A NOTE ON CONJUGATE GRADIENT CONVERGENCE
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Abstract. The one-dimensional discrete Poisson equation on a uniform grid with n points
produces a linear system of equations with a symmetric, positive-definite coefficient matrix. Hence,
the conjugate gradient method can be used, and standard analysis gives an upper bound of O(n) on
the number of iterations required for convergence. This paper introduces a systematically defined
set of solutions dependent on a parameter [, and for several values of 3, presents exact analytic
expressions for the number of steps k(8, 7, 1) needed to achieve accuracy 7. The asymptotic behavior
of these expressions has the form O(n®) as n — oo and O(77) as 7 — 0. In particular, two choices
of 8 corresponding to nonsmooth solutions give a = 0, i.e., iteration counts independent of n; this is
in contrast to the standard bounds. The standard asymptotic convergence behavior, @ = 1, is seen
for a relatively smooth solution. Numerical examples illustrate and supplement the analysis.
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1. Introduction. The conjugate gradient method is widely used for solving sys-
tems of linear equations stemming from the discretization of boundary value problems
for elliptic differential equations. Considering the conjugate gradient as an iterative
method, the required number of iterations depends in general on the distribution of
eigenvalues of the coefficient matrix, and upper estimates are well-known. In partic-
ular, the standard analysis leads to the upper bound

o (1Y

for the relative error in the energy norm after p steps (see, e.g., [2, p. 525]), where &
is the condition number. For the one-dimensional model problem (see Section 2) on a
uniform grid with n points, the condition number is approximately 4n?/7?, and this
estimate leads to an upper bound of
In2
1.2 k~—Tn
(12) g
for the number of iterations to make the relative error smaller than a specified accuracy
7 (provided 7 is not too small), see [1, p. 567].
These bounds are derived using the inequality

(1.3) He<P>

< min max | Pp(A)] He(o) H
P Eigenvalues A

for the relative error in the energy norm, where the minimum is over all polynomials
of degree p such that P,(0) = 1. It is known that this result is sharp in the sense that
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for any distribution of at least p + 1 eigenvalues, there is an initial guess (depending
on p) that produces equality in (1.3) [1, p. 561], [4]. This observation can be used to
derive sharp upper bounds on the error that are stronger than (1.1) [4].

The conventional wisdom holds that (1.2) characterizes the behavior of the con-
jugate gradient method for the model problem in terms of both n and 7, except in
the case where the initial error contains only a small number of eigenvectors. In this
paper, we examine this issue. We introduce a systematically defined set of solutions
dependent on a parameter 3 that controls smoothness, and we study the performance
of the conjugate gradient method applied to the discrete one-dimensional model prob-
lem when these are the solutions. For several choices of 3, we give explicit formulae
for the exact number of iterations needed to achieve accuracy 7, as a function of n and
7. Two of these results, corresponding to nonsmooth solutions, show that the number
of iterations is independent of n for large n. These results stand in contrast to the
standard bounds: In each of the two examples, the initial error contains components
in all (n) eigenvectors of the coefficient matrix, but the required iteration counts do
not depend on n. Additional analysis together with empirical results for a wide choice
of values of 3 suggest that this type of behavior is typical. We also show, in a third
example, that there are members of this solution class for which upper bounds essen-
tially of the form (1.2) are seen. This result differs from (1.2), though, in that the
coefficient multiplying n decreases as 7 decreases. We do not know whether there is
a class of initial guesses whose convergence behavior depends on both n and 7 in a
manner predicted by (1.2).

In the next section we define the model problem and present the class of solutions
under consideration. In Section 3, we briefly review the properties of the conjugate
gradient method used. In Section 4 we give, for 8 = 0, the expression for the error
after p iterations and the required number of iterations, k, for achieving accuracy 7.
In Section 5, we derive the analogous formulae for the case 8 = 1 and outline some
qualitative differences from the results for 8 = 0. We present in Section 6 numerical
computations for various values of 8. Finally, in Section 7 we analyze the case § = 2
and show that in contrast to the previous two cases, where the iteration counts are
independent of the size of the system (for large enough systems), here k = O(n) as
n — oo. The work presented in this paper represents part of the first author’s thesis,
and additional details can be found there [3].

