
ABSTRACT

Title of dissertation: THERMAL AND PERFORMANCE
MODELING OF NANOSCALE MOSFETS,
CARBON NANOTUBE DEVICES
AND INTEGRATED CIRCUITS

Akin Akturk, Doctor of Philosophy, 2006

Dissertation directed by: Professor Neil Goldsman
Department of Electrical and
Computer Engineering

We offer new paradigms for electronic devices and digital integrated circuits

(ICs) in an effort to overcome important performance threatening problems such as

self heating. To investigate chip heating, we report novel methods for predicting

the thermal profiles of complex ICs at the resolution of a single device. We resolve

device and IC temperatures self-consistently, with individual device performances,

while accounting for IC layout and software application details. At the device level,

we calculate performance and generated heat details. We then extend these perfor-

mance figures to the overall chip using a stochastic or Monte Carlo type method-

ology. Next, at the IC level, we solve for the device temperatures using the chip’s

layout and application software details. Here, we apply our mixed-mode algorithm

to two-dimensional (planar) and three-dimensional ICs. To relieve thermal stresses

and performance degradation in specific areas of extreme heating or hot spots, we

offer design strategies using thermal contacts or different IC layouts. Moreover, we



also show chips that we had designed and fabricated through IC fabrication clearing

house MOSIS for experimental investigations.

We also investigate carbon nanotubes (CNTs) and CNT embedded MOSFETs

as new device paradigms for future electronic circuits. To examine the effects of

CNTs on device performance, we develop a CNT Monte Carlo simulator, and de-

termine scattering rates and CNT electron transport. Here, we report position-

dependent velocity oscillations and length effects in semiconducting single-walled

zig-zag carbon nanotubes. Our calculated results indicate velocity oscillations in the

Terahertz range, which approaches phonon frequencies. This may facilitate new high

frequency RF device and circuit designs, opening new paradigms in communication

networks. Furthermore, to obtain device performance figures for MOSFETs that

embed CNTs in their channels, our device solver determines interactions between

the CNT and silicon (Si) by obtaining quantization and transport effects on the tube

and the Si, and at the CNT-Si barrier. We predict that the CNT-MOSFET yields

a better performance than the traditional MOSFET. Especially, CNT-MOSFETs

employing lower diameter tubes exhibit improved performance capabilities. We also

perform similar analyses for CNT embedded SOI-MOSFETs.
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Chapter 1

Introduction

1.1 Motivation

As integrated circuits (ICs) become more densely packed with transistors and

we approach the end of the semiconductor roadmap, manufacturers are facing several

important problems threatening chip performance. To overcome these problems, in-

vestigators are exploring new paradigms for electronic devices and digital integrated

circuits [1, 2].

For future integrated circuits, one especially important difficulty is chip heating

[1]-[11]. Investigators have pointed out that towards the end of the semiconductor

roadmap, there will be more devices per unit area due to scaling of physical device

dimensions. This real estate crowding induces high temperatures, since power den-

sity can not be kept in line with the conventional scaling algorithm. The rule of

thumb for the traditional scaling algorithm is that all relevant parameters are scaled

by the same factor S, either proportionately or inversely, to keep the power density

fixed. For example, physical dimensions and supply voltage are scaled downward

by S, while frequency and capacitance per area are scaled upward by S. The power

density, therefore, stays the same after scaling. However, voltage scaling will no

longer be applicable for such small dimensions because of the intrinsic limitations

of silicon (Si) bandgap and built-in voltages [1]-[5]. Therefore, IC manufacturers

1



deviate from the traditional scaling methods to guarantee good device and chip per-

formances such as high on/off current ratios and subthreshold slopes. This results

in clock frequencies and supply voltages that are higher than previously expected.

In addition, nanoscale devices can not provide as much isolation between supply

rails as previously employed longer channel devices. This leads to higher leakage

levels. The chip also is likely to overheat faster than conventional cooling methods

can account for. Thus power density per unit area keeps increasing exponentially

for future electronic devices, making full-chip heating increasingly influential in the

performance of next generation ICs. Hence, chip heating is considered as one of the

major obstacles to be overcome for future IC designs [1]-[11].

To fully understand the chip-heating problem, researchers need tools to simu-

late and examine the phenomenon. These modeling tools can also be used to relieve

heating problems by offering new design approaches to the chip layout. Preliminary

research has been done to estimate the temperature profile for given chips [7]-[11].

Here, we develop a tool that establishes the necessary link between single device

operation and full-chip heating for the first time in the literature.

We also explore new alternatives to conventional MOSFETs. Carbon nan-

otubes (CNTs) are being explored as a structure that may play a leading role in

future electronic systems [12]-[15]. CNTs are planar graphite sheets (graphene) that

are seamlessly wrapped into tubes. CNTs possess favorable electrical characteristics

and can be fabricated in dimensions as small as 8Å in diameter. The electrical char-

acteristics of CNTs vary with the diameter and the wrapping angle of the graphene

[16]. Both the diameter and the wrapping angle can be described by the tube’s
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fundamental indices (l,m) (Standard notation uses (n,m). However, l is used in

some chapters instead of n to avoid confusion with electron concentration). Theory

indicates that CNTs can be metallic or semiconducting according to the fundamen-

tal tube indices (l,m), with the bandgap of the semiconducting tube depending on

the CNT diameter. Analysis shows semiconducting CNTs have very high low-field

mobilities, with peak electron drift velocities that can be as much as five times

higher than that of silicon [17]-[21]. It has also been shown that tubes can be doped

by donors and acceptors [22]-[24]. Experiments and calculations also indicate that

CNTs may facilitate devices with large transconductances and high drive currents

[20]-[39]. Experiments have demonstrated the viability of CNT-based FETs [34, 35],

and CNT-SOI type MOSFETs [36, 37]. Moreover, we did preliminary research on

modeling and design of CNT embedded bulk MOSFETs [30, 31].

Here, we investigate several CNT-MOSFET devices for the first time in the

literature. Our calculations indicate that CNT-MOSFETs can have improved device

performance over conventional MOSFETs [30, 31]. To investigate the potential

attributes of the new designs, we developed a methodology for modeling nanoscale

CNT-MOSFETs. We also used the same methodology to obtain device performance

figures for SOI-MOSFETs that have CNTs embedded in their channels.

1.2 Device Modeling

To obtain performance details of devices like nanoscale MOSFETs and Silicon-

On-Insulator (SOI) MOSFETs, several modeling methods either based on compact
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analytical equations or physics can be utilized. Even though the ones based on com-

pact analytical equations such as the SPICE model are useful for fast performance

computation of devices and circuits containing several nodes, their results can not

be extrapolated to predict performance details of smaller devices. The reason is

that the parameters inherent to these models are empirically determined using ex-

perimental data or simulated (using a lower level device solver) device performance

characteristics for that technology node. Therefore, their applicability to other, es-

pecially smaller, technology nodes might lack underlying physics. Also, these models

can not be extended to unconventional device structures, since these novel structures

are not geometrically relevant to those used to extract fitting parameters. In addi-

tion, they may not be governed by the same physical relations. Thus, to investigate

nanoscale devices, researchers need to use physics based models.

Depending on the number of details and assumptions included, physical models

can be divided up into three main categories:

• Classical Model

• Semiclassical Model

• Quantum Model

The classical models are the moments of the Boltzmann Transport Equation

(BTE). On the other hand, the BTE is a semiclassical model. Moreover, the BTE

is a continuity equation for electrons, and keeps track of the electron distribution in

real space, momentum space and time. According to carrier continuity, conservation

of carriers requires that the change in carrier distribution in time should differ
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from the gradient of the net flux in real space and momentum space by the net

contribution of “sources” and “sinks” in the enclosed momentum and real space

volume. More specifically, if f(r, p, t) is the distribution function that gives the

probability of finding a particle at position r and time t with momentum p, then

particle continuity equation is the following.

(

∂

∂t
+
∂~r

∂t

∂

∂r
+
∂~p

∂t

∂

∂p

)

f = G−R (1.1)

Here, G and R are generation (“source”) and recombination (“sink”) terms,

respectively. The net generation-recombination rate in real space is determined by

the net scattering rate s(r, p, t) that accounts for phenomena such as photogeneration

and recombination through traps or from band-to-band (Auger recombination). In

momentum space, the collision ratio ∂f
∂t

∣

∣

∣

coll
gives the net generation-recombination

rate, which accounts for phenomena such as reflections and transmissions. Using the

two terms for the net generation-recombination rate in real and momentum spaces,

and replacing ∂~r
∂t

and ∂~p
∂t

with ~υ (velocity) and ~F (force, which is equal to −q ~E in

an electric field ~E), respectively, the BTE becomes:

∂f

∂t
+ ~υ · ~∇rf + ~F · ~∇pf = s(r, p, t) +

∂f

∂t

∣

∣

∣

∣

∣

coll

(1.2)

To find the spatial and time distribution of a physical parameter ζ(r, t), the

distribution function f(r, p, t) is first scaled by associated weighting coefficients w(p)

and normalization factor Ω, and then integrated over the momentum space, as

written below:

ζ(r, t) =
1

Ω

∫

w(p)f(r, p, t)dp (1.3)
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Above, substituting w(p) with 1, p (momentum) or ε (energy) respectively

gives electron concentration n, average momentum P or average energy W for ζ(r, t).

To obtain values for these physical parameters, we first need to calculate f(r, p, t).

This requires finding a solution for the BTE [40, 41] for the physical parameter

of interest. Below, we include the continuity equation for any physical parameter,

which is obtained by multiplying Eqn. 1.2 by 1
Ω

∫

w(p)dp:

1

Ω

∫

w(p)
∂f

∂t
dp+

1

Ω

∫

w(p)~υ · ~∇rfdp− q
1

Ω

∫

w(p) ~E · ~∇pfdp

=
1

Ω

∫

w(p)s(r, p, t)dp+
1

Ω

∫

w(p)
∂f

∂t

∣

∣

∣

∣

∣

coll

dp (1.4)

To derive continuity equations, we substitute w(p) with 1, which is equal to

p0. Thus, the drift-diffusion model is a classical model, and can be derived using

the zeroth and first moments of the BTE. Moreover, the electron current continuity

equation is derived using Eqn. 1.4 and the aforementioned expansion in p (p0). Next,

the integrals in Eqn. 1.4 are evaluated, and the following expressions are substituted

for each term above in the given order:

1

Ω

∫ ∂f

∂t
dp =

∂n

∂t
(1.5)

1

Ω

∫

~υ · ~∇rfdp = ~v · ~∇rn (1.6)

−q 1

Ω

∫

~E · ~∇pfdp = −qEf
Ω

(1.7)

1

Ω

∫

s(r, p, t)dp = Gn −Rn (1.8)

1

Ω

∫ ∂f

∂t

∣

∣

∣

∣

∣

coll

dp = − ∆n

〈τn〉
(1.9)

Here, we have change in carrier (electron n) concentration in time, Eqn. 1.5,

divergence of drift flux, Eqn. 1.6, field generation rate, Eqn. 1.7, net generation-
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recombination term, Eqn. 1.8, and divergence of carrier diffusion flux, Eqn. 1.9. In

addition, Gn −Rn is the net generation-recombination rate and 〈τn〉 is the ensemble

relaxation rate. Furthermore, since f approaches zero fast, Eqn. 1.7 can be approxi-

mated by zero for low fields. Also, we further simplify the divergence of the diffusion

flux using the diffusion constant Dn:

∆n

〈τn〉
=

∆r2

〈τn〉
∆n

∆r2
∼= Dn∇2

rn (1.10)

Combining drift and diffusion fluxes together, we write the electron current

continuity equation in a familiar form, as follows:

∂n

∂t
= −∇r · (~υn+Dn

~∇rn) +Gn −Rn (1.11)

Likewise, substituting w(p) with p in Eqn. 1.4, we derive the momentum bal-

ance equation. In this case, we have the following terms for the BTE (in one

dimension):

1

Ω

∫

p
∂f

∂t
dp =

∂P

∂t
(1.12)

1

Ω

∫

p~υ · ~∇rfdp = 2∇r · ~W (1.13)

−q 1

Ω

∫

p ~E · ~∇pfdp = −qEpf
Ω

− qnE (1.14)

1

Ω

∫

p
∂f

∂t

∣

∣

∣

∣

∣

coll

dp = −∆P

〈τp〉
(1.15)

We have change in carrier momentum in time, Eqn. 1.12, divergence of average

energy ( 1
Ω

∫

p~υ · ~∇rfdp = 1
Ω

∫

2ε · ~∇rfdp = 2W ), Eqn. 1.13, field generation rate,

Eqn. 1.14, and collision term, Eqn. 1.15. We do not have the scattering term as the

one in Eqn. 1.8, because that does not contribute to a change in momentum space.
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Additionally, in Eqn. 1.14, −qEpf ∼= 0 because f approaches zero fast for large p.

Therefore, we can write a compact momentum balance equation, which is the first

moment of the BTE, as shown below:

∂P

∂t
= −2∇r · ~W − qnE − ∆P

〈τp〉
(1.16)

The second moment of the BTE is the energy balance equation. It is derived

by substituting w(p) with ε (= p2/2m∗ for parabolic bands, where m∗ is the effective

mass) in Eqn. 1.4. This gives the following terms for the energy balance equation:

1

Ω

∫

ε
∂f

∂t
dp =

∂W

∂t
(1.17)

1

Ω

∫

ε~υ · ~∇rfdp = ∇r ·
1

Ω

∫

ε~υfdp (1.18)

−q 1

Ω

∫

ε ~E · ~∇pfdp = −qEεf
Ω

− q ~E ~P

m∗
(1.19)

1

Ω

∫

εs(r, p, t)dp = Gε −Rε (1.20)

1

Ω

∫

ε
∂f

∂t

∣

∣

∣

∣

∣

coll

dp = −∆W

〈τε〉
(1.21)

Here, change in average energy in time, Eqn. 1.17, is related to the flow of

energy, Eqn. 1.18, self-heating, Eqn. 1.19, energy exchange due to scattering leading

to recombination and generation, Eqn. 1.20, and energy exchange between lattice

and carriers, Eqn. 1.21. In Eqn. 1.19, the first term on the right-hand-side is ap-

proximately zero due to fast decay of f for large p, and the second term is equal

to ~J · ~E noting that q ~P
m∗

= ~J , where ~J is the current density. Also, ~J · ~E can be

recognized as Joule Heating. Therefore, the energy balance equation can be written

in a concise form, as shown below:

∂W

∂t
= −∇r ·

1

Ω

∫

ε~υfdp+ ~J · ~E − ∆W

〈τε〉
+Gε −Rε (1.22)
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We have shown zeroth, first and second moments of the BTE in Eqns. 1.11,

1.16 and 1.22, respectively. They are the carrier balance, momentum balance and

energy balance equations in the aforementioned order. We note that each bal-

ance equation requires solution of higher order balance equations. For example, in

Eqn. 1.11, ~v = ~P/m; thus, to solve for n, we need to know P . Likewise, to solve for

P in Eqn. 1.16, we need the spatial variation of W . Thus, it is impossible to solve

the BTE moment equations unless we achieve closure using some approximations.

The most commonly-used approximation is to write the drift velocity in terms of the

electric field ~v = µ~E, where mobility µ is the proportionality constant that is deter-

mined empirically from experimental data or detailed simulations such as low-level

Monte Carlos (MCs). This provides the closure for the current continuity equation.

We now need a relation between the carrier densities and the electric field to have a

complete set of equations. This is provided by the Poisson Equation, which relates

divergence of local electric field weighted by the dielectric constant, ǫ, to the net

charge density, ρ, as written below:

∇r · ǫ ~E = ρ (1.23)

The carrier balance (current continuity) equation 1.11 along with the Pois-

son Equation, written above, forms the drift diffusion model. This is the most

commonly-solved model to obtain device characteristics, mainly due to its simplic-

ity and clear physical interpretation. However, ignoring the higher order moments

of the BTE results in some loss of physical details. This includes loss of distribu-

tion details of carriers in energy space or temperature, which may be important
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to characterize effects involving hot-electrons. It also includes the assumption that

carriers reach equilibrium with the lattice through scattering. This enables the use

of mobility and diffusion coefficient concepts. For not-so-high electric fields, hot

electron effects are negligible; therefore, we can tolerate the loss of those data. In

terms of scattering dominated electron current, unless the system is purely quan-

tum mechanical such as those that can be found in ultra small devices, we can still

develop a mobility model that accounts for non-equilibrium conditions by adjusting

the mobility through experiments, published data or MC simulations. To improve

the drift-diffusion model, researchers sometimes solve for the energy balance equa-

tion in addition to the carrier balance equation. In this case, the model is called the

hydrodynamic model. Even though this model may successfully predict hot-electron

effects, it may also produce erroneous data showing energy peaks near the MOSFET

channel-source junction [40]. Therefore, its results should be carefully interpreted.

So far, we have described classical models, which are essentially the drift-

diffusion and hydrodynamic models. Next comes the semiclassical models in the list

of physical models. The main characteristics of semiclassical models are their use

of scattering rates at the microscopic level (instead of using a mobility concept as

in the classical model), and slope of the energy dispersion curve to determine the

electron velocity.

Obtaining device characteristics using a semiclassical model can be done mainly

in two ways. First is the single particle approach or the Monte Carlo (MC) method.

This method includes statistical means to obtain macroscopic characteristics such

as terminal currents. In this method, carriers are randomly picked from an energy-
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momentum pool using carrier distribution details such as Fermi-Dirac statistics in

conjunction with the energy dispersion curves. They then are accelerated under the

macroscopic field with an effective mass m∗ for a predetermined time that is long

enough for acceleration but too short for any scattering event to take place. At the

end of the flight, depending on a probabilistically dictated selection criteria, either

the carrier continues its free flight or a randomly determined microscopic scatter-

ing event that generally depends on the carrier’s energy and momentum occurs.

Repeating this drift-scattering combination a significantly large enough number of

times allows determination of average macroscopic field dependent parameters such

as drift velocity for the carrier with the preselected initial energy-momentum com-

bination. For different energy-momentum combinations in the energy-momentum

pool, we can obtain similar average macroscopic field dependent parameters. Lastly,

scaling these average macroscopic field dependent parameters in conjunction with

the associated initial selection statistics would give the average macroscopic field

dependent parameters for the carrier ensemble.

The second way of calculating device characteristics using a semiclassical

model is to solve the BTE that includes scattering details at the microscopic level

and field-propelled drift of a particle with an effective mass m∗ at the macroscopic

level. One common practice is to solve for the space, time and momentum distri-

butions. This forms a seven dimensional problem: 3 in space, 3 in momentum and

1 in time. It is a challenging problem that puts too much burden on the CPU.

However, the total number of dimensions can be reduced using spherical harmonic

basis functions [40]. This would make the problem more manageable for the CPU,
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by putting some of the analytical burden on the programmer’s side.

Semiclassical models include more physical details than classical models. They

involve fewer approximations and more elemental properties. Thus, one can simulate

devices with different geometries without the need to have fitting parameters. In

addition, semiclassical models can provide energy distribution resolving phenomena

such hot-electron effects.

One important deficiency of the BTE model is that the carriers are treated

as particles; therefore, they obey classical or Newtonian mechanics. However, the

particle approach can not resolve transport in ultra-small devices, and quantization

in the MOSFET channel near the silicon/silicon dioxide (Si-SiO2) interface, where a

potential well depending on bias conditions may form. This is related to the failure

of the particle approach in the characterization of phenomena such as quantization

and tunneling. To resolve these effects, a quantum model needs to be employed.

One common practice is to solve the single-particle Schröndinger equation. Using a

general form, the time-independent Schröndinger equation can be written as follows:

− h̄2

2mo

∇2
rψ + [EC(r) + UC(r) + US(r)]ψ = εψ (1.24)

Above, ψ is the wave function, from which the probability of finding an electron

in a volume (V = r3) can be determined using the definite integral
∫

V ψ
∗(r)ψ(r)dr3.

The actual form of ψ depends on the slowly varying potential EC(r) due to applied

field and built-in potentials, quickly varying UC(r) due to crystal or lattice po-

tential, and scattering potential US(r) due to phonons (lattice vibrations), ionized

impurities, etc. Also, ψ is the eigenfunction and ε is the eigenvalue of Eqn. 1.24.
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In traditional device and material analyses, generally the three potential terms

on the left-hand-side of Eqn. 1.24 are treated separately, assuming that impurity or

defect densities are low compared to the actual material density, lattice vibrations

do not significantly alter the relative positions of the neighboring atoms, applied

potential varies slowly compared to the crystal potential, etc.

A common practice is first to solve the following equation to obtain energy

dispersion curves.
[

− h̄2

2mo

∇2
r + UC(r)

]

ψ1 = ε1ψ1 (1.25)

Crystal potential UC(r) has the periodicity of the lattice due to the periodic

assembly of the atoms in the material. If the sample is long enough that fringe

effects can be ignored, we can assume that the wavefunctions have the same spatial

periodicity. This enables us to write eigenfunctions (ψs) of Eqn. 1.25 in terms of

Bloch waves. A Bloch wave is a product of two terms. The first term is a periodic

function that has same periodicity with the underlying structure (uk(~r) = uk(~r+ ~T ),

where T is the lattice translational vector in space that is equal to lattice separation),

and the second term is a plane wave (ei~k·~r, where lattice periodicity dictates k =

k + 2πl
T

, l = 0,±1,±2 . . .). Mathematically, it is defined as follows:

Ψk = uk(r)ei~k·~r (1.26)

Substituting ψ1 =
∑

Ψk in Eqn. 1.25, and canceling common terms on both

sides give:
[

− h̄2

2mo

(

∇2
r + 2ik − k2

)

+ UC(r)

]

uk = ε(k)uk (1.27)

Here, we also dropped the sum written above, because solutions for each k
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form a linearly independent set for solutions of the sum. This can be verified by

multiplying the original equation by e−i~k·~r, and integrating it over k. Additionally,

we can solve for the eigenenergies ε(k) for a given k, since we know the terms in

brackets on the left-hand-side of Eqn. 1.27. Tracing over k values and finding the

associated allowable energies give the energy dispersion curves including conduction

and valence bands for that material. Using these dispersion curves, we can extract

pertinent parameters to be used in transport calculations such as effective mass m∗

and bandgap εg.

Next, we add the scattering potential related details in addition to crystal

potential related dynamics to our quantum system by solving:

[

− h̄2

2m∗
∇2

r + US(r)

]

ψ2 = ε2ψ2 (1.28)

Generally, the scattering potential is time-dependent; therefore, it is more

appropriate to write the above equation as follows:

[

− h̄2

2m∗
∇2

r + US(r, t)

]

ψ2 = ih̄
∂ψ2

∂t
(1.29)

Equation 1.29 includes perturbations to the crystal potential. Assuming that

these perturbations are small, we can use perturbation theory to calculate scattering

rates. This leads to the basic result of scattering theory that is also known as Fermi’s

Golden Rule, which defines scattering rate from momentum k to k′ as written below:

S(k, k′) =
2π

h̄
|Ha

k′k|δ(E(k) + h̄ω − E(k′)) +
2π

h̄
|He

k′k|δ(E(k) − h̄ω − E(k′)) (1.30)

Here, Ha,e
k′k is the time-independent scattering potential matrix element be-

tween states k and k′. In addition, we have conservation of energy as explicitly
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written in the arguments of the Dirac-δ functions for phonon absorption (a) and

emission (e). Moreover, we also have conservation of momentum that is not explic-

itly shown above.

To find scattering rates from k to k′, we first need to determine matrix ele-

ments either in exact form or in approximate form using the deformation potential

approximation [42]. Second, we need to obtain phonon dispersion curves to calculate

phonon energy h̄ω and momentum q. This can be done in various ways including

the tight binding approximation [16]. Once we calculate scattering rates, we can use

Monte Carlo simulations to extract parameters such as drift velocity and mobility

to be used in device simulators.

Lastly, to complete the full quantum treatment, we resolve the contribution

from the last potential term in Eqn. 1.24, which is the combined term for applied

and built-in potentials.

[

− h̄2

2m∗
∇2

r + EC(r)

]

ψ3 = ε3ψ3 (1.31)

From the dispersion curves (solution of Eqn. 1.25), we obtain the effective

mass m∗. Next, using the scattering rate data, we obtain transport details that can

be used in balance equations. (For ballistic transport, the scattering potential is

approximately zero resulting in undisturbed flight between two device terminals.)

Now, we include the last quantum effect that provides the link between quantum

potential and transport. Here, EC(r) accounts for the externally applied field, and

the built-in fields due to doping, difference in workfunctions and bandgaps, etc. The

details of solving this equation in conjunction with scattering data will be given later
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in the following chapters.

So far, we have discussed three main physical device models: Classical, semi-

classical and quantum. We here make use of modified drift-diffusion equations that

combine details from the classical and quantum models, and a Monte Carlo scheme

using the semiclassical model. More specifically, we solve the modified drift-diffusion

equations to obtain comparative device performance figures. Our modifications are

for resolving quantum, heterostructure and thermal effects. To resolve these effects

using the drift-diffusion model, we develop methodologies. In the following chap-

ters, we explain how we incorporate those effects in detail. Furthermore, to obtain

electrical characteristics of CNTs, we make use of a semiclassical model, which is a

Monte Carlo simulator.

1.3 Carbon Nanotube Devices

As we approach the end of the semiconductor roadmap, investigators are ex-

ploring new paradigms for electronic devices. Carbon nanotubes (CNTs) are being

explored as a structure that may play a leading role in future electronic systems

[12]-[15] due to their favorable electrical characteristics and angstrom scale dimen-

sions. Therefore, we develop methodologies to obtain their electrical properties and

possible relative gains associated with their use in devices.

To investigate CNT electronics, we first determine CNT electrical characteris-

tics. Since, there has not been enough research done on CNT electrical properties,

we start from low level physics, and extract pertinent CNT electrical characteristics.
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Low-level CNT modeling requires solution of the single-particle Schröndinger

equation. Therefore, we first determine the energy dispersion curves using details of

its crystal structure. Noting that CNTs are graphite sheets (graphene) rolled into

tubes, we use well-known details of the graphene band structure with modifications.

Mainly, the modifications take into consideration that CNTs exhibit folding effects,

which lead to bound states around the circumference. Details of these states are

determined by the diameter of the tube and the wrapping angle using the zone-

folding method. Moreover, restrictions due to finite lengths of the tubes are also

considered for some applications. In summary, instead of solving for the CNT band

diagram from scratch, well-known details of the graphene band structure are used to

approximate energy-momentum curves of CNTs. Likewise, the phonon dispersion

curves of CNTs are determined from those of graphene.

Next, our quantum modeling includes extraction of macroscopic electrical

properties that are relevant for device performance calculations such as drift velocity

and mobility. This requires resolving scattering effects on CNT electron transport

using Monte Carlo (MC) simulations. In these MC simulations, scattering rate

calculations are facilitated using the deformation potential approximation.

Essentially, MC simulators use numerical techniques that rely on a theorem

called the weak law of large numbers [43]. According to this theorem, the average

values associated with independent and identically distributed random sequences

will converge to constant values as the size of the sequence, or the number of sam-

ples, go to infinity. In practical terms, average values of independent and identically

distributed random sequences can be obtained if a large sequence of the correspond-
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ing event is simulated, or recorded experimentally.

Once low-level effects are resolved, we obtain electrical CNT performance de-

tails, and do comparative device analyses of various CNT-embedded and traditional

devices. We will give details of the underlying physics and employed modeling tech-

niques in the following chapters.

1.4 Integrated Circuit Modeling

As industry reduces the size of devices further to increase speed and func-

tionality of Integrated Circuits (ICs), two main challenges in IC operation have

emerged: self-heating effects [1]-[11], and interconnect and input/output (I/O) de-

lays. Here, we concentrate on the self-heating effects. (The I/O delays can partially

be reduced using three-dimensional ICs or Systems-on-Chips (SoC). However, this

further exacerbates the self-heating problem.)

