
A NOTE ON CONJUGATE GRADIENT CONVERGENCEAARON E. NAIMAN�, IVO M. BABU�SKAy, AND HOWARD C. ELMANzAbstract. The one-dimensional discrete Poisson equation on a uniform grid with n pointsproduces a linear system of equations with a symmetric, positive-de�nite coe�cient matrix. Hence,the conjugate gradient method can be used, and standard analysis gives an upper bound of O(n) onthe number of iterations required for convergence. This paper introduces a systematically de�nedset of solutions dependent on a parameter �, and for several values of �, presents exact analyticexpressions for the number of steps k(�; �; n) needed to achieve accuracy � . The asymptotic behaviorof these expressions has the form O(n�) as n!1 and O(�
) as � ! 0. In particular, two choicesof � corresponding to nonsmooth solutions give � = 0, i.e., iteration counts independent of n; this isin contrast to the standard bounds. The standard asymptotic convergence behavior, � = 1, is seenfor a relatively smooth solution. Numerical examples illustrate and supplement the analysis.Key words. conjugate gradient, convergence ratesAMS subject classi�cations. 65F10, 65G99, 65L10, 65L12, 65N221. Introduction. The conjugate gradient method is widely used for solving sys-tems of linear equations stemming from the discretization of boundary value problemsfor elliptic di�erential equations. Considering the conjugate gradient as an iterativemethod, the required number of iterations depends in general on the distribution ofeigenvalues of the coe�cient matrix, and upper estimates are well-known. In partic-ular, the standard analysis leads to the upper bound2�p�� 1p�+ 1�p(1.1)for the relative error in the energy norm after p steps (see, e.g., [2, p. 525]), where �is the condition number. For the one-dimensional model problem (see Section 2) on auniform grid with n points, the condition number is approximately 4n2=�2, and thisestimate leads to an upper bound of k � ln 2�� n(1.2)for the number of iterations to make the relative error smaller than a speci�ed accuracy� (provided � is not too small), see [1, p. 567].These bounds are derived using the inequality������e(p)������ � minPk maxEigenvalues � jPp(�)j ������e(0)������(1.3)for the relative error in the energy norm, where the minimum is over all polynomialsof degree p such that Pp(0) = 1. It is known that this result is sharp in the sense that� Department of Applied Mathematics, Jerusalem College of Technology-Machon Lev, Jerusalem,Israel, e-mail: naiman@math.jct.ac.il.y Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.The work of this author was supported in part by the U. S. O�ce of Naval Research under grantN-0014-90-J1030 and by the National Science Foundation under grant DMS-9120877.z Department of Computer Science and Institute for Advanced Computer Studies, Universityof Maryland, College Park, MD 20742, e-mail: elman@cs.umd.edu. The work of this author wassupported in part by the U. S. Army Research O�ce under grant DAAL-0392-G-0016 and by theNational Science Foundation under grants ASC-8958544 and DMS-9423133.1



2 AARON E. NAIMAN, IVO M. BABU�SKA AND HOWARD C. ELMANfor any distribution of at least p+ 1 eigenvalues, there is an initial guess (dependingon p) that produces equality in (1.3) [1, p. 561], [4]. This observation can be used toderive sharp upper bounds on the error that are stronger than (1.1) [4].The conventional wisdom holds that (1.2) characterizes the behavior of the con-jugate gradient method for the model problem in terms of both n and � , except inthe case where the initial error contains only a small number of eigenvectors. In thispaper, we examine this issue. We introduce a systematically de�ned set of solutionsdependent on a parameter � that controls smoothness, and we study the performanceof the conjugate gradient method applied to the discrete