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Spaceborne remote sensing data from the Special Sensor Microwave Imager (SSM/I) 

have been used for several decades to estimate snow depth over large regions. The SSM/I 

snow depth accuracy is not well quantified in non-uniform terrain. In this study, SSM/I 

snow depth estimates for the Columbia River Basin and surroundings in the Western 

USA and Canada are compared with in-situ manual snow-course measurements and 

interpolated snow water equivalent from the National Operational Hydrologic Remote 

Sensing Center. Snow depth is estimated for 25-km pixels from SSM/I brightness 

temperatures with the widely used Chang algorithm, adjusted for canopy cover. 

Interactive Data Language and ESRI ArcGIS are used to generate maps and time-series 

graphs, and to analyze the agreement between SSM/I snow depth and the other data 

sources. Measures of agreement are cross-tabulated with quantitative landscape 

descriptors, including: mean pixel elevation, elevation standard deviation (a measure of 

terrain complexity), and evergreen canopy cover. 
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Chapter 1 Introduction 

 

Understanding snowpack characteristics through various types of physical measurement 

allows for the prediction of snowmelt runoff and better management of scarce water 

supply.  The knowledge is also extremely valuable for flood forecasting purposes 

especially in the early spring. In mountainous regions, the snow-covered area is too vast, 

remote, and hazardous to cover by manual snowpack measurements. Satellite remote 

sensing, however, can cover these areas spatially and temporally.  Remote sensing gives 

hope to cover vast space with abundant data. 

 

Special Sensor Microwave Imager (SSM/I) snow retrieval has been used for several 

decades. The SSM/I algorithm estimates snow depth or snow water equivalent from a 

spectral gradient. The model was calibrated and has been confirmed in areas of uniform 

terrain and with shallow snowpack; its performance in complex terrain, such as 

mountains, is less well quantified. The algorithm was recently revised to include a 

canopy factor.  

Study Goal 

The SSM/I snow depth retrieval algorithm is tested against available ground 

measurements. In addition, independent snow water equivalent data from National 

Operational Hydrologic Remote Sensing Center (NOHRSC) are compared to the SSM/I 

snow depth retrieval. The goal is to assess how well the SSM/I estimates compare to the 

ground measurements and NOHRSC estimates, and to identify terrain characteristics 

where the SSM/I performs well or poorly. 
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Study Location 

This study focuses on the Columbia River Basin in the western US and Canada. 

Additional nearby locations in the Rocky Mountains but outside the Columbia Basin are 

also included. 

 

Objectives 

The objectives of this study are to: 

1. Compare the SSM/I snow depth estimates to ground measurements in the Columbia 

River Basin and nearby Rocky Mountains; 

2. Compare the SSM/I snow depth estimates to NOHRSC SWE estimates in the 

Columbia River Basin; and 

3. Analyze agreement and non-agreement between the SSM/I snow depth and the other 

data sources, specifically how the agreement varies with elevation, terrain 

complexity, and canopy cover. 
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Chapter 2 Literature Review 

Importance of Snow 

The occurrence of precipitation in the form of snow can change the drainage basin’s 

response to the input of water.  The modified hydrological response is due to the fact that 

snow is held in storage over an extended period of time before it enters in the runoff 

process (Rango, 1997). 

Several variables affecting the occurrence of seasonal snow cover in a basin include the 

time of year, weather patterns, moisture sources, latitude, elevation, and landscape 

features.  When the seasonal snow cover is deposited, several factors can affect the 

distribution of the snow, depending on the type of the basin.  In a flat lowland basin, the 

type and number of winter storms are the primary factor affecting the amount of the snow 

accumulation, with terrain and landscape features as secondary factors.  In the mountain 

basins, elevation is the primary factor with storm track and landscape features as 

secondary factors influencing the amount of snow accumulation.  In some basins, wind is 

an important factor that strongly affects the original deposition pattern by moving and 

redepositing the snow.  In many mountain basins, snow may still be accumulating at the 

higher elevations while the snow may have already disappeared at the lower elevations 

(Rango, 1997).   
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Snow depth and density 

Snow depth is the vertical distance from the ground to the top of the snow pack. Snow 

accumulation or snowfall is the vertical depth of fresh snow deposited over a defined 

period (generally 24 hours)  (Geer, 1996; Singh and Singh, 2001) 

Snow density (mass per volume) varies according to the amount of air and liquid water in 

the snow. Fresh snow density can vary from 0.06 to 0.18 gm/cc, but the average density 

of fresh snow is about 0.1gm/cc and this value is usually used when actual measurements 

are not made (Singh and Singh, 2001). 

The microstructure of snow changes over time, which affects the density of the 

snowpack.  Table 2-1 shows how density increases with the age of the snow. 

 

Table 2-1 Typical densities of snow in different forms 

Snow Type Density (gm/cc) 

Wild snow (new snow at low temperature in calm) 0.01-0.03 

New snow (immediately after failing in calm) 0.05-0.07 

Damp new snow 0.10-0.20 

Settled snow 0.20-0.30 

Depth hoar 0.20-0.30 

Wind packed snow 0.35-0.40 

Firn* 0.40-0.65 

Very wet snow and firn* 0.70-0.80 

Glacier ice 0.85-0.91 

(Source: Singh and Singh, 2001) 

*Firn is the type of snow that survived at least one complete summer melt season and 

could be considered as an intermediate stage between fresh snow and ice. 
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Snow Water Equivalent 

The water equivalent of snow is defined as the depth of water that would be produced by 

melting the snow, given in units of vertical depth [millimeter or inch].  The snow water 

equivalent of a snowpack having different layers of different density can be defined as  

 SWE =          
     2-1 

where the index i refers to one layer of the snow, ρi is that layer’s density, di is that 

layer’s depth, 



 is average density, and D is total snow depth (Singh and Singh, 2001). 