To characterize ICs, we start from individual devices that together form the

IC. This first requires the characterization of device performances, and next the

resolution of their effects on the overall IC performance. Considering device and

IC levels, we develop methodologies to find thermal maps of planar and three-

dimensional ICs at the resolution of a single device. Resolving IC thermal effects

at the device level has been done for the first time by us. Previously, it had been

done using several thermal nodes and not self-consistently for the entire IC, instead

for hundreds of million nodes like we do. Also, we self-consistently resolve IC self-

heating effects in conjunction with device operation, IC applications and layout
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details for the first time.

We first obtain device performance details for a representative device utilized

for the given technology. Once we determine device performance as a function of

temperature, we go to the IC level, which has dimensions millions of times bigger

than those of a single device. To facilitate quick computation of the IC temperature

map, we develop lumped thermal models for the whole chip. This gives a resistive-

capacitive thermal network with nodes that correspond to individual devices. Also,

thermal resistances and capacitances between each device is determined by the chip

layout. Then, we extend the device performance details calculated for a single device

to the entire chip volume using IC-wide operation details such as clock frequency,

and software application details such as how frequently accesses are granted for

the cache, how often arithmetic manipulations are executed at the arithmetic logic

unit, etc. We do this using a Monte Carlo type methodology that determines relative

power density for each device on the IC. Lastly, we iterate between the IC and the

device levels until we obtain the IC thermal map. We explain the coupled algorithm

in detail in the following chapters.

1.5 Thesis Overview

In the following chapter, we explain our modified drift-diffusion models. We

show the methodologies we developed to resolve quantum, heterostructure and self-

heating effects within the drift-diffusion model that includes the Poisson, and the

electron and hole current continuity equations. We first describe the drift-diffusion
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equations and the auxiliary parameters such as mobilities and current densities

used in conjunction with the state variables; electrostatic potential, and electron

and hole concentrations. Next, we briefly talk about the discretization method we

employ. This is followed by a derivation of the methodology that shows how we

incorporate the aforementioned effects. Specifically, we start from the fundamental

electron current density equation, and write electron concentration in terms of the

electrostatic potential and the electron Fermi potential. Next, we transform this

expression in such a way that the aforementioned effects can be resolved within our

discretization scheme using space dependent effective potential terms in addition

to the electrostatic potential we calculate. Details concerning the derivation and

utilization of the modified equations to obtain device performance details will be

explained later.

In Chapter 3, we develop methodologies to obtain CNT electrical proper-

ties including mobility and intrinsic carrier concentration. To obtain an expression

for the mobility, we first calculate the CNT energy dispersion curve from that of

graphene using zone-folding effects. Next, we import these energy dispersion curves

to the Monte Carlo (MC) simulator we developed. Briefly, we explain how we deter-

mine scattering rates and CNT electron transport. Also, we include length effects

on electron transport by modifying the energy dispersion curves. Next, using our

MC simulations, we obtain drift-velocity versus field curves. In addition, we re-

port position-dependent velocity oscillations and length effects in semiconducting

single-walled zig-zag carbon nanotubes for the first time. Our calculated results

indicate velocity oscillations with Terahertz frequencies approaching phonon fre-
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quencies. This may facilitate new high frequency RF device and circuit designs,

opening new paradigms in communication networks. Furthermore, to obtain com-

parative device performance figures between traditional devices and the ones that

embed CNTs in their channels, we extract pertinent CNT electrical parameters such

as intrinsic carrier concentrations and electron affinities to be used in our semicon-

ductor equations.

In Chapter 4, we first show how incorporating CNTs within devices modifies

the governing semiconductor equations. After we import CNT parameters from the

previous chapter into our device simulator, we determine interactions between the

CNT and Si. More specifically, we resolve quantization and transport effects on the

tube and Si. Also, we resolve CNT-Si barrier effects using a density gradient quan-

tum treatment. Resolving the effects of CNTs on quantization and transport within

devices such as a MOSFET using a modified drift-diffusion model is first done by us.

Next, we compare the performances of a conventional MOSFET device and our hy-

pothetical CNT embedded MOSFETs. We predict that the CNT-MOSFET yields a

better performance than the traditional MOSFET. Especially, the CNT-MOSFETs

employing lower diameter tubes exhibit improved performance capabilities. Then,

we do similar analyses for CNT embedded SOI-MOSFETs for the first time for the

given layouts. We find that among devices that have constant film thickness, small

diameter-CNT devices yield higher transconductance. On the other hand, for de-

vices with one layer of CNTs and film thickness equal to the CNT diameter, large

diameter-CNT devices show higher transconductance.

Lastly in Chapter 5, we report novel methods for predicting the thermal profile
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of complex integrated circuits (ICs) at the resolution of a single device. We explain

how our technique resolves device and IC temperatures self-consistently with device

performances using IC layout and running application details. We iterate between

the device level, which we use to calculate performance and generated heat details,

and the IC level, which we solve for the temperature. Since the IC level is millions

of times bigger than the device level in terms of dimensions, we develop a lumped

thermal model for the IC. This facilitates finding self-consistent IC temperature and

device performance figures, which have been reported for the first time. In Chapter

5, we explain our mixed-mode algorithm for two-dimensional and three-dimensional

ICs. Additionally, we show chips we had designed and fabricated through MOSIS

for experimental investigations.
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Chapter 2

Device Modeling

We developed simulators to obtain performance figures for devices such as

silicon-MOSFETs, Silicon-On-Insulator (SOI) MOSFETs, and Carbon Nanotube

(CNT) embedded MOSFETs and SOI-MOSFETs, shown in Figs. 2.1, 2.4, 2.3 and

2.2, respectively. To accurately model these devices, we introduced corrections due

to confinement, barrier effects and self-heating. We developed models and numer-

ical simulators that self-consistently solve the drift-diffusion equations, including

the aforementioned effects. We introduced quantum corrections using two differ-

ent methods. The first method is to solve the Schrödinger equation in addition to

the drift-diffusion equations to obtain eigenwaves. Once eigenwaves are calculated,

a quantum electron density equation is employed for closure and feedback to the

drift-diffusion model. The second method is to utilize the density gradient formalism

in the drift-diffusion framework. To add the calculated quantum corrections, nu-

merical methods were developed and successfully implemented. Also, we developed

models and novel numerical techniques that resolve heterostructure and self-heating

effects. In the following sections, we explain how we achieve the embedding of these

corrections.

To determine operational details of devices such as MOSFETs and SOI MOS-

FETs, we solve the coupled semiconductor performance equations. Our semicon-
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Figure 2.1: A silicon n-MOSFET.

ductor equations include those of the drift-diffusion model: Poisson equation 1.23

and carrier continuity equation 1.11 for electrons and holes. In this model, a change

in carrier concentration in time is caused by a spatial change in carrier flux (From

now on, all gradients are in space unless indicated otherwise by a subscript) and

generation-recombination. Details related to the drift-diffusion equations and nu-

merical algorithms to solve them self-consistently will be explained in the next sec-

tion.

Also, we resolve quantum effects that greatly affect submicron device char-

acteristics. Depending on gate bias voltages, a potential well forms at the silicon-

silicon dioxide (Si-SiO2) interface in the channels of submicron MOSFETs shown

in Fig. 2.1. This well pushes electrons away from the interface, contradicting the

classical assumption that electron concentration peaks where the field is highest.

Since this can greatly affect device performance, we include quantum effects by ei-
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ther adding the single particle Schrödinger equation 1.31, which resolves effects of

applied and built-in fields on electron concentration, to our list of equations, or by

making use of the density gradient formalism. Both will also be explained more in

the following sections.

2.1 Drift-Diffusion Model

2.1.1 Drift-Diffusion Equations

We list below the drift-diffusion equations starting with the Poisson equation

followed by the electron current continuity and hole current continuity equations.

∇2φ = −ρ
ǫ

(2.1)

∂n

∂t
=

1

q
∇ · ~Jn +Gn −Rn (2.2)

∂p

∂t
= −1

q
∇ · ~Jp +Gp −Rp (2.3)

Here, we have three equations with three unknowns: Electrostatic potential

φ, electron concentration n and hole concentration p. (The other parameters in

Eqns. 2.1-2.3, which are ρ, Jn, Jp, Gn and Gp, can be written in terms of the state

variables.) The Poisson equation given in Eqn. 2.1 relates the net charge density

ρ scaled by the dielectric constant ǫ (Generally, we use the frequency-independent

dielectric constant of our medium silicon, which is 11.7 times the dielectric constant

or permittivity of vacuum ǫo) to the gradient of the electric field (∇ · ~E = −∇2φ).

Next, the electron current continuity equation given in Eqn. 2.2 shows that a change

in electron concentration n in time t in a given volume is equal to the divergence
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of electron flux (Jn) and the net electron generation-recombination (“sources” and

“sinks”) through traps and impurities in that volume. Likewise, the hole current

continuity equation given in Eqn. 2.3 shows that a change in hole concentration p in

time t in a given volume is equal to the negative divergence (due to positive charge

associated with holes) of hole flux (Jp) and the net hole generation-recombination

through traps and impurities in that volume.

In addition to Eqns. 2.1-2.3, we need expressions for the electron current

density Jn, hole current density Jp, net charge density ρ and the net generation-

recombination G−R in terms of the electrostatic potential φ, electron concentration

n and hole concentration p, to have coupling between equations, and closure.

First, net charge concentration ρ can be written in terms of the electron and

hole concentrations as follows:

ρ = q(p− n+D + T ) (2.4)

Above, q is the electronic charge, D is the net ionized donor/acceptor concen-

tration (D = N+
D − N−A ), and T is the net trap density. At room temperature, we

can assume that all dopants are ionized; therefore, D = N+
Do

− N−Ao
, which can be

calculated from process details that give N+
Do

and N−Ao
. More specifically, spatial

variation of dopant concentrations can be determined experimentally or using sim-

ulation tools like Tsupreme [44]. This assumption holds unless we go to cryogenic

temperatures, where ionization is adversely affected. Furthermore, we might have

trapped charges T in the oxide or Si-SiO2 interface. However, in this study, we do

not consider any trapped charges (T = 0).
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Next, we introduce electron and hole current densities, respectively.

~Jn = −qµnn ~∇φ+ qDn
~∇n (2.5)

~Jp = −qµpp ~∇φ− qDp
~∇p (2.6)

The newly introduced variables are electron (hole) mobility µn (µp) and elec-

tron (hole) diffusion constant Dn (Dp). Moreover, the first terms on the right-hand-

sides of Eqns. 2.5 and 2.6 are the drift components of electron and hole currents,

respectively. They account for the carrier acceleration under applied and built-in

fields ~E = − ~∇φ. Comparing this component to the drift component of the current

or particle flux derived from the zeroth moment of the BTE given in Eqn. 1.11, the

following definition for mobility that relates it to the applied field and drift velocity

can be derived.

~υn = µn
~E (2.7)

~υp = µp
~E (2.8)

Additionally, the second terms on the right-hand-sides of Eqns. 2.5 and 2.6

are the diffusion components of electron and hole currents, respectively. They have

opposite signs due to negative and positive charges associated with electrons and

holes, respectively. Furthermore, an approximate definition for the carrier diffusion

constant D is given in Eqn. 1.10, which relates it to the average ensemble carrier

transit length 〈 Ln〉 and time 〈τn〉, as shown below.

Dn
∼= 〈 Ln〉2

〈τn〉
(2.9)

Dp
∼= 〈 Lp〉2

〈τp〉
(2.10)
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Lastly, we define the net generation-recombination rate G−R in Eqns. 2.2-2.3,

using Shockley-Hall-Read (SHR) recombination. (At the output terminal bound-

aries, we have infinite supply of carriers and instantaneous carrier recombinations.)

G−R =
pn− n2

o

τn(p+ no) + τp(n+ no)
(2.11)

SHR recombination accounts for the generation and recombination through

localized states and centers such as ionized dopant traps within the bandgap. This

recombination process accounts for the spontaneous electron and hole capture and

emission. Electrons from the conduction and holes from the valence band are cap-

tured or emitted by traps such as acceptor-like recombination centers of ionized

donor dopants and donor-like recombination centers of ionized acceptor dopants, re-

spectively. Under low-level injection, the net electron emission-capture rate is equal

to the net hole emission-capture rate, resulting in a detailed version of the above

equation, which simplifies to Eqn. 2.11 knowing that the biggest contribution of trap

assisted recombination will come from the traps near the mid-bandgap.

Now, we have the drift-diffusion equations 2.1-2.3 along with the auxiliary rela-

tions 2.4-2.11 that provide coupling and closure. In addition, we have supplementary

relations that give electron and hole concentrations in terms of the electrostatic po-

tential and Fermi levels. To derive those relations, we start from the Fermi-Dirac

distribution. Basically, it gives the probability of a state being occupied by an elec-

tron that is subject to non-degenerate statistics and the Pauli exclusion principle,

as defined below:

f(E) =
1

1 + e

(

E−Ef

kT

) θ(Eg) (2.12)
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Above, E is the electron energy (= −qφ), and Ef is called the Fermi level or

the Fermi energy. Moreover, f(E) is zero within the bandgap through the step func-

tion θ(Eg), which is 1 within the conduction and valence bands, and 0 in between.

Additionally, f(E) is related to temperature T and Boltzmann’s constant k.

Using non-degenerate statistics, electron (hole) concentration in the conduc-

tion (valence) band can be calculated using the probability of having an electron

(hole) in a state f(E) (1 − f(E)) and the density-of-states g(E) in the conduction

(valence) band, as follows:

n =
∫ ∞

Ec

f(E)g(E)dE (2.13)

Taking f(E) ∼= e

(

−E−Ef

kT

)

(Maxwell-Boltzmann distribution) and g(E) =

4π
(

2m∗

h2

)(3/2)
(considering three-dimensional space, parabolic energy dispersion curves,

double degeneracy and the number of available states in k space in three-dimensions),

we find that:

n = Nce

(

− (Ec−Ef )

kT

)

(2.14)

p = Nve

(

− (Ef−Ev)

kT

)

, (2.15)

where

Nc = 2

(

2πm∗nkT

h2

)3/2

(2.16)

Nv = 2

(

2πm∗pkT

h2

)3/2

. (2.17)

In thermal equilibrium for undoped materials, the Fermi level is at mid-

bandgap (Ef = Ei) resulting in hole and electron concentrations that both are

equal to no, which is called the intrinsic carrier concentration. Using no and assum-
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ing that there are two different Fermi levels at nonequilibrium (Efn
and Efp

are for

electrons and holes, respectively), carrier concentrations can be written as shown

below:

n = noe

(

Efn
−Ei

kT

)

(2.18)

p = noe

(

Ei−Efp

kT

)

(2.19)

Since the electrostatic potential is with respect to a reference level, we take it

as φ = −Ei

q
. Therefore, we can rewrite the carrier concentrations in terms of φ (in

reference to mid-bandgap), quasi-electron Fermi potential φn = −Efn

q
, quasi-hole

Fermi potential φp = −Efp

q
and thermal voltage VTH = kT

q
, as follows:

n = noe

(

φ−φn
VTH

)

(2.20)

p = noe

(

φp−φ

VTH

)

(2.21)

Next, using the Einstein relation D
µ

= kT
q

, we can rewrite current densities in

a compact form:

~Jn = −qµnn ~∇φn (2.22)

~Jp = −qµpp ~∇φp (2.23)

In the following sections, we elaborate on our numerical techniques used to

solve the drift-diffusion equations. Later, we derive our modified drift-diffusion

equations. During that derivation, we will make frequent use of the above equations

as our fundamental current density equations.
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2.1.2 Discretized Drift-Diffusion Equations

In this work, we use the finite difference method, in which the solution domain

is discretized using rectangles, and derivatives are approximated by differences. Our

equations 2.1-2.3 include first and second order derivatives that can be discretized

in 1-D with the spacing xi+1 − xi, ignoring third and higher order expansion terms:

∂2ζ

∂x2

∣

∣

∣

∣

∣

xi

=

∂ζ
∂x

∣

∣

∣

x
i+1

2

− ∂ζ
∂x

∣

∣

∣

x
i− 1

2

(xi+1−xi−1)
2

(2.24)

=
2

(xi+1 − xi−1)

[

ζ(xi+1) − ζ(xi)

(xi+1 − xi)
− ζ(xi) − ζ(xi−1)

(xi − xi−1)

]

(2.25)

∂ζ

∂x

∣

∣

∣

∣

∣

xi

=

(xi − xi−1)
∂ζ
∂x

∣

∣

∣

x
i+1

2

+ (xi+1 − xi)
∂ζ
∂x

∣

∣

∣

x
i− 1

2

(xi+1 − xi−1)
(2.26)

=
1

(xi+1 − xi−1)

[

(ζ(xi+1) − ζ(xi))
(xi − xi−1)

(xi+1 − xi)

+(ζ(xi) − ζ(xi−1))
(xi+1 − xi)

(xi − xi−1)

]

(2.27)

A simplified version of the first derivative can also be used instead of the

discretized form given above.

∂ζ

∂x

∣

∣

∣

∣

∣

xi

=
ζ(xi+1) − ζ(xi−1)

xi+1 − xi−1

(2.28)

Using the aforementioned approximation for the second derivative, Eqn. 2.4 for

the net charge density, and Eqns. 2.20-2.21 for the electron and hole concentrations,

we discretize the Poisson equation 2.1 in two-dimensions, as written below.

(

2

hi + hi−1

)[

φi+1,j − φi,j

hi

+
φi−1,j − φi,j

hi−1

]

+

(

2

kj + kj−1

)[

φi,j+1 − φi,j

kj

+
φi,j−1 − φi,j

kj−1

]

=

q
ǫSi

[

n0

(

e

(

φi,j−φni,j

VTH

)

− e
−
(

φi,j−φpi,j

VTH

)

)

−Di,j − Ti,j

]

(2.29)
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Here, subscripts i and j are for x and y coordinates, respectively. We denote

spacing in x and y directions by hi = xi+1 − xi and kj = yj+1 − yj, respectively.

Direct discretization of the electron and hole current continuity equations 2.2

and 2.3 leads to ill-conditioned Jacobian matrices, and ignores the fact that n and

p vary exponentially with φ between mesh points. Hence, we use the Scharfetter-

Gummel discretization scheme that overcomes these problems, by approximating

the current densities at half grid points using Bernoulli functions (B(x) = x
ex−1

), as

follows [45].

~Jn
i+1

2

qµn
i+1

2

VTH

=

[

B

(

~E
i+1

2
(xi−xi+1)

VTH

)

(

ni+1

xi+1−xi

)

−B

(

~E
i+1

2
(xi+1−xi)

VTH

)

(

ni

xi+1−xi

)

]

(2.30)

~Jn
i− 1

2

qµn
i− 1

2

VTH

=

[

B

(

~E
i− 1

2
(xi−1−xi)

VTH

)

(

ni

xi−xi−1

)

−B

(

~E
i− 1

2
(xi−xi−1)

VTH

)

(

ni−1

xi−xi−1

)

]

(2.31)

Therefore, electron and hole current continuity equations 2.2 and 2.3 can be

written in discretized form as shown next.

∂ni,j

∂t
= −Rni,j

+Gni,j

+
(

2VTH

hi+hi−1

)

[(

ni+1,jµn
i+1

2 ,j
B
(

−φi+1,j−φi,j

VTH

)

)

+
(

ni−1,jµn
i− 1

2 ,j
B
(

−φi,j−φi−1,j

VTH

)

)]

−
(

2ni,jVTH

hi+hi−1

)

[(

µn
i+1

2 ,j
B
(

φi+1,j−φi,j

VTH

)

)

+
(

µn
i− 1

2 ,j
B
(

φi,j−φi−1,j

VTH

)

)]

+
(

2VTH

kj+kj−1

)

[(

ni,j+1µn
i,j+1

2

B
(

−φi,j+1−φi,j

VTH

)

)

+
(

ni,j−1µn
i,j− 1

2

B
(

−φi,j−φi,j−1

VTH

)

)]

−
(

2ni,jVTH

kj+kj−1

)

[(

µn
i,j+1

2

B
(

φi,j+1−φi,j

VTH

)

)

+
(

µn
i,j− 1

2

B
(

φi,j−φi,j−1

VTH

)

)]

(2.32)
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∂pi,j

∂t
= −Rpi,j

+Gpi,j

+
(

2VTH

hi+hi−1

)

[(

pi+1,jµp
i+1

2 ,j
B
(

−φi+1,j−φi,j

VTH

)

)

+
(

pi−1,jµp
i− 1

2 ,j
B
(

−φi,j−φi−1,j

VTH

)

)]

−
(

2pi,jVTH

hi+hi−1

)

[(

µp
i+1

2 ,j
B
(

φi+1,j−φi,j

VTH

)

)

+
(

µp
i− 1

2 ,j
B
(

φi,j−φi−1,j

VTH

)

)]

+
(

2VTH

kj+kj−1

)

[(

pi,j+1µp
i,j+1

2

B
(

−φi,j+1−φi,j

VTH

)

)

+
(

pi,j−1µp
i,j− 1

2

B
(

−φi,j−φi,j−1

VTH

)

)]

−
(

2pi,jVTH

kj+kj−1

)

[(

µp
i,j+1

2

B
(

φi,j+1−φi,j

VTH

)

)

+
(

µp
i,j− 1

2

B
(

φi,j−φi,j−1

VTH

)

)]

(2.33)

We first generate a rectangular 2-D mesh on a device such as the one shown in

Fig. 2.1. We then solve the coupled drift-diffusion equations on this mesh, using the

Gauss-Seidel method, where the value of a given variable is explicitly written using

the current values of the neighbors. We use this method to get a good guess for

the real solution without diverging between iterations. Next, we setup the Jacobian

matrix for the whole system, and then update the values of our variables adding

corrections calculated using the Newton-Raphson method. This method works well

once we have a good initial estimate; otherwise, our solution diverges. Finally, we

obtain a self-consistent solution for the electrostatic potential φ, electron carrier

concentration n and hole carrier concentration p that satisfies all our equations.

2.2 Quantum Corrected Drift-Diffusion Model

2.2.1 Solving for the Single Particle Schröndinger Equation

We developed a device simulator that is capable of solving the coupled quan-

tum and semiconductor equations. To add quantum corrections to the calcula-

tion of the electron density in MOSFET and SOI-MOSFET channels, we solve the
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Figure 2.2: A CNT embedded SOI-MOSFET.

Schrödinger equation to determine band splitting. (Confinement effects are espe-

cially strong in CNT embedded SOI-MOSFETs shown in Fig. 2.2.) Below is a set

of our quantum semiconductor equations in the order of the Schrödinger, density,

Poisson, electron current continuity and hole current continuity equations [7], [8],

[46]-[49].

Eψ(y) = − h̄2

2m∗
d2

dy2
ψ(y) − qφ(x, y)ψ(y) (2.34)

n =
m∗kT

πh̄2

∑

i

|ψi|2 ln
(

1 + e
Ef−Ei

kT

)

(2.35)

∇2φ = −ρ
ǫ

(2.36)

∂n

∂t
=

1

q
∇ · ~Jn +Gn −Rn (2.37)

∂p

∂t
= −1

q
∇ · ~Jp +Gp −Rp (2.38)

In addition to the previously introduced parameters, Ei, Ef and ψi are the

sub-band energies, Fermi level and wave functions, respectively. Furthermore, we

solve for five unknows; |ψi| (or Ei, which are linearly dependent on each other), Ef ,
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φ, n and p using Eqns. 2.34-2.38 in the order they are listed above.

Our list of quantum-corrected drift-diffusion equations includes the Schrödinger

equation 1.31, which we present below again as a reminder.

[

− h̄2

2m∗
∇2

r + EC(r)

]

ψ3 = ε3ψ3 (2.39)

Here EC(r) accounts for the external and built-in potentials. Since electro-

static potential φ resolves effects of those fields, we replace EC(r) by −qφ(x, y).

Additionally, we solve one-dimensional Schrödinger equations along the MOSFET

channel starting from the Si-SiO2 interface and going down the substrate. There-

fore, we replace ∇r by ∂
∂y

. Moreover, to ascertain average characteristics due to

transport in different energy valleys of silicon, we use the harmonic mean of the

effective masses in different valleys, resulting in 1
m∗

= 1
3

(

1
mt

+ 1
mt

+ 1
ml

)

to be used

in Eqn. 2.34. Subscripts t and l refer to the transverse and longitudinal directions,

respectively. In addition, mt=0.19mo and ml=0.9mo for the Si, where mo is the free

electron mass.

We calculate the quantum electron concentration using the density (or what

we also call the population) equation 2.35. We derive this equation using the two-

dimensional density of states associated with the parabolic bands, and the Fermi-

Dirac statistics, as shown below.

n =
∫ ∞

Ei

∑

i

m∗

πh̄2 |ψi|2




1

1 + e
E−Ef

kT



 dE (2.40)

Since the sum does not affect the argument of the integral, we can first inte-
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grate and then do the sum, as follows.

n =
m∗

πh̄2

∑

i

|ψi|2
∫ ∞

Ei





1

1 + e
E−Ef

kT



 dE (2.41)

This gives the density equation 2.35 once the above integral is evaluated.

n =
m∗kT

πh̄2

∑

i

|ψi|2 ln
(

1 + e
Ei−Ef

kT

)

(2.42)

We first solve the system classically using Eqns. 2.36-2.38. At this stage, we

do not include the effects of quantum confinement in the channel. The carrier con-

centrations are determined by the solution of the continuity equations through the

use of the Scharfetter-Gummel discretization scheme. Once a classical solution for

the device is obtained, we add the effects of quantum confinement in the MOSFET

channel by solving Eqns. 2.34-2.35 in addition to Eqns. 2.36-2.38. The potential

well introduced at the Si-SiO2 interface would change the current drive and carrier

concentration considerably, especially for submicron devices. Thus, we incorporate

the effects of quantum confinement in the channel. The carrier concentration low-

ering due to quantum confinement can be thought as bandgap broadening. This

fact in turn modifies the local intrinsic carrier concentration. Thus, it introduces an

additional spatial dependency on the intrinsic carrier concentration, which can be

treated using an effective potential in current densities. This can be better under-

stood by examining the electron current equation written below (the same is also

true for the hole current continuity equation):

Jn = −qnµn∇φn (2.43)

Here, φn is the electron quasi-fermi level. It can be expanded in terms of the
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electrostatic potential, φ, electron carrier concentration, n, intrinsic carrier concen-

tration, no, and the thermal voltage, VTH, as follows:

φn = φ− VTH ln
n

no

(2.44)

For a homostructure without confinement, no is constant; however, no differs

due to confinement. Multiplying both numerator and denominator of the logarithm

in Eqn. 2.44 by the bulk no, which is the silicon’s no (nSi
o ), we get the following

expression for the φn:

φn = φ− VTH ln

(

nSi
o

nSi
o

n

no

)

(2.45)

= φ+ VTH ln
no

nSi
o

− VTH ln
n

nSi
o

(2.46)

We then substitute φn back into Eqn. 2.43. This introduces an offset next to

the intrinsic potential φ inside the gradient term, which is equal to zero outside the

MOSFET channel. We below show these steps mathematically.

Jn = −qnµn∇
(

φ+ VTH ln
no

nSi
o

− VTH ln
n

nSi
o

)

(2.47)

= −qnµn∇
(

φ+ VTH ln
no

nSi
o

)

+ qnµnVTH

∇n/
nSi

o

n
/

nSi
o

(2.48)

Next, we write the resulting current equation as follows:

Jn = −qnµn∇
(

φ+ VTH ln
nQM

nCL

)

+ qµnVTH∇n (2.49)

Here, nQM is the quantum corrected electron concentration calculated using

the discrete energies and corresponding occupation probabilities for the channel.