one-dimensional model prob-lem when these are the solutions. For several choices of �, we give explicit formulaefor the exact number of iterations needed to achieve accuracy � , as a function of n and� . Two of these results, corresponding to nonsmooth solutions, show that the numberof iterations is independent of n for large n. These results stand in contrast to thestandard bounds: In each of the two examples, the initial error contains componentsin all (n) eigenvectors of the coe�cient matrix, but the required iteration counts donot depend on n. Additional analysis together with empirical results for a wide choiceof values of � suggest that this type of behavior is typical. We also show, in a thirdexample, that there are members of this solution class for which upper bounds essen-tially of the form (1.2) are seen. This result di�ers from (1.2), though, in that thecoe�cient multiplying n decreases as � decreases. We do not know whether there isa class of initial guesses whose convergence behavior depends on both n and � in amanner predicted by (1.2).In the next section we de�ne the model problem and present the class of solutionsunder consideration. In Section 3, we brie
y review the properties of the conjugategradient method used. In Section 4 we give, for � = 0, the expression for the errorafter p iterations and the required number of iterations, k, for achieving accuracy � .In Section 5, we derive the analogous formulae for the case � = 1 and outline somequalitative di�erences from the results for � = 0. We present in Section 6 numericalcomputations for various values of �. Finally, in Section 7 we analyze the case � = 2and show that in contrast to the previous two cases, where the iteration counts areindependent of the size of the system (for large enough systems), here k = O(n) asn!1. The work presented in this paper represents part of the �rst author's thesis,and additional details can be found there [5].2. The Model Problem and Solution Class. Consider the problem� u00(x) = f(x); x 2 (0; 1);(2.1)with the Dirichlet boundary conditionsu(0) = u(1) = 0;and �nite di�erence or �nite element approximation on a uniform meshM := �xi = ih j i = 1; � � � ; n; h = 1n+ 1�;i.e., all nodes are internal. The approximate solution uM = �uM1 ; � � � ; uMn �T thensatis�es the system AuM = fM ;(2.2)



CONJUGATE GRADIENT CONVERGENCE 3where fM = �fM1 ; � � � ; fMn �T , fMi = f(xi)h2, for �nite di�erences (or lumped �niteelements) and
A = 0BBBBBBBBBB@
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It is well known that the normalized eigenvectors, v(s), and eigenvalues, �(s), of thematrix A are given byv(s)i =r 2n+ 1 sin 2jsi and �(s) = 4 sin2 js;for s; i = 1; � � � ; n, where ja = a�2(n+1) . Hence we can writeuM = nXs=1 �(s)v(s);as well as ����uM ����22 = nXs=1 ��(s)�2:For any such uM , the energy norm isDefinition 2.1. ����uM ����2E � �uM�TA�uM� = 4Pns=1 ��(s)�2 sin2 js.Instead of analyzing (2.2), we can analyze the number of iterations for the similarsystem By = g;(2.4)where B = diag�4 sin2 ji�; i = 1; � � � ; n:(2.5)Let y? = (y?1 ; � � � ; y?n)T ; be the exact solution of (2.4) and let the initial guess y(0) = 0.Letting y(p) denote the pth conjugate gradient vector, we de�ne the relative error�(y?; p) = ����y? � y(p)����Ejjy?jjE ;(2.6)and we will study the required number of iterations k(y?; �) needed to make �(y?; k(y?; �))equal to tolerance � .The character of y? will depend on the smoothness of uM . If the solution issmooth, then jy?i j will decay with increasing i. To understand the in
uence of smooth-ness, we will consider solutions to (2.5) of the formjy?i j := [csc ji]� ; i = 1; � � � ; n(2.7)where � is a real parameter. The cases where � is large describe smoother solutionsof (2.2), and when � is decreased, the solutions become less smooth. We will alsogeneralize (2.7) further below.



