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Congestion due to evacuations can be catastrophic and life threatening. The sudden increase

in demand will result in excessive loads on roads not typically designed to handle them,

leading to network breakdown at the worst possible time. Moreover, since building new

roads is infeasible, efficient utilization of the available network resources during disasters

becomes one of the few options available to facilitate the movement of residents to safety.

One option is to address the demand side of the problem, through demand scheduling. By

scheduling the evacuation demand over a longer period, the congestion is staved off and

network degradation is delayed. Advising traffic on when to evacuate, where to evacuate, and

which route to take has the potential to improve evacuation times, especially in no-notice

emergency conditions. Another option is to address the supply side of the problem, through

network re-design. By reversing the direction of wisely selected lanes in a process known as

contraflow, a temporary increase in the operational capacity is achieved without any major

infrastructure changes.



Both options, if planned correctly, have the potential to greatly ease network degradation and

allow evacuees to reach safety sooner. Therefore, the ability to determine the joint optimal

demand scheduling and network contraflow policies is of critical nature to the success of any

evacuation plan. The objective of this study is to develop a simulation-based dynamic traffic

assignment model that minimizes network clearance time at a minimum cost to the travelers

by jointly considering demand scheduling and contraflow strategies.
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1 INTRODUCTION

Congestion in most major urban areas results in loss of productivity and environmental

degradation but in the case of man-made or natural disasters, it can be catastrophic and life

threatening. The sudden increase in demand will result in excessive loads on roads not

typically designed to handle them, leading to network degradation and breakdown at the

worst possible time. The prospect of evacuees being stranded in traffic and having to weather

an extreme event on the streets is particularly terrifying. Moreover, since building new roads

is infeasible, efficient utilization of the available transportation network resources during

disasters becomes one of the few available options to facilitate the movement of residents to

safety.

One option to efficiently use the available transportation network is to address the demand

side of the problem, through demand scheduling. By scheduling and spreading the evacuation

demand over a longer period, the congestion is staved off and network degradation is

delayed. Advising traffic on when to evacuate, where to evacuate, and which route to take

has the potential to improve evacuation times, especially in no-notice emergency conditions.

While such a strategy is not new, it has been incorporated into traffic assignment models in

the evacuation context only recently and as such, warrants further investigation.

Another option is to address the supply side of the problem, through network re-design. By

reversing the direction of intelligently selected lanes in a process known as contraflow, a

temporary increase in the operational capacity is achieved without any major infrastructure

changes. Safety and confusion though, remain a major cause of concern. These very concerns

have caused the state of Florida to decline the use of contraflow strategies during hurricane

Floyd. On the other hand, South Carolina and Georgia have both successfully implemented

their contraflow evacuation plans and their positive experience is generating a lot of interest

in other states to include the contraflow option as part of their evacuation plans.
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Both options, if planned correctly, have the potential to greatly ease network degradation and

allow first responders and evacuees to reach safety sooner rather than later. Therefore, the

ability to determine the joint optimal demand scheduling and network contraflow policies is

of critical nature to the success of any evacuation plan. The subsequent sections of this

chapter introduce the motivation for this work, the evacuation problems addressed in this

study, the contributions of this work to the fields of transportation engineering, and outlines

the remainder of this dissertation.

1.1 BACKGROUND AND MOTIVATION

Evacuation of urban centers is not a new field. Civilizations have always faced threats,

whether natural (hurricanes, floods, earthquakes, etc…) or man-made (chemical spills,

nuclear meltdowns, terrorist acts, etc…) that necessitated mass evacuations. Evacuation can

be defined as the removal of residents from a dangerous area to safety in a timely and

efficient manner. Two different evacuation scenarios can be considered, advance warning

and no-notice. In the former, the estimation of the population at risk and the evacuation time

compared to the hazard propagation time can be done a priori. Hence, time and potential risks

are the key components of this type of evacuation. In the latter, evacuation occurs when

insufficient warning has prevented the organizer from conducting a pre-emergency

evacuation planning.

Evacuating a large population is an extremely difficult and complicated task that requires the

coordination of several agencies. For recurrent events, such as hurricanes, emergency

management agencies usually have a priori evacuation strategies. Citizens are usually given

advanced warning about the trajectory of the threat and are advised on safety destinations.

Still, most of these a priori strategies do not incorporate any form of staging or spreading of

the demand and the examples are abundant. One just has to refer to the failure of evacuation

plans during hurricanes Floyd, Andrew, and Katrina in preventing or even delaying network
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gridlock despite ample warning periods.

For non-recurrent no-notice extreme events, evacuating a large population in the same

manner as recurrent events, by mandating evacuation but without any form of staging, leads

to premature congestion on the surface streets and excessive delays. Therefore, without

intelligently advising the population on their optimal departure times, routes, and safety

destinations, evacuees may get stuck on grid-locked roadways for excessive periods of time,

which could be even more devastating, in the event the threat picks up speed or changes

direction, than staying at home.

With traditional evacuation strategies proving no match for the excessive demand patterns

generated from these extreme events, the best approach to address this problem is to integrate

demand and supply management strategies, using Intelligent Transportation Systems (ITS)

strategies, to enforce the desired strategies. The integration of these strategies can only be

realistically analyzed using the Dynamic Traffic Assignment (DTA) capability. Traditional

Static Traffic Assignment (STA) models have proved to be inappropriate for the generation

of information strategies and route guidance instructions [Peeta (1994)] for they cannot

adequately model the waiting phenomenon associated with travel. Furthermore, STA models

cannot account for travelers’ response to supplied real-time information and/or route

guidance instructions. On the contrary, DTA models reflects the trip making decisions better,

the resulting congestion, and the ability of trip-makers to adjust their trip choices in response

to travel information.

A central question is how to route evacuees to safety. The most commonly used route choice

principle in traffic assignment models is the User Equilibrium (UE) principle, which states

that the travel costs on all actually used routes are equal and less than those (would be)

experienced on unused routes [Wardrop (1952)]. The UE principle assumes that all travelers

have perfect information about the different travel options, and that all travelers perceive
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travel costs uniformly. Such an assignment principle has been also used in the context of

evacuation models [Rathi and Solanki (1993), Hobeika and Kim (1998)].

While UE characteristics may be applicable for every-day traffic conditions, their

applicability to emergencies is rather unclear. Evacuees will generally not have perfect

information about all travel options in the network and as such, they may be inclined to

follow route advisory information than their own especially if they had been stuck in

gridlocked conditions in previous evacuations. Such an apparent willingness to adhere to

route advisory information provides a great opportunity for planners to capitalize on it and

provide a System Optimal (SO) type of information to minimize network clearance time. In

an SO assignment, which is based on Wardrop’s second principle [Wardrop (1952)], travelers

will behave cooperatively when choosing their departure times and routes in order to

minimize the total cost to the system. In other words, some travelers will have to be assigned

to sub-optimal paths (from their perspective) for the benefit of the whole (system). Providing

an SO type of information is the current trend in all evacuation studies [Sattayhatewa and

Ran (2000), Chiu (2004), Tuydes and Ziliaskopoulos (2004, 2005a), Liu et al. (2005a,

2005b), Sbayti and Mahmassani (2006), Yuan et al. (2006), Chiu et al. (2007)] and this

dissertation will be no exception.

Simulation-based DTA models are typically used for evacuation modeling since analytical

DTA models suffer from several serious shortcomings. First, they lack a sound link-cost

performance function. The use of Bureau of Public Roads (BPR) link performance and exit

functions leaves much to be desired. Moreover, these functions cannot enforce First-In First-

Out (FIFO) conditions and cannot take advantage of the recent developments in ITS, traffic

modeling, and vehicle re-routing. In addition, the computing and memory requirements of

analytical DTA models prohibit their applicability in reasonably sized urban networks.

On the other hand, the use of simulation-based DTA models raises the issue of solution
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quality and optimality. While almost all simulation-based DTA models are capable of

correctly propagating traffic and adhering to flow fundamentals, very few are capable of

solving for, and for that matter guaranteeing, UE and SO conditions. Moreover, solving for

an SO objective is even harder due to difficulties in estimating the link travel time marginals.

Therefore, it is of utmost importance to have a theoretically sound simulation-based model

that satisfies both UE and SO conditions, and at the same time adheres to traffic

fundamentals, before attempting to solve evacuation problems.

Furthermore, currently available evacuation models lack several important features and

functionalities. They are generally designed for a specific scenario such as a hurricane or a

nuclear meltdown and as such cannot be applicable to a general evacuation scenario.

Moreover, most models have been static in nature and therefore cannot account for the

impact of information strategies on route selection, a key element to the success of any

evacuation plan. Thirdly, these models mainly use the UE assignment principle, which may

or may not be applicable, but in any case would produce worse evacuation times than using

an SO objective. Furthermore, most models treat evacuation demand mobilization times as

exogenous to the system and not as decision variables, which is not advantageous in no-

notice extreme. Finally, most models do not optimize for contraflow operations, let alone

account for it, and when they do, it is done rather simplistically.

1.2 PROBLEM STATEMENT AND OBJECTIVES

The overall problem addressed in this dissertation is to develop a methodology for

emergency evacuation planning that simultaneously considers supply and demand

management options in order to facilitate the mobility of evacuees to safety. The

methodology is manifested in the development of a bi-objective simulation-based DTA

model that aims at minimizing the network clearance time while keeping the total system trip

time at a minimum given supply and demand constraints. The primary objective is to
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minimize network clearance time; however, it must be achieved at a minimum cost to the

system (average trip times for evacuees).

There are two primary problems to be solved within the overall problem. The first problem is

to solve for the Optimal Demand Scheduling (ODS) policy that would minimize network

clearance time at a minimum cost to the system. The second problem is to solve an SO

discrete network re-design problem to determine the optimal lane-reversibility policy

(capacity redistribution). The main output of this model is the set of lanes that need to be

reversed that would minimize the total system trip time. The combination of these two

problems results in solving the overall problem addressed in this dissertation, namely

integrating supply and demand management options to minimize network clearance time

while keeping cost to the system at a minimum.

1.2.1 Problem 1: The Optimal Demand Scheduling Problem

Consider a transportation network represented by a directed graph ),( ANG  with N  nodes

and A  directed arcs. Let NRr  and NSs  denote an origin node and a destination

node, respectively. Let the study period ],0[ W  be discretized into T  time steps of length

such that TW , with a time index Tt ,...,1 . Let the demand assignment period, ],0[ W

be discretized into T  departure periods of length  such that WT ,  with  a

departure time index T,...,1 . Assume that W  is long enough for all the traffic to clear the

network, i.e. WW . Let psrf ,,  be the flow leaving origin r  going to destination s

assigned to path srPp ,  during departure period .  Assume  that  the  total  demand  to  be

evacuated at each origin, rd , is known a priori and that the network is empty at start of

evacuation. The optimal demand scheduling (ODS-DTA) problem is therefore to find the

vector of path-flow assignments f , for all ,,sr  combinations that would minimize the

network clearance time W  while keeping the total system cost (total trip times) at a

minimum.
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Two sub-problems need to be solved sequentially to obtain the optimal demand scheduling

pattern *f . The first sub-problem is the Minimum Network Clearance Time (MNCT) DTA

problem whose main output is estimating the minimum network clearance time *W . The

second sub-problem is the Latest Network Clearance Time (LNCT) DTA problem whose

main output is the time-dependent flow pattern that minimizes the total system trip time

while reaching safety before a pre-specified target evacuation time, the minimum network

clearance time *W  in this particular case. Both problems are addressed in detail in Chapter 4.

1.2.1.1 Sub-problem 1: The Minimum Network Clearance Time Problem

This main objective of this problem, as is with most evacuation models, is to determine the

minimum network clearance time *W . The problem may be stated as follows: given the total

demand rd  to be evacuated and a set of safety destinations S ;  we wish to  solve  for  time-

dependent O-D path flows psrf ,,  that minimizes the network clearance time W , subject to

DTA constraints; where W  is defined as psrCW psr ,,,,,,  and psrC ,,  represents path

travel time for a vehicle traveling from r  to s  on path p  at departure time . It entails the

following:

Formulating the MNCT-DTA problem as a minimization program and deriving its

optimality conditions;

Establishing solution existence by using underlying Variational Inequality (VI)

problem;

Reformulating the VI problem as an equivalent Nonlinear Minimization Program

(NMP) via a gap function;

Developing a simulation-based solution heuristic based on the derived optimality

conditions to solve the MNCT-DTA problem; and

Evaluating the solution heuristic on test and real urban networks.
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1.2.1.2 Sub-problem 2: The Latest Network Clearance Time Problem

This main objective of this problem is to determine the demand scheduling policy to

minimize the average trip time for evacuees subject to clearing the network within a fixed

time W . This problem may be generally stated as follows: given the total demand to be

evacuated rd  and a set of safety destinations S ; we wish to solve for time-dependent O-D

path flows psrf ,,  that minimizes the total system trip time subject to clearing the network

within a target evacuation time W  and DTA constraints. It entails the following:

Formulating the LNCT-DTA problem as a minimization program and deriving its

optimality conditions;

Establishing solution existence by using underlying Variational Inequality (VI)

problem;

Reformulating the VI problem as an equivalent NMP via a gap function;

Developing a simulation-based solution heuristic based on the derived optimality

conditions to solve the LNCT-DTA problem; and

Evaluating the solution heuristic on test and real urban networks.

1.2.1.3 Combining the Sub-problems: Optimal Demand Scheduling Problem

The objective of the MNCT-DTA problem is to minimize the network clearance time W ,

which may be substituted by minimizing the total turnstile costs (exit times) of individual

evacuees [Hamacher and Tjandra (2002)]. In other words, the model is insensitive for

variations in experienced trip times as long vehicles exit at the same time. For example, a

vehicle departing at 8:00 AM and reaching the safety at 8:50 AM has the same contribution

to the objective function of the MNCT-DTA as a vehicle departing at 8:15 AM and reaching

safety at 8:50 AM despite incurring different trip times. Whereas for the LNCT-DTA

problem with a target network clearance time of AM50:8W , the second vehicle will

have a lower contribution to the objective function (better) since its trip time is shorter.
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It is desirable to minimize the network clearance time while keeping the total system trip

time at a minimum, however, the somewhat conflicting objectives of the MNCT-DTA and

the LNCT-DTA problems, results in a bi-objective problem whose solution is obtained in two

sequential stages. In the first stage, an MNCT-DTA problem is solved to determine the

minimum network clearance time *W . In the second stage, an LNCT-DTA problem is solved

with a target evacuation time *W . We refer to the resulting problem as ODS-DTA and the

resulting time-dependent O-D path flows *f  as the optimal demand scheduling flow pattern.

These objectives are also addressed in detail in Chapter 4.

1.2.2 Problem 2: The Contraflow Network Design Problem

The supply management strategy considered in this dissertation is to find the optimal lane

reversibility policy that would minimize the total system trip time. This problem entails

finding the optimal capacity redistribution, expressed in terms of the number of lanes to be

reversed for each link, a . The resulting problem is essentially a network re-design problem

whose objective is to minimize the total system trip time, subject to keeping the total network

capacity fixed (i.e. cannot create capacity) and DTA constraints. This problem may be stated

as follows: given a time-dependent demand (with fixed departure times) srd , ,  and a  set  of

candidate links to be reversed, A , we wish to find the number of lanes to be reversed a  for

each reversible link Aa  to minimize total system trip time subject to supply, demand and

DTA constraints. It entails the following:

Formulating the CF-DTA problem as a minimization problem by modifying the base

SO-DTA model and deriving its optimality conditions;

Developing a simulation-based solution heuristic based on the derived optimality

conditions to solve the CF-DTA problem; and

Evaluating the solution heuristic on test and real urban networks.

These objectives are addressed in detail in Chapter 5.
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1.2.3 The Overall Problem: Optimal Evacuation Demand Scheduling with
Contraflow

The ORS-DTA problem and the CF-DTA problem are considered jointly in second half of

Chapter 5. The resulting problem is referred to as ODS-CF-DTA and may be stated as

follows: given a transportation network ),( ANG , total demand that needs to be evacuated at

each origin rd , the set of safety destinations S , and the set of reversible links A , the

problem is to determine the joint optimal 1) lane reversibility policy *  and  2)  the  time-

dependent O-D path flows *f  so  as  to  minimize  the  network  clearance  time W , while

keeping the total system trip time at a minimum.

The solution procedure for the ODS-CF-DTA problem is a two-stage procedure. In Stage I,

the MNCT-DTA and CF-DTA problems are combined to solve for the optimal joint flow

pattern and lane configuration that results in minimizing the network clearance time. The

resulting problem is referred to as MNCT-CF-DTA and is solved in an iterative bi-level

framework whereby an MNCT-DTA problem is solved in the lower level, given current

optimal lane configuration to find the optimal flow pattern that minimizes network clearance

time and a CF-DTA problem is solved in the upper level, given current optimal flow pattern,

to find the optimal lane configuration that minimizes trip times in the network. The process

iterates until convergence. In the second stage, an LNCT-DTA problem is solved, given the

optimal lane configuration * , minimum network clearance time *f , and using the

MNCT-CF-DTA solution as the starting solution.

1.3 ORGANIZATION OF THE DISSERTATION

This dissertation is organized in six chapters. Following the problem definition, motivation,

and objectives, chapter 2 presents a general overview of the literature related evacuation

modeling. Chapter 3 reformulates the SO-DTA problem via a gap function, derives its

optimality properties and solution algorithm. Chapter 4 formulates the MNCT-DTA and

LNCT-DTA demand scheduling models and derive their optimality conditions and solution
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algorithms. These models are also combined in Chapter 4 to obtain the ODS-DTA problem.

Chapter 5 formulates the CF-DTA problem and derives its optimality conditions and

corresponding solution algorithm. Chapter 5 also integrates the ODS-DTA and the CF-DTA

problems and examines their combined impact on the same test cases in considered in chapter

4. Finally, chapter 6 presents the conclusions, and directions for future work.
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2 LITERATURE REVIEW

This chapter provides a review of the relevant literature for this research and is organized into

five sections. Section 2.1 lists existing computer evacuation models along with their features

and drawbacks. Sections 2.2 and 2.3 discuss route choice and demand estimation in the

context of evacuation. Section 2.4 provides a background review and relevant studies

regarding the evacuation management strategies considered in this research, namely demand

scheduling and contraflow. Finally, section 2.5 provides a brief overview of the DTA

problem, the basis of all evacuation models formulated in this dissertation.

2.1 EVACUATION MODELING

Interest in evacuation modeling has started in the 1970s with an initial emphasis on hurricane

evacuation [Urbanik (1978), COE and SWFRPC (1979)]. However, after the nuclear accident

at the Three Mile Island in 1979, and the subsequent mandate issued by the nuclear

regulatory commission (NRC) to develop evacuation plans for urban centers, emphasis has

shifted to evacuation from nuclear sites [HMM Associates (1980), Urbanik and Desrosler

(1981), Sheffi et al. (1982a, 1982b), KLD Associates (1984)]. Interest has returned to

hurricane evacuation in 1990s, primarily because the most expensive (at the time) hurricane

in United States in terms of damage, Hurricane Andrew, occurred in 1992 and the hurricane

that generated the greatest evacuation in United States history, Hurricane Floyd, occurred in

1999. Since then, state departments of transportation have become more involved in

emergency evacuation. Recently, and in the aftermath of September 11, 2001 terrorist attacks

and Hurricane Katrina, greater attention is being allocated to the transportation aspects of

evacuation.

To analyze an evacuation scenario, a number of different approaches have been used, ranging

from empirical models to sophisticated simulation models. Most of the research has been

concentrated on two distinct problems, evacuation of buildings and evacuation of urban
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networks, like entire cities or coastal plains. Evacuation models for buildings have been

discussed extensively in Chamlet (1982) and Choi et al. (1984, 1988) and will not be

reviewed in this dissertation.

According to Lovas (1998) and Graat et al. (1999), the evacuation time – the time needed to

complete an evacuation process – basically consists of three main time components: 1) the

time required to detect a dangerous situation that warrants evacuation; 2) the time required to

decide on a course of action (evacuate or do not evacuate), and 3) the time evacuees need to

reach safety, which is also known in the literature as egress time. Since the behavioral and

organizational factors are the main contributors, to the first two components, most evacuation

models only emphasize the calculation of network clearance time (egress time) and treat the

result as the lower bound of the real evacuation time, which will also be the approach taken

in this dissertation.