 

Remote Sensing of Snow Depth and Snow Water Equivalent  

Research has shown the microwave band has most potential for use in remote sensing 

applications for snow hydrology. Frequencies 37 and 19 GHz were found to be most 

useful for the SWE data. 

Chang et al. (1987) presented a multi-frequency approach to estimate SWE from raw 

brightness temperature data using the 37-GHz and 18-GHz frequencies of the Scanning 

Multichannel Microwave Radiometer (SMMR). The algorithm was later revised for the 

37- and 19-GHz frequencies of the SSM/I instrument (Chang, 1990). The 37 GHz 

frequency senses the near-surface (0-50cm) temperature, emissivity and surface 

roughness.  The 19GHz frequency is useful to obtain the information about the internal 

characteristics of the snow pack (Butt, 2009). 

The spatial resolution at these frequencies is poor, about 25km or greater. Observation 

times were limited to once every few days, depending on the latitudes.  With this poor 

resolution, Rango (1997) stated that use of the SSM/I data to estimate SWE was limited 

to flat and relatively homogeneous terrain. 
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 The earlier SMMR algorithm was revised to a snow depth (SD)/brightness temperature 

(T) relationship for a uniform snowfield. The algorithm to estimate the snow depth is 

based on the assumption of the entire snowpack consisting of snow density of 0.3 g/cm
3
, 

corresponding to a snow crystal radius of 0.3 mm (Foster, 2005). This algorithm 

expresses SD [cm] as proportional to the difference between the microwave brightness 

temperature at the 37 and 19 SSM/I channels as follows, 

                           2-2 

where T18H and T37H are the brightness temperature at 18 and 37 GHz, horizontal 

polarizations, respectively, and 1.59 is a constant derived by using the linear portion of 

the 37 and 18GHZ responses to obtain a linear fit of measured snow depth to the 

differences between these two channels.  This approximation limits the use of the 

algorithm to detection of snow up to 1m deep.  Snow at the margins of snow-covered 

area is believed to be underestimated since shallow, dry snow (< 2.5cm) is nearly 

transparent to microwave emission (Chang, 1990).   

Forest poses a serious problem by obscuring the snowpack.  A forest canopy over the 

snowpack can cause lower certainty of the SWE estimations by attenuating the 

microwave signal from the snowpack and at the same time emitting the forest microwave.  

In the extremely dense forest area with a significant snowpack, the apparent snow water 

equivalent can drop to zero.  This indicates a need for finding a method to correct the 

forest cover’s effect on the passive microwave snow signature (Rango,1997). 

Most of the aircraft-derived SWE over flight lines without extensive forest covers are 

consistent with the SWE derived from SSM/I data.  Over the forested regions, SWE 

retrievals without correcting for the forested cover gave much lower values than the 
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ground measurements (Chang, 1997).  Foster (1997) incorporated the factor of forest 

canopy and produced a revised algorithm for North American, Eurasia and other non-

Eurasia area.  

 

Foster (2005) writes,  

―Because of low loss when snow is dry, part of the radiation emitted by the 

underlying ground is scattered within the snowpack and part contributes to the 

observed signal when the total snow depth is less than 10–100 times the 

microwave wavelength (Rango, 1983). Therefore, in most cases, additional 

scattering does not result when snow thickness exceeds 0.8 m—the approximate 

saturation limit for 37 GHz frequencies. For most locations in North America, 

usually, snow does not accumulate to these depths over an entire PM pixel (37 km 

x 28 km for SSM/I). In portions of the Rocky Mountains and the Alaska Ranges, 

and perhaps in a few isolated areas in the boreal forests of Quebec, depths of 1 m 

or more can be reached, but our analysis indicates that these pixels make up less 

than 2% of all the pixels in North America.‖ 

Mizukami (2011) writes, 

―Several algorithms for retrieving SWE from passive microwave data have been 

developed in the past two decades (e.g., Chang et al., 1987; Goodison and 

Walker, 1995; Foster et al., 1997; Tait, 1998; Pullianinen and Hallikainen, 2001; 

Josberger and Mognard,2002; Koenig and Forster, 2004; Gan et al., 2009). 

However, there has been little success in developing analogous algorithms for 

mountainous areas, partly due to the complex physiographic features and 
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significant variations in snow distribution within each microwave pixel 

(approximately 25 x 25 km). Furthermore, there is a limitation of the passive 

microwave data to estimate large SWE due to passive microwave signal 

saturation (Tait and Armstrong, 1996; Dong et al., 2005). Dong et al., (2005) 

reported approximately 150 mm of SWE for this threshold. The mountainous 

areas typically receive well above this snow amount. Airborne gamma radiation 

SWE surveys, such as the one operated by the National Weather Service’s 

National Operational Hydrologic Remote Sensing Center (e.g., Carroll, 2001), can 

provide reliable mean areal SWE estimates along flight lines (approximately 10 

km x 300 m; e.g., Cline et al., 2009), but this approach is not feasible when 

continuous estimates of SWE over large areas are needed…..‖ 

 

Mizukami (2011) reported several other studies that demonstrate little success in 

developing analogous algorithms for mountainous areas due to complex physiographic 

features and significant variation in snow distribution within each microwave pixel 

(approximately 25 x 25km).  Furthermore, there is a limitation of the passive microwave 

data to estimate large SWE due to passive microwave signal saturation.  

 

EASE Grid   

The Equal-Area Scalable Earth Grid (EASE-GRID) is a versatile tool for using and 

displaying global-scale gridded remote sensing data.  The Northern Hemisphere is one of 

several possible projections in the EASE-GRID family (Figure 2-1) 
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Figure 2-1  Northern Hemisphere EASE-Grid projection (Polar Azimuthal Equal-

Area).  The red box shows the study location in Western USA and Canada 

(Source:  National Snow and Ice Data Center, 2011a) 

 

A spherical earth model was chosen over elliptical model because of the reduced error 

introduced in the gridding geolocation in this model choice (NSIDC, 2011a).  The 

projection is easier to project with known latitude and longitudes value which can be 

related to the column and row coordinates.  A grid in the EASE-Grid family is described 

by four elements: the map projection, the numbers of columns and rows, the number of 

grid cells per map unit and the grid cell that corresponds to the map’s origin. 