On the other hand, the reference level nCL is the classical solution simulated before.
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Their ratio is equal to the ratio of the space-dependent (due to confinement) and

the bulk intrinsic carrier concentrations. Thus, this offset takes care of the spatial

dependency of the intrinsic carrier concentration and resolves the confinement effects

using the drift-diffusion model.

2.2.2 Resolving Quantum Effects Using Density Gradient Formalism

We developed a device simulator that is capable of solving the semiconductor

equations with quantum corrections. To add quantum corrections to the calculation

of the electron density in the MOSFET channel, we use a quantum effective potential

in addition to the electrostatic potential. Next, we show our set of our quantum

semiconductor equations in the order of the Poisson, electron current continuity and

hole current continuity equations [7], which is followed by the quantum effective

potential term [46].

∇2φ = −ρ
ǫ

(2.50)

∂n

∂t
=

1

q
∇ · ~Jn +Gn −Rn (2.51)

∂p

∂t
= −1

q
∇ · ~Jp +Gp −Rp (2.52)

φQM =
2h̄2

12q
√
n

[

1

m||

∂2
√
n

∂x2
+

1

m⊥

∂2
√
n

∂y2

]

(2.53)

Investigations show that carrier confinement at the Si-SiO2 interface can sig-

nificantly reduce the carrier concentration adjacent to the interface [50]-[55]. In

addition, there can be band-to-band and source-to-drain tunneling effects in ultra

short channel devices. To incorporate these quantum effects in our device model,

we use a density gradient formalism. The density gradient theory is based on an
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approximate many-body quantum theory [51]. It has been shown that the density

gradient theory resolves the effects of the MOSFET channel confinement [52, 53],

band-to-band and source-to-drain tunneling [53, 55]. In this formalism, quantum

effects are included by the introduction of an effective potential term that is propor-

tional to the second derivative of the square root of the electron density normalized

by the square root of the electron density, as shown in Eqn. 2.53 [51]-[59]. Here x is

parallel to the MOSFET channel, and y is normal to x. We also use direction and

location dependent effective masses if data are provided.

As described in the previous section, we treat the quantum induced effects in

a manner that is analogous to the formation of position dependent heterostructures

in the quantum well. Thus, we sum quantum effects in the carrier concentration

term, where quantum confinement is reflected as bandgap broadening or lowering.

This methodology introduces an extra potential term as follows:

kT

q
ln
nQM

nCL

, (2.54)

where

nQM

nCL

= exp

[

h̄2

6kT
√
n

(

1

m||

∂2
√
n

∂x2
+

1

m⊥

∂2
√
n

∂y2

)]

. (2.55)

Here subscripts refer to quantum (QM) and classical (CL) solutions. We next

incorporate the above term into the current equation to account for the quantization

effects on transport.

Jn = −qnµn∇(φ+ φQM) + qµnVTH∇n (2.56)

As before, we first solve Eqns. 2.50-2.52 for the classical case, where φQM = 0.
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Figure 2.3: A CNT embedded silicon MOSFET.

After we obtain a solution for the classical case, we include corrections to Eqns. 2.50-

2.52 calculating values for φQM using Eqn. 2.53.

2.3 Heterostructure Corrected Drift-Diffusion Model

We developed a device simulator to obtain performance details in devices that

have other materials in addition to silicon in their active regions. To characterize

the performances of these devices, we resolve barrier effects at the junctions between

these materials and silicon. In addition, we resolve transport details in these ma-

terials and at the barriers. More specifically, we determine the interaction between

the Si and the CNT by resolving transport and field effects self-consistently, in a

CNT embedded MOSFET like the one shown in Fig. 2.3.

To find the effects of heterostructure barrier formations on transport in the

MOSFET channel, we use a modified set of drift-diffusion equations. Our modifica-
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tions take into account differences in bandgaps and affinities associated with the Si

and the CNT. We incorporate these effects into our current equations using effec-

tive potentials similar to the ones employed to account for the quantum effects. The

governing equations are listed below in order the Poisson, CNT-Si electron current

continuity, and CNT-Si hole current continuity equations.

∇2φ = −ρ
ǫ

(2.57)

∂n

∂t
=

1

q
∇ · ~Jn +Gn −Rn (2.58)

∂p

∂t
= −1

q
∇ · ~Jp +Gp −Rp (2.59)

We next define electron and hole current densities Jn and Jp, as follows:

Jn = −qnµn∇(φ+ φn
HS) + µnkT∇n (2.60)

Jp = −qpµp∇(φ− φp
HS) − µpkT∇p (2.61)

Here, φHS accounts for the CNT-Si barrier effects, which is composed of two

parts. The first part is for resolving effects associated with the differences in in-

trinsic carrier concentrations due to the differences in bandgaps. The second part

is for resolving the discontinuities at the conduction and valence bands due to the

differences in electron affinities and bandgaps.

To obtain a form for the effective potential that accounts for the differences

in intrinsic carrier concentrations, we start with the standard expression for the

current as the gradient of the quasi-Fermi potential:

Jn = −qnµn∇φn (2.62)

Next, we introduce the familiar relationship between the quasi-Fermi potential,
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electrostatic potential, and the intrinsic carrier concentration. However, for the

CNT-Si structure, the intrinsic carrier concentration, no, has spatial dependence.

φn = φ− kT

q
ln

n

no

(2.63)

We now multiply the numerator and the denominator of the argument of the

logarithm by a constant, which is equal to the intrinsic silicon carrier concentration

to obtain the following expression for φn:

φn =

(

φ+
kT

q
ln
no

nSi
o

)

− kT

q
ln

n

nSi
o

(2.64)

Substituting Eqn. 2.64 into Eqn. 2.62, we obtain the revised expression for the

electron current density:

Jn = −qnµn∇
(

φ+
kT

q
ln
no

nSi
o

)

+ µnkT∇n (2.65)

Here, no is the intrinsic carrier concentration at a grid point on our device,

and nSi
o is the intrinsic carrier concentration of silicon. We note that no takes on

the intrinsic carrier concentration of either the CNT or the Si, depending on the

location within the CNT-Si device. The potential within the gradient of Eqn. 2.65

includes the electrostatic potential and an effective potential due to the bandgap

variations in the CNT-Si structure [50, 60]. However, CNT and Si also have dif-

ferent electron affinities that would change the potential barrier between these two

materials. Therefore, we next introduce an additional effective potential term that

arises due to the different electron affinities on both sides of the CNT-Si barrier. In

Eqn. 2.60, we sum the effects of the variations of the bandstructure and the electron
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affinities in φn
HS, which for electrons is defined as follows [60]:

φn
HS =

1

q
(χ− χSi) +

kT

q
ln
no

nSi
o

(2.66)

Here, χ is the electron affinity at a grid point on our device and is either equal

to χSi or χCNT . We subtract χSi from χ because our reference material is the Si,

as pointed out in Eqn. 2.64. With addition of the new term that incorporates the

difference in electron affinities, the electron current density becomes:

Jn = −qnµn∇
[

φ+

(

1

q
(χ− χSi) +

kT

q
ln
no

nSi
o

)]

+ µnkT∇n (2.67)

We can also apply the same arguments to holes. Thus, one would find the

corresponding effective potential expression for holes as written below:

φp
HS = −1

q
(χ+ EG − χSi − ESi

G ) − kT

q
ln
no

nSi
o

(2.68)

Here, bandgap EG, like χ and no, refers to the same material in space. It

takes on the bandgap value of either the CNT or the Si depending on the location

within the CNT-Si device. We note that this formalism does not account for atomic

bonding details, which could give rise to interface states and complicated junctions.

These effects would likely be accounted for in the present model through the Poisson

and transport equations, the Fermi level and the mobility.

2.4 Thermal Effects Included in a Drift-Diffusion Model

To incorporate self-heating effects on device performance, especially of Silicon-

On-Insulator (SOI) MOSFETs shown in Fig. 2.4, we developed an efficient self-

consistent method for the inclusion of self-heating effects into the drift-diffusion
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Figure 2.4: An SOI-MOSFET.

model. To resolve self-heating, we solve modified semiconductor equations. Our

technique enables use of the traditional solvers for the semiconductor equations

by resolving temperature effects using quasi-self-heating potentials, which can be

treated similarly to those that arise due to differences in bandgap variations and

work functions.

We build on our device simulator [61, 62] to solve the coupled semiconductor

equations for predicting ultra-small channel thickness SOI device performances. We

list our semiconductor equations from 2.69 to 2.72 in the order of the Poisson,

electron current continuity, hole current continuity, and the heat flow equations.

∇2φ = −ρ
ǫ

(2.69)

∂n

∂t
=

1

q
∇ · ~Jn +Gn −Rn (2.70)

∂p

∂t
= −1

q
∇ · ~Jp +Gp −Rp (2.71)
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C
∂T

∂t
= ∇ · κ ~∇T +H (2.72)

To achieve coupling between state variables (φ , n, p, T ), we use the auxiliary

relations 2.73, 2.74 and 2.75 for electron and hole current densities, and Joule heating

(heat generated), respectively.

Jn = −qnµn∇(φ+ φn
SH) + µnkT∇n (2.73)

Jp = −qpµp∇(φ− φp
SH) − µpkT∇p (2.74)

H = −(Jn + Jp) · ∇φ (2.75)

Here, we make use of the quasi-self-heating potentials φn
SH and φp

SH, which are

employed as additional terms to the electrostatic potential. Next, we explain the

origins of these self-heating potentials. Moreover, these quasi-potentials enable us

to treat lattice heating as a mechanism that causes bandgap variations and band

discontinuities.

To obtain an expression for the electron quasi-self-heating potential, we start

with the familiar expression for the electron current, which states that the current

is proportional to the gradient of the quasi-Fermi potential, as given below.

Jn = −qnµn∇φn (2.76)

We can also express the quasi-Fermi potential in terms of the state variables φ

and n as in Eqn. 2.77, where temperatures and intrinsic carrier concentrations are

functions of space.

φn = φ− kT

q
ln

n

no(T )
(2.77)
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To remove the space dependent temperature term in front of the logarithm,

we employ the equivalent form given in Eqn. 2.82 for the built-in potential.

kT

q
ln

n

no(T )
=

kTo

q
ln

(

n

no(T )

)
T
To

(2.78)

=
kTo

q
ln





n

no(T )

(

n

no(T )

)
T−To

To



 (2.79)

=
kTo

q
ln

n

no(T )
+

(T − To)

To

(

kTo

q
ln

n

no(T )

)

(2.80)

=
kTo

q
ln

n

no(T )
+

(T − To)

T

(

kT

q
ln

n

no(T )

)

(2.81)

=
kTo

q
ln

n

no(T )
+

(T − To)

T
(φ− φn) (2.82)

We next multiply the numerator and the denominator of the term inside the

logarithm in Eqn. 2.82 with the intrinsic carrier concentration evaluated at room

temperature.

kTo

q
ln

n

no(T )
=

kTo

q
ln

(

no(To)

no(To)

n

no(T )

)

(2.83)

=
kTo

q
ln

n

no(To)
+
kTo

q
ln
no(To)

no(T )
(2.84)

Thus, the net built-in potential term in Eqn. 2.77 takes the form given in

Eqn. 2.85.

kT

q
ln

n

no(T )
=
kTo

q
ln

n

no (To)
+
kTo

q
ln
no (To)

no (T )
+

(T − To)

T
(φ− φn) (2.85)

The first term on the right-hand-side of Eqn. 2.85 is the built-in potential with-

out considering self-heating effects. Thus, the resulting quasi-self-heating potentials

for electrons and holes are shown in Eqns. 2.86 and 2.87, respectively.

φn
SH =

kTo

q
ln
no (T )

no (To)
+

(T − To)

T
(φn − φ) (2.86)

φp
SH =

kTo

q
ln
no (T )

no (To)
+

(T − To)

T
(φ− φp) (2.87)
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Comparing these expressions to those used for heterostructures, we can say

that the first terms on the left-hand-side of Eqns. 2.86 and 2.87 account for the

changes in built-in potential due to bandgap variations by temperature. Conse-

quently, the second terms in those equations are analogous to terms used in het-

erostructures to resolve band discontinuities or differences in electron affinities.

2.5 Chapter Summary

In this chapter, we described the drift-diffusion model that includes the Pois-

son, and the electron and hole current continuity equations. We also gave forms for

the auxiliary equations such as current densities and net charge in terms of the state

variables φ, n and p. This provides coupling and closure for the three equations and

three unknows.

Next, we introduced corrections that are necessary to resolve quantum effects.

We showed two different methods to obtain corrections; first by solving the single

particle Schrödinger equation, and second by using the density gradient formalism.

When we employ the former method, we solve one-dimensional Schrödinger equa-

tions along the MOSFET channel direction starting from the Si-SiO2 interface and

going down the substrate enough distance away from the potential well formed at

the interface. We then self-consistently solve the coupled semiconductor equations

using an effective potential approach, where a quantum effective potential is added

to the electrostatic potential in current densities. Likewise, the latter method also

uses an effective potential term that is calculated from the classically calculated elec-
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tron concentration. The expression for this effective potential term can be derived

using the one particle Wigner function, and expanding it in h̄ [63, 64].

Using the same effective potential approach, we derived correction terms that

enable us to resolve heterostructure and self-heating effects. In the following chap-

ters, we use our modified equations including one or more of these effects to deter-

mine device performance figures.
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Chapter 3

Carbon Nanotube Modeling

We report Monte Carlo (MC) simulation results that show position-dependent

velocity oscillations and length effects in semiconducting single-walled zig-zag car-

bon nanotubes, as shown in Fig. 3.1. The simulations show velocity oscillations

at Terahertz frequencies, which approach phonon frequencies, and velocity values

reaching 7×107cm/s. Also, our investigations on length effects show that average ve-

locity first overshoots, then rolls off as the tube length increases, and finally reaches

its steady state value. In addition, we include quantum effects due to finite lengths

of the tubes, as well as their circumference.

In recent years, carbon nanotubes have prompted researchers’ interest as po-

tential candidates for use in nanoscale electronics [15, 34, 46, 65]. This is due to

their favorable structural and, especially, electrical characteristics such as high elec-

tron velocities approaching 1×108cm/s at high fields and 1×107cm/s at low fields,

resulting in low-field electron mobilities as much as ten times higher than that of

Figure 3.1: A single wall zig-zag carbon nanotube, with fundamental indices n and
m = 0, and length L.
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Si. Additionally, they exhibit negative differential velocities (NDV), similar in that

respect to GaAs, opening possibilities for their use in oscillators and, therefore,

communication networks. When used in circuits, our simulations indicate that they

may oscillate at very high frequencies in the terahertz range, enabling data rates ap-

proaching terabits per second. Thus, to fully investigate potential gains due to CNT

usage in nanoelectronics, we developed an MC CNT simulator to extract pertinent

electrical CNT parameters.

CNTs are hollow tubes rolled up from planar graphite sheets (graphene).

Single-walled CNTs have nanometer-scale diameters ranging from several to a few

hundred angstroms. A CNT can be uniquely identified by its fundamental indices

n and m, which are the coefficients of the unit vectors of the hexagonal graphite

lattice used to specify the wrapping angle and the diameter. We can also relate the

electrical properties of a CNT to its fundamental indices n and m such that they are

metallic if n−m is a multiple of three [16], or else, semiconducting with a bandgap

inversely proportional to
√
n2 +m2 + nm [17, 18]. (In this chapter, n does not refer

to electron concentration unless stated otherwise as in intrinsic carrier concentration

no, which will be mentioned toward the end of this chapter.)

Here, we concentrate on the most studied single-walled semiconducting CNT

topology, which is the zig-zag (n,m = 0). From now on, “CNT” means semicon-

ducting single-walled zig-zag carbon nanotubes. We have developed a Monte Carlo

simulator for CNTs, and have used it to investigate average electron velocity as a

function of position. We have also calculated average electron velocity as a function

of tube length, for tubes of various indices. Next, using average velocity versus ap-
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plied field curves, we have derived mobility models to be used in device simulators.

To fully characterize the CNTs in our device simulators, we have also extracted addi-

tional CNT electrical parameters such as intrinsic carrier concentration and electron

affinity. We first briefly describe our Monte Carlo simulator, and then show our cal-

culated results, which are in agreement with theoretical [17, 18] and experimental

[20, 21] data.

3.1 Energy Dispersion Relations

We first employ a Monte Carlo (MC) simulator [17, 18] to characterize funda-

mental transport properties of CNTs. Then, we incorporate these properties into

our device simulators. These properties include electron drift velocity versus electric

field curves, as well as CNT mobilities for zig-zag single wall CNTs. (The zig-zag

CNT is probably the most studied semiconducting nanotube topology. Semicon-

ducting zig-zag CNTs have fundamental indices (n, 0), where n takes on integer

values other than multiples of three.) To obtain these properties, we begin with

the physical CNT system, where electrons are confined around the circumference,

and move relatively freely along the tube in the direction of the longitudinal axis.

Therefore, one can write the appropriate plane wave solutions that satisfy periodic

boundary conditions, distinguished by the quantum number β, for the given CNT

circumference. However, along the tube, electrons are not confined for long tubes.

Thus, the wavevector can be written as follows:

~k = kz ẑ +
2β

d
θ̂ (3.1)
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Here ẑ is parallel to the tube axis, and θ̂ is the unit vector along the circumfer-

ence. Discrete values around the circumference, β, are bounded by the fundamental

tube index ±n, to take advantage of the symmetry lines in the CNT Brillouin zone.

In the simulator, electrons drift due to an external field along the length of

the tube in real space, and in one of the first three lowest CNT energy subbands

in the energy-momentum space until they probabilistically scatter with acoustic or

optical phonons. They then start traveling again on the tube with their new energy

and momentum that are calculated using the energy and momentum conservation

laws. This process is repeated until the electron exits the tube from one end. Here,

we consider scattering by optical and acoustic phonons, causing inter and intra

subband, and inter-valley and intra-valley transitions. Both scattering mechanisms

are treated within the deformation potential method using the Fermi’s Golden Rule

[17, 18].

3.1.1 Monte Carlo for Long Tubes: The Continuum Model

Due to confinement around the circumference, the bandstructure splits into a

system of subbands when graphene is wrapped into a CNT. Each of the subbands

has a characteristic effective mass, mobility and band energy minima. We determine

the energy levels of CNTs by applying zone-folding methods to graphene [16]. From

the two-dimensional graphene band diagram, we cut one-dimensional slices, whose

numbers and locations are set by the fundamental tube indices (n, 0). The resulting

CNT (n, 0) energy dispersion relation, which is determined by applying zone-folding
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methods to the graphene energy dispersion relation that is calculated using the tight

binding model [16], is shown below (In this chapter, E is used for the energy and F

is used for the field):

E(kz, β) = ±γ
√

√

√

√1 + 4 cos

(

Tkz

2

)

cos

(

πβ

n

)

+ 4 cos2

(

πβ

n

)

(eV) (3.2)

Here, T is the length of the translational vector, which is equal to 4.26Å for

the zig-zag tubes. Also, we use 3eV for the nearest-neighbor π-hopping integral γ

[16]. Now, we determine the lowest three subbands, using the above expression. We

first take the derivative of Eqn. 3.2 with respect to kz, or k (= kz).

∣

∣

∣

∣

∣

dE

dk

∣

∣

∣

∣

∣

= 9

∣

∣

∣

∣

∣

∣

T sin
(

Tk
2

)

E

∣

∣

∣

∣

∣

∣

(3.3)

For the k values that give subband minima, the derivative of Eqn. 3.2 is zero.

Since sin
(

Tk
2

)

is zero when k is zero, we have an energy minimum of each subband

at k = 0. Moreover, we also need to check the boundaries. However, in this case,

energy values at the boundaries (± π
T

) are higher than energy values at k = 0.

Next, we determine wavevector indices, β, for the lowest three subbands by

searching for the integers from zero to n that give the lowest three values for E(0, β).

To shorten our search time, we take the derivative of Eqn. 3.2 with respect to β at

k = 0.
∣

∣

∣

∣

∣

dE

dβ

∣

∣

∣

∣

∣

k=0

= 6
π

n

∣

∣

∣

∣

∣

sin

(

πβ

n

)(

1 + 2 cos

(

πβ

n

))∣

∣

∣

∣

∣

(3.4)

The above derivative tells us that the lower subbands are either around β = 0

or β = 2n
3

. From E(0, β) = ±3
∣

∣

∣1 + 2 cos
(

πβ
n

)∣

∣

∣, we can show that they are around

β = 2n
3

. Since β takes on integer values, β for the lowest subband is 2n
3

rounded to
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the nearest integer. Furthermore, we can also find the β values using the Brillouin

zone. More specifically, from geometrical considerations in the Brillouin zone, we

also found β, for the lowest subband, equal to 2n
3

rounded to the nearest integer.

Additionally, since cosine is an even function, −β and β give the same energy.

Therefore, we here have two identical valleys with each having three subbands.

3.1.2 Finite CNT Length: Incorporating Quantization Effects

We consider effects due to finite length of the tubes, which lead to discretiza-

tion in energy dispersion curves, as shown in Fig. 3.2. For a zig-zag tube, the

length of the translational vector is roughly 4.26Å; therefore, maximum electron

momentum, which is equal to pi (π) over this value, is approximately 0.74Å−1. Fur-

thermore, minimum momentum step is related to the length of the tube, which is

2π/L. Figure 2 shows the steps we have for a 5nm long tube. Also, for the longest

tube we simulate, which is 100nm long, we have about twenty times more steps.

Using this information, we include the finite contribution of longitudinal quanti-

zation on electron transport during our simulations. We calculate scattering rates

using the continuous band. We have modified our MC simulator to account for this

quantization. In our modified MC, the electron drifts along the tube until it hits an

energy step that needs to be overcome to achieve higher momentum values (This is

true only for positive momentum values). At this point, we determine reflection and

transmission probabilities for this barrier. We below show the backward (reflection)

scattering rate for an electron with a momentum k at the edge of a step, which is

54



−0.75 −0.5 −0.25 0 0.25 0.5 0.75

1

2

3

4

5

k [1/Ao]

E
 [e

V
]

a)

−0.75 −0.5 −0.25 0 0.25 0.5 0.75

1

2

3

4

5

k [1/Ao]

E
 [e

V
]

b)

Figure 3.2: a) Discretization of the energy dispersion curves of a 5nm long n=10
CNT (T=0.46nm). b) Energy dispersion relations for the first three subbands of an
infinitely long n=10 CNT.
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2π/L (=∆k) wide.

Γref =

(

∆k

2k

)2

(3.5)

When an electron, with momentum k1 and energy E(k1), hits an energy barrier

∆E, upon successful transmission, it has a new momentum k2 that satisfies the

energy conservation written below:

E(k2) = E(k1) + ∆E (3.6)

For such a system, the transmitted and reflected power ratios [66] are:

R =

(

k2 − k1

k2 + k1

)2

(3.7)

T = 1 −R. (3.8)

In our case, k2 −k1 is 2π/L. Since the electron keeps gaining energy due to the

applied field according to the continuum model, to retain consistency, it does not

suddenly gain energy if transmitted. Therefore, k2 + k1 becomes 2k1. Depending

on the likelihood of transmission, the electron either continues gaining momentum

until it hits the next step or reflects back to negative momentum values (−k1).

The longer the CNT (∆k → 0), the smaller the barriers become, with reflection

coefficients approaching zero and the continuum approximation for long tubes.

3.1.3 Phonon Energy Dispersion Relations

To obtain CNT phonon energy spectra, we start from the phonon dispersion

curves of the graphene. We first calculate the graphene phonon spectra using the

forth nearest neighbor force constant model, where force —equivalently, spring—
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constants determine the inter-atomic interactions. We derive this model from the

equation of motion, as follows [16].

Mi
∂2ui

∂t2
=
∑

j

Kij(uj − ui) (i, j = 1, 2, 3...) (3.9)

Above, i and j represent one of the N atoms in the unit cell. In addition,

Mi and ui are the mass and the location of the ith atom, and the force constant

between the ith and the jth atoms is Kij.

To obtain phonon spectra, we first apply a Fourier transform, and substitute

ui with 1√
N

∫

e−i(~k·~ri−ωt)uki
dk. In the exponential, the coefficient i is the complex

number
√
−1. Moreover, this gives the following equation of motion

−ω2Mi
1√
N

∫

e−i(~k·~ri−ωt)uki
dk =

∑

j

Kij

(

1√
N

∫

e−i(~k·~rj−ωt)ukj
dk − 1√

N

∫

e−i(~k·~ri−ωt)uki
dk

)

(3.10)

Canceling out common terms from both sides, and using the orthogonality

condition, we get a matrix equation of the form Auk = 0, where uk = [uk1 ..uki
..ukN

]T .

The diagonal elements of A are
(

∑

j Kij −Miω
2
)

−Kiie
i~k.(~ri−~ri). Additionally, the

off-diagonal elements of A are −Kije
i~k.(~ri−~rj). Furthermore, for different k values,

we find the corresponding eigenvalues of A. Tracing over all ks gives the dispersion

curve of the material.

Graphene has two atoms in its unit cell, as shown with the closest pairs of AB

along the x axis in Fig. 3.3. We use the force constants to find Kij between the given

atom (A or B), and its neighbors. Below, we write in Table 3.1 the force constants

in the x (radial), y (transverse in-plane) and z (transverse out-of-plane) directions
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Table 3.1: Spring constants, in N (kg·m/s2), of the graphene in x (radial), y (trans-
verse in-plane) and z (transverse out-of-plane) directions, shown in Fig. 3.3, for the
first to the forth nearest neighbors [16].

Kx1 = 3.65 Ky1 = 2.45 Kz1 = 0.982
Kx2 = 0.88 Ky2 = −0.323 Kz2 = −0.04
Kx3 = 0.3 Ky3 = −0.525 Kz3 = 0.015
Kx4 = −0.192 Ky4 = 0.229 Kz4 = −0.058

[16]. To find the force constants in any other direction, we rotate the force constants’

matrix by θ using the rotation matrix U and transformation K
′

= U−1KU .

U =





















cos θ sin θ 0

− sin θ cos θ 0

0 0 1





















(3.11)

We next show our calculated phonon dispersion curves in Fig. 3.4, using the

prescription described before. We take the mass of a carbon atom in the graphene

as about 12mo, where mo is the free electron mass. Additionally, bond lengths

in Fig. 3.3 are 2.49Å. Furthermore, to find the dispersion curves of the CNT, we

approximate the dispersion curves of graphene around the Γ and K points, which are

important for transport. We then calculate the phonon energy spectrum by applying

zone-folding methods to graphene. Our calculated energy dispersion relations for

acoustic and optical phonons can be found in [18]. We give a generalized formula

for our dispersion curves below:

Ep(q, η) = Epo
(η) + h̄υs|q|θ

(

|q| − λ|η
d
|
)

(3.12)

Here q, η, θ and λ are respectively the phonon wavevector along the length of
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Figure 3.3: Four nearest neighbors of the two atoms, solid circle A in a) and solid
square B in b), in the graphene unit cell [16].
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Figure 3.4: The graphene phonon dispersion curves along the symmetry lines.

the tube, phonon wavevector index around the circumference of the tube, a disper-

sion coefficient and a kink factor that is zero for optical phonons and one for acoustic

phonons. Additionally, d is the diameter of the tube and υs is the longitudinal sound

velocity in graphene, which is 200Å/ps.