2.1.1 Existing Evacuation Models

This section describes the existing emergency evacuation models and software. Evacuation

models range from simple empirical models to sophisticated simulation models with the

overall evacuation time as the major output. Furthermore, there are two approaches to model

the behavior of evacuees in the network, namely macroscopic and microscopic. Macroscopic

approaches consider the collective behavior of the evacuees and are mainly used to produce a

good first estimate of the evacuation time. This estimate can be later used to analyze existing

evacuation plans. On the other hand, microscopic approaches model behavior of individual

evacuees and their interaction among others but are usually resource-intensive and can only

be implemented using simulation techniques.

A nice review about evacuation modeling applied to large areas can be found in Southworth

(1990), Sattayhatewa and Ran (2000), and Church and Sexton (2002). Most evacuation

models, such as NETVAC [Sheffi et al. (1982a, 1982b)], DYNEV [KLD Associates (1984)],
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and MASSVAC [Hobeika et al. (1985)] have been developed to solve a specific evacuation

problem. For others, existing traffic simulation packages have been modified to incorporate

evacuation modules and add-ons, requiring extensive modifications in most cases. Examples

of traffic simulation packages used in evacuation applications include NETSIM [HMM

Associates (1980), Urbanik and Desrosler (1981), Radwan et al. (1985)], MITSIM [Yang and

Koutsopoulos (1996)], CORSIM [Sisiopiku et al. (2004)], PARAMICS [Cova and Johnson

(2002, 2003), Church and Sexton (2002)], DYNASMART-P [Chiu (2004), Sbayti and

Mahmassani (2006), Kwon and Pitt (2005)], and VISSIM [Han and Yuan (2005)].

The majority of evacuation models are computerized software packages in which the major

emphasis is on traffic assignment. Earlier models such as DYNEV and MASSVAC adopted

static traffic assignment principles, whereas almost all recent evacuation models consider the

dynamic nature of traffic especially in the evacuation context [Chiu (2004), Chiu et al. (2005,

2007), Sbayti and Mahmassani (2006), Kwon and Pitt (2005), Tuydes (2005a, 2005b), Liu et

al (2005a, 2005b, 2006)].

Despite the resurgence of evacuation modeling and related studies, it is not a new field. In

fact, traffic management attempts have been recorded as early as in 1963, but are mostly

limited to empirical solutions [Givens (1963)]. One of such models is the dissipation rate

model [Houston (1975)], which uses a simple formula that correlates the size and population

density with evacuation time. While simple and easy to use, the dissipation rate model does

not account for network topography, evacuation activities, and intersection capacity and

control.

Another empirical approach in evacuation is the use of capacity analysis techniques. The

evacuation time is determined by allocating the estimated number of evacuees to their

corresponding evacuation routes and dividing that number with the respective capacities.

While an obvious improvement over the dissipation rate model, it still lacked the capability
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to capture network topography and traffic dynamics.

Empirical models have a major limitation in that they do not capture the movement of traffic

around the evacuation area. The first study to attempt to do so is the one conducted by

H.M.M (1980), using NETSIM, a microscopic traffic simulator, to study the evacuation

pattern surrounding four nuclear plants. However, the study has been conducted on a small

network due to the huge (at the time) computing and memory requirements, which rendered

their results inconclusive and unsatisfactory.

To improve on the H.M.M model, Sheffi et al. (1982a, 1982b) have developed NETwork

eVACuation (NETVAC), a macroscopic traffic simulation model, to estimate the network

clearance time surrounding nuclear power plant sites. NETVAC uses established aggregate

traffic flow relations to move traffic along the network, accounting for queue formation and

route selection in response to changes in link density, intersection control, and lane

management strategies. Drivers are assumed to have some prior knowledge of the network

topography in that they know the general direction to safety. The route selection process is

myopic in the sense that, at each intersection, evacuees select the outbound link that can get

them towards safety faster. Its use is, however, restricted to radial evacuation from a single

point, rather than in a more general direction.

Another model that handles evacuations around nuclear plants is the Calculated Logical

Evacuation And Response (CLEAR) microscopic simulation model developed by Moeller et

al. (1982), which estimates the time required for a specific population density and

distribution to clear a certain disaster area. The advantage of this model is that it accounts for

the time required by individuals to prepare and gather for evacuation. Nonetheless, vehicles

are only simulated on main arterial roads (to minimize computer resource requirements), and

as such CLEAR cannot be used to model neighborhood evacuation applications.

A model that has been developed for the NRC commission and endorsed by the Federal
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Emergency Management Agency (FEMA) is the macroscopic simulation model DYNamic

EVacuation (DYNEV) by KLD Associates (1984). DYNEV, the most widely reported

network evacuation model according to Southworth (1990), is derived through the

enhancement of the sub-model simulation core in TRAFLO [Lieberman et al. (1980, 1983)].

The model adheres to the principles of flow continuity and performs static equilibrium traffic

assignment – the main drawback of this model – to provide detailed link-level statistics. The

key advantage of this model is its capability to identify bottlenecks along the evacuation

routes.

As mentioned earlier in this chapter, most models do not account for human behavior during

disasters. A model that does so is the EVAC PLAN PACK Model [PRC Voorhees (1982)],

which is both a dynamic and probabilistic model. The human behavior is taken into account

for determining the loading and response rate of evacuees. The model outputs evacuation

time and personal-vehicular information, including congestion associated with the evacuation

activity.

So far, all the models mentioned above are developed for evacuations around nuclear power

plant failures. A model that is developed for a wider variety of evacuation situations is MASS

eVACuation (MASSVAC) by Hobeika et al. (1985) and Hobeika and Jamei (1985). It is a

real-time macroscopic simulation model that uses Dial’s algorithm [Dial (1969)] to

stochastically assign traffic onto major arteries. Traffic is propagated in the network based on

BPR link performance functions.

MASSVAC estimates the network clearance times and identifies potential bottlenecks in the

network. The major advantage of this model is its ability to produce detailed output at the

microscopic level, which helps in assessing the impact of different intersection control and

operational strategies on the evacuation process. The major disadvantage of this model is that

it ignores the time required to reach major arterials, which usually leads to underestimating
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the network clearance times. MASSVAC has been applied to several applications such as

hurricane and nuclear power plant evacuations. Later on, Hobeika and Kim (1998) have

updated MASSVAC by incorporating a static UE traffic assignment procedure to overcome

the limitations of Dial’s algorithm, which tends to assign traffic to overlapping paths. Not

surprisingly, the UE assignment provides better results than that of Dial’s.

The consultant Post, Buckley, Schuh and Jernigan (PBS&J) developed the Evacuation Travel

Demand Forecasting System (ETDFS) in 2000 [PBS&J (2000a, 2000b, 2000c)]. This

macroscopic model attempts to simulate and determine the impact of the inter-state

evacuation traffic encountered in situations such as that produced by Hurricane Floyd.

2.1.2 Evacuation Decision Support Systems

With the advent of Geographical Information Systems (GIS) and its natural applications to

transportation networks, it was only a matter of time before GIS capabilities were

incorporated into evacuation models to develop evacuation Decision Support Systems (DSS).

The aim of a DSS is to provide a planning package that integrates both the transportation and

spatial aspects of evacuation applications. One of the first DSS for handling evacuations is

TEVACS by Han (1990), which is effectively an adaptation of NETVAC for multi-modal

networks. Han has used the model to evaluate different evacuation actions such as

rearrangement of gathering points, traffic signal improvement and partial reversibility lanes

on 6-lane highways. The study has concluded that integrated solutions have a bigger impact

on reducing evacuation time compared to sum of benefits gained by partial improvements

alone.

Another application of NETVAC is that of Abkowitz and Meyer (1996) who have introduced

a GIS capability to NETVAC to use existing TIGER/line files and population data to

determine the network degradation as well as evacuation times for fixed-point and traffic-

corridor applications.
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Tufekci and Kisko (1991) have developed the Regional Evacuation Modeling System

(REMS), a decision support system capable of performing dynamic analysis including

multiple scenarios such as hurricanes, chemical spills or nuclear accidents, with interactive

data manipulation options that ultimately can be deployed in a real-time application.

Lepofsky et al. (1993) also proposes GIS methods capable of performing transportation

hazard analysis and incident management.

A more recent DSS for evacuation is the Oak Ridge Evacuation Modeling System (OREMS)

[Rathi and Solanki (1993), ORNL (1995, 1998, 1999)] which uses TRAF simulation tools to

estimate evacuation time. OREMS identifies traffic operational characteristics such as

average speed and bottlenecks, to aid in developing effective evacuation plans. MOEs may

be reported at any spatial or temporal level. The main advantage of OREMS is its capability

to perform either a static or a dynamic UE assignment, depending on demand data. The

model however, has had only limited application to date.

Hobeika et al. (1994, 2002) have developed the Transportation Evacuation Decision Support

System (TEDSS) Model to target man-made and natural disaster evacuations while

accounting for weather conditions, and time of day. MASSVAC constitutes the simulation

core for TEDSS, which works in real-time and outputs the evacuation times and routes, and

the expected bottlenecks in the network. The model allows the user to specify one of the

several built-in assignment rules and interactively decide on the best evacuation strategy.

TEDSS has been updated in 2002 following the upgrade of MASSVAC in 1998.

Pidd et al. (1996) have combined GIS and simulation modeling to develop the Configurable

Emergency Management and Planning Simulator (CEMPS) decision support system. CEMPS

allows the user to specify weather information, incidents, closures, and route choice

scenarios. However, the simulation module does not support dynamic traffic assignment.

Cova and Church (1997) and Church and Cova (2000) have developed the Critical Cluster
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Model (CCM) to identify neighborhoods that might be of particular concern during an

evacuation due to a fast moving hazard, such as a wildfire. The model has been embedded in

a GIS-based platform and a case study has been conducted in Santa Barbara, California.

Alam and Goulias (1999) have employed a database management system and GIS software

to develop an evacuation management system with special emphasis on traveler behavior and

land use patterns. Li and Wang (2004) have developed a prototype of a GIS-based evacuation

simulation system that integrates information on evacuee behavioral patterns, the

transportation network and regional land-use for evacuation planning. Wilmot and Meduri

(2005) also used GIS to establish evacuation zones.

Franzese and Han (2001) have developed a traffic modeling framework for hurricane

evacuation called the Incident Management Decision Aid System (IMDAS). In their

framework, hurricane evacuation analysis is conducted in two phases. In the first phase, the

time-dependent O-D demand is estimated by 1) delineating the area to be evacuated; 2)

determining the population at risk; and 3) computing the number of people that will actually

evacuate using behavioral analysis and evacuation departure curves. In the second phase, the

traffic simulation model embedded in OREMS loads this O-D table to evaluate the

effectiveness of evacuation.

Another recent macro-level evacuation modeling and analysis system that is developed

specifically for hurricane evacuation is the Evacuation Traffic Information System (ETIS) by

PBS&J (2001). This system has been developed in the aftermath of Hurricane Floyd, driven

by the need for a capability to forecast and anticipate large cross-state traffic volumes. At the

heart of the model is a web-based travel demand forecasting system that estimates evacuation

traffic congestion and cross-state travel flows for North Carolina, South Carolina, Georgia,

and Florida. Based on the category of hurricane, expected participation rate, tourist

occupancy, and destination choices for affected counties, ETIS outputs the level of
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congestion on major highways and the expected cross-state volumes by direction. The model

has been recently extended to include the Gulf States of Alabama, Mississippi, Louisiana,

and Texas.

All models discussed thus far are for planning purposes – used to estimate conditions and

analyze alternative strategies prior to the occurrence of an extreme event. In contrast,

operational models are used to assist in decision making during an event. An example of an

operational model is HURREVAC (HURRicane EVACuation) (Townsend 2003), which

draws information from a wide variety of sources, including the National Hurricane Center to

estimate the evacuation time.

Another model designed to work in real-time is the Smart Traffic Evacuation Management

System (STEMS) [Hamza-Lup et al. (2005)]. STEMS is designed to employ ITS

technologies to detect incidents through sensors and accordingly generate evacuation and

traffic control plans. The model works by first delineating the evacuation zone boundaries,

and specifying nodes outside the evacuation zone boundary as evacuation exit points. There

are two approaches to evacuate traffic, namely the all-links and fastest-links. In the all links

approach, traffic is spread across all links in the evacuation zone with an evacuation direction

enforced on all links. The fastest-links approach employs a multicast routing approach to

construct the evacuation routes from the incident to all the exit nodes. While the model looks

fancy and promising, it suffers from a serious shortcoming. Links are assumed to have a

constant speed throughout the evacuation process, which defies the fact that travel times are

density-dependent let alone during evacuations where demand overloads supply.

2.2 ROUTE CHOICE AND EVACUATION

Efficient routing of vehicles to safety is a crucial aspect of any evacuation plan. The choice

of evacuation routes is the reason why an evacuation plan is successful or not. Early models

used static shortest-path type of algorithms to route evacuees to safety. For example, Hobeika
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and Jamei (1985) use Dial’s algorithm to stochastically route evacuees to shortest paths. Fahy

(1991) uses the shortest path to evacuate residents in a high-rise building. Stern and Sinuany-

Stern (1989) investigate the effect of route choice, whether shortest path or myopic behavior,

on network clearance times in a radiological setting.

A variation of the shortest path problem is the quickest path problem [Chen and Chin (1990),

Chen and Hung (1993), Kagaris et al. (1999)], whose objective is to send flow from source to

sink along a single path as quickly as possible. Flows are sent repeatedly, also referred to as

chain flows, along the quickest path, which is determined based on travel time and flow

capacity as opposed to travel time only in the classical shortest path problem. Evidently, such

a model is of special interest in the evacuation of spectators in concerts or sport events where

a single path exists towards the parking lot or metro stop.

Another static network flow model of interest in evacuation is the minimum cost flow model,

which aims at sending flow from a super source to a super sink in the least possible cost,

resembling the SO approach in traffic assignment. For example, Yamada (1996) used the

minimum-cost network flow problem to assign pedestrian evacuees to shelters at the city

scale. Yamada defined the shortest evacuation plan as one where the total distance from all

evacuees to all shelters is minimized. This approach can also be used in a road network

context, where each vehicle is routed to its nearest evacuation zone exit under a shortest

network-distance assumption.

However, despite the robustness and efficiency of their solution algorithms, static network

flow models are not suitable to tackle real evacuation problems as they cannot capture the

time dimension. In contrast, flows must be dynamic (time-dependent) to express the

movements of particles as they reach safety (super sink). Therefore, evacuation problems are

best modeled using dynamic network flow models, which can be regarded as a time-

expanded static network flow model.
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Dynamic network flow modeling has been extensively applied for building evacuation

problems. Chamlet et al. (1982), Choi et al. (1984) and Kisko and Francis (1985) have all

modeled building evacuation problems as dynamic networks with side constraints where the

objective is to minimize the turnstile cost. Choi et al. (1984, 1988) in their model account for

the fact that link capacities are not constant but rather are flow-dependent. An excellent

survey of dynamic mathematical models for evacuation is given in Hamacher and Tjandra

(2002).

Dunn (1992) proposes two algorithms for finding optimal evacuation routes, where the

objective is to maximize the flow through a capacity-constrained network, i.e. the problem is

modeled as a maximum-flow problem. Hobeika and Kim (1998) compares different static

traffic assignment procedures in evacuation modeling using a traffic simulator and concludes

that UE assignment produces better results than a shortest path algorithm in terms of

minimizing evacuation time.

Novel assignment ideas for traffic assignments in the context of evacuations have also been

proposed. For example, Campos et al. (1999) proposes a method to allocate traffic to k-

optimal independent paths (no overlap) to reduce crashes and facilitate continuous traffic

flow during evacuations. Cova and Johnson (2003) proposes a lane-based evacuation routing

approach to reduce traffic delays at intersections by limiting conflicts. It is worth noting that

while such an approach will reduce interactions at the intersections, the total distance traveled

is likely to increase. The approach is illustrated on a representation of Salt Lake City, Utah.

The study by Sheffi et al. (1982a, 1982b) indirectly highlights the need to provide route

information that captures the expected travelers’ behavior and is consistent with experienced

network conditions. Otherwise, travelers could ignore the supplied information if this

information is not accurate or reliable. As such, a desirable evacuation route advisory

strategy must be: (1) normative in nature in order to improve overall system performance,
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and (2) consistent with the predicted network conditions and travelers’ behavior. To achieve

these two objectives, one must be able to model the evolution of traffic in a transportation

network, a capability only available in DTA models.

Barrett et al. (2000) proposes a framework in which a dynamic traffic management model for

hurricane evacuation can be used for long-term and short-term planning purposes as well as

for real-time operational purposes. However, neither model nor numerical results are

provided.

While UE assignment has been used extensively to model the expected behavior of travelers

in normal situations, there is mounting evidence that in case of emergency and other extreme

events; travelers may not have perfect information regarding the state of the network (a basic

assumption for UE concept) and hence may be willing to follow an SO-based routing advice

[Tuydes (2005)] so long as evacuees have had a positive experience in the past [Dash and

Morrow (2001)].

One of the first studies to use an SO objective in the evacuation context is that of

Sattayhatewa and Ran (2000), who use an analytical DTA model to either 1) minimize the

total evacuation travel time of the disaster zone (without pre-defining a target evacuation

time), or 2) minimize travel time for each origin destination pair. However, the model has

been only tested on a three-link network.

Recently, the trend has been to incorporate traffic simulation with optimization techniques.

For example, Liu et al. (2005a, 2005b) present an integrated optimization-simulation

evacuation model for real-time operations. The model employs a bi-level optimization

module to solve a generalized CTM-based network flow problem. The upper level program

essentially solves the maximum dynamic flow problem (maximum flow for a given W ) and

the lower level program minimizes total system travel time (SO). The extension to real-time

applications requires a feedback process for gathering actual field conditions and adjusting
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control strategies appropriately.

Yuan et al. (2006) use DYNASMART-P to solve an SO-based simultaneous optimization of

destination and route assignment for the evacuation problem. They utilize the super zone

feature in DYNASMART-P to connect the destinations to a super sink and effectively

convert the problem to a single-destination evacuation problem. Their experiments show

huge savings over the base case. Other similar studies that use an SO objective include

Tuydes (2005b) and Liu et al. (2006), and Chiu et al. (2007).

An interesting study is the one conducted by Sbayti and Mahmassani (2006), which accounts

for background traffic during partial network evacuations. In their study, the general

assumption that networks are empty at time zero is not used. Instead, extreme events that

warrant evacuation are modeled to occur midway through the day. Vehicles impacted by the

event are identified and re-routed to safety in such a way to minimize their overall clearance

time. Remaining (non-impacted) vehicles are assumed to retain their paths.

2.3 EVACUATION DEMAND

Human behavior is the most critical variable in evacuation planning and modeling. Many an

evacuation plans have gone awry due to improper accounting for evacuees’ behavior during

an evacuation [Petruccelli (2003)]. Human behavior affects two aspects in evacuation

models. First, it determines the population (evacuation demand) that will effectively comply

with the evacuation order, and then it determines how evacuees choose and update their

paths. While the latter is typically handled by the assignment principle, the former is much

harder to account for.

Generally, the temporal evacuation demand is estimated using participation rates and

mobilization curves established from observing past evacuations [Lewis (1985), Stern and

Sinuany-Stern (1989), PBS&J (2000a, 2000b, 2001)]. The process is done in two phases
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where in the first phase, participation rates are used to estimate the total demand; and in the

second phase, the total demand is distributed to time intervals using a mobilization curve,

such as the S-shaped logit-based function proposed by Sheffi (1985).

Irwin and Hurlbert (1995) develop a model using data from Hurricane Andrew that depends

on variables such as the respondent’s perception of getting hurt if staying, the perceived

ability of the house to withstand the storm, prior hurricane experience, gender, marital status,

education, age, and race of the owner.

Another study [RDS (1999)], using data from Hurricane Bonnie, finds that the most

influential variables are whether an evacuation order had been issued or not, the risk of

flooding, whether the neighbors evacuated or not, and type of structure of the home. Dow and

Cutter (2002) have used a survey of coastal South Carolina, to investigate the impact of

household decisions such as the number of vehicles used per household, departure time,

distance traveled, and the role of information in the selection of specific evacuation routes on

evacuation demand during Hurricane Floyd.

A model package that estimates total evacuation demand is ETIS [PBS&J (2001), Lewis

(2001)]. ETIS uses default evacuation participation rates to provide graphical output in the

form of maps, diagrams, and tables. The model is proprietary and is developed specifically

for the Southeastern United States (Florida, Georgia, South Carolina, and North Carolina).

The model is currently being expanded to include other neighboring states.