2. The Model Problem and Solution Class. Consider the problem
(21) - UH(ZL”) = f(m)a (S (Oa ]-);

with the Dirichlet boundary conditions

and finite difference or finite element approximation on a uniform mesh

1
M::{xi:ihH:l,---,n,h: },
n+1
i.e., all nodes are internal. The approximate solution u™ = (u{VI,---,u%)T then

satisfies the system

(2.2) AuM = M
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where fM = (fM,. ,fTJLVI)T, fM = f(z;)h?, for finite differences (or lumped finite
elements) and
2 -1 0 0
-1 2 -1
(2.3) A= 0 -1 2
0
1
0 0o -1 2

nxn

It is well known that the normalized eigenvectors, v(*), and eigenvalues, A(*), of the
matrix A are given by

. 2
of =/ sinZja and A = dsin? i,

for s,i=1,---,n, where j, = 2(311). Hence we can write
n
uM = 25(8)1}(8),
s=1
as well as

2 O 2
] =30 (€9)
s=1
For any such ™, the energy norm is
DEFINITION 2.1. |[ud|[% = (1) A(u) =457, (6)" sin® j,.
Instead of analyzing (2.2), we can analyze the number of iterations for the similar
system

(2'4) By =g,
where
(25) B = dlag(4 sin2 ]Z), 7 = ]_, SR (8

Let y* = (y7, - - ,y;:)T, be the exact solution of (2.4) and let the initial guess y(®) = 0.
Letting y® denote the pt conjugate gradient vector, we define the relative error

|y =y™|l
ly*|l 5

and we will study the required number of iterations k(y*, 7) needed to make O(y*, k(y*, 7))
equal to tolerance 7.

The character of y* will depend on the smoothness of u. If the solution is
smooth, then |y*| will decay with increasing i. To understand the influence of smooth-
ness, we will consider solutions to (2.5) of the form

(2.6) Oy*,p) =

’

(27) |y:| = [CSCji]ﬁ, i = ]-; e,

where 3 is a real parameter. The cases where [ is large describe smoother solutions
of (2.2), and when f is decreased, the solutions become less smooth. We will also
generalize (2.7) further below.
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3. Bounds for the Conjugate Gradient Method. We will analyze the con-
jugate gradient method for the diagonal system (2.5). As in the previous section,
let

T
v =)

be the exact solution of (2.4). Then the residual with zero initial guess is
r® =g - By =g = By*,
so that by (2.4) we have

rO = y¥(4sin?j;), i=1,---,n.

The ptt iterate computed by the conjugate gradient method is the member of the
Krylov sequence

span{r(o), Br® p2p0 ... pr=1,.00) =

i
span [y (4sin? )], [y (45in? 32)°], [y (asin? )+ [wr (4sin? 32)"] }.

i=1,,n

that minimizes the energy norm. Here, the notation [v;] refers to the vector v whose
7’th entry is v;. The i’th component of the error satisfies

p
yr = ary} (sin? ji)*
k=1

*_ygp)‘ —

Y; ) ZZ]—;"';n

where the factor 4* has been incorporated into the coefficient a;. Now, since the
iterates are mutually conjugate orthogonal, we can write the energy norm squared of
the error of the pt conjugate gradient iterate as

min Z |yZ-‘|2 sin? j; (1 - Z ay sin?* ji> =
Rl k=1
(3.1) H;in Z [|yf| sin j; (1 - Z ay, sin* ]z>] .
F =t k=1

REMARK 3.1. Note that the 4 associated with the square of the energy norm is
and will be left out of all of the minimization equations.

In the following sections, we will derive closed form expressions of (3.1) for several
choices of y*.

4. Error for § =0 and Analogous Problems. Before we proceed with the
main theorem of this section, let us first state some identities, the first of which is an
orthogonality property of the sine function®.

IpENTITY 4.1.

- 1. 7(2k+1) . m(20+1) n+1

;sin(2k+1)jisin(2€+1)ji + 5 sin —— = sin —— == Skt

I This identity is proven in [5, Appendix 3.B]. Note: the second term is the same as the summand
of the first, with i :=n + 1.
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for 0 < k, 0 <n, where s = { é’ Z ; i’ is the Kronecker delta.
IDENTITY 4.2.
L ., 1 ‘
> k+1)* =S (p+1) [4(p+ 1)? - 1]
k=0

IDENTITY 4.3.