4 AARON E. NAIMAN, IVO M. BABU�SKA AND HOWARD C. ELMAN3. Bounds for the Conjugate Gradient Method. We will analyze the con-jugate gradient method for the diagonal system (2.5). As in the previous section,let y? = (y?1 ; � � � ; y?n)T ;be the exact solution of (2.4). Then the residual with zero initial guess isr(0) = g �By(0) = g = By?;so that by (2.4) we have r(0)i = y?i �4 sin2 ji�; i = 1; � � � ; n:The pth iterate computed by the conjugate gradient method is the member of theKrylov sequencespan�r(0); Br(0); B2r(0); � � � ; Bp�1r(0)	 =spann�y?i �4 sin2 ji��; hy?i �4 sin2 ji�2i; hy?i �4 sin2 ji�3i; � � � ; hy?i �4 sin2 ji�pio;i = 1; � � � ; nthat minimizes the energy norm. Here, the notation [vi] refers to the vector v whosei'th entry is vi. The i'th component of the error satis�es���y?i � y(p)i ��� = �����y?i � pXk=1 aky?i �sin2 ji�k�����; i = 1; � � � ; nwhere the factor 4k has been incorporated into the coe�cient ak. Now, since theiterates are mutually conjugate orthogonal, we can write the energy norm squared ofthe error of the pth conjugate gradient iterate asminak nXi=1 jy?i j2 sin2 ji 1� pXk=1 ak sin2k ji!2 =minak nXi=1 "jy?i j sin ji 1� pXk=1 ak sin2k ji!#2:(3.1)Remark 3.1. Note that the 4 associated with the square of the energy norm isand will be left out of all of the minimization equations.In the following sections, we will derive closed form expressions of (3.1) for severalchoices of y?.4. Error for � = 0 and Analogous Problems. Before we proceed with themain theorem of this section, let us �rst state some identities, the �rst of which is anorthogonality property of the sine function1.Identity 4.1." nXi=1 sin (2k + 1)ji sin (2`+ 1)ji#+ 12 sin �(2k + 1)2 sin �(2`+ 1)2 = n+ 12 �k`;1 This identity is proven in [5, Appendix 3.B]. Note: the second term is the same as the summandof the �rst, with i := n+ 1.



CONJUGATE GRADIENT CONVERGENCE 5for 0 � k; ` � n, where �k` = � 1; k = `;0; k 6= `; is the Kronecker delta.Identity 4.2. pXk=0 (2k + 1)2 = 13(p+ 1) h4(p+ 1)2 � 1iIdentity 4.3. pXk=0 (�1)k(2k + 1) = (�1)p(p+ 1)Identity 4.4. nXi=1 sin2 ji = n2Proof. Invoke [3, (1.351.1)].Theorem 4.5. For large enough n, the relative error and the required num-ber of iterations k(y?; �) for the solution vector y?, given by (2.7) with � = 0, areindependent of n, with k(y?; �) � 34 13� 23 :(4.1)Proof. In this case, we have to minimizenXi=1  sin ji � pXk=1 ak sin2k+1 ji!2;which is equivalent to minimizing (using the multiple angle formulae, see [3, (1.320.3)])K def= nXi=1  sin ji � pXk=0 ck sin (2k + 1)ji!2;(4.2)subject to the constraint pXk=0 ck(2k + 1) = 0:This constrained minimization problem can be solved by the Lagrange multipliertechnique. To this end, we introduce the Lagrange multiplier � and seek the stationarypoint of the functionnXi=1  sin ji � pXk=0 ck sin (2k + 1)ji!2 + � pXk=0 ck(2k + 1) def= J :



6 AARON E. NAIMAN, IVO M. BABU�SKA AND HOWARD C. ELMANWith Identity 4.1 in mind, we rewrite J asJ = nXi=1  sin ji � pXk=0 ck sin (2k + 1)ji!2 +12 sin �2 � pXk=0 ck sin (2k + 1)�2 !| {z }�A 2 +(4.3) � pXk=0 ck(2k + 1)� 12A2:(4.4)Di�erentiating, we get@J@c` = �2 nXi=1  sin ji � pXk=0 ck sin (2k + 1)ji! sin (2`+ 1)ji � sin �2 � pXk=0 ck sin (2k + 1)�2 ! sin (2`+ 1)�2 +�(2`+ 1) + sin (2`+ 1)�2 A= �2(" nXi=1 sin ji sin (2`+ 1)ji#+ 12 sin �2 sin (2`+ 1)�2 )+2 pXk=0 ck(" nXi=1 sin (2k + 1)ji sin (2`+ 1)ji# +12 sin (2k + 1)�2 sin (2`+ 1)�2 �+ �(2`+ 1) + (�1)`A:Now, when ` = 0, we have, invoking Identity 4.1,@J@c0 = �2�n+ 12 �+ 2 pXk=0 ck�k 0n+ 12 + �+A= �(n+ 1) + c0(n+ 1) + �+A= �(n+ 1) (1� c0) + �+A:For ` 6= 0, by orthogonality the �rst term equals zero, and using Identity 4.1, we areleft with @J@c` = 2 pXk=0 ck�k `n+ 12 + �(2`+ 1) + (�1)`A= c`(n+ 1) + �(2`+ 1) + (�1)`A:Setting these equations equal to zero, we obtain the following system of equationsc0 = 1� �+An+ 1 , and c` = ��(2`+ 1) + (�1)`An+ 1 ; ` = 1; � � � ; p:(4.5)Between the constraint equation and the de�nition of A we have two equations