The common practice in determining evacuation demand is to include some subjective

perceptions as independent variables because of their statistical significance. However, it

must be recognized that while these variables may contribute to explaining evacuation

behavior, they are not good variables for forecasting because they cannot be measured and as

such cannot be used in hypothetical tests. An alternative albeit less commonly used form of

trip generation is logistic regression [Irwin and Hurlbert (1995), RDS (1999)]. Logistic
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regression is used in place of regular linear regression in evacuation because the dependent

variable (to evacuate or not) is a binary variable which introduces violations of some of the

assumptions underlying regular linear regression analysis. A study using data from Hurricane

Andrew revealed that logistic regression model provides better estimates of evacuation than

the linear-regression model developed for that region [Wilmot and Mei (2003)]. Fu and

Wilmot (2004) propose a sequential logit choice model to estimate the probability of a

household evacuating in a given time period.

Another issue in modeling human behavior is the impact of experience on future evacuation

decisions, i.e. whether or not to evacuate. For example, people who have been stuck in long

delays in response to previous evacuation orders are less likely to heed future evacuation

orders than those who learned second-hand of the delays [Dash and Morrow (2001)].

Similarly, evacuees may not follow evacuation route advisory if they have experienced first-

hand their ineffectiveness in previous evacuations. Therefore, planners must exercise extra

caution when issuing evacuation orders or route advisory for that matter. A study that

recognizes the fact that evacuees may not comply with evacuation route advisory is the one

conducted by Chiu et al. (2005), who have tested the impact of human behavior, modeled as

boundedly rational [Simon (1953), Mahmassani and Chang (1987)], on the compliance of

motorists to off-line evacuation advisory plans.

2.4 EVACUATION MANAGEMENT STRATEGIES

Several management strategies have been proposed or investigated in the past. For example,

Zaragoza and Burris (1998) advocate the importance of advanced technologies, specifically

traffic surveillance cameras for emergency management. Baxter (2001) evaluates the

potential real-time use of ITS technologies to improve safety and efficiency during hurricane

evacuation in Florida. Similarly, Morrow (2002) investigates the implementation of ITS

technologies to reduce the evacuation time when major storms threaten Florida. Urbina and
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Wolshon (2003) also discuss the benefits of using ITS during hurricane evacuation.

Another study to investigate the effect of various traffic management measures on evacuation

times is the one conducted by Church and Sexton (2002), who use agent-based simulation

techniques to examine the sensitivity of evacuation time under a set of measures such as

having an additional exit, vehicle occupancy levels per household and traffic controls. While

there is a plethora of studies in this regard, the focus in this section is on two specific

strategies, one pertaining for demand management, and the other for supply management.

2.4.1 Demand Staging and Flow Scheduling

As mentioned in Chapter 1, one option to manage traffic during evacuations is to spread the

evacuation demand over a longer period to alleviate the loads on the network and delay

network degradation. Such a process is referred to in the literature as staging or flow

scheduling. By convincing some of the evacuees that it is “faster to wait”, it is possible to

move closer to an SO state and therefore reduce the minimum network clearance time as well

as average trips times.

There are two general forms of staging evacuation operations: zone scheduling and flow

scheduling. In zone scheduling, zones are sequentially evacuated starting with the most

urgent. You can have strict staging where subsequent zones will not be allowed to evacuate

until the current zone is fully evacuated or staggered staging where each zone has its own

evacuation start time. Flow scheduling, On the other hand, is vehicle-based, that is each

vehicle will have its own evacuation start time.

The study by Chen and Zhan (2004) is one of the first documented studies on the staging of

evacuation operations. They use microscopic simulation to compare the effect of staging

versus simultaneous evacuation. The study concludes that staging is not effective when

congestion is near free-flow conditions. The staging strategies considered in this study,
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however, have been identified a priori and are not generated to satisfy specific system level

objectives.

Both Tuydes (2005b) and Liu et al. (2006) use the Linear Programming (LP) formulation by

Ziliaskopoulos (2000) for the Cell Transmission Model (CTM) [Daganzo (1994, 1995)] to

find the optimal staged evacuation strategy. Their motive behind staging is the assumption

that there exist different regions in the network with different safety time windows (time

during which it is safe to be exposed). The model uses a SO approach and assumes

exogenous evacuation demand response and mobilization rates and safety time-windows. The

main decision variables in this model are the zonal evacuation order times; however, both

models have been tested on a small network. Tuydes (2005b) develops a tabu-based heuristic

to solve the staging problem for large networks.

Sbayti and Mahmassani (2006) use an MSA-based heuristic to solve for the joint optimal

evacuation destination-route-flow-staging problem that minimizes the network clearance

time. The procedure is applied for a subset of vehicles, referred to as impacted vehicles,

while remaining (background) traffic is assumed to follow their original prescribed paths.

The traffic simulator within DYNASMART-P is used to estimate the link travel times and

turning penalties.

Chiu et al (2007) have also used the linear programming formulation of the CTM to solve the

joint optimal evacuation destination-route-flow-staging problem. The problem is formulated

as a SO DTA problem for which interior point method techniques are used to solve. The flow

staging results are obtained by computing the difference in cell (link) occupancies for two

successive time periods.

2.4.2 Capacity Redistribution or Contraflow

Another option to manage evacuation is to tackle the supply side of the problem, which
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experience suggests that routes have insufficient in capacity to handle the unusual surge in

demand [Alsnih and Stofer (2004)]. While there is no time to build new roads during

evacuations, one can always reverse the direction on some selected lanes in the networks in a

process known as contraflow. This can lead to a temporary increase in the outbound

operational capacity without major infrastructure changes.

Contraflow involves reversing one or more lanes on a divided roadway in the inbound

direction in order to create more capacity for outbound traffic. Crossover sections are

normally used to channel traffic to these lanes with incoming traffic usually blocked until the

end of the contraflow program. Contraflow plans have been used for decades in everyday

scenarios such as sporting events, work zones, bridge construction projects, tunnels, and

along major arterials. For example, the center turn lanes of roads around a stadium may be

used to accommodate sporting event traffic. During freeway work zones, when traffic is

rather heavy, one or more lanes may be reversed in the inbound via crossover.

The same thing can also be done for a work zone on an arterial, where a lane needs to be

completely blocked. If the traffic is heavy, a lane may be borrowed (and reversed) from the

other direction until work is finished. In this case, no cross over is needed as arterials are

usually not grade-separated. Lane reversal is also used during bridge construction projects or

any situation where a lane must be closed during times when construction crews are not at

work as in the case of the Woodrow Wilson Bridge project in Washington, DC. While

construction is in progress on a parallel twin span, the recently completed first span

accommodates both directions (three lanes each way).

That being said, lane reversals are still a new and relatively untested system for evacuations.

Unlike in every day lane reversals, drivers are typically unaware of reversible lanes as well as

their reversal times in an emergency setting. This can become a source of confusion and a

huge safety concern due to the lack of proper signage and control. In fact, Wolshon (2001)
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argues that the costs and benefits of lane reversals for evacuations remain largely unknown.

Therefore, the general approach has been to avoid contraflow strategies unless it is really

warranted.

There are several issues relating to contraflow operations. First, there is the issue of when to

start and when to shutdown the contraflow procedure. For example, most states will not

utilize contraflow in darkness. The need for proper lighting conditions cannot be more critical

than in evacuations where proper signage and directions may be lacking. Therefore,

contraflow must be ordered in a manner that will allow all evacuation traffic to clear the

highway before darkness.

Another critical issue regarding contraflow is its starting and ending point. The ability to

adequately load contraflow lanes (by crossovers for example) is very important to avoid

bottlenecks. A study by Theodoulou and Wolshon (2004) on the adequacy of the lane

reversal plan for traffic headed westbound out of New Orleans, Louisiana, on Interstate 10

indicates that the contraflow system is not being fully utilized due to limited loading points.

Therefore, an inadequate loading capacity may lead to a “cry wolf” scenario, where residents

will be reluctant to evacuate in the future [Wolshon (2005a, 2005b)].

An even more critical issue is the downstream capacity at the termination point of a

contraflow plan. Any premature termination and traffic could back up for miles. Therefore,

the contraflow operation must terminate at an interchange with another controlled-access

facility where enough capacity is available. Finally, to ensure a successful contraflow plan,

there should be ample coordination and communication among all concerned agencies as

well as public outreach strategies to inform the public of existing evacuation plans and what

to do or expect during evacuations. However, all these issues have not stopped researchers

and planners from investigating the impact of contraflow during emergency evacuations.

For example, Zhou et al. (1993) applies sensitivity analysis to find the optimal 1-shift (a shift
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is a single reversal operation) contraflow schedule that would minimize the total expected

delay for a tunnel facility. Their algorithm, however, is not efficient and needs to perform an

exhaustive enumeration of candidate solutions to select the best option.

Dong and Xue (1997) and Xue and Dong (2000) use multi-level constrained optimization

techniques to minimize total traffic delay in order to find the optimal contraflow control for

an n-shift schedule. They have implemented their control system on the George Massey

Tunnel to find the optimal contra-flow schedule in response to sensed and predicted (real-

time) traffic conditions.

Franzese and Han (2001) proposes a computer-based system to simulate traffic flow and

evaluate the impacts of different traffic management alternatives on emergency evacuation.

They conclude that traffic management such as contraflow operations could have a

significant impact in the effectiveness of evacuation plans.

Tuydes and Ziliaskopoulos (2004) propose a linear program system-optimal DTA model with

capacity-reversibility (contraflow) capability based on the CTM. In their model, however, the

capacity is treated as a continuous variable rather than discrete. Another shortcoming is the

high computation costs associated with this model.

Theodoulou and Wolshon (2004) have used the microscopic simulation model CORSIM to

conclude that existing contraflow plans for New Orleans are likely to result in

underutilization of the reversed lanes. The study also identifies simple inexpensive

modifications to improve existing plans.

2.5 DYNAMIC TRAFFIC ASSIGNMENT PROBLEM

Network flow models generally treat link travel times as either constant or time-dependent.

While assuming constant link travel times may be justifiable in building evacuations, this is

generally not the case in congested transportation networks, where the speed will diminish
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with higher densities, until queues start to form. An evacuation model where link travel times

are flow-dependent is more realistic but also much more difficult to handle from a

mathematical point of view due to the nonlinearity of link travel times [Janson (1991b), Ran

and Boyce (1996)]. A class of mathematical problems that can handle density-dependent

travel times is DTA [Jayakrishnan and Tsai (1995), Carey and Subrahmanian (2000)].

DTA has been conceived in response to the recent developments in Advanced Transportation

Management System (ATMS) and Advanced Traveler Information System (ATIS). DTA

models overcome the limitations inherent in SA models such as the failure to capture the

dynamics of traffic operations, trip chaining and the effect of intersection delay on the

calculation of shortest paths. The DTA problem is to solve for a dynamic traffic flow pattern

as a result of supply and demand interactions. DTA models have a plethora of applications

ranging from real-time management to offline planning and evaluations, and it is by far the

tool most suited for evacuation modeling. DTA models are characterized by the traffic

assignment principle used and the embedded traffic flow model.

2.5.1 Traffic Assignment Principles

There are two basic traffic assignment principles corresponding to Wardop’s first and second

principles [Wardrop (1952)], namely the UE and the SO principles. Other variants of the UE

principle such as stochastic UE and tolerance-based UE [Szeto and Lo (2005)] have been

proposed in the past; however their use is not as common. Sheffi (1985) has summarized the

UE conditions for static networks as such:

“for each O-D pair, the travel cost on all used paths is equal and less than or

equal to the travel cost that would be experienced by a single vehicle on any

unused path ”

Ran and Boyce (1996) have extended this condition to the dynamic case by providing a time-
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dependent generalization of Wardrop’s first principle:

“for each O-D pair at each interval of time, if the actual travel times

experienced by travelers departing at the same time are equal and minimal,

then the dynamic flow over the network is in a travel time-based ideal

dynamic user-optimal state”

The UE conditions can be mathematically stated as follows:

0C (2.1.a)

0Cf (2.1.b)

0f (2.1.c)

Where f  is the vector of path assignments, C  is the vector of path trip times, and  is the

vector of minimum path travel times. Conditions (2.1) state that if the vector of path flow

assignments f  is positive, then the corresponding path travel times vector C  should be

equal to the minimum path travel times vector . Inherent in these conditions is the

assumption that each trip-maker is rational and chooses the path that minimizes his travel

cost. Equivalently, the UE-DTA problem is to find a feasible time-varying path flow pattern

f  satisfying conditions (2.1).

An alternative route choice behavior, though less commonly adopted, is the SO assignment,

which is based on Wardrop’s second principle and states that travelers will behave

cooperatively when choosing their departure times and routes in order to minimize the total

cost of the system. The SO conditions can be mathematically stated as follows:

0~~C (2.2.a)

0~~ )(Cf (2.2.b)

0f (2.2.c)
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Where C~  is the vector of path marginal trip times, and ~  is the vector of minimum path

marginal travel times. Conditions (2.2) state that if the vector of path flow assignments f  is

positive, then the corresponding path marginal travel times vector C~  should be equal to the

minimum path travel times vector ~ . the SO-DTA problem is to find a feasible time-varying

path flow pattern f  satisfying conditions (2.2).

Inherent in this formulation is the assumption that the complete time-varying O-D demand

information for the entire planning horizon is available, a priori, to the (single) central

controller, whose objective is minimize total system travel time. The key behavioral

assumption for the path choice decisions of network users is that all vehicles comply fully

with the path assignment instructions given by the central controller, and no en-route path-

switching is made after departure from the origins. Four traffic flow propagation models have

been commonly used in DTA: 1) link performance functions, 2) link exit functions, 3) CTM,

and 4) simulation.

2.5.1.1 Link Performance Functions

Link performance functions relate link travel times to link volumes and have been used in the

past [Janson (1991b), Ran et al. (1996), Chen and Hsueh (1998)]. The most common of link

performance functions is the BPR volume-delay functions (1964) commonly used in static

traffic assignment. The general form of the BPR function is:

a

tN
txctc

a

a
aa )(

)(1)( min (2.3)

Where )(tca  is the link travel time on link a  at time step t , min
ac  is the minimum travel

time on link a  corresponding to free-flow conditions, )(txa  is the volume on link a  at time

step t , )(tNa  is the physical capacity of link a  at time step t , and a  is the shape

parameter associated with link a .
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BPR functions are designed to model a steady degradation of highway speeds as the volume

of traffic approaches capacity. However there is evidence to indicate that at low congestion,

speeds tend to remain much more consistent as volume increases. As a matter of fact, the use

of BPR functions results in unrealistic assignments – volume-to-capacity values greater than

one are sometimes necessary in calculations to converge to an equilibrium trip assignment.

Another popular link performance model is Greenshields, which has been conceived after

extensive analysis of traffic data, relates link speed (and hence link travel time) with link

density, up to an appropriately specified jam density. The Greenshields model is

mathematically expressed as follows:

a

a

a
aa

t
t jam

max )(
1)( (2.4)

where )(ta  is the average speed on link a  at time step t , and max
a  is the maximum speed

on link a . )(ta  is the average density on link a  at time step t , and jam
a  is the jam density

on link a .

While this model has been found to be in accord with real traffic conditions for moderate

congestion levels, it is not adequate for both low and high congestion levels. To improve on

its performance in congested levels, Jayakrishnan and Tsai (1995) added a minimum speed

term min
a  to the original Greenshields model to ensure that the outflow volume does not

reach zero. They dubbed their model as the Modified Greenshields Model (Figure 2.1), which

has the following form:

a
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a
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tt jam
minmaxmin )(1)( (2.5)
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Figure 2.1 Single regime modified Greenshields model

Note that, the maximum speed is a mathematical construct which may or may not correspond

to the free-flow speed, as it will become obvious later. While the modified Greenshields

model has been found to be adequate for congested conditions, it did not adequately describe

free-flow conditions on freeways, where traffic speeds did not decrease with increasing

densities. It was observed that free-flow speeds are attained in general up to a certain cut-off

density cutoff
a , after which speeds started to decrease in accordance to (2.5). This led to the

introduction of another traffic regime and resulted in a dual-regime modified Greenshields

model (Figure 2.2):
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a a
tt (2.6)

where free
a  is the free-flow speed on link a .
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Figure 2.2 Dual regime modified Greenshields model

Dual-regime models are generally applicable to freeways since they typically have more

capacity (higher service flow rates) than arterials, and can accommodate dense traffic (up to

2300 pc/hour/lane) at near free-flow speeds. On the other hand, single regime models apply

to arterials due to the presence of signalized intersections where a slight increase in traffic

would elicit more deterioration in prevailing speeds than in the case of freeways.

2.5.1.2 Link Exit Functions

Merchant and Nemhauser (1978a, 1978b) are the first to introduce the concept of an exit

function to regulate the outflow of a link given the number of vehicles on it. Since then, it has

been used extensively in analytical DTA models [Carey (1987), Friesz et al. (1989), Wie et

al. (1995)]. Carey (1987) actually used the exit function as an upper bound for the link

outflow instead of specifying the exact value of the outflow and thus allowed flow control on

the links. The major drawback of an exit function is that it implicitly assumes that changes in

density propagates instantaneously across the link and therefore fails to capture queue
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formation phenomenon [Boyce et al. (2001), Carey and McCartney (2002)].

2.5.1.3 Cell Transmission Model

The cell transmission model has been developed by Daganzo (1994) as a discrete

approximation to the hydrodynamic theory of traffic flow. It is capable of automatically

tracking shocks and acceleration waves and thus capturing the formation, propagation, and

dissipation of queues. CTM has been sufficiently validated by field data in Lin and Daganzo

(1994) and Lin and Ahanotu (1995). Daganzo’s model divides the transportation network

into small homogeneous and interconnected cells and assumes piecewise linear relationships

between flow and density at the cell level. Despite its simplicity, the cell-transmission model

(CTM) is able to describe and accurately capture traffic propagation phenomena such as

disturbances and shockwaves in traffic networks. CTM is relatively easy to be transformed

into a mesoscopic model, where vehicles can be individually tracked between origins and

destinations for possible dynamic traffic assignment applications. More recently,

Ziliaskopoulos (2000) linearized the CTM model when developing a linear programming

formulation of the SO-DTA problem.

2.5.1.4 Simulation-based Models

The use of simulation techniques is the method of choice for propagating traffic within the

context of dynamic traffic assignment models. This approach has the merit of closely

approximating the travel behavior of individual drivers and easily incorporating all kinds of

control measures. Simulation precludes the holding of traffic, enforces FIFO conditions, and

circumvents the need for link performance/exit functions, but they are mathematically

intractable.

Simulation techniques are ideally suited for microscopic models but they are tricky to

validate because human behavior is difficult to observe and model. Moreover, microscopic
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traffic simulation models such as AIMSUN, PARAMICS or VISSIM, require a huge number

of input parameters to accurately model vehicle behavior in the network. On the other hand,

macroscopic simulation-based DTA models follow the hydrodynamic theory of traffic flow

[Lighthill and Whitham (1955), Richards (1956)] and therefore require much less processing

power and only a handful of simple parameters in order to work reasonably well. A third

approach that is gaining popularity is the mesoscopic approach, where a macroscopic traffic

flow model is used but vehicles are tracked individually in the network to maintain a higher

level of detail.

One of the earliest mesoscopic simulation platforms is CONTRAM [Leonard et al. (1989)],

which is used in predicting traffic routes, link flows, queues, and delays at junctions. Another

pioneer model is INTEGRATION [Van Aerde and Yagar (1988)], which models the

behavior of individual vehicles and is capable of assignment. Ghali and Smith (1992) have

proposed a simulation-based solution procedure to the SO-DTA problem where congestion is

assumed to arise at bottlenecks modeled as deterministic queues. The SO assignment is

accomplished by assigning individual vehicles onto paths using link marginal costs

determined using CONTRAM.

DYNASMART (Dynamic Network Assignment-Simulation Model for Advanced Road

Telematics) is perhaps the most well-known simulation-based DTA system. It is built around

the mesoscopic traffic simulation model proposed by Jayakrishnan et al. (1994) and the

generalized least-cost shortest path algorithm developed by Ziliaskopoulos and Mahmassani

(1993, 1996). The assignment procedure is based on the iterative algorithm developed by

Mahmassani and Peeta (1992), Mahmassani et al. (1993), Peeta (1994), and Peeta and

Mahmassani (1995a, 1995b). There are two versions of DYNASMART: P and X.

DYNASMART-P is designed for off-line planning applications, whereas DYNASMART-X

is designed for estimating and predicting current and future states of the network in real-time.

The computational issues for the real-time version have been addressed by using a rolling
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horizon framework [Peeta and Mahmassani (1995b)], and distributed computing

[Mahmassani (1997), Hawas and Mahmassani (1997)]. DYNASMART is perfectly suitable

for ITS/ATIS applications and supports five classes of users: UE, SO, pre-trip, Variable

Message Signs (VMS) responsive, and boundedly-rational users [Mahmassani and Chang

(1987)]. A comprehensive review of the simulation-based approach is presented by

Mahmassani (2001).

