in Eqs. (2.48a-c). It is

often acceptable to simplify things by identifying all of the effective susceptibilities

with a single one

χ
(3)
(eff) ≡ χ(3)

xxxx(−ωp;ωp, ωp,−ωp) ≈ · · · ≈ χ(3)
xxxx(−ωi;ωp, ωp,−ωs) (2.63)

38



where the “· · · ” represents all the other scalar effective susceptibilities in Eqs. (2.48a-

c). This simplification is appropriate when all the frequencies (the ω’s appearing

in Eq. (2.63)) are sufficiently close that the frequency-dependence of the effective

susceptibility can be ignored [13].

Using Eq. (2.63) to identify a single effective nonlinear parameter for the

waveguide, Eqs. (2.48a-c) simplify substantially. We arrive at

dup
dz

= iγ|up|2up + i2γ|us|2up + i2γ|ui|2up + i2γu∗pusui exp(i∆βz) (2.64a)

dus
dz

= iγ|us|2us + i2γ|up|2us + i2γ|ui|2us + iγu2
pu
∗
i exp(−i∆βz) (2.64b)

dui
dz

= iγ|ui|2ui + i2γ|up|2ui + i2γ|us|2ui + iγu2
pu
∗
s exp(−i∆βz) (2.64c)

where γ = (ω
c
n2 + iα2

2
)/Aeff is the complex nonlinear parameter discussed in the

previous section and ω is the central optical frequency, which is the same as that of

the pump wave, ω = ωp. Again, ∆β ≡ β(ωs)+β(ωi)−2β(ωp) is the local wave-vector

mismatch. Equations (2.64a-c) are identical to those found in several well-cited

works on four-wave mixing and parametric amplification in nonlinear optical fibers

[13,14], except they have been generalized to include non-zero nonlinear absorption

(i.e., γ is complex).

In contrast to the case of optical fibers, which tend to exhibit negligibly small

linear propagation losses, it is usually important to include propagation losses when

modeling the behavior of semiconductor waveguides. This is achieved by phe-

nomenologically modeling the waveguide’s propagation loss using the loss coefficient
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α. Inserting the propagation loss into the equations, we finally obtain

dup
dz

= −α
2
up + iγ|up|2up + i2γ|us|2up + i2γ|ui|2up + i2γu∗pusui exp(i∆βz) (2.65a)

dus
dz

= −α
2
us + iγ|us|2us + i2γ|up|2us + i2γ|ui|2us + iγu2

pu
∗
i exp(−i∆βz) (2.65b)

dui
dz

= −α
2
ui + iγ|ui|2ui + i2γ|up|2ui + i2γ|us|2ui + iγu2

pu
∗
s exp(−i∆βz) (2.65c)

where we have assumed that α is constant over the spectral range of interest. The

waveguide’s loss coefficient can be measured in various ways, to be discussed later.

It is interesting to inspect the terms in Eqs. (2.65a-c). Consider the dif-

ferential equation for the pump beam, (2.65a). The first term on the RHS rep-

resents the linear absorption of the pump; if the nonlinearity of the waveguide

were negligibly small, then the power of the pump beam would simply decay like

Pp(z) = Pp(0) exp(−αz). The second term describes how the pump affects itself

through the processes of self-phase and self-amplitude modulation, which are caused

by nonlinear refraction and nonlinear absorption, respectively. Likewise, the third

and fourth terms represent how the signal and the idler affect the pump through

cross-phase and cross-amplitude modulation.3

The last term on the RHS of Eq. (2.65a) describes how the pump is affected by

the four-wave-mixing interaction. Unlike in the previous terms, the three complex

amplitudes multiply in such a way that the phase of this term includes contributions

from all three complex amplitudes. And, the four-wave-mixing term includes the

exponential factor exp(i∆βz). Together, these factors determine how efficiently the

four-wave mixing occurs, and the spectral range over which the process remains

3Notice that the cross-effects are a factor of two stronger than the self-effects. This is perhaps
a surprising consequence of the algebraic steps used to obtain Eqs. (2.31a-c).
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phase-matched. The equations for the signal and idler look similar. But, in the last

term of both Eq. (2.65b) and (2.65c), the complex amplitude of the pump appears

twice and the argument of the complex exponential has the opposite sign compared

to Eq. (2.65a). It may not be obvious, but these factors indicate that – depending

on the phase relationship among the three complex amplitudes – power can flow out

of the pump and into the signal and idler (called parametric amplification), or it can

flow from the signal and idler to the pump (known as parametric attenuation) [13].

The conditions required to achieve one case or the other are detailed in Sect. 3.6.

As they stand, Eqs. (2.65a-c) are too complicated to permit tidy analytical

solutions. However, for certain initial conditions (i.e., Pi(z= 0) = 0) and under

certain assumptions (i.e., Pp � Ps � Pi and ∆β ≈ 0 for all z), approximate

analytical solutions are possible. These solutions are given in Appendix A.

2.6 Continuous-wave versus pulsed measurements

The preceding derivation assumes that the field consists only of monochromatic

continuous waves, and that the complex field envelopes Aj(z, ωσ) have no time-

dependence. This is an excellent approximation to model experiments where the

optical sources are themselves continuous-wave lasers.

There are two chief advantages to using continuous-wave lasers to probe the

nonlinearity of a waveguide. First, the coupled-wave equations reduce to a time-

independent form, which makes analysis of experimental results particularly simple.

It is also easier to measure the optical power of a continuous-wave beam because the
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measured average power is the same as the peak power. In contrast, when measuring

the power of a short pulse, the experimenter is forced to make assumptions about

the shape of the optical pulse to deduce the instantaneous power from the measured

average power. As a result, there is typically a higher degree of uncertainty in

nonlinear measurements made with short pulses.

That said, to obtain adequate optical power to observe nonlinear behavior

clearly, it is often necessary to use short optical pulses. Pulsed lasers such as Q-

switched or mode-locked lasers can easily produce peak powers several orders of

magnitude larger than those generated by commonplace continuous-wave lasers.

The tradeoff is the increased complexity due to the time-dependence of the complex

field amplitude. Some of the measurements presented later do employ short optical

pulses. To simulate these experiments, computational techniques are used to account

for the pulse-shape while solving the nonlinear wave equation.

2.7 Summary

This chapter discusses how the nonlinear polarization is generated, and how it

feeds-back to the optical field. Starting from first principles, coupled-wave equations

are derived to describe the process of continuous-wave four-wave mixing. The as-

sumptions used to generate the coupled-wave equations are clearly described. These

equations are frequently used throughout the remainder of the dissertation to model

experimental observations.

The instantaneous effects of two-photon absorption and Kerr refraction are
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introduced, as well as the non-instantaneous effects of free-carrier absorption and

refraction. These effects are especially important for semiconductor waveguides

designed for the telecommunications spectrum.

43



Chapter 3: Wavelength Conversion in AlGaAs Waveguides

3.1 Overview

The efficient management of wavelength-division-multiplexed (WDM) optical

networks relies on a key piece of technology: the wavelength converter [26]. This

device takes a data-bearing signal at one carrier wavelength and replicates the same

signal to a new carrier wavelength. Illustrated schematically in Fig. 3.1, wavelength

conversion is useful for routing and switching to maintain spectral efficiency in WDM

networks. The conventional way to wavelength-convert a signal is to detect the orig-

inal optical signal electrically, and then use the electrical domain signal to modulate

original

pump

original

pump

converted

ω

P
ow

er

ω

P
ow

er

Input Output

Wavelength
Converter

Figure 3.1: Conversion of a generic signal from its original frequency
(blue) to a lower frequency (red). The scheme shown here uses the
interaction between the pump and the incident signal to generate the
converted signal.
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another laser operating at a different wavelength.

Using a nonlinear waveguide for wavelength conversion – achieved by exploit-

ing the waveguide’s ultrafast nonlinearities – offers an all-optical alternative to the

conventional optical-electrical-optical wavelength converter. This scheme could pro-

vide several key performance benefits compared to the conventional converter, in-

cluding reduced latency, increased bandwidth,1 transparency to the input data for-

mat, simplicity of implementation, and decreased wall-plug power demand [26, 27].

These benefits will become more important as data-rates continue to rise and per-bit

power-consumption requirements become more strict.

The idea to exploit nonlinear waveguides for wavelength conversion is not new.

Four-wave mixing in standard optical fiber has long been used to achieve wavelength

conversion in the telecommunications spectrum [13, 14]. But, standard silica-glass

fibers exhibit a relatively weak optical nonlinearity. And, even for specially designed

highly nonlinear fibers such as bismuth-oxide photonic crystal fibers (PCFs), at least

several meters of fiber are required to achieve efficient wavelength conversion (and for

longer spans, pump-induced stimulated Brillouin scattering (SBS) can degrade the

converted signal quality) [28,29]. The same is true for highly nonlinear chalcogenide-

glass fibers [30]. Thus, fiber-based wavelength converters do not readily integrate

with ever-shrinking, chip-based photonic systems.

On the other hand, low-loss, sub-micron semiconductor waveguides could en-

able all-optical wavelength conversion in a compact, integrated platform. And,

1In this context, bandwidth refers both to the spectral distance over which the original signal
can be converted (the conversion bandwidth) and to the maximum bit-rate the device can convert
(the signal bandwidth).
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while many nonlinear-waveguide-on-chip systems have been proposed, advances in

this field have been mainly dominated by the silicon-on-insulator (SOI) platform.

SOI is the obvious choice for on-chip optical processing because the electronics in-

dustry has, over the course of decades, driven the development of sophisticated and

low-cost fabrication techniques for silicon devices.

Silicon possesses a large Kerr nonlinearity (≈ 200 times that of silica glass [21,

31, 32]). And, the maturity of complementary-metal-oxide-semiconductor (CMOS)

fabrication techniques means it is relatively easy to make high-quality, low-linear-

loss, dispersion-engineered SOI waveguides (for example, see [33]). In fact, were it

not for two fundamental flaws, which are both related to the band structure of crys-

talline silicon, it would be nearly ideal for chip-based all-optical processing: First,

because crystalline silicon possesses a relatively narrow bandgap, it unavoidably

exhibits two-photon absorption in the telecom spectrum. Second, because it is an

indirect-gap semiconductor, it is difficult to make an integrated optical source using

silicon [11, 34]. Indeed, despite the two-photon absorption (and subsequent free-

carrier absorption) intrinsic to the material, several groups have managed to demon-

strate efficient and broad-band wavelength conversion, and even parametric gain, via

four-wave mixing in dispersion-engineered silicon nanowire waveguides [35–37].

The search for the ideal nonlinear-waveguide material has recently shifted to

other silicon-based materials. These candidates include: silicon nitride (SiN), first

proposed for nonlinear optics in [38]; high-index doped silica glass (Hydex R©), pro-

posed in [39]; and hydrogenated amorphous silicon (a-Si:H), proposed in [40]. All

of these are CMOS-compatible. SiN exhibits fairly large Kerr refraction (n2 ≈ 10
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times that of silica glass) and virtually no nonlinear absorption in the telecom spec-

trum [11]. And, using chemical vapor deposition techniques, it has recently become

possible to fabricate SiN nanowire waveguides with ultra-low propagation loss, on

the order of dB/m rather than dB/cm [41]. Similarly, though the Kerr nonlinearity

of Hydex R© is relatively small (n2 ≈ 5 times that of silica glass [42]), sub-micron

waveguides composed of Hydex R© can also exhibit dB/m propagation loss [43]. Fi-

nally, though the role of nonlinear absorption in a-Si:H is still a matter of debate, it

has been reported to have a very large Kerr nonlinearity (n2 ≈ 1000 times that of

silica glass [44]). And, in a very recent report, the linear loss observed in an a-Si:H

nanowire rivaled those observed in the best SOI nanowires [45]. All of these alter-

native silicon materials are very promising. Very efficient and broad-band four-wave

mixing, and even parametric gain, have been demonstrated in dispersion-engineered

waveguides composed of each of these material systems (see [46,47] for SiN, [48] for

Hydex R©, and [49,50] for a-Si:H).

Another material system receiving a lot of attention for telecom nonlinear

optics (even though it’s not a semiconductor) is chalcogenide glass (ChG). This is

a generic name for glass whose major components include a group-6a element (the

chalcogens) covalently bonded to a network-forming element like As, Ge, Sb, Ga, Si

or P. CMOS-compatible fabrication techniques have been developed to make low-loss

(several dB/cm), sub-micron rib and ridge waveguides mounted on silicon substrates

[51,52]. And, chalcogenide glass can be engineered to have very desirable nonlinear

properties – several presented in [53] exhibit Kerr nonlinearities significantly larger

than that of silicon (with n2 values ≈ 500 to 1000 times that of silica glass) and
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negligibly small nonlinear absorption. Even when ChG does exhibit two-photon

absorption, it does not exhibit subsequent free carrier effects (whereas silicon does).

Very efficient, broad-band four-wave mixing (using a CW pump, [54]) and parametric

amplification with net gain (using optical pulses, [55]) have been demonstrated in

dispersion-engineered, chip-based ChG waveguides. Chalcogenide glasses – like the

alternative silicon-based materials discussed above – remain very promising for chip-

based nonlinear optics and wavelength conversion.

This chapter investigates AlGaAs waveguides for wavelength conversion via

continuous-wave four-wave mixing. In this context, the “continuous-wave” refers to

using a strong monochromatic pump light, which is always on. Therefore, there is

no need to achieve temporal alignment between the incident signal and the pump,

and any arbitrarily formatted signal can be converted. The drawback to this scheme

is that it is difficult to achieve efficient four-wave mixing using a continuous-wave

pump. The high average pump-power required to amplify the idler wave (the con-

verted signal) often leads to irreversible damage of the waveguide.

AlGaAs was actually one of the first materials proposed for chip-based nonlin-

ear optics in the telecom spectrum [25]. This is because it demonstrates broadband

transparency throughout the telecommunication band. And, as discussed in Sect.

2.5.1, AlxGa1−xAs possesses a large nonlinearity and its bandgap can be adjusted

by controlling the mole fraction x in the alloy. It is therefore possible to produce

AlGaAs waveguides that exhibit the combination of high nonlinearity and no non-

linear absorption by using an alloy with the optimal mole fraction of aluminum. For

comparison to the other materials listed above, the AlGaAs waveguides presented in
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Table 3.1: Properties of competing nonlinear waveguide systems at 1550 nm

System α (dB/cm) Aeff (µm2) γR (W ·m)−1 γI (W ·m)−1

SMF-28 fiber [56] 5× 10−7 80 1.1× 10−3 ≈ 0

Bismuth oxide PCF [28] 1.9 3.17 0.58 ≈ 0

As2Se3 glass fiber [30] 0.01 37 1.2 0.04

Silicon waveguide [37] 0.6 0.28 58 8.9

Si3N4 waveguide [11] 0.5 Note 1 – Note 2 1.2 ≈ 0

Hydex R© waveguide [42] < 0.06 Note 3 2.0 0.22 ≈ 0

a-Si:H waveguide [44] 4.5 Note 4 0.07 1200 18

As2S3 waveguide [55] 0.5 1.2 10 ≈ 0

AlGaAs waveguide Note 5 1.11 0.45 81 ≈ 0

In this table, the real and imaginary parts of the nonlinear parameter are defined as

γR ≡
ω

cAeff
n2 γI ≡

α2

2Aeff

Note 1: A sub-micron silicon nitride waveguide with 9 dB/m loss was demonstrated in [41].

Note 2: Aeff not given in [11].

Note 3: A sub-micron Hydex R© waveguide with 6 dB/m loss was demonstrated in [43].

Note 4: A sub-micron a-Si:H waveguide with ≈ 1 dB/cm loss was demonstrated in [45].

Note 5: This waveguide was used for the four-wave-mixing results shown in Fig. 3.15.
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this chapter exhibit Kerr refraction coefficients ranging from 500 to 1000 times that

of silica glass. The reported nonlinear parameters of various competing nonlinear

waveguide systems (including an AlGaAs waveguide studied for this dissertation)

are summarized in Table 3.1.

AlGaAs waveguides have been studied extensively for four-wave mixing and

other third-order nonlinear processes [57–61]. But, while it is well known that

suppression of nonlinear absorption can be achieved by tailoring the bandgap, the

wavelength conversion efficiency and conversion bandwidth in this material system

have lagged behind those of competing waveguide platforms – even those that do

suffer from nonlinear absorption.

The performance-lag of AlGaAs waveguides stems from the fact that they

are usually fabricated in smaller cleanrooms which do not maintain photolithogra-

phy tools competitive with those found in commercial CMOS foundries (in terms

of achievable feature size and line-edge roughness). Until now [62], it has not

been possible to fabricate AlGaAs waveguides with the right combination of cross-

sectional dimensions and linear loss to achieve good wavelength-conversion perfor-

mance. These variables – the cross-sectional dimensions and the linear loss – are

coupled: As it turns out, to achieve phase-matching of the four-wave-mixing inter-

action over a broad spectral range requires a very narrow waveguide (less than 1 µm

wide). At the same time, the (linear) propagation loss of AlGaAs ridge waveguides

is typically dominated by scattering from sidewall roughness, and this becomes

exponentially worse as the width of the waveguide-ridge decreases. So, to make

a low-loss AlGaAs waveguide for efficient and broadband wavelength conversion,
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the engineering requirements push the fabrication limits in two ways. First, the

minimum possible photolithographic feature size is required to achieve the desired

dispersion. Second, the minimum possible line-edge roughness is required to main-

tain acceptable linear loss. The AlGaAs waveguides presented here were designed,

grown and fabricated by a team at the Laboratory for Physical Sciences consist-

ing of Paveen Apiratikul, Gyorgy Porkolab, John Hyrniewicz and Christopher J.

K. Richardson. They devised a fabrication process to produce AlGaAs waveguides

which are simultaneously narrow and low-loss.