Y DFRE+1) = (=) (p+1)

k=0

IDENTITY 4.4.
- n
Z sin? j; = 5
=1

Proof. Invoke [3, (1.351.1)]. O

THEOREM 4.5. For large enough n, the relative error and the required num-
ber of iterations k(y*,7) for the solution vector y*, given by (2.7) with B =0, are
independent of n, with

|
wl=

(4.1) k(y*,7) =

=
W

Proof. In this case, we have to minimize

n 4 2
Z sin ji—Zak sin? 1, |,

i=1 k=1

which is equivalent to minimizing (using the multiple angle formulae, see [3, (1.320.3)])

n p 2
(4.2) K (sinji — > o sin (2k + 1)ji> :
=1

i k=0

subject to the constraint

p

> ek +1) =0.

k=0

This constrained minimization problem can be solved by the Lagrange multiplier
technique. To this end, we introduce the Lagrange multiplier A and seek the stationary
point of the function

n p 2 p
> (Sinji — ) cpsin (2k + l)ji> +AY a2k +1) E 7.

i=1 k=0 k=0
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With Identity 4.1 in mind, we rewrite J as

n p 2
J = Z(sinji—chsin@k-}—l)ji) +

i=1 k=0
| ” @k+ D7)
LT . m
(4.3) 3 (sm 5~ Z ¢k, sin T)
—A
2 1
(4.4) /\;ck(%—kl) - 5,42.

Differentiating, we get

n p
g—fé = —2; (sinji — ch sin (2k + l)ji> sin (2¢ 4+ 1)j; —

k=0
p
. . 2k+1)7m\ . (20+ D7
<sm 5 — Z Ck SIn 5 ) sin 5 +
k=0
20+ 1
A20+ 1) +sin@ft
= —2{ ;sinji sin (20 + 1)j; | + % singsin@} +
P n
2ch { Zsin (2k + 1)j;sin (20 + 1)j; | +
k=0 i=1
1 2 1 20+ 1
5 sin ( k;r )™ gin { “2' )W} FA2+ 1)+ (-1) A

Now, when ¢ = 0, we have, invoking Identity 4.1,
oJ n+1 L n+1
— = =2 2 ) A
dco <2>+ kZ:OCIcIc02 +A+A
= —(n+1)+cn+1l)+A+A4
= —(n+1)(1—-co)+A+ A

For ¢ # 0, by orthogonality the first term equals zero, and using Identity 4.1, we are
left with

oJ a n+1 ‘
Ber 2;ck6k4 5 tARL+D) +(-1)'A

cln+1)+A20+1) + (-1)°A.

Setting these equations equal to zero, we obtain the following system of equations

At A A2+ 1)+ (-D'A
(4.5) co=1 n_l_l,andc;g— 1

) [:17,])

Between the constraint equation and the definition of 4 we have two equations
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with two unknowns, A and 4. From the constraint equation we have

A+XA 3A-3(-1)’PA-3(-1)P Ap—11Ap—12Ap> —4Ap®

0=1-
T+n & 31 +n) ’

and from the definition of A

Ao A+ DY) (1p)
1+n

(Note that for the following calculations, Identities 4.2 and 4.3 are invoked repeatedly.)
Solving for the two unknowns, we get

- 3(=1)? (1+n)
34+ 3n+8np—8p2+4np? —4p3’

and

3(1l+n) (n—p)
(1+p) B3+3n+8np—8p?+4np? —4p3)

These values are now available to be used in ¢, in (4.5).
In order to get to the conjugate gradient error, we compute the expression K by
way of the equivalent (4.4), for ¢, given by (4.5)

P
. 1 .
(1—co)” + Zci] - 5./42.

k=1
Substituting for {cj}, we obtain

3(1+n)(n—p)
2(1+p) 3+3n+8np—8p2+4np? —4p3)’

Recall that for the relative error ©(y*,p) we have (see (2.6) and Remark 3.1)

4K
82 (y*ap) = 77
|71y
where Definition 2.1 and Identity 4.4 supply the value for the denominator. Therefore,
performing a series expansion in % on the error of the pt iteration, we have for large
n

3p (5+4p) 3

@2 *7 ~ )
) ) Brspiapt? 3 Flpt 122+ 477

i.e., it is, basically, independent of n. In Figure 1 we show what the relative error
looks like. Note that the first iterations are the most effective.