Another well-known simulation-based DTA system is DYNAMIT (Dynamic Network

Assignment for the Management of Information Travelers) by Ben-Akiva et al. (1997, 1998),

and Bottom (2000). DYNAMIT estimates and predicts in real-time current and future traffic

conditions and is organized around two main modules: state estimation and prediction-based

guidance generation. DYNAMIT consists of a demand and a supply simulator that interact to

generate optimal route guidance under a rolling horizon framework. The demand simulator

utilizes historical and real-time data, to estimate and predict O-D flows. The supply simulator

uses a mesoscopic traffic model in which links are divided into segments that include a

moving part and a queuing part. Basic explanations of the framework and logics are

presented in Ben-Akiva et al. (2000). Another simulation-based DTA model that is gaining

popularity is VISTA [Ziliaskopoulos and Waller (2000)], which operates within an internet-

based GIS environment. VISTA integrates data and models into one framework and uses

RouteSim [Ziliaskopoulos and Lee (1996)], a mesoscopic traffic model based on CTM to

propagate vehicles in the network.
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3 EFFICIENT SOLUTION HEURISTIC FOR THE SYSTEM-
OPTIMAL DYNAMIC TRAFFIC ASSIGNMENT PROBLEM

Chapter 1 has briefly alluded to the fact that the evacuation problems to be addressed in this

dissertation are variations of the classical SO-DTA problem, which has been studied

extensively in the literature [Merchant and Nemhauser (1978a, 1978b), Carey (1986, 1987),

Ho (1980), Peeta (2004)]. The enormity of the computational cost of analytical models and

the failure to capture traffic dynamics through side constraints have led to the development of

simulation-based DTA models, which while able to handle larger networks and realistically

capture traffic dynamics, the quality of their solution has long been questioned due to the use

of averaging heuristics such as the MSA.

MSA remains by far the most widely used solution heuristic in the context of simulation-

based DTA. Its simplicity and non-requirement of derivative information for the flow-cost

mapping function are the main reasons for its widespread use. However, its convergence

properties in real-life networks has been inconclusive, especially because (1) simulation-

based models are typically not well-behaved mathematically, and therefore their solution

properties are not guaranteed, and (2) pre-determined step sizes do not exploit local

information in searching for a solution, and therefore lack a proper decent direction

[Bertsekas 1995].

This chapter focuses on the development of an efficient simulation-based solution heuristic

for the SO-DTA model that exceeds MSA-based heuristics performance wise while not

requiring excessive memory requirements. In this regard, the work of Lu (2007) on

developing a theoretically sound simulation-based UE-DTA model and its solution heuristic

is extended to the SO-DTA case along with the necessary modifications. Shortcomings of the

solution heuristic by Lu (2007) are identified and addressed as well. The resulting SO-DTA

solution heuristic is then tested and compared against MSA towards the end of the chapter.
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3.1 INTRODUCTION

Several SO-DTA formulations have been proposed in the past including mathematical

programming, control theory, nonlinear complimentarity problems, and VI problems.

However, a major issue in these models is the modeling of traffic dynamics using link

performance functions or link exit functions, which are not realistic and do not uphold FIFO

conditions. Recently, researchers have formulated DTA problems as linear programs (LPs)

following Ziliaskopoulos (2000). However, the LP nature of such models coupled with the

cellular nature of the CTM model limits the applicability of such a model to real-life

networks [Tuydes 2005].

Instead, simulation-based heuristics have been used to solve SO-DTA models. The most

widely adopted heuristic is the MSA, which, while not computationally intensive and easy to

implement, suffers from a similar deficiency to that of the Frank-Wolfe algorithm, where the

step sizes are pre-determined and fixed across-the-board regardless of the degree of

inferiority of paths. This leads to the slow convergence rates in later iterations due to

“zigzagging” around the optimal solution. Nonetheless, satisfactory computational

experience has been reported with the MSA in some simulation-based models [Janson

(1991a, 1991b), Mahmassani et al. (1993a), Ran and Boyce (1996), Mahmassani (1998),

Tong and Wong (2000), Liu et al. (2005c)].

More recently, Sbayti et al. (2007) have proposed an efficient vehicle-based implementation

of the MSA that relaxes the across-the-board step size rule while maintaining the total

number of vehicles to update their paths in accordance with the MSA rule. In this heuristic,

vehicles are sorted according to experienced travel time (or any other user-selected criterion)

and the most expensive k/1  vehicles, where k  is the iteration number, are shifted to the

cheapest path (from shortest path) for that iteration. The method retains the nice features of

the MSA while providing for a better search direction than the classical MSA

implementation.
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Currently, the general approach has been to formulate simulation-based models as a VI

problem after the pioneering work of Smith (1993) who showed that solving the VI problem

0)*()*( fffC (3.1)

is equivalent to solving the UE-DTA problem, where )( fC  is the path travel time vector

evaluated at flow pattern f , and *f  is the optimal flow pattern. Similarly, without loss of

generality, solving the VI problem:

0)*()*(~ fffC (3.2)

is equivalent to solving the SO-DTA problem, where )(~ fC  is the path marginal travel time

vector evaluated at flow pattern f .

VI easily handles the asymmetrical cost functions typical of DTA problems and provides an

easier platform to verify existence and uniqueness of solutions. Studies that formulate DTA

problems as VI include, but are not limited to, Smith and Winsten (1995), Ran and Boyce

(1996), Chen and Hsueh (1998), Lo and Szeto (2002), Jang et al. (2005), Ziliaskopoulos and

Chang (2005), and Lu (2007). A comprehensive review on VI formulations for DTA

problems can be found in Nagurney (1998), Patriksson (1999), and Peeta and Ziliaskopoulos

(2001). The VI problems are generally reformulated to an NMP that are iteratively solved

using descent methods.

This chapter focuses on developing and solving a simulation-based SO-DTA model with

time-varying O-D demands that is capable of realistically capturing traffic dynamics while

satisfying SO-DTA conditions. The SO-DTA model presented in this chapter follows the

same steps of the VI formulation and its reformulation as the NMP by Lu (2007) for the UE-

DTA case with the required modifications.
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3.2 NOTATIONS AND DEFINITION OF VARIABLES

Consider a transportation network represented by a directed graph with multiple origins

(source nodes) and destinations (sink nodes). Let NRr  and NSs  denote an origin

node and a destination node, respectively. Note that any node may be both an origin and a

destination node at the same time, i.e. sets R  and S  are not mutually exclusive. Let Aa

denote a directed arc in the network represented by the graph ),( ANG  with N  nodes and

A  directed arcs.

In the context of DTA, we distinguish between two types of periods: the study period and the

demand assignment period. The study period ],0[ W  is discretized into T  time steps of length

 such that TW . Associated with the study period is the time index Tt ,...,1 , which is

primarily used to keep track of the trip time of vehicles in the network. Similarly, the demand

assignment period, ],0[ W  is discretized into T  departure periods of length  such

that WT . Associated with the demand assignment period is the departure time index

T,...,1 . Assume that W  is long enough for all the traffic to clear the network, i.e.

WW .

Let psrf ,,  be the flow leaving origin r  going to destination s  assigned to path srPp ,

during departure period , where srP ,  is  the  set  of  all  possible  paths  between r  and s  at

departure time . Let f :

TSsRrPpf srpsr ,...,1,,| ,,,f

be the vector of dynamic flow assignments psrf ,,  in ),( ANG . Associated with f  is  a

vector of path travel times )( fC :

TSsRrPpC srpsr ,...,1,,|)()( ,,, ffC

and a vector path marginal travel times (or simply marginals) )(~ fC :
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TSsRrPpC srpsr ,...,1,,|)(~)(~
,,, ffC

Equivalently, one can also think in terms of link travel times and link marginal travel times.

Let )(tca  and )(~ tca  denote the travel time and marginal travel time for link a  at time step t ,

respectively. Define c  as the vector of link travel times:

Aatca |)(c

and c~  as the vector of link marginal travel times:

Aatca |)(~~c

Furthermore, in the context of DTA, we differentiate among three link flow variables

associated with link a : 1) capacity (maximum physical storage or occupancy) )(tya ; 2)

inflow volume )(tua ; and 3) outflow volume )(tva . The associated link flow vectors are

defined as follows:

Aatya |)(y

TtAatua ,...,1,|)(u

TtAatva ,...,1,|)(v

Therefore, the volume present on link a  at time step t , )(txa  may be computed as:

tatvtutx aaa ,)()()(

Define the vector of time-dependent link volume x  as follows:

TtAatxa ,...,1,|)(x

One can also define inflow and outflow volumes for a given node in the network. Define

)(tIn  as the total flow entering a node n  in time step t  and similarly define )(tOn  as the

total flow exiting a node n  in time step t . Finally, O-D demand is also time-dependent. Let

d  be the O-D demand time dependent vector defined as:
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TSsRrd sr ,...,1,,|,d

where srd ,  is the traffic demand associated with sr  at departure time . In the context of

evacuations, one can also define the total demand rd  at an origin r  to be evacuated.

3.3 TYPICAL PATH-BASED SO-DTA FORMULATION

3.3.1 Problem Statement and Formulation

Consider an urban traffic network represented by the directed graph ),( ANG  with multiple

origins r  and multiple destinations s . Furthermore, assume the time-dependent O-D trip

desires srd ,  are known a priori. The SO-DTA problem is therefore to determine the time-

dependent path-flow pattern f  so as to minimize the total system trip time subject to DTA

constraints.

3.3.1.1 Objective Function:

The objective of the SO-DTA model is to minimize the total system trip time, that is:

r s p
psrpsr fCZ ,,,,)(Min f (3.3)

The constraints of the model include flow conservation, flow propagation, non-negativity and

boundary constraints as described below:

3.3.1.2 Supply-Demand Conservation Constraints:

The total path flows originating from origin r  going to destination s  at departure time

must be equal to the demand at origin r  going to destination s  at departure time :

,,,,, srdf sr
p

psr (3.4)
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3.3.1.3 Flow Conservation Constraints:

Flow leaving an origin node r  in time step t  must  be  equal  to  the  total  flow entering the

links incident from node Rr :

)(,,)()( ratrtOtv r
a

a (3.5)

where )(n  denote the set of links that are downstream of node n , respectively. Similarly,

flow entering a destination node Ss  in time step t  must be equal to the total flow leaving

the links incident to node Ss :

)(,,)()( 1 satstItu s
a

a (3.6)

where )(1 n  denote the set of links that are upstream of node n .

Moreover, since holding of traffic is not allowed at origin nodes, the total flow entering a

node SRn ,  in time step t  must also leave node n  at time t :

RnnbnattItOtutv nn
b

b
a

a ),(),(,0)()()()( 1
(3.7)

3.3.1.4 Flow Propagation Constraints:

For a given link a , the existing volume (link occupancy) at time 1t  is equal to the existing

volume at time t  plus the net difference between the inflow and outflow volumes at time t ,

as follows:

tatvtutxtx aaaa ,)()()()1( (3.8)

3.3.1.5 Arc-path Dynamic Constraints:

Let )(,
,, ta
psr  be the time-dependent link-path index, equal to 1 if vehicles going from origin

r  to destination s  during departure time  are assigned to path  are on link a  during time
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step t ; and 0  otherwise. That is:

otherwise0

stepat timearcentersif1)( ,,,
,,

taft psra
psr (3.9)

Therefore, the link volumes and path travel times may be obtained as follows:

tatftx a
psr

r s p
psra ,)()( ,

,,,, (3.10)

,,,)(,
,,,, psrtC

t a

a
psrpsr (3.11)

3.3.1.6 Non-negativity Constraints:

All variables must be non-negative, especially the link flow variables since negative values

may imply that FIFO conditions are not adhered to:

tpasrta
psr ,,,,,1or0)(,

,, (3.12)

tatvtutx aaa ,0)(),(),( (3.13)

,,,0,, psrf psr (3.14)

3.3.1.7 Boundary Constraints:

No traffic is assumed on the network at time 0t , therefore:

tavux aaa ,0)0(),0(),0( (3.15)

Constraints (3.10) and (3.11) are the hardest to evaluate and result from the need to capture

correctly the complex flow interactions in a dynamic setting. While they lack the convexity

and tractability of simple analytical constraints, they force the system to adhere to traffic flow

principles such as the satisfaction of FIFO conditions, preclusion of holding of vehicles, and
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the representation of link interactions and other dynamic traffic phenomena. These variables

are a function of the flow assignments psrf ,, , which are in turn a function of time-dependent

link-path index )(,
,, ta
psr , and this leads to a very complex fixed-point problem [Peeta

(1994)]:

)(f (3.16)

where  is a vector of )(,
,, ta
psr . Since the properties of )(  are not well understood, it can

only be realistically evaluated via simulation techniques, which circumvents the use of

unrealistic side constraints such exit functions or link performance functions. To reflect the

use of simulation techniques, constraints (3.10) and (3.11) will be replaced by the following

equations throughout this dissertation:

tattx aa ,),()( f (3.17)

,,,)(,,,, psrC psrpsr f (3.18)

where ),( fta  and )(,, fpsr  are unique link flow-cost and path flow-cost mapping

functions evaluated through simulation. To summarize, the SO-DTA problem is formulated

as follows:

Given: srd ,

Find: psrf ,,

To:
r s p

psrpsr fCZ ,,,,)(Min f (3.19)

Subject to: ,,,,, srdf sr
p

psr (3.19.a)

)(,,)()( ratrtOtv r
a

a (3.19.b)
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)(,,)()( 1 satstItu s
a

a (3.19.c)

RnnbnattItOtutv nn
b

b
a

a ),(),(,0)()()()( 1
(3.19.d)

tattx aa ,),()( f (3.19.e)

,,,)(,,,, psrC psrpsr f (3.19.f)

tatvtutx aaa ,0)(),(),( (3.19.g)

tavux aaa ,0)0(),0(),0( (3.19.h)

,,,0,, psrf psr (3.19.i)

3.3.2 Optimality Conditions

The optimality conditions of program (3.19) are studied to investigate the underlying

assignment principle, which in turn will help shape the solution algorithm. Let )~,( fL  be

the Lagrangian of the SO-DTA formulation, where ~  denote the vector of Lagrangian

variables (or dual variables) associated with constraint (3.19 .a). Remaining constraints are

either definition constraints or are internally conserved (not an explicit function of the path-

flow assignments) and hence adding them to )~,( fL  will result in the same set of

constraints. Therefore, the Lagrangian of the SO-DTA formulation can be expressed as:

r s p
srsr psrfdZ ,,~)()~,(Min ,,ffL (3.20)

Subject to: DTA constraints (3.20.j)

where constraints (3.19.b) – (3.19.h) collectively represent DTA constraints. The necessary

conditions for a minimum of this program are given by the first-order conditions for a

stationary point of program (3.20).
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,,,0)~,(

,,
psr

f psr

fL
(3.21.a)

,,,0)~,(

,,
,, psr

f
f

psr
psr

fL
(3.21.b)

,,0
~

)~,(

,
sr

sr

fL
(3.21.c)

,,,0,, psrf psr (3.21.d)

DTA constraints (3.21.e)

Keeping in mind that

otherwise0
,,if1

,,

,, ssrr

f

f

psr

psr

the term
psrf ,,

)~,( fL  may be evaluated for a particular path-flow variable ,, psrf :

,

,,

,,
,,

,,

~

~

,,
)~,(

sr

psr

psr

r s p
psr

psr

C

f

psrC

C
f

fL

(3.22)

therefore, the first order optimality conditions for the SO-DTA problem are:

,,,0~~
,,,, psrC psrpsr (3.23.a)

,,,0~~
,,,,, psrCf srpsrpsr (3.23.b)

,,,0,, psrf psr (3.23.c)

DTA constraints (3.23.d)

where )(~ f  denotes the vector of minimum O-D marginal travel times:
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TSsRrPp srpsr ,...,1,,|)(~)(~ ,,, ff

3.4 REFORMULATION VIA A GAP FUNCTION

The flow pattern *f  is a solution to the SO-DTA problem if it satisfies conditions (3.23),

which collectively state that if the path flow *f  is positive, then the experienced path travel

time marginals )*(~ fC  should be equal to the minimum path travel time marginals )(~ f  for

the same ),,( sr  combination. Inherent in this formulation is the assumption that the

complete time-varying O-D demand information d  for the entire planning horizon is known

a priori, to the (single) central controller, whose objective is minimize total system trip time.

The asymmetry in the Jacobian matrix and the complexity of the dynamic network loading

functions greatly reduces the choice of algorithms available to solve a program such as (3.19)

since existence and uniqueness cannot be guaranteed. Therefore, researchers generally

formulate the DTA problems as VI problems. Analogous to path-based VI formulation by

Smith (1993) for the UE-DTA problem, the SO-DTA problem may be formulated as a VI as

follows: find a time-varying path-flow pattern *f  such that

,,,0~~
,,,,, psrCf

r s p
srpsrpsr (3.24)

The equivalence to the SO-DTA program (3.19) is given by Smith (1979). Assuming the path

travel times and path marginal travel times are continuous and strictly monotone, it can be

established that a solution for the above VI problem exists and is unique [Smith (1993),

Nagurney (1998)]. However, while commonly made in the literature, these assumptions

cannot be expected to hold in a realistic traffic network with signalized junctions and as such

it is unlikely that the VI problem will have a unique solution in a simulation-based model.

Following Lu (2007) treatment of the UE-DTA problem, the VI problem (3.24) will be



53

reformulated via a gap function, to an equivalent NMP whose global minima coincide with

those of program (3.19). Define a gap function as follows:

r s p
srpsrpsr CfG ,,,,,SO ~~

(3.25)

SOG  provides a measure of the violation of the SO-DTA conditions in terms of the

difference between the actual path marginal travel times and the least-cost path marginal

travel time evaluated at f . It is evident that the difference vanishes when the time-varying

path flow vector *f  satisfies the SO-DTA conditions. Thus, solving the SO-DTA problem

can be viewed as a process of finding the path flow vector *f  such that 0)*(SO fG .

Therefore, an equivalent problem would be to

r s p
srpsrpsr CfGZ ,,,,,SO ~~Min (3.26)

Subject to: ,,,0~~
,,,, psrC psrpsr (3.26.e)

,,,,, srdf sr
p

psr (3.26.f)

,,,0,, psrf psr (3.26.g)

DTA constraints (3.26.h)

3.5 PROPOSED METHODOLOGY AND SOLUTION ALGORITHM

3.5.1 Solution Framework

This study adopts a hybrid approach for solving the reformulated SO-DTA problem. The

hybrid approach integrates a mesoscopic traffic simulator (DYNASMART in this case) to

estimate the state of the system (paths travel times and marginals) and an appropriate

optimization technique (projected gradient method in this case) to solve an analytic SO-DTA
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model, i.e. minimize SOG . The solution framework is essentially an iterative bi-level

framework where a Dynamic Network Loading Problem (DNLP) is solved in the upper level

to estimate the state of the system, and an analytical model (NMP) is solved in the lower

level to determine the path-flow assignments that minimize SOG .

Traditionally, a pure analytical SO-DTA model will normally compute the path travel time as

a summation of corresponding link travel times, where the later are usually represented by

certain volume-delay functions. However, these functions take a simplistic view of

congestion and do not incorporate network or traffic characteristics such as intersection

control, ITS strategies, and different user types, etc. The SO-DTA model in this study utilizes

the link and path travel times evaluated from the DNLP (or DYNASMART in this study). In

other words, while solving the analytical SO-DTA, the link and path marginal travel times

are fixed using the results from the traffic simulator. Consequently, the SO-DTA problem

will reduce to a time-dependent least marginal path search for each O-D pair at each

departure time period.

The process will iterate until a stable solution is attained. The solution stability is based on

the comparison of path assignments over successive iterations, as proposed by Peeta (1994).

For each ),,,( psr  combination, the flow
)(

,,
k

psrf  in current iteration k  is compared with

that of the next iteration
)1(

,,
k

psrf . The number of cases, in which the absolute difference
)1(

,,
)(

,,
k

psr
k

psr ff  is greater than the predetermined path convergence threshold , is

recorded as )(V  and referred to as the number of violations. That is the process terminates

with the path assignments
)1(

,,
k

psrf  as the final solution if and only if )()( VV , where

)(V  is a predetermined user-specified upper bound, otherwise the process keeps iterating.