The original SSM/I Grids were defined as 25-km grids for the SSM/I Level 3 Pathfinder 

project at NSIDC, which also included gridded Passive Brightness Temperatures.  The 

Northern Hemisphere EASE- Grid is 721 rows by 721 columns.  These grids have a 

nominal cell size of 25km x 25km; the actual cell size is slightly larger: 25.067525km.  
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 The grid coordinates in decimal real numbers (r,s) start at the upper left corner as (0,0) 

with r, increasing from left to right as columns, and s increasing from top to bottom as 

rows.  Rounding the (r,s) grid coordinates (rounding up at 0.5) gives an integer grid cell 

number.  This grid cell (i,j) = (column,row) is centered at grid coordinates (r,s) = 

(i+0.5,j+0.5) and is bounded by: i - 0.5<= r < i + 0.5, j– 0.5 < = s < j + 0.5.   

In units of meters, the Map Origin is at the Pole, 90.0N latitude and 0.0 longitude. The 

map origin corresponds to grid cell (360,360). 

 

Snow course 

Snow survey in the Western USA began around 1906.  Snow courses were established in 

permanent sites for trained observers to take manual measurement of snow depth and 

snow water equivalent, usually around the first of the month during winter and spring; 

they are generally situated in small meadows protected from the wind (NRCS, 2009a).  

For this study, four states (Oregon, Washington, Montana and Idaho) are chosen as they 

are part of Columbia basin and Rocky Mountain area.  The Natural Resource 

Conservation Service (NRCS) lists over 1090 sites in these four states, but only 516 sites 

are active.   

Manual snow surveys in British Columbia are usually conducted up to 8 times per year 

around the beginning of the month from January to June, with extra measurements in the 

mid month of May and June (British Columbia River Forecast Centre, 2011).  The snow 

surveys are ideally located in a relatively sheltered area with least tree canopy overhead 

and as wide as possible with the forest clearing at least as wide as the height of the tree.  
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Sites were selected to be representative of the elevation between 1000 to 2000 meters 

above sea level, with snow for at least a portion of the winter. 

Five or ten points within the area are chosen with reference to a tree or other markers. 

Snow depth and snow water equivalent are measured with graduated aluminum tubes 

with a cutter affixed to the tubing section.  The tubes are known as Standard Federal 

Snow Samplers. The tubes are driven through the snow to the ground, then withdrawn 

and the snow core extracted.  The core and tube are first weighed, then the weight of the 

core is determined by difference; this weight gives the measurement of snow water 

equivalent in cm. Then the snow depths and snow water equivalents are averaged based 

on all measurements taken at the site during each sampling period. (British Columbia 

River Forecast Centre, 2011). 

 

NOHRSC  

The National Operational Hydrologic Remote Sensing Center (NOHRSC) provides 

remotely sensed and modeled hydrology products covering the USA.  Estimates of snow 

water equivalent data are one of such products; they are assimilated by several dynamic 

data sources including satellite imagery, airborne gamma radiation survey, snow water 

equivalent data sets, and station observations.  For the SWE data used in this study, 

satellite imagery was acquired daily at a variety of resolutions from variety of sensors 

such as Advanced Very High Resolution Radiometer (AVHRR) and Geostationary 

Operational Environmental Satellite (GOES). Each data type was analyzed and processed 

by its corresponding system (Hartman, 2011a).   
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Operational Processing of Multi-Source Snow Data is a system that processes all data 

from several sources to generate hydrologic products by streamlining and integrating all 

snow estimation data in one operational system. The spatial data processing algorithms 

were developed and used to produce snow estimation products from all input data 

sources.  OPPS is capable of integrating raster data with point, line and area vector data. 

First satellite imagery were acquired and analyzed to produce a map of the areal extent of 

the snow cover.  Then SWE station observations were spatially interpolated and stratified 

by elevation band.  The SWE observations were averaged within each elevation band for 

individual hydrologic basins. (Hartman, 2011a). 

National Weather Service Office of Hydrology developed a methodology to generate 

real-time gridded snow water equivalent estimates that were from ground-based airborne 

snow data collected over the Western United States.   The spatial variability of the 

snowpack caused by the orographic effect in the West was incorporated in the gridded 

snow water equivalent estimates. Due to the difficulty in accurately estimating the 

precipitation in the mountains, Snow Estimation and Updating System (SEUS) was 

created for this task.  SEUS mainly does analysis of historical snow observation data, and 

calibrating the parameters needed for estimating the snow water equivalently operational, 

updating and administering the gridded snow water equivalent (Hill, 2011).   Since the 

process of SEUS implementation is somewhat laborious, only about 25 percent of the 

mountainous Western US could be estimated.  This could lead to questionable accuracy 

of individual pixel estimates from SEUS.  Gridded snow water equivalent could be 

estimated with simpler model but its accuracy and reliability may not be as high as 

SEUS’s product (Hartman, 2011b).  
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Chapter 3 Methods 

 

Location of study region in EASE-GRID   

North America is in the upper left quadrant of the Northern Hemisphere version 

of EASE-GRID (Fig. 2-1).  The latitudes and longitudes for this study region are from 

N40 to N53 and W108 to W125 respectively.  The study location includes rows 168 to 

218 (51 rows) and columns 243 to 302 (60 columns). 

 

Calculating SSM/I snow depth 

Brightness temperatures T19 and T37 in EASE Grid format were obtained from Dr. 

Ed Josberger, who processed the SSM/I data. Data were provided by pentad (5-day 

period) for water year 1997.  Here, the water year is defined from September 23 1996 to 

September 24 1997.  The pentad is identified by the middle date of the 5-day set.  For 

example, Sept. 25 pentad represents Sept. 23 to Sept. 27.  The next pentad would be Sept. 