If we use a stopping criterion of ©(y*,p) < 7, we get that the following number
of iterations, k(y*,7), are necessary

Sew
N—
ol

(3

(4.6) k(y*,7) = 5

who| 4

=
Wl

For large n we obtain (4.1). O
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1 T T T T T T T

0.1

0.0001

0 128 256 384 912 640 768 896 1024

iteration number, p
Fi1G. 1. Relative error, ©(y*,p), for =0 and n = 1024

Let us compare this result with the standard bound (1.2). The conjugate gradient
method is a direct method, so that it is guaranteed to compute the exact solution in at
most n steps. Thus, (1.2) only has meaning if 7 > 0.086. However, use of either (1.2)
or the finite termination property only guarantees that k(y*,7) < O(n). In contrast,
Theorem 4.5 shows that for any fixed 7, the limiting value of k(y*,7) for 8 =01is a
constant that is independent of .

So far we have used |y}| =1,%=1,---,n. If instead we have

n 2.2.'
D iy a”sin” j; < 2

2 .2. =
2ita (yf)” sin ji

(4.7 ly¥| < a,i=1,---,n, and

’

we also have the following corollary:

COROLLARY 4.6. The required number of iterations k(y*,7) for the solution
vector y* given by (4.7), is independent of n, for large enough n.

Proof. Since everything in (3.1) is positive, the same minimization is performed
as before, generating the same parameters {c;} and minimal value K. There is now
an extra a in the numerator of the relative error ©(y*,p), which, using the second
inequality of (4.7), evaluates to

1 /3\*%
@(y*,P)“—§<Z> p-
p2

This is also independent of n. O

We take here n to be a power of two, and in Figure 2 we show the required number
of iterations for 7 = 0.01. The results show that behavior of the type predicted by
the standard analysis is seen only for small n. These and all subsequent experimental
results were obtained on a CM-2 computer.
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32768 T T T T T T
77 . S . — —— —
7Y S R R N— ———
L e
* : : : : : :
> ; ; ; ; : :
128 [ s e e s .
s s T S S —
S s e -
2 l | | | | |
2 8 32 128 512 2048 8192 32768

matrix size, n
F1G. 2. Required number of iterations, k(y*, ), for 8 =0 and 7 = 0.01

5. Error for § =1 and Analogous Problems. Once again we preface our
theorem with the following identity which is an orthogonality property, this time of
the cosine function:

IDENTITY 5.1.

1 1 ~
+§+§cos€7r=0,

n
lz cos 2j;;
i=1

for 2(+;_1) not an integer.

Indeed any such ¢ which will concern us will always be smaller than 2(n + 1) in ab-
solute value, and therefore, we need only deal with ¢ =0 as a special case. This
relationship can be proven in a straightforward manner using [3, 1.342.2], and ex-

panding sin j,, into sin ’TT‘{ 1- n+r1 , as in [5, Appendix 3.B].

THEOREM 5.2. For large enough n, the relative error and the required num-
ber of iterations k(y*,7) for the solution vector y*, given by (2.7) with =1, are
independent of n, with

. 1

Proof. In this case, we have to minimize the expression (see (3.1))

n p 2
Z (1 - Z ay, sin?¥ ji> ,
i=1 k=1

which, invoking [3, (1.320.1)], is equivalent to minimizing

n p 2
(5.2) K (1 - Z Ck; COS iji> ,

i=1 k=0
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Once again, due to the one additional constant introduced, we need a constraint
equation to interrelate the parameters {c; }. The second summation in (5.2), evaluated

at zero, produces the desired interdependence. The original form of the minimization
tells us that this is equal to zero. Therefore, we have

14
Z C = 0.
k=0

As before, using the Lagrange multiplier technique we seek the stationary point

p 2 1 p 2
(1 — ch cos iji> + 2 (1 — ch> +
k=0

k=0

P 2 P
1 1
(1—]§ckcosk7r> +)\];)ck—582—§¢42,

of

NE

J =

1

-
I

N | =

p p
where B=1— Z c, and A=1- Z ci cos kw. We note immediately that because

k=0 k=0
of the constraint equation, B = 1.
We have
0T = o
6_04 = Z l—Z coS 2J¢; (1 — ch cos 2/?]})] —
=1 k=0
P p
(1 — ch> — cos (1 — ch cosknr) + A+ 1+coslrA.
k=0 k=0