CONJUGATE GRADIENT CONVERGENCE 7with two unknowns, � and A. From the constraint equation we have0 = 1� A+ �1 + n + 3A� 3 (�1)pA� 3 (�1)pA p� 11� p� 12� p2 � 4� p33 (1 + n) ;and from the de�nition of AA = (A+ (�1)p �) (1 + p)1 + n :(Note that for the following calculations, Identities 4.2 and 4.3 are invoked repeatedly.)Solving for the two unknowns, we get� = 3 (�1)p (1 + n)3 + 3n+ 8n p� 8 p2 + 4n p2 � 4 p3 ;and A = 3 (1 + n) (n� p)(1 + p) (3 + 3n+ 8n p� 8 p2 + 4n p2 � 4 p3) :These values are now available to be used in c` in (4.5).In order to get to the conjugate gradient error, we compute the expression K byway of the equivalent (4.4), for ck given by (4.5)K = n+ 12 "(1� c0)2 + pXk=1 c2k#� 12A2:Substituting for fckg, we obtainK = 3 (1 + n) (n� p)2 (1 + p) (3 + 3n+ 8n p� 8 p2 + 4n p2 � 4 p3) :Recall that for the relative error �(y?; p) we have (see (2.6) and Remark 3.1)�2(y?; p) = 4Kjjy?jj2E ;where De�nition 2.1 and Identity 4.4 supply the value for the denominator. Therefore,performing a series expansion in 1n on the error of the pth iteration, we have for largen �2(y?; p) � 3 p (5 + 4 p)n (1 + p) (3 + 8 p+ 4 p2)2 + 33 + 11 p+ 12 p2 + 4 p3 ;i.e., it is, basically, independent of n. In Figure 1 we show what the relative errorlooks like. Note that the �rst iterations are the most e�ective.If we use a stopping criterion of �(y?; p) � � , we get that the following numberof iterations, k(y?; �), are necessaryk(y?; �) � �3 + 3n� 132 23 � 23 :(4.6)For large n we obtain (4.1).
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iteration number, pFig. 1. Relative error, �(y?; p), for � = 0 and n = 1024Let us compare this result with the standard bound (1.2). The conjugate gradientmethod is a direct method, so that it is guaranteed to compute the exact solution in atmost n steps. Thus, (1.2) only has meaning if � > 0:086. However, use of either (1.2)or the �nite termination property only guarantees that k(y?; �) � O(n). In contrast,Theorem 4.5 shows that for any �xed � , the limiting value of k(y?; �) for � = 0 is aconstant that is independent of n.So far we have used jy?i j = 1, i = 1; � � � ; n. If instead we havejy?i j < a; i = 1; � � � ; n; and Pni=1 a2 sin2 jiPni=1 (y?i )2 sin2 ji � �2;(4.7)we also have the following corollary:Corollary 4.6. The required number of iterations k(y?; �) for the solutionvector y? given by (4.7), is independent of n, for large enough n.Proof. Since everything in (3.1) is positive, the same minimization is performedas before, generating the same parameters fckg and minimal value K. There is nowan extra a in the numerator of the relative error �(y?; p), which, using the secondinequality of (4.7), evaluates to�(y?; p) � 1p 32 �34� 12 �:This is also independent of n.We take here n to be a power of two, and in Figure 2 we show the required numberof iterations for � = 0:01. The results show that behavior of the type predicted bythe standard analysis is seen only for small n. These and all subsequent experimentalresults were obtained on a CM-2 computer.