30 (Sept. 28 to Oct. 2).  The data set for water year 1997 includes 70 pentads. 

The Chang equation including forest canopy (Foster, 1997) was applied to compute 

SSM/I snow depth:   

    
               

      
  (3-1) 

where f = fraction of the EASE-grid cell covered by the forest canopy 

If Eq. 3-1 results in a negative SD value, it is set to zero. 

 

Forest canopy data in EASE-Grid were obtained from National Snow and Ice Data 

Center (2011b).  The data set gives the percent coverage of each land cover class in each 
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25-km EASE-Grid pixel. The data set has 17 classes of land cover, including Evergreen 

Needleleaf and Evergreen Broadleaf.  Both evergreen classes were added together to give 

forest canopy coverage in percentage, providing a value of f in Eq. (3-1) for each pixel. 

Obtaining station data 

 Canadian ground measurement station data were obtained from the British 

Columbia River Forecast Centre online resource SNOWHIST (BCRFC, 2011). 

SNOWHIST provided a file containing snow depth and SWE from 440 ground 

measurement and pillow stations throughout BC for the years 1935 to 2007. Snow depth 

stations report up to 8 measurements per year in cm: generally on the first of the month 

from January to June, with additional 15
th

 day of the month during May and June.  The 

115 stations that lie in the Columbia basin were identified and extracted.   

 

Surface measurements of snow depth in the USA are available online from the Natural 

Resources Conservation Service (formerly Soil Conservation Service) (NRCS, 2011).  

The data are provided by state; data are available from as early as 1915 to the current 

year, with up to 6 measurements per year taken around the first of the month from 

January to June. The Columbia basin lies in four states: Montana, Oregon, Idaho and 

Washington. Surface snow depth measurements were gathered from all four states:  273 

Idaho stations, 259 Montana stations, 313 Oregon stations, and 229 Washington stations.  

 

Out of nearly 1200 ground stations from BC and 4 states, only 458 have data for Water 

Year 1997. These stations’ data were entered into a spreadsheet in a consistent format 

and units. US snow depth reports (in) were converted to cm. 
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Mapping stations in EASE grid coordinates 

The ground measurement station data provided the latitude/longitude location of each 

station. The stations were mapped to EASE grid coordinates, using the transformation 

equations for the North polar azimuthal equal-area projection provided by the National 

Snow & Ice Data Center (NSIDC, 2011a):  

 r = 2*R/C * sin(lambda) * sin(PI/4 - phi/2) + r0   3-2(a) 

 s = 2*R/C * cos(lambda) * sin(PI/4 - phi/2) + s0   3-2(b) 

where:  

  r = column coordinate 

 s = row coordinate 

 lambda = longitude in radians 

 phi = latitude in radians 

 R = Radius of the Earth, set to 6371.228 km for EASE-Grid 

 C = nominal cell size (25067.525 m) 

 (r0, s0) = map origin column, row (360,360 for the North azimuthal grid) 

With r and s computed, the stations could be assigned (x,y) locations in the EASE-GRID 

projection  

 x = (r – 360) * C       3-3(a) 

 y = (360 – s) * C       3-3(b) 

The station point locations can be viewed in ArcMap (Figure 3-1).  Some EASE-Grid 

pixels contain as many as 14 stations. 
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Figure 3-1 Locations of the ground stations and the EASE-GRID 25-km pixels that 

contain them.  Red line indicates the Columbia Basin boundary.   

 

Interactive Data Language (IDL) was used to generate time series graphs of snow depth 

for all pixels that contain at least one ground station and for which SSM/I SD estimates 

are available. A pixel’s center coordinates lie halfway between integer values of r and s. 

Therefore, any station can be assigned to a pixel by rounding its (r,s) coordinates to the 

nearest integer. For example, the station located at (r,s) = (273.4, 301.9) is mapped to 

pixel (273,302). If the pixel contains multiple ground stations, they are all included in the 

N 
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graph. For example, pixel (202,263), containing 12 stations, and pixel (201,264), 

containing a single station, are shown in Figure 3-2. 

 

 Figure 3-2  Pixel (202,263) in black box contains 12 stations and Pixel (201,264) in 

green box contains 1 station 

 

Numerical measures of agreement    

In general, the ground stations report SD once a month – at best, twice a month. Because 

they are collected in situ, according to a standard protocol, they can be assumed very 

accurate at a point scale. The SSM/I SD estimates are provided every 5 days; they 
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represent an estimated value over a 25x25 km area. Temporal variability in the SSM/I SD 

can be observed in Figure 3-3 and Figure 3-4.   

 

Figure 3-3 Time Series of ground station and SSM/I Snow depth, pixel (170, 286) 
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Figure 3-4 Time Series of ground station and SSM/I Snow depth, pixel (186, 268) 

 

In this analysis, the 4 or 5 pentad values surrounding the surface measurement date were 

treated as a sample from which the mean value of SSM/I on the surface observation date 

was estimated. If ground measurement day falls on the center day of a pentad, i, then 

 SD_SSMI (day i) = Sum_j=i-2 to i+2 [SD_SSMI(j)]/5  3-4 

Otherwise, i is set equal to the first pentad center before the ground measurement day, 

and 

 SD_SSMI (day i) = Sum_j=i-1 to i+2 [SD_SSMI(j)]/4        3-5 
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In other words, 2 pentad values are taken each from 10 days before and 10 days after the 

measurement date.  If the measurement date is the center of a pentad, this date is the 5th 

pentad value.   