Rewriting the cosine product terms (see [3, 1.314.3]), we get

0T - L e . .
8_04 = Z {—2 €os 2j¢; + Z Ck [cos 2j(k+e)i + cos 2](k,l)i] } -

i=1 k=0

P P
1+ ch — cos{m + % ch[cos (k4 &)m + cos (k— )] +
k=0 k=0

A+ 14 (-1 A
and rearranging

g—i = —2{l;cos2jh
p n
ch{ [Z COS 2j(k+£)i

k=0 i=1

P n
Z Ck { [ COS 2j (k)i
k=0 i=1

p
1+ er+A+1+(-1)A
k=0

1
+ icoséw +

-I-%cos(k-l-ﬁ)w} +

+ %cos(k—é)ﬁ} -
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Therefore, for £ = 0 we have
0T 1 1 L 1
— = =2 = 2 = 2 —= =
Beo {n+2}+ co{n+2}+ ;Ck{ 2}

p

l+co+Y crtA+1+A
k=1

—2(1—co) (n+1)+A+1+ A,

and for non-zero £, we have

) L 1 1 P 1
8—j = 1+ch{—§}+Cg<n+§>+20k{—§}—
“ =0 — L 9

k=¢

p
e+ e+ A+1+(=1)A
k=0
kZ¢
= cn+1)+A+1+(-1)"A

After setting these two equations equal to zero, we write {c¢} in terms of our two
unknowns A and A

_A+1+ A

Atl+A _A+1+(=D)A
2(n+1)

. =1
(53) @ n+1

,andc,gz , é:]_,,p
With the combination of the constraint equation and the definition of A, we have two

equations with two unknowns

1+ A+ A- (1P A-2p—-2Ap

O=1=5an 2 (1+n) ’

and

e I+ A+A  1=-(=D"+A-(=D"A-2Ap
T2 (1+4n) 2 (1+n) '

Solving, we get the following values for the unknowns:

2 (n+n2—p—2np+p2)
l1+n+2np—2p2

A=

)

and

_ (=1)"(1+n)
T l4n+2np—2p?

These values can be substituted into the quantities ¢; of (5.3).
Now that the ¢y coefficients are known, the next step is to compute K. We start
by expanding the squared terms, giving
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P p P
(1 —2ch coSs 27; + Zchcl COS 2J ki cos2ju> +
k=0 0 (=0

=
[
M=

i=1

-
I

%(1—2ch+220k05 +
k=0 (=0
%(1—2chcosk7r-I-Zchcecoskwcos&r)— (1+4%).
k=0 (=0

Invoking [3, 1.314.3] we have

11 P - _ 1 1
K = n+§+§—2]§ck[<2c052]ki>—}—E—l—icoslmr

i=1
1w & _ 11
522%04 ZCOSZ](/H_()i + 3 + 5 c08 (k+Om
k=0 £=0 i=1
1 1 ,
230052](,C vi | + 3 +§cos(k O §(I+A)

= (n+1)=2co(n+1)]+ %cg(n+ 1)2+%Zci(n+ 1)—
N———

k=1
k=(=0
k={#£0
1 2
5 (1+4%)
= (n+1)[1-2c +c2+lzp:c2 —1(1+A2)
’ ’ 2k:1 ’ 2 7

and we get

_n-l-n2—p—2np-|-p2
14+ n+2np—2p2

Recall that for the relative error squared: ©2(y*,p) = Ty *Hz . By Definition 2.1

the denominator is just 4n. In Figure 3 we graph the relative error as a function of
the iteration number. Dividing through and retaining the first two terms (the O(1)
and O(1) terms), we get

—2p? 1
5 + .
n(1+2p) 1+2p

O°(y*,p) ~

To make O(y*,p) equal to a tolerance T,

n

* ~

iterations are needed. For large n, we obtain (5.1). O

In Figure 4 we show the required number of iterations for 7 = 0.01. Again, the
“classical behavior” is seen for small enough n, but as n — oo, the iteration counts
tend to a constant. Note that the number of iterations is large compared with the
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0.1
=
R
>
@
0.01
0 128 256 384 512 640 768 896 1024
iteration number, p
F1G. 3. Relative error, ©(y*,p), for =1 and n = 1024
32768 ) ) ) ) ) )
o e
S -
] e e i e
x § § § § § §
S : : : : ; ;
R 128 [ P A pr frm 7]
S (s T s v —
8 e s e -
2 1 i i i i i
2 8 32 128 512 2048 8192 32768

matrix size, n
Fi1G. 4. Required number of iterations, k(y*, ), for 8 =1 and 7 = 0.01

case 3 = 0 (Figure 2). This is due to the less effective initial iterations, as seen in the
difference between Figures 1 and 3.
Some remarks are in place:

1) We see the importance of retaining the O(%) term in the calculation of
©2(y*,p), because it is not (necessarily) negligibly small compared with the
first term.