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matrix size, nFig. 2. Required number of iterations, k(y?; �), for � = 0 and � = 0:015. Error for � = 1 and Analogous Problems. Once again we preface ourtheorem with the following identity which is an orthogonality property, this time ofthe cosine function:Identity 5.1. " nXi=1 cos 2j~̀i#+ 12 + 12 cos ~̀� = 0;for ~̀2(n+1) not an integer.Indeed any such ~̀ which will concern us will always be smaller than 2(n+ 1) in ab-solute value, and therefore, we need only deal with ~̀= 0 as a special case. Thisrelationship can be proven in a straightforward manner using [3, 1.342.2], and ex-panding sin jn` into sin �2̀ �1� 1n+1�, as in [5, Appendix 3.B].Theorem 5.2. For large enough n, the relative error and the required num-ber of iterations k(y?; �) for the solution vector y?, given by (2.7) with � = 1, areindependent of n, with k(y?; �) � 12 �2 :(5.1)Proof. In this case, we have to minimize the expression (see (3.1))nXi=1  1� pXk=1 ak sin2k ji!2;which, invoking [3, (1.320.1)], is equivalent to minimizingK def= nXi=1  1� pXk=0 ck cos 2kji!2;(5.2)



10 AARON E. NAIMAN, IVO M. BABU�SKA AND HOWARD C. ELMANOnce again, due to the one additional constant introduced, we need a constraintequation to interrelate the parameters fckg. The second summation in (5.2), evaluatedat zero, produces the desired interdependence. The original form of the minimizationtells us that this is equal to zero. Therefore, we havepXk=0 ck = 0:As before, using the Lagrange multiplier technique we seek the stationary pointof J = nXi=1  1� pXk=0 ck cos 2kji!2 + 12 1� pXk=0 ck!2 +12 1� pXk=0 ck cos k�!2 + � pXk=0 ck � 12B2 � 12A2;where B = 1� pXk=0 ck and A = 1� pXk=0 ck cos k�. We note immediately that becauseof the constraint equation, B = 1.We have@J@c` = nXi=1 "�2 cos 2j`i 1� pXk=0 ck cos 2kji!#� 1� pXk=0 ck!� cos `� 1� pXk=0 ck cos k�!+ �+ 1 + cos `�A:Rewriting the cosine product terms (see [3, 1.314.3]), we get@J@c` = nXi=1(�2 cos 2j`i + pXk=0 ck�cos 2j(k+`)i + cos 2j(k�`)i�)�1 + pXk=0 ck � cos `� + 12 pXk=0 ck[cos (k + `)� + cos (k � `)�] +�+ 1 + (�1)`A:and rearranging@J@c` = �2(" nXi=1 cos 2j`i#+ 12 cos `�)+pXk=0 ck(" nXi=1 cos 2j(k+`)i#+ 12 cos (k + `)�)+pXk=0 ck(" nXi=1 cos 2j(k�`)i#+ 12 cos (k � `)�)�1 + pXk=0 ck + �+ 1 + (�1)`A:



CONJUGATE GRADIENT CONVERGENCE 11Therefore, for ` = 0 we have@J@c0 = �2�n+ 12�+ 2c0�n+ 12�| {z }k=0 +2 pXk=1 ck��12�| {z }k 6=0 �1 + c0 + pXk=1 ck + �+ 1 +A= �2(1� c0) (n+ 1) + �+ 1 +A;and for non-zero `, we have@J@c` = 1 + pXk=0 ck��12�+ c`�n+ 12�| {z }k=` + pXk=0k 6=` ck��12��1 + c` + pXk=0k 6=` ck + �+ 1 + (�1)`A= c`(n+ 1) + �+ 1 + (�1)`A:After setting these two equations equal to zero, we write fc`g in terms of our twounknowns � and Ac0 = 1� �+ 1 +A2(n+ 1) , and c` = ��+ 1 + (�1)`An+ 1 ; ` = 1; � � � ; p:(5.3)With the combination of the constraint equation and the de�nition of A, we have twoequations with two unknowns0 = 1� 1 +A+ �2 (1 + n) + A� (�1)pA� 2 p� 2� p2 (1 + n) ;and A = 1 +A+ �2 (1 + n) � 1� (�1)p + �� (�1)p �� 2A p2 (1 + n) :Solving, we get the following values for the unknowns:� = 2 �n+ n2 � p� 2n p+ p2�1 + n+ 2n p� 2 p2 ;and A = (�1)p (1 + n)1 + n+ 2n p� 2 p2 :These values can be substituted into the quantities c` of (5.3).Now that the c` coe�cients are known, the next step is to compute K. We startby expanding the squared terms, giving