A confidence interval (CI) can also be calculated for the mean SD_SSM/I using the t-

distribution, 

 CI = t_alpha * StdDev(SD_SSMI) / sqrt(n)    3-6 

where StdDev is the standard deviation of the 4 or 5 SSM/I SD measurements flanking 

the ground measurement, n equals either 4 or 5, and t_alpha is the value of the t statistic 

corresponding to n-1 degrees of freedom and a selected level of significance (alpha) . A 

95% confidence interval was applied (alpha = 0.05). Confidence intervals were calculated 

in an MS Excel spreadsheet using the ―CONFIDENCE‖ function. If the confidence 

interval contains the ground measurement value on that date, then the SSM/I estimate is 

said to agree with that ground measurement on that date. For each pixel, the number of 

agreements is tallied. 

 

Comparing NOHRSC Snow Water Equivalent to SSM/I Snow depth 

Obtaining SWE Data and Mapping in EASE-GRID 

SWE data from January 1997 to June 1997 were obtained from a CD distributed by the 

National Operational Hydrologic Remote Sensing Center (NOHRSC, 1997). The values 

are provided on a 1km resolution grid in geographic coordinates. The gridded data were 

reprojected and resampled to the 25-km resolution EASE-GRID. 

Using IDL, time-series graphs were plotted showing NOHRSC SWE and SSM/I SD for 

each pixel location. Examples are shown in Figure 3-5 and Figure 3-6.  



21 

 

 

 

Figure 3-5 Time series of SSM/I Snow Depth and NOHRSC Snow Water 

Equivalent, pixel (177, 269) 
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Figure 3-6 Time Series of SSM/I Snow Depth and NOHRSC Snow Water 

Equivalent, Pixel (177,284) 

 

Numerical measures of agreement  

Due to the time-varying density of snow, time series of SWE and SD cannot be directly 

compared. However, they would be expected to follow the same general trend or pattern, 

and when given in the same units (cm) SWE should be less than SD, with the ratio 

SWE/SD lying in the range of expected values for relative density of snow, 0.01 to 0.4.  

Two overall measures were selected as measures of agreement between the two time 
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series:  correlation as a measure of similar pattern, and a bulk relative density indicating 

the general relationship between SWE values and SD values over the season. 

Correlation 

For each pixel, correlation coefficient was computed for SWE and SSM/I snow depth, 

paired by date, and excluding dates on which either measurement was missing.  The 

correlations were calculated in IDL and the resulting values were arranged in grid form 

for viewing in ARCMAP.  A strong positive correlation is interpreted as good agreement. 

Although a strong negative correlation indicates a linear relationship, in this case, it does 

not indicate good agreement. Pixels with at least 0.7 correlation are considered to be good 

agreement in terms of pattern. For the examples shown in Figure 3-7 and Figure 3-8, the 

correlation coefficients are -0.72481, and 0.865425, respectively. 
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Figure 3-7 For pixel (200,286), the correlation between SSM/I Snow Depth and 

NOHRSC SWE is -0.72481. 
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Figure 3-8  For pixel (170,274), the correlation between SSM/I Snow Depth and 

NOHRSC SWE is 0.865425 

 

Relative Density 

Relative density was computed for each pixel by dividing the average of SWE over the 

measurement period by the average of snow depth over the period.  Relative density of up 

to 0.3 is considered to be good agreement in terms of magnitude. For the examples shown 

in Figure 3-9 and Figure 3-10 the relative density values are 0.289429 and 0.297567 

respectively. Relative density was calculated in IDL and output in gridded form for 

viewing in ArcMAP. 
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Figure 3-9  For the pixel (194,255) the relative density (NOHRSC SWE / SSM/I 

Snow Depth) is 0.289429 
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Figure 3-10  For pixel (206,285) the relative density (NOHRSC SWE / SSM/I Snow 

Depth) is 0.297567 

 

 

Overall, SSM/I SWE is said to agree with NOHRSC SWE if agreement is found by both 

measures: strong positive correlation, and a physically reasonable relative density. 

Examples of good agreement by these measures are shown in Figure 3-11 and  

Figure 3-12. 
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Figure 3-11  SSM/I Snow Depth and NOHRSC SWE for pixel (203,275), one of the 

best agreements with correlation of 0.813344 and relative density of 0.242506.  
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Figure 3-12  SSM/I Snow Depth and NOHRSC SWE for pixel (206,272), one of the 

best agreements with correlation of 0.718215 and relative density of 0.210978.  

Analyzing agreement 

For each EASE-Grid pixel analyzed, the following quantities were arranged in grid form 

and viewed in ArcMap: 

 Ground – SSM/I SD number of agreements and agreement fraction 

 SSM/I SD – NOHRSC SWE Correlation 

 SSM/I SD – NOHRSC SWE Relative Density 

Using ArcMap tools, these results were stratified into agreement scores using the 

following rules. 
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For Ground/SSM/I SD, pixels were identified as either ―having at least one agreement‖ 

(score 1) or ―no agreement‖ (score 0). Given the differences in the number of stations and 

station-date pairs in the pixels, this was selected as the simplest overall treatment. 

For SSM/I SD – NOHRSC SWE Correlation, scores were assigned from poor to 

excellent, as follows 

 correlation  - 0.725 – - 0.3  score 1 

 correlation - 0.3 – 0.3 score 2 

 correlation 0.3 – 0.5  score 3 

 correlation 0.5 – 0.7 score 4 

 correlation > 0.7 score 5 

For SSM/I SD – NOHRSC SWE relative density, scores were assigned from poor to 

excellent, as follows: 

 density 0.0005 – 0.005 or > 0.8  score 1 

 density 0.005 – 0.007 score 2 

 density 0.007 – 0.3 score 3 

 density 0.3 – 0.4 score 5 

 density 0.4 – 0-0.8 score 4 

A total SSM/I SD – NOHRSC SWE score was calculated by multiplying the correlation 

score and the relative density score. Total scores could range from 1 to 25. The total 

scores were stratified to 5 levels:  1-5, 6-8, 9-12, 15-16, and 20-25. 
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Categories of Landscape Properties 

The SRTM elevation data are given at 100-m resolution. ArcMap’s Zonal Statistics tool 

was used to find the mean and standard deviation of elevation in each 25x25km EASE-

Grid pixel, in the Columbia Basin for the SSM/I – NOHRSC comparison, and in the 

Ground Station pixels for the Ground – SSM/I comparison. Standard deviation of 

elevation is an estimate of terrain complexity in the pixel. For each data set, mean 

elevation and standard deviation were split into five categories by equal area (quantiles). 