3.2 Scattering Rates

To determine the electron-phonon scattering rates, we employ the deformation

potential approximation and Fermi’s Golden Rule [18]. In this scheme, the total

scattering rate (Γi(k)) for an electron in subband i with a wavevector k (and βi)

to any other subband j by absorbing or emitting an intra-valley (q, η = βi − βj) or

inter-valley (q, η = βi − βj ± (2n)) phonon can be written as follows:

Γi(k) =
∑

q

h̄D2Q2DOSj(E(k + q, βj))

2ρEp(q, η)

[

N(q, η) ± 1

2

]

(3.13)

Here, D is the deformation potential taken to be 9eV, Q is a wavevector for
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optical and acoustic phonons, DOS is the density of states calculated by the inverse

slope of Eqn. 3.2, ρ is the linear mass density, and N is the Bose-Einstein phonon

occupation number at equilibrium. Additionally, the above sum has non-vanishing

values for phonon wavevectors that satisfy energy and momentum conservation laws:

δ (E(k+q,βj) − E(k, βi) − Ep(q, βi − βj ± (2n)).

We below show the density of states. It has singularities near the band minima,

where k and sin(k) are zero. To avoid numerical problems, we add an epsilon to k

when it is exactly zero. For proper handling of this, we need to use the collision

broadening concept. However, our investigations show that they give the same

results for this problem, enabling us to use the aforementioned truncation for fast

computation.

DOS(k, β) =

∣

∣

∣

∣

∣

∣

E(k, β)

9T sin
(

Tk
2

)

∣

∣

∣

∣

∣

∣

(3.14)

In addition, the zig-zag CNTs have a number 2n of hexagons in their unit cells,

with each hexagon weighing M (12mo). Therefore, the linear mass density is 2nM
AT

,

where T is the length of the translational vector, and A is the Avogadro’s number.

Figure 3.5 shows the scattering rates calculated using Eqn. 3.13 for the lowest

three subbands of n=10 and n=22 CNTs for energies lower than the energy minima

of the fourth subbands. We attribute the peaks in Fig. 3.5 to the singularities

associated with the density of states at band minima. In addition, we observe

oscillatory behavior in the scattering rate curves, which are visible in Fig. 3.5(a)

and 3.5(b) between the first two peaks. We associate this with the slightly different

energies required to emit or absorb a phonon.
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Figure 3.5: Scattering rates from the first, second (lower left corner) and third (on
top of the lower left corner plot) subbands to the lowest three subbands of CNTs
with indices of a) 10 and b) 22. Insets share the same abscissa with the mother plot.
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3.3 Velocity Curves

3.3.1 Position-Dependent Velocity Oscillations

Using our Monte Carlo simulator, we first investigate how local CNT electron

velocities change by varying the applied field. To obtain average local electron

velocities as a function of position, we inject electrons, which are picked from a

Fermi-Dirac distribution, from both sides of the tube. We then keep track of their

position, average energy and momentum. Our calculated average electron velocities

on 100nm-long CNTs with indices of 10 (diameter, d=0.8nm) and 22 (d=1.7nm) are

shown in Figs. 3.6(a) and 3.6(b), respectively. From ∆E
h̄∆k

, which is also equal to l
τ
,

we calculate average velocities. The newly introduced variables ∆E, ∆k, l and τ are

change in total energy, change in total momentum, length and time spent around

the vicinity of a given location, respectively. The two aforementioned methods to

calculate average velocities give the same answer because of the following reasons.

The h̄∆k term is equal to change in momentum ∆p, which is also equal to the

product of the elapsed time ∆t (= τ) and the electric force (qF ) due to the applied

field F . In addition, change in energy due to drift can be calculated from force, due

to the electric field, (qF ) times distance l. Therefore, ∆E
h̄∆k

= qF l
qFτ

, resulting in l
τ

that

was shown before.

Simulations predict velocity oscillations at Terahertz frequencies, with a high-

est frequency of approximately 30THz among the simulated cases. From the veloc-

ity versus location curve of the n=10 tube under 100kV/cm, shown in Fig. 3.6a,

we take the average wavelength and velocity of the oscillations roughly as 15nm
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and 4.5×107cm/s. This results in f = 4.5×107cm/s
15×10−7cm

= 30THz. (Here, we have veloc-

ity oscillations in space, which might induce dipole formations within the material.

These dipoles are likely to travel on the CNT, resulting in velocity oscillations in

time. To observe if this phenomenon does indeed occur, transient simulations need

to be performed.)

We associate such high oscillation frequencies with the phonon spectrum and

the one-dimensional nature of the system, which results in the average scattering

rates and momenta that are shown in Fig. 3.6(c). More specifically, Figure 3.6(c)

shows that average scattering rate has oscillations with a period of 16nm (first max-

imum) and 20nm (second maximum) for the first few cycles and at their harmonics

thereafter. Under an applied field of 100kV/cm, an electron will gain 160meV and

200meV after a free flight of 16nm and 20nm, respectively. These 160meV and

200meV energies above the energy band minima correspond to energy differences

sufficient enough to have inter-valley acoustic and optical, and intra-valley and inter-

valley optical phonon emissions in addition to all the other scattering mechanisms.

When this happens, electrons are much more likely to scatter to lower momentum

values where densities of states (equivalently scattering rates to those states in our

one dimensional system) are much higher. This is in agreement with average local

momentum curve shown in Fig. 3.6(c). In addition, we observe that all except a

negligible portion of the electrons travel in the first subband, thus eliminating the

possibility to have the velocity oscillations due to transfer of electrons from the first

to the second subband, and vice versa.

In summary, we theoretically show that one-dimensional CNT system has

64



0 20 40 60 80 100

2.5

3

3.5

4

4.5

5

x 10
7

<
V

>
 (

cm
/s

)

z (nm)

100 kV/cm

 50  kV/cm

 25  kV/cm 

a) 0 20 40 60 80 100

4

4.5

5

5.5

6

6.5

7

x 10
7

<
V

>
 (

cm
/s

)

z (nm)

100 kV/cm
 50  kV/cm
 25  kV/cm

b)

2

4

6

8
x 10

13

<
Γ>

 (
s−

1 )

0 20 40 60 80 100
0.02

0.03

0.04

0.05

z (nm)

<
k>

 (
A

o−
1 )

c)

Figure 3.6: Average local electron velocities on 100nm-long CNTs with indices of
a) 10 and b) 22. c) Average local scattering rate and momentum for the n=10 tube
under F=100kV/cm.
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Figure 3.7: Average velocity of an electron on various length n=10 CNTs

velocity oscillations with Terahertz frequencies, approaching to those of phonons.

This may facilitate very high frequency oscillators similar to Gunn diodes, opening

new paradigms for Terahertz RF electronics.

3.3.2 Length-Dependent Velocity Overshoots

We next show in Fig. 3.7 our calculated average velocity as a function of CNT

length. It shows how the forward and backward currents cancel each other out

yielding an increase in electron velocity for an increase in length. As we increase tube

length, backward current decreases exponentially due to an exponential decrease in

the probability of electrons succesfully travelling the length of the tube in the reverse

field direction, therefore contributing less to the net reverse current. We also have

overshoots from a combination of the previously mentioned scattering mechanisms.
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Figure 3.8: Average electron velocities as a function of applied field on infinitely
long CNTs with indices of 10 and 22.

3.3.3 Continuum Model: Velocity Curves

We last show in Fig. 3.8 our calculated average ensemble electron velocities as

a function of applied field. It shows that velocity first increases linearly with the

applied field, reaches a peak, and then rolls off. This negative differential velocity is

caused by the transfer of electrons, as applied field increases, from the first subband

to the second subband where effective electron mass and velocity is higher and lower,

respectively, than that of the other.

3.4 Mobility Models

Electron mobility can be very high in nanotubes with negligible defect den-

sities. The high mobility is due to small effective masses and low scattering rates
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Figure 3.9: Average electron velocities as a function of applied field on infinitely
long CNTs with indices of 10 and 22.

resulting from the quasi-one-dimensional transport. As electric fields increase, the

scattering rate increases, and mobility decreases. Low-field mobility has been mea-

sured and calculated theoretically to be greater than 105cm2/Vs [17]-[21]. We de-

rived a mobility model based on our MC simulation results of drift velocity versus

electric field curves. These velocity versus field curves are plotted again in the

Fig. 3.9 inset for CNTs with tube indices ranging from 10 to 34, which correspond

to diameters of 8Å to 27Å. Simulations indicate that electron drift velocity first

increases linearly with the applied field, reaches a maximum, and then rolls off,

showing a negative differential mobility (NDM). We find that peak electron veloci-

ties are as much as five times higher than what they are in silicon. Electrons reach

velocities as high as 4.5×107cm/s in large diameter CNTs (n = 34). The maxi-
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mum velocity drops for smaller diameter tubes, which is approximately 3×107cm/s

for n=10. However, the peak velocities in narrow tubes are still larger than the

corresponding velocities in other semiconductors. Calculated results also show that

the critical field, where we have the peak drift velocity, increases from 1kV/cm to

10kV/cm as we reduce the tube diameter from 27Å to 8Å.

Figure 3.9 inset shows three main characteristics of the CNTs. First, CNTs

attain drift velocities larger than other semiconductors. Investigations show that

this is due to small effective masses and decreased scattering rates, which is a result

of the quasi-one-dimensional system. Second, electrons in large diameter tubes have

higher velocities than the ones in small diameter tubes for a given applied field,

unless the applied field is too large. This leads to higher low-field mobilities for

larger diameter tubes. (Low scattering rates on bigger diameter tubes are due to

their higher linear mass densities, which is inversely proportional to the scattering

rate.) Analysis shows that this is due to lower effective masses in the larger diameter

tubes. Third, all CNTs show NDM. They are similar to GaAs in that respect, where

conduction band velocity of the first subband is larger than that of the second.

3.4.1 Field and Index Dependent CNT Mobility

We develop an analytical mobility model for small diameter tubes, considering

the two lowest subbands which dominate the conduction. By that means, we embed

the effects of NDM in our mobility model. We then express the final mobility using
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Mathiessen’s rule, as follows:

1

µ(n, F )
=

1

µ1(n, F )
+

1

µ2(n, F )
(3.15)

Here, µ1(n, F ) and µ2(n, F ) refer to the mobilities in the first and second

subbands, respectively. The mobilities are functions of the fundamental tube index,

n, and the electric field, F . The mobility of the first subband is:

µ1(n, F ) =
µo(n)

1 + F
Fc(n)

(3.16)

Above, µo(n) is the low-field mobility, and Fc(n) is the critical electric field.

The critical electric field corresponds to the peak electron drift velocity. We have

empirically determined the following expressions for the low-field mobility and the

critical field in terms of the tube index n:

µo(n) = 40n2
(

1 +
ρ

n2/3

)

(cm2/Vs) (3.17)

Fc(n) =
1

n3/2

(

1 +
64ρ

n2

)

106 (V/cm) (3.18)

Here, ρ=1-gcd(n+1,3) (= 0, -2), where gcd(n+1,3) is the greatest common

divisor of n+1 and 3. The expression for the low field mobility can be obtained

from the familiar expression µo = qτ/m∗. Results from our previous work on small

diameter tubes, with tube index n less than 37, indicate that τ is proportional to n,

and m∗ is inversely proportional to n [18, 30] thereby giving the quadratic-type form

of Eqn. 3.17. We empirically write the mobility of the second subband as follows:

µ2(n, F ) =
Vmax(n)

F
(

1 + λ F
Fc(n)

) (3.19)
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Here, λ is an empirical parameter which we find to have the value of 0.01.

Vmax(n) is the maximum drift velocity of the electrons, shown in Fig. 3.9 inset. We

find it to be the following function of n:

Vmax(n) = 1.5n1/3
(

1 +
ρ

2n

)

107 (cm/s) (3.20)

In Fig. 3.9, we show our calculated mobility versus field curves, using Eqns.

3.15-3.20. For n=34, low-field mobility is as high as 4×104cm2/Vs, while for n=10

it is approximately 4×103cm2/Vs. Such high mobilities indicate that incorporating

CNTs into MOSFETs may yield high drive currents and transconductances.

We also found that high scattering rates help to validate the use of a mobility

model for the CNTs we simulated, that are about 0.14µm long and ranging in

diameter from 8Å to 17Å. Furthermore, mean free length versus electric field curves

are concave down, like drift velocity versus electric field curves. In addition, the

mean free paths (mfp) range from approximately 10nm to a maximum of 100nm for

the CNTs we use here. For smaller diameter tubes (8Å) the mfp has a narrow peak

value of approximately 30nm [18, 67].

3.4.2 Field and Diameter Dependent CNT Mobility

We convert the field and index dependent CNT mobility into a field and diame-

ter dependent CNT mobility using the following transformation for the single-walled

zig-zag tubes.

n =
dπ

a
(3.21)

Above, d is the diameter of the tube in angstroms, and a is the length of the
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graphene unit vector, which is 2.49Å. Next, using the dimensionless d̂ (=d(Å)/1Å)

in Eqns. 3.15, 3.16 and 3.19, we replace n by d̂π/2.49.

1

µ(d̂, F )
=

1

µ1(d̂, F )
+

1

µ2(d̂, F )
(3.22)

µ1(d̂, F ) =
µo(d̂)

1 + F
Fc(d̂)

(3.23)

µ2(d̂, F ) =
Vmax(d̂)

F
(

1 + λ F
Fc(d̂)

) (3.24)

Now, we have the following diameter dependent parameters to be used in the

above equations.

µo(d̂) = 63.5d̂2
(

1 +
ρ

1.17d̂0.67

)

(cm2/Vs) (3.25)

Fc(d̂) =
1

1.41d̂1.5

(

1 +
40.3ρ

d̂2

)

106 (V/cm) (3.26)

Vmax(d̂) = 1.62d̂0.33
(

1 +
ρ

2.52d̂

)

107 (cm/s) (3.27)

3.4.3 Temperature Dependent CNT Mobility

We have presented our room temperature mobility model. We next include

temperature dependencies in the overall mobility. We use our MC simulation re-

sults to obtain the temperature dependent velocity curves shown in Fig. 3.10. Our

analyses have shown that CNT mobilities are phonon scattering limited down to

100◦K [67], which agrees quite well with a recent experiment [20, 21, 68]. Thus our

MC simulations that take into account longitudinal acoustic and optical phonons

with intra- and inter-valley scatterings would suffice to describe the temperature

dependent CNT behavior.

To formulate the temperature dependency, we follow the methods used for
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Figure 3.10: Electron drift velocities as a function of the applied electric field for
different CNTs varying in diameter and temperature.
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silicon, where a power-law relationship relates the mobility, drift velocity and critical

field values at different temperatures to that of the room temperature [69, 70] as

follows:

µ = µ(To)
(

T

To

)α

(3.28)

V = V (To)
(

T

To

)β

(3.29)

Fc = Fc(To)
(

T

To

)γ

(3.30)

Here α, β and γ are parameters that need to be determined empirically. For

silicon, α ranges from -1.4 to -2.5, and β and γ take on values of -0.87 and 1.55,

respectively [69, 70]. Our calculations for the CNTs yield -0.5, -0.05d̂3/4 and 1.18 for

the powers of low-field mobility, peak drift velocity and critical field, respectively.

According to Fermi’s Golden Rule, temperature dependency of the scattering

rate for the low-field (correspondingly, also low in energy) region is affected mostly

by the density of states, which is inversely proportional to
√
E in a one-dimensional

system. However, integration over possible states yields
√
E, which is proportional

to
√
T . Since low-field mobility is inversely proportional to the scattering rate, α

takes the value of -0.5, which is also the value found from simulations. In addition,

at low temperatures, low-field electron transport is affected by the Bose-Einstein

phonon occupation number, where low-field mobility is inversely proportional to T,

due to expansion of e
h̄ω
kT − 1 = h̄ω

kT
.

We next investigate the temperature dependency of the critical field and the

maximum drift velocity. Critical field increases as temperature rises. We attribute

this to the increase in Bose-Einstein phonon occupation number as temperature
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increases, resulting in higher scattering rates. This reduces average drift velocity for

a given field as temperature increases. Also, due to higher scattering rates, electrons

spend more time in the first subband causing an increase in the critical electric field

as temperature rises. Additionally, we attribute weak temperature dependencies

of maximum drift velocities to the one-dimesional nature of the CNTs. The peak

velocities are affected by lower mobilities and higher critical fields as temperature

increases.

3.4.4 Length Dependent CNT Mobility

So far, we have included the index — equivalently, the diameter—, field and

temperature dependencies into our CNT mobility model. To accurately model the

CNT mobility in short length tubes, we additionally need to consider the length

effects on average CNT electron velocities. To derive an analytical formula that

scales the CNT electron mobility depending on the tube length, we fit the curves

shown in Fig. 3.7 to an analytical expression, using the following relation.

V (z, F ) = V∞
[

1 − e−A(F )z cos(B(F )z)
]

(3.31)

Here, z is the length of the CNT. V (z, F ) is the average velocity on the tube

as a function of tube length and applied field. V∞ is the average CNT velocity on

sufficiently long tubes for an applied field. Furthermore, A(F ) and B(F ) are field

dependent coefficients.

We use the above expression due to the average velocity versus length curves’

resemblance to a unit step response of a second order differential system for the
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damped case [71], as shown in Fig. 3.11(a). The plot in 3.11(a) can be described

using an expression like the one above in Eqn. 3.31.

y(x) = y∞
[

1 − e−Ax cos(Bx)
]

(3.32)

Here, B is 2π
T

, and A is the damping factor [71].

Next, we empirically determine the oscillation period T for the curves in

Fig. 3.7, also shown in Figs. 3.11(b)-3.11(d), as 36nm, 60nm and 100nm for the

applied fields of 100kV/cm, 50kV/cm and 25kV/cm, respectively. These values for

the periods make B(F ) in Eqn. 3.31 equal to
(

π
18nm

) (

3
5

)r
, where r is 0, 1, 2 for

the external fields of 100kV/cm, 50kV/cm and 25kV/cm, respectively. Likewise, we

find that A(F ) = 0.1
(

3
5

)r
, where it is in nm−1. Therefore, analytical expressions

for the fit curves plotted in Figs. 3.11(b)-3.11(d) corresponding to an n=10 tube for

the applied fields of 100kV/cm, 50kV/cm and 25kV/cm are written below:

V (z, 100kV/cm) = 3.5 × 107
[

1 − e−0.1z cos
(

πz

18nm

)]

(cm/s) (3.33)

V (z, 50kV/cm) = 3.4 × 107
[

1 − e−0.06z cos
(

πz

30nm

)]

(cm/s) (3.34)

V (z, 25kV/cm) = 3.1 × 107
[

1 − e−0.036z cos
(

πz

50nm

)]

(cm/s) (3.35)

Next, we find the corresponding length dependency of the CNT mobility. Since

µ = V∞

F
, where V∞ is the average electron velocity on long tube, as mentioned before,

the length dependent mobility for n=10 tube is written as follows (we now denote

length by L):

µ(L, F ) = µ(L∞)
[

1 − e−[0.1( 3
5)

r
]L cos

(

πL

18nm

(

3

5

)r)]

(3.36)
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Figure 3.11: a) Unit response of a second order differential system (damped case).
b), c), d) Average velocity curves of an electron on various length n=10 CNTs for
different applied fields are fitted to an analytical expression given in Eqn. 3.31.
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As previously mentioned, r is 0, 1 or 2 depending on the applied fields of

100kV/cm, 50kV/cm and 25kV/cm, respectively.

3.5 CNT Intrinsic Carrier Concentration

To investigate the effects of embedding a CNT into a MOSFET, we developed

a novel device simulator. One of the fundamental quantities required by our CNT-

MOSFET solver is the CNT intrinsic carrier concentration. Therefore, we develop

a methodology to obtain the intrinsic carrier concentrations of different tubes. We

start from the parabolic energy dispersion approximation. (We approximate bands

like the ones shown in Fig. 3.2 using parabolic energy dispersion relations.) The

density of states for each subband is zero for energies less than the energy minimum

of that particular subband, and becomes the following for energies greater than the

subband energy minimum:

DOS(n, β) =

√

√

√

√

m∗n,β

2h̄2(E − En
β )

(3.37)

Using nondegenerate statistics and the zero energy point at the midgap, we

get the following expression for the intrinsic carrier concentration no as a function

of the fundamental tube index n:

no(n) = 2
1

2π

∑

β

∫ ∞

Eβ

DOS(n, β)e−E/kTdE (3.38)

We then change the variable in the integral from E to t =
E−Eβ

kT
:

no(n) =
∑

β

√

kTm∗n,β

2π2h̄2 e−Eβ/kT
∫ ∞

0
t−1e−tdt (3.39)
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The integral in Eqn. 3.39 can be recognized as the gamma function with an

argument equal to 1
2
, which makes the integral equal to

√
π. The expressions in

Eqns. 3.38-3.39 give the one-dimensional carrier concentration. To obtain the in-

trinsic carrier concentration per unit volume, we calculate the concentration that

would arise by stacking quasi-2-dimensional sheets of CNTs directly on top of each

other to form a 3-dimensional volume filled with nanotubes. Finally, we arrive at

the following formula for the intrinsic carrier concentration, which is a function of

the fundamental tube index n:

no(n) =
∑

β

1

(2.49n/π)2

√

kTm∗n,β

2πh̄2 e−Eβ/kT (3.40)

3.6 CNT Electron Affinity

We also need the electron affinities of different size CNTs in addition to the

intrinsic carrier concentrations to incorporate the effects of the CNT-Si barrier into

the carrier continuity equations. We use the bandgap of the CNT and the electron

affinity of the graphite to obtain the electron affinities of the CNTs. We then calcu-

late CNT affinities by subtracting half the bandgap value of the lowest subband of

the CNT from the electron affinity of graphite, which is 4.4eV [72]. This results in

3.87eV and 4.16eV for the electron affinities of the n=10 and n=22 CNTs, respec-

tively. Comparing these electron affinities to that of the Si (4.05eV), these CNTs

form barriers with opposite signs when they have a junction with the Si.
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3.7 Chapter Summary

In this chapter, we described how we obtain the CNT electrical parameters,

using an MC simulator. We also gave empirically determined analytical expressions

for these parameters such as field, diameter and length dependent electron mobilities,

and electron affinities.

The CNT low-dimensional system results in many interesting transport charac-

teristics. First, we have very high densities of states at band energy minima, causing

spikes in the scattering rates. However, the overall scattering rate still results in very

high electron velocities, approaching 108cm/s. In addition, our calculated mobilities

are as much as five-to-ten times higher than that of the Si. Thus, embedding CNTs

in active device regions may facilitate devices with very high transconductances and

drive currents.

Our simulations also show velocity oscillations on the tubes, reaching tens of

Terahertz. We attribute this to scattering due to phonons with energies of 160meV

and 200meV, leading to voltage controlled, very high frequency oscillators. We

believe that if these can be used as high frequency oscillators, like Gunn diodes,

they would revolutionize future high frequency RF designs. In addition, we also

investigated length effects on average velocities, resolving the quantization effects

due to finite lengths of the tubes. Our calculated results show that average velocity

first overshoots, and then reaches its steady state value.

In the following chapter, we investigate whether the usage of the CNTs in

devices can lead to better device performances. We achieve this by solving for
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the semiconductor equations, including the Si and the CNT barrier, transport and

quantization effects.
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Chapter 4

Carbon Nanotube Embedded Device Modeling

As we approach the end of the semiconductor roadmap, investigators are ex-

ploring new paradigms for electronic devices. Carbon nanotubes (CNTs) are being

explored as a structure that may play a leading role in future electronic systems

[12]-[15]. CNTs are planar graphite sheets (graphene) that are seamlessly wrapped

into tubes. CNTs possess favorable electrical characteristics, and can be fabricated

in dimensions as small as 8Å in diameter. The electrical characteristics of CNTs

vary with the diameter and the wrapping angle of the graphene [16]. Both the

diameter and the wrapping angle can be described by the tube’s fundamental in-

dices (l,m) (Standard notation uses (n,m); however, l is used here instead of n to

avoid confusion with electron concentration). Theory indicates that CNTs can be

metallic or semiconducting depending on the fundamental tube indices (l,m), with

bandgap of the semiconducting tube inversely proportional to the CNT diameter.

Experimental and theoretical analyses show semiconducting CNTs having electron

mobilities even higher than 105cm2/Vs, with peak drift electron velocities that can

be as much as five times higher than that of silicon [17]-[21]. It has also been shown

that tubes can be doped by donors and acceptors [22]-[24], and low resistance con-

tacts can be made to tubes [25]-[29]. Experiments and calculations also indicate that

CNTs may facilitate devices with large transconductances and high drive currents
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Figure 4.1: Simulated CNT-MOSFET device.

[20]-[40]. Experiments also have demonstrated the viability of CNT-based FETs

[34, 35], and CNT-SOI type MOSFETs [36, 37]. Furthermore, preliminary research

has been done to model and design CNT embedded bulk MOSFETs [30, 31].

In this chapter, we investigate several hypothetical CNT-MOSFET devices,

similar to the one shown in Fig. 4.1. Our calculations indicate that if successfully

fabricated, CNT-MOSFETs can have improved device performance over conven-

tional MOSFETs [30, 31]. To investigate the potential attributes of the new design,

we developed a methodology for modeling nanoscale CNT-MOSFETs. It includes

determination of the electrical characteristics of single wall zig-zag CNTs, and the

merging of the CNT results into our quantum device solver. To electrically char-

acterize the CNT, we developed a Monte Carlo (MC) simulator for CNTs. Using

the MC simulator described in the previous chapter, we first calculate electron and

phonon dispersion relations for single wall zig-zag CNTs with different tube indices

l. We then derive the selection rules and the scattering matrix elements, using the
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Fermi’s Golden Rule. Using the MC results, we derive analytical models for CNT

parameters such as mobility and density of states. Once we obtain CNT param-

eters, we import them to our quantum device solver. Our device solver is based

on the semiconductor equations, modified to account for the CNT-silicon (CNT-Si)

barrier [38, 39] and quantum effects. We solve these coupled equations on a mesh

within our CNT-MOSFET device. The solution gives results, which include CNT-

MOSFET current voltage curves, and the electron concentration profile in both the

bulk MOSFET and the CNT enhanced channel. In addition, we also do similar

analyses for CNT embedded SOI-MOSFETs.

Next, we show the methodology developed to obtain device performance de-

tails of CNT-MOSFETs. We first show our algorithm to resolve the quantum and

the CNT-Si barrier effects. After we give an insight to our CNT-Si device simu-

lator, we present our calculated results for the CNT-MOSFETs. We then apply

the same methodology to CNT embedded SOI-MOSFETs, and show our calculated

performance details for these devices.

4.1 Quantum Modeling and Proposed Designs of Carbon Nanotube

(CNT) Embedded Nanoscale MOSFETs

We propose a novel MOSFET design that embodies single wall zig-zag semi-

conducting Carbon Nanotubes (CNTs) in the channel. Investigations show that

CNTs have high low-field mobilities, which can be as great as 4×104cm2/Vs. Thus,

we expect that MOSFET performance can be improved by embedding CNTs in
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the channel. To investigate the performance of a newly proposed CNT-MOSFET

device, we develop a methodology that connects CNT modeling to MOSFET sim-

ulations. Our calculations indicate that by forming high mobility regions in the

channel, MOSFET performance can be boosted. However, barriers formed between

the CNT and the Si due to the variations of the bandgaps and the electron affinities

can degrade MOSFET performance improvements. Our calculations were obtained

by building on our existing CNT Monte Carlo (MC) simulator [17, 18] and quantum

based device solver [30, 31].

4.1.1 Quantum CNT-Silicon Device Simulator

We develop a two-dimensional quantum device solver based on the Poisson

equation and the modified semiconductor equations. We here take the invariance in

the width direction as retained by the introduction of tubes in the channel. Since

CNTs in our simulations have small diameters, the bending of the field around the

tube is limited [73] and the associated dielectric relaxation lengths are high enough

to ensure smooth field curves. The governing equations are listed below in the order

of Poisson, quantum/CNT-Si electron current continuity, and quantum/CNT-Si hole

current continuity equations.