12 AARON E. NAIMAN, IVO M. BABU�SKA AND HOWARD C. ELMANK = nXi=1  1� 2 pXk=0 ck cos 2jki + pXk=0 pX̀=0 ckc` cos 2jki cos 2j`i!+12 1� 2 pXk=0 ck + pXk=0 pX̀=0 ckc`!+12 1� 2 pXk=0 ck cos k� + pXk=0 pX̀=0 ckc` cos k� cos `�!� 12�1 +A2�:Invoking [3, 1.314.3] we haveK = n+ 12 + 12 � 2 pXk=0 ck" nXi=1 cos 2jki!+ 12 + 12 cos k�#+12 pXk=0 pX̀=0 ckc`(" nXi=1 cos 2j(k+`)i!+ 12 + 12 cos (k + `)�# +" nXi=1 cos 2j(k�`)i!+ 12 + 12 cos (k � `)�#)� 12�1 +A2�= (n+ 1)� 2[c0(n+ 1)] + 12c20(n+ 1)2| {z }k=`=0 + 12 pXk=1 c2k(n+ 1)| {z }k=` 6=0 �12�1 +A2�= (n+ 1)  1� 2c0 + c20 + 12 pXk=1 c2k!� 12�1 +A2�;and we get K = n+ n2 � p� 2n p+ p21 + n+ 2n p� 2 p2 :Recall that for the relative error squared: �2(y?; p) = 4Kjjy?jj2E . By De�nition 2.1the denominator is just 4n. In Figure 3 we graph the relative error as a function ofthe iteration number. Dividing through and retaining the �rst two terms (the O(1)and O� 1n� terms), we get�2(y?; p) � �2 p2n (1 + 2 p)2 + 11 + 2 p:To make �(y?; p) equal to a tolerance � ,k(y?; �) � n1 + 2n �2(5.4)iterations are needed. For large n, we obtain (5.1).In Figure 4 we show the required number of iterations for � = 0:01. Again, the\classical behavior" is seen for small enough n, but as n!1, the iteration countstend to a constant. Note that the number of iterations is large compared with the
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iteration number, pFig. 3. Relative error, �(y?; p), for � = 1 and n = 1024
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matrix size, nFig. 4. Required number of iterations, k(y?; �), for � = 1 and � = 0:01case � = 0 (Figure 2). This is due to the less e�ective initial iterations, as seen in thedi�erence between Figures 1 and 3.Some remarks are in place:1) We see the importance of retaining the O� 1n� term in the calculation of�2(y?; p), because it is not (necessarily) negligibly small compared with the�rst term.2) There is a qualitative di�erence between this result and the one for � = 0.



14 AARON E. NAIMAN, IVO M. BABU�SKA AND HOWARD C. ELMANHere, the iteration count (5.4) does not approach a constant until n is largerelative to 1�2 . In contrast, for � = 0, constant iteration counts are obtainedin (4.6) for values of n that are independent of � . This explains the slowerdevelopment of the \knee" in Figure 4 than in Figure 2. (In fact, exactly nsteps were performed for small n in Figure 4.)As in the previous section, we can generalize the form of y?jy?i j < a csc ji; i = 1; � � � ; n; , and na2Pni=1 (y?i )2 sin2 ji � �2;(5.5)and obtain the following corollary:Corollary 5.3. The required number of iterations k(y?; �) for the solutionvector y? given by 5.5, is independent of n, for large enough n.6. Empirical Results. In the previous sections we have analytically derivedthe required number of iterations k(y?; �) for y? given in (2.7) and � = 0; 1. Here,we show empirically computed values of k(y?; �) for a large collection of values of �.In particular, Figure 5 plots k for values of � between �3 and 10 and n � 32768, for� = 10�2, and Figure 6 shows analogous results for � = 10�5. Figures 7 and 8 givedetailed pictures of these results for n = 32768.The results for � = 0 and � = 1 are exactly as predicted by the analysis of Sec-tions 4 and 5. We summarize this with the following theorem:Theorem 6.1. For � equal 0 or 1, for any � , there exists �k (depending on �)such that k(y?; �) < �k for all n.It also seems that similar behavior is seen for most other values of �, that is, as nincreases, the required number of iterations stops increasing and becomes independentof n. However, scrutiny of Figures 7 and 8 suggests that this may not be the case for� near 2. In the next section we derive a closed for expression for k(y?; �) when � = 2showing that in this case