3.2 Device fabrication

The waveguide epitaxial structure is grown using solid-source molecular beam

epitaxy (MBE) on top of a n-doped GaAs substrate. The AlGaAs epilayer het-

erostructure consists of three layers: lower cladding, core, upper-cladding. Many

geometries were tested to determine the dependence of the dispersion on the cross-

sectional dimensions. For the waveguides presented here, the lower cladding layer is

typically about 2 microns thick, the guiding core layer is either 0.5 µm or 0.8 µm,

and the upper cladding is typically about 0.2 µm thick.

The refractive index and bandgap of each layer is determined by the mole

fraction x in the alloy (an empirical model that relates x to the refractive index and

the bandgap is presented in [18]). Typical values for the percent-aluminum in the

high-index core-layer range from x = 0.14 to x = 0.24. These alloy compositions lead

to core-bandgaps ranging from 1.60 eV to 1.8 eV, measured using photoluminescence
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Figure 3.2: The geometry and composition of a typical AlGaAs waveg-
uide. The labels on the coordinate axes are Miller indices indicating the
orientation of the crystal axes relative to the coordinate system of the
waveguide.

(PL) spectroscopy. The low-index cladding layers have x = 0.70. The epilayer

structure of a typical fabricated waveguide is shown in Fig. 3.2, which also shows

the orientation of the crystal’s axes with respect to the coordinate system used to

describe the waveguide. (Many of the AlGaAs waveguides include curved segments

where the crystalline plane normal to [0 0 1] continuously rotates in the xz-plane of

the waveguide’s coordinate system. Figure 3.2 shows the orientation of the crystal

axes in the straight segments of the waveguides. The facets are always cleaved

along the crystalline plane normal to [1 1 0] and straight segments of the waveguides

always run along the [1 1 0] direction.)

The waveguides are defined using projection lithography with positive i-line

photoresist (“i-line” refers to a particular line in the emission spectrum of a mercury

vapor lamp, meaning the photoresist is sensitive to exposure at 365 nm). On the

mask, the waveguide widths range from 0.4 to 2 microns and the lengths range from

0.5 cm to 2.5 cm. The width of each waveguide is flared at both ends (to about 2.2
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µm) to improve the fiber-to-waveguide coupling. The mask is projected onto the

photoresist by a 5× i-line stepper.

For some of the waveguides, after development, the photoresist is smoothed

using a nitrogen plasma-assisted reflow (detailed in [62]). This process raises the

temperature of the photoresist above its glass transition temperature, which causes

it to “reflow.” The reflow smooths the developed photoresist, which translates di-

rectly to smoother waveguide-sidewalls after the etch. Unfortunately, the reflow

process also causes the developed photoresist to expand, which increases the min-

imum achievable feature size to about 0.65 µm (0.4 µm prior to the reflow). The

photoresist (either as-developed or reflowed, as the case may be) then acts as the

etch-mask in an inductively coupled plasma (ICP) etch, using a mixture of BCl3

and N2 gas. Figure 3.3 shows a side-by-side comparison of a waveguide fabricated

without using the reflow process and one fabricated with the reflow process.

The waveguides are cleaved to length and coated with a conformal layer of

silicon nitride (SiN). This layer coats the entire structure, including the sidewalls

and the facets. It acts as an encapsulant and as a single-layer anti-reflection (AR)

coating. The measured reflectivity of a typical AR-coated waveguide-facet is less

that 1× 10−2. As detailed later, the conformal SiN does alter the dispersion of the

waveguide. In an attempt to achieve zero group-velocity dispersion in some of the

narrowest waveguides, the SiN layer is removed from the sidewalls. This is achieved

by first protecting the facets with photoresist, removing the naked SiN using an

oxygen plasma, and then washing the remaining photoresist from the facets. This

process maintains the SiN layer on the facets to act as an anti-reflection coating,
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200 nm 200 nm

(a) (b)

Figure 3.3: Scanning electron micrographs of etched waveguides pat-
terned using (a) the as-developed photoresist and (b) the re-flowed pho-
toresist. Reduction of the deep-etched sidewall roughness is evident in
the waveguide fabricated using the photoresist-reflow process.
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Figure 3.4: (a) Scanning electron micrograph of a 0.75-µm-wide AlGaAs
waveguide, fabricated using the reflow process. (b) The same waveguide,
after coating with silicon nitride.
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Figure 3.5: An example of the measured wavelength-dependent transmis-
sion of an AlGaAs waveguide (prior to deposition of the anti-reflection
coating). The contrast of the fringes is used to calculate the propagation
loss of the waveguide using Eq. (3.3).

but removes it everywhere else. Scanning electron micrographs of a 0.75-µm-wide

AlGaAs waveguide are shown in Fig. 3.4, before and after the structure has been

coated with SiN.

3.3 Evaluating the linear properties of AlGaAs waveguides

The linear properties of a waveguide – the linear propagation loss, the effec-

tive mode area, the length – must be known before accurate measurements of the

nonlinear properties can be made. The method used to compute the mode area has

already been discussed in Sect. 2.4.1. The following section details the methods used

to measure the linear propagation loss and to estimate the group-velocity dispersion.
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3.3.1 Propagation loss measurements

The linear propagation loss of the AlGaAs waveguides is determined using the

Fabry-Pérot technique, first described in [63]. The technique relies on measuring the

finesse of the Fabry-Pérot cavity that forms when the waveguide facets are cleaved

(prior to anti-reflection coating). This technique provides a way to measure the

propagation loss independent of the coupling losses.

Light from a tunable continuous-wave laser is coupled into the waveguide and

the transmitted power is measured while the wavelength is swept. The state of

polarization of the light is aligned with the TE or TM eigenstate. The relative

transmission of the cavity is periodic as a function of the wavelength, given by [63]

T (φ) =
(1−R)2 exp(αL)

(1− R̃)2 + 4R̃ sin2 φ
(3.1)

where φ ≡ 2πneffL/λ0, neff is the mode’s effective refractive index, α is the propa-

gation loss coefficient, λ0 is the central wavelength, R is the facet reflectivity, and

R̃ is the normalized facet reflectivity given by R̃ = R exp(−αL). The contrast, K,

of the oscillations is given by

K ≡ Tmax − Tmin

Tmax + Tmin

=
2R̃

1 + R̃2
(3.2)

and therefore the loss coefficient can be calculated from the contrast via

ln[(1−
√

1−K2)/K] = lnR− αL (3.3)

where it is assumed that R = 0.3 to account for the Fresnel reflectivity between air

and the AlGaAs alloy used in the waveguide’s core.
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3.3.2 Estimating the dispersion

The dispersion of the waveguide is one important parameter that determines

whether phase-matching of a nonlinear interaction can be achieved. As discussed

in Sec. 2.4.1, the modesolver is used to calculate the frequency-dependent effective

propagation constant, β(ω), of an AlGaAs waveguide. This provides a computa-

tional method to estimate the waveguide’s dispersion.

In many cases, the frequency-dependence of β can be accurately modeled by

expanding β to second order in the vicinity of some central frequency ω0,

β(ω) ≈ β(ω0) + (ω − ω0)
dβ

dω

∣∣∣
ω0

+
(ω − ω0)2

2!

d2β

dω2

∣∣∣
ω0

(3.4)

The curvature of β(ω) in ω is referred to as the group-velocity dispersion, usually

represented by β2 but sometimes as “GVD.” (Many authors use β2 to represent the

two-photon-absorption coefficient. In this dissertation, β2 is reserved for the group-

velocity dispersion while α2 is reserved for two-photon absorption.) The group-

velocity dispersion is given by

β2(ω0) ≡ d2β

dω2

∣∣∣
ω0

(3.5)

which, for obvious reasons, is also referred to as the second-order-dispersion. His-

torically, β2 > 0 is referred to as “normal” dispersion (because the majority of bulk

materials exhibit normal dispersion) while β2 < 0 is referred to as “anomalous”

dispersion.

In the context of continuous-wave four-wave mixing, recall that the coupled-

wave equations for four-wave mixing, Eqs. (2.65), depend on the group-velocity

58



Calculated point
Parabolic fit

λ0

3.150

3.155

3.160

3.165

3.170

3.175

1500 1520 1540 1560 1580 1600
3.280

3.282

3.284

3.286

3.288

3.290

Calculated point
Parabolic fit

1500 1520 1540 1560 1580 1600

Wavelength (nm)

Wavelength (nm)

Refractive index of Al0.17Ga0.83As

Material β2 = 1.3 ps2/m

Total β2 = 0.9 ps2/m

C
or

e 
m

at
er

ia
l i

nd
ex

W
av

eg
ui

de
 e

ffe
ct

iv
e 

in
de

x Waveguide’s effective refractive index

Figure 3.6: (Top) The red circles show the wavelength-dependent mate-
rial refractive index of the core-layer material used in the waveguide of
Fig. 2.3, which is Al0.17Ga0.83As. These points were calculated using the
empirical model of [18]. The red line is a best-fit 2nd-degree polynomial,
used to estimate the material dispersion at λ0 = 1550 nm. (Bottom)
The blue circles show the wavelength-dependent effective refractive in-
dex of the waveguide’s TE eigenstate, calculated using the modesolver.
The blue line is a best-fit 2nd-degree polynomial, used to estimate the
waveguide’s total dispersion. The modal dispersion of this structure
reduces the total dispersion relative to the material dispersion.
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mismatch parameter ∆β, where ∆β ≡ β(ωs) + β(ωi) − 2β(ωp). Expanding β(ωs)

and β(ωi) to second order about ωp, we have

β(ωs) + β(ωi)− 2β(ωp) ≈ (∆ω)2 × β2(ωp) (3.6)

where ∆ω is the frequency separation between the pump and signal (or idler and

pump). Note that even if higher orders of dispersion are considered in the expansions

of β(ωs) and β(ωi), the odd orders (i.e., dnβ/dωn for n an odd positive integer) will

always cancel when evaluating the sum on the LHS of Eq. (3.6). Typically only the

second-order dispersion needs to be considered when evaluating the group-velocity

mismatch parameter over a modest range of ∆ω.

The total dispersion of a waveguide includes contributions from the geometry-

dependent “waveguide” dispersion (a.k.a. “modal” dispersion) and the material-

dependent “material” dispersion. In the modesolving calculations, the waveguide

dispersion is accounted for by properly defining the geometry of the structure while

the material dispersion is inserted by using Gehrsitz’s model [18] to account for the

frequency-dependent refractive index of each layer in the geometry.

For example, the dispersion characteristics of the waveguide pictured in Fig. 2.3

are depicted in Fig. 3.6. The core-layer material in this waveguide is Al0.17Ga0.83As.

The top axes in Fig. 3.6 shows the dispersion of bulk Al0.17Ga0.83As, where the red

circles are calculated using Gehrsitz’s empirical model [18]. The red line is a best-

fit 2nd-degree polynomial. The bottom axes in Fig. 3.6 shows the total dispersion

of the waveguide. The blue circles represent the effective refractive index of the

TE eigenstate as a function of wavelength, calculated using the modesolver. The
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Figure 3.7: The calculated group-velocity dispersion of the TE eigenstate
of an AlGaAs waveguide as a function of the waveguide-width. The red
curve represents the case when the waveguide is coated with SiN, the
blue represents the case without SiN. These calculations were performed
assuming the same vertical profile shown in Fig. 2.3.
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blue line is the best-fit 2nd-degree polynomial. In each case, the curvature of the

dispersion is extracted from the fit parameters, and the group-velocity dispersion is

calculated using

β2 =
λ3

0

2πc2

d2n

dλ2

∣∣∣
λ0

(3.7)

where n is the wavelength-dependent refractive index. For this waveguide, the mate-

rial GVD of the core-layer material is 1.3 ps2/m, while the total GVD is 0.9 ps2/m

for λ0 = 1550 nm. Therefore, the modal dispersion of this structure reduces the

total dispersion relative to the material dispersion.

As highlighted in this example, for this type of AlGaAs ridge waveguide, the

modal contribution to the total dispersion has the opposite sign compared to the

material dispersion of the core. And, the magnitude of the modal contribution

grows as the width of the ridge decreases [64,65]. This allows the net dispersion to

be adjusted by engineering the waveguide-geometry. For a structure similar to that

pictured in Fig. 2.3, the calculated group-velocity dispersion of the fundamental TE

eigenstate (at 1550 nm) approaches zero and then becomes anomalous as the width

of the waveguide decreases less than about 550 nm. Similar calculations show that

the TM eigenstate never achieves zero GVD, regardless how narrow the waveguide

is made. For this reason, all the following experiments were arranged to test four-

wave mixing by exclusively exciting the TE eigenstate. The calculated dependence

of the GVD of the TE eigenstate on the width of the waveguide is shown in Fig. 3.7.

Calculations were performed with (represented by the red line) and without (the

blue line) the SiN layer included in the structure. When included, the SiN layer is
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assumed to be 200 nm thick, with a refractive index of 1.86. Removal of the SiN

encapsulant plays an important role in the near-zero-GVD regime.

3.4 Nonlinear transmission of AlGaAs waveguides

To illustrate the impact of tailoring the core-bandgap on two-photon absorp-

tion, this section compares the power-dependent transmission of picosecond optical

pulses through two different waveguides. The MBE growth of these waveguides –

referred to as Waveguide I and Waveguide II – was controlled to provide different

bandgap energies for the core layers. In the core of Waveguide I, the mole frac-

tion of aluminum is approximately x = 0.14, which corresponds to a bandgap of

1.60 eV. For Waveguide II, the core-mole-fraction is x = 0.18, for a bandgap of

1.66 eV. These mole fractions are estimates based on x-ray diffraction spectroscopy

of the core layer, conducted in situ during the MBE growth. The correspond-

ing bandgap-energies are measured using low-temperature photoluminescence spec-

Eg = 1.60 eV 

Aeff = 0.72 μm2 
L = 1 cm 
α = 1.50 dB/cm

Eg = 1.66 eV

Aeff = 0.72 μm2

L = 1 cm 
α = 0.74 dB/cm 

Scale: 1μm

(II)(I)

Figure 3.8: Waveguides I (left) and II (right), with relevant properties of
the fundamental TE eigenstate. The energies are the measured bandgaps
of the core layers.
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troscopy. Based on the measured bandgaps, two-photon absorption is expected to

be significant for λ ≤ 1550 nm in Waveguide I. For Waveguide II, it is expected to

be significant for λ ≤ 1494 nm.

The cross-sections of Waveguides I and II are depicted in Fig. 3.8. While

the waveguide-cores have slightly different aspect ratios, the calculated effective

mode area for the fundamental TE eigenstate at 1550 nm is the same for both

waveguides, Aeff = 0.72 µm2. The 1550-nm propagation loss of the TE eigenstate,

measured using the Fabry-Pérot technique described in Sect. 3.3.1, is 1.50 dB/cm

for Waveguide I and 0.74 dB/cm for Waveguide II. Both waveguides are cleaved to

a length of 1 cm and covered with a single-layer SiN anti-reflection coating.

To measure the power-dependent transmission, pulses from a mode-locked

fiber laser with a repetition rate of 10 MHz (an inter-pulse interval of 100 ns) are

launched into the waveguide using a polarization-maintaining (PM), lensed optical

fiber (purchased from Oz Optics, Ltd.). An identical lensed fiber collects the light

1.1 ps
10 MHz

MLL
Pump

OSA
1550 nm

VOA Waveguide

χ(3)

Pin Pout

Figure 3.9: The experimental setup used to measure the power-
dependent transmission and spectral broadening of Waveguides I and
II. MLL: mode-locked laser; VOA: variable optical attenuator; OSA:
optical spectrum analyzer.
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at the output of the waveguide. Each lensed fiber consists of a standard PM optical

fiber, where the fiber-tip is shaped into a conical lens using laser ablation, and is

then anti-reflection coated. Recall that the waveguide facets are flared to a width

of 2.2 µm to facilitate fiber-to-waveguide coupling. The lensed fiber is designed to

produce a focused 1/e2 spot-diameter of 2.5 µm and modesolving calculations show

that the theoretical coupling loss between the focused spot and the mode of the

flared structure should be approximately 2 dB. In practice, it is typical to achieve

between 2.5 and 4 dB of coupling loss at each facet. (Without the flare at the facet,

modesolving calculations show that the per-facet coupling loss would be several dB

larger, depending on the width of the waveguide.)

Prior to the experiment, the slow axis of the input-side PM lensed fiber is

aligned such that the launched light only excites the TE eigenstate of the waveguide.

A 5% tap-coupler is used to monitor the power and spectrum before the waveguide.

The inserted power is swept using a variable optical attenuator and the transmitted

spectrum and power are measured as a function of the input power. The experi-

mental setup is depicted in Fig. 3.9 and Fig. 3.10 shows the inverse transmission

(P in
avg/P

out
avg ) of each waveguide as a function of the inserted intensity. Figure 3.11

shows the power-dependent spectral broadening generated by each waveguide.

The pulses emitted by the laser have a central wavelength of 1550 nm. The

power-envelope of each pulse is approximately hyperbolic-secant-squared in shape,

P (t) = P0sech2(t/t0), with a measured pulse-width of t0 = 0.63 ps (which corre-

sponds to a full-width at half-maximum of 1.1 ps). Using the process described in

Sect. 3.3.2, the net GVD of Waveguide I is estimated to be 1.05± 0.05 ps2/m while
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Figure 3.10: Measured and simulated inverse transmission vs. peak input
intensity for Waveguides I and II. Inset: Inverse transmission squared
vs. the square of the peak input intensity for Waveguide II.
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Figure 3.11: Measured output spectra (solid lines) as a function of aver-
age input power for Waveguides I and II. The spectra are vertically offset
for clarity. Labels on the left of each column indicate the average power
launched into the waveguide. The dashed cyan lines are simulations of
the spectra for Waveguide II, and cyan labels on the right indicate the
simulated peak phase shift.
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for Waveguide II it is 0.9± 0.05 ps2/m. For the 0.63-ps pulse-duration used in this

experiment, the dispersion-length of these waveguides, LD, is much greater than the

physical length, where LD is given by [66]

LD =
t20
|β2|

(3.8)

We can therefore neglect dispersion-induced pulse-broadening when considering the

nonlinear transmission of the waveguides.