The EASE-Grid evergreen canopy cover was also split into five categories for each data 

set. 

 

Tabulating Agreement and Landscape Properties 

ArcMap tools were used to tabulate the number of pixels in the analysis (the Columbia 

Basin domain for SSM/I – NOHRSC and the Ground station pixels for Stations – SSM/I) 

corresponding to each agreement score – landscape category combination. These tables 

and their 3-D column graph equivalents reveal any association between agreement and 

the landscape characteristics mean elevation, terrain complexity, and canopy cover. Six 

tables were produced, three for each analysis. 
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Figure 3-13 SRTM Elevation [m above sea level] averaged to 25-km EASE-Grid 

pixels, Columbia Basin. 
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Figure 3-14 SRTM Elevation Standard Deviation [m] in EASE-Grid pixels, 

Columbia Basin. 
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Chapter 4 Results 

 

Graphically Comparing SSM/I to Surface Snow Depth 

307 graphs of time series of snow depths were generated and visually inspected.  The 

majority showed a similar trend: ground station snow depths were much greater than 

SSM/I snow depths.  Figure 4-1 to Figure 4-4 show the best locations and Figure 4.5 to  

Figure 4-10 the worst locations, by inspection.  Among the worst locations, the greater 

the elevation, the greater the manually measured snow depth, and the greater the 

discrepancy between SSM/I and manual measurement. 

 
Figure 4-1  SSM/I Snow depth in pixel (209, 273) and manually measured snow 

depth at the station in the pixel. This is one of the best pixels observed with 4 

agreements. 
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Figure 4-2  SSM/I Snow depth in pixel (200, 263) and manually measured snow 

depth at the station in the pixel. This is one of the best with two agreements 

observed. 

 
 

Figure 4-3  SSM/I Snow depth in pixel (202, 262) and manually measured snow 

depth at three stations in the pixel. Agreement is good for one station, but not for 

the other stations at higher elevation 
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Figure 4-4  SSM/I Snow depth in pixel (204,270) and manually measured snow 

depth at the station in the pixel. This is one of the best agreements observed with 

three agreements. 

 
Figure 4-5  SSM/I Snow depth in pixel (183, 273) and manually measured snow 

depth at three stations in the pixel. This is considered poor agreement. The increase 

of snow depth with elevation is evident in the station data. 
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Figure 4-6 SSM/I Snow depth in pixel (183, 285) and manually measured snow 

depth at the station in the pixel. This is considered poor agreement.  
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Figure 4-7 SSM/I Snow depth in pixel (187, 288) and manually measured snow 

depth at two stations in the pixel. This is considered poor agreement. The increase of 

snow depth with elevation is evident in the station data. At these high elevations, the 

canopy cover correction does not make up the difference between SSM/I and station 

SD. 
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Figure 4-8 SSM/I Snow depth in pixel (199, 282) and manually measured snow 

depth at four stations in the pixel. The SSM/I estimates agree somewhat with the 

lowest elevation station, but not with the increased snow depth at higher elevation. 

 
Figure 4-9 SSM/I Snow depth in pixel (188,  271) and manually measured snow 

depth at two stations in the pixel. This is considered very poor agreement. The 

increase of snow depth with elevation is evident in the station data. 
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Figure 4-10  SSM/I Snow depth in pixel (182, 264) and manually measured snow 

depth at the station in the pixel. This is considered poor agreement; however, at this 

low elevation, less difference is observed between ground station and SSM/I snow 

depth 

 

Comparing Station Measurements to Time-Averaged SSM/I Snow Depth 

Confidence intervals on the mean of 4-5 pentads of SSM/I snow depth were calculated 

for each available ground station measurement. All results are graphed in Figure 4-11 
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Figure 4-11  Station snow depth measurements with lower and upper bounds of 

95% confidence interval (CI) for time-averaged SSM/I (4 or 5 pentads centered on 

the ground measurement date). All stations are from British Columbia, Montana, 

Idaho, Oregon and Washington. If ground SD lies within the confidence interval, 

the two are considered in agreement for that date. 

 

 

As described in the ―Numerical measures of agreement‖ section of Chapter 3, the 

numbers of agreements in each pixel were tallied (Figure 4-12) . The fraction of 

agreement (Figure 4-13) is the number of agreement divided by the total number of 

ground observations in the pixel (Figure 4-14). 
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Figure 4-12 Number of agreements per pixel which ground snow depth observations 

were compared to 95% confidence interval for SSM/I snow depth (4 or 5 pentads 

centered on the ground measurement date). If ground SD lies within the confidence 

interval, the two snow depths are considered in agreement for that date 
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Figure 4-13 Percentage of Agreements per pixel. The fraction of agreement is the 

number of agreements divided by the total number of ground observations in the 

pixel 

 



44 

 

 

Figure 4-14 Number of ground observations per pixel (station-date pairs). Pixels 

contain from 1 to 27 ground snow depth observations. 

 

Comparing NOHRSC SWE to SSM/I SD 

IDL was used to plot the time series of NOHRSC SWE and SSM/I SD on the same graph 

by pixel for all pixels in the Columbia Basin study area. This generated over 1300 graphs 

of non-missing data.  The majority of the graphs show poor agreement due to the general 

underestimation of SSM/I snow depth (SD); this underestimation is quickly apparent on 

visual examination of the graphs (for example, Figure 4-15); physically, SD must be 
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greater than SWE. Figure 4-16 is an example of a pixel where the relative density is 

physically realistic, but the temporal pattern does not match.  Figure 4-17 shows both 

poor correlation and poor relative density.   