the iteration counts are proportional to n.7. Error for � = 2. As usual, we start with a few identities. The �rst one is thesame as Identity 4.1, just shifted:Identity 7.1." nXi=1 sin (2k � 1)ji sin (2`� 1)ji#+ 12 sin �(2k � 1)2 sin �(2`� 1)2 = n+ 12 �k`;for 1 � k; ` � n+ 1.Note that the second term on the left hand side is equal to 12 (�1)k+`. The followingtwo identities come up in the derivation below. These identities were proven with theaid of Mathematica [6]. Recall that ji = i�2(n+1) .Identity 7.2. nXi=1 sin (2k � 1)jisin ji = n+ 2�1� �k2��;for k � n.Identity 7.3. nXi=1 csc2 ji = 23n2 + 43n:
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Fig. 5. Required number of iterations for ��y?i �� = [csc ji]� and � = 10�2
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Fig. 6. Required number of iterations for ��y?i �� = [csc ji]� and � = 10�5
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Fig. 8. Req. num. of iter. for ��y?i �� = [csc ji]�, n = 32768 and � = 10�5



CONJUGATE GRADIENT CONVERGENCE 17We now derive an expression for k(y?; �) for � = 2.Theorem 7.4. For all n, the relative error and the required number of iterationsk(y?; �) for the solution vector y?, given by (2.7) with � = 2, are dependent on n,with, for large n k(y?; �) � 1� �23 n:(7.1)Proof. In this case, we have the following minimization problem:K def= minak nXi=1  csc ji � pXk=1 ak sin2k�1 ji!2;which is equivalent to (using the multiple angle formulae)K = minck nXi=1  csc ji � pXk=1 ck sin (2k � 1)ji!2:(7.2)Once again realize that solving for K will exactly determine the conjugate gradientiterate errors. Note that no additional constants were introduced, and therefore noconstraint equation is necessary.This case can be handled using a straightforward minimization, setting derivativesequal to zero. In order to invoke Identity 7.1, we add and subtract half of the summandterm, for i := n+ 1, i.e.�12 csc �2 � pXk=1 ck sin (2k � 1)�2!2 = �12 1� pXk=1 ck(�1)k+1!| {z }def=A 2:Di�erentiating, we get@K@c` = "�2 nXi=1  csc ji � pXk=1 ck sin (2k � 1)ji! sin (2`� 1)ji#� 1� pXk=1 ck(�1)k+1!(�1)`+1 +A(�1)`+1= �2(" nXi=1 csc ji sin (2`� 1)ji#+ 12(�1)`+1)+2 pXk=1 ck(" nXi=1 sin (2k � 1)ji sin (2`� 1)ji#+ 12(�1)k+`)+(�1)`+1A:Breaking down to di�erent values of `, and invoking Identity 7.1



18 AARON E. NAIMAN, IVO M. BABU�SKA AND HOWARD C. ELMAN` = 1 : @K@c1 = �2�n+ 12�+ 2 pXk=1 ck�n+ 12 �k1�+ (�1)`+1A= �2n+ c1(n+ 1) +A� 1;` 6= 1 : @K@c` = �2" nXi=1 sin (2`� 1)jisin ji #| {z }�B(n;`) �(�1)`+1 +2 pXk=1 ck�n+ 12 �k1�+ (�1)`+1A= �2B(n; `) + c`(n+ 1) + (�1)`+1(A� 1):Note that B(n; 1) = n, therefore we can combine the two possibilities above, producingc` = 1n+ 1h2B(n; `) + (�1)`(A� 1)i; ` = 1; � � � ; p:Now, getting back to our de�nition of A, we have with some manipulationA � 1� pXk=1 ck(�1)k+1= 1� 1n+ 1 pXk=1 h2B(n; k)(�1)k+1 � (A� 1)i= 1� 2n� p+ 1 pXk=1 (�1)k+1B(n; k)Invoking Identity 7.2, we see that for p even: A = 1, and for p odd:A = 1� 2n� p+ 1B(n; p) = �1:Therefore, we haveA = (�1)p, and c` = 1n+ 1n2B(n; `) + (�1)`[(�1)p � 1]o:We now have A and c` in order to plug back into (7.2) and again invoking Identity 7.1



CONJUGATE GRADIENT CONVERGENCE 19K = nXi=1 "csc2 ji � 2 csc ji pXk=1 ck sin (2k � 1) +pXk=1 pX̀=1 ckc` sin (2k � 1) sin (2`� 1)#+12 � pXk=1 ck(�1)k+1 + 12 pXk=1 pX̀=1 ckc`(�1)k+` � 12 A2|{z}=1= nXi=1 csc2 ji � 2 pXk=1 ck nXi=1 sin (2k � 1)jisin ji| {z }=B(n;k) +pXk=1 pX̀=1 ckc`n+ 12 �k` � pXk=1 ck(�1)k+1= 23n2 + 43n+ pXk=1 �c2k n+ 12 � 2ckB(n; k) + (�1)kck�;where the �rst two terms of the last expression are from Identity 7.3.