∇2φ = −q
ε

(p− n+D) (4.1)

∂n

∂t
=

1

q
∇ · Jn + GRn (4.2)

∂p

∂t
= −1

q
∇ · Jp + GRp (4.3)

Here, the variables n (p), Jn (Jp), D and GRn (GRp) are electrostatic po-
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tential, electron (hole) concentrations, electron (hole) current densities, net dopant

concentration, and electron (hole) Shockley-Hall-Read net generation-recombination

rates, respectively. We next define electron and hole current densities Jn and Jp as

follows:

Jn = −qnµn∇ (φ+ φQM + φn
HS) + µnkT∇n (4.4)

Jp = −qpµp∇ (φ− φQM − φp
HS) − µpkT∇p (4.5)

We here symbolize electron and hole mobilities by µn and µp, respectively. We

also introduce two additional effective potential terms φQM and φHS to account for

the quantum and the CNT-Si barrier effects, respectively. We next will discuss how

these two phenomena are taken care of by the effective potential terms, beginning

with the CNT-Si barrier effects.

Solution of the CNT-MOSFET system requires proper handling of two phe-

nomena. The first is the effect of the quantum well formed at the Si-SiO2 interface

that causes band splitting, thus lowering the carrier concentration. Second one is

the influence of the barrier formed at the CNT-Si interface that results from the dif-

ference in bandstructures and electron affinities of the CNT and the Si. A quantum

well may also form at the CNT-Si junction due to the band-offsets.

As an initial guess, we first solve our system without considering quantum

confinement effects. This translates to the coupled solution of Eqns. 4.1-4.5. At

this stage, we resolve the effects of CNT-Si barrier through the use of revised current

equations, given in Eqns. 4.4 and 4.5, with the following effective potential terms:

φn
HS =

1

q

(

χ− χSi
)

+
kT

q
ln
no

nSi
o

(4.6)
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φp
HS = −1

q

(

χ+ EG − χSi − ESi
G

)

− kT

q
ln
no

nSi
o

(4.7)

φQM = 0 (4.8)

Here, no is the intrinsic carrier concentration at a grid point on our device,

and nSi
o is the intrinsic carrier concentration of silicon. We note that no takes on

either the intrinsic carrier concentration of the CNT or the Si, depending on the

location within the CNT-MOSFET. Also, χ is the electron affinity at a grid point

on our device and is either equal to χSi or χCNT. We subtract χSi from χ, because

our reference material is the Si. In addition, EG, like χ and no, refers to the same

material in space. It takes on the bandgap value of either the CNT or the Si

depending on the location inside our CNT-MOSFET. Furthermore, we note that

this formalism does not account for atomistic bonding details, which could give

rise to interface states and complicated junctions. These effects would likely be

accounted for in the present model through the Poisson and transport equations,

the Fermi level and the mobility.

Investigations show that carrier confinement at the Si-SiO2 interface and the

CNT-Si barrier can significantly reduce the carrier concentration adjacent to these

interfaces [50]-[57]. In addition, the potential well formed at the band discontinuities

between the CNT and the Si can result in confinement and band-to-band tunneling

effects. To incorporate these quantum effects in our device model, we use the density

gradient formalism. The density gradient theory is based on an approximate many-

body quantum theory [51]. It has been shown that the density gradient theory

resolves the effects of the MOSFET channel confinement [52, 53], band-to-band and
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source-to-drain tunneling [53]-[56]. In this formalism, quantum effects are included

by the introduction of an effective potential term that is proportional to the gradient

of the electron density. Using that model, we resolve quantum effects by using non-

zero quantum effective potentials in revised current equations 4.4 and 4.4 [51]-[59].

Here, we treat the quantum induced effects in a manner that is analogous to the

formation of position dependent heterostructures in the quantum well, using the

following effective potential term.

φQM =
2h̄2

12q
√
n

[

1

m‖

∂2
√
n

∂x2
+

1

m⊥

∂2
√
n

∂y2

]

(4.9)

Here, x is parallel to the MOSFET channel and tube axis, and y is normal to

x. Also, we use the effective mass of the Si or the CNT depending on the direction

and location.

The effective potential term can be derived using either the one particle Wigner

function or the single particle Schrödinger equation. Furthermore, the one particle

Wigner function is the BTE with corrections due to non-local driving potentials

[63, 64], as shown below:

∂f

∂t
+ ~υ · ~∇rf − 2

h̄
V (r) sin





h̄
←
∇r

→
∇k

2



 f = s(k, p, t) +
∂f

∂t

∣

∣

∣

∣

∣

coll

(4.10)

Above, f(k, r, t) is the distribution function. We expand the sine, assuming

that the argument is small. Next, we multiply the entire equation by 1
Ω

∫

w(k)dk,

as described in Section 1.2, to find the moments of the above equation. If we only

include the first order term, it gives the BTE. Using the second order term, we obtain

the correction factor, shown in Eqn. 4.9, to the electrostatic potential. Additionally,
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we can ignore higher order terms since their contributions are very small because of

having h̄r, where r is 4, 6, 8, . . ., as coefficients.

We here derive the effective potential in Eqn. 4.9 using the single particle

Schrödinger equation shown below:

[

− h̄2

2m∗
∇2 − qφ(r)

]

ψ = ih̄
∂ψ

∂t
(4.11)

For a stationary case, the wavefunction ψ can be expressed using the complex

expression |ψ|e−iε/̄ht . Substituting this form for ψ above, and equating the real

parts, we obtain the following expression:

ε = −qφ− h̄2

2m∗
∇2|ψ|
|ψ| (4.12)

We first note that |ψ|2 is the probability density that gives the electron con-

centration. We then replace the energy ε by a quantum potential −qφQM. These

substitutions give the density gradient effective potential for one band, as follows:

−qφQM = −qφ− h̄2

2m∗
∇2
√

|ψ|2
√

|ψ|2
(4.13)

φQM = φ+
h̄2

2qm∗
∇2

√
n√
n

(4.14)

The first equation above is called the Schrödinger-Bohm equation. It gives the

density gradient equation 4.14 for a pure state [59].

Using a combination of numerical methods, we finally solve our coupled quan-

tum semiconductor Eqns. 4.1-4.5 along with Eqns. 4.6-4.7, for the electrostatic

potential, quantum/CNT-Si electron concentration, and quantum/CNT-Si hole con-

centration for the CNT-MOSFET. More specifically, at each grid point on our mesh,
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we first calculate values for the effective heterostructure potentials for the electrons

and holes. We then add these effective potentials to the electrostatic potentials

(φi,j) at each grid point; i, j. Next, we use these newly calculated potentials in the

Bernoulli functions of the Scharfetter-Gummel discretization scheme, as described

in Section 2.1.2. We apply the same method of calculating potentials to find the

electron and hole concentrations to be used in the discretized Poisson equation.

Since we take the reference as the Si, we use intrinsic carrier concentration no of

the Si in the semiconductor equations wherever an intrinsic carrier concentration

is needed, except for the calculation of the aforementioned heterostructure effec-

tive potentials. Next, we solve for the electrostatic potential, and the electron and

hole concentrations. To solve for the state variables, we first use the Gauss-Seidel

method, and then simultaneously find corrections to all the state variables using the

Newton-Raphson method. We obtain the classical solution once the corrections are

insignificantly small. At this point, we calculate the quantum effective potentials

at each point in the channel of our device. We then add these quantum effective

potentials to the electrostatic potentials and the heterostructure effective potentials,

and then use the new potential terms to calculate the drift components of carrier’s

current densities. As before, we first use the Gauss-Seidel method to get an estimate

for the solution. For the final tune-up, we use a matrix solver to calculate corrections

for the state variables using the Newton-Raphson method. Once the aforementioned

variables are determined, we use them to calculate the current-voltage characteris-

tics of the CNT-MOSFET. In summary, we solve the system numerically using the

overall algorithm given in Fig. 4.2.
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Poisson Equation

Quantum/CNT-Si Hole Current Continuity

CNT Monte Carlo
Simulation

Update CNT parameters
- Mobility
- Intrinsic Carrier Concentration
- Energy Band Parameters

- Energy Band Minimums
- Effective Masses

-Electron Affinity

Output:
- I-V Curves
- Electron Concentration Profile
- CNT Parameters

Quantum/CNT-Si Electron Current Continuity

Quantum Corrections
-Density Gradient Formalism

Figure 4.2: Coupled algorithm flowchart.

91



0 2 4 6 8

10
12

10
14

10
16

10
18

10
20

Channel Depth (nm)

n 
(1

/c
m

3 )
noCNT
d=0.8nm (l=10)
d=1.3nm (l=16)

Figure 4.3: Calculated electron concentration profile in the middle of the CNT-
MOSFET channel, for different diameter CNTs and VG=1.5V (VD and VS are 0V),
starting from the Si-SiO2 interface and going down about 9nm.

4.1.2 Simulation Results

We applied our modeling methodology to simulate a 0.15µm well-tempered

(having a good on/off current ratio) CNT-MOSFET [74]. We first simulated CNT-

MOSFETs with a single layer of CNT in the MOSFET channel parallel to the

interface as illustrated in Fig. 4.1. The parameter we investigate in these simulations

is the effect of different diameter tubes. We next study how incorporating additional

layers of 8Å-diameter tubes affects the device characteristics.

In Fig. 4.3, we show our calculated electron concentration in the vertical di-

rection of the MOSFET channel, starting from the Si-SiO2 interface. We applied

1.5V to the gate terminal, and grounded others. CNT-MOSFET contains one layer

of tube. The device with the medium diameter tubes (d=13Å) shows high con-

centrations in the channel. The abrupt change in the carrier concentration can be
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Figure 4.4: Energy-band diagrams of CNT-MOSFETs, with diameters of 0.8nm and
1.3nm, and a MOSFET in the vertical channel direction. Dashed line is the band
diagram of a CNT-MOSFET that has l=22 (d=1.3nm) CNTs in its channel. Solid
line is the band diagram of a CNT-MOSFET that has l=10 (d=0.8nm) CNTs in its
channel. Dot-dash line is the band diagram of the silicon in the vertical MOSFET
channel direction.

attributed to the differences in the conduction band offset between the CNT and

the Si, as shown in Fig. 4.4. We associate this with the high intrinsic carrier concen-

tration and lower work function (compared to the Si) of the larger diameter tubes,

which attract electrons even in the absence of a gate field. On the other hand, the

intrinsic carrier concentration of the d=8Å CNT is close to that of the Si, and the

CNT has a higher work function. Thus a potential well is formed on the tube which

in turn pushes electrons away from the channel of this CNT-MOSFET. Thus, the

larger diameter CNTs appear to be likely to sustain large transconductances.

We next investigate whether the band-offsets between the wider tubes and

silicon appear to negate the potential improvement of higher electron concentration

in the channel of the larger diameter tube CNT-MOSFETs. Therefore, we obtain the
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current-voltage characteristics of the 0.15µm CNT-MOSFETs in the subthreshold,

linear and saturation regions. In Fig. 4.5(a), we compare the drain current density

versus applied drain voltage curves for four MOSFET configurations. One set of

curves is for the conventional MOSFET without any CNTs in the channel. The

other three sets of curves are for the single layer CNT-MOSFETs with small (8Å),

medium (13Å) and large (17Å) diameter CNTs in the channel, just below the SiO2.

We find that for high bias conditions, CNT-MOSFETs utilizing larger diameter

tubes attain higher drive currents than the ones having the small diameter tubes,

followed by the conventional MOSFET.

One of the main differences in performance between CNT-MOSFETs can be

attributed to the height of the barrier formed at the CNT-Si junction. The smaller

diameter tubes have less barrier height offset since their intrinsic carrier concen-

tration is closer to that of the silicon. However, the small diameter tubes form a

potential well at the channel, unlike the larger diameter tubes that attract more elec-

trons as the diameter gets bigger. The CNT-MOSFETs have improved drive current

characteristics over the conventional MOSFET. We attribute these higher currents

to larger channel electron concentrations, as shown in Fig. 4.3, and larger mobility

values in the CNTs. However, the large diameter tube CNT-MOSFET behaves more

like a resistor with a low output resistance due to its band-offset and high mobility.

In addition, the small diameter tube CNT-MOSFET has a jump in its current drive

around VDS=0.6V, where the electron concentration on the tube suddenly jumps

from the levels shown in Fig. 4.3 (1016cm−3) to higher values (1018cm−3) indicating

that new subbands are populated on the tube as we increase the drain bias.
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Figure 4.5: Current-voltage curves for CNT-MOSFETs with different diameter
CNTs. Calculated currents are for a) VGS=1.5V and b) VDS=1.0V (Inset shows the
local maximum point for the d=0.8nm tube CNT-MOSFET around VGS=1.4V.).
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We show the subthreshold characteristics of the aforementioned CNT-MOSFETs

in Fig. 4.5(b). The small diameter tube CNT-MOSFET has a steep subthreshold

slope (like the conventional device) with a lower leakage level and higher drive

current when compared to the conventional device at high gate biases. We at-

tribute this to the band-offset and high mobility associated with the small diameter

CNTs. Additionally, the small diameter CNT-MOSFET shows negative differen-

tial transconductance. We associate this with the occupation of new subbands on

the tube as the gate bias increases. For the same bias range, larger diameter tube

CNT-MOSFETs have a much higher leakage level which gets worse as the drain bias

increases. However the on/off current ratio is still on the order of a thousand, which

should enable their use as FETs but may limit their low power applications. We

attribute this to the band-offsets and high mobility of the larger diameter tubes.

We next investigate ways to increase the electron concentration in the channel

of the small diameter tube CNT-MOSFET to achieve even higher current drives.

The small diameter tube device already has improved subthreshold characteristics,

which are mainly controlled by the band-offsets at the drain and source sides. How-

ever, drive current is controlled by the gate via the electron channel formed in the

CNT-MOSFET. Since electron concentration is low on the tube due to confinement,

we add extra layers of CNTs in the vertical channel direction to increase the physi-

cal size of the well. (The length of the tube is still in the direction of the channel.)

Therefore, more electrons can fit in the well. In Fig. 4.6, we show the electron

concentration in the channel of the small diameter tube CNT-MOSFET for various

numbers of vertically stacked CNT layers. We observe that the confinement effects
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Figure 4.6: Electron concentration profile in the middle of the CNT-MOSFET
channel, for different number of CNT layers in the vertical channel direction and
VG=1.5V (VD and VS are 0V), starting from the Si-SiO2 interface and going down
about 6nm.

are less pronounced as the number of layers increases from one to three. This enables

the peak electron concentration to be on the CNTs, with a highest level reached for

the three layered device. Therefore, we expect this to be mirrored in the drive cur-

rent capabilities. We show the current curves for high gate bias in Fig. 4.7(a), where

the highest current is supplied by the three layered CNT-MOSFET. Additionally,

the jump in the current drive of the one layered device becomes less pronounced as

the number of layers increases. We associate this with less confinement in a well with

bigger dimensions, where most of the states are already occupied. In Fig. 4.7(b),

we show the subthreshold characteristics of these CNT-MOSFETs. Our calculated

currents show performance improvements as the number of layers increases.
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Figure 4.7: Current-voltage curves for CNT-MOSFETs with CNTs of 0.8nm in
diameter and varying number of tube layers (planar CNT sheets) in the vertical
channel direction. Calculated currents are for a) VGS=1.5V and b) VDS=1.0V (In-
set shows the local maximum point for the one layered CNT-MOSFET around
VGS=1.4V. Two and three layered CNT-MOSFETs show a weaker local maxima
around VGS=0.5V.).
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4.1.3 Section Summary

We propose and investigate a novel device structure that combines MOSFET

technology with CNT nanostructures. We report that the CNT-MOSFET device

appears to yield better performance than the conventional MOSFET. To analyze

the new design, we develop a methodology for modeling CNT-MOSFETs. We first

employ MC techniques to electrically characterize single wall zig-zag CNTs. We

then derive analytical models for important CNT parameters, including mobility

and intrinsic carrier concentration. We next develop a methodology for incorporat-

ing these CNT characteristics into a quantum device solver. We use the solver to

calculate the current-voltage characteristics of CNT-MOSFETs, as well as internal

dynamic variables such as quantum/CNT-Si electron concentration, and electro-

static potential. Our new CNT-MOSFET simulator predicts that the drive current

of CNT-MOSFETs is higher than that of conventional MOSFETs. Likewise, in the

subthreshold region, the narrow diameter tube CNT-MOSFET shows similar perfor-

mance compared to the conventional device. Therefore, CNT-MOSFETs employing

smaller diameter carbon nanotubes outperform other devices.

4.2 Device Behavior Modeling for Carbon Nanotube Silicon-On-Insulator

MOSFETs

We offer a methodology for the numerical analysis of carbon nanotube (CNT)

embedded silicon-on-insulator (SOI) MOSFETs. We examine CNT-SOI-MOSFETs

that have a planar sheet of single-walled zig-zag semiconducting CNTs embedded
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Figure 4.8: Simulated design of CNT-SOI-MOSFET.

along the channel, as shown in Fig. 4.8. To obtain device performance details includ-

ing current-voltage characteristics, we employ a quantum based device solver [46]

along with a Monte Carlo simulator [18]. Our calculated results show that replacing

the silicon with CNTs in the channel may significantly improve device performance.

The CNT-SOI-MOSFET with the smallest diameter tube may surpass other config-

urations of CNT-SOI-MOSFETs and conventional SOI-MOSFET in performance if

fabricated successfully with the same channel thickness. In addition, under certain

conditions, the CNT-SOI-MOSFETs show negative differential resistance.

Here, we first discuss the energy band diagram of CNTs. We then show how we

integrate the details of CNT energy dispersion curves into our device solver. We next

discuss our methodology, and show our calculated current-voltage characteristics.
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4.2.1 Carbon Nanotube Model

To account for the CNT related quantum effects, we need to determine the

band-structure of the CNTs. Due to confinement introduced around the circumfer-

ence when graphene is wrapped into a CNT, the bandstructure splits into a system

of subbands. Each of the subbands has a characteristic effective mass, mobility and

band energy minima. We determine the energy levels of CNTs by applying zone-

folding methods to graphene. The following formula gives the energy dispersion

for a zig-zag CNT, which has fundamental tube indices (l,0), as a function of elec-

tron momentum along the tube, kx, and subband index, β, (a, 2.46Å, is the lattice

constant of two dimensional graphite.) [16]:

E(kx, β) = ±3

√

√

√

√1 + 4 cos

(

Tkx

2

)

cos

(

πβ

n

)

+ 4 cos2

(

πβ

n

)

(eV) (4.15)

To extract pertinent information that can be easily integrated into our device

simulator, we approximate Eqn. 4.15 by a quadratic energy dispersion relation. Con-

duction band minimum, effective mass and non-parabolicity factor for the quadratic

energy dispersion relation can be calculated using Eqn. 4.15 for different subbands

β. For a zig-zag CNT, the total number of subbands are 2l. In accordance with this,

we set the prime values of β to integers from -l to l excluding one of the boundaries.

For each subband, conduction band minimum and effective mass can be found by

setting kx to zero and finding the curvature around kx=0, respectively:

El
β =

(

3
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1 + 2 cos

(

πβ

l

)∣
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Table 4.1: CNT parameters.

m∗/mo
Emin (eV) ±β

l=10
0.082 0.53 7
0.339 1.15 6
0.208 1.85 8

l=22
0.040 0.24 15
0.112 0.52 14
0.129 0.93 16

Specifically, we include the statistics of the lowest six CNT subbands, where

all the electron transport takes place in our simulations. Among these six subbands,

pairs of two subbands have the same energy dispersion curves because -β and β give

the same cosine value. We list in Table 4.1 the energy band minima and the effective

masses of the lowest three subbands for l=10 and l=22 tubes.

Using an MC simulator similar to the one described in the previous chapter, we

obtain velocity versus electric field curves. Using these curves, we derive a diameter

and field dependent mobility model [46]. Our MC calculations indicate that the low

field electron mobility of l=10 tube is as much as five times higher than that of the

silicon. The low field electron mobility of l=22 tube is even higher; it approaches a

value ten times higher than that of the silicon.

We next obtain momentum relaxation length versus field curves of the CNTs.

Our calculations show that these curves and velocity versus field curves show similar

characteristics. Momentum relaxation length versus electric field curves first increase

with applied field, reach a peak and then roll off [67]. The peak values of l=10 and
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l=22 tubes are approximately 40nm and 100nm, respectively. To avoid ballistic

transport, we here simulate sufficiently long CNTs. Therefore, we ensure being in

the scattering limited solution domain.

After we obtain CNT characteristics, we import them into our device simu-

lator. We treat the CNT in the device as a material with different bandstructure,

intrinsic carrier concentration, electron affinity, electron mobility, etc.

4.2.2 Quantum CNT-SOI-MOSFET Model

We develop a two-dimensional quantum SOI-MOSFET simulator by modify-

ing our quantum bulk device solver [46]. Our simulator is capable of obtaining a

coupled solution to the Poisson equation along with the quantum semiconductor

CNT/Si electron and hole current continuity equations. We list these equations in

the aforementioned order:

∇2φ = −q
ε

(pQM − nQM +D) (4.18)

∂nQM

∂t
=

1

q
∇ · JnQM

+ GRn (4.19)

∂pQM

∂t
= −1

q
∇ · JpQM

+ GRp, (4.20)

where

JnQM

q
= µn

kT

q
∇nQM

−nQMµn∇
(

φ+
1

q

(

χ− χSi
)

+
kT

q
ln
no

nSi
o

+ φQM

)

(4.21)

JpQM

q
= µp

kT

q
∇pQM

+pQMµp∇
(

φ+
1

q

(

χ+ EG − χSi − ESi
G

)

− kT

q
ln
no

nSi
o

− φQM

)

. (4.22)
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The Poisson equation 4.18 solves for the electrostatic potential, φ, in con-

junction with the quantum CNT/Si electron, nQM, hole, pQM, and net dopant,

D, concentrations. In addition, we introduce CNT-Si electron (hole) mobilities,

µn (µp), intrinsic carrier concentration, no, electron (hole) Shockley-Hall-Read net

generation-recombination rates, GRn (GRp), electron affinity, χ, bandgap, EG, and

temperature, T , along with the familiar constants.

To obtain CNT-SOI-MOSFET performance details, we first solve Eqns. 4.18-

4.20 (we solve only Eqn. 4.18 within the oxide) in conjunction with Eqns. 4.21-

4.22. At this point, we ignore the quantum effects. This gives a modified version

of Eqns. 4.21-4.22, which can be obtained by setting φQM to zero in the CNT/Si

electron and hole current continuity equations, and replacing the subscript QM for

quantum by CL for classical. Solving for the classical set of equations, we resolve

CNT-Si heterostructure effects including intrinsic variations of CNT/Si bandgaps

and workfunctions.

We then include quantum effects to resolve carrier confinement between the

gate and buried oxides. Additionally, potential wells at CNT-Si band discontinuities

can significantly affect carrier transport phenomena due to confinement and band-

to-band tunneling. To resolve quantum effects, we employ the density gradient

theory [51]-[59].

We next use a combination of numerical methods to solve Eqns. 4.18-4.20,

using the calculated φQM values, to obtain CNT-SOI-MOSFET device performance

including current-voltage characteristics and carrier concentrations. Moreover, our

numerical method is similar to what we use to solve the CNT-MOSFET system.
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Using our methodology, we also resolve the additional confinement in the substrate

direction between the the gate oxide and the buried oxide.

4.2.3 Simulation Results

We simulated a 0.15µm SOI-MOSFET with a roughly 0.1µm thick buried

oxide. We first investigate the effects of a single planar layer of CNT sheet embedded

under the gate to fully fill the channel between the two oxide layers, as shown in

Fig. 4.8. In this case, device performance is affected by different size channel cavities

in the normal direction in addition to different CNTs in the channel with varying

electrical parameters. To equate the effects of channel cavity thickness on electron

transport, we next embed planar sheets of different diameter CNTs into a channel

with a fixed channel thickness. We decide on the channel thickness such that one

layer of the biggest diameter tube can fit. Therefore, we obtain comparative analyses

of the electrical parameters of different size tubes on electron transport.

In Fig. 4.9(a) and 4.9(b), we show our calculated device performance for the

current-voltage and subthreshold characteristics of CNT-SOI-MOSFETs employing

various size CNTs. Each CNT-SOI-MOSFET has an associated channel thickness

equal to the diameter of the tube used. Among those CNT-SOI-MOSFETs, the one

that incorporates the biggest diameter CNT (d=1.76nm, CNT fundamental index

l=22) outperforms other configurations by supplying more drive currents in the

linear and saturation regions for the two different gate biases (VGS=1.0V, 1.5V). It

also has good subthreshold characteristics. We attribute the best device performance
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Figure 4.9: a) Current-voltage (VGS=1.0V, 1.5V) and b) subthreshold (VDS=1.0V)
characteristics for CNT-SOI-MOSFETs with channel thicknesses equal to the diam-
eter of the tube embedded. (Nanometer scale diameters of l= 10, 16 and 22 tubes
are 0.8, 1.28 and 1.76, respectively.)
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of l=22 tube embedded CNT-SOI-MOSFET to higher low-field mobilities associated

with bigger diameter tubes. (Low-field electron mobility of l=22 CNT is about twice

as large as that of the l=10 CNT.) In addition, the lowest diameter CNT (d=0.8nm,

l=10), when embedded in an SOI-MOSFET, shows negative differential resistance

(NDR). We relate this NDR to high mobilities, band discontinuities between the

CNT and the Si, and the smallest cavity formed between the buried oxides.

We then investigate the effects of CNTs on device performance for the same

film dimensions, thereby eliminating channel film thickness as a variable on device

performance. So, we set the film thickness equal to the diameter of the biggest

CNT; therefore, the devices with the largest tubes only have one layer, whereas

the l=10 and l=16 devices have film thickness composed of multiple CNT layers.

We also simulate one conventional SOI-MOSFET with a silicon film in the channel.

In Fig. 4.10(a), our calculated current-voltage curves show that smaller the CNT

diameter, the higher the supplied current, with the conventional Si-SOI-MOSFET

outperformed by others. We attribute the difference between the SOI-MOSFETs

having the Si channel and the ones with CNTs in the channel, to higher mobilities

associated with the CNTs, and band discontinuities between the CNT and the

Si. Additionally, we relate the difference in the performance of SOI-MOSFETs

employing CNTs mainly to the amplitude of the band discontinuities between the

utilized CNT and the heavily doped Si terminals.

In Fig. 4.10(b), our calculated subthreshold curves for the devices in 4.10(a)

indicate that the CNT-SOI-MOSFET with the lowest diameter tube outperforms

other SOI-MOSFETs. As in 4.9(b), it also shows NDR. This is related to low band
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Figure 4.10: a) Current-voltage (VGS=1.0V, 1.5V) and b) subthreshold (VDS=1.0V)
characteristics for CNT-SOI-MOSFETs with channel thicknesses equal to 1.76nm,
which is the diameter of the biggest tube. (Nanometer scale diameters of l= 10, 16
and 22 tubes are 0.8, 1.28 and 1.76, respectively.)
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discontinuity between the l=10 tube and the Si, and high electron mobility on the

l=10 tube.

In summary, we have developed a device simulator for modeling CNT-SOI

MOSFETs. We find that among devices that have constant film thickness, the

small diameter-CNT device yields higher transconductance. On the other hand,

devices with one layer of CNTs, with a film thickness equal to the CNT diameter,

show that larger diameter-CNT devices have higher transconductance.

4.3 Chapter Summary

In this chapter, we analyzed novel MOSFET designs that include CNTs in

their active channels. We suggested these structures because our Monte Carlo

(MC) transport simulations of CNTs indicate that they exhibit very high mobil-

ities. Therefore, their usage in the active regions of MOSFET devices may facilitate

high current densities, leading to higher transconductances and switching speeds.