This convergence criterion serves as a proxy for another convergence criterion commonly

used in static assignment, which is the number of newly generated paths. In static

assignment, the solution algorithm would terminate when no new paths can be added to the
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restricted network [Larsson and Patriksson (1992), Ziliaskopoulos et. al. (2004)]; however,

when the time dimension is incorporated, attaining such a condition is not practical. One can

always show that the number of newly added paths in a DTA setting is decreasing, but up to

a certain point where the number of paths fluctuates. Therefore, what this convergence

criterion reflects is achievement of a stable solution. However, it does not say anything about

the quality of the solution (proximity to ideal SO conditions). In this regard, the relative

(duality) gap as defined by Janson (1991b) is used:

r s

k
srsr

k

r s

k
srsr

k
sr

k
psr

r s p

k
psr

k

d

G

d

Cf

G
)(

,,

)(
SO

)(
,,

)(
,

)(
,,

)(
,,

)(SO
~

)(

~

~~

~ f (3.27)

The numerator in (3.27) represents the total gap (slackness) and is related directly to SO-

DTA optimality conditions  (3.23). If the total slackness is zero, it  means that an exact SO-

DTA solution is found, otherwise )(SO
~ kG  measures the relative distance to the exact

solution. Finally, the average system trip time, which represents the objective of the original

SO-DTA problem (3.19) is also used in the analysis to assess the quality of the solution.

The proposed solution framework is applicable for the case vehicles are equipped for

communication with the central controller. The key behavioral assumption for path choice

decisions is that all vehicles comply fully with the path assignments given by the central

controller, and no en-route path-switching is made after departing. The solution framework

operates as follows. At each iteration k , the algorithm: (1) evaluates current path

assignments by an embedded simulation-based dynamic network loading model –

DYNASMART; (2) determines a search direction by solving a time-dependent least cost path

problem; and (3) updates path assignments for iteration 1k  by applying a suitable step size

along the search direction. The solution framework is presented in Figure 3.1.
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Find an Initial Solution

k = 1

Estimate State of the Network

Check Convergence

Find Descent Direction

Update Assignments

k = k + 1 Stop

No

Yes

Figure 3.1 Solution framework of the SO-DTA problem

3.5.2 Updating Path Assignments

Most simulation-based algorithms in the literature have a similar solution framework. The

main difference lies in how the assignments are updated for the next iteration. The

calculation of )1(kf  from )(kf  can be written in mathematical form as follows [Bertsekas

and Gafni 1983]:

)()(1)()()1( kkkkk hff (3.28)

where )(k  is the descent direction and ]1,0[)(k  is the step size along )(k  and
)(1 k

h  is

a scaling matrix. The decent direction is generally taken to be the negative of the gradient of

the gap function. Ignoring the partial derivatives of the path cost with respect to path flow,

the decent direction becomes:
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)(~)(~ fCf
f
SOSO

GG (3.29)

The resulting flow assignments are typically projected onto feasible space:

)(~)(~ )()()(1)()()1( kkkkkk Ch ffff (3.30)

where  denotes the unique projection onto the positive orthant. We can rewrite (3.30) as:

)()()1( kkk ff (3.31)

where )(k  is the amount of flow shifted from non-optimal routes to optimal routes and is

proportional to the difference in the route marginal time and the current least marginal time

path:

)(~)(~ )()()(1)()( kkkkk ffCh (3.32)

For the units in (3.32) to be consistent, the scaling matrix term, 1h  must have units of

vehicles/time. In other words, 1h  transforms the difference in the route marginal time and

the least marginal time path into flow (or vehicles). Jayakrishnan et al. (1994) adapted the

projection method by [Bertsekas and Gafni (1983)] into solving the traffic assignment

problem. In their method, the basic assignments update equation:

)(
,

)(
,,

)(1)()(
,,

)1(
,,

k
sr

k
psr

kkk
psr

k
psr Chff (3.33)

where

srsr Pp

k
psr

Pp

k
psr

k
psr C

f
fC

h
,,

)(
,,

)(
,,

)(
,, ~

(3.34)

and 1)(k . In other, the scaling matrix is in fact the Hessian matrix approximated by its
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diagonal terms. However, the determination of the scaling term 1h  has been the most

problematic in the general absence of derivative information in simulation-based models.

Therefore, the typical approach has been to approximate the scaling matrix 1h  with the flow

pattern f  and re-write (3.33) as follows:

)(~)(~ )()()()()( kkkkk C fff (3.35)

The problem then reverts to a simple shortest path problem to determine the least-cost path

tree )(~ )(kf  and hence the decent direction )](~)(~[ )()( kk ffC . A simple line search

problem is then solved to determine the optimal step-size )(k . A simpler approach would

be to use a predetermined step-size scheme such as MSA instead of the line search problem.

Another variation of the above approach that also ignores derivative information is to lump

the scaling term 1h  with the step-size  into a swap rate ˆ  that effectively converts units

of time into flow. Such a technique is generally referred to as route-swapping which shift

vehicles from expensive routes to cheapest routes [Smith and Winsten (1995), Cybis (1995),

Huang and Lam (2002), and Szeto and Lo (2005)]:

)(~)(~ˆ )()()()( kkkk C ff (3.36)

Still, the determination of the swap rate )(ˆ k  is problematic. A small swap rate and

convergence will take forever to reach, and a large swap rate and oscillations will occur

[Szeto and Lo (2005)]. The general approach has been to parametrically solve for the optimal

swap rate, however, often than not, the resulting optimal swap rate is rather network specific

(non-transferable to other networks), flow-specific, and is very time consuming to find.

To circumvent such a time-consuming process, Lu (2007) sets the swap rate to the inverse of

the path cost )(~ 1 fC  as follows:
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)(~)(~)(~ )()()(1)()( kkkkk ffCfCf (3.37)

Such an approach is designed to take care of the inherent deficiency in traditional route-swap

methods, where the fraction of traffic to be swapped is determined solely on the absolute

path-cost differences, i.e. )(~)(~ ffC , regardless of the distance to optimality. Therefore

shifting flow in proportion to the relative difference in path costs, i.e. )(~/)(~)(~ fCffC ,

provides a better measure for the distance to optimality since paths further away from

optimally (higher relative cost difference) will have to shift more flow than paths closer to

optimality despite having the same absolute difference in costs. Yet, this method has some

drawbacks and is dependent on the starting solution. For example, consider the following

two-path static network:

r s

Path 2, 60 mph, 1 Mi le, 1 Lane
Initial Flow = 80

Path 1, 60 mph, 1 Mi le, 1 Lane
Inti tal flow = 170 vehicles

Figure 3.2 Two-path network example

Assume that each path is 1 mile long and that the free-flow speed is 60 mph (or 1 mile/min).

Assume that paths speed is given by the commonly accepted Greenshields model [see (2.4)]

with shape parameter 1a  and jam density 250jam
a  veh/lane-mile. The path travel

times are therefore given by the following relation:

250
1

1
aa

aa f
LC

(3.38)

where aL  is the length of link a . We are interested in moving 250 vehicles from r  to s

under a static UE assignment principle. The solution quality will be assessed by the UE gap
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function for static conditions as follows:

srpsr
r s p

psr CfG ,,,,,UE )( f (3.39)

Starting with initial path flows of 170 vehicles and 80 vehicles for paths 1 and 2,

respectively, the path times for the first iteration are min125.3)1(
1C  and min471.1)1(

2C

with a corresponding min18.281)( )1(
UE fG . According to (3.37) and replacing path

marginals )(~ fC  with path travel times )( fC ,  path  1  will  have to  shift  901 vehicles of its

flow to path 2. The assignments for the next iteration become veh80)2(
1f

2 and

veh170)2(
1f

3, i.e. the assignments are reversed from initial conditions. This will create an

infinite cycle of updates without converging to a stationary point.

3.5.3 Optimal Route Swap Calculations

3.5.3.1 Pair-wise Route Swapping Example

So exactly how much flow should )1(  we  shift  from  path  1  to  path  2  to  achieve  user

equilibrium? Let )1(  be the optimal number if vehicles to shift from path 1 to path 2.

Therefore, at equilibrium, we must have:

f
C

C
f

C
C

)1(
2)1()1(

2

)1(
1)1()1(

1 (3.40)

or equivalently,

f
C

f
C

CC
)1(

2
)1(

1

)1(
2

)1(
1)1(

(3.41)

1 veh90251.471)/3.1(3.125170(1)

2 veh8090170
(1)(1)

1f
(2)
1f

3  veh1709080
(1)(1)

2f
(2)
2f
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The appropriate swap rate (or conversion factor) is therefore sum of route cost derivatives. In

other words, the conversion factors correspond to objective function second-order

derivatives, i.e. to the diagonal elements of the Hessian matrix. The desirable flow shift can

therefore be viewed as the product of the objective function’s inverse Hessian (approximated

by its diagonal terms) by its gradient. This provides an intuitive insight to the gradient

projection method as proposed by Bertsekas and Gafni (1983) and adapted by Jayakrishnan

et al. (1994) for the case of pair-wise route swap.

Equation (3.41) requires the computation of the path derivatives. In this regard, the path

derivatives will be computed as follows:

2

250
1

250
1 a

a
a f

f
C (3.42)

Going back to the two-path problem and using (3.41) results in path-cost derivatives

fC /)1(
1 03906.0  and 00865.0/)1(

2 fC . This yields an optimal swap rate

veh35)1( . The assignments for the next iteration become veh135)2(
1f

4 and

 veh110)2(
2f

5. The with corresponding travel times are min17.2)2(
1C  and

min85.1)2(
2C . The gap at this assignment level is min48.43)( )2(

UE fG . The path-cost

derivatives for the second iteration are fC /)2(
1 0189.0 , 0137.0/)2(

2 fC  and

consequently veh10)2( . The assignments for the third iteration become

veh125)3(
2

)3(
1 ff , with corresponding travel times of )3(

1C )3(
2C min2  and

min0)( )3(
UE fG .

The same approach can be extended to SO case by replacing the path costs C  with the path

travel time marginals C~ . The SO optimality conditions will hold if and only if the path

marginal travel times are equal. Evaluating these conditions under the initial assignments, we

4 veh13535170
(1)(1)

1f
(2)
1f

5 veh1103580
)1()1(

2
)2(

2 ff
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get min76.9~ )1(
1C 6 and min163.2~ )1(

2C 7, resulting in min51.1292)( )1(
SO fG . Such an

assignment pattern also suggests shifting vehicles from path 1 to 2. At optimality, we must

have both path marginal travel times to be equal, i.e.

f
C

C
f

C
C

)1(
2)1()1(

2

)1(
1)1()1(

1

~
~

~
~ (3.43)

or equivalently,
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f
C
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)1(

2
)1(

1

)1(
2

)1(
1)1(

~~

~~

(3.44)

where

2

2
2

~

a

aa
a
a

a
a
aaa

a
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f
Cx

f
C

f
f
CfC

f
C (3.45)

and

32

2

2

250
1

250
12 a

a

a f
f
C

(3.46)

Using (3.44), we get veh30)1(  which leads to next iteration path assignments of

vehf 140)2(
1 , vehf 110)2(

2 . The corresponding travel times of at this assignment level

are min27.2)2(
1C , min79.1)2(

2C  with an SO gap min71.276)( )2(
SO fG . The shift

size for the next iteration is veh15)2( , hence the assignments for the third iteration are

vehff 125)3(
2

)3(
1 , with corresponding travel times of min2)3(

2
)3(

1 CC  and an SO

gap min0)( )3(
SO fG .

6 min76.903906.0170125.3]/
)1(

1[
)1(

1
)1(

1
)1(

1
~ fCfCC

7 min163.200865.080471.1]/
)1(

2[
)1(

2
)1(

2
)1(

2
~ fCfCC



63

3.5.3.2 General Case

In real cases, there will be more than two paths between a given sr  pair. Assume that the

shift vector , is algebraic. Assume that if p  is negative, then path p  will shift p  of its

flow to other cheaper paths, and if p  is positive, then an extra flow of p  will be shifted

to path p  from more expensive paths. We will now derive the SO route swap conditions for

a three-path network and later for the general case. For simplicity, the iteration number is

dropped from the subsequent derivation. Assume now there are three paths between A and B.

Define fCC /~~ , then, the SO conditions for the three-path problem become:

333222111
~~~~~~ CCCCCC (3.47)

and

0321 (3.48)

Expressing 1  and 2  in terms of 3 , we have

3
1
3

1
131 ~

~
~

~~

C
C

C
CC (3.49)

and

3
2
3

2
232 ~

~
~

~~

C
C

C
CC (3.50)

Substituting 1  and 2  values in (3.49) and (3.50) back to (3.48), we get

2
3

1
3

2
32

1
31

3
~
~

~
~

1

~
~~

~
~~

C
C

C
C

C
CC

C
CC

(3.51)

Once 3  is determined, 1  and 2  are easily calculated from (3.49) and (3.50), respectively.

In general, there will be many more paths for a given ),,( sr  combination. Let srsr PP ,,

be the set of active (non-zero flow) paths for a given ),,( sr  combination and denote by
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srP ,  the number of paths in srP , . Extending the derivation to the general case of srP ,

paths, the optimal shifts under an SO assignment will be:

sr
Psrpsr
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psr
Psr

psr Pp
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(3.52)

where

p psr
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p psr
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(3.53)

The flow-shift matrix  must be adjusted for feasibility before being used to update the

assignments for the next iteration. A path p  cannot possibly shift more flow than what it has

and similarly, a path p  cannot accept more flow than what is physically available (mass-

balance). Bearing these 2 conditions in mind, the adjusted shifts may be computed as follows:

,,,,max~
,,,,

0
,,

,,

psrf psrpsrpsr
psr

(3.54)

To preserve mass-balance, the sum of the negative flow-shifts must be equal to the sum of

the positive flow shifts, i.e. the positive flow-shifts must be adjusted as such:

,,,

ˆ

~
,,

0,
,,

0,
,,

,,

,,

,, psrpsr

p
psr

p
psr

psr

psr

psr (3.55)
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Therefore, the assignments for the next iteration become:

,,,~ )(
,,

)(
,,

)1(
,, psrff

k
psr

k
psr

k
psr (3.56)

where psr ,,
~ , is algebraic.

3.5.4 Solution Algorithm

The path-based formulation of the SO-DTA problem necessitates the enumeration of all the

paths in the network, which is impractical even for reasonably small networks. Therefore,

this study adopts a column-generation approach to minimize storage requirements. At the

heart of such a method, is the notion of active path set srP , , which denotes the set of non-

zero flow paths. At every iteration k , the column generation approach identifies an efficient

solution (i.e. least marginal travel time path) srPp ,ˆ  for each ),,( sr  combination and adds

it to srP ,  if srPp ,ˆ . The set srP ,  forms a restricted network for which an analytical SO-

DTA problem may be solved (paths marginal travel times are known and fixed from previous

iteration) in much the same way as the simplicial decomposition technique of Larsson and

Patriksson (1992). However, in this study, the restricted problem will not be solved to

optimality since simulation experiments and earlier studies [Mahmassani and Mouskos

(1988), Lu (2007)] have concluded that such a requirement is not necessary for overall

solution quality. Therefore, one (inner) iteration of the proposed optimal route swap (ORS)

method will be performed for each simulation (outer) iteration and as such, the notion of a

restricted network there will be no further mention of a restricted network or a restricted

MNP throughout this thesis.

The solution algorithm represents a heuristic iterative procedure where the objective function

is evaluated and constraints are satisfied through a simulation model. The simulation model is

used to move vehicles along their assigned departure times and paths until they reach their

destinations, capturing the state of the system in the process. Traffic flow dynamics in the
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simulator are represented using a mesoscopic approach where vehicles are microscopically

tracked but moved in packets according to a macroscopic traffic flow model. At each

iteration, the heuristic defines a search direction (vector) along which the objective function

is expected to improve. The descent direction is taken to be the projection of gradient vector

onto the feasible space (positive orthant) with a step size vector given by the ORS procedure.

The steps of the simulation-based SO-DTA algorithm are explained in detail below:

Step 1: Initialization

Set iteration counter 1k .

Solve for the time-dependent least-marginal time path tree for all ),,( sr

combinations assuming free-flow link travel times (i.e. time-dependent link marginal

travel time are equal to the time-dependent link travel times).

Perform an all-or-nothing assignment (AON) of the O-D demand ( srd , ) onto the

least-cost marginal travel time tree to obtain path assignments
)(

,,
k

psrf  for  all

),,( sr  combinations.

Step 2: Dynamic Network Loading Problem

Use DYNASMART to simulate path assignments
)(

,,
k

psrf .

Estimate time-dependent link travel times )( )(kc f  and time-dependent link marginal

travel times )(~ )(kc f  from simulation results.

Step 3: Update Objective Function

Compute relative gap )(~ )(
SO

kG f  according to (3.27).

Compute average system trip time, which is a proxy for SO-DTA objective (3.26):

r s p
psr

r s p
psrpsr ffCATT ,,,,,, / .

Step 4: Check Convergence

Count the number of times the condition
)(

,,
)1(

,,
k

psr
k

psr ff  is satisfied for

all ),,,( psr  combinations and denote that number by )(V .
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If )()( VV  or kk  stop, otherwise set 1kk  and go to step 5.

Step 5: Time-Dependent Marginal Time Shortest Path Problem

Solve for the time-dependent least-marginal time path )(ˆ kp  and add it to the active

path,
)(

,
k

srP  for all ),,( sr  combinations using link travel times )( )(kc f  and link

marginal travel times )(~ )(kc f  from simulator.

Step 6: Update of Path Assignments

Find the adjusted (feasible) optimal shifts
)(

,,
~ k

psr  using (3.54) and (3.55).

Update the assignments
)1(

,,
k

psrf  for the next iteration using for each ),,,( psr

using (3.56) and go to step 2

3.5.5 Column Generation and Vehicle-based Solution Implementation

The solution algorithm for the SO-DTA problem presented in the previous section is flow-

based and requires the storage of paths and corresponding assignments for each ),,,( psr

combination. While this implementation is straightforward and directly applicable in any

(analytical or simulation-based) DTA algorithms, and is not restricted by the choice of traffic

simulation model used for flow propagation (macroscopic, microscopic, or mesoscopic), the

associated memory requirements can be huge since they grow dramatically with the size of

the network. Memory also grows with additional iterations when new paths are added.

Therefore, despite being the “correct” way to represent the solution algorithm, the memory

requirements of the flow-based implementation could seriously hinder its deployment in

large-scale road networks.

To alleviate the memory requirements of the flow-based technique and pursue successful

deployments of large-scale simulation-based DTA models, a vehicle-based implementation

technique for the solution algorithm is utilized. Such an implementation takes advantage of

the mesoscopic properties of the simulation model (ability to track vehicles individually) to

extract the active paths set (with positive flow) and assignments from the vehicle trajectories
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without the need to explicitly store them. This is particularly advantageous for large-scale

DTA applications, as the total number of feasible paths could significantly out-grow the total

number of vehicles. Furthermore, the memory requirements for storing paths are invariant

from iteration to iteration because the number of vehicles in the network is fixed a priori.

Let J  be the set that includes the vehicles that will be switching their paths to cheaper ones.

The column generation and vehicle-based implementation for the solution algorithm is

presented below. Note that adding the least marginal travel time path p̂  to the active path set
)(

,
k

srP  should not alter the definition of is
)(

,
k

srP  since p̂  will definitely be having some

flow shifted to it, i.e. it will be active in the subsequent iteration.

DO for every ),,( sr  combination

Set 0J

Scan all vehicles
)(

,
k

srdj  and extract active path set
)(

,
k

srP

Find least marginal path
)(

,ˆ
k

srPp  and add it to the active path, p
k

srP
k

srP ˆ
)(

,
)(

,

Compute the adjusted algebraic flow shift vector
)(

,,
)(

,,
~ k

srPp
k

psr

DO for each path
)(

,
k

srPp

IF 0
)(

,,
~ k

psr THEN

Randomly select |
)(

,,
~|

k
psr  vehicles from path p  and add them to set J

ENDIF
ENDDO

DO for each path
)(

,
k

srPp

IF 0
)(

,,
~ k

psr THEN

Randomly select
)(

,,
~ k

psr  vehicles from J  and assign them to p

Remove selected vehicles from J
ENDIF

ENDDO
ENDDO

Figure 3.3 Vehicle-based implementation of the ORS solution heuristic
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3.5.6 Determination of the Time-dependent Path Marginal Travel Times

The main component of the SO-DTA algorithm is the determination of the marginal travel

time for a path, which corresponds to the additional time incurred by the system due to an

additional vehicle on this path. Two types of marginal travel times may be defined global

marginals and local marginals [Peeta (2004)]. The computation of global path marginal travel

time is theoretically simple but computationally exhaustive, one can always assign an extra

vehicle on a certain path at a given departure time and keep the rest of the network

assignment the same and measure the change in system cost via simulation. However, when

the link interactions are insignificant, the global marginal and the local marginal values are

expected to be relatively close and the latter can be substituted for the former [Peeta and

Mahmassani (1995a)]. Similar simplifications are assumed in other studies as well.

With the assumption above, the computation of local path marginal travel times includes the

determination of the increase in the path travel times that can be approximated by the

summation of the link marginal travel times on each path, as follows:

tpsrattcC
t a

a
psrapsr ,,,,,)().(~~ ,

,,,, (3.57)

The common approach in computing link marginal travel time is to plot the link travel times

versus the number of vehicles for different periods of time and compute xxc /)(

numerically according to the method by Peeta and Mahmassani (1995a), who suggested a 3-

point quadratic fit using simulation results for three consecutive time steps, with the

xxc /)(  evaluated at the middle interval. However, computing the travel time marginals

numerically from plots have been prone to instability and discontinuity of the in the curves

due to sudden jumps between short time periods. Peeta (1994) has discussed these

shortcomings and addressed them by using averaging techniques. Tuydes (2005) extends the

3-point quadratic fit into an (n+1) quadratic fit, though no numerical comparison has been

provided to substantiate the claims of better performance.
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This study implements an analytical approach to estimating the marginals to overcome the

discontinuity in the travel time plots. It utilizes the differentiability of the modified

Greenshields traffic flow model embedded in DYNASMART. Greenshields relates the link

speed to density as follows:

cutoff
jam

minmaxmin

cutofffree

)()(1

)(

)(
aa

a

aaaa

aaa

a
tt

t

t (3.58)

The link density )(ta  can be expressed as:

aa
aa lL

txt )()( (3.59)

where al  is the number of lanes of link a . The link travel time )(tca  can then be computed

as follows:

)(
)(

t
Ltc
a

aa (3.60)

The link marginal travel time, by definition, is the additional cost incurred by the system due

to an additional vehicle at time t , i.e.

)(
)()()(~

tx
tctctc

a
aaa (3.61)

The term )(/)( txtc aa  can be computed as:

)(
)(

)(
)(

tx
t

L

tx
tc

a
a

a

a
a (3.62)

Differentiating (3.62) we get:
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(3.63)

Note that )(/)( txtc aa  is non-zero if and only if cutoff)( aa t . Simulation results have

shown that using link marginals according to (3.63) yields a lower system travel time and

consequently lower SO gaps than the method by Peeta and Mahmassani (1995a).

Furthermore, the second link cost derivative is easily calculated as:
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(3.64)

3.6 EXPERIMENTAL DESIGN AND MODEL RESULTS

Three sets of numerical experiments are conducted to test the optimal route-swap (ORS)

algorithm. The first set of experiments aims to validate the use of analytical marginals as

computed by equation (3.63) instead of numerical marginals as computed by Peeta (1994) in

SO DTA solution heuristics. To this end the both the MSA and ORS algorithms are applied

to a very small network typical of what is normally found in research papers. The second set

of experiments is conducted on a relatively small network in terms of the overhead associated

in solving for the time-dependent least marginal travel time paths, yet reasonably sized to

draw conclusions regarding the performance of the ORS algorithm in comparison to the

MSA. The final set is conducted on a regional network and is intended to showcase the ORS

performance on a large real-life urban road network.

The ORS and MSA algorithms are implemented using the vehicle-based approach, which

uses the vehicle path set as a proxy for keeping track of the path assignments. The algorithms

are coded and compiled by using the Compaq Visual FORTRAN 6.6 and evaluated on a

Windows XP machine with an Intel Pentium IV 2.8 GHz CPU and 4GB RAM.
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In all experiments conducted, the following parameter settings are applied. The simulation

time step is 6 sec, the resolution (aggregation interval) of the time-dependent least marginal

travel time path tree calculation is 1 minute, which is the same as O-D demand assignment

interval . The origins and destinations are regular nodes and are uniformly distributed over

the whole network. Freeways are shown in blue whereas remaining arterials and surface

roads are shown in white. The free mean speed on freeway links is 70 mph, on major arterials

is 50 mph, and on ramps and local streets is 40 mph. The jam density is 220 veh/lane-mile for

freeways and 120 veh/lane-mile for other road types. The corresponding minimum speeds for

all link types are to set to 3 mph. All intersections are either signalized or sign controlled

(stop or yield), except on freeways. The service flow rate is set at 2200 veh/hour-lane for

freeways and 1800 veh/hour-lane for non-freeway links.

In each experiment, a 2-hour time-varying O-D demand table is loaded (Figure 3.4) with the

(simulation) planning horizon set long enough to allow vehicles to clear the network. The

initial solutions of the experiments are obtained by performing an AON assignment of the

demand onto the least marginal travel time path tree computed using free-flow travel times.
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Figure 3.4 Demand temporal profile for all O-D pairs
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Given a set of path flows f , DYNASMART is used to push the flow through the network

and determine experienced link travel times )( fc  and volumes )( fx . The first and second

link travel time derivatives with respect to flow are then calculated according to equations

(3.63) and (3.64), respectively. Two measures of effectiveness are calculated namely, percent

relative experienced gap SOG~  and average vehicle experienced trip time ATT . The

algorithm terminates if any of the following three stopping criteria are satisfied: 1) number of

violations is less than 50; 2) if iteration is 50; or 3) objective function does not change more

than 1% over three consecutive iterations.

3.6.1 The Method of Successive Averages

Before reporting experimental results, we first briefly describe the MSA heuristic. For the

MSA to “theoretically” converge, the sequence of step sizes has to satisfy the following two

conditions [Robins and Monro (1951); Blum (1954)]:

1
)(

k
k (3.65)

1
2)(

k
k (3.66)

A convenient move size sequence satisfying the above two conditions is the reciprocal of the

iteration number; i.e. kk /1)( . With this move size, path assignments )(kf  for iteration

k  may be updated, using the convex combination method, to obtain the path assignments
)1(kf  for iteration )1(k  as follows:

)()()()()()1( 1111 kkkkkk
kkk

gffgff (3.67)

where )(kg  is the auxiliary path assignments obtained by an AON assignment on least-cost

paths for iteration k  and )( )()( kk fg  is the search direction for iteration k . Equation

(3.67) can be alternatively expressed as:
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where p̂  is the least-marginal travel time path between sr .

Equation (3.68) makes it clear that what the MSA essentially does is shifting vehicles from

inferior (expensive) paths to current optimal (auxiliary) paths for each ),,( sr  combination at

the constant rate of k/1 . This helps a lot in preventing the allocation of too much traffic to a

single path; however, such a constant swap rate, especially in a dynamic setting, penalizes all

inferior paths equally regardless of the degree of inferiority relative to the current optimal

solution. The MSA method presented above is flow-based. A vehicle-based implementation

of the MSA is made possible by recognizing that each vehicle on a non-optimal path p  will

switch  to  an  optimal  (auxiliary)  path p̂  with a probability kp /1)(P . The assignment

update step can then be expressed as follows:

DO for every ),,( sr  combination

Scan all vehicles ),,( srj  and extract active path set
)(

,
k

srP

Find least-cost marginal path
)(

,ˆ
k

srPp  and add it to the active path, p
k

srP
k

srP ˆ
)(

,
)(

,

DO for each path pp
k

srPp ˆ,
)(

,
Compute the switching probability kp /1)(P
DO for each vehicle ppj ˆ

Draw a random number )1,0(r
IF )( pPr THEN

Switch vehicle j  to path p̂
ENDIF

END DO
END DO

END DO

Figure 3.5 Vehicle-based implementation of the MSA solution heuristic
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3.6.2 Experiments on a Small-Size Network – Nine-node Network

This set of experiments is done to primarily test the effect of using analytical marginals

instead of numerical marginals. The experiments are conducted on the Nine-node (all

actuated) network shown in Figure 3.6. The links are two-way lanes with a length of 0.5

miles. We are interested in sending 9250 vehicles flow from node 1 to node 9 under an SO-

DTA assignment rule. Figure 3.7 presents the results of the vehicle-based MSA procedure for

both analytical and numerical marginals at convergence.

1

4

7

2

5

8

3

6

9

Figure 3.6 Nine-node network
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Figure 3.7 Average experienced trip time convergence pattern using MSA

The minimum average experienced trip time is 18.57 min for both marginal calculation

methods. The numerical method required 15 iterations to converge (as per the stopping
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criteria listed above) compared with 41 iterations for the analytical method. The convergence

pattern of the relative gap G~  (Figure 3.8) also gives the (false) impression that numerical

marginals leads to better solution quality. However, if we let both algorithms to run for 50

iterations (Figure 3.9), one can no longer make the same conclusion. Analytical marginals

clearly resulted in a stable solution whereas numerical marginals resulted in more

fluctuations. Similarly, analyzing the extended convergence pattern for the relative gap

(Figure 3.10) also shows that analytical marginals results in a stable solution while numerical

marginals caused the relative gap to fluctuate and never stabilize.
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Figure 3.8 Relative experienced gap convergence pattern using MSA
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Figure 3.9 Average experienced trip times extended convergence pattern using MSA

The previous results have demonstrated that MSA fluctuates considerably before stabilizing.

In fact, Figure 3.10 provides an example where the automatic step size selection used by the

MSA is uninformative enough to guarantee descent in objective function, even when applied

to a very small network. On the contrary, ORS almost guarantees descent at every iteration

due to the exploitation of local information and derivative information (Figure 3.11). ORS

method resulted in 18.6 min with a relative gap of 0.56%. Figure 3.12 actually validates the

way ORS heuristic works, which aims at equilibrating (in terms of travel time marginals)

flows at every iteration by calculating the optimal shifts for all active paths simultaneously. It

should be noted that, due to column generation techniques, the gap measure cannot be

considered solely as the measure of proximity to optimality since we did not enumerate all

the paths in the network. Therefore, the gap measure reported in these figures represents the

gap across all active paths only and not the theoretical gap across the network. Hence, when

making conclusions regarding optimality conditions in this thesis, it will be made after jointly

considering average travel times and relative gaps.
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Figure 3.10 Relative experienced gap extended convergence pattern using MSA
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Figure 3.11 Comparison of the experienced average trip time
extended convergence patterns for MSA and ORS
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Figure 3.12 Relative experienced gap extended convergence patterns for MSA and ORS

3.6.3 Experiments on a Medium-sized Network – Fort Worth

The second set of experiments is conducted on the Fort Worth network (Figure 3.13), which

is extracted from the Texas network and corresponds to one sector of Interstate Highway I-

35W between I-20 and I-30, with a surrounding network of signalized arterials and stop/yield

controlled local streets on both sides of the freeway. The network consists of 191 nodes, 573

links and 13 traffic analysis zones. The zonal layout and its corresponding O-D trip flows are

depicted in (Figure 3.14). The objective of these experiments is to compare the ORS heuristic

with the MSA heuristic under an SO-DTA assignment.

Analytical marginals are used in these experiments and for the remainder of this dissertation.

The comparison is made for three levels of two-hour time-varying demands: 1) 45k vehicles

(light congestion); 2) 75k vehicles (moderate congestion), and 3) 105k vehicles (high

congestion). Therefore, six simulation runs are generated. Both heuristics are executed for 50

iterations in order to examine whether the solution is following a proper descent direction

over these iterations. The solution quality is evaluated primarily according to the average
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experienced trip time, with the relative gap measure used as a secondary check due to the use

of column generation. Moreover, the relative gap can be misleading for low demand, since

small gaps are easily obtained in the first few iterations without exhausting all the possible

solutions (paths), and hence the algorithm might stop prematurely.

Figure 3.13 Fort Worth network Figure 3.14 O-D flows in Fort Worth network

Figure 3.15 and Figure 3.16 depict the results of performing 50 iterations of the MSA and

ORS heuristics on the Fort Worth network. Both heuristics showed nice convergence

properties and achieved very similar results. The minimum average trip time under MSA is

4.53 min and is achieved at iteration 50 with a corresponding relative gap of 5.4%, which
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suggests that descent is being achieved, on average. While such a conclusion contradicts the

observations made earlier (i.e. MSA fluctuations) for the Nine-node network, the descent is

mainly attributed to the light traffic conditions in the network as becomes apparent under

heavier demand conditions. The ORS procedure, on the other hand, converged faster to its

optimal solution of 4.56 min, achieved after 24 iterations, and a relative gap of 5.02%.

Figure 3.17 and Figure 3.18 depict similar results as above, for the two-hourly demand level

of 75k vehicles. In this experiment, MSA starts to show its brittle nature, as can be seen from

the fluctuations in both average trip times and relative gaps. For example, the minimum

average trip time under MSA is 5.14 min and is achieved after 43 iterations with a

corresponding relative gap of 9.86%. The average trip time is 5.43 min after 50 iterations, or

a 10% increase. Still the performance can be deemed satisfactory. On the other hand, ORS

heuristic retains its nice convergence pattern despite the 66% increase in demand level. The

minimum trip time is achieved after 23 iterations with a relative gap of 7.07% and the trip

time is still at 4.99 min after 50 iterations, despite a slight increase in the relative gap.

Figure 3.19 and Figure 3.20 depict the results for the two-hourly demand level of 105k

vehicles. It is at high congestion levels that MSA fails to perform adequately. For example,