2) There is a qualitative difference between this result and the one for § = 0.
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Here, the iteration count (5.4) does not approach a constant until n is large
relative to % In contrast, for 4 = 0, constant iteration counts are obtained
in (4.6) for values of n that are independent of 7. This explains the slower
development of the “knee” in Figure 4 than in Figure 2. (In fact, exactly n
steps were performed for small n in Figure 4.)

As in the previous section, we can generalize the form of y*

2
na 2

<p
2 .2 . = )
Z?:l (yz*) sin” Ji

(5.5) lyF| < acscj;i=1,--+,n,, and

and obtain the following corollary:
COROLLARY 5.3. The required number of iterations k(y*,7) for the solution
vector y* given by 5.5, is independent of n, for large enough n.

6. Empirical Results. In the previous sections we have analytically derived
the required number of iterations k(y*,7) for y* given in (2.7) and 8 =0,1. Here,
we show empirically computed values of k(y*,7) for a large collection of values of j.
In particular, Figure 5 plots k for values of 3 between —3 and 10 and n < 32768, for
7 =102, and Figure 6 shows analogous results for 7 = 107°. Figures 7 and 8 give
detailed pictures of these results for n = 32768.

The results for =0 and § =1 are exactly as predicted by the analysis of Sec-
tions 4 and 5. We summarize this with the following theorem:

THEOREM 6.1. For 3 equal O or 1, for any 7, there exists k (depending on T)
such that k(y*,7) < k for all n.

It also seems that similar behavior is seen for most other values of 3, that is, as n
increases, the required number of iterations stops increasing and becomes independent
of n. However, scrutiny of Figures 7 and 8 suggests that this may not be the case for
£ near 2. In the next section we derive a closed for expression for k(y*,7) when g = 2
showing that in this case the iteration counts are proportional to 7.

7. Error for 8 = 2. As usual, we start with a few identities. The first one is the
same as Identity 4.1, just shifted:
IDENTITY 7.1.

1. 7(2k—1) . w(20—-1) n+1
+§sm 5 sin 5 = Oxe,

> sin (2k — 1)j sin (2¢ — 1)j;

i=1

for 1<k {<n+1.

Note that the second term on the left hand side is equal to %(—l)k%. The following

two identities come up in the derivation below. These identities were proven with the

aid of Mathematica [6]. Recall that j; =
IDENTITY 7.2.

2(211)-
Zsm (2k — 1) —n-l-?(l—{ﬁ-‘),
et sin j; 2

for k <n.
IDENTITY 7.3.
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B matrix size, n

= [esc ji)? and 7 = 1073
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32768

8192

2048

912

k(y*,7)

128

32

2

-3

Fi1G. 7. Req. num. of iter. for

32768

-2

= [escji]?, n = 32768 and T = 102

Y7

8192

2048

912

k(y*,7)

128

32

Fi1G. 8. Req. num. of iter. for

= [escji]?, n = 32768 and 7 = 10~

h
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We now derive an expression for k(y*,7) for 8 = 2.

THEOREM 7.4. For all n, the relative error and the required number of iterations
k(y*,T) for the solution vector y*, given by (2.7) with 3 = 2, are dependent on n,
with, for large n

1— 72

3

(7.1) k(y*,7) = n.

Proof. In this case, we have the following minimization problem:

def .
K = min
ag

» 2
csc j; — E apsin?*1j; |,
k=1

which is equivalent to (using the multiple angle formulae)

n
i=1

n p 2
7.2 K = mi i — in(2k—-1)j5; | .
(7.2) nrclllcnzzz1 (cscy ch sin ( )J )

k=1

Once again realize that solving for K will exactly determine the conjugate gradient
iterate errors. Note that no additional constants were introduced, and therefore no
constraint equation is necessary.

This case can be handled using a straightforward minimization, setting derivatives
equal to zero. In order to invoke Identity 7.1, we add and subtract half of the summand
term, for i :=n+1, i.e.