 
Figure 4-15 SSM/I Snow Depth and NOHRSC Snow Water Equivalent for pixel 

(169, 287). Although the time series show some similarity in pattern, the magnitudes 

are wrong; SD must be greater than SWE. 

  
Figure 4-16  SSM/I Snow Depth and NOHRSC Snow Water Equivalent for pixel 

(171, 280). Good relative density but poor pattern consistency 
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Figure 4-17  SSM/I Snow Depth and NOHRSC Snow Water Equivalent for pixel (196, 287). This 

result is among the worst: poor correlation in time, and SD less than SWE.    

 

Figure 4-18 shows the temporal correlation between SSM/I SD and NOHRSC SWE for 

all pixels in the study area. Cluster of strong positive correlation are noted in the 

southeast corner of the region (lower left on map) and the north central part (right center 

on map). A striking cluster of strong negative correlation is found in the northeast corner 

of the region (lower right on map). 
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Figure 4-18  Correlation of SWE and SSM/I snow depth. Strong positive 

correlations indicate good agreement; strong negative correlations indicate a linear 

relationship, but lack of agreement. 

 

Figure 4-19 shows the bulk seasonal relative density calculated (as described in the 

Relative Density Section of Chapter 3) by dividing average SWE by average SD. Any 

values over 1.0 are physically impossible, and correspond to time series such as the one 

shown in Figure 4-17. The very small relative density values are also physically unlikely 

over the course of a season. 
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Figure 4-19  Relative density (Average NOHRSC SWE / Average SSM/I Snow 

Depth) – Up to 0.4 is considered good agreement. Values above one are physically 

impossible, and high fractions (near 1.0) unlikely. 

 

Only 12 pixels were identified that have correlation above 0.7 and relative density below 

0.4 (subjectively determined thresholds of agreement) as seen in Figure 4-20 and 

tabulated in Table 4-1 .   
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Figure 4-20  - Blue pixels represents 12 best agreements with correlation greater 

than 0.7 and relative density less than 0.4. 

Table 4-1– Best agreements with correlation greater than 0.7 and relative density 

less than 0.4. 

 R S Correlation Relative Density 

1 171 271 0.746523 0.375241 

2 172 269 0.773299 0.363928 

3 175 278 0.71962 0.192662 

4 175 279 0.840386 0.391368 

5 176 280 0.757374 0.397425 

6 181 279 0.726029 0.385331 

7 183 281 0.70592 0.378118 

8 187 263 0.71165 0.315204 

9 187 285 0.70233 0.346655 

10 201 269 0.714258 0.307997 

11 203 275 0.813344 0.242506 

12 206 272 0.718215 0.210978 
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A few examples of best agreements based on greater than 0.7 correlation and less than 

0.4 relative density can be seen in Figure 4-21 through Figure 4-23. 

 

Figure 4-21 Shallow snow depth shows good agreement. 
 

 
Figure 4-22 Despite canopy cover of 57%, shallow snow depths yield good 

agreement for the pixel (187,263) 
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Figure 4-23 This is one of the best 12 pixels, with maximum snow depth about 110cm. 

 

This result is consistent with other studies’ findings that passive microwave snow 

retrieval is relatively good for measuring snow depth up to 120cm.  (Mizukami, 2011). 

Analyzing agreements between the ground stations with SSM/I snow depth    

Out of 300 pixels, only 50 have at least 1 agreement, and the highest number in any one 

pixel is  4 agreements (refer to Figure 4-1).   

Table 4-2 and Figure 4.24 show better agreement at the low to medium mean elevation. 

The snow depths tend to increase with elevation, and this would result in poorer 

agreement between ground snow depth and passive microwave snow depth.   
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Table 4-2  SSM/I – Ground Snow Depth Agreement and Mean Elevation Class 

 Low Medium Low Medium 
High 

Medium 
High 

NO agreement 46 45 43 55 54 

Agreement(s) 14 15 17 4 7 

 

 
 

Figure 4-24 Mean pixel elevation class and number of pixels with no agreement and 

at least one agreement between SSM/I and ground snow depth. 

 

Agreements were most frequent at higher evergreen canopy factor as seen in Table 4-3 

and Figure 4.25.  Low evergreen canopy factor is next best agreement group. Agreement 

in low evergreen canopy makes sense because the area is more uniform and less complex 

-- at least, with respect to vegetation.   The second quantile seems to be the worst 

agreement, which may be due to patchy canopy and/or other vegetation type (Figure 4-

26) 

The best agreement groups are high and low evergreen canopy coverage, which 

matches the 12 pixels with best correlation and relative density in the NOHRSC SWE 
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– SSM/I SD comparison.  This indicates that high canopy factor and lack of canopy 

cover  may have a positive impact on agreement. 

Table 4-3  Evergreen Canopy Class and SSM/I – Ground Snow Depth Agreement 

(number of pixels) 

 Low 
Medium 

Low 
Medium 

High 

Medium 
High 

NO agreement 48 60 49 50 36 

Agreement(s) 10 4 9 8 26 

 

 

 
 

Figure 4-25  Evergreen canopy class and SSM/I – ground snow depth agreements 

(number of pixels). 
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Figure 4-26 Evergreen Canopy Coverage and locations of 50 pixels with at least one 

agreement 

 

Analyzing agreements between SWE with SSM/I snow depth   

From Table 4.4  and Figure 4.27, about 10% of the 1279 pixels have good agreement 

with score of 4 or 5. Score of 1 have poor agreement between SWE and snow depth.  The 

majority of snow depth was underestimated especially at higher elevation.  Moderate to 

poor agreement at low elevation with score of 2 and 3 were unexpected and unexplained, 

similar trends to the Table 4.5 and Figure 4.28 

 



55 

 

Table 4-4 SSM-I Snow Depth – NOHRSC SWE Agreement Score by Mean 

Elevation Class (number of pixels) 