the minimum average trip time under MSA is 6.99 min and is achieved after 27 iterations

with a corresponding relative gap of 14.18%. The average trip time increases by 34% to 9.39

min after 50 iterations, despite a reduction in relative gap to 8.62%. The ORS heuristic, in

contrast, retains its faster and smoother convergence pattern. The minimum trip time of 6.39

min is achieved after 38 iterations with a corresponding relative gap of 4.94%. After 50

iterations, the average trip time only increased by 0.5% to 6.43 min and the relative gap only

increased by 4% to 5.17%.
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Figure 3.15 Average experienced trip time extended convergence pattern for MSA and ORS – light demand
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Figure 3.16 Relative experienced gap extended convergence pattern for MSA and ORS – light demand
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Figure 3.17 Average experienced trip time extended convergence
pattern for MSA and ORS – medium demand

5
10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35 40 45 50

Iteration

R
el

at
iv

e 
Ex

pe
rie

nc
ed

 G
ap

 (%
).

MSA ORS

Figure 3.18 Relative experienced gap extended convergence pattern for MSA and ORS – medium demand
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Figure 3.19 Average experienced trip time extended convergence
pattern for MSA and ORS – heavy demand
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Figure 3.20 Relative experienced gap extended convergence pattern for MSA and ORS – heavy demand
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The results for all the experiments in this section are presented in Table 3.1. The ORS

heuristic easily outperformed MSA under the three levels of time-varying O-D demand.

Unlike the MSA heuristic, the ORS heuristic showed consistent convergence properties at all

of demand levels considered. Nonetheless, MSA has been shown to perform satisfactorily

under light to moderate congestion levels, above which fluctuations take over.

Table 3.1 Summary of simulation results for Fort Worth network

Optimal Results Results at Iteration 50Demand
Level

(Vehicles)

Solution
Heuristic Average Trip

Time (min)
Relative Gap

(%)
Average Trip
Time (min)

Relative Gap
(%)

MSA 4.53 @ iteration 50 5.40 4.53 5.4045,000
ORS 4.56 @ iteration 24 5.02 4.56 5.05
MSA 5.14 @ iteration 43 9.86 5.43 10.0475,000
ORS 4.99 @ iteration 23 7.07 4.99 7.27
MSA 6.99 @ iteration 27 14.18 9.39 8.62105,000
ORS 6.39 @ iteration 38 4.94 6.42 5.07

3.6.4 Experiments on a Large-sized Network – Knoxville

While the performance of the ORS procedure is quite impressive for the Nine-node and Fort

Worth networks, it is important to test it on an actual large-scale network. The Knoxville, TN

network is considered for this third set of experiments. The network consists of 1347 nodes,

3004 links and 356 traffic analysis zones (Figure 3.21). About 200k vehicles are loaded in

two hours in this experiment. A schematic of the O-D flows is shown in Figure 3.22.
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Figure 3.21 Knoxville, TN network Figure 3.22 O-D flows in Knoxville network

The results showed in Figure 3.23 and Figure 3.24, confirmed that even on larger more

congested networks, the ORS heuristic exhibits similar convergence characteristics as in the

earlier experiments. The average network experienced trip time improved with almost every

iteration of the heuristic, reducing the average experienced trip time from 22.49 min to 10.74

in 43 iterations (at convergence) with the average trip time remaining virtually unchanged

(10.8 min) after 50 iterations (Figure 3.23). In contrast, MSA only managed to reduce the trip

time to 12.22 min (after 42 iterations), which got worse to 14.19 min after 50 iterations.

The relative gap also exhibited similar convergence properties, reaching 4.38% after 43

iterations (at convergence) and remaining virtually unchanged after 50 iterations (Figure

3.24). In contrast, MSA could only reduce relative gap to 7.4% after 42 iterations (at

convergence), which got worse to 9.2% after 50 iterations.
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Figure 3.23 Convergence pattern of ORS for the Knoxville, TN network.
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Figure 3.24 Convergence pattern of ORS for the Knoxville, TN network.
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4 OPTIMAL DEMAND-SCHEDULING PROBLEM

This chapter formulates the evacuation models that incorporate demand-scheduling

strategies, which aim at spreading the demand over a longer period to prevent network

breakdown and facilitate mobility to safety. There are two basic types of evacuation: no-

notice and advance-notice. For no-notice evacuations, the approach is to formulate the

problem as an MNCT-DTA problem. For advance-notice evacuations, the approach is to

formulate the problem as an LNCT-DTA problem, which is a special case of the Fixed

Arrival Time (FAT) SO-DTA model introduced by Li (1999). Both approaches involve

solving for the joint-optimal departure time, destination, and route choices for evacuees to

satisfy the objective at hand. Models that constrain (fix) the departure time and destination

choices reduce the evacuation problem to the classical SO-DTA problem, which has been

extensively addressed in the literature and briefly in chapter 3.

4.1 INTRODUCTION

In the context of evacuation models, we distinguish between two time measures associated

with a vehicle: 1) trip time and 2) evacuation time. The trip time is the time incurred by the

vehicle along its journey from origin to destination. The evacuation time, on the other hand,

is the total amount of time incurred by a vehicle from the instance an evacuation order is

given until it reaches its destination. It is combines wait time at the origin and the actual trip

time on the network. To illustrate the difference, assume that an evacuation order has been

issued at 10:00 AM. A vehicle that departs at 12:00 PM and reaches its (safety) destination at

6:00 PM incurs a travel time of 6 hours, whereas its evacuation time is 8 hours. The former

time measure is generally used in classical SO-DTA models, whereas the latter time measure

will be used in the MNCT-DTA model, as will become evident shortly.

The MNCT-DTA and LNCT-DTA problems formulated in this chapter will be transformed,

via an appropriate path cost function, to the same structural form of the SO-DTA problem
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described in chapter 3. The solution heuristic of the SO-DTA problem developed in chapter 3

will be adapted to solve the “transformed” SO-DTA problems of this chapter. In these two

models, evacuees (vehicles) are assumed to adhere to the evacuation guidance information at

all times and not switch on their own to different departure times, destinations, and paths.

Ideally, the goal of an evacuation model is to evacuate the network in the least amount of

time with evacuees incurring the least amount of actual travel time. These two objectives are

somewhat conflicting due to the nonlinear and non-unique solutions of path-based DTA

models8. The first objective, which is equivalent to the MNCT-DTA objective, tends to force

evacuees to depart earlier to reach safety faster, whereas the second objective, which is

equivalent to the SO-DTA objective, tends to force the evacuees to depart later to avoid

congestion and consequently minimize their trip times. This translates into a bi-objective

problem however, instead of solving for the efficient frontier (pareto-optimal), we are

interested in one specific point on the frontier. This point corresponds to minimizing the

second objective (minimize system trip time) given that the first objective (minimize network

clearance time) is optimal. That is, of all the (non-unique) DTA solutions that clear the

network at the minimum possible time, we are interested in the solution that incurs the least

amount of actual travel time. We refer to this bi-objective problem as the Optimal Demand-

Scheduling (ODS) DTA problem.

4.2 MINIMUM NETWORK CLEARANCE TIME PROBLEM

The main objective of an evacuation model is to minimize the network clearance time W , i.e.

the time required for the last evacuee to reach safety. However, minimizing the network

clearance time is not trivial. Let )(t  be the cost incurred by the system when a vehicle exits

the network in time step t . Assuming that )()()1( Tt  and tt)( , the

8 Jarvis and Ratliff (1982) prove that the flow pattern that minimizes the average evacuation time also
minimizes the network clearance time and the average network trip time. This is known as the triple
optimization theory and is based on the LP nature of network flows.
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minimum network clearance time can be found by minimizing the average evacuation time

for all evacuees in the system [Hamacher and Tjandra (2002)], i.e.

T

t
s

Ss
tItTW

1
)(Min)(Min)(Min (4.1)

For a path-based formulation, the objective function in (4.1) becomes:

Ss r p
psrpsr fCZ ,,,,)(Min f (4.2)

The objective function in (4.2) is a modified version of the classical SO-DTA objective and

represents the minimization of the total system evacuation time as opposed to the total system

time. The term )( ,, psrC  represents the number of departure (or assignment) periods ,

measured from the start of evacuation plus the path trip time psrC ,, , for a given vehicle.

Therefore (4.2) essentially measures the total system evacuation time and not the total system

trip time as in classical SO-DTA formulations.

Relative to the SO-DTA case, (4.2) has the extra term  added to the path cost. Defining a

new path cost term psr ,,  as follows:

,,,,,,, psrC psrpsr (4.3)

transforms (4.2) into an SO-DTA type objective:

r p
psrpsr fZ ,,,,)(Min f (4.4)

4.2.1 Problem Statement and Formulation

Consider an urban setting represented by the directed graph ),( ANG  with multiple origins

Rr  and a set of shelter destinations Ss  requires evacuation. Assume that the total
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demand to be evacuated at each origin, rd , is known a priori and that the network is empty

at start of evacuation. Therefore, the MNCT-DTA problem is to determine the time-

dependent path-flow pattern *f  to minimize the network clearance time. In contrast to the

classical SO-DTA problem, this model relaxes departure time and destination choice

constraints to minimize the network clearance time.

The destination choice in MNCT-DTA model is easily addressed by connecting all safety

destinations Ss  to a super sink s  via zero-cost infinite capacity links, effectively

transforming the problem to a single destination problem. The actual destination choices for

travelers can be inferred from psrf ,,  variables by tracing the node sequence along path p

from r  to s  and labeling the penultimate (second to last) node as the actual destination s .

The problem is formulated as follows:

Given: sdr ,

Find: psrf ,,

To:
r p

psrpsr fZ ,,,,)(Min f (4.5)

Subject to: rdf r
p

psr ,, (4.5.a)

,,0,, prf psr (4.5.b)

DTA Constraints (4.5.c)

4.2.2 Optimality Conditions

The optimality conditions of program (4.5) are studied to investigate the underlying

assignment principle, which in turn will shape the solution algorithm. Let )ˆ,( fL  be the

Lagrangian of program (4.5), where ˆ  denote the vector of Lagrangian variables (or dual
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variables) associated with the constraint (4.5 .a). Remaining constraints will not be part of

)ˆ,( fL  since they are definitional constraints and are not an explicit function of the path-

flow assignments.

r p
psrrsr

r p
psrpsr fdf ,,,,,,, ˆ)ˆ,(Min fL (4.6)

Subject to: ,,0,, prf psr (4.6.a)

DTA Constraints (4.6.b)

The necessary conditions for a minimum of this program are given by the first-order

conditions for a stationary point of the Lagrangian program (4.6). The first order optimality

conditions for this system are:

,,0)ˆ,(

,,
pr

f psr

fL
(4.7.a)

,,0)ˆ,(

,,
,, pr

f
f

psr
psr

fL
(4.7.b)

r
sr

0
ˆ

)ˆ,(
,

fL
(4.7.c)

,,0,, prf psr (4.7.d)

DTA Constraints (4.7.e)

The term psrf ,,/)ˆ,( fL  may be derived further with respect to a random flow variable

psrf ,,  as follows:

sr

C

r p
psr

psr
psr

psr

psr

C
f

C
f

f
,

~

,,
,,

,,
,,

ˆ)ˆ,(

,,

L

(4.8)
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Define psr ,,~  as:

psrpsr C ,,,,
~~ (4.9)

The term psr ,,
~  may be interpreted as the marginal cost incurred by the MNCT-DTA

system due to an additional vehicle departing from r  to s  along path p  at departure time .

We will refer to the term psr ,,
~  as MNCT-DTA marginal cost from this point onwards.

Therefore, the optimality conditions for the Lagrangian program (4.6) are:

,,0ˆ~ ,,,,, prf srpsrpsr (4.10.a)

,,0ˆ~ ,,, prsrpsr (4.10.b)

rdf r
p

psr ,, (4.10.c)

,,0,, prf psr (4.10.d)

DTA Constraints (4.10.e)

4.2.3 Reformulation via a Gap Function

Smith (1979) showed that solving a program like (4.5) is equivalent to finding a flow pattern

f  that satisfies optimality conditions (4.10):

Given: sdr ,

Find: psrf ,,

Such that: ,,0ˆ~ ,,,,, prf
r p

srpsrpsr (4.11.a)

rdf r
p

psr ,, (4.11.b)
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,,0,, prf psr (4.11.c)

DTA Constraints (4.11.d)

As in chapter 3, the VI problem in (4.11) will be reformulated, via a gap function, as an

equivalent NMP whose global minima coincide with those of program (4.5). In this regards,

define a gap function for the MNCT-DTA problem as follows:

r p
srpsrpsrfG ,,,,, ˆ~

MNCT (4.12)

MNCTG  provides a measure of the violation of the MNCT-DTA optimality conditions in

terms of the difference between the actual path marginal travel times and the least-cost path

marginal travel time evaluated at any given time-varying path flow pattern f . It is evident

that the difference vanishes when the time-varying path flow vector f  satisfies optimality

conditions (4.10). Thus, solving the MNCT-DTA problem can be also viewed as a process of

finding the path flow vector *f  such that 0)(MNCT f*G . Therefore, an equivalent NMP

problem is

Given: sdr ,

Find: psrf ,,

To:
r p

srpsrpsrfG ,,,,, ˆ~)(Min MNCT f (4.13)

Subject to: ,,0ˆ~ ,,, prsrpsr (4.13.a)

rdf r
p

psr ,, (4.13.b)

,,0,, prf psr (4.13.c)

DTA Constraints (4.13.d)
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Associated with MNCTG  is the relative gap for this model MNCT
~G :

r
sr

p
psrf

GG

,,, ˆ

~ MNCT
MNCT

(4.14)

4.2.4 MNCT-DTA Solution Algorithm

The transformed MNCT-DTA problem is analogous in structure to the SO-DTA problem,

which means that the efficient ORS algorithm developed for the SO-DTA problem in chapter

3 can be adapted to solve the MNCT-DTA problem. The algorithm still needs to address the

departure time choice before being suitable for solving the MNCT-DTA problem.

The departure time choice is reflected in constraint (4.13.b). Hence, the ORS procedure must

be able to find the optimal shifts across paths and departure times jointly. In other words,

ORS needs to consider all feasible path-departure time combinations when computing the

optimal shifts. Define the active path-departure time set srP ,  as:

,,0,|, ,,,, pfPppP psrsrsr

Let srP ,  represent the total number of path-departure time combinations within srP , .

Assume that the paths-departure time ),( p  combinations within srP ,  are sequentially

numbered from 1 to srP , . Let )(H  be a function that maps a given active path-departure-

time combination ),( p  in srP ,  to a unique index i  such that:

),(),(),,();,(),(,1,),(|),( 22112211,, ppppHpHPiPpipH srsr

Therefore, the optimal shifts under an MNCT-DTA assignment will be:
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srsrpsr
psr

psr

psr

psrpsr
psr PpHPpH ,,,,

,,

,,

,,

,,,,
,, ),(,),(~

~

~

~~
(4.15)

where

srsr

p psr

psr

p psr

psrpsr

psr PpHPpH ,,

,,

,,

,,

,,,,

,, ),(,),(

~

~
1

~

~~

(4.16)

and

,,

~
~

~ ,,
,,

,,

,,

,,
,, prC

f

C

f
psr

psr

psr

psr

psr
psr (4.17)

The flow-shift matrix  must be adjusted for feasibility. The negative flow-shifts will be

adjusted first:

0;,,,max~
,,,,,,,, psrpsrpsrpsr prf (4.18)

then the positive flow-shits will be adjusted as follows:

0;0ˆ;,,

~

~
,,,,,,

,,

,,

,, psrpsrpsr

p
psr

p
psr

psr pr (4.19)

therefore, the assignments for the next iteration become:

,,~ )(
,,

)(
,,

)1(
,, prff

k
psr

k
psr

k
psr (4.20)

where psr ,,
~ , is algebraic.
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The solution procedure assumes that the traffic control center has perfect information about

the evacuation demand at each zone. Once an extreme event is detected requiring the

evacuation of the whole network, evacuees are provided with evacuation trip guidance

information in the form of when to evacuate (departure time), where to go (destination

choice) and which route to take (path choice) in such a way to minimize the network

clearance time. The solution algorithm is adapted from the SO-DTA solution algorithm.

The solution algorithm represents a heuristic iterative procedure where the objective function

is evaluated and constraints are satisfied through a simulation model. The simulation model is

used to move vehicles along their assigned departure times and paths until they reach their

destinations, capturing the state of the system in the process. Traffic flow in the simulator is

represented using a mesoscopic approach where vehicles are tracked individually but moved

in packets according to macroscopic traffic flow relations between average speed and

concentration on roadway links. At each iteration, the heuristic defines a search (descent)

direction along which the objective function is expected to improve. Step sizes along search

direction are determined using second order methods. The steps of the simulation-based

MNCT-DTA algorithm are explained in detail below. A vehicle-based implementation is

provided in Figure 4.1.

Step 1: Initialization

Set iteration counter k = 1.

Connect all safety destinations s  to a super sink s  with zero-time infinite capacity

links.

Solve for the time-dependent least MNCT-DTA marginal cost path tree
)(k

sr,P  for

all ),,( sr  combinations assuming free-flow link travel times.

For each origin r , search across all shortest paths trees ,
)(k

sr,P  and select  the

departure time and path combination *)*,( p  that results in lowest possible MNCT-

DTA marginal cost. Let )(
,

k
srp  be that path, i.e.:
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)(
,,

,

)(*
*,,

)(, ~min~|**,
k

psr
p

k
psr

ksr pp

Perform an AON of the demand rd  onto )(, ksrp  for every r  to obtain path

assignments )(
,,

k
psrf .

Step 2: Dynamic Network Loading Problem

Use DYNASMART to simulate path assignments )(
,,

k
psrf .

Estimate time-dependent link travel times )( )(kc f  and time-dependent link marginal

travel times )(~ )(kc f  from simulation results.

Step 3: Update Objective Function

Compute )(
MNCT

~ kG  according to (4.14).

Compute average evacuation time (proxy for MNCT-DTA objective) as

r p

k
psr

r p

k
psr

k
psr

k

f

f

AET )(
,,

)(
,,

)(
,,

)( (4.21)

Step 4: Check Convergence

Count the number of times the condition
)(

,,
)1(

,,
k

psr
k

psr ff  is satisfied for

all ),,( pr  combinations and denote that number by )(V .

If )()( VV  or kk  then terminate the procedure, otherwise set 1kk  and go

to step 5.

Step 5: Time-Dependent Least MNCT-DTA Marginal Cost Path Problem

Solve for the time-dependent least MNCT-DTA marginal cost path tree
)(k

sr,P  for

all ),,( sr  combinations using link travel times )( )(kc f  and link marginal travel

times )(~ )(kc f .

Extract )(, ksrp  from
)(k

sr,P  and add it to the active-path set )(, ksrP , for every r .
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Step 6: Update of Path Assignments

Find the optimal un-adjusted shifts
)(

,,
k

psr  for all paths in active set )(, ksrP

according to equations (4.15) and (4.16).

Find the optimal adjusted shifts
)(

,,
~ k

psr  for all paths in )(, ksrP  according  to

equations (4.18) and (4.19).

Update the assignments
)1(

,,
k

psrf  for the next iteration )1(k  using for each

),,( pr  using (4.20) and go to step 2.

The solution algorithm described above generates only one new solution (path-departure time

combination) )(, ksrp , per origin node in the network. While this is the exact theoretical

extension of the ORS solution algorithm described in chapter 3 to the MNCT-DTA problem,

simulation experiments have shown this algorithm to be rather slow to converge due to the

limited number of new solutions (path-departure time combinations) added to the active path-

departure time set )(, ksrP  at every iteration. A possible improvement is to add a new

(efficient) path for all departure time combinations, resulting in up to r  new solutions at

each iteration. Therefore, step 5  will read as follows:

Step 5´: Time-Dependent Least MNCT-DTA Marginal Cost Path Problem

Solve for the time-dependent least MNCT-DTA marginal cost path tree
)(k

sr,P  for

all ),,( sr  combinations using link travel times )( )(kc f  and link marginal travel

times )(~ )(kc f .

Add
)(

,
k

srp  for all departure times  to the active-path set )(, ksrP  for each r .
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Set 1k
DO for every r

Set 0J

Scan all vehicles rdj  and extract active path set )(
,

k
srP

DO for every

Find least-cost MNCT-marginal path
)(

,
k

srp  and add it to the active path, )(
,

k
srP

Compute the adjusted algebraic flow shift vector )(
,,

)(
,,

~ k
srPp

k
psr

DO for each path
)(

,
k

srPp

IF 0
)(

,,
~ k

psr THEN

Randomly select |
)(

,,
~|

k
psr  vehicles from path p  and add them to set J

ENDIF
ENDDO

DO for each path
)(

,
k

srPp

IF 0
)(

,,
~ k

psr THEN

Randomly select
)(

,,
~ k

psr  vehicles from J  and assign them to p

Remove selected vehicles from J
ENDIF

ENDDO
ENDDO

ENDDO

Figure 4.1 Vehicle-based implementation of the MNCT-DTA solution heuristic

4.3 LATEST NETWORK EVACUATION TIME PROBLEM

The LNCT problem is best suited to the case where a network needs to be evacuated within a

predetermined time. For example, it could be the case where evacuees have strict time

windows to reach decontamination centers, due to an anthrax attack or a nuclear meltdown.

Such a requirement imposes implicit constraints on the set of feasible departure time choices

for evacuees. However, no explicit constraints regarding departure times will be specified in

this formulation. The only requirement in this case would be that evacuees exit times are less
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than or equal to the target network exit time.

4.3.1 Problem Statement and Formulation

Consider an urban setting represented by the directed graph ),( ANG  with multiple origins

Rr , requires evacuation due to an extreme event. Assume that a set of shelter destinations

Ss  for that type of event has been identified. Furthermore, assume the total demand to be

evacuated at each origin rd  is known and must be evacuated before a target time W .

Additionally, assume that the network is empty at the time of evacuation.

The LNCT-DTA problem is then to determine the time-dependent path-flow pattern f  to

minimize the total system trip time, while exiting the network by time W . The destination

choice is easily incorporated by connecting all the destinations s  to a super-sink s  via zero-

cost infinite capacity links. This transforms the problem from a multi-destination to a single-

destination DTA problem. The constraints for this model are similar to that of the SO-DTA

model, with one additional constraint regarding network exit times. The problem is

formulated as follows:

Given: Wsdr ,,

Find: psrf ,,

To:
r p

psrpsr fCZ ,,,,)(Min f (4.22)

Subject to: rdf r
p

psr ,, (4.22.a)

,,,, prWC psr (4.22.b)

,,0,, prf psr (4.22.c)

DTA Constraints (4.22.d)
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The resulting flow-assignments then form a basis to compute the staging policy for each

evacuation zone:

p
psr

p
psr

sr
f

f

,,

,,

, (4.23)

where sr,  is the staging policy or the fraction of demand leaving origin r  to destination s

at departure time .

4.3.2 Transformation of the LNCT-DTA Problem to an Equivalent SO-DTA
Model

Relative to the SO-DTA case, the LNCT-DTA problem has the additional constraint (4.22 .b).

To be able to use the ORS algorithm, we need to remove this constraint from the constraints

set. Let sr,  be the set of restricted path-departure times combinations for pair sr :

,,,;|),( ,,, psrWCp psrsr

Vehicles belonging to sr,  must shift to unrestricted path-departure time combinations in

order to exit the network before W . Define a new path cost psr ,,  as follows:

0;,,,;),(

,,,;),(

,,,

,,,
,,

MpsrpMC

psrpC

srpsr

srpsr
psr (4.24)

Where M  is a large positive number. We will refer to psr ,,  as the LNCT-DTA (path) cost.

Using psr ,, , the objective of the LNCT-DTA problem (4.22) is easily transformed into a

structure analogous to an SO-DTA problem as follows:
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Given: Wsdr ,,

Find: psrf ,,

To:
r p

psrpsr fZ ,,,,)(Min f (4.25)

Subject to: rdf r
p

psr ,, (4.25.a)

,,0,, prf psr (4.25.b)

DTA Constraints (4.25.c)

4.3.3 Optimality Conditions

The optimality conditions of program (4.25) are studied to investigate the underlying