To simulate the experiments of Fig. 3.10, the propagation of the pulse-envelope

through distance z in the waveguide can be modeled according to [24,25,67]

∂I(z, t)

∂z
= −αI(z, t)− α2I

2(z, t)− Γα3I
3(z, t) (3.9)

where I(z, t) is the mode-averaged intensity defined as I(z, t) ≡ P (z, t)/Aeff, α is the

linear loss, and α2 and α3 represent two- and three-photon absorption, respectively.

The factor Γ, given by Γ ≡ (Aeff/A5,eff)2, is a normalization constant included to

account for the fact that three-photon absorption is a fifth-order nonlinearity. Here,

the fifth-order effective mode area, A5,eff, is given by [19,25]

A5,eff ≡
[∫∫
|f(x, y)|6dxdy∫∫
|f(x, y)|2dxdy

]1/2

(3.10)

where f(x, y) is the transverse mode distribution of the TE eigenstate discussed in

Sec. 2.4. For simplicity, we have assumed that the entire transverse mode lies within

the core region, and we have therefore omitted the use of mode confinement factors

in Eq. (3.9), which could be included to account for the partial overlap of the mode

with the cladding.
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We note that the model given in Eq. (3.9) does not account for free-carrier non-

linearities, which can occur once free carriers are generated by two- or three-photon

absorption. In this respect, α2 and α3 represent “effective” nonlinear absorption

coefficients as they potentially include free-carrier contributions. However, for the

range of intensities achieved during the experiment, free-carrier absorption is ex-

pected to be a small effect [67], which will be discussed further in the following

paragraphs.

The green squares in Fig. 3.10 show the inverse-transmission data of Waveg-

uide I. For the intensity-regime achieved in the experiment, we expect I(z, t) to

remain much less than the ratio α2/α3 [67], and the three-photon-absorption term

in Eq. (3.9) may be neglected. In this approximation, Eq. (3.9) can be integrated

to yield

I(L, t) =
e−αLI(0, t)

1 + α2I(0, t)Leff

(3.11)

where L is the waveguide’s physical length and Leff ≡ (1 − e−αL)/α. For a sech-

squared pulse-shape, where I(0, t) = I0 sech2(t/t0), we have [68]

1

T
=

eαL(1 + α2LeffI0)1/2(α2LeffI0)1/2

ln[(1 + α2LeffI0)1/2 + (α2LeffI0)1/2]
(3.12)

The 1/T -trend of Waveguide I is nearly linear as a function of the input intensity.

According to Eq. (3.12), this type of intensity-dependence is indicative of a system

dominated by two-photon absorption, which is expected due to Waveguide I’s rela-

tively narrow bandgap. (The slight downward curvature of the linear trend results

from modification of the pulse-shape due to preferential nonlinear absorption of the

pulse-center.) The solid green line in Fig. 3.10 is a best-fit using Eq. (3.12) and
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adjusting α2 as a free parameter. The best-fit two-photon-absorption coefficient is

α2 = 3.3 cm/GW.

Again, in analyzing the nonlinear response of Waveguide I, we have used a

model which ignores free-carrier effects. To justify this simplification, we employ

the approach of Yin and Agrawal, detailed in [69]. Including the effects of free

carriers using a simple Drude model, the equation which describes the propagation

of the pulse-envelope is [23,68–70]

∂u(z, t)

∂z
=− α

2
u(z, t) (3.13)

+
(
i
ω

c
n2 −

α2

2

) |u(z, t)|2

Aeff

u(z, t)

−
(
i
ω

c
∆nFCD +

∆αFCA

2

)
u(z, t)

where, as usual, u(z, t) represents the envelope of the field normalized such that

|u(z, t)|2 = P (z, t), and we have again omitted any effects due to the waveguide’s

dispersion. The factors ∆nFCD and ∆αFCA represent, respectively, free-carrier dis-

persion and free-carrier absorption. We assume ∆nFCD and ∆αFCA are proportional

to the instantaneous carrier concentration, Nc(z, t), which is zero prior to the arrival

of the pulse:

∆αFCA(z, t) =σFCANc(z, t) (3.14)

∆nFCD(z, t) =kFCDNc(z, t) (3.15)

Here, σFCA and kFCD are the free-carrier-absorption cross-section and the free-

carrier-dispersion coefficient, respectively. We assume the free-carriers are gener-

ated exclusively by two-photon absorption and that all the carrier recombination
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processes are described by a single time constant. Therefore, the instantaneous car-

rier concentration (which is averaged across the third-order effective mode-area),

evolves according to

∂Nc(z, t)

∂t
=
α2

2h̄ω

(
|u(z, t)|2

Aeff

)2

− Nc(z, t)

τc
(3.16)

where τc is the free-carrier lifetime.

To obtain an estimate of the importance of free-carrier absorption relative to

two-photon absorption, we consider the limiting case of the highest possible free-

carrier density. Focusing on the waveguide’s input port, where the pulse-intensity is

strongest, we assume none of the free-carriers have sufficient time to recombine as

the pulse passes through the input port. We can then estimate the upper limit of the

free-carrier density at the input port at the instant just after the pulse has passed

by setting the second term in Eq. (3.16) to zero and integrating over all time. To

make the integration possible, the pulse is assumed to have a Gaussian shape (rather

than a sech2 shape) such that |u(z = 0, t)|2/Aeff = I0 exp [−4 ln 2(t/τg)
2], where I0

is the peak mode-averaged intensity at the input port and τg is the full-width at

half-maximum of the intensity profile of the Gaussian pulse. The upper limit of the

free-carrier concentration at the input port is therefore

Nmax(z = 0) =

√
π

4
√

ln 4

(α2I
2
0τg

h̄ω

)
(3.17)

For the Waveguide-I experiment, τg = 1.7 ps and I0 ≤ 3.5 GW/cm2.

Inspecting the terms in Eq. (3.13), we can define a figure-of-merit, rFCA, to

specify the importance of free-carrier absorption relative to two-photon absorption.
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This ratio consists of the peak free-carrier absorption compared to the peak two-

photon absorption:

rFCA = (
σFCANmax

2
)/(

α2

2
I0) =

√
πτg

4
√

ln 4h̄ω
σFCAI0 (3.18)

We assume the cross-section for free-carrier absorption is the same as that for

GaAs, σFCA = 1.5 × 10−16 cm2 [70]. The figure-of-merit for the highest intensity

launched into Waveguide I is therefore rFCA ≈ 2.5. This suggests that, at least

for the highest intensities used in the experiment, free-carrier absorption may be

comparable to two-photon absorption. However, the free-carrier density used to

calculate rFCA is a conservative over-estimate of the actual density at the input

port. Furthermore, the calculations leading to this figure-of-merit assume the entire

pulse samples this maximum free-carrier concentration. In reality, the free-carrier

concentration builds up continuously as the pulse passes the input port, and only

the trailing edge of the pulse samples the peak free-carrier concentration. Also,

because Waveguide I exhibits substantial nonlinear absorption, the pulse power

quickly decays with distance along the waveguide and rFCA therefore also quickly

decays as a function of z. This means that free-carrier absorption is probably only

important over a relatively small distance at the waveguide’s input port, while two-

photon absorption remains important over the entire waveguide-length.

Finally, we note that the single-parameter model of Eq. (3.12) predicts the

entire observed nonlinear-transmission trend of Waveguide I very well. This pro-

vides further evidence that nonlinear absorption in this system is dominated by

two-photon absorption. Free-carrier absorption is effectively a fifth-order nonlin-
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earity; if it were significant, free-carrier absorption would cause the 1/T -trend of

Waveguide I to follow a different functional form than that predicted by Eq. (3.12).

Thus, we are justified to apply Eq. (3.12) to estimate the waveguide’s two-photon-

absorption coefficient. However, as we have already acknowledged, the estimated

two-photon-absorption coefficient probably includes a small contribution caused by

free-carrier nonlinearities. Indeed, as discussed later, the power-dependent asym-

metry of the Waveguide-I output spectra indicates that free-carrier dispersion is

important for the highest powers launched into the waveguide (the Waveguide-I

spectra in Fig. 3.11 exhibit a blue-shift as the launched power is increased). No

doubt, there is some degree of free-carrier absorption contributing to the nonlinear

transmission of Waveguide I. Our intent here is not so much to obtain an exact value

for the two-photon absorption coefficient of Waveguide I as it is to show that, due

to its narrow bandgap, nonlinear absorption in this waveguide is relatively large.

We now consider the trend observed for Waveguide II. The core-bandgap of

Waveguide II is 1.66 eV, and two-photon absorption should be absent for wave-

lengths significantly longer than 1494 nm. Indeed, the small slope and upward

curvature of the 1/T -data (the blue circles in Fig. 3.10) suggest two-photon absorp-

tion is negligible. Omitting the two-photon-absorption term, Eq. (3.9) takes the

solution

I(L, t) =
e−αLI(0, t)[

1 + Γα3

α
I2(0, t)(1− e−2αL)

]1/2
(3.19)

and the transmittance of a sech-squared pulse then becomes

T = (2t0 e
αL)−1

∫ ∞
−∞

sech2(t/t0)[
1 + Γα3

α
I2

0 sech4(t/t0)(1− e−2αL)
]1/2

dt (3.20)
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Equation (3.20) has no analytical solution. But, numerical integration of the equa-

tion predicts that the quantity (1/T )2 should be approximately linear when plotted

as a function I2
0 for a system dominated by three-photon absorption [71], which is the

behavior observed in the Inset of Fig. 3.10. By numerically evaluating Eq. (3.20) and

adjusting α3 to match the experimental results (see the solid blue lines in Fig. 3.10),

we obtain an estimate for α3. The best fit uses α3 = 6.5× 10−2 cm3/GW2, in excel-

lent agreement with published values [67]. (Using the modesolver, Γ is calculated

to be 1.27 for Waveguide II.)

Now we consider the power-dependent changes to the output spectra, shown

in Fig. 3.11. These spectra were observed with the same experimental conditions

used for the power-dependent transmission experiments. The spectra of Waveguide

I, depicted in green, become asymmetric and exhibit a blue-shift as the power is

increased – a telltale marker produced by non-instantaneous nonlinear refraction

from a plasma of free carriers [72, 73]. In contrast, the spectra of Waveguide II

remain symmetric as the power is increased. Additionally, for a given power level,

the Waveguide-II spectrum displays a larger nonlinear phase shift compared to the

Waveguide-I spectrum; this is because Waveguide II possesses smaller linear and

nonlinear losses and therefore the optical field remains undepleted, able to generate

a larger phase shift.

The dashed cyan lines in the right-hand column of Fig. 3.11 are calculations

of the output spectra for Waveguide II. These were obtained using the Split-Step

Fourier Transform (SSFT) method [66] to simulate propagation of a hyperbolic-

secant-squared pulse in the nonlinear waveguide. The SSFT method was imple-
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mented using publicly available software called SSPROP [74], modified to include

three-photon absorption. The mathematical model used to simulate the pulse prop-

agation is

∂

∂z
u(z, t) = −α

2
u(z, t) + iγ3|u(z, t)|2u(z, t) + iγ5|u(z, t)|4u(z, t) (3.21)

where u(z, t) is the slowly-varying field amplitude, normalized such that |u(z, t)|2

is the instantaneous power in the fundamental TE mode. As with the model of

Eq. (3.9), this model neglects the effects of linear dispersion because the dispersion-

length of the waveguide is much longer than its physical length.

The factors γ3 and γ5 appearing in Eq. (3.21) are the third-order and fifth-

order nonlinear parameters, respectively. To be consistent with the observations of

Fig. 3.10, the two-photon absorption is assumed to be negligibly weak, such that γ3

includes only a refractive component, γ3 ≈ ωn2/(cAeff). It is also assumed that the

third-order nonlinear refraction dominates any fifth-order nonlinear refraction, such

that γ5 only includes an absorption term, γ5 ≈ iα3/(2A
2
5,eff).

For Waveguide II, A5,eff is calculated to be 0.64 µm2. The value assigned to

α3 is that measured during the nonlinear transmission experiment: α3 = 6.5 ×

10−2 cm3/GW2. The value of n2 is adjusted as a free parameter to match the

calculated spectra to the experimental spectra. The best-fit value is n2 = 1.45 ×

10−4 cm2/GW. It is important to point out that it is only possible to achieve a nice

match between the simulations and the experimental data when the effects of both

n2 and α3 are included in the model. Trial and error shows that no combination

of two-photon absorption and Kerr refraction can produce the observed spectra. In
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combination with the observations of Fig. 3.10, this provides evidence that the larger

bandgap of Waveguide II completely quenches two-photon absorption at 1550 nm.

3.5 Power-dependence of four-wave mixing in AlGaAs waveguides

This section compares the continuous-wave four-wave-mixing efficiency of four

waveguides, which include the two waveguides just discussed in Sect. 3.4. The cross

sections and linear properties of the waveguides are depicted in Fig. 3.12, and they

are labeled Waveguides I through IV in order of ascending bandgap (Waveguides I

and II of the preceding section retain the same labels).

The measured core-bandgaps of the four waveguides range from Eg = 1.60 eV

to Eg = 1.79. As demonstrated in Sect. 3.4, two-photon absorption at 1550 nm

is expected only for Waveguide I. The calculated group-velocity dispersions range

from β2 = 0.45 ± 0.05 ps2/m (for Waveguide IV) to β2 = 1.05 ± 0.05 ps2/m (for

Waveguide I).

To measure the continuous-wave four-wave-mixing efficiency, two continuous-

wave external cavity lasers are separately amplified to produce the pump and signal,

respectively. The wavelength range over which efficient four-wave-mixing can be

achieved is constrained by the dispersion, device length, and the pump power [75].

For the measurements presented in this section, the wavelength separation between

the pump and signal, ∆λ, is fixed less than 1 nm to ensure the group-velocity

mismatch is essentially zero. In other words, the intentionally small pump-signal

spacing guarantees that ∆β ≈ 0. Therefore the complex exponential factors in
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Figure 3.12: Cross sections and properties of the waveguides studied
in the four-wave-mixing experiments, labeled I through IV in order of
ascending core-bandgap. (Waveguides I and II here are the same as those
in Fig. 3.8.)
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Figure 3.13: The experimental setup used to measure the power-
dependent four-wave-mixing efficiency of Waveguides I through IV. CW:
continuous-wave; EDFA: erbium-doped fiber amplifier; OSA: optical
spectrum analyzer; tap: 2×2 polarization-maintaining 95/5 combiner.
The points labeled A-F indicate FC/APC connectors which are arranged
to run the experiment either in the left-to-right or the right-to-left di-
rection.

Eqs. (2.65a-c) play no role in determining the four-wave-mixing efficiency. (The

bandwidth of phase-matching is considered in Sect. 3.6.)

The pump and signal are combined using a 50/50 polarization-maintaining

combiner. The co-polarized waves are then launched into the waveguide under test

using a polarization-maintaining lensed fiber, which is rotated to ensure only the

TE eigenstate is excited. A 95/5 tap coupler immediately prior to the waveguide

is used to monitor the power and spectrum. At the output, a second lensed fiber

and tap coupler collect the idler, signal and pump to measure the output power and

spectrum. The experimental setup is depicted in Fig. 3.13.

The input and output coupling assemblies are identical and symmetrical about
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the waveguide. During the experiment, the pump power is swept and the power-

dependent four-wave-mixing efficiency is recorded. Experiments are run in both

directions through the waveguide. In Fig. 3.13, the experiment is setup to run in

the left-to-right direction through the waveguide. To conduct the same experiment

in the right-to-left direction, the FC/APC connectors at points E and F are ex-

changed to reverse the direction of the optical waves relative to the waveguide. The

connectorized pigtails of the power taps are also rearranged such that the connec-

tors at A and B are exchanged and the connectors at C and D are exchanged. By

comparing experiments run in both directions through the waveguide, the facet loss

at each side is independently measured. This approach takes advantage of the fact

that, while no two lensed fibers and/or waveguide facets are identical, FC/APC

connectors are quite uniform and allow for repeatable connections.

The four-wave-mixing conversion efficiency is defined as the ratio of the output

idler power to the input signal power,

ηFWM ≡
Pi(L)

Ps(0)
(3.22)

As derived in Appendix A, in the low-conversion-efficiency limit (i.e., Pp � Ps � Pi)

and assuming zero group-velocity mismatch (i.e., ∆β = 0), the conversion efficiency

can be approximated as

ηFWM ≈ e−αL(|γ|Pp0Leff)2 (3.23)

where γ = (ωn2

c
+ iα2

2
)/Aeff is the waveguide’s complex nonlinear parameter, Pp0 is

the inserted pump power, Leff = (1− e−αL)/α is the effective nonlinear length, α is

the propagation loss and L is the waveguide’s physical length. Again, Eq. (3.23) is
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valid only in the low-conversion-efficiency limit and does not model the saturation

of the conversion efficiency caused by two-photon absorption. It is worth pointing

out that, at least in principle, it is possible to derive an expression for the conversion

efficiency that includes the saturation-effect caused by two-photon absorption, as in

Eq. (A.26) of Appendix A. However, once two-photon absorption begins, other loss

mechanisms (like free-carrier absorption) become important and limit the conversion

efficiency more strongly than predicted by Eq. (A.26).

Figure 3.14 shows the measured conversion efficiencies. For data such as these,

it is conventional simply to graph the dependence on the inserted pump power

in order to observe whether the trend adheres to the square-law form predicted

by Eq. (3.23). However, here we compare the nonlinear performance of several

waveguides having different linear characteristics. Therefore, to normalize-out the

linear properties, Fig. 3.14 shows the efficiencies versus the quantity Leff

Aeff
e−

1
2
αL×Pp0;

this allows a direct comparison of material-dependent nonlinearity of the waveguides.