2 2
1 T e T 1 u k1
:ti (CSC§ —];Ck Sin (2]{5— 1)§> = 5(1— E Ck(_]-) )

Differentiating, we get

n p
oK _ l—2 (cscji — ) cpsin (2k — 1)ji> sin (20 — 1)ji] -

oc
¢ k=1

(1 - i ck(—l)k+1> (-1 + A=)
k=

1

2

2> ck{ [Z sin (2k — 1)7; sin (20 — 1)j;

—2{ > escjisin (2¢ - 1)j;

+ 1(_1)54-1} +

+ %(—1)’”[} +

Breaking down to different values of ¢, and invoking Identity 7.1
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_ .. 0K 1 L n+1 o4

“2n+c(n+1)+A-1,
pi1 K lZM] Lt

in j;
Ocy P sin j;

~

"

=B(n,l)

¢ n+1 41
QZCk 5 Op1 ¢ + (—1) A
k=1

= —2B(n,0) +ce(n+1) + (=) 14 —-1).

Note that B(n, 1) = n, therefore we can combine the two possibilities above, producing

1
n +

¢ = 1[QB(n,E)Jr(—l)‘(,at—D, (=1, p.

Now, getting back to our definition of A, we have with some manipulation

p
A = 1-) (-t
k=1

1 & |
- 1_n+1;[23(n,k)(—1)’“+ —(A-1)
_ 2 ¢ k+1
_ 1_7n_p+1]§(_1) B(n, k)

Invoking Identity 7.2, we see that for p even: A =1, and for p odd:

Therefore, we have
1
—(_1\P _ —_1r—1? -
A=(-1) ,andce—n+1{2B(n,€)+( 1)"[(-1) 1]}

We now have A and ¢, in order to plug back into (7.2) and again invoking Identity 7.1
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n p
K = csc2ji—2cscjichsin(2k—1) +
=1 k=1
P P
Z Z creesin (2k — 1) sin (20 — 1)
k=1 (=1
1 & k1, 1 e ke 1
5—2%( Dl +§chm( b A
k=1 k=1 (=1 =1
n p n
9 sin (2k — 1) j;
- Sy ay
i=1 k=1 i=1 S Ji
_B‘(:l,k)
p D P
n+1
D> e 5 Oke — Y ex (=)
k=1 (=1 k=1

where the first two terms of the last expression are from Identity 7.3.

Now, let us take p to be even. Therefore, ¢, = 22(&’[), and we have
2 4
p
2 2 v 2
B%(n, k k -1 B(n,k
> | B~ 2 B + (1 2Bl
2 5
3" T3 T T
p—1 P
Y [Bk)+Bmk)]+ Y [B(nk) - B(n,k)
k=1,odd k=2,even

Using Identity 7.2 we have
2 , 4
K = Zn’4+-n-
33 A

p—1

[n—k+1 (n—k+1)]+
k=1,0dd

i [n—k+2) (n—k+2)] )

k=2,even

and renumbering the summation index k
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2, 4
K = gnitgn-T79
p/2 ‘ ‘
Z{[n—2(k—1)]2+[n—2(k—1)]+(n—2k+2)2—(n—2k+2)}
k=1
/2
_ 2 2 4 < 2
= 3n +3n n+1k§1(n 2k +2)

4n 2n? 2p (2+6n+3n2—3p—3np+p2)

(73) 5 773 5 (L+n)

Il
|

+
|

(We have once again used Mathematica to obtain to the last step.) Note that the

choice p = n gives K = 0, i.e., finite termination is included in this derivation.
For the relative error squared, we have ©%(y*,p) = ﬁ, and by Definition 2.1
E
and Identity 7.3 the denominator is 4(%112 + %n) Dividing this into (7.3) and retain-
ing only the high order terms, we get

. 3
Oy, p) 11— L.
n
Thus
1— 2
k(y*,7) = 3T n

iterations are needed to make O(y*,p) equal to a tolerance 7, as in (7.1). O
We remark that the above estimates are more accurate than the classical estimate
of (1.2). It is not clear whether there is a  such that (1.2) is achieved.

8. Summary. In this paper we have analyzed the number of iterations required
by the conjugate gradient method for solving linear systems which stem from dis-
cretized, one-dimensional boundary value problems of second order. For a specific,
parameterized family of initial guesses, exact, analytic expressions were derived for
three values of this parameter. Two values lead to iteration counts which, while very
different from each other, are independent of the size of the system, for large enough
systems. The third value displays the well-known linear dependence, while provid-
ing a more accurate estimate than the classical one. Numerical computations were
included.
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