Now, let us take p to be even. Therefore, c` = 2B(n;`)n+1 , and we haveK = 23n2 + 43n+pXk=1 � 2n+ 1B2(n; k)� 2 2n+ 1B2(n; k) + (�1)k 2n+ 1B(n; k)�= 23n2 + 43n� 2n+ 1 �8<: p�1Xk=1;odd �B2(n; k) +B(n; k)�+ pXk=2;even �B2(n; k)�B(n; k)�9=;:Using Identity 7.2 we haveK = 23n2 + 43n� 2n+ 1 �8<: p�1Xk=1;odd h(n� k + 1)2 + (n� k + 1)i+pXk=2;even h(n� k + 2)2 � (n� k + 2)i9=; ;and renumbering the summation index k



20 AARON E. NAIMAN, IVO M. BABU�SKA AND HOWARD C. ELMANK = 23n2 + 43n� 2n+ 1 �p=2Xk=1n[n� 2(k � 1)]2 + [n� 2(k � 1)] + (n� 2k + 2)2 � (n� 2k + 2)o= 23n2 + 43n� 4n+ 1 p=2Xk=1 (n� 2k + 2)2...= 4n3 + 2n23 � 2 p �2 + 6n+ 3n2 � 3 p� 3n p+ p2�3 (1 + n)(7.3)(We have once again used Mathematica to obtain to the last step.) Note that thechoice p = n gives K = 0, i.e., �nite termination is included in this derivation.For the relative error squared, we have �2(y?; p) = 4Kjjy?jj2E , and by De�nition 2.1and Identity 7.3 the denominator is 4� 23n2 + 43n�. Dividing this into (7.3) and retain-ing only the high order terms, we get�2(y?; p) � 1� 3 pn :Thus k(y?; �) � 1� �23 niterations are needed to make �(y?; p) equal to a tolerance � , as in (7.1).We remark that the above estimates are more accurate than the classical estimateof (1.2). It is not clear whether there is a � such that (1.2) is achieved.8. Summary. In this paper we have analyzed the number of iterations requiredby the conjugate gradient method for solving linear systems which stem from dis-cretized, one-dimensional boundary value problems of second order. For a speci�c,parameterized family of initial guesses, exact, analytic expressions were derived forthree values of this parameter. Two values lead to iteration counts which, while verydi�erent from each other, are independent of the size of the system, for large enoughsystems. The third value displays the well-known linear dependence, while provid-ing a more accurate estimate than the classical one. Numerical computations wereincluded. REFERENCES[1] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, England,1994.[2] G. H. Golub and C. F. V. Loan, Matrix Computations, The Johns Hopkins University Press,Baltimore, MD, second ed., 1989.[3] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press,New York, NY, forth ed., 1980.[4] A. Greenbaum, Comparison of splittings used with the conjugate gradient algorithm, Nu-merische Mathematik, 33 (1979), pp. 181{194.[5] A. E. Naiman, Computer Solutions of Finite Element Linear Systems, PhD thesis, Universityof Maryland, College Park, MD, 1994.[6] S. Wolfram, Mathematica: A System for Doing Mathematics by Computer, Addison-Wesley,Readwood City, CA, second ed., 1991.