Perhaps counter-intuitively (because it does exhibit two-photon absorption),

Waveguide I initially generates the largest conversion efficiency. This is because

Waveguide I has the narrowest bandgap of the four waveguides, and therefore pos-

sesses the largest Kerr refraction coefficient and two-photon absorption coefficient,

as predicted by the model of Sheik-Bahae, et al. [22] (see Fig. 2.6). Thus, the magni-

tude of its nonlinear parameter is the largest. However, nonlinear absorption limits

the achievable conversion efficiency, and the Waveguide-I efficiency saturates as the

inserted power increases.

In contrast, the nonlinear absorption of Waveguides II through IV is negligible,
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Figure 3.14: The continuous-wave four-wave-mixing conversion efficiency
of Waveguides I through IV as a function of the quantity Pp0

Leff

Aeff
e−

1
2
αL.
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observed for the highest conversion efficiency.
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and the conversion efficiency scales quadratically up to the damage threshold of the

waveguide. The highest conversion efficiency was obtained in Waveguide III, and

the corresponding output spectrum is shown in the inset to Fig. 3.14. Waveguide III

possesses the unique combination of negligible two-photon absorption, small prop-

agation loss, and a large physical length. In particular, the low propagation loss of

this waveguide – achieved using the reflow process discussed in Sect. 3.2 – allowed

the insertion of significantly more pump power (up to 630 mW) without damage

to the device. The output spectrum shows that the ratio of the output idler to

the output signal is −6.4± 0.1 dB. Accounting for the facet losses and propagation

loss, the peak conversion efficiency (P out
i /P in

s ) is therefore −6.8±1.2 dB; the larger

uncertainty in this quantity stems from the compounded uncertainties in partition-

ing all the contributions to the total insertion loss. This result is comparable with

the highest reported continuous-wave conversion efficiency achieved in any passive

semiconductor or glass waveguides [37,46,50,54,76]. It is orders of magnitude higher

than any previously reported continuous-wave conversion efficiency for an AlGaAs

waveguide [59, 61], and marks an important step in the development of AlGaAs

waveguides for nonlinear optical processing.

It is important to mention that while the properties of Waveguide III allow

for very efficient four-wave mixing, the measured peak conversion efficiency does

not represent a fundamental limit. If Waveguide III were much longer, substantial

gains would occur in terms of the expected peak conversion efficiency for the same

inserted power. All other things held equal, the ideal-case length for a waveguide

similar to Waveguide III is Lopt = ln 3
α

= 8.5 cm [77], which is found by optimizing
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Table 3.2: The nonlinear coefficients used to calculate the low-conversion-efficiency
lines of Fig. 3.14.

Bandgap (eV) n2 (cm2/GW× 104) α2 (cm/GW)

Waveguide I 1.60 2.3 3.3

Waveguide II 1.66 1.45 0

Waveguide III 1.77 0.90 0

Waveguide IV 1.79 0.85 0

Crystalline Silicon [21,78] 1.2 0.45 0.79

Silica Glass [66] – 0.002 0

Eq. (3.23) with respect to the length of the waveguide. Such a waveguide would

be expected to produce the same conversion efficiency for less than half the pump

power inserted in Waveguide III. Alternatively, the expected conversion efficiency

would be 0 dB if the same maximum pump power (630 mW) were launched into the

optimal-length device.

The straight lines in Fig. 3.14 show the low-conversion-efficiency scaling rela-

tionships predicted by Eq. (3.23). The positions of these lines depend only on the

quantity |ωn2

c
+ iα2

2
|. Because both n2 and α2 decrease as the bandgap increases

(as discussed in Sect. 2.5), these lines are ordered in increasing bandgap from top-

left to bottom-right. Included for comparison are the low-efficiency relationships

expected for crystalline silicon and silica glass. Table 3.2 gives the nonlinear co-

efficients used to generate the low-efficiency scaling relationships. The nonlinear

coefficients used for each of the AlGaAs waveguides are in good agreement with

published values [25,58].
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3.6 Bandwidth of four-wave mixing in AlGaAs waveguides

To achieve a large FWM conversion bandwidth, the GVD of the waveguide

needs to be near zero or anomalous. It is easiest to see this by re-casting Eqs. (2.65)

in terms of the optical power of each wave. Doing so results in the following coupled

equations [13,15,79]:

dPp
dz

=− αPp −
α2

Aeff

(Pp + 2Ps + 2Pi)Pp (3.24a)

− 4
ωn2

cAeff

Pp
√
PsPi sin θ − 2

α2

Aeff

Pp
√
PsPi cos θ

dPs
dz

=− αPs −
α2

Aeff

(2Pp + Ps + 2Pi)Ps (3.24b)

+ 2
ωn2

cAeff

Pp
√
PsPi sin θ −

α2

Aeff

Pp
√
PsPi cos θ

dPi
dz

=− αPi −
α2

Aeff

(2Pp + 2Ps + Pi)Pi (3.24c)

+ 2
ωn2

cAeff

Pp
√
PsPi sin θ −

α2

Aeff

Pp
√
PsPi cos θ

dθ

dz
= (βs + βi − 2βp) +

ωn2

cAeff

(2Pp − Ps − Pi) (3.24d)

+
ωn2

cAeff

(
Pp

√
Ps
Pi

+ Pp

√
Pi
Ps
− 4
√
PsPi

)
cos θ

+
α2

Aeff

(
Pp

√
Ps
Pi

+ Pp

√
Pi
Ps
− 4
√
PsPi

)
sin θ

where Pm and βm with m = {p, s, i} represent the powers and propagation constants

of the pump, signal and idler waves, and ω = ωp is the optical center frequency. In

Eqs. (3.24a-d), θ(z) represents the local relative phase among the four interacting

waves:

θ(z) = ∆βz + φs(z) + φi(z)− 2φp(z) (3.25)
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The first term on the RHS of Eq. (3.25) represents the (linear) effect of the dispersion

of the waveguide. Any non-zero group-velocity mismatch will tend to cause the

angle θ to change in z. The remaining terms represent the phases of the complex

amplitudes of the signal, idler and pump, respectively. These include the phase of

each wave at z = 0 and any additional phase accumulated due to the nonlinear

interaction in the waveguide.

Equation (3.24d) governs the extent to which phase-matching is satisfied. To

define what this means exactly, consider what happens at the waveguide’s input port.

The idler is not present at z = 0, and it initially builds up as a result of parametric

amplification of background electromagnetic fluctuations. Evaluating the buildup

of the idler across the infinitesimal distance dz at the input port, according to

Eq. (2.65c), we have

dui =iγu2
pu
∗
se
−i∆βzdz (3.26)

Using phasor notation, Eq. (3.26) becomes

d(mie
iφi) = iγm2

pmse
i(−∆βz+2φp−φs)dz, (3.27)

from which we can conclude that the phase of the generated idler is φi = π/2 −

∆βz + 2φp − φs. Inserting this into Eq. (3.25), it is clear the local phase mismatch

auto-initializes to θ = π/2 at the waveguide’s input port, regardless the relative

phases of the pump and signal [79].

According to Eqs. (3.24a–c), θ = π/2 allows power to flow most efficiently

from the pump to the signal and idler. This is the case of ideal parametric amplifi-

cation. The four-wave-mixing process is then said to be “perfectly phase-matched.”
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Some degree of parametric amplification will occur so long as θ remains on the

interval (0, π). But, once θ crosses to the interval (−π, 0), the direction of power

flow reverses, and the idler and signal begin to feed the pump (parametric atten-

uation) [13]. Therefore, to achieve broadband four-wave mixing, the waveguide

must be engineered to maintain θ(z) as close as possible to π/2 considering all the

contributions to Eq. (3.24d).

Consider the case of a bandgap-engineered AlGaAs waveguide, where two-

photon absorption is negligibly small. Close to the input port, θ remains sufficiently

close to π/2 that cos θ ≈ 0. We will assume Pp � Ps � Pi and therefore, near the

input port, Eq. (3.24d) is approximately [13,35,80]

dθ

dz
≈ (βs + βi − 2βp) + 2

ωn2

cAeff

Pp (3.28)

To maintain θ(z) at π/2 along the length of the waveguide, we require that the

terms on the RHS of Eq. (3.28) sum to zero. In the small-power limit, the power-

dependent term becomes exceedingly small, and the phase-matching condition can

be met simply by tailoring a zero-dispersion waveguide, as discussed in Sect. 3.3.2.

For large optical power, the power-dependent term becomes important. Because the

Kerr nonlinearity is positive, ideal phase-matching can then be maintained only if

the group-velocity mismatch is negative, meaning anomalous dispersion. Anomalous

dispersion is a prerequisite to achieve broadband parametric gain (simultaneous

wavelength conversion and net signal gain), which has been achieved in many of the

other semiconductor waveguide platforms described in Sect. 3.1 (albeit using short

optical pulses rather than a continuous-wave pump; continuous-wave parametric
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gain has not yet been demonstrated in a passive semiconductor waveguide).

Unfortunately, with the installed fabrication tools, it is not possible to fabricate

low-loss AlGaAs waveguides with anomalous GVD at 1550 nm. According to the

calculations shown in Fig. 3.7, the width of a SiN-coated waveguide must be less

than 600 nm to achieve zero GVD, a feature-size which leads to unacceptably high

propagation loss due to increased sidewall scattering. However, by removing the

SiN encapsulant layer from the narrowest waveguide with acceptable propagation

loss, it is at least possible to approach zero GVD and this allows for a very large

conversion bandwidth.

To measure the four-wave-mixing bandwidth, the same experimental setup

depicted in Fig. 3.13 is used. The wavelength of the pump is fixed and the power

and spectrum of the pump, signal and idler are recorded as the signal wavelength is

swept. The largest recorded bandwidth is shown in Fig. 3.15, which was obtained

using a 5-mm-long, 0.69-µm-wide AlGaAs waveguide having the same vertical profile

shown in Fig. 2.3. The measured propagation loss of the device is 1.11 dB/cm. The

same waveguide was tested before and after removal of the SiN encapsulant from

the sidewalls (but not from the facets), and as predicted the bandwidth increases

substantially when the encapsulant is removed. In these experiments, the pump

wavelength is fixed at 1550 nm, and the signal wavelength varies from 1551 nm

to 1630 nm, as limited by the laser tuning range. The half-width 3-dB conversion

bandwidth is measured to be 44.4 nm for the coated waveguide, and 63.8 nm for

the uncoated waveguide.

The solid lines in Fig. 3.15 show the calculated conversion efficiencies, which
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Figure 3.15: Measured and calculated conversion efficiencies as a func-
tion of the pump-signal wavelength detuning. The waveguide-under-test
is similar to that depicted in Fig. 2.3, but the width of the core-layer is
0.69 µm. The data shown in red are the results when the waveguide is
coated with a layer of SiN encapsulant. The data shown in blue are the
results for the same waveguide after the encapsulant layer is removed
from the sidewalls; the waveguide then exhibits a larger bandwidth in-
dicating a smaller group-velocity dispersion.
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are obtained by numerically integrating Eqs. (3.24). In these calculations, the group-

velocity mismatch is approximated using the second-order expansion of Eq. (3.6),

and β2 is adjusted as the only free parameter in the calculation. The core-layer of

this waveguide is the same material as that in Waveguide III of Sect. 3.5, and the

corresponding nonlinear coefficients shown in Table 3.2 are incorporated into the

calculations. The calculated effective mode area of the waveguide is 0.4 µm2. By

adjusting β2 to match the experimental data, the GVD at the pump wavelength is

estimated to be β2 = +0.44 ps2/m for the coated waveguide and β2 = +0.22 ps2/m

after the coating is removed. These estimates of the total dispersion closely match

the predictions of the modesolving calculations, shown in Fig. 3.7.

It is important to mention that many AlGaAs waveguides of various dimen-

sions were tested to verify the role of the waveguide’s geometry in determining the

net dispersion. The results shown in Fig. 3.15 are the only results included here

because they represent the largest bandwidth achieved in any of the tested devices.

Comparison of the observed FWM bandwidths of all the tested waveguides to the

corresponding calculated group-velocity dispersions confirms that the dispersion-

calculation method explained in Sec. 3.3.2 is quite accurate (for further details,

see [81]).

While it is not yet possible to achieve the combination of anomalous disper-

sion with low propagation loss in an AlGaAs waveguide, the results of this section

represent a major step forward for large-bandwidth, efficient wavelength conversion

in AlGaAs waveguides. Anomalous GVD has been previously demonstrated in an

AlGaAs waveguide [57], but only in a waveguide with propagation loss so high (80
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dB/cm) as to render it essentially useless. Here, we have demonstrated a bandgap-

engineered AlGaAs waveguide with near-zero GVD and low propagation loss, which

allows high-efficiency conversion over a 63.8-nm band (or 127.6 nm, measured from

signal to idler).

3.7 Summary

This chapter reports several measurements of nonlinear AlGaAs waveguides,

with the intent to characterize their suitability for all-optical wavelength conversion.

The chapter begins by describing what a wavelength converter is, why such a de-

vice is useful, and justifies the need for an ultrafast all-optical wavelength converter

based on exploiting continuous-wave four-wave mixing in nonlinear waveguides. The

relative merits and achievements of various competing nonlinear-waveguide material

systems are discussed, and bandgap-engineered AlGaAs is presented as an attractive

alternative to other material systems, principally because it possesses a large nonlin-

earity and it is possible to minimize nonlinear absorption by tailoring the bandgap

of the alloy.

The MBE growth and photolithographic fabrication of the waveguides is ex-

plained with special emphasis on the photoresist-reflow method, which allows for

the fabrication of narrow, low-loss AlGaAs ridge waveguides. The experimental and

computational techniques used to characterize the linear properties of the waveg-

uides – the propagation loss, the effective mode area, the core-bandgap, and the

group-velocity dispersion – are discussed.
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Measurements of the power-dependent nonlinear transmission and spectral

broadening are presented for two AlGaAs waveguides: one which has a narrow

bandgap and therefore exhibits two-photon absorption, and one which has a wide

bandgap and therefore exhibits no two-photon absorption. Mathematical modeling

is used to estimate the nonlinear coefficients of the waveguides by matching calcu-

lated results to the experimental results. The analysis of the experiments confirms

that tailoring the bandgap of the core-layer suppresses two-photon absorption but

retains a large refractive nonlinearity, ideal for nonlinear signal processing.

The power-dependence of continuous-wave four-wave mixing is documented

for four AlGaAs waveguides, which have different core-layer bandgaps. It is ob-

served that nonlinear absorption in the narrowest-bandgap waveguide limits the

achievable conversion efficiency. The remaining waveguides exhibit no two-photon

absorption, and the achievable efficiency is limited by the damage threshold of each

device. In particular, a high-quality, bandgap-engineered AlGaAs waveguide with

sub-dB/cm propagation loss is used to generate a continuous-wave conversion ef-

ficiency of −6.8 dB, which is comparable to the highest reported continuous-wave

efficiencies of competing material systems.

The continuous-wave four-wave mixing bandwidth of dispersion-engineered Al-

GaAs waveguides is presented. The dependence of the four-wave-mixing bandwidth

on the group-velocity dispersion is described, and the requirements to achieve phase-

matching are outlined. Near-zero GVD is achieved by removing the SiN encapsulant

from a narrow, low-loss AlGaAs waveguide. This results in a 3-dB spectral band-

width of 63.8 nm with adequate conversion efficiency for real applications.
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Chapter 4: Measuring the Nonlinear Loss Tangent

4.1 Overview

As discussed extensively in the preceding chapters, low-loss, sub-micron waveg-

uides are promising candidates for nonlinear optical signal processing, and could

enable chip-scale devices for wavelength conversion, optical switching, and an ar-

ray of other processes. Extensive research has focused on the use of semiconductor

waveguides for these purposes, and it is generally recognized that two-photon ab-

sorption (and subsequent free-carrier absorption) is a factor that limits the efficiency

of many desirable nonlinear processes [82,83]. Therefore, the conventional figure-of-

merit (FOM) used to assess the suitability of a material or waveguide for nonlinear

optics is the ratio of the imaginary part to the real part of the effective third-order

susceptibility [20].

In the literature, this FOM takes many related forms, but here we choose to

follow the convention FOM = γI/γR = λα2/(4πn2). Here, as usual, α2 is the two-

photon absorption coefficient, n2 is the Kerr refraction coefficient, λ is the wave-

length of interest, and γR and γI are, respectively, the real and imaginary parts of

the waveguide’s nonlinear parameter given by γ = (2πn2

λ
+ iα2

2
)/Aeff . Written in

this form, we choose to refer to the figure-of-merit as the “nonlinear loss tangent”
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Figure 4.1: (a) A phasor diagram representing the (linear) loss tangent.
(b) An analogous phasor diagram showing the nonlinear loss tangent.

because it is the nonlinear analog to the conventional (linear) loss tangent: the

ratio of the imaginary to the real part of the permittivity of a dielectric medium.

The analogy between the loss tangent and the nonlinear loss tangent is depicted in

Fig. 4.1.

A variety of methods can be used to characterize the nonlinear properties

of waveguides, including power-dependent spectral broadening (good examples in-

clude [84–86]), power-dependent nonlinear transmission (e.g., [87, 88]), four-wave

mixing (e.g., [31, 89, 90]), and coherent pump-probe measurements (e.g., [91–93]).