We developed novel methodologies to obtain their device performances. To

compare them with each other and the traditional all silicon channel devices, we

first determine the CNT electrical parameters using an MC simulator. We then

analytically or empirically obtain relations for their electrical parameters in terms

of external variables and physical properties such as applied field, diameter, or

fundamental index. Once the electrical parameters are determined, they are used

in the device simulator to resolve interactions between the Si and the CNT. Thus,

we determine transport on the tube and in the Si along the channel direction, and
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quantization on the tube and in the Si normal to the channel direction. Also, the

method we use to resolve quantum effects also resolves the CNT-Si barrier effects

and tunneling from source-to-drain.

Our calculated CNT-MOSFET performance figures show that CNT-MOSFETs

employing lower diameter tubes outperform the conventional MOSFET, and the

CNT-MOSFETs that have bigger diameter tubes in their channels. However, more

than one layer of CNT sheets needs to be utilized to achieve such gains. Otherwise,

small dimensions of the lower diameter tubes, which are adjacent to the Si-SiO2

interface, prevents the peak electron concentration being on the tube, resulting in

a current flow on the tube that is a small percentage of the total current. Fur-

thermore, we also obtain similar performance results for the SOI-MOSFETs. CNT-

SOI-MOSFETs outperform traditional SOI-MOSFETs that have silicon channels.

When a single layer of CNT sheet is employed, lower diameter tubes suffer more

from smaller thickness quantum wells formed between the gate and the buried ox-

ides. To reduce this confinement effect, more than one layer of smaller diameter

tube sheets are used in the channel. This gives the best device performance figures

compared to the other SOI-CNT-MOSFETs and the traditional SOI-MOSFETs for

the same channel thickness.

In summary, we conclude that CNT-MOSFETs and CNT-SOI-MOSFETs em-

ploying lower diameter carbon nanotubes appear to exhibit improved capabilities

and, therefore, may represent a new paradigm for devices in the 21st century.
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Chapter 5

Integrated Circuit Modeling: Heating Effects

As integrated circuits (ICs) become more densely packed with transistors,

manufacturers are facing several important problems threatening chip performance

[1]-[11]. One especially important difficulty is chip heating. Investigators have

pointed out that toward the end of the semiconductor roadmap, there will be more

devices per unit area due to scaling of physical device dimensions. This real estate

crowding induces high temperatures, since power density can not be kept in line with

the well-known scaling algorithm that guarantees constant power densities between

different generations. On the contrary, high device densities cause elevated power

densities. According to the traditional device scaling, when device dimensions are

scaled downward by a factor of S, all other parameters are scaled by the same

factor, either downward (physical features, supply voltage. . .) or upward (frequency

and capacitance per area. . .), in order to maintain a fixed power density per unit

area. However, as dimensions become smaller, manufacturers must deviate from

this, and especially from voltage scaling, because of the intrinsic limitations of the

silicon bandgap and built-in voltages [1]-[6]. The result is higher power densities

because of higher clock frequencies and supply voltages. Additionally, isolation

between supply rails gets smaller in nano-devices, leading to higher leakage levels.

The chip is also likely to overheat faster than conventional cooling methods can
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account for. Thus, power density per unit area keeps increasing exponentially for

future electronic devices, making full-chip heating substantially influential in the

performance of next generation ICs. Hence, chip heating is considered as one of the

major obstacles to be overcome for future IC designs [1]-[11]. (This also depends

on the usage of the silicon CMOS technology for future electronics. In this respect,

CNT embedded devices may offer faster and cooler alternatives, considering fast

electron and heat transport on the tubes.)

To fully understand the chip-heating problem, researchers need modeling tools

to simulate and examine the phenomenon. These tools can also be used to relieve

heating problems by offering new design approaches to chip layout. Preliminary

research has been done to estimate the temperature profile for given chips [6]-[9].

Here, we address the need for a tool that establishes the necessary link between

single device operation and the full-chip heating. We present a new methodology

for predicting full-chip heating at the resolution of a single device. On the de-

vice level, we first obtain electrical characteristics of an n-MOSFET for the given

voltage and temperature boundary conditions by self-consistently solving the cou-

pled quantum and semiconductor equations. We then solve the system on the chip

level, where the thermal coupling between devices is modeled by a lumped circuit-

type thermal network. We obtain the model for the thermal network comprised

of passive thermal elements like thermal resistances and capacitances, and heating

sources. From the layout design and spatial considerations, we calculate values for

the thermal resistances and capacitances between individual devices, and a single

device and ground. To determine the strength of each heating source (driving force
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in the thermal network corresponding to a single device), we extend the results of

the individual MOSFET operation to the entire chip by a Monte Carlo type al-

gorithm. Thus, we account for application and location specific effects of full-chip

heating, while achieving the coupling between individual devices and their collective

operation. Using our modeling technique, we obtain the effects of power density on

full-chip heating and single device performance. To achieve efficient chip designs,

we also offer solutions for removing heat from the hottest regions of the chip using

thermal contacts.

5.1 Planar Integrated Circuits (ICs): Two-Dimensional (2D)

We report on a novel method for predicting the temperature profile of complex

integrated circuits at the resolution of a single device. The proposed new modeling

method establishes the necessary link between full-chip heating and non-isothermal

device operation for resolving effects of the individual devices on the overall full-chip

heating. The technique accounts for the application specific activity levels and the

layout placements of individual devices. We use a lumped full-chip heating model

that has thermal resistances and capacitances determined by the layout design, and

heat sources that are set according to the operational statistics of devices on the

chip. To embed the effects of operational statistics for a given application, we use a

Monte Carlo type methodology. We analyzed a Pentium III [1] chip considering a

realistic layout geometry and averaged activity statistics. Our analysis shows forty

three and thirty three degrees Kelvin increases above the ambient for the peak and
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median temperatures, respectively.

In Fig. 5.1, we show our device and chip levels, and their interaction. To obtain

performance figures at the device and IC levels, we solve coupled device performance

equations along with the full-chip heating model. To obtain device performance for

the given boundary conditions, we solve the semiconductor equations along with the

Schrödinger equation. We next solve the lumped thermal network for the full-chip.

Here, we first elaborate on the device model and later on the thermal network.

5.1.1 Device Performance Model

We develop a quantum device solver based on the quantum and semiconduc-

tor equations. We list these device equations below starting from the Schrödinger

equation, and followed by the Poisson, electron current continuity, hole current con-

tinuity, and the lattice heat flow equations. In addition, we have one more equation,

which we call the population equation, that gives the density of electrons in the

channel by summing contributions from different subbands.

Eiψi(y) = − h̄2

2m∗
d2ψi(y)

dy2
− qφ(x, y)ψi(y) (5.1)

∇2φ = −q
ε

(p− n+D) (5.2)

∂n

∂t
= ∇ · (−nµn∇φ+ µnVTH∇n) + GRn (5.3)

∂p

∂t
= ∇ · (pµp∇φ+ µpVTH∇p) + GRp (5.4)

C
∂T

∂t
= ∇ · (κ∇T ) +H (5.5)

n =
m∗kT

πh̄2

∑

i

|ψi|2 ln

(

1 + e
(EF − Ei)/kT

)

(5.6)

The heat flow equation 5.5 provides the coupling between the lattice temper-
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Figure 5.1: a) Each MOSFET device is modeled by a lumped circuit for chip thermal
analysis. b) Devices and their interaction are shown. Heat flow between devices
causes thermal coupling.
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ature and the state variables such as current density and electric field. Here, the

major source of heat is Joule heating (H = − ~J · ~∇φ, where ~J is the total current

density). To help determine the effects of temperature variations within the de-

vice on its performance, we explicitly include the temperature dependence on the

following parameters [69, 75, 76]: thermal voltage, VTH(T ), intrinsic carrier con-

centration, no(T ), electron and hole mobility, µ(T ), electron and hole saturation

velocity, υsat(T ), built-in potentials, φbuilt−in(T ), bandgap of silicon, Eg(T ), and the

thermal diffusion constant , κ(T ).

VTH(T ) = VTH(To)
(

T

To

)

(5.7)

no(T ) = no(To)
(

T

To

)1.5

e

(

−Eg(T )/2kT

)

(

1−( T
To

)Eg(To)

Eg(T )

)

(5.8)

µ(T ) = µ(To)
(

T

To

)−2.5

(5.9)

υsat(T ) = υsat(To)









1 + e
−T/2To

1 + e
−1/2









(5.10)

φbuilt−in(T ) = VTH(T ) ln
n

no(T )
(5.11)

Eg(T ) = Eg(To)
(

1 − 2.4×10−4(T − To)
)

(5.12)

κ(T ) =
κ(To)

(

1 + D
2.8×1019

)

(

T

To

)−4/3

(5.13)

To is the ambient temperature, taken to be 300◦K for this work.

We solve device equations 5.1-5.6, with the aid of temperature relations 5.7-

5.13, to obtain the non-isothermal device characteristics. More specifically, we first

solve equations 5.2 through 5.5 to obtain the semiclassical values of φ, n, p, and T

throughout the device. Then we include the quantum effects by solving equations

5.1 and 5.6, in addition to equations 5.2 through 5.5, while using the semiclassi-
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cal solution as the initial guess. We self-consistently solve these equations for the

quantum corrected values of the state variables: φ, n, p, T , EF , and ψi [46, 47, 49].

We use the discretization scheme described in section 2.1.2 for the Poisson

equation and the continuity equations. To obtain a discretized form for the heatflow

equation, we write it as follows:

C
∂T

∂t
= ∇κ · ∇T + κ∇2T +H (5.14)

Since we do not consider the transient case for the differential heatflow equa-

tion, the left-hand-side of the above equation is zero. We discretize the κ∇2T term

as in Eqn. 5.15, and the ∇κ · ∇T term as in Eqn. 5.16.

κ∇2T |i,j =

2κi,j

[

(Ti+1,j − Ti,j)

hi(hi + hi−1)
+

(Ti−1,j − Ti,j)

hi−1(hi + hi−1)
+

(Ti,j+1 − Ti,j)

kj(kj + kj−1)
+

(Ti,j−1 − Ti,j)

kj−1(kj + kj−1)

]

(5.15)

∇κ · ∇T |i,j =
[

hi−1(κi+1,j − κi,j)

hi(hi−1 + hi)
+
hi(κi,j − κ

i−1,j)

hi−1(hi−1 + hi)

] [

hi−1(Ti+1,j − Ti,j)

hi(hi−1 + hi)
+
hi(Ti,j − Ti−1,j)

hi−1(hi−1 + hi)

]

+

[

kj−1(κi,j+1 − κi,j)

kj(kj−1 + kj)
+
kj(κi,j − κ

i,j−1)

kj−1(kj−1 + kj)

] [

kj−1(Ti,j+1 − Ti,j)

kj(kj−1 + kj)
+
kj(Ti,j − Ti,j−1)

kj−1(kj−1 + kj)

]

(5.16)

Above, the spacing in x and y directions are hi = xi+1 −xi and kj = yj+1 − yj.

Moreover, the source term, which is the heat generated, is H = − ~J · ~∇φ, and it is

discretized as shown below, denoting the current densities in x and y directions by

Jx and Jy:

Hi,j = −(Jnxi,j
+ Jpxi,j

)

[

hi−1(φi+1,j − φi,j)

hi(hi−1 + hi)
+
hi(φi,j − φi−1,j)

hi−1(hi−1 + hi)

]

−(Jnyi,j
+ Jpyi,j

)

[

kj−1(φi,j+1 − φi,j)

kj(kj−1 + kj)
+
kj(φi,j − φi,j−1)

kj−1(kj−1 + kj)

]

(5.17)
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To obtain a solution for the Schrödinger equation at each grid point along the

channel direction starting from the Si-SiO2 interface and going down the substrate,

we solve the following matrix [77] for its eigenvalues ψ and eigenenergies E that

correspond to different subbands i (Below, subscripts refer to locations, except for

the one used for E):








































(2t− V1) −t · · · · · · · · · · · · · · ·
...

. . . . . . . . . · · · · · · · · ·
...

... −t (2t− Vl) −t · · · · · ·
...

...
...

. . . . . . . . . · · ·
...

...
...

...
... −t (2t− VN)

















































































ψ1

...

...

...

ψN









































= Ei









































ψ1

...

...

...

ψN









































(5.18)

Here, t is h̄2

2m∗∆2 , where ∆(∼= 1.5Å or 2Å) is the uniform spacing. Also, potential

energy Vl at grid point l, which is one of N (200 or 150) points, is Ecl
− qφl in terms

of the electrostatic potential φ and the subband energy minimum Ec. Since we only

have silicon in the channel, we set Ec to zero for all l.

To determine a Fermi level for each of the one-dimensional lines along the

channel that we solve the above matrix on, we use the population equation 5.6.

Since there is no current flow in the vertical channel direction, there is only one

Fermi potential for all points on a line along that direction. Thus, we only solve the

population equation for the Fermi level just below the Si-SiO2 interface at y1, using

the Newton-Raphson method, and the function f and its derivative.

n(y1) =
m∗kT

πh̄2

∑

i

|ψi(y1)|2 ln



1 + e

(

Ek
F − Ei

)

/kT



 (5.19)
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f = n(EFo) − n(Ek
F ) (5.20)

∂f

∂Ek
F

= −m∗

πh̄2

∑

i

|ψi|2
1

1 + e
(Ei − EF )/kT

(5.21)

We add the correction terms −f/
(

∂f
∂Ek

F

)

to the previous value of the Fermi

potential Ek
F to find the updated value Ek+1

F , until the Fermi potential gives the

electron concentration calculated from the continuity equation, using the current

values of ψi and Ei.

Furthermore, our analyses show that non-isothermal MOSFET operation is

affected mostly through carrier mobility, saturation velocity and built-in boundary

potentials. As temperature increases, current decreases due to mobility reduction,

and decreases slightly due to carrier saturation velocity and built-in boundary po-

tentials (increasing temperature effectively lowers the threshold voltage). Thus, as

temperature increases, current decreases for moderate temperatures, which are in

the operating range of most of today’s devices. However, for high temperatures such

as 100◦ above the ambient, the effects of intrinsic carrier concentration may play a

leading role and the MOSFET might run into a condition much like thermal runaway

in pn junctions. (Intrinsic carrier concentration has an exponential dependency on

temperature. Thus it appears that it is likely to have the strongest influence on the

device performance. However, investigations have shown that although that might

be the case in pn junctions, it is not the case in MOSFET devices unless tempera-

ture increases to such high levels where the control of the gate over the channel is

lost due to an abundance of intrinsic carriers for transport.)
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5.1.2 Full-Chip Heating Model

We obtain the temperature map of the full-chip by solving the heat flow equa-

tion, using the heat produced by the chip transistors as input. We transform the

differential heat flow equation given in Eqn. 5.5 to a lumped heat flow equation

[7, 78]. We do this to overcome the difficulties introduced by finite differences in the

scales of a single device and the full-chip, where the dimensions of the full-chip are

thousands of times larger than the corresponding dimensions in a MOSFET. Using

the differential heat flow equation for the full-chip requires too many mesh points

and is not practical for our application.

To adapt heat flow equation 5.5 into a form that is suitable for the entire chip,

it is beneficial to employ the following Kirchoff’s transformation [78].

T = To +
1

κ(To)

T
∫

To

κ(τ)dτ (5.22)

Substituting κ(T ) with κ(To)
(

T
To

)−4/3
, evaluation of the above integral gives:

T = To

[

4 − 3
(

T

To

)−1/3
]

(5.23)

Accordingly, temperature T can be written in terms of T as shown below:

T = To



1 −
(

T − To

)

3To





−3

(5.24)

Furthermore, using the above relation, the derivative of T is related to the

derivative of T as follows:

∂T = −3To



1 −
(

T − To

)

3To





−4

∂T

−3To

(5.25)

=
(

T

To

)4/3

∂T (5.26)
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Next, we substitute ∂T with
(

T
To

)4/3
∂T , and κ(T ) with κ(To)

(

T
To

)−4/3
in the

differential heatflow equation.

C
(

T

To

)4/3 ∂T

∂t
= ∇ · κ(To)

(

T

To

)−4/3 ( T

To

)4/3

∇T +H(T ) (5.27)

This leads to the modified differential heat flow equation in terms of the new

temperature variable T :

C
∂T

∂t
= κ(To)∇2T +H (5.28)

The benefits of the applied transformation can be seen in Eqn. 5.28, where

κ(To) no longer varies with temperature, but is only evaluated at the ambient tem-

perature of To=300◦K. (Here, we mostly concentrate on the steady-state case, where

the time derivative is zero. For the transient case, heat capacity is the specific heat,

which is 0.7J/gK for the silicon, with the added temperature coefficient if Eqn. 5.28

is employed.)

We then integrate Eqn. 5.28 around our unit device, a single MOSFET, as-

suming that the thermal diffusion constant does not change much within the volume

of interest:

C
∫

V

∂T

∂t
dV = κo

∫

V

∇2TdS +
∫

V

HdV (5.29)

Using Stoke’s theorem, the first volume integral on the left-hand-side can be

written in terms of a surface integral:

C
∫

V

∂T

∂t
dV = κo

∫

S

∇TdS +
∫

V

HdV (5.30)

We enclose the MOSFET by a rectangular prism. Here, V and S are the vol-

ume and the six faces of that prism shown in Fig. 5.2, respectively. Each MOSFET
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G
DS X

G
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Figure 5.2: We enclose each MOSFET by a rectangular prism to derive the lumped
model. Here, the two enclosing prisms for two adjacent MOSFETs are shown, with
X showing their centers of heat generation.

is then represented by a single thermal node at its center of heat generation, which

is in the MOSFET channel and closer to the drain junction where Joule heating

peaks, as shown by an X in Fig. 5.2. Next, we assume that temperature changes

linearly between MOSFET centers of heat generation. Also, we note that heat flows

in the direction of decreasing temperature, thus −κ∇T represents the heat flux. We

take time and space derivatives of temperature as constant in the volume and on

the given face, respectively. Taking the integrals in Eqn. 5.30, we obtain:

CV
∆T

∆t
+

6
∑

f=1

κo∆T fSf

∆lf
=
∫

V

HdV (5.31)

Here lf and ∆T f are the distance and temperature difference between the

centers of adjacent prisms going normal to one of the six faces Sf . ∆T shows the

transformed temperature variation at the mid-point of that prism. The expression

in Eqn. 5.31 is analogous to a KCL type nodal equation, where terms on the left

hand side are capacitive and resistive components of the network, while the right

side is the source term like a current source in the KCL network. Thus taking T

analogous to voltage, we can write equivalent thermal resistances, capacitances and
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current sources, as follows:

Cth = CV (5.32)

Rth
f =

∆lf
κoSf

(5.33)

I =
∫

V

HdV (5.34)

One capacitive and six resistive components connect the device to other de-

vices and ground. We calculate values for thermal resistances and capacitances from

the layout design and the geometrical considerations. In addition to the geomet-

rical considerations, we use values of 1.5K/Wcm and 0.015K/Wcm for the room

temperature thermal diffusion constants of silicon and SiO2, respectively. We then

use Eqn. 5.31 to find the temperature for the calculated resistances, capacitances

and source term. We obtain the Joule heating from MOSFET simulations using the

actual temperature as described in the previous section. As a reminder, we obtain

MOSFET performance for given boundary conditions and then extend these results

to the chip surface. We get Joule heating for each device by a Monte Carlo type

methodology.

Once we have the values of resistances and sources for all the nodes, we obtain

the temperature that corresponds to each node or device by solving a KCL-type

equation for each node (i,j), where the number of nodes typically equals to the

number of transistors of the chip.

Cth
i,j

(T
k

i,j − T
k−1

i,j )

∆t
+
T

k

i,j

Rth
i,j

+
(T

k

i,j − T
k

i±1,j)

Rth

i±1/2,j

+
(T

k

i,j − T
k

i,j±1)

Rth

i,j±1/2

= Ik
i,j(T

k−1
i,j ) (5.35)

Here, Rth

i+1/2,j
is the resistance between nodes (i,j) and (i+ 1,j).
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5.1.3 Coupled Device and Full-Chip Heating Model: Methodology

To obtain the temperature profile of the chip, and its effect on device current-

voltage characteristics, we self-consistently solve the device equations along with

full-chip heating equations. The solution necessitates convergence at the device

level and the chip level. To achieve convergence, we employ the following algorithm

for a given digital chip:

Set up Chip Geometry

For a given digital chip, we first decide on spatial chip resolution. We

then define the RthCth thermal network in conjunction with the chip

layout and the device geometry. This includes calculation of thermal

resistances and capacitances shown in Fig. 5.1, where each node repre-

sents a device. The power supplied to the thermal network is the heat

produced by each transistor. The heat sources are represented by the

current sources at each node in the network. We then divide our chip

into functional blocks (cache, floating point unit, execution unit, clock,

etc.).

Determine normalized power per area generated in each functional block

We obtain the percentage of total power consumed in each block. We

later normalize each block’s power percentage by its corresponding area

percentage. Thus we obtain an estimate of the likelihood of finding an

active device in that block relative to others. We next renormalize the

power per area for each block by the maximum power per area calculated
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for a block. Therefore, we determine the comparative activity levels.

Statistically determine normalized power for each transistor on the chip

To determine normalized power for each transistor on the chip, we use a

statistical Monte Carlo type methodology. In each functional block of a

working IC, some devices will be turned on, and others will be turned off.

To determine the number of devices that are on, we use a probability

density function. We divide the probability density function into two

parts: one gives the on-probability, the other gives the off-probability.

We then weight the on-probability density function by the normalized

power per area of the particular functional block we are concerned with.

We weight the off-probability by the complement of the normalized power

per area (1 - normalized power per area). This gives statistically the

relative power consumed by each device on the chip.

Calculate the unit response temperature for the entire chip

We next find the unit response by taking all power “current” sources

to have unit strength multiplied by the probability weighting factor de-

scribed in the paragraph above. We then solve for the nodal tempera-

tures of the RthCth thermal network. Lastly, we obtain the value of the

median temperature corresponding to the unit input.

Find initial value for heat produced by representative device

For our initial device conditions, we take the temperature to be equal
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to 300◦K (room temperature). We solve device equations 5.1-5.6 (us-

ing 5.7-5.13), and calculate the Joule heating for the room temperature

boundary condition, as well as the current-voltage characteristics of the

device. We next weight the calculated Joule heating by the percentage

on-time during switching, to adjust total Joule heating for one clock

cycle.

Calculate temperature profile of the entire chip

We next calculate the median temperature of the chip using the calcu-

lated Joule heating. To obtain the median temperature, we make use of

the linearity of RthCth thermal network equations. The linearity allows

us to multiply the chip temperature obtained from the unit heat input

by the calculated Joule heating of the single device. This scales all the

distributed heat sources for the entire chip by the average Joule heat-

ing of the distribution. This gives us the temperature as a function of

position on the chip.

Mixed-mode solution

We then update the temperature boundary condition of the representa-

tive device, and perform device simulation to find the Joule heating that

satisfies the device equations for the new temperature boundary. We

next calculate the temperature that satisfies thermal network equations

for the updated Joule heating (by multiplying the unit response by the

calculated Joule heating). To get a self-consistent solution, we iterate
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Figure 5.3: Coupled algorithm flowchart.

between the device and IC levels until the heating and temperature fig-

ures are consistent. We obtain the final temperature profile of the entire

chip by scaling all device temperatures by the temperature ratio found

for the representative device.

We summarize our algorithm in Fig. 5.3.

5.1.4 Coupled Device and Full-Chip Heating Model: Application and

Results

To test our technique, we apply it to an integrated circuit that is modeled

after a Pentium III processor. The block diagram of the example chip is given

in Fig. 5.6(a). We use a 0.13µm well-tempered MOSFET given by [74] as our

fundamental transistor unit. We first set up our thermal network. We roughly
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Table 5.1: Percentage areas and powers of functional blocks in a Pentium III chip
[79, 80].

Pentium III Unit Percentage Percentage Normalized
Area Power Power/Area

Clock (CLK) 1.0 5.2∗ 1.0
Issue Logic (ISL) 9.5 14.1 0.71
Memory Order Buffer (MOB) 3.3 4.7 0.68
Register Alias Table (RAT) 3.3 4.7 0.68
Bus Interface Unit (BIU) 4.3 5.9 0.66
Execution Unit (EU) 9.5 13.0 0.66
Fetch 12.5 16.9 0.65
Decode Unit (DU) 14.6 17.2 0.57
L1 Data Cache (L1C) 12.5 9.8 0.38
L2 Data Cache (L1C) 29.8 8.5 0.14

* 40% consumed in the clock block, 60% consumed in the clock network throughout
the chip.

estimate that there are forty million devices in an area of one square centimeter.

Our geometry yields values of 70 Degree-Kelvin/Watt (K/W) for the mutual thermal

resistances, and 5×105K/W for the thermal resistance connected to the ground,

including package resistance. We take devices to be uniformly distributed on the

surface. Percentage areas and powers of each block in Fig. 5.6(a) are written in

Table 5.1.

For a single MOSFET occupying an area of approximately 4µm2, the RthCth

thermal network translates into a system of forty million KCL equations (corre-

sponding to forty million MOSFETs, with the generated heat for each modeled by

a current source). This is a very large numerical problem. To solve the KCL equa-

tions, we first reduce the size of the system [81] using a Norton equivalent circuit

on a sub-block of twelve by twelve nodes. At each side of the block, we introduce
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Figure 5.4: Size reduction methods are applied on a subblock of five by five. We
obtain four-port Norton representation of each block and use that representation
instead, as shown at the bottom of the figure.
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new nodes that are half the resistance away from the boundary nodes. We then

separately short the new nodes introduced on each of the four sides. Size reduction

and the formation of new nodes are shown in Fig. 5.4. With the addition of new

nodes, we relate voltages at each node of the entire block and the boundaries to

currents using the Kirchoff’s Current Law (KCL), as follows:










G1 G2

GT
2 G3





















Vboundary

Vinside











=











Iboundary

Iinside











(5.36)

Here, G1 is a 4×4 diagonal matrix, which for each diagonal entry has one over

the sum of all half resistances that are between the boundary node represented by

that row and its nearest neighbors. Consequently, each row of G2 has nonzero entries

equal to minus one over half the resistance, if that column corresponds to a closest

neighbor to the boundary node represented by that row. Moreover, G3 represents

the KCL equations, written for the inner nodes, in matrix form. It includes the

conductances for the inner nodes to their four neighbors and the ground; therefore,

each row has five nonzero entries, if it is not one of the closest neighbors to a

boundary. Moreover, we know the values of the conductances from the layout, and

the inner current sources, which we assume that all have the same strength equal

to unity. Next, using the KCL matrix written above, we calculate the impedance

matrix Z (=G−1):










Z1 Z2

Z3 Z4





















Iboundary

Iinside











=











Vboundary

Vinside











(5.37)

To obtain the Norton equivalent circuit seen from the boundaries, we first

write Vboundary in terms of Iboundary and Iinside, which is a vector of ones —later, this
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is scaled by the heat generated of a device.

Vboundary = Z1Iboundary + Z2Iinside (5.38)

This equation gives the Thevenin equivalent circuit. Then, we write Iboundary

in terms of Vboundary to determine the Norton equivalent circuit. (Since we calculate

strengths of the current sources from device simulations, and take Iinside as a vector

of ones, the strengths of the independent current sources in the Norton network are

proportional to the calculated heat generated of devices, with a proportionality con-

stant equal to one.) The conductance matrix that determines the Norton equivalent

conductances between the four boundaries, and a boundary and the ground is Z−1
1 .