Score Low 

Low –

Medium Medium 

Medium-

High High Count 

5 7 7 4 10 22 55 

4 8 14 13 15 15 69 

3 59 60 95 61 49 327 

2 127 96 57 50 13 345 

1 51 76 84 117 154 483 

      1279 

 

 

 

 
 

Figure 4-27 SSM/I Snow Depth and NOHRSC SWE Agreement Score by Mean 

Elevation Class.  
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Table 4-5 SSM/I Snow Depth – NOHRSC SWE Agreements by Elevation Standard 

Deviation Class (number of pixels) 

Score Low 

Low-

Medium Medium 

Medium-

High High 

5 7 12 14 14 3 

4 11 16 15 15 8 

3 83 64 65 57 55 

2 113 86 59 54 38 

1 38 75 100 120 148 

 

 

 
Figure 4-28 SSM/I Snow Depth – NOHRSC SWE Agreement Score by Elevation 

Standard Deviation Class 
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The trend for comparing high and low canopy between ground stations and SSM/I snow 

depth are seen similar in Table 4.6 and Figure 4.29. The better agreements are found 

either at higher or lower canopy coverage.  For the lowest agreement score (1), the high 

and zero canopy are lower than their counterparts.  

 

Table 4-6 SSM/I Snow Depth – NOHRSC SWE Agreement Score by Percentage of 

Evergreen Coverage 

Score Low 

Low -

Medium Medium 

Medium-

High High 

5 19 11 5 8 7 

4 11 19 16 8 11 

3 93 69 53 42 67 

2 106 57 57 57 67 

1 35 94 126 139 89 
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Figure 4-29  SSM/I Snow Depth – NOHRSC SWE Agreement Score by Percentage 

of Evergreen Coverage  
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Chapter 5 Discussion and Conclusions 

 

Comparing SSM/I snow depth to ground station snow depth 

 

From observing 307 graphs, the majority of the graphs show that SSM/I snow depth is 

significantly underestimated. About 80 percent of the ground measurements were at least 

twice the value of the SSM/I snow depth. Passive microwave satellite data have good 

agreements for locations with 120cm of snow depth or less. This supports several other 

studies’ findings that the Chang algorithm seriously underestimates deep snow. 

 

Under conditions of high canopy coverage, low elevation, low elevation standard 

deviation, and shallow snow depth, the SSM/I estimates have better agreements with 

either interpolated snow water equivalent or in situ snow depth.  

Most likely the landcover type in two different areas may affect the microwave retrieval.  

Another consideration may be the slope and orientation of the terrain, as well as the 

SSM/I instrument’s angle of view.  

 

Comparing SSM/I SD to NOHRSC SWE 

From over 1300 graphs of the time series of NOHRSC SWE and SSM/I, the majority 

indicate that SSM/I snow depth was underestimated, in some cases quite significantly. 

This conclusion is based on examination of the relative density measure. Any relative 

density greater than 1.0 is physically impossible,  
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Even if the magnitude of snow depth estimate is incorrect, the SSM/I retrievals may be 

useful if they can track the pattern of SD as it increases during snow accumulation and 

decreases during the melt season. The correlation is a measure of this agreement between 

SSM/I SD and NOHRSC SWE. Figure 4-20 summarizes this correlation.  The Cascade 

range (top of the map) shows poor correlation, as does Eastern British Columbia. The 

time series for pixel (200,286) in this area shows a spike in NOHRSC SWE in late June 

which is not reflected in the SSM/I estimate (Figure 3-7); a similar spike appears in other 

NOHRSC time series. These may represent real events, or errors in the NOHRSC 

interpolation algorithm. Ground measurements do not capture an increase on this date but 

this is not conclusive because a late snow could have fallen and melted between the once-

a-month measurements. Ground stations report no snow beyond June 1, while SSM/I 

continues to report snow. 

 

Conclusion  

The current algorithm for SSM/I snow depth retrieval in the mountainous areas of the 

Western USA and British Columbia is poor, especially with snow depth greater than 200 

cm. The results do not support any algorithm adjustments for elevation or terrain 

complexity. Further investigation is needed to include other considerations such as 

mountain orientation and slope 
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Appendix A  

Index Maps of Study Region 

The index map #1 below gives the (column, row) coordinates that identify the pixels 

containing  ground stations.  
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The index map #2 below gives the (column, row) coordinates that identify the pixels in 

the Columbia Basin 
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Appendix B  

Lists of All Pixels containing at least one agreement 

The index maps in Appendix A show the locations of each pixel. 

 

All Pixels containing All Pixels containing 

 Only One Agreement at least 2 Agreements 

R S AGREEMENT  R S AGREEMENTS 

175 289 1  178 274 2 

179 273 1  185 289 2 

182 258 1  187 252 2 

183 256 1  188 246 2 

183 257 1  188 286 2 

183 272 1  189 281 3 

183 273 1  189 286 2 

183 281 1  189 299 2 

184 255 1  190 260 2 

184 272 1  191 287 2 

185 267 1  194 283 2 

185 283 1  196 285 2 

186 251 1  200 263 2 

186 255 1  201 264 3 

187 254 1  201 283 3 

189 248 1  204 270 2 

190 286 1  205 271 2 

190 288 1  207 274 3 

190 299 1  208 276 3 

194 285 1  209 270 3 

198 286 1  209 273 4 

201 277 1  210 285 2 

201 286 1     

203 275 1     

204 277 1     

206 268 1     

206 273 1     

207 275 1     
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Appendix C 

Time Series Graphs of Ground-Measured and SSM/I Snow Depth for All 

Pixels Containing Ground Stations 

The index map #1 in Appendix A gives the (column, row) coordinates that identify the 

pixels containing ground stations. 
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Appendix D 

Time Series Graphs of SSM/I Snow Depth and NOHRSC SWE for Pixels in 

the Columbia Basin 

The index map #2 in Appendix A gives the (column, row) coordinates that identify the 

pixels in the Columbia Basin. 
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