But, each of these experimental methods has its shortcomings. Spectral broaden-

ing experiments often ignore the effects of dispersion and/or nonlinear absorption

in order to estimate n2. Nonlinear transmission experiments are sensitive only to

α2. Measurements using short optical pulses often ignore effects associated with the

pulse shape and repetition rate. Four-wave mixing measurements are only sensi-

tive to the magnitude of χ(3). To deduce the nonlinearity of the waveguide, all of
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Figure 4.2: Factors which contribute error to the measurement of the
nonlinear susceptibility.

these methods require precise a priori knowledge of the coupling losses, the mode

area, and the propagation loss. (For example, Eq. (3.12) shows how all of these

factors enter into the analysis of a nonlinear transmission experiment.) The error

in these parameters compounds quickly, and in practice it is difficult to characterize

the nonlinearity of a waveguide. Experiments to measure α2 or n2 are typically no

more precise than ±15%. The potential sources of experimental error are depicted

in Fig. 4.2

This chapter presents a new method to characterize nonlinear refraction and

loss in optical waveguides. It is a continuous-wave technique, and therefore does not

suffer from uncertainty related to optical pulse-shapes or repetition rates. The tech-

nique directly probes the nonlinear loss tangent and is insensitive to coupling loss,

propagation loss and the effective mode area. The method is applied to measure the

nonlinear loss tangent of waveguides made from Si, GaAs and AlGaAs waveguides.
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4.2 Description of the method

Figure 4.3 depicts the experiment used to measure the nonlinear loss tangent.

A Mach-Zehnder modulator imparts a sinusoidal intensity modulation to a strong

continuous-wave pump. The pump is combined with a weak continuous-wave probe,

and the co-polarized beams are launched into the waveguide using a polarization-

maintaining lensed fiber. The lensed fiber is positioned such that the pump and

probe excite only one of the waveguide’s fundamental polarization eigenstates, TE

or TM. In the waveguide, the sinusoidal modulation of the pump is transferred to the

probe via a combination of cross-phase and cross-amplitude modulation (XPM and

XAM, respectively). Following the waveguide, an optical bandpass filter suppresses

the pump and the probe passes through a spool of dispersive single-mode fiber.

The dispersion of the fiber converts intensity modulation to phase modulation (and

vice versa) in a manner that depends on the modulation frequency. The probe is

NA

DL ≠ 0
Fiber spool EDFA VOA PD

1 2
Complex

S21( f )

10 MHz – 40 GHz

CW
Pump

CW
Probe

OBPF

λpump

EDFA
λprobe

MZM

Waveguide

χ(3)λprobe

Figure 4.3: The experimental setup used to measure the nonlinear loss
tangent. MZM: Mach-Zehnder modulator; EDFA: erbium-doped fiber
amplifier; OBPF: optical bandpass filter; D·L: dispersion-length product
of the fiber spool; VOA: variable optical attenuator; PD: high-speed
photodiode; NA: network analyzer.
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amplified by an erbium-doped fiber amplifier, then detected by a 65-GHz square-law

photoreceiver. The photocurrent is received by a network analyzer, which sweeps

the modulation frequency from 10 MHz to 40 GHz and records the system’s complex

S21(f) transfer function. The method is similar to that used by Devaux, et al., to

measure the chirp parameter of intensity modulators [94], but here the modulations

of interest are the XAM and XPM due to the waveguide’s third-order susceptibility.

As derived in Appendix A, if the continuous-wave pump is constant in time

(i.e., not intensity-modulated), then the complex amplitude of the probe emerging

from a nonlinear waveguide of length l is given by Eq. (A.23b), which is reproduced

here using slightly different notation to fit the current purpose:

u2(l) =
u2(0)e−αl/2

1 + 2γIP10leff

exp

(
i
γR
γI

ln[1 + 2γIP10leff]

)
(4.1)

where P10 is the pump-power inserted into the waveguide, u2(0) is the complex

amplitude of the probe inserted into the waveguide (normalized such that |u2(0)|2 =

P20), α is the propagation loss, leff = (1 − e−αl)/α is the effective nonlinear length,

l is the waveguide’s physical length, and γ is the effective nonlinear parameter.

Small-signal analysis is now used to evaluate the effect of a sinusoidally mod-

ulated, time-varying pump. The pump entering the waveguide is assumed to take

the form

P1(t) = P10 + ∆P sin Ωt, (4.2)

where P10 is the average pump power, ∆P is the modulation amplitude, and Ω is the

modulation frequency. The quantity 2γIP10leff is assumed to be a small parameter,

much less than unity, and the quantity 2γI∆Pleff is necessarily even smaller. For the
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experiments presented later, the ratio ∆P/P10 is typically 0.25 or smaller, depending

on the RF power supplied to the Mach-Zehnder modulator. Inserting Eq. (4.2)

into Eq. (4.1) and expanding the magnitude and phase of u2(l) to leading order,

we obtain the following approximate expression for the time-varying probe signal

emerging from the waveguide

u2(t) =
√
P20e

−iω0t exp [i2γleff∆P sin Ωt] (4.3)

where ω0 is the optical frequency and all the time-independent factors have been

absorbed into
√
P20. The fast-varying optical oscillation has been introduced in

order to consider the dispersive effect of the fiber spool following the waveguide.

Using the Jacobi–Anger expansion, Eq. (4.3) can be expanded in a set of

discrete spectral components:

u2(t) =
√
P20e

−iω0t

∞∑
m=−∞

Jm(z)eimΩt (4.4)

where Jm(z) is the mth Bessel function, and we have introduced the complex factor

z to simplify the algebra

z ≡ 2(γR + iγI)leff∆P (4.5)

In a dispersive fiber of length L, each spectral component ω of the signal

acquires a phase shift of β(ω)L, and the probe signal emerging from the spool of

fiber is therefore

u′2(t) =
√
P20e

−iω0t

∞∑
m=−∞

Jm(z)eimΩteiβ(ω0−nΩ)L (4.6)

The dispersion relation of the fiber is modeled by expanding to second order about
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the probe’s optical frequency

β(ω) ≈ β0 + β1(ω − ω0) +
β2

2
(ω − ω0)2 (4.7)

Using Eq. (4.7) in Eq. (4.6), the probe signal emerging from the dispersive fiber is

given by

u′2(t) =
√
P20e

−i(ω0t−β0L)

∞∑
m=−∞

Jm(z)eimΩ(t−β1L)eim
2β2Ω2L/2 (4.8)

Finally, shifting to the retarded time-frame τ ≡ t− β1L, the probe signal simplifies

to

u′2(τ) =
√
P20e

−i(ω0τ+(ω0β1−β0)L)

∞∑
m=−∞

Jm(z)eimΩτeim
2β2Ω2L/2 (4.9)

At the receiver, the square-law photodetector with responsivity R produces a

photocurrent of

i(τ) = R|u′2(τ)|2 = RP20

∑
m

∑
n

[
J∗m(z)Jn(z)ei(n−m)Ωτei(n

2−m2)β2Ω2L/2
]

(4.10)

This photocurrent is then detected by the network analyzer, which uses a homodyne

detection method to mix the received signal with a sinusoidal signal at frequency

Ω provided by its internal local oscillator (the same RF signal used to drive the

Mach-Zehnder modulator at frequency Ω). The detection is therefore sensitive only

to the AC components of Eq. (4.10) which oscillate sinusoidally at frequency Ω. To

calculate these components, Eq. (4.10) is expanded in z to first order, and the terms

that contribute are: (m,n) = (0, 1); (0,−1); (1, 0) and (−1, 0). After some algebra,

the relevant components of the photocurrent reduce to

i(τ) = −2RP20|z| sin
(
β2Ω2L/2 + φ

)
sin Ωτ (4.11)
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Re-writing Eq. (4.11) in terms of the dispersion parameter D and the cyclic fre-

quency f , an equivalent expression is

i(τ) = 2RP20|z| sin
(
πλ2DLf 2

c
− φ
)

sin(2πfτ) (4.12)

where the dispersion parameter is given by D = −2πcβ2/λ
2. The factors |z| and

φ represent the magnitude and phase of the complex coefficient z. The phase φ is

directly related to the nonlinear loss tangent of the waveguide through

tanφ =
γI
γR

=
λα2

4πn2

(4.13)

Using the definitions given by Eqs. (2.55), an equivalent expression is

tanφ =
Im{χ(3)

eff }
Re{χ(3)

eff }
(4.14)

4.3 Measurements of the nonlinear loss tangent

Figure 4.4(b) shows the measured frequency-dependence of the magnitude of

the system’s S21 transfer function for four different waveguides. The waveguide

dimensions, compositions, propagation losses and calculated mode shapes are given

in Fig. 4.4(a). According to Eq. (4.12), the amplitude of the received photocurrent

will vanish at certain modulation frequencies, leading to nulls in the measured S21(f)

trace. The data markers in Fig. 4.4(b) emphasize the positions of the nulls of each

trace. A null occurs whenever the quantity πλ2DLf 2/c − φ is an integer-multiple

of π. Therefore, the square of each null-frequency is given by

f 2
u =

c

2DLλ2

(
2u+

2

π
φ
)
, u = 0, 1, 2... (4.15)
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Figure 4.4: (a) Cross sections and mode properties of four waveguides.
The contours indicate the −5- and −15-dB levels of the electric field
for the TE eigenstate. (b) Representative S21(f) measurement for each
waveguide (offset for clarity).
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u vs. 2u for the silicon waveguide (II) obtained from 30

consecutive S21(f) measurements. Inset: similar linear fits for all four
waveguides considered, enlarged to show the difference in the intercepts.
The table lists the nonlinear loss tangent of each waveguide, calculated
using a linear regression of the null-frequencies, and the uncertainty is
estimated using the 95% confidence bounds obtained from the least-
squares fit.
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By plotting f 2
u as a function of 2u, we obtain a line whose slope and intercept

are related to the dispersion-length product of the fiber-spool and the phase φ,

respectively.

Figure 4.5 plots f 2
u vs. 2u for the silicon waveguide derived from 30 indepen-

dently measured S21(f) traces. The data clearly demonstrate the linear behavior

predicted by Eq. (4.15). The inset to Fig. 4.5 plots an enlarged region near the ori-

gin, with best-fit lines for all four of the waveguides considered. The key in the figure

tabulates the value of the nonlinear loss tangent determined for each of the waveg-

uides. The nonlinear loss tangents are calculated using a linear regression of the

null-frequencies, and the uncertainties listed in the table reflect the 95% confidence

bounds obtained from the least-squares fits.

Among the waveguides considered, the GaAs waveguide exhibits the highest

nonlinear loss tangent of γI/γR = 1.12 ± 0.02, followed by the silicon waveguide,

which has γI/γR = 0.27 ± 0.02. The remaining two waveguides were composed of

AlxGa1−xAs alloys, where the bandgap increases with mole-fraction x. For x = 0.14,

we obtained γI/γR = 0.188 ± 0.007. When the aluminum fraction is increased to

x = 0.18, the measured nonlinear loss tangent is γI/γR = 0.006± 0.002, indicating

that the nonlinearity becomes almost entirely refractive, as expected, when the

bandgap exceeds twice the photon energy [59].

For the silicon waveguide (II), the optical mode is almost entirely contained

within the silicon ridge, and we therefore expect the measured nonlinear loss tan-

gent to closely match that of bulk silicon. The nonlinear refraction and two-photon-

absorption coefficients of bulk silicon were independently measured by Ryan Suess,
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Figure 4.6: S21(f) measurements from the Al0.14Ga0.86As waveguide,
obtained by increasing the pump intensity in 3-dB steps.

a graduate-student researcher in the University of Maryland’s Photonics Research

Laboratory. Using a z-scan experiment with light polarized along the 〈110〉 di-

rection of bulk silicon, he found tanφ = λ0α2/(4πn2) = 0.27 ± 0.03, in perfect

agreement with the waveguide measurements reported here, and consistent with

widely accepted values from the literature [21].

One advantage of the swept-frequency measurement presented in this chapter

is that it does not require knowledge of the coupling efficiency into the waveguide,

a key source of uncertainty in most nonlinear measurements. To illustrate this,

Fig. 4.6 plots four independently measured S21(f) traces obtained by successively

increasing the pump power in 3-dB increments. As predicted, the measured result

scales, but the positions of the nulls remain unchanged.
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4.4 Summary

A new method for measuring the nonlinear loss tangent of optical waveguides

is presented. The technique uses a swept-frequency measurement of cross-amplitude

and cross-phase modulation to circumvent the uncertainties associated with incom-

plete or inaccurate knowledge of the propagation loss, the optical power, the coupling

efficiency, and the effective mode area. The technique uses quasi-continuous-wave

light sources, and therefore does not suffer from uncertainty related to optical pulse-

shapes or repetition rates.

A mathematical description of the technique is provided. The derivation is

based upon a small-signal analysis of the solution to the coupled-wave equations

that describe the interaction of the pump and probe in the nonlinear waveguide.

The approach is an adaptation of that used by Devaux, et al., to measure the chirp

of optical modulators [94].

Because bulk silicon is a well-studied nonlinear material, we use a large-area

silicon waveguide as a benchmark test to verify the validity of the new technique.

The measured nonlinear loss tangent of the silicon waveguide agrees perfectly with

independent measurements made using other methods. The technique is also applied

to measure the nonlinear loss tangents of a GaAs waveguide and two bandgap-

engineered AlGaAs waveguides. The AlGaAs measurements show that by increasing

the mole fraction x in the alloy to x = 0.18, two-photon absorption can effectively

be eliminated in the telecommunications C-band.
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Chapter 5: The non-instantaneous optical nonlinearity of a-Si:H

5.1 Overview

Hydrogenated amorphous silicon (a-Si:H) is a promising material for optical

processing in integrated silicon photonics. Films of a-Si:H can be deposited at low

temperatures (in the range of 250 to 400◦C) using plasma-enhanced chemical vapor

deposition (PECVD), which means the material is back-end-of-the-line compati-

ble with standard CMOS fabrication techniques. This means that, in principle,

a-Si:H photonic structures can readily integrate with silicon-on-insulator photonic

and electronic circuits. And, as a deposit-able waveguide material, a-Si:H poses

the intriguing possibility of easy on-chip vertical stacking and vertical coupling of

nonlinear photonic components [95].

Given these attractive qualities, nonlinear photonics using a-Si:H is a very

active field of research. Within the last few years, many groups have published

studies of the nonlinear properties of a-Si:H waveguides [44, 49, 50, 91, 95–107], and

an exciting array of applications has been demonstrated: ultrafast all-optical switch-

ing [100], wavelength conversion [50,101], correlated pair generation [102,106], super-

continuum generation [103], high-speed waveform sampling [97], ultrafast pulse char-

acterization [104], on-chip net parametric gain [49,108] and wavelength-agile optical
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parametric oscillation [105]. This list continues to grow rapidly.

Because a-Si:H has been reported to have a quasi-bandgap of ∼1.7 eV, which

is larger than the two-photon energy at telecommunications wavelengths, it should

exhibit small two-photon absorption compared to crystalline silicon (c-Si). How-

ever, in contrast to c-Si, the nonlinear characteristics of a given specimen of a-Si:H

depend strongly on the fabrication conditions. Presumably, the extent of disorder in

the amorphous silicon and the extent to which hydrogen atoms terminate dangling

bonds impact the amount of nonlinear absorption, but a cause-and-effect relation-

ship between fabrication conditions and the nonlinear traits of a-Si:H has yet to

be established. Published values of the nonlinear loss tangent of a-Si:H waveguides

span a broad range, including tanφ = 0.2 [91], 0.12 [96], 0.038 [49, 97], 0.026 [98],

0.016 [99], and 0.015 [44].

However, as defined, the nonlinear loss tangent only describes instantaneous

nonlinear properties. Even with a small tanφ, a waveguide can possess a non-

instantaneous nonlinearity that can significantly limit the efficiency of nonlinear

signal processing. For example, in crystalline silicon, delayed free-carrier absorption

severely impairs the performance of many nonlinear devices. Thus, understanding

the nature of the non-instantaneous nonlinearity of a-Si:H is crucial to engineering

future photonic devices from this promising material. On this topic, it is important

to point out that in crystalline silicon devices, the effects of free carriers can at

least be mitigated through the incorporation of p–n junctions [109]. At present, this

degree of freedom has not been demonstrated for devices composed of hydrogenated

amorphous silicon, a fact which further highlights the need to understand the non-
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instantaneous nonlinearity of a-Si:H.

Unfortunately, reports of the delayed nonlinearity of a-Si:H vary considerably,

and a generally accepted model to describe the non-instantaneous behavior has yet

to emerge. Ikeda et al. published one of the first studies of the third-order non-

linearity in a-Si:H [40]. They performed side-by-side z-scan measurements on thin

samples of non-hydrogenated amorphous silicon (a-Si), a-Si:H, c-Si and SiO2. Noting

that the closed-aperture z-scan for a-Si was inverted with respect to that for SiO2,

the authors concluded that the dominant nonlinearity in a-Si (and, by extension,

a-Si:H) must be non-instantaneous refraction and absorption from a long-lived free-

carrier plasma. Additionally, their open-aperture z-scan measurements showed that

the a-Si and a-Si:H samples displayed very large nonlinear absorption in comparison

to c-Si, despite having a larger bandgap. To explain the combination of enhanced

nonlinear absorption and the presumed free-carrier refractive nonlinearity, the au-

thors constructed a model in which free carriers were generated via “two-step” or

“two-state” absorption (TSA). In the TSA model, they assumed that sequential one-

photon absorptions, facilitated by mid-gap electronic states, generated free carriers

at an enhanced rate relative to what might be expected from 2PA alone. However,

other groups have disputed the applicability of the TSA model to describe their

a-Si:H samples. For example, Narayanan and Preble [96] conducted measurements

of the power-dependent transmission of short pulses through an a-Si:H waveguide,

and they attributed the nonlinear transmission to a combination of 2PA and FCA,

as in crystalline silicon. Likewise, Kuyken et al. [97] and Lacava et al. [98] relied on

the 2PA+FCA model to explain their transient nonlinear absorption measurements.
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One very thorough method for characterizing the non-instantaneous nonlinear-

ity in a waveguide is the heterodyne pump-probe measurement. This time-resolved

technique is simultaneously sensitive to the phase and amplitude of the probe, and

can distinguish between cross-amplitude modulation (XAM) and cross-phase mod-

ulation (XPM). In the first heterodyne pump-probe measurements reported on an

a-Si:H waveguide [91], both the amplitude and phase of the probe demonstrated

a non-instantaneous response. The non-instantaneous phase change exhibited the

same sign as the instantaneous Kerr effect, opposite to the phase shift expected for

free-carrier dispersion. However, the observed transient was short-lived and weak,

making it difficult to draw definite conclusions about the non-instantaneous non-

linearity of their waveguide. In contrast, in a more recent heterodyne pump-probe

measurement of an a-Si:H waveguide [99], no delayed absorption or refraction were

observed.