Also, the strengths of the Norton equivalent current sources at the boundaries are

determined from Z−1
1 Z2Iinside, which for a square block is a vector with all entries

equal to each other due to symmetry. We use the Norton equivalent thermal resis-

tances between the four nodes. To find the RthCth thermal network resistance from

a node to the ground, we divide the square subblock’s calculated Norton equivalent

resistance to the ground by two since the same node is shared by a correspond-

ing node of an adjacent block resulting in two parallel ground resistors. Also, the

strength of the Norton equivalent current source doubles due to the two parallel

Norton equivalent current sources connected to a node in the reduced system. Fur-

thermore, this method reduces the number of equations that needs to be solved

from forty million to approximately one million, using a block of 12×12 nodes and

replacing it with four new nodes. Once we reduce the number of equations, we solve

the KCL system by a bilateral conjugate gradient method for nodal temperatures.
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Next, we statistically determine normalized power for each transistor on the

chip. As mentioned in the overall algorithm, we first divide the chip into functional

blocks. We then determine normalized power per area generated in each functional

block. Later, we associate these normalized power per areas with probability density

functions that are different for each functional area. Using these probability density

functions, we find normalized powers for each transistor on the chip, with one and

zero, for the normalized power, meaning that it is always “on” or “off”, respectively.

More specifically, we attribute a normalized power from 0.5 to 1 to a device that is

mostly “on”. Likewise, a device that is mostly “off” is associated with a normalized

power from 0 to 0.5. Since we consider a uniformly likely “on” or “off” probability,

between 0.5 and 1, and 0 and 0.5, our probability density function is comprised of

two steps from 0 to 1, having a jump at 0.5, as shown in Fig. 5.5. Next, we determine

the magnitudes of these two steps. We first assume that the functional block with

the highest normalized power per area has devices that are mostly “on”. Therefore,

all devices in that block are associated with a power weighting coefficient from 0.5

to 1.0. In Fig. 5.5, the probability density function for that block is denoted by

Pmax. We take the “on” state probability level for that block as 2, to make the

normalization factor, or the area enclosed by the function, equal to 1. We next take

that maximum normalized power per area as a reference for the “on” states of the

other functional blocks. For example, if the ratio of normalized power per area of a

functional block to the one with the highest normalized power per area is R, then

the “on” state probability level of that functional block is 2R. Since the total area

enclosed by the probability density function is 1, the “off” state probability level is
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Figure 5.5: Probability density functions for calculating the heat generated of de-
vices in different functional blocks. Top is for a functional block, which has devices
that are always mostly “on”, Bottom is for any other functional block that has
devices in “on” and “off” states.

(2-2R), making the enclosed area equal to 1 (= 0.5 × (2 − 2R) + 0.5 × (2R)). Next,

using the normalized power per areas given in Table 5.1, we calculate the probability

density functions for each functional block, where R for each functional block is given

in the third column of that table under the title “normalized power/area”.

To calculate weighting coefficients probabilistically, using those distributions,

we map them to a uniform random distribution function. This is necessary, noting

that the built-in random number generators of compilers only output uniformly dis-

tributed random numbers from 0 to 1. We achieve the mapping using the following

transformation:
∫ x

0
Pn(τ)dτ = Ru (5.39)

Here, Ru is a random number generated by a uniform random number gen-

erator Pu. Solving for x, upper limit of the integral, we obtain the corresponding
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random number for the probability density function Pn. Since we already normal-

ized our probability density functions by making their enclosed area equal to 1, we

do not have a normalization factor in front of the integral. Moreover, for the prob-

ability density function Pn given in Fig. 5.5, an analytical expression for x can be

written as follows:

x =



















Ru/(2 − 2R),

(Ru − 1 + 2R)/2R,

Ru < 1 −R

otherwise

(5.40)

Once we determine activity levels of each of the forty million transistors on

the chip using the above prescription, we multiply those activity levels with the full

heat generated by a device. This heat generated is first determined for the steady-

state case, and then weighted for the digital operation, where we assume full power

is consumed ten percent of the time. Finally, the calculated heat generated values

become the current source strengths in the lumped RthCth thermal network.

For our simulations, we take the supply voltages to be 1.5V, and apply the

algorithm described in the previous section to obtain the temperature map for the

chip, as well as the device temperature-dependent current-voltage characteristics.

In Fig. 5.6(b), we show the calculated temperature profile for the chip. The

figure shows that temperature reaches peak at forty three degrees above ambient,

while the median and lowest temperatures are thirty three and twenty degrees above

the outside temperature. The clock and L2 cache have the highest and lowest

temperatures, respectively, because the clock has the highest normalized power and

L2 cache has the least. A device in the clock unit operates much more frequently,

and thus generates more heat than a device in the L2 cache. This thermal behavior
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Figure 5.6: a) Functional blocks of the Pentium III chip: Clock has the smallest
area but the largest normalized power. Unlike L2 Cache that has the largest area
but smallest normalized power as pointed out in Table 5.1. b) Our calculated
temperature map for Pentium III reaches a peak in the clock block (forty three
degrees above the ambient) and has the lowest temperature plateau in L2 cache
(twenty degrees above the ambient). Ambient temperature is 300 degrees Kelvin.
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Figure 5.7: Temperature dependent current-voltage characteristics of a 0.13µm n-
MOSFET for VGS=0.7V, 1.0V, 1.5V. As temperature increases, current decreases.

is consistent with references [1, 5] for Pentium III processors. Furthermore, the

temperature profile can be used to relieve problems related to hot spots on the chip

by offering ways for rearranging the spatial distribution of functional units, and

utilizing thermal contacts with direct connections to the problematic areas.

In Fig. 5.7, we show temperature dependent device performance characteristics

for our n-MOSFET. For an n-MOSFET, as temperature increases, current decreases

in the linear and saturation regions. However, current-voltage characteristics differ

from that under high temperature conditions (one hundred fifty degrees Celsius and

higher) where as temperature increases, current also increases. This can result in a

positive feedback and thermal instability.
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5.1.5 Section Summary

We present a novel method for obtaining the temperature profiles of ICs with

the resolution of a single device. We start from single device simulations and calcu-

late Joule heating for given temperature boundary conditions. We then use a Monte

Carlo type methodology to extend our results to the chip surface. We achieve this

by assigning different activity levels to the chip’s devices, which are then used to

calculate Joule heating and temperature distribution of the entire integrated circuit.

The method also provides the change in I-V characteristics of the individual transis-

tors as a function of chip heating. Our methodology can be applied to different IC

configurations with different running applications. Thus we offer new paradigms to

researchers for designing robust designs. Our method can also be easily integrated

to a computer-aided-design software and facilitate novel layout designs.

5.2 Stacked Integrated Circuits (ICs): Three-Dimensional (3D)

We present a new method for finding the temperature profile of vertically

stacked three-dimensional (3D) digital integrated circuits (ICs), as a three layer 3D

IC shown in Fig. 5.8(a). Using our model, we achieve spatial thermal resolution

at the desired circuit level, which can be as small as a single MOSFET. To resolve

heating of 3D ICs, we solve non-isothermal device equations self-consistently with

lumped heat flow equations for the entire 3D IC. Our methodology accounts for

operational variations due to technology nodes (hardware: device), chip floor plans

(hardware: layout), operating speed (hardware: clock frequency) and running ap-
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Figure 5.8: a) A vertically stacked three layer 3D IC, where each layer is modeled
after a Pentium III [1]. b) Floor plan of each layer in conjunction with Table 5.1.
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plications (software). To model hardware, we first decide on an appropriate device

configuration. We then calculate elements of the lumped thermal network using the

3D IC layout. To include software, chip floor plan and duty cycle related perfor-

mance variations, we employ a statistical Monte Carlo (MC) type algorithm. In

this work, we investigate performances of vertically stacked 3D ICs, with each layer

modeled after a Pentium III [1]. Our calculated results show that layers within the

stacked 3D ICs, especially the ones in the middle, may suffer greatly from thermal

heating.

As industry makes devices smaller to increase the speed and functionality of

integrated circuits, a challenge in IC operation has emerged: interconnect and in-

put/output (I/O) delays. This is especially evident where systems require multiple

integrated circuits that communicate through printed circuit boards, I/O pads and

bond wires. To alleviate the problem, manufacturers are investigating the develop-

ment of 3-dimensional integrated circuits (3D ICs). 3D designs can diminish the

need for many I/O pads, bond wires, package pins and PCB interconnects. Addi-

tionally, 3D designs offer substantial real estate gains. However, while chip heating

has become a big problem for standard planar integrated circuits [1]-[11], it is exac-

erbated for 3D ICs. Silicon dioxide (SiO2), which acts like a thermal and electrical

insulator between stacked chips in a 3D IC, aggravates heating problem by greatly

restricting the flow of heat generated. The main result is increased thermal re-

sistance and power density, leading to higher chip temperatures — temperatures

higher than conventional cooling methods can account for. Thus, as feature sizes

shrink, the power density is increasing exponentially, demanding a focus on heating
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and cooling of 3D ICs and planar chips if this barrier is to be overcome [1]-[11].

For the chip heating problem, our simulator should predict localized and over-

all chip heating for a given 3D IC architecture. It should also assist in developing

alternate IC layouts that could help keep localized temperatures low. A founda-

tion has already been established for estimating chip temperatures [6]-[9]. Here, we

bring to light the need for a simulator that can connect individual device operations

with heating of 3D ICs. Since there can be over a billion devices on a 3D inte-

grated circuit, it is a challenge to calculate the details of device and chip heating

simultaneously. Here, we present a method to achieve this connection. First, by

self consistently solving coupled quantum and semiconductor equations, we find the

electrical characteristics of an n-MOSFET. Next, we take each device on a 3D IC

as a cell and model the thermal connections between devices using a lumped cir-

cuit type thermal network of thermal resistances, capacitances, and heating sources.

From the architectural aspects of the chip layout, we determine the values of the

thermal resistances and capacitances in the network. Since the heating source for

each device is the driving force in the thermal network, we incorporate the results of

the individual MOSFET operations into the millions of thermal elements of the IC.

We do this using a Monte Carlo type algorithm, which allows us to realize the goal

of connecting 3D IC heating of billions of transistors to individual device operations.

Finally, we suggest chip design solutions for cooling the warmest areas of a chip.

We present our device and IC levels, and their collective relation in Fig. 5.9.
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Figure 5.9: a) To analyze 3D IC heating, each MOSFET (M) device is replaced by
a current source and an RthCth circuit. b) 3D IC’s transistors interact thermally
with each other as a result of thermal coupling.
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5.2.1 Device Performance and 3D IC Modeling

We self-consistently solve device performance and full-3D IC heating equa-

tions. We first obtain device performance at different temperatures by solving the

semiconductor equations along with the Schrödinger equation. Second, we achieve

heating figures of vertically stacked 3D ICs by solving a lumped thermal network in

conjunction with device performance results and averaged operational statistics.

We developed a device simulator that is capable of solving the coupled quan-

tum and semiconductor equations. The device simulator provides the electron and

hole concentrations, electrostatic potential, current densities, lattice temperature

and Joule heating as a function of position and temperature inside the device. Per-

tinent details of the device simulator were given in the previous section.

Using our device simulator, we first investigate the temperature profile within

a single MOSFET. Our analyses indicate that temperature variation within a bulk

MOSFET channel is small, unless it is a Silicon-On-Insulator (SOI) device. The

lattice temperature inside a bulk MOSFET differs only a few percent from the value

at the boundary.

We also developed a lumped thermal network model based on the differential

heat flow equation to obtain the temperature profile of vertically stacked 3D ICs. In

our model, we account for the 3D IC’s layout and floor plan, and the chip transistors’

performance details including heat generated, duty cycle and averaged operational

statistics.

Large differences in the scales of an entire 3D IC and a single transistor ne-
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cessitate use of a lumped thermal network model [7, 78]. We use a similar lumped

thermal network derived in the last section. We first obtain thermal capacitances,

resistances, and non-isothermal device performance figures, and decide on an appro-

priate MC methodology. Next, we determine the temperature of each transistor on

the 3D IC, represented by (i,j,k), by solving KCL-type equations of the following

form:

Cth
i,j,k

(T
l
i,j,k − T

l−1
i,j,k)

∆t
+

(T
l
i,j,k − T

l
i±1,j,k)

Rth

i±1/2,j,k

+

(T
l

i,j,k − T
l

i,j±1,k)

Rth

i,j±1/2,k

+
(T

l

i,j,k − T
l

i,j,k±1)

Rth

i,j,k±1/2

= I l
i,j,k(T l−1

i,j,k) (5.41)

Here, 1/2 in the subscript gives the resistance between nodes in the given

direction. Furthermore, (i,j) represents a device within a layer k. The superscript

l shows the iteration number for our numerical solver.

At the boundaries of the chip, we include the thermal resistances of the pack-

age, in addition to the substrate and oxide resistance. This resistor connects to a

ground that represents the temperature at the ambient. For these calculations, we

take the ambient to be at room temperature. The solutions to these equations give

the temperature variation from the ambient.

5.2.2 Mixed-Mode Device Performance and 3D IC Heating: Coupled

Algorithm

To obtain the temperature map of 3D ICs, we self-consistently solve lumped

thermal network equations for the entire vertically stacked 3D IC in conjunction with
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device performance details. These details include non-isothermal device performance

figures including current-voltage characteristics, and operational statistics such as

duty cycle and functionality. Moreover, we achieve convergence at the device level

and the 3D IC level as described below in our coupled algorithm:

Obtain device performance as a function of temperature

For a given vertically stacked 3D IC, we first find the technology node

used for fabrication. We determine the average dimensions of a typical

transistor on the chip. (We use a MOSFET as our unit cell, but fun-

damental logic gates such as an inverter can also be used instead.) We

then input our representative device in our device simulator. We also

decide on typical bias conditions and average on-power during switching

for that particular digital IC to adjust total Joule heating for one clock

cycle. To obtain device performance including current-voltage charac-

teristics and heat generated at different temperatures, we solve quantum

device equations, and prepare a look-up table.

Fit device performance results to a polynomial

We obtain a heat generated, H, versus temperature, T , curve for drain-

to-source and gate-to-source biases of 1.5V, which is equal to the on-state

bias. Since our KCL-type equations for the lumped thermal network are

derived after we apply Kirchoff’s transformation to the differential heat

flow equation as in Eqn. 5.22, we also produce a heat generated, H,

versus transformed temperature, T , curve. We then fit the H vs. T
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curve to a second-order polynomial and obtain an analytical expression

for their relationship.

Set spatial resolution for the 3D IC

We next focus on the geometry of the 3D IC. We first set the spatial

resolution in accordance with the average size of the 3D IC’s transistors.

We then determine the thermal link between devices by defining the

thermal resistances, Rth, and thermal capacitances, Cth, in conjunction

with the 3D IC’s layout and device architecture. Thus, we obtain values

for all the lumped thermal elements except the current sources shown

in Fig. 5.9. The strengths of the current sources are related to the

heat generated by each transistor on the 3D IC. Therefore, we find their

actual values along with the temperature of each device at the end of

our mixed-mode simulation.

Obtain effects of 3D IC’s floor plan, and software application on performance

To embed effects of 3D IC’s floor plan on performance, we group tran-

sistors in each layer into a few functional blocks such as cache, floating

point unit, execution unit, clock, etc., as shown in Fig. 5.8(b). Next, to

embed the effects of the typical software applications on IC performance,

we determine consumed percentage power for each functional block in

that layer. Then, to obtain the activity level of a transistor within a

functional block relative to one within another functional block, we nor-

malize these percentage powers by the corresponding areas of each block.
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We then renormalize these percentage powers per area by the maximum

for that particular layer.

Statistically extend effects of operational device variations to the entire 3D IC

To extend the effects of operational device variations to the entire 3D IC,

we employ a statistical Monte Carlo-type methodology. We first generate

a random number for each transistor as a function of the calculated

normalized percentage power per area corresponding to that device. We

then assign this calculated random number to the corresponding 3D

IC’s transistor as an indicator of the likelihood of the full power that the

particular device is consuming on average. This procedure is applied to

each transistor in the 3D chip. In essence, we statistically determine the

relative power consumed by each transistor in the 3D IC.

Compilation of data

At this point, we know the following:

• Device performance details including heat generated (H) versus

transformed temperature (T ) curve for a single transistor, as well

as an analytical expression for a second order polynomial fit,

• 3D IC geometry and layout dependent thermal resistances and ca-

pacitances between the 3D IC’s transistors, and devices and ambi-

ent,

• Statistically determined normalized powers for each transistor that
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are obtained using the given 3D IC floor plan and the typical ap-

plication running on that 3D IC.

Mixed-mode solution

We now can solve the KCL-type lumped thermal network equations given

in Eqn. 5.41. From the layout, we know the coefficients of the tempera-

ture T on the left-hand-side of Eqn. 5.41. We also know the heat gener-

ated as a function of temperature. In addition, we know the percentage

of the heat generated by each transistor. We have as many equations

as the number of transistors on the 3D IC. Each equation is non-linear

due to the square law dependency of heat generated on temperature.

To solve, we first assign the heat generated at room temperature to

all nodes (devices) as an initial guess. We then use a preconditioned bi-

conjugate gradient solver to obtain nodal temperatures. We next update

the heat generated of each transistor in conjunction with its calculated

temperature value. During each iteration, we update temperature and

heat generated of each node alternately. Finally, the solution gives the

temperature map of the 3D IC as well as the heat generated of each

device.

For easy reference, we summarize our algorithm in Fig. 5.10.
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Figure 5.10: Coupled algorithm flowchart.
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5.2.3 Mixed-mode Device Performance and 3D IC Heating: Appli-

cation and Results

After establishing our methodology, we test it on hypothetical digital 3D ICs

that have layers modeled after a Pentium III, as shown in Fig. 5.8. We take 0.13µm

as the technology node for that chip, and model a device after [74]. We then obtain

device performance and heat generated as a function of temperature. We next

determine the thermal network associated with this 3D IC, representing a single

transistor by a thermal node. We last obtain nodal temperatures (temperature of

each transistor) on the 3D IC.

To obtain device performance as a function of temperature, we simulate a

0.13µm N-MOSFET with drain-to-source and gate-to-source biases of 1.5V, at dif-

ferent temperatures, by solving the semiconductor device equations 5.2-5.5 along

with the Schrödinger equation 5.1. We then fit the device performance results to

a polynomial function. We also weight the calculated steady state powers by the

percentage of the on-power during switching.

We next set spatial resolution for our 3D IC by taking a single transistor as

our unit cell. Consequently, we have roughly forty million devices in each layer of

about 1.6cm2, with each device occupying approximately an area of 4µm2. If we

have a five layer 3D IC, this yields a very large coupled system of two hundred

million nodes. To simplify the problem, we take the 3D IC’s transistors to be laid

out uniformly in each layer. Each layer is separated by a substrate and an insulating

layer, with thicknesses of 250µm and 0.5µm, respectively. Additionally, for the top
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Figure 5.11: To include surface heat transfer due to convection and radiation, we
replace the ground resistor connected to the chip’s surface, s, shown on the left with
the circuit shown on the right. The figure shows the boundary for the bottom layer,
k=1, in the vertical direction.

and bottom layers, we use the configuration given in [82]. The bottom and top

layers have connections to extra layers such as package and supporting substrate.

Using the given 3D IC’s layout and package details, we calculate thermal resistance

between nodes in the vertical direction between layers, as follows:

Rth
f =

250µm

1.5K/Wcm×2µm × 2µm
+

0.5µm

0.015K/Wcm×2µm × 2µm
≃ 5× 105W/K (5.42)

We use values of 1.5K/Wcm, 0.015K/Wcm and 3K/Wcm for the thermal

conductivities of silicon, silicon dioxide and metal interconnects, respectively. (Di-

mension details used to calculate thermal resistances for metals are taken from [83]

for 0.1 micron technology.) We have revised the model to include heat losses at the

surface due to convection and radiation, and packaging as shown in Fig. 5.11. To

account for packaging, the user can adjust the values of the thermal resistors shown

in Fig. 5.9, which are at the chip boundary. (More information can be obtained
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about thermal packages in [84]-[86].) For this work, we take the thermal resistance

between the surface and the ambient to be zero. This has the effect of approximat-

ing the surface temperature to be the same as the ambient. To include detailed heat

transfer at the surface, formulas given in [87, 88] for the heat transfer coefficients

can be used. We then can determine a value for a heat sink (or current sink) at a

node on the surface of our network. We next can substitute the sub-network given

in Fig. 5.11 in place of our regular ground node.

To calculate thermal resistance between nodes in the same layer, we evaluate

the expression written below:

Rth
f =

2µm

1.5K/Wcm×2µm × 250µm
≃ 27W/K (5.43)

We round this value down to 25W/K. (Thermal resistances of the parallel

interconnect lines are much larger than this value.)

We next work on the solution of this thermal network, which consists of forty

million nodes (corresponding to all transistors) in each layer and up to five layers.

To make the problem tractable, we reduce the associated number of equations while

increasing the bandwidth of the connectivity matrix that defines the connections

between nodes [81]. To achieve this, we replace sub-blocks in each layer by their

Norton equivalent circuits, reducing the size of the system of equations. We enclose a

sub-block of N×N nodes in each layer, where N is greater than 2, for size reduction.

In Fig. 5.12(a), we show the resulting graph as an example for a 2D planar chip

layout with 100 thermal nodes inside. In the figure, we reduce those 100 nodes,

as shown on the left network, to the network on the right with 12 nodes, using 4
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blocks that are 5×5 each. Each reduced node has an explicit connection to six other

reduced nodes, as opposed to four other nodes in the original rectangular grid.

In 3D, we have an analogous situation. We use a three dimensional sub-

block consisting on one layer and extending half way above and below the layer

(N×N×1). Using Norton’s theorem, we reduce these N×N nodes to six nodes, each

having ten connections. In Fig. 5.12(b), we show the reduced thermal network for

3D structures. In summary, the resulting graph for 3D has tetrahedral shape unit

cells, where each node has explicit connection to ten other nodes as opposed to six

other nodes in the rectangular grid. For our calculations, we chose our 3D sub-block

as 22×22×1. This reduces the number of simultaneous equations that we solve from

approximately 200 million to a more tractable 3 million for the CPU. While there

is nothing unique about our choice of 22 nodes, it allows us to obtain a solution for

the thermal network in five-to-ten minutes on a standard Pentium4 PC.

The boundary of each sub-block is a half resistor away from the nodes that

are closest to the enclosing surface in all six directions. We then short the sub-block

borders on each side, yielding six new nodes (four in the same layer, and two in

the top and bottom of that layer). We next obtain the six-port Norton equivalent

circuit seen from these nodes, with equivalent thermal resistances, a capacitance and

a heat source attached to each. To obtain the Norton equivalent circuit, we write

the impedance matrix for the N2 (N=22) nodes inside the cube and the six nodes

on the sides using the KCL analysis. We then divide our calculated impedance

matrix up into four sub-matrices, and multiply two of these sub-matrices with the

unknown currents of the six outer nodes and the known currents of the N2 inside
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Figure 5.12: a) We apply size reduction methods to a planar chip with one hundred
mesh points. We divide it up into four blocks. We then replace the original mesh
with twelve nodes corresponding to four-port Norton representations of each block.
(Bold resistors are for package.) b) In 3D, we have six-port tetrahedral shape Norton
representations for cubes of grid points like the one shown in Fig. 5.9(a). Coupling to
layers above and below is through nodes at the top and bottom of each tetrahedral
shape, respectively.
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nodes. This gives the unknown voltages of the six outer nodes. Multiplication of the

sub-impedance matrix with the known current sources gives the Thevenin equivalent

voltage sources. The sub-impedance matrix, which is the current coefficient matrix

of the outer nodes, is the Thevenin equivalent impedance matrix. Next, we transform

the Thevenin equivalent circuit to the Norton equivalent circuit.

We then extend our calculated heat generated results to the 3D IC volume

using a Monte Carlo (MC) type methodology. We use an MC algorithm to statis-

tically determine each equivalent node’s source strength. Our MC algorithm makes

use of the floor plan shown in Fig. 5.8(b) with percentage powers and areas given in

Table 5.1. After we set up our thermal network including the source components,

we solve the reduced system of equations for nodal temperatures using a bilateral

conjugate gradient method.

In Fig. 5.13, we show steady state device performance figures including current-

voltage characteristics and heat generated as a function of temperature. Figure

5.13(a) indicates that as temperature increases, current decreases both in the linear

and saturation regions. This is in accordance with the downward slope of the heat

generated versus temperature curve, as shown in Fig. 5.13(b). (We note that tem-

peratures calculated have not gone beyond device operating limits where intrinsic

carrier concentration approaches that of the doping.)

In Fig. 5.14(a), we show a five layered vertically stacked 3D IC with a Pentium

III type chip in each layer. Our calculated temperature maps for the middle, second

and bottom layers of that 3D IC are shown in Figs. 5.14(b)-(d), respectively. We

note the dramatic increase for the peak temperature value from the bottom, 365◦K,
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Figure 5.13: a) Temperature dependent current-voltage characteristics of a 0.13µm
N-MOSFET for VGS=1.0V, 1.5V. a) Steady-state heat generated (VGS = VDS =
1.5V) as a function of temperature (T ) and T (Tb). Conversion from T to T is given
in Eqn. 5.22.
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Figure 5.14: a) A 3D IC with five layers of stacked Pentium III chips. Our calculated
temperature maps corresponding to the b) middle, c) second and d) bottom layers
shown in a). Here, ambient is at room temperature (300◦K).
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to the middle layer, 420◦K. We attribute this to the low thermal diffusion constant

of the SiO2, which traps heat in sandwiched layers. In addition, we also note that

the location of the peak temperature moves from the clock block in the bottom layer

(and one-to-three layered 3D ICs) to the issue unit in the middle layer, as shown

in Fig. 5.14 (in relation to the layout shown in Fig. 5.8(b)). We associate this with

the increase of equivalent thermal resistance with stacking for each node. This also

causes an increase in maximum 3D IC temperature, as well as the peak temperature

of the bottom layer, as we utilize more layers in a stacked 3D IC configuration, as

can be seen in Fig. 5.15(a). This shows the marked heating problem in 3D ICs.

Moreover, high temperature variations on a 3D IC are likely to have detrimental

effects on device and circuit operations. For example, temperature related phase

delays may result in the failure of synchronous circuit operation. In Fig. 5.15(b), we

show the oscillation frequency of a thirty one stage ring oscillator as a function of

temperature. This shows that if such a circuit is used as a clock generator for each

layer, the speed of each layer will deviate from the others even though they all have

the same room temperature operating frequency when the 3D IC is first turned on.

The temperature map of a 3D IC can also be used in conjunction with com-

puter aided design (CAD) tools to relieve problems related to hot spots and high

temperature gradients on the chip. To achieve this, chip floor plans can be re-

arranged to distribute active units over the whole volume. Additionally, thermal

contacts can be utilized to pull high temperatures to low at problematic regions.

We test the effects of perfect vertical thermal contacts (shorts to ambient) on a

layer that has the temperature profile given in Fig. 5.14. Utilization of one thermal
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Figure 5.15: a) Maximum temperature of the middle (also the maximum of the
entire 3D IC) and bottom layers as a function of number of layers. b) Oscillation
frequency of a thirty one stage ring oscillator calculated by Cadence [89] decreases
as temperature increases. Here, ambient is at room temperature (300◦K).
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contact near the peak temperature location of the middle layer pulls the maximum

temperature couple of degrees down; however, an array of ten by ten thermal con-

tacts pulls the peak temperature down about fifty degrees.

To help verify our new algorithm for mixed mode device-chip temperature

modeling, we applied our method to a chip whose temperature profile was recently

provided in the literature [90, 91]. To compare our approach with the published chip

temperature results, we use the layout given in [90, 91] to reproduce the temperature

map given for that chip. Using the layout in [90, 91], we grouped some of the func-

tional blocks, given in that paper, together and assigned a single power density to

each new block. In Fig. 5.16(a), we show our extracted layout, and power consumed

in each block over enclosed number of original functional blocks for the chip. We

use the layout, geometry and power profile given in Fig. 5.16(a) in conjunction with

vertical (including package) and lateral resistances whose values are proportional to

those in Eqns. 5.42 and 5.43: 1.5×104W/K and 0.75W/K, respectively. This cor-

responds to approximately 55.5 million grid points. Using our simulator, we obtain

the temperature map shown in Fig. 5.16(b), which is quite similar to the thermal

map given in [90, 91]. In addition, our simulation takes only about one minute of

computing time.