This chapter presents a study of the non-instantaneous nonlinearity of an a-

Si:H nanowire waveguide using a variety of experimental techniques. The waveguide

studied here is similar to the one presented in [50] and [105]. For comparison, the

same experiments are conducted on a c-Si nanowire of comparable dimensions. The

experiments include: (1) a modified version of the nonlinear loss tangent experiment

described in Chap. 4; (2) a phase-insensitive transient absorption experiment using

a continuous-wave probe and pulsed pump, similar to those in [97] and [98]; and (3)

a two-frequency heterodyne pump-probe experiment described in [93].

Taken together, these experiments show that the a-Si:H waveguide demon-

strates essentially zero instantaneous nonlinear absorption, but it does exhibit ap-
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preciable non-instantaneous nonlinear absorption and refraction. Moreover, the de-

layed portion of the waveguide’s pump-probe amplitude transient scales in direct

proportion to the applied pump power, indicating the non-instantaneous nonlinear-

ity is effectively a third-order nonlinearity rather than a combination of instanta-

neous two-photon absorption followed by free-carrier absorption. Finally, the phase-

transient measurements show that the non-instantaneous nonlinear refraction has

the same sign as the instantaneous Kerr refraction, which cannot be attributed to

the dispersive effect of free carriers.

5.2 The a-Si:H and c-Si nanowire waveguides

Both the waveguides studied here were fabricated by Mr. Ke-Yao Wang, a

graduate-student researcher in the Integrated Photonics Laboratory at Johns Hop-

kins University. The a-Si:H nanowire is fabricated by PECVD deposition of an

a-Si:H film onto a silicon wafer, which has a 3-µm thermal oxide layer. In the a-Si:H

film deposition chamber, a gas flow of 1200 sccm made up of helium with 5% silane

is kept at a pressure of 900 mT with 50 W RF power. The substrate is maintained

at approximately 300◦C for low-temperature deposition. A layer of silicon diox-

ide is deposited as a hard mask to reduce effects from direct etching with organic

resists. Electron beam lithography followed by chlorine-based inductively coupled

plasma (ICP) etching is used to pattern the waveguide. Inverse adiabatic tapers are

patterned on both ends of the waveguide to facilitate optical coupling [110].1 The

1Because the core layer is very thin in the vertical dimension, using a flare-structure in this case
would lead to a horizontally elongated mode at the facet, which would be detrimental to coupling.
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Figure 5.1: False-color images of the calculated mode for (a) the a-Si:H
nanowire and (b) the c-Si nanowire. The images show the magnitude of
the x-component of the electric field for the TE eigenstate.

a-Si:H core layer is 215 nm thick and 600 nm wide. A 1-µm-thick SiO2 layer is de-

posited over the waveguide via PECVD for an optical cladding. The c-Si waveguide

is fabricated on a SOI (silicon-on-insulator) platform with a 3-µm buried oxide. The

same patterning techniques are used and the c-Si waveguide has similar dimensions:

270 nm thick and 620 nm wide, with a 1-µm SiO2 cladding.

In all the experiments presented here, only the TE eigenmode of the waveguide

is excited. The calculated TE eigenmodes are shown in Fig. 5.1 with overlays to

indicate the cross-sectional composition of each waveguide. Both nanowire waveg-

uides are 1 cm long and have a linear loss of approximately 3 dB/cm, measured using

the cutback technique (for a description of this technique, see e.g., [111]). The two

waveguides have slightly different cross-sectional dimensions and the propagation

losses are not quite state-of-the-art [33, 45], but these factors should not affect the

overall characteristics of the non-instantaneous nonlinearities, which are compared

in the following analysis.
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5.3 Nonlinear loss tangent measurements

The measurements presented in this section were made using variants of the

nonlinear-loss-tangent technique described in Chap. 4. The experimental setup is

depicted in Fig. 5.2. The operation of the experiment is identical to that described in

Sect. 4.2, except experiments are performed with and without the spool of dispersive

fiber installed in the setup. The fiber-to-waveguide coupling is estimated to be −8

dB for the c-Si and a-Si:H waveguides, and in both cases approximately 25 mW of

pump power and 1 mW of probe power are launched into the waveguide.

The experiments conducted without the spool of fiber installed in the setup

are considered first. In this configuration, the measurement characterizes the cross-

amplitude modulation as a function of modulation frequency. As shown in the blue

traces of Fig. 5.3(a), the crystalline silicon waveguide shows 10 dB higher cross-

amplitude modulation at frequencies below approximately 50 MHz, but reaches a

NA
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1 2
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Probe
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Figure 5.2: The experimental setup used to measure the nonlinear prop-
erties of the nanowires. The setup is shown with and without an optional
spool of dispersive fiber. CW: continuous-wave; EDFA: erbium-doped
fiber amplifier; MZM: Mach-Zehnder modulator; OBPF: optical band-
pass filter; VOA: variable optical attenuator; PD: high-speed photodiode.
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Figure 5.3: (a) Magnitude and (b) phase of S21 vs. the modulation fre-
quency for the case with no dispersive fiber in the setup. Red traces rep-
resent the a-Si:H nanowire while blue traces represent the c-Si nanowire.

112



Frequency 2 (GHz 2)

|S
21

|  
 (1

0 
dB

/d
iv

) 

0 400 800 1200 1600

a-Si:H

c-Si

0 2 4 6 8 10 120

2

4

6

8

10

12

14
16

f u2 
(G

H
z2 ×

10
0)

2u

00

1

12u

Waveguide tan 
a-Si:H
c-Si

0.00±0.04
0.20±0.03

(a) (b)

Figure 5.4: (a) The magnitude of S21 vs. the square of the modulation
frequency with dispersive fiber in the setup. (b) f 2

u vs. 2u for both
waveguides obtained from 10 consecutive S21(f) measurements. Inset:
The same linear fits for both waveguides, enlarged to show the difference
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plateau at higher frequencies. Apart from a small dip near this corner frequency, the

phase of the S21(f) measurement, shown in Fig. 5.3(b), asymptotically approaches

π in both the high and low frequency limits. The phase of S21(f) (which should

not be confused with the optical phase of the probe wave) is an indication that the

nonlinearity is absorptive: when the pump is stronger, the probe signal becomes

absorbed, thereby causing their envelopes to be exactly π out of phase with one

another. The higher XAM observed at low modulation frequencies is caused by

free carrier absorption in the c-Si waveguide. The −3-dB roll-off point in this curve

falls at approximately fc = 85 MHz, which corresponds to an estimated free-carrier

lifetime of 1/(2πfc) = 1.9 ns, in good agreement with other reports for similarly

sized c-Si waveguides [92]. The high-frequency plateau in the XAM spectrum is well

explained by non-degenerate two-photon absorption between the pump and probe

– an instantaneous absorptive nonlinear effect that occurs across all modulation

frequencies. In Appendix B, the theory of free carriers is employed to model the

c-Si behavior observed in Figs. 5.3(a) and 5.3(b).

In contrast, for the a-Si:H waveguide, the magnitude of S21(f) falls monoton-

ically with the modulation frequency, similar to the behavior of a low-pass filter.

Although it was not possible to measure the asymptotic phase response beyond 40

GHz, the phase undergoes a net shift of −π/2 over the frequency range observed,

again suggesting a low-pass response. In the limit of low modulation frequency,

the a-Si:H waveguide exhibits significantly stronger XAM than its c-Si counterpart.

Yet, the absence of a high-frequency plateau in the magnitude measurement indi-

cates that instantaneous two-photon absorption is absent or negligible for a-Si:H.
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Because of the apparent absence of two-photon absorption, the slower nonlinearity

cannot be adequately described by free carrier absorption, as was the case for the

c-Si. The −3-dB roll-off point in this curve falls at approximately fc = 105 MHz,

which corresponds to an estimated lifetime of 1/(2πfc) = 1.5 ns. It is important

to note that the optical powers launched into the c-Si and a-Si:H waveguides were

similar (about 25 mW of pump power in both cases), and the delayed nonlinear

absorption of the a-Si:H is a strong effect.

The same measurements were then repeated with a 25-km spool of SMF fiber

installed after the device, which permits measurement of the ratio of XAM to XPM,

as detailed in Chap. 4. Provided this ratio is independent of the modulation fre-

quency, one can determine the nonlinear loss tangent by linear regression to find the

intercept point of Eq. (4.15), as shown in Figs. 5.4(a) and 5.4(b). For the a-Si:H

waveguide, the non-instantaneous nonlinearity shifts and obscures the two lowest-

order nulls (u = 0 and 1). But, based on the data of Fig. 5.3(a), the magnitude of the

non-instantaneous component to the nonlinearity can be safely ignored for modula-

tion frequencies above 20 GHz. Therefore, the first two nulls are excluded in order to

apply Eq. (4.15), which was derived under the assumption of a purely instantaneous

nonlinearity. This permits an estimate of the instantaneous nonlinear loss tangent

by considering only the high-frequency asymptotic behavior. Figure 5.4(b) shows a

fit of the null-frequencies for u = 2 through 5 to a straight line to obtain the slope

and intercept of Eq. (4.15). The fit yields tanφ = 0.00 ± 0.04, which confirms the

absence of instantaneous nonlinear absorption in the a-Si:H waveguide.

For c-Si, the non-instantaneous nonlinear absorption is relatively insignificant
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compared to the instantaneous effects, so all of the nulls (u = 0 through 5) are

included in the fitting procedure. The linear regression yields tanφ = 0.20 ± 0.03,

which is in good agreement with the nonlinear loss tangent expected for bulk c-Si

(which, as stated in Chap. 4, is 0.27±0.03). A slight reduction from the bulk-value

is expected since a significant portion of the optical mode samples the SiO2 cladding

in this nanowire waveguide.

5.4 Transient absorption using a continuous-wave probe

The experimental setup used to measure transient absorption in the nanowires

is depicted in Fig. 5.5. A passively mode-locked fiber laser produces hyperbolic-

secant-squared pump pulses with a pulse-width of 2 ps. The repetition rate of the

pump laser is 10 MHz, and the center-wavelength is 1530 nm. A separate external-

cavity laser produces the continuous-wave probe at 1560 nm. The co-polarized pump

λprobe
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CW

Probe

EDFA

Trigger

DSO

1530 nm

VOA

VOA

Waveguide

χ(3) OBPF
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OBPF

PD
(65 GHz)

Figure 5.5: The experimental setup used to measure transient nonlin-
ear absorption in the nanowires. MLL: mode-locked fiber laser; CW:
continuous-wave; VOA: variable optical attenuator; OBPF: optical band-
pass filter; EDFA: erbium-doped fiber amplifier; PD: high-speed photo-
diode; DSO: digital sampling oscilloscope.
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and probe are combined and launched into the TE eigenstate of the waveguide using

a polarization-maintaining lensed fiber. The fiber-to-waveguide coupling loss for

both waveguides is about 8 dB. For all the experiments presented in this section,

the probe power coupled into the waveguide is 1 mW, and the power of the pump is

adjusted using a variable optical attenuator to observe the scaling of the transient

absorption with pump power. The highest achievable peak power of the pump pulses

is about 8.4 W in the input lensed fiber, or about 1.3 W of peak power into the

waveguide. At the output of the waveguide, the pump is suppressed using optical

bandpass filters and the probe is amplified by an erbium-doped fiber amplifier. The

probe is detected using a 65-GHz photodiode, and the transient absorption response

is recorded on a 30-GHz digital sampling oscilloscope.

The transient absorption data for the a-Si:H and c-Si waveguides are shown in

Figs. 5.6(a) and 5.6(b), respectively. Data was collected over a time-window of 100

ns (the full inter-pulse interval). However, to emphasize the scaling of the transients

close to t = 0, Figs. 5.6(a) and 5.6(b) only show the data through t = 400 ps.

The top axes in Figs. 5.6(a) and 5.6(b) show the transient absorption of the probe

for four pump powers, where the pump power has been incremented in 3-dB steps.

The transients are normalized to their average value prior to the arrival of the

pump (i.e., P (t)/P0). The bottom axes show the same data, but the normalized

P (t) has been subtracted from 1 (i.e., fractional absorption = 1 − P (t)/P0). The

fractional absorption data are plotted in dBr, decibels relative to the extremum in

the transient for the highest pump power. Graphing the data in this manner makes

clear the scaling of the transients as a function of pump power. In these traces,
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Figure 5.6: Transient absorption of the probe for (a) the a-Si:H nanowire
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the abrupt recovery at about t = 25 ps and the fast ripples afterward are caused

by the impulse response of the detector, which has not been deconvolved from the

experimental results.

For the c-Si nanowire, the instantaneous part of the transient occurring at t = 0

is distinct from the non-instantaneous recovery, and scales in direct proportion to the

pump power, as expected for non-degenerate two-photon absorption. On the other

hand, the long-lived, non-instantaneous portion of the transient scales approximately

with the square of the pump power (i.e., the transient response increases in roughly 6-

dB increments each time the pump increases by 3 dB). This scaling behavior is well-

explained by free-carrier absorption, wherein the free carrier population is created by

degenerate 2PA of the pump pulses and therefore scales in proportion to P 2
pump [23].

The observed 1/e lifetime of the c-Si transient (excluding the instantaneous portion)

is approximately 2 ns, which roughly agrees with the S21(f) measurements presented

in Fig. 5.3(a).

In contrast to the c-Si result, the a-Si:H nanowire exhibits a very different

scaling relationship: The entire transient response is observed to scale roughly in

direct proportion to the pump power (i.e., the transient response increases in 3-

dB increments as the pump power is increased by 3 dB), with no clear separation

between the instantaneous and non-instantaneous components. This power-scaling

is illustrated in Fig. 5.7(a), which shows the fractional absorption versus the applied

power for a fixed time-delay of 400 ps. Figure 5.7(b) shows the fractional absorption

data for the highest pump power over a larger time interval of 20 ns. While the time-

dependent fractional absorption cannot be described by a simple mono-exponential

120



function, it can be divided into two regions, one dominated by a fast exponential

decay (with τfast = 1.5 ns) and the other by a slow exponential decay (with τslow =

13.5 ns). The observed 1/e response time of the a-Si:H is 1.5 ns, which agrees with

the S21(f) measurements presented in Fig. 5.3(a). However, that the transients scale

linearly with pump power indicates that the non-instantaneous response cannot be

attributed to free-carrier effects. A better description of the nonlinear response

would be through another third-order-nonlinearity effect, perhaps related to mid-

gap states or other intermediate electronic states with nanosecond lifetimes.

5.5 Heterodyne pump-probe measurements

The transient absorption measurements described in the preceding section

only characterize the cross-absorption modulation between the pump and probe.

To characterize the phase response as well, a two-frequency heterodyne pump-probe

setup was employed, depicted in Fig. 5.8. This setup was built by Mr. Ryan Suess

and Mr. Mehdi Jadidi, graduate researchers in the Photonics Research Laboratory of

the University of Maryland. A thorough explanation of the experimental technique

is given in [93].

The pump and probe pulses are produced by two electronically synchronized

mode-locked fiber lasers (Menlo Systems). The pulses emitted by both lasers have

a central wavelength of 1560 nm and pulse-width of 100 fs. The first laser generates

only the pump pulses, while the output of the second laser is split evenly to provide

the reference and probe pulses, which precede and succeed the pump pulse, respec-
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tively. The time-offset between the probe and reference pulses is fixed at T = 830

ps. The repetition rate of the probe/reference laser was fixed at 100 MHz, while the

pump laser was adjusted to a rate of 100 MHz + 0.1 mHz, which causes the time

delay between the pump and probe pulses to continuously sweep at a rate of 1 ps/s.

Acousto-optic frequency shifters (AOFS) introduce a blue-shift to the probe

and reference pulses. The reference pulses are up-shifted by fD = 35 MHz while the

probe pulses are up-shifted by fD + fH = 35.0625 MHz (fD denotes the resonant

drive frequency of the AOFS). The detection ultimately relies on measuring the

heterodyne beat between the probe and reference, which has a frequency fH =

62.5 kHz. The pump beam is mechanically chopped at fC = 1 kHz. For a given

pump-probe delay, τ , chopping the pump allows comparison of phase and amplitude

of the probe with the pump on (when the chopper wheel allows the pump to pass)

relative to the phase and amplitude of the probe with the pump off (when the

chopper blade occludes the pump).

The probe/reference and pump beams pass through separate half waveplates

(used to adjust the power in each beam), and the beams are combined using a beam

splitter. A polarizing beam splitter prior to the coupling optics passes only the

horizontal component of the electric field, in order to excite only the TE eigenstate

of the waveguide. Because the optical pulse-width is roughly 100 fs, free-space optics

are used to couple light into and out of the waveguide (for a pulse-width this short,

the dispersion introduced by even a short segment of optical fiber would substantially

change the pulse shape). A high-numerical-aperture aspheric lens (60×, N.A.= 0.65)

launches the light into the waveguide. In the waveguide, XAM and XPM modify
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the amplitude and phase of the probe as a function of the pump-probe delay. At

the output of the waveguide, the light is collimated by a microscope objective, and

directed into a Michelson interferometer, which realigns the probe and reference

pulses in time. The two complementary outputs from the interferometer are recorded

using a balanced detector, which suppresses the common mode noise of the pump.

A dual-phase lock-in amplifier simultaneously detects both quadratures at both

the heterodyne frequency, fH , and at the first upper sideband of the heterodyne

frequency, fH + fC . From these two measurements, one can calculate the cross-

phase modulation ∆φ as the time delay τ is swept [93].

Figure 5.9 compares the phase transients for the a-Si:H and c-Si waveguides.

The unphysical leading edge in the a-Si:H transient can be attributed to a difference

between the pulse-shapes used in the two experiments. For the a-Si:H experiment,

the average probe power launched into the waveguide is estimated to be 0.3 µW

while the average launched pump power is 264 µW. For the c-Si experiment, the

average probe power launched into the waveguide is estimated to be 0.46 µW, while

the average launched pump power is 431 µW.

The heterodyne measurements shown in Fig. 5.9 reveal that the delayed ampli-

tude transient observed during the transient absorption experiments is accompanied

by a corresponding non-instantaneous phase transient for both waveguides. The

phase transient recorded for the c-Si nanowire agrees well with previously published

results [92]. However, the a-Si:H waveguide is seen to behave dramatically differ-

ently from the c-Si waveguide: The non-instantaneous phase transient is positive

(indicating a non-instantaneous pump-induced increase in refractive index), while
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for c-Si it is negative, as expected for free-carrier dispersion. This result, which

confirms earlier reports from Shoji et al. [91], provides further evidence that the

non-instantaneous nonlinearity of a-Si:H is not attributable to free carriers.

5.6 Discussion

Taken together, these measurements thoroughly characterize the non-instantaneous

nonlinear response of this a-Si:H nanowire. Though the results do not indicate the

precise microscopic origin of the delayed nonlinear response, several features emerge

that are different from what is commonly observed in crystalline silicon.

First, this a-Si:H waveguide does not exhibit instantaneous two-photon ab-

sorption; this fact alone indicates free carriers are not responsible for the non-

instantaneous component of the nonlinearity. The absence of instantaneous two-

photon absorption is consistent with at least one earlier study of a-Si:H [107], but

at odds with most previous reports [44,91,96–99]. On this point, it bears repetition

that the optical properties of a-Si:H depend on how it is deposited and processed.

Fabrication-dependence of the instantaneous nonlinear absorption could explain the

variety of nonlinear-absorption characteristics reported in the literature.

Second, this a-Si:H nanowire shows a significant non-instantaneous amplitude

and phase response, with a characteristic lifetime of ∼1.5 ns. The delayed phase

shift is clearly positive, in the same direction as the instantaneous Kerr phase shift,

which contradicts what is commonly observed for free-carrier dispersion. We know

of one previous publication in which a similar result was documented for an a-Si:H
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waveguide [91]. But, in that report the effect was much weaker, and the authors

attributed it to carriers.

Third, the magnitude of the cross-absorption transient is observed to scale in

proportion to PpumpPprobe. This fact, together with the sign of the non-instantaneous

nonlinear phase shift and the absence of two-photon absorption, means the non-

instantaneous nonlinearity cannot be attributed to free carrier effects. The observed

power-scaling of the absorption transient is similar to that predicted by the two-

state-absorption model (with the instantaneous two-photon absorption coefficient

set to zero) proposed by Ikeda, et al [40]. However, the two-state-absorption model

attributes the delayed response to free-carrier absorption and dispersion, which is

not commensurate with the results observed here.

Phenomenologically, the observed response is best described as instantaneous

intensity-dependent nonlinear refraction coupled with delayed intensity-dependent

nonlinear absorption and refraction. The sign of the nonlinear refraction is positive

for the instantaneous and non-instantaneous components. Without further informa-

tion, we refrain from assigning a particular physical mechanism(s) to the observed

phenomena.

Despite the non-instantaneous nonlinearity, a-Si:H remains very promising for

integrated nonlinear photonics, especially pulsed applications where only a fraction

of the delayed absorption is sampled by the field. Understanding the dependence

of the nonlinearity of a-Si:H on the conditions of the deposition is an important

research goal and it is left as future work to perform linear spectroscopy of a-Si:H

films deposited under various conditions. Doing so, we hope to gain insight into the
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microscopic origins of the nonlinearity in this material and identify paths towards

the mitigation of nonlinear losses.

5.7 Summary

This section presents the results of a range of both quasi-continuous-wave and

pulsed measurements of the non-instantaneous nonlinear response of an amorphous

hydrogenated silicon waveguide. The response of the amorphous hydrogenated sili-

con waveguide is compared to that of a crystalline silicon waveguide having compa-

rable dimensions.

Quasi-continuous-wave cross-phase and cross-amplitude modulation measure-

ments reveal that both materials exhibit nanosecond-scale phase and amplitude non-

linearities. However at sufficiently high modulation frequencies, the a-Si:H waveg-

uide shows a purely refractive nonlinearity, signifying the absence of instantaneous

two-photon absorption. Transient absorption measurements and heterodyne pump-

probe measurements are presented. In all cases, the observations of the delayed

response of a-Si:H are seen to be inconsistent with an interpretation as free-carrier

effects.

These results show that the nature of and origin of the non-instantaneous

nonlinearity in amorphous-hydrogenated silicon is more complex than is ordinarily

assumed for crystalline silicon waveguides, and that existing models for the nonlin-

earity must be re-examined before conclusions can be drawn about the suitability

and merits of this material for nonlinear optical processing.
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Chapter 6: Conclusions and future work

This dissertation documents research of nonlinear waveguides, with the in-

tent to determine their suitability for all-optical processing. The research consists

mainly of measurements of the nonlinear properties of AlGaAs and hydrogenated

amorphous silicon waveguides, two material platforms which are potentially better

for all-optical processing than crystalline silicon. To build a complete understanding

of the waveguides, several types of experiments are performed on both systems, and

the nonlinear properties are measured using quasi-continuous-wave lasers and pulsed

lasers. Additionally, a new continuous-wave technique is developed and applied to

measure the ratio of nonlinear loss to nonlinear refraction in waveguides.

The explorations of the AlGaAs waveguides focus on wavelength conversion

via continuous-wave four-wave mixing. The core-bandgaps of the waveguides are

engineered to suppress two-photon absorption, which is confirmed by measuring

the power-dependent nonlinear transmission and spectral-broadening of the waveg-

uides. The fabrication of the waveguides is controlled to achieve low propagation loss

and near-zero group-velocity dispersion. The resulting combination of waveguide-

characteristics leads to enhancement of the bandwidth and efficiency of continuous-

wave four-wave mixing. The observed continuous-wave conversion efficiencies are or-
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ders of magnitude better than those of any previously reported AlGaAs waveguides,

and comparable to those achieved in any passive semiconductor or glass waveguides.

A new continuous-wave technique to measure the nonlinear loss tangent is

described. The technique employs a swept-frequency measurement of the ratio of

cross-amplitude to cross-phase modulation. The result is a direct probe of the non-

linear loss tangent, which circumvents the uncertainties associated with incomplete

or inaccurate knowledge of the propagation loss, the pulse-shape, the optical power,

the coupling efficiency, and/or the effective mode area. The method is applied to

measure the nonlinear loss tangent of a GaAs waveguide, two bandgap-engineered

AlGaAs waveguides, a large-area crystalline silicon waveguide, a crystalline silicon

nanowire waveguide, and a hydrogenated amorphous silicon nanowire waveguide.

In Chap. 4, the technique is applied to characterize only instantaneous nonlinear-

ities. But, Chap. 5 describes how the method can be extended to characterize

non-instantaneous, frequency-dependent nonlinearities, too.

A detailed study of an amorphous-hydrogenated silicon waveguide is presented,

and its nonlinear response is compared to that of a similarly sized crystalline silicon

nanowire. The hydrogenated amorphous silicon waveguide is observed to exhibit an

instantaneous refractive nonlinearity without any instantaneous nonlinear absorp-

tion. However, it also exhibits a nanosecond-timescale non-instantaneous nonlin-

earity which is both absorptive and refractive. The measurements show that the

delayed nonlinearity of the amorphous-hydrogenated silicon is inconsistent with an

interpretation as free-carrier effects, and the origin of the non-instantaneous nonlin-

earity is more complex than is ordinarily assumed for crystalline silicon waveguides.
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Existing models for the nonlinearity of amorphous-hydrogenated silicon must be

re-examined before conclusions can be drawn about its suitability and merits for

nonlinear optical processing.

6.1 Future work

6.1.1 AlGaAs waveguides

Looking forward, one clear near-term objective for the AlGaAs-waveguide

project is to fabricate a waveguide capable of net parametric gain. Four-wave-

mixing-based parametric gain has been demonstrated in nearly every competing

chip-compatible waveguide-system (e.g., see [35] for crystalline silicon, [46, 47] for

silicon nitride, [48] for Hydex, [49,108] for hydrogenated amorphous silicon, and [55]

for a chalcogenide optical chip). The results of Chap. 3 show that we are tantalizingly

close to being able to fabricate an anomalous-dispersion AlGaAs waveguide with suf-

ficiently low propagation loss to achieve this milestone: Only a modest reduction in

the waveguide-width is necessary. It is important to note that for the competing ma-

terial systems just mentioned, it has only been possible to achieve parametric gain by

harnessing the high peak power of short optical pulses, or by building the waveguide

into a ring-resonator configuration. We have already demonstrated that it is possi-

ble to fabricate AlGaAs waveguides which exhibit negligible nonlinear absorption,

high nonlinearity, sub-dB/cm propagation loss and high average-power tolerance.

If we can push the fabrication limits to produce an anomalous-dispersion bandgap-

engineered AlGaAs waveguide with sub-dB/cm propagation loss, preliminary sim-
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ulations show that it may be possible to demonstrate continuous-wave, single-pass

net parametric gain. Such a demonstration would be a substantial accomplishment

for chip-based all-optical processing, and would make AlGaAs waveguides unique

among the competing chip-based waveguides.

In the longer term, another path forward for the AlGaAs-waveguide project is

to develop chip-based waveguides for second-order nonlinear processes. Among the

competing material systems which are appropriate for integrated photonics, III-V

semiconductors stand alone as being non-centrosymmetric. This property means

that, in addition to being a good χ(3)-material, bulk AlGaAs also exhibits a large

χ(2), which makes it an excellent candidate for second-order processes such as sum-

and difference-frequency generation and second-harmonic generation. These pro-

cesses are especially useful for wavelength-converting signals over very large spectral

distances, and could substantially increase the wavelength-agility of chip-based light

sources. Therefore it would be highly desirable to develop chip-based AlGaAs waveg-

uides for efficient second-order nonlinear photonics. In this context, it is unfortunate

that AlGaAs is isotropic (thus non-birefringent). The chief difficulty to implement

efficient second-order processes in AlGaAs waveguides is therefore to achieve phase-

matching of the nonlinear interaction (phase-matching of second order processes in

bulk materials usually relies on birefringence phase-matching). Nonetheless, a great

deal of research has already focused on using AlGaAs and other III-V crystals for

chip-based second-order photonics (for example, see Refs. [112–116]). By combining

our ability to fabricate low-loss AlGaAs waveguides with novel cross-sectional de-

signs to achieve form birefringence, we may be able to achieve significant future gains
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in the efficiency and bandwidth of second-order integrated nonlinear photonics.

6.1.2 Hydrogenated amorphous silicon waveguides

Despite the fact that we have observed non-instantaneous nonlinear absorp-

tion in amorphous-hydrogenated silicon, it remains an extremely promising and

important material for integrated nonlinear photonics. As a deposit-able, CMOS-

compatible, highly nonlinear material, it has real potential to revolutionize inte-

grated nonlinear silicon photonics. The ability to deposit low-loss nonlinear a-Si:H

waveguides points to the possibility of building three-dimensional, vertically inte-

grated nonlinear photonic structures, which could eliminate some of the geometrical

problems associated with routing signals in planar integrated photonic circuits.

The observations of our experimental work to date have been inconclusive as

to the physical mechanisms which generate the delayed nonlinearity of a-Si:H. The

immediate goal is therefore to design experiments which allow direct observations of

these physical mechanisms, and subsequently to build a physical model for the sys-

tem akin to the two-photon-absorption/free-carrier-absorption model typically used

to understand the nonlinear dynamics of crystalline silicon. This goal is complicated

by the fact that the physics of this amorphous material depends on the conditions

used to deposit it.

Moving forward, the first step should be to perform absorption spectroscopy of

the possible mid-gap states of a-Si:H. Experiments should be conducted on a range

of samples fabricated under various conditions, to determine how the formation of
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mid-gap states depends on the fabrication. By building a complete picture of the

states available to the system, we hope to construct a physical model to explain the

nonlinearity of the material, which may help to identify paths towards mitigating

the delayed nonlinearity by appropriately tailoring the deposition and fabrication.

Absorption spectroscopy is very simple in principle. But in practice, it will

likely be difficult to obtain meaningful results. High-quality amorphous silicon can

only be deposited in relatively thin films and must be deposited on a substrate.

Therefore the interaction length of the optical absorption in the thin film will ob-

viously be small, and the signal-to-noise ratio in the absorption spectrum will be

correspondingly small. Additionally, the influence of the substrate will need to be

subtracted from the experimental observations to isolate the absorption spectrum

of the hydrogenated-amorphous silicon. Nonetheless, these experiments will be key

to building a complete understanding of the nonlinear dynamics of hydrogenated-

amorphous silicon.
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Appendix A: Approximate solutions to the coupled-wave equations

This Appendix provides analytical solutions to Eqs. (2.65a-c) subject to certain

approximations and initial conditions, which will be explained in the following. The

provided solutions are useful to model the experimental results presented in Chapter

3. For convenience, Eqs. (2.65a-c) are reproduced here as a starting point:

dup
dz

=− α

2
up + iγ|up|2up + i2γ|us|2up + i2γ|ui|2up + i2γu∗pusui exp(i∆βz) (A.1a)

dus
dz

=− α

2
us + iγ|us|2us + i2γ|up|2us + i2γ|ui|2us + iγu2

pu
∗
i exp(−i∆βz) (A.1b)

dui
dz

=− α

2
ui + iγ|ui|2ui + i2γ|up|2ui + i2γ|us|2ui + iγu2

pu
∗
s exp(−i∆βz) (A.1c)

where uj with j ∈ {p, s, i} is the complex slowly varying envelope of the pump,

signal, or idler, respectively. The uj are normalized such that |uj|2 represents the

power carried by the jth wave. We assume all three waves are linearly polarized such

that they excite only one of the waveguide’s fundamental polarization eigenstates.

The absorption coefficient, α, describes the linear optical loss specific to the excited

eigenstate. The group-velocity mismatch, ∆β, determined by the dispersion-profile

of the excited eigenstate, is given by ∆β ≡ β(ωs) + β(ωi) − 2β(ωp), where β(ω) is

the frequency-dependent effective propagation constant.

The complex nonlinear parameter associated with the excited polarization
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eigenstate, γ, is given by

γ = γR + iγI ≡
1

Aeff

(
n2
ω

c
+ i

α2

2

)
(A.2)

where n2, α2 and Aeff are, respectively, the Kerr refraction coefficient, the two-

photon-absorption coefficient and the effective mode area of the eigenstate in ques-

tion. We assume the waveguide exhibits only the instantaneous nonlinear effects

described by these two coefficients.

To be consistent with the design of many of the experiments presented in

Chapter 3, by construction, we take the frequency spacing between the signal and

idler to be sufficiently small such that ∆β ≈ 0. We also enforce the condition

|up|2 � |us|2 � |ui|2, so that we may ignore all nonlinear effects except those

proportional to |up|2. And, we take the power in the idler wave to be zero at the

waveguide’s input port, |ui(0)|2 = 0. Setting ∆β = 0 and maintaining only the most

important terms, Eqs. (A.1a-c) thus reduce to

dup
dz

=− α

2
up + iγ|up|2up (A.3a)

dus
dz

=− α

2
us + i2γ|up|2us (A.3b)

dui
dz

=− α

2
ui + i2γ|up|2ui + iγu2

pu
∗
s (A.3c)

In the absence of any nonlinearity, we expect the fields to decay as exp(−αz/2).

So, we re-normalize the fields in terms of a new variable, ũj(z), according to

uj ≡ ũje
−αz/2, j ∈ {p, s, i} (A.4)
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Rewriting the coupled equations in terms of the ũj gives

dũp
dz

=iγ|ũp|2ũpe−αz (A.5a)

dũs
dz

=i2γ|ũp|2ũse−αz (A.5b)

dũi
dz

=iγ
[
2|ũp|2ũi + ũ2

pũ
∗
s

]
e−αz (A.5c)

To proceed, we change variables to a new “effective distance,” ν, which is

related to the physical propagation distance z according to

ν ≡
∫ z

0

e−αz
′
dz′ =

1− e−αz

α
(A.6)

Using the chain rule, the derivatives in Eqs. (A.5a-c) can be rewritten with ν as the

independent variable

dũj
dz

=
dũj
dν

dν

dz
=

dũj
dν

e−αz (A.7)

Using (A.7), the coupled equations transform to the following very simple form

dũp
dν

=iγ|ũp|2ũp (A.8a)

dũs
dν

=i2γ|ũp|2ũs (A.8b)

dũi
dν

=iγ
[
2|ũp|2ũi + ũ2

pũ
∗
s

]
(A.8c)

In similar fashion to Section 2.5, we can re-write the ũj using phasor nota-

tion, ũj = mj exp(iφj), where mj and φj represent the ν-dependent magnitude and

phase of ũj. Separating Eq. (A.8a) into its real and imaginary components gives,

respectively,

dmp

dν
= −γIm3

p

dφp
dν

= γRm
2
p (A.9)
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The first equation in (A.9) can be solved directly:

m2
p(ν) =

m2
p(0)

1 + 2γIm2
p(0)ν

(A.10)

Then, inserting Eq. (A.10) into the second (A.9)-equation and integrating, we have

φp(ν)− φp(0) =
γR
2γI

ln
[
1 + 2γIm

2
p(0)ν

]
(A.11)

Now working with the equation for the signal, we can substitute Eq. (A.10)

into Eq. (A.8b) to obtain

1

ũs

dũs
dν

=
i2γm2

p(0)

1 + 2γIm2
p(0)ν

, (A.12)

which integrates to give

ũs(ν) =
ũs(0)

1 + 2γIm2
p(0)ν

exp
(
i
γR
γI

ln
[
1 + 2γIm

2
p(0)ν

] )
(A.13)

If we assume, without loss of generality, that φp(0) = 0, then we can re-cast

Eq. (A.13) in terms of Eqs. (A.10) and (A.11) as

ũs(ν) = ũs(0)
m2
p(ν)

m2
p(0)

exp
(
i2φp(ν)

)
=

ũs(0)

m2
p(0)

ũ2
p(ν) (A.14)

Finally, we turn to Eq. (A.8c), which can be re-written as

dũi
dν
− i2γ|ũp|2ũi = iγũ2

pũ
∗
s (A.15)

Both ũp and ũs are known, so Eq. (A.15) is a linear, inhomogeneous differential

equation with ν-dependent coefficients, which can be solved using the following

integrating factor

M(ν) = exp

[
−i2γ

∫ ν

0

|ũp(ν ′)|2 dν ′
]

(A.16)

=
m2
p(0)

ũ2
p(ν)

(A.17)
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where the integration and exponentiation required to derive (A.17) from (A.16) are

nearly identical to the steps used to go from (A.12) to (A.14).