5.2.4 Effects of Different Layer Thicknesses on 3D IC Heating

So far, we have used the bulk MOSFET heating figures as inputs to the cur-

rent sources of the RthCth thermal network. To obtain effects of silicon substrate
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Figure 5.16: a) Maximum temperature of the middle (also the maximum of the
entire 3D IC) and bottom layers as a function of number of layers. b) Oscillation
frequency of a thirty one stage ring oscillator calculated by Cadence [89] decreases
as temperature increases. Here, ambient is at room temperature (300◦K).
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thinning on the channel and device temperatures, we solve the semiconductor equa-

tions along with the quantum corrections for a bulk MOSFET and two different

SOI-MOSFETs, which have channel thicknesses (tch) of 1nm or 20nm. To include

quantum corrections, we make use of the density gradient effective potential term,

which was discussed in the previous chapter. We also include the thermal effects in

the drift-diffusion model, as described in Section 2.4.

In Fig. 5.17, we show our calculated current and heat generation plots for

the bulk and the SOI-MOSFETs, with channel thicknesses of 1nm or 20nm. As

before, we use a 0.13µm channel length device. Our numerical results show that the

bulk and the 20nm channel thickness SOI-MOSFET have similar heat generation,

whereas the 1nm SOI-MOSFET has about twenty percent less heat generation.

(We note that the heat generated curve of the bulk MOSFET is lower than the one

shown in Fig. 5.13(b). We associate this with different current levels obtained by

solving the Schrödinger equation or by using the density gradient formalism. To

ascertain similar performance figures, both simulators need to be calibrated.) We

attribute this to confinement effects, and excessive channel temperatures in small

channel thickness SOI-MOSFETs. To show how peak channel temperatures differ

between these three device configurations, in Fig. 5.18(a), we show the channel

maximum temperature as a function of boundary temperature, which is attributed

to the device terminals. In Fig. 5.18(b), we present how much the channel heats up

in excess of the boundary. It shows that the smaller the SOI channel, the higher

the channel temperatures are, with the highest difference between the channel and

the device boundary being 100◦K for the 1nm channel SOI-MOSFET among the

161



300 350 400 450 500

200

300

400

500

600

T [K]

J D
S
 [µ

A
/µ

m
]

bulk
t
ch

=20nm

t
ch

=1nm

a)

300 350 400 450 500

4

6

8

10
x 10

−4

T [K]

H
 [W

]

bulk
t
ch

=20nm

t
ch

=1nm

b)

Figure 5.17: Calculated a) current and b) heating figures of bulk and SOI-MOSFETs
(0.13µm).
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Figure 5.18: Calculated a) current and b) heating figures of bulk and SOI-MOSFETs
(0.13µm).

163



simulated devices.

To obtain IC temperature maps using the heat generated figures of these three

devices, we fit the heat generated curves to polynomials. For the bulk MOSFET, and

1nm and 20nm channel thickness SOI-MOSFETs, we have the following relations

between temperatures and heat generation (H is in Watts and T is in Kelvin):

Hb = −5.0037×10−11 × T 3 + 7.3639×10−8 × T 2

−3.7933×10−5 × T + 7.1303×10−3 (5.44)

= −2.8947×10−11×T 3
+ 4.8727×10−8×T 2

−2.9061×10−5×T + 6.1439×10−3 (5.45)

H20nm = −2.649×10−11 × T 3 + 4.2773×10−8 × T 2

−2.4325×10−5 × T + 5.127×10−3 (5.46)

= 1.2769×10−11×T 3 − 2.1894×10−9×T 2

−8.0769×10−6×T + 3.2402×10−3 (5.47)

H1nm = −6.8594×10−12 × T 3 + 1.5415×10−8 × T 2

−1.1297×10−5 × T + 2.9098×10−3 (5.48)

= 3.4541×10−11×T 3 − 3.204×10−8×T 2

+6.0457×10−6×T + 8.5987×10−4 (5.49)

Solving the RthCth thermal network in the previous section for a five-layered

IC using the above heat generated temperature relations, we obtain the comparative

temperature values presented in Table 5.2.

Table 5.2 indicates that for future generation 3D ICs with smaller layer thick-
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Table 5.2: Comparison of peak boundary and channel temperatures

Peak Channel
Temperature

Bottom Layer Middle Layer
Bulk MOSFET 360◦K 405◦K
SOI-MOSFET (tch=20nm) 385◦K 427◦K
SOI-MOSFET (tch=1nm) 422◦K 445◦K

Peak Boundary
Temperature

Bottom Layer Middle Layer
Bulk MOSFET 353◦K 400◦K
SOI-MOSFET (tch=20nm) 353◦K 400◦K
SOI-MOSFET (tch=1nm) 343◦K 343◦K

nesses, the overall heating at the device terminals will be lower at the expense of

much higher channel temperatures.

5.2.5 Section Summary

We present a new method for determining the temperature profile of complex

digital 3D ICs. Using the new methodology, we achieve spatial resolution of a single

device. We first obtain device performance figures such as heat generated as a func-

tion of temperature. We then calculate values for thermal lumped elements using

the 3D IC geometry. After extending our device results to each transistor on the

3D IC using an MC type algorithm, we iteratively solve for nodal temperatures to

obtain the thermal map of the 3D IC in conjunction with each transistor’s perfor-

mance. Details of our algorithm can easily be modified for other planar (2D) or 3D
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ICs with different designs and operating conditions. Knowing potential hot spots

can facilitate new design strategies for 3D ICs that are less susceptible to thermal

damage. It can also suggest new floor plans and ways to monitor effects of thermal

contacts.

5.3 Methods for Cooling ICs

Our calculated 3D IC heating figures indicate that planar (2D) and 3D ICs

suffer extensively from heating. This heating problem is more pronounced in 3D

ICs, where it imposes upper limits on the number of layers and device densities

for safe device and IC operations. Since success of future electronics relies heavily

on device scaling, to relieve the heating problem, instead of bringing down the

power density dramatically using bigger devices or devices set apart, we seek other

solutions. One such solution is use of alternative cooling methods for the IC. We

propose use of thermal vias [92] or metal lines to remove the heat from the hot areas.

This method enables use of current assembly lines; thus, it obviates the need for

constructing a prohibitively expensive new fabrication facility, which might be the

case if unconventional electrically insulating high thermal conductivity materials are

employed [93].

Our previous investigations showed that the 3D IC employing 1nm channel

thickness SOI-MOSFETs reaches the highest temperatures (in terms of channel

temperatures, but not device terminal, boundary, temperatures). To relieve ex-

treme channel temperatures, we propose the use of an array of thermal vias. To
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Figure 5.19: Thermal maps for a 3D IC employing 1nm channel thickness SOI-
MOSFETs and an array of 10 x 10 vertical vias. Thermal maps of peak
channel temperatures are shown for the middle layer of a five layered 3D IC
that employs thermal vertical vias, between the layers (Rl), and the top or
bottom layer and the ambient (Rb). a) No vertical vias, where Tmax=445◦K
and Tave=436◦K. b) Rl=0.01K/W and Rb=0.04K/W, where Tmax=426◦K and
Tave=417◦K. c) Rl=10K/W and Rb=0.04K/W, where Tmax=432◦K and Tave=426◦K.
d) Rl=10K/W and Rb=40K/W, where Tmax=441◦K and Tave=433◦K.
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investigate the effects of vertical vias that extend from the top to the bottom of the

3D IC, we use a 10×10 array of vertical vias uniformly distributed over the chip

surface. In Fig. 5.19, we show our calculated thermal maps, using the peak channel

temperatures, for the middle layer of a five layer 3D IC. Figure 5.19(a) is for the

one without any thermal vias, while Fig. 5.19(b) is for the one that employs thermal

vertical vias with the smallest thermal resistances of 0.01K/W between the layers,

and 0.004K/W between the top or bottom layer and the ambient. These thermal

resistances are not close to ideal thermal contacts, which are shorts to ambient that

pull the temperature around them down to the ambient value of 300◦K. They pull

the minimum temperature down to 401◦K from the 417◦K minimum of the one

without any vias. Also, the average and maximum temperatures drop from 436◦K

to 417◦K, and 445◦K to 426◦K. When the thermal resistances of the thermal vias

increase between the layers from 0.01K/W to 10K/W, maximum, average and min-

imum temperatures increase respectively from 426◦K, 417◦K and 401◦K to 432◦K,

426◦K and 410◦K. If we also increase the thermal resistance of the boundary ther-

mal via from 0.04K/W to 40K/W, maximum, average and minimum temperatures

further rise to 441◦K, 433◦K and 416◦K, closing in to those values of the one with-

out any vias. We attribute the temperature variations to changes in the equivalent

Norton resistances seen from each node, where the percentage change rapidly gets

smaller as thermal resistances of the vias rise. In addition, thermal vias can sink

limited amount of heat due to their finite resistances. Therefore, to lower the overall

temperature, we need to utilize thermal vias with very low thermal resistances. To

remove heat from the hottest region of the chip, we can strategically place thermal
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vias around the hot region. This can facilitate effective heat removal from that

region.

In addition to thermal vias, we also investigate the effects of horizontal heat

sinks that extend from one side of the chip to the other. Such heat sinks can be

made from metal lines that are on top of the active device regions. In Fig. 5.20,

we show thermal maps for the middle layer of a five layer 3D IC, corresponding

to the same 3D IC as in Fig. 5.19. We employ ten lines of heat sinks that are

uniformly distributed over the side. When we use thermal heat sink resistances of

0.01K/W within the layer, and 0.04K/W at the boundaries, we pull the maximum,

average and minimum temperatures from 445◦K, 436◦K, 417◦K down to 424◦K,

414◦K, 401◦K, as shown in Fig. 5.20(a). However, a rise in the thermal heat sink

resistance within the layer from 0.01K/W to 10K/W diminishes the cooling effect,

and pulls the maximum, average and minimum temperatures up to 445◦K, 434◦K

and 401◦K, approaching the values for the one without any vias or lateral heat sinks.

To make the temperature variations small within a layer, we can also change

the chip’s layout. To examine how such a change would affect the thermal profile, we

simulated a five layer 3D IC. For the bottom layer, we use the layout given in 5.8(b),

as has been used for all layers to obtain results shown in Figs. 5.19 and 5.20. For

each consecutive layer above, we rotate this layout ninety degrees clockwise. The

resulting thermal map of the middle layer before and after the rotations are shown in

Figs. 5.21(a) and 5.21(b). This reduces maximum, average, minimum temperatures

from 445◦K, 436◦K, 417◦K to 438◦K, 435◦K, 425◦K.

As a summary, to relieve the heating problem, we offer solutions such as chang-
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Figure 5.20: Thermal maps for a 3D IC employing 1nm channel thickness SOI-
MOSFETs and an array of 10 lateral vias. Thermal maps of peak channel tem-
peratures are shown for the middle layer of a five layered 3D IC that employs
lateral heat sinks, with resistances of Rl within the layer, and Rb at the bound-
aries. a) Rl=0.01K/W and Rb=0.04K/W, where Tmax=424◦K and Tave=414◦K. b)
Rl=10K/W and Rb=0.04K/W, where Tmax=445◦K and Tave=434◦K.
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Figure 5.21: Thermal maps for a 3D IC employing 1nm channel thickness SOI-
MOSFETs. Thermal maps of peak channel temperatures are shown for the middle
layer of a layered 3D IC using a) the same layout for each layer (Tmax=445◦K and
Tave=436◦K), or b) the ninety degrees rotated version for each consecutive layer
(Tmax=438◦K and Tave=435◦K).
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ing the chip’s layout, and the use of thermal contacts in the vertical chip direction

with vias or in the lateral chip direction with metal lines. Our investigations show

that for effective heat removal, we need low resistance thermal contacts. Such low

thermal resistances can pull the overall chip temperatures considerably down. How-

ever, any unintentional fabrication of high resistance thermal contacts may signif-

icantly diminish cooling effects, and result in higher temperatures than predicted.

Instead of uniformly lowering all temperatures, thermal contacts can be utilized

more intensely around hot regions. In that case, they are likely to relieve the heat-

ing problem locally. In addition to thermal contacts, we also offer methodologies for

novel chip layout designs. Even a simple ninety degrees rotation between the layers

may move the mid-layer’s temperatures to safer operational limits.

5.4 Experimental Investigations

To experimentally investigate the chip heating effects, we fabricated chips with

thermal sensors and heaters. As temperature sensors, we use pn junction diodes,

like the one shown in Fig. 5.22, because of their currents’ high sensitivity to varying

temperatures. To specify the percentage change in diode current with temperature,

we write diode current in terms of its geometrical and electrical parameters, as

follows:

I = qA

(

Dp

NdLp

+
Dn

NaLn

)

n2
o

(

e
VA

VTH − 1
)

(5.50)

Above, Dn (Dp) is the electron (hole) diffusion constant, and Ln (Lp) is the

corresponding electron (hole) diffusion length, as described in Chapter 2. (For short
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Figure 5.22: We use a pn junction diode as a temperature sensor. This 10 x 10µm2

diode was laid out using the Cadence Virtuoso tool [89].

channel pn junction diodes (W < Lp, Ln), we replace Lp and Ln with the diode’s

physical length W .) Moreover, Nd and Na are the donor and acceptor levels in the

n and p regions of the pn junction diode, respectively. Furthermore, the change

in diode current with temperature is mostly determined by the temperature de-

pendency of the intrinsic carrier concentration no and the exponential term within

the parenthesis that has the ratio of the applied bias VA and the thermal voltage

VTH as the exponent. The thermal voltage and the square of the intrinsic carrier

concentration can be written as functions of temperature as shown below:

VTH =
kT

q
(5.51)

= αT (5.52)

n2
o = 4

(

m∗nm
∗
p

)3/2
(

2πkT

h2

)3

e
−Eg

kT (5.53)
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= βT 3e
−qEg

αT (5.54)

Here, α, β and bandgap Eg are not functions of temperature. Therefore, the

ratio of the diode currents at two different temperatures can be written as follows:

I(T1)

I(T2)
=
(

T1

T2

)3

e

(

VA−qEg

α

)(

1
T1
− 1

T2

)

(5.55)

Since diode currents change exponentially with temperature, it makes them

an attractive candidate for use in thermal sensors. That is why we picked a diode

as our fundamental thermal sensor block. Once we decided on our thermal sensor

configuration, which is a 10×10µm2 diode, we laid out a chip that has an array

of 10×10 thermal diodes uniformly distributed over the chip’s surface, as shown in

Fig. 5.23.

Here, our goal was to fill up the remaining space with circuits that function as

microheaters, and then to measure the chip temperatures using the diode currents.

As our fundamental circuit and microheater, we employed an NMOS block that was

comprised of hundreds of smallest size NMOS devices with their gates, sources and

drains shorted together to enable maximum heat generation, as shown in Fig. 5.24.

We next shorted their sources and drains to the chip ground and VDD, respectively.

To be able to control the amount of heat generated, we connected the gate to an

output pin so that the total current can be set to a desired level. We used a 4×4

array of NMOS blocks. The chip layout with the 10×10 diode sensor array and

the 4×4 NMOS heater blocks is shown in Fig. 5.25. Even though we successfully

observed diode current change with temperature, due to a biasing problem, we were

not be able to simultaneously heat up the chip and measure the temperature.
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Figure 5.23: A 10×10 diode array is laid out to locally measure temperatures on
the chip. To facilitate readout, we included a multiplexer on the left to selectively
enable different rows. The chip was laid out using the Cadence Virtuoso tool [89],
and was fabricated through MOSIS [94].
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Figure 5.24: A rectangular NMOS microheater block is shown. The NMOS block is
comprised of hundreds of smallest size NMOS devices with their gates, sources and
drains shorted together to enable maximum heat generation.

Figure 5.25: An array of 4×4 NMOS heater blocks was superimposed onto the
temperature sensing diode array network shown in Fig. 5.23. The chip was laid out
using the Cadence Virtuoso tool [89], and was fabricated through MOSIS [94].
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Next, instead of using NMOS blocks as microheaters, we employed poly silicon

resistors as our heat generators [95]. In addition, we also made the diode array denser

by making the diodes smaller to ascertain higher spatial resolution. We show our

fabricated chip with the 15×15 diode sensor array and the 4×4 poly silicon resistor

heater array in Fig. 5.26. By enabling controlled current flow on different poly silicon

resistor blocks, we induced temperature gradients on the surface. To measure the

exact temperatures, we prepared a look-up table for the diode currents as functions

of temperature. In Fig. 5.27, we show how the measured diode current increases

with temperature. Next, we turned on different resistor blocks on the chip, and

measured the local temperatures on the surface of the chip using the diode currents.

To determine the diode temperature, we compared the observed currents to the

ones in their measured current versus temperature look-up tables. In Fig. 5.28, we

show our calculated temperature map using the measured diode currents for our

chip when the third row-first column poly silicon resistor block is on [95].

In conclusion, we designed thermal sensors and microheaters. We successfully

observed the change in diode current as a function of temperature. Moreover, our

comparison of measured temperatures with the calculated ones are in accordance.

We use the experimental data to calibrate our thermal resistance values for the chip.
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Figure 5.26: Our fabricated chip with the 4×4 poly silicon differential microheater
blocks superimposed onto the diode array sensor [95].
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Figure 5.27: Measured current-voltage characteristics of a diode used in the diode
array as a function of temperature.

Figure 5.28: Measured temperatures after turning the third row-first column poly
resistor block on. Peak temperatures, reaching 10 degrees above the ambient, are
induced around this block, as shown on the left of the figure.
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5.5 Self-Heating Effects at Cryogenic Temperatures

5.5.1 Device and Chip Model

As use of orbiting satellites steadily increases, the modeling of electronics that

efficiently work under extreme space conditions has been gaining great importance.

To aid device and chip designs that can work in such low temperatures, we present

a methodology for determining device performance details at cryogenic tempera-

tures in conjunction with chip and package details. Using our technique that takes

into account package thermal resistances and generated heat, we obtain possible

temperature operating conditions for a device used in space applications. More-

over, to enable device operation at higher temperatures that would result in higher

transconductances and operating speeds, we also offer methods for initial tempera-

ture boosting using heat kick-start circuits.

To obtain device performance details, we solve the coupled semiconductor

equations [61, 62] including the Poisson equation, electron and hole current equa-

tions, and the differential heat flow equation.

In addition, we explicitly include the temperature dependence on the follow-

ing parameters [69, 75, 76]: thermal voltage, VTH(T ), intrinsic carrier concentra-

tion, no(T ), electron and hole mobility, µ(T ), electron and hole saturation velocity,

υsat(T ), built-in potentials, φbuilt−in(T ), bandgap of silicon, Eg(T ), and the thermal

diffusion constant , κ(T ), given in Eqns. 5.7-5.13. Moreover, at cryogenic tempera-
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tures, we also consider incomplete ionization effects [75]:

D(T ) =
N+

d

1 + gdn(x,y,T )

NCe
−

ED
kT

− N−a

1 + gap(x,y,T )

NV e
−

EA
kT

(5.56)

Here, NC and NV are the effective densities of state at the conduction and va-

lence band edges. Also, EA and ED are the energy differences between the acceptor

and donor levels, and the valence and conduction bands, respectively. In our study,

we take them as both equal to 45meV. Moreover, the net ionized dopant concen-

tration is related to the electron n(x, y, T ) and hole p(x, y, T ) concentrations, and

the net acceptor N−a and donor N+
d levels (ionized and unionized together). Above,

gd and ga, which are fitting parameters for the donors and acceptors, are 2 and 4,

respectively.

Our analyses indicate that around room temperature down to approximately

100 degrees Kelvin, device performance is mostly affected through changes in car-

rier mobility, saturation velocity and built-in boundary potentials. As temperature

increases from 100◦K, mobility and saturation velocity decrease, resulting in lower

current values. However, change in built-in boundary potentials results in effective

threshold voltage lowering as temperature rises, which increases current. At cryo-

genic temperatures from 100◦K down to 20◦K, device performance degrades due to

incomplete ionization and low intrinsic carrier concentration. Freeze-out of dopants

especially at the source and drain terminals adversely affects drive currents, which

leads to dramatic current drops as temperature decreases, as shown in Fig. 5.29.

Our goal is to find out how much power must be added externally to achieve

acceptable device performance and to see if unaided power dissipation in the circuit
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Figure 5.29: Calculated a) current density and b) heat generated of a 0.13µm N-
MOSFET. (VGS=VDS=0.7V)

can be sufficient to create sustained device operation.

To obtain effects of chip and package on device temperature, we first calculate

a value for the equivalent thermal resistance between that device and the ambient.

We have shown that one appropriate value for that resistance is 4×105K/W. Then,

we solve self-consistently for the generated heat and thermal current through a

single resistance using the electrical analogy derived previously. We solve the below

equation using graphical methods.

H =
T − TA

RC

(5.57)

Here, H is the heat generated by the device, which is equivalent to the in-

tegrated Joule heating over the device volume; T is the device temperature; TA is

the ambient temperature; RC is the Norton equivalent thermal resistance seen from

that node including chip and package. When heat generated, or the source term, is

equal to the resistive heat flow, we have an operating temperature point.
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5.5.2 Simulation Results

We first find temperature versus heat generated curve of a 0.13µm N-MOSFET

at VGS=VDS=0.7V to be used in Eqn. 5.57. We next calculate the heat flow on

RC=4×105K/W for TA=40◦K, which is the approximate ambient temperature for

our satellite application. Then, we determine temperature operating conditions

graphically, as shown in Fig. 5.30(a). It shows that we have three intersections

at about 43◦K, 46◦K and 175◦K. Moreover, 43◦K and 175◦K are stable operating

temperature points because generated heat is high when device temperature is lower

than these values, and vice versa if it is low. Therefore, if we want the circuit to

operate at 175◦K, a temperature boosting circuit to push initial device temperature

higher than the unstable operating point of 46◦K is needed.

In Fig. 5.30(b), we graphically solve Eqn. 5.57; however, RC is 1×106K/W

compared to the previous case. It shows that for a high Norton equivalent resistance,

we do not need a heat kick-start circuit. Likewise, for a low Norton equivalent

resistance, we have one operating point, which is close to the ambient.

In Fig. 5.31(a), we show the differential microheater and temperature sensors

we had fabricated through MOSIS. It contains sixteen heater blocks shown by dashed

lines. By turning a specific block on, we provide temperature boosting for a device

in a specific location. Figure 5.31(b) shows the effects of such differential heating.

(All temperatures were recorded and mapped except the dark area on the right.)

In summary, we provide means to calculate device performance at cryogenic

temperatures. Also, we determine package induced self-heating effects for that
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Figure 5.30: Heat generated by a device and the resistive linear thermal current.
Intersections (zoomed in on the right) are operating temperature conditions. a)
TA=40◦K, RC=4×105 K/W b) TA=40◦K, RC=1×106K/W.

183



Figure 5.31: a) Our fabricated chip with uniformly distributed 4×4 differential
microheater blocks and 15×15 thermal diode sensors. b) Induced temperatures by
turning the second row-second column resistor block on. Darker middle region is
about seven degrees warmer than the lighter regions.
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device. Additionally, we include differential microheater circuits for temperature

boosting applications.

5.6 Chapter Summary

In this chapter, we proposed novel methodologies for calculating planar (2D)

and 3D IC temperatures at the resolution of a single device. At the device level, we

solve the coupled semiconductor equations with the inclusion of quantum effects, to

determine the heat generated and current-voltage curves for given device boundary

temperatures. We then use the heat generation figures supplied by the device simu-

lator, as current sources on the lumped thermal network. Next, at the chip level, we

solve for nodal temperatures that represent device temperatures, using that lumped

RthCth thermal network. Therefore, the feedback between the chip and IC levels is

achieved by obtaining heat generated at the device level for use in the chip’s ther-

mal network, and calculating nodal temperatures from the chip’s lumped RthCth

thermal network for use as device temperatures.

Since we have tens of millions of devices on an IC, we developed techniques to

extend the device performance results to the overall chip volume. More specifically,

we first calculate the device heat generation at different temperatures for given bias

conditions that are plausible during switching. However, we solve the device equa-

tions for the steady state, then assume that a device is consuming a percentage

of its steady state heat generated during switching for the given clock frequency.

Next, we extend these device results to the chip’s volume using a Monte Carlo type
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methodology, where each transistor’s heat generation is found by multiplying the

calculated full power by a probabilistically determined weighting coefficient that

takes into account relative activity levels of different transistors on the chip. To

obtain probability density functions that we use to calculate devices’ weighting co-

efficients, we first group the chip’s transistors into several functional blocks such as

cache, clock, arithmetic logic unit, etc. We then find the normalized power per area

for each block. We assume that the block with the highest normalized power per

area has devices that are partially or fully on. Using that block’s normalized power

per area as a benchmark for the on-probability, we calculate the on-probabilities

of the other functional blocks. Moreover, using the normalization condition, which

states that the integral of the probability density function is equal to one, we obtain

the corresponding off-probabilities. We use these probability density functions to

determine weighting coefficients for each transistor on the chip. We import the heat

generated figures scaled by those coefficients to our lumped RthCth thermal network

as current sources. This provides the transition from the device to the IC level.

Lastly, from the IC layout’s geometrical and fabrication related details, we calculate

values for the thermal resistances and capacitances. After we obtain the thermal

resistances, thermal capacitances and the current sources in the thermal network,

we solve for the nodal temperatures that are associated with tens of millions of

devices. The solution, after transforming the temperatures back to those before

applying Kirchoff’s integral, gives the device temperatures, which are directly fed

back to device simulations. We iteratively solve for the device temperatures and the

heat generated for each device until convergence.
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Our numerical predictions for the 2D and 3D ICs indicate that chip heating

is an important problem to be overcome for successful device and chip operation.

As devices are scaled down, power densities are increasing rapidly, with the heating

figures exponentially diverging from safe operational limits. The self-heating is more

pronounced in 3D ICs, where each layer is separated by an electrical insulator such

as SiO2 that is also a thermal insulator. To relieve the heating problem, we offer

methods to pull the extremely high chip temperatures locally or globally to lower

temperatures that are within safe operational bounds. The first novel method we

offer is the use of thermal vias that span from the top to the bottom of the chip to

extract heat vertically away from hot spots, especially the high temperature middle

layers of the 3D ICs. Our investigations show that uniformly distributed low ther-

mal resistance vias successfully relieve the heating problem. However, as the thermal

resistance of these vias get bigger, they become less influential. Instead of trying

to reduce the overall temperature using a uniform array of vias, their concentrated

utilization around hot spots successfully helps heat removal from hot regions. Fur-

thermore, we also investigate the use of metal lines or horizontal thermal contacts,

which extend from one side of the chip to the other, for heat removal. This method

proves to be less effective than the use of vertical thermal vias. However, they are

effective for removal of heat from the hot regions close to the chip’s boundaries. In

addition, we also note that a rearrangement of the chip’s layout can distribute the

active devices uniformly over the chip’s volume, making the temperature gradients

on the chip smoother and the temperature values lower.

Lastly, we show how the knowledge of non-isothermal device performance de-
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tails helps us build systems and chips operating at room temperature and cryogenic

temperatures. We show how design considerations change at cryogenic tempera-

tures. Unlike operation at room temperature, device and chip operation at cryo-

genic temperatures rely on self-heating effects. We provide methodologies to predict

temperature operating points. Also, we offer design strategies, which can result in

more efficient chip operation using kick-start microheater circuits.
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