Multiplying Eq. (A.15) by the integrating factor, we have

d

dν

[
ũi(ν)

ũ2
p(ν)

]
= iγũ∗s (A.18)

Then, substituting Eq. (A.14) into the RHS of Eq. (A.18) and integrating, we obtain

ũi(ν)

ũ2
p(ν)

= iγ
ũ∗s(0)

m2
p(0)

∫ ν

0

[
ũ∗p(ν

′)
]2

dν ′ (A.19)

where we have enforced the previously stated initial condition that the idler is ab-

sent at the waveguide’s input port, ũi(0) = 0. The integral in Eq. (A.19) can be

computed by the inserting the ν-dependent complex amplitude of the pump, given

by combining Eqs. (A.10) and (A.11):

∫ ν

0

[ũ∗p(ν
′)]2 dν ′ =

∫ ν

0

m2
p(0)

1 + 2γIm2
p(0)ν ′

exp

{
−iγR

γI
ln[1 + 2γIm

2
p(0)ν ′]

}
dν ′ (A.20)

=
i

2γR
exp

{
−iγR

γI
ln[1 + 2γIm

2
p(0)ν]

}
− i

2γR

=
i

2γR
[exp (−i2φp (ν))− 1]

Now, rearranging Eq. (A.19) and inserting the result from (A.20) to solve for ũi(ν),

we have

ũi(ν) =iγ
ũ∗s(0)

m2
p(0)

ũ2
p(ν)

∫ ν

0

[ũ∗p(ν
′)]2 dν ′ (A.21)

=iγ
ũ∗s(0)

m2
p(0)

m2
p(ν) exp(i2φp(ν))× i

2γR
[exp(−i2φp(ν))− 1]

=− γ

2γR

ũ∗s(0)

1 + 2γIm2
p(0)ν

[1− exp(i2φp(ν))]
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Simplifying this expression, we arrive at

ũi(ν) =
γ

γR
ũ∗s(0)eiφp(ν) sin(φp(ν))

1 + 2γIm2
p(0)ν

(A.22)

Putting all these results together, we can construct expressions for the slowly

varying envelopes of the pump, signal and idler waves. At the output plane of a

waveguide whose physical length is L, we have

up(L) =
mp(0)e−αL/2√

1 + 2γIm2
p(0)Leff

exp

{
i
γR
2γI

ln[1 + 2γIm
2
p(0)Leff]

}
(A.23a)

us(L) =
ms(0)e−αL/2

1 + 2γIm2
p(0)Leff

exp

{
i
(
φs(0) +

γR
γI

ln[1 + 2γIm
2
p(0)Leff]

)}
(A.23b)

ui(L) =
γ

γR
sin
( γR

2γI
ln[1 + 2γIm

2
p(0)Leff]

) ms(0)e−αL/2

1 + 2γIm2
p(0)Leff

(A.23c)

× exp

{
i
(
− φs(0) +

γR
2γI

ln[1 + 2γIm
2
p(0)Leff]

)}

where Leff is the effective nonlinear length, given by Leff = [1− exp(−αL)]/α.

Many of the continuous-wave four-wave-mixing results presented in Chap. 3

are stated in terms of the “conversion efficiency.” We choose to define the conversion

efficiency, ηFWM, as the ratio of the power carried by the idler wave at the output

to the power of the signal at the input,

ηFWM ≡
Pi(L)

Ps(0)
=
|ui(L)|2

|us(0)|2
(A.24)

Written in terms of Eqs. (A.23b) and (A.23c), the conversion efficiency is

ηFWM = e−αL

{
|γ|
γR

sin
(
γR
2γI

ln[1 + 2γIm
2
p(0)Leff]

)
1 + 2γIm2

p(0)Leff

}2

(A.25)

Using the definitions in Eqs. (2.55) and (2.56), we can re-cast the conversion effi-
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ciency in terms of n2, α2 and the input pump intensity, Ip0,

ηFWM = e−αL

{(
1 +

c2

4ω2

α2
2

n2
2

)1/2
sin(ωn2

c α2
ln[1 + α2Ip0Leff])

1 + α2Ip0Leff

}2

(A.26)

Alternatively, the conversion efficiency can be expressed in terms of the scalar effec-

tive susceptibility and the two-photon-absorption coefficient

ηFWM = e−αL

{
|χ(3)|
χ

(3)
R

sin(
χ

(3)
R

2χ
(3)
I

ln[1 + α2Ip0Leff])

1 + α2Ip0Leff

}2

(A.27)

It is sometimes the case that the two-photon absorption in a waveguide is

vanishingly small. In the limit α2 → 0, then ln[1 + α2Ip0Leff] approaches α2Ip0Leff,

and Eq. (A.26) reduces to

lim
α2→0

[ηFWM] = e−αL sin2

(
ω

c
n2Ip0Leff

)
(A.28)

However, care is needed in applying these equations. From the outset, we assumed

Pp � Ps � Pi. It is only in this limit that the above solutions are valid (but none of

the expressions derived above actually enforce this condition). In essence, we have

assumed that the conversion efficiency must be small for Eq. (A.28) to apply. In

other words, the assumption Ps � Pi implies that sin2
(
ω
c
n2Ip0Leff

)
� 1, in which

case Eq. (A.28) can be reduced to

ηFWM = e−αL

(
ω

c
n2Ip0Leff

)2

(A.29)

Eq. (A.29) is frequently the expression used to model continuous-wave four-wave-

mixing observations found in the literature. It is valid in the limits of low conversion

efficiency and vanishingly small two-photon absorption.
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Appendix B: Free-carrier-induced frequency-dependence of XAM and

XPM

If the cross-amplitude and cross-phase modulations measured by the appara-

tus described in Chap. 4 are frequency-dependent – as is the case when the waveg-

uide displays non-negligible delayed absorption and refraction – then the small-

signal analysis used to derive Eq. (4.3) fails. This Appendix provides a quantita-

tive description of how the presence of free carriers modifies the observations of

the cross-modulation measurements of the c-Si waveguide, which are presented in

Sect. 5.3. The mathematical model constructed in the following is used to simulate

the crystalline-silicon data appearing in Figs. 5.3(a), 5.3(b) and 5.4(a).

The starting point is Eq. (90) of Ref. [23], which was derived to describe free-

carrier effects on four-wave mixing. The equation is reproduced here, but the effects

of linear propagation have been ignored:

∂

∂z
ũ(z, t) = iγe|ũ(z, t)|2ũ(z, t) + iγf ũ(z, t)

t∫
−∞

e−(t−t′)/τc|ũ(z, t′)|4 dt′ (B.1)

Here, γe represents the waveguide’s electronic nonlinear parameter, which describes

the instantaneous nonlinear effects of two-photon absorption and Kerr refraction. It

is the same nonlinear parameter defined in Eq. (2.56), but the subscript ‘e’ has been

inserted to prevent confusing it with γf . The free-carrier population is assumed to
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decay mono-exponentially in time, with a 1/e lifetime given by τc. The strength of

the free-carrier effects is determined by the complex free-carrier nonlinear parameter

γf ,

γf =
α2

2h̄ωA2
eff

nmat(ω)

neff(ω)

[
ω

c
σn(ω) + i

σa(ω)

2

]
(B.2)

where the frequency-dependent factors nmat, neff, σn and σa represent, respectively,

the refractive index of the core material, the effective refractive index of the mode,

the free-carrier-dispersion cross section and the free-carrier-absorption cross section.

The approach employed here is essentially the same as that used to derive the

coupled-wave equations for continuous-wave four-wave mixing, Eqs. (2.65). How-

ever, in this case, the optical field is permitted to have 6 monochromatic components,

three which describe the sinusoidally modulated pump, and three which describe the

cross-modulated probe:

ũ(z, t) =u1(z)e−iω1t + u1+(z)e−i(ω1+Ω)t + u1−(z)e−i(ω1−Ω)t (B.3)

+ u2(z)e−iω2t + u2+(z)e−i(ω2+Ω)t + u2−(z)e−i(ω2−Ω)t

where u1(z), u1+(z) and u1−(z) represent the z-dependent complex amplitudes of the

main tone of the pump and its upper and lower sidebands, respectively. Similarly,

u2(z), u2+(z) and u2−(z) represent the main tone of the probe and its upper and

lower sidebands. The RF modulation frequency is given by Ω. As usual, the complex

amplitudes are normalized such that |uj|2 = Pj, where Pj represents the power

carried by the jth wave.

Using Eq. (B.3), evaluation of the integral expression in Eq. (B.1) leads to

a sequence of Lorentzian terms. The pump is assumed to be much stronger than
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the probe, and the modulation depth of each is assumed to be small, such that

|u1(z)| � |u2(z)| > |u1±(z)| � |u2±(z)|. It is also assumed that the frequency-

difference between the pump and probe is much larger than the RF modulation

frequency: |ω1 − ω2| � Ω. The process of inserting Eq. (B.3) into Eq. (B.1),

evaluating the integral, separating the equations for each frequency component, and

retaining only the most important terms therefore leaves the following 6 coupled-

wave equations:

∂u1

∂z
= iγe |u1|2 u1 + i4γfτc |u1|4 u1 (B.4a)

∂u1+

∂z
= iγe

[
u2

1u
∗
1− + 2 |u1|2 u1+

]
(B.4b)

+ iγf
[
4τc |u1|4 u1+ + L

(
2 |u1|2 u2

1u
∗
1− + 2 |u1|4 u1+

)]
∂u1−

∂z
= iγe

[
u2

1u
∗
1+ + 2 |u1|2 u1−

]
(B.4c)

+ iγf
[
4τc |u1|4 u1− + L∗

(
2 |u1|4 u1− + 2 |u1|2 u2

1u
∗
1+

)]
∂u2

∂z
= i2γe |u1|2 u2 + i4γfτc |u1|4 u2 (B.4d)

∂u2+

∂z
= iγe

[
2 |u1|2 u2+ + 2u1u

∗
1−u2 + 2u∗1u1+u2

]
(B.4e)

+ i4γfτc |u1|4 u2+

+ iγfL
[
2 |u1|2 u1u

∗
1−u2 + 2 |u1|2 u∗1u1+u2

]
∂u2−

∂z
= iγe

[
2 |u1|2 u2− + 2u1u

∗
1+u2 + 2u∗1u1−u2

]
(B.4f)

+ i4γfτc |u1|4 u2−

+ iγfL
∗ [2 |u1|2 u∗1u1−u2 + 2 |u1|2 u1u

∗
1+u2

]
where L is a frequency-dependent Lorentzian factor, centered about Ω = 0, which
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is given by

L =
1
τc

+ iΩ
1
τ2
c

+ Ω2
(B.5)

Unfortunately, Eqs. (B.4a–f) do not permit analytical solutions, but it is

straightforward to solve them numerically. The time-varying field inserted at z = 0

is assumed to consist of a sinusoidally modulated pump and a continuous-wave probe

(which has yet to acquire any modulation):

ũ(z = 0, t) = u1(0)[1 +M sin(Ωt)]e−iω1t + u2(0)e−iω2t (B.6)

= u1(0)e−iω1t + i
M

2
u1(0)e−i(ω1+Ω)t − iM

2
u1(0)e−i(ω1−Ω)t + u2(0)e−iω2t,

where M is the modulation depth. From the second line in Eq. (B.6), we can make

the following associations:

u1+(0) = i
M

2
u1(0) and u1−(0) = −iM

2
u1(0) (B.7)

Without loss of generality, we take the phase associated with the complex

amplitude of the main tone of the pump, u1, to be zero at z = 0. The probe is

generated by a second laser, and therefore the phase of the inserted probe, u2(0), is

allowed to take any value on the interval [−π, π). The probe-sidebands are assumed

to be absent at the input port. Taking the same approach used in the discussion

surrounding Eqs. (3.26) and (3.27), it can be shown that (under the above assump-

tions) the phases associated with the probe-sidebands, φ2±, auto-initialize to specific

values at z = 0. For example, the phase of u2+(0) is

φ2+(0) = tan−1

(
Im{x}
Re{x}

)
(B.8)
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Table B.1: Parameters used to calculate the frequency-dependent XAM and XPM
of the c-Si nanowire waveguide.

Value Notes

Aeff 0.1µm2 estimated

nmat/neff ≈ 1 estimated

L 1 cm measured

n2 0.45× 10−17 m2/W taken from [21]

α2 0.8× 10−11 m/W taken from [21]

σa 1.45× 10−17 cm2 taken from [23]

σn −5.3× 10−21 cm3 taken from [23]

τc 1.9 ns measured

|u1(0)|2 25 mW measured

|u2(0)|2 1 mW measured

where the quantity x is given by

x =
[
iγe
(
u1u

∗
1−u2 + u∗1u1+u2

)
+ iγfL

(
|u1|2 u1u

∗
1−u2 + |u1|2 u∗1u1+u2

) ]
z=0

A similar relation exists for φ2−(0).

The S21(f) transfer function expected for the c-Si waveguide of Sect. 5.3 is

calculated by numerically integrating Eqs (B.4a-f) subject to the initial conditions

given above. Table B.1 lists the parameters used in the calculations. For the case of

no dispersive fiber in the setup, the experiment is sensitive only to cross-amplitude

modulation, and the S21(f) transfer function recorded by the network analyzer obeys

the following proportionality:

S21(f) ∝
[
u∗2u2− + u2u

∗
2+

]
z=l

(B.9)

where l is the length of the waveguide. Figure B.1 shows the simulated data alongside
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Figure B.1: (a) Normalized magnitude and (b) phase of S21 vs. the
modulation frequency for the c-Si waveguide when the dispersive spool
is omitted from the setup. The experimental data, shown in dark blue,
are the same as those plotted in Fig. 5.3. The dashed cyan lines represent
the result of the simulation.
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Figure B.2: Measured and simulated magnitude of S21 vs. the square
of the modulation frequency with dispersive fiber in the setup. The
solid blue line is the measured result (the same as the crystalline-silicon
experimental data of Fig. 5.4). The dashed cyan line is the result of the
simulation.
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the measured data. The agreement between the two is very good.

The analysis can be extended to consider the experiment with the disper-

sive spool installed in the setup. As the probe propagates in the fiber, each of

the three spectral components accumulate different amounts of phase due to the

fiber-dispersion. The S21(f) transfer function recorded by the network analyzer is

therefore proportional to

S21(f) ∝ [u∗2u2−]z=l × eiΩ
2β2lspool/2 + [u2u

∗
2+]z=l × e−iΩ

2β2lspool/2 (B.10)

where l again represents the length of the waveguide, lspool is the length of the

fiber-spool and β2 is the group-velocity dispersion. The dispersion-length product

of the fiber-spool was calculated from the measured data using the fit to Eq. (4.15),

as shown in Fig. 5.4(b). The calculated dispersion-length product is β2lspool =

−5.52× 10−22 s2, consistent with that expected for 25 km of single-mode fiber. The

dashed cyan line in Fig. B.2 is the result of the simulation, and the blue solid line

represents the same measured data shown in Fig. 5.4(a). The simulated data agree

well with the measured data.
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Ippen. Ultrafast nonlinear optical studies of silicon nanowaveguides. Optics
Express, 20(4):4085–4101, 2012.

[93] R. J. Suess, M. M. Jadidi, K. Kim, and T. E. Murphy. Characterization of
optical nonlinearities in nanoporous silicon waveguides via pump-probe het-
erodyning technique. Optics Express, 22(14):17466–17477, 2014.

[94] F. Devaux, Y. Sorel, and J. F. Kerdiles. Simple Measurement of Fiber Disper-
sion and of Chirp Parameter of Intensity Modulated Light Emitter. Journal
of Lightwave Technology, 11(12):1937–1940, 1993.

157



[95] A. Harke, M. Krause, and J. Mueller. Low-loss singlemode amorphous silicon
waveguides. Electronics Letters, 41(25):1377–1379, 2005.

[96] K. Narayanan and S. F. Preble. Optical nonlinearities in hydrogenated-
amorphous silicon waveguides. Optics Express, 18(9):8998–9005, 2010.

[97] B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraga, H. Hu, M. Pu, M. Galili,
P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and
R. Baets. Nonlinear properties of and nonlinear processing in hydrogenated
amorphous silicon waveguides. Optics Express, 19(26):B146–B153, 2011.

[98] C. Lacava, P. Minzioni, E. Baldini, L. Tartara, J. M. Fedeli, and I. Cristiani.
Nonlinear characterization of hydrogenated amorphous silicon waveguides and
analysis of carrier dynamics. Applied Physics Letters, 103:141103, 2013.

[99] J. Matres, G. C. Ballesteros, P. Gautier, J-M Fédéli, J. Mart́ı, and C. J. Oton.
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