assignment principle, which in turn will shape the solution algorithm. Let ),( fL  be the

Lagrangian of program (4.25), where  denote the vector of Lagrangian variables (or dual

variables) associated with the constraint (4.25 .a). Remaining constraints will not be part of

),( fL  since they are definitional constraints and are not an explicit function of the path-

flow assignments.

Given: sdr ,

Find: psrf ,,

To:
r p

psrrsr
r p

psrpsr fdf ,,,,,,,),(Min fL (4.26)

Subject to: ,,0,, prf psr (4.26.a)

DTA Constraints (4.26.b)

The necessary conditions for a minimum of this program are given by the first-order
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conditions for a stationary point of the Lagrangian program (4.26). The first order optimality

conditions for this system are:

,,0),(

,,
pr

f psr

fL
(4.27.a)

,,0),(

,,
,, pr

f
f

psr
psr

fL
(4.27.b)

r
sr

0
ˆ

),(
,

fL
(4.27.c)

,,0,, prf psr (4.27.d)

DTA Constraints (4.27.e)

The term psrf ,,/),( fL  may be derived further with respect to a random flow variable

psrf ,,  as follows:

srsr

C

r p
psr

psr
psr

srsr

C

r p
psr

psr
psr

psr pC
f

C

pC
f

CM

f

f

psr

psr

,,

~

,,
,,

,,

,,

~

,,
,,

,,

,, ),(;

),(;

)ˆ,(

,,

,,L
(4.28)

Define psr ,,~  as:

,,;),(;~

0;,,;),(;~
~

,,,

,,,
,,

prpC

MprpCM

srpsr

srpsr
psr

Analogous to the term psr ,,~ , the term psr ,,~  can be interpreted as the marginal cost

incurred by the LNCT-DTA system due to an additional vehicle departing from r  to s  along

path p  at departure time . We will refer to the term psr ,,~  as LNCT-DTA (path) marginal
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cost. Therefore, the optimality conditions for the Lagrangian program (4.26) are:

,,0~ ,,,,, prf srpsrpsr (4.29.a)

,,0~ ,,, prsrpsr (4.29.b)

,,0,, prf psr (4.29.c)

DTA Constraints (4.29.d)

4.3.4 Reformulation to a Nonlinear Minimization Program via a Gap Function

The LNCT-DTA problem is equivalent to finding a flow pattern *f  that satisfies conditions

(4.29), which may be compactly expressed as a VI:

Given: sWdr ,,

Find: psrf ,,

Such that: ,,0~~
,,,,, prf

r p
srpsrpsr (4.30.a)

,,0,, prf psr (4.30.b)

DTA Constraints (4.30.c)

The equivalence to program (4.25) is obtained by adapting the proof given by Smith (1979).

The VI in (4.30) will be reformulated, via a gap function, to an equivalent NMP whose global

minima coincide with those of (4.30). Define a gap function for the LNCT-DTA problem as

follows:

r p
srpsrpsrfG ,,,,, ~

LNCT (4.31)
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LNCTG  provides a measure of the violation of the optimal LNCT-DTA conditions. It is

evident that the difference vanishes when the time-varying path flow vector f  satisfies the

LNCT-DTA optimality conditions. Thus, solving the LNCT-DTA problem can be viewed as

a process of finding the path flow vector *f  such that 0)(LNCT f*G . Therefore, an

equivalent problem would be to

r p
srpsrpsrfG ,,,,, ~)(Min LNCT f (4.32)

Subject to: rdf r
p

psr ,, (4.32.a)

,,,0,, psrf psr (4.32.b)

DTA constraints (4.32.c)

Associated with LNCTG  is the relative gap for this model LNCT
~G , defined as follows:

r
sr

p
psrf

GG

,,,

LNCT
LNCT

~

(4.33)

4.3.5 LNCT-DTA Solution Algorithm

The transformed LNCT-DTA problem is similar in structure to the SO-DTA, which means

that the efficient ORS algorithm developed for the SO-DTA problem in chapter 3 can also be

used to solve the LNCT-DTA problem. The algorithm still needs to address the departure

time choice before being suitable for solving the LNCT-DTA problem.

The departure time choice is reflected in constraint (4.32.a) and for the ORS procedure to

handle such a requirement, it must be adapted to find the optimal shifts across paths and

departure times jointly. In other words, ORS needs to consider all feasible path-departure
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time combinations when computing the optimal shifts. The optimal shifts under an LNCT-

DTA assignment will be:

srsrpsr
psr

psr

psr

psrpsr
psr PpHPpH ,,,,

,,

,,

,,

,,,,
,, ),(,),(

~

~

~

~~
(4.34)

where

srsr

p psr

psr

p psr

psrpsr

psr PpHPpH ,,

,,

,,

,,

,,,,

,, ),(,),(

~

~
1

~

~~

(4.35)

and

,,
~

~ ,,
,,

,,
,, prC

f
psr

psr

psr
psr (4.36)

The flow-shift matrix  must be adjusted for feasibility according to equations according to

equations (4.18) and (4.19) with the assignments for the next iteration computed according to

(4.20). The solution algorithm assumes that the traffic control center has perfect information

about the evacuation demand at each zone. Once an extreme event is detected requiring the

evacuation of the whole network, evacuees are provided with evacuation trip guidance

information in the form of when to evacuate (departure time), where to go (destination

choice) and which route to take (path choice) in such a way to minimize average trip times

while reaching safety before a target evacuation time.

The solution algorithm represents a heuristic iterative procedure where the objective function

is evaluated and constraints are satisfied through a simulation model. The simulation model is

used to move vehicles along their assigned departure times and paths until they reach their



108

destinations, capturing the state of the system in the process. Traffic flow in the simulator is

represented using a mesoscopic approach where vehicles are tracked individually but moved

in packets according to macroscopic traffic flow relations between average speed and density

on roadway links. At each iteration, the heuristic defines a search (descent) direction along

which the objective function is expected to improve. Step sizes along search direction are

determined according to the ORS method. The steps of the LNCT-DTA algorithm are

explained in detail below. A vehicle-based implementation is provided in Figure 4.2.

Step 1: Initialization

Set iteration counter k = 1.

Connect all safety destinations s  to a super sink s  with zero-time infinite capacity

links.

Solve for the time-dependent LNCT-DTA marginal cost shortest path tree
)(k

sr,P

for all ),,( sr  combinations assuming free-flow link travel times.

For each origin r , search across all shortest paths trees ,
)(k

sr,P  and select  the

departure time and path combination *)*,( p  that results in the minimum LNCT-

DTA marginal cost. Let )(, ksrp  be that path, i.e.,:

)(
,,

,

)(*
*,,

)(, ~min~|**,
k

psr
p

k
psr

ksr pp

Perform an AON of the demand rd  onto )(, ksrp  for every r  to obtain path

assignments )(
,,

k
psrf .

Step 2: Dynamic Network Loading Problem

Use DYNASMART to simulate path assignments )(
,,

k
psrf .

Estimate time-dependent link travel times )( )(kc f  and time-dependent link marginal

travel times )(~ )(kc f  from simulation results.
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Step 3: Update Objective Function

Compute )(
LNCT

~ kG  according to (4.33).

Compute average LNCT-DTA cost (proxy for LNCT-DTA objective) as

r p

k
psr

r p

k
psr

k
psr

k

f

f

ALC )(
,,

)(
,,

)(
,,

)( (4.37)

Step 4: Check Convergence

Count the number of times the condition
)(

,,
)1(

,,
k

psr
k

psr ff  is satisfied for

all ),,( pr  combinations and denote that number by )(V .

If )()( VV  or kk  then terminate the procedure, otherwise set 1kk  and go

to step 5.

Step 5: Time-Dependent LNCT-DTA Marginal Cost Shortest Path Problem

Solve for the time-dependent LNCT-DTA marginal cost shortest path tree
)(k

sr,P

for all ),,( sr  combinations.

Extract )(, ksrp  from
)(k

sr,P  and add it to the active-path set )(, ksrP , for every r .

Step 6: Update of Path Assignments

Find the optimal un-adjusted shifts
)(

,,
k

psr  for all paths in )(, ksrP  according to

equations (4.15) and (4.16).

Find the optimal adjusted shifts
)(

,,
~ k

psr  for all paths in )(, ksrP  according to

equations (4.18) and (4.19).

Update the assignments
)1(

,,
k

psrf  for the next iteration )1(k  using for each

),,( pr  using (4.20) and go to step 2.

The solution algorithm described above is the exact theoretical extension of the ORS solution

algorithm described in chapter 3 to the LNCT-DTA problem. Simulation experiments have

shown this algorithm to be rather slow to converge due to the limited number of new path-
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departure time combinations (potential solutions) added to the active path set )(, ksrP  in

every iteration. An possible improvement is to add a new (efficient) path for all departure

time combinations, resulting in up to r  new solutions at each iteration. Therefore, step 5

will read as follows:

Step 5´: Time-Dependent LNCT-DTA Marginal Cost Shortest Path Problem

Solve for the time-dependent least LNCT-DTA marginal cost path tree
)(k

sr,P  for

all ),,( sr  combinations.

Add
)(

,
k

srp  for all departure times  to the active-path set )(, ksrP  for each r .

1k
DO for every r

Set 0J

Scan all vehicles rdj  and extract active path set )(
,

k
srP

DO for every

Find least-cost LNCT-marginal path
)(

,
k

srp  and add it to the active path, )(
,

k
srP

Compute the adjusted algebraic flow shift vector )(
,,

)(
,,

~ k
srPp

k
psr

DO for each path
)(

,
k

srPp

IF 0
)(

,,
~ k

psr THEN

Randomly select |
)(

,,
~|

k
psr  vehicles from path p  and add them to set J

ENDIF
ENDDO

DO for each path
)(

,
k

srPp

IF 0
)(

,,
~ k

psr THEN

Randomly select
)(

,,
~ k

psr  vehicles from J  and assign them to p

Remove selected vehicles from J
ENDIF

ENDDO
ENDDO

ENDDO

Figure 4.2 Vehicle-based implementation LNCT-DTA solution heuristic



111

4.4 COMBINING THE TWO PROBLEMS: OPTIMAL SCHEDULING OF
EVACUATION DEMAND

The objective of the MNCT-DTA problem is to minimize the network clearance time, which

may be substituted by minimizing the total turnstile costs (exit times) of individual evacuees.

In other words, the model is insensitive for variations in experienced trip times as long

vehicles exit at the same time. For example, a vehicle departing at 8:00 AM and reaching the

safety at 8:50 AM has the same contribution to the objective function of the MNCT-DTA as

a vehicle departing at 8:15 AM and reaching safety at 8:50 AM despite incurring different

trip times. Whereas for the LNCT-DTA problem with a target network clearance time of 8:50

AM, the second vehicle will have a lower contribution to the objective function (better) since

its trip time is shorter.

Ideally, the best solution would be to combine both problems, which due to the conflicting

objectives of the MNCT-DTA and the LNCT-DTA problems, can only be achieved in a bi-

objective framework whose solution is obtained in two sequential stages. In the first stage, an

MNCT-DTA problem is solved to determine the minimum network clearance time *W  and

in the second stage, an LNCT-DTA problem is solved with the target evacuation time. We

refer to the resulting problem as optimal demand scheduling (ODS) DTA problem and the

resulting time-dependent O-D path flows *f  as the optimal demand scheduling flow pattern.

4.4.1 Problem Statement and Formulation

Consider an urban setting represented by the directed graph ),( ANG  with multiple origins

R  requires evacuation due to an extreme event. Assume that a set of shelter destinations S

for that type of event has been identified. Furthermore, assume the total demand to be

evacuated at each origin rd  is known a priori. The ODS-DTA problem is therefore to

determine the time-dependent path-flow pattern f  to minimize the network clearance time,

while keeping the average trip times in the network at a minimum.



112

Given: sdr ,

Find: psrf ,,

To:
r p

psrpsr fCZ ,,,,)(Min f (4.38)

Subject to: rdf r
p

psr ,, (4.38.a)

,,0ˆ~ ,,,,, prf srpsrpsr (4.38.b)

,,0ˆ~ ,,, prsrpsr (4.38.c)

,,0,, prf psr (4.38.d)

DTA Constraints (4.38.e)

The objective function in (4.38) represents minimization of the total system trip time. The

remaining constraints, collectively represent the MNCT-DTA optimality constraints. This

formulation ensures that the system trip time is minimized while guaranteeing that vehicles

exit the network in the minimum possible time.

4.4.2 Optimality Conditions for the ODS-DTA Problem

The optimality conditions for the ODS-DTA problem are actually the collection of optimality

conditions for both SO-DTA and MNCT-DTA problems. They are stated below:

,,0~~
,,,,, prCf srpsrpsr (4.39.a)

,,0~~
,,, prC srpsr (4.39.b)

,,0ˆ~ ,,,,, prf srpsrpsr (4.39.c)
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,,0ˆ~ ,,, prsrpsr (4.39.d)

,,0,, prf psr (4.39.e)

DTA Constraints (4.39.f)

4.4.3 ODS-DTA Solution Algorithm

The ODS-DTA problem is a bi-objective problem, however, the primary objective is still to

minimize the network clearance but it must be done at minimum cost to the system.

Therefore, we are not interested in the trade-off curve between these two objectives, but

rather in a single point on the pareto-optimal curve. The problem therefore can be solved in

two sequential stages where an MNCT-DTA problem is solved first to determine the

minimum network clearance time *W , and an LNCT-DTA problem is solved in the second

stage to minimize system trip time, with a target evacuation time equal to *W .

The second stage can be solved in two approaches. The first approach is to solve it as

standard stand-alone LNCT-DTA problem, i.e. without a feasible initial solution (the

infeasibility stems form the fact that initial solutions based on AON assignments will

generally not result in network clearance times less than *W ). The second approach, which

will be adopted in the ODS-DTA problem, is to solve the LNCT-DTA problem using the

MNCT-DTA solution (from stage I) as the initial solution. The initial solution is therefore

feasible since it clears the network the minimum network clearance time and will therefore

result in a much faster convergence rate.

4.5 EXPERIMENTAL RESULTS

Two sets of simulation experiments are performed in this chapter to investigate the

performance of the MNCT-DTA, LNCT-DTA, and ODS-DTA algorithms. The first set is

performed on the Nine-node network and the second set is conducted on the Fort Worth



114

network. In all these experiments, the algorithms are allowed to run well beyond the stopping

point (convergence) to examine whether the algorithms are following a proper descent

direction over these iterations.

The objective function of the MNCT-DTA problem is the minimization of the evacuation

time, however, the desired outcome of the MNCT-DTA problem is to minimize network

clearance time, which is theoretically supposed to coincide with the minimum average

evacuation time. While simulation results prove that these two solution points are not always

100% identical, they nonetheless indicate that they are extremely close. In other words, the

behavior of the network clearance time tracks the behavior of the average evacuation time

rather exceptionally. To remove any sort of confusion, MNCT-DTA solutions will be

declared “optimal” when the average evacuation time is at a minimum (this may or may not

correspond to the actual minimum network clearance time, but the difference is negligible).

Note that in these experiments, iteration zero represents the case for simultaneous immediate

evacuation where all vehicles depart immediately (no staging or scheduling is involved) and

will therefore act as a yardstick to which MNCT-DTA solutions are compared.

The objective for the LNCT-DTA is to minimize the total cost in the system as defined in

program (4.25). The target evacuation time for the LNCT-DTA problem in these experiments

will be the network clearance time as obtained from solving the corresponding MNCT-DTA

problem. Therefore, the LNCT-DTA problem solved here is in fact equivalent to ODS-DTA

problem with the exception that the initial solution is infeasible as opposed to using MNCT-

DTA solution as the initial solution for the ODS-DTA algorithm.

Four measures are used to fully analyze the results of the LNCT-DTA algorithm. They are; 1)

average LNCT-DTA objective value as computed by (4.37) with a penalty 1000M , 2)

average trip time, 3) average evacuation time, and 4) network clearance time. Finally, The

ODS-DTA algorithm is analyzed in much a similar way to the LNCT-DTA algorithm, with
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the exception that the initial solution is obtained from solving MNCT-DTA (Stage I). This

algorithm is only tested using the Fort-Worth network.

4.5.1 Experiments on the Nine-node Network

Experiments on the Nine-node network will examine the convergence patterns of the MNCT-

DTA and LNCT-DTA algorithms only (ODS-DTA algorithm will not be executed for this

network). The analysis is made for three demand levels namely, 2,000 vehicles (light traffic),

5,000 vehicles (medium traffic), and 10,000 vehicles (heavy traffic). The demand is present

at node 1 and is to be evacuated to node 9 [see Figure 3.6].

4.5.1.1 Convergence Pattern Analysis for MNCT-DTA Algorithm

Depicted in Figure 4.3 are the results of the first 50 iterations of the MNCT-DTA algorithm

for an evacuation demand of 2,000 vehicles. The network clearance time at initial conditions

is 64.2 min with an average evacuation time of 24.9 min. Since all vehicles depart at time

zero, the average trip time at iteration zero is 24.9 min as well. The minimum average

evacuation time of 19.6 min is achieved after 7 iterations, with a corresponding minimum

network clearance time of 46.1 min and an average trip time of 4.2 min. These optimal values

remain virtually unchanged after 50 iterations, which confirm the appropriateness of the

descent direction embedded in the solution algorithm. Moreover, Figure 4.3 clearly shows

that network clearance time tracks the average evacuation time exceptionally well. Overall,

the MNCT-DTA algorithm managed to improve the network clearance time by 28%, the

average evacuation time by 21%, and the average trip time by 83.1% from initial conditions.

A summary of results for this experiment is provided in Table 4.1.
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Figure 4.3 Convergence pattern for MNCT-DTA algorithm for the Nine-node network – 2000 vehicles

Table 4.1 Summary of MNCT-DTA optimality results for the Nine-node network – 2,000 vehicles

Measure of Effectiveness Initial
Conditions

Results at
Optimality

Results after
50 Iterations

Iteration 0 7 50

Network Clearance Time (min) 64.2 46.1 47.92

Average Evacuation Time (min) 24.9 19.6 19.76

Average Trip Time (min) 24.9 4.2 3.96

The same experiment is repeated for a demand of 5,000 vehicles. The corresponding results

for the first 50 iterations of the MNCT-DTA algorithm are shown in Figure 4.4. The initial

conditions are a network clearance time of 162.6 min, an average evacuation time of 59.5

min, and an average trip time of 59.5 min as well. The minimum average evacuation time is

44.6 min and is achieved after 13 iterations with a corresponding minimum network

clearance time of 87.8 min and average trip time of 4.6 min. These optimal values also

remain virtually unchanged after 50 iterations, which confirm the appropriateness of the

descent direction embedded in the solution algorithm. Moreover, Figure 4.4 clearly shows

that network clearance time tracks the average evacuation time exceptionally well. Overall,
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the MNCT-DTA algorithm managed to improve the network clearance time by 45%, the

average evacuation time by 25%, and the average trip time by 92%. A summary of results for

this experiment is provided in Table 4.2.

40

45

50

55

60

65

0 5 10 15 20 25 30 35 40 45 50

Iteration

A
vg

. E
va

c.
 T

im
e 

(m
in

) .

80

95

110

125

140

155

170

N
et

. C
le

ar
an

ce
 T

im
e 

(m
in

) .

Average Evacuation Time Network Clearance Time

Figure 4.4 Convergence pattern for MNCT-DTA algorithm for the Nine-node network – 5000 vehicles

Table 4.2 Summary of MNCT-DTA optimality results for the Nine-node network – 5000 vehicles

Measure of Effectiveness Initial
Conditions

Results at
Optimality

Results after
50 Iterations

Iteration 0 13 50

Network Clearance Time (min) 162.6 87.8 87.98

Average Evacuation Time (min) 59.5 44.60 44.61

Average Trip Time (min) 59.5 4.63 4.65

The same experiment is now repeated for a demand of 10,000 vehicles. The corresponding

results for the first 50 iterations of the MNCT-DTA algorithm are shown in Figure 4.5. The

initial conditions are a network clearance time of 324.6 min, an average evacuation time of

159.8 min, and an average trip time of 159.8 min as well. The minimum average evacuation

trip time of 88.4 min is achieved after 22 iterations for corresponding minimum network
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clearance time of 178.5 min and average trip time of 6.99 min. The optimal values remain

virtually unchanged after 50 iterations, which again validates the appropriateness of the

descent direction embedded in the solution algorithm. Overall, MNCT-DTA algorithm

managed to improve the network clearance time by 45%, the average evacuation time by

45%, and the average trip time by 96%. A summary of the results is provided in Table 4.3.

Table 4.3 Summary of MNCT-DTA optimality results for the Nine-node network – 10,000 vehicles

Measure of Effectiveness Initial
Conditions

Results at
Optimality

Results after
50 Iterations

Iteration 0 22 50

Network Clearance Time (min) 324.6 178.54 173.75

Average Evacuation Time (min) 159.8 88.42 88.66

Average Trip Time (min) 159.8 6.99 7.02
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Figure 4.5 Convergence pattern for MNCT-DTA algorithm – 10000 vehicles

Figure 4.3, Figure 4.4, and Figure 4.5 showed that minimizing the total turnstile costs i.e.

average network evacuation time is equivalent to minimizing the network clearance time.
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Granted that these two minimums did not fully correspond to the same solution point in these

experiments, however the difference is extremely small and negligible.

4.5.1.2 Convergence Pattern Analysis for LNCT-DTA Algorithm

The first experiment is conducted for a demand level of 2,000 vehicles and a target network

evacuation time of 46.1 min. Figure 4.6 depicts the network clearance time and the

(transformed) average LNCT-DTA objective results of the first 25 iterations of the algorithm.

The optimal average objective value is 2.47 min and is achieved after 13 iterations. The

corresponding network clearance time is 46.32 min, a 0.48% increase over the target

evacuation time.

The average evacuation time at optimality is 20.71 min, a 5% increase over the optimal

objective value (19.6 min) of the associated MNCT-DTA problem. The average trip time is

2.49 min, which is within 1% of the (transformed) average LNCT-DTA objective which

essentially means that all vehicles managed to exit the network within the target evacuation

time. Moreover, the average trip time represents a 41% improvement over the associated

MNCT-DTA problem (4.2 min). Figure 4.7 shows that the behavior of the network clearance

time is, as expected, very similar to that of the average evacuation time. Figure 4.8 shows that

the average trip time does indeed drop with a steady the network clearance time. The results

do not change much after 25 iterations as reported in Table 4.4.
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Figure 4.6 Network clearance time and LNCT-DTA objective convergence pattern
for LNCT-DTA algorithm for the Nine-node network – 2,000 vehicles
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Figure 4.7 Average evacuation time and network clearance time convergence pattern
for LNCT-DTA algorithm for the Nine-node network – 5,000 vehicles



121

2

2.25

2.5

2.75

3

3.25

0 5 10 15 20 25

Iteration

A
ve

ra
ge

 T
rip

 T
im

e 
(m

in
) .

0
50
100
150
200
250
300
350
400

N
et

 C
le

ar
an

ce
 T

im
e 

(m
in

) .

Average Trip Time Network Clearance Time

Figure 4.8 Average trip time and network clearance time convergence pattern
for LNCT-DTA algorithm for the Nine-Node network – 2,000 vehicles

Table 4.4 Summary of LNCT-DTA optimality results for the Nine-node network – 2,000 vehicles

Measure of Effectiveness Initial
Conditions

Results at
Optimality

Results after
25 Iterations

Iteration 0 13 25

Network Clearance Time (min) 64.2 46.32 46.16

Average LNCT-DTA Objective (min) N/A 2.47 2.77

Average Evacuation Time (min) 24.9 20.71 19.31

Average Trip Time (min) 24.9 2.49 2.77

The same experiment is repeated for a demand level of 5,000 vehicles and a target network

evacuation time of 87.8 min. Figure 4.9 depicts the network clearance time and the

(transformed) average LNCT-DTA objective value results of the first 75 iterations of the

algorithm. The optimal objective value is 3.26 min and is achieved after 49 iterations. The

corresponding network clearance time is 88.95 min, a 1.31% increase over the target

evacuation time.

The average evacuation time at optimality is 44.65 min, a 0.11% increase over the optimal
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objective value (44.6 min) of the associated MNCT-DTA problem. The average trip time is

3.28 min, which is within 1% of the (transformed) average LNCT-DTA objective and

essentially means that all vehicles managed to exit the network within the target evacuation

time. Moreover, the average trip time represents a 29% improvement over the MNCT-DTA

problem (4.63 min). Figure 4.10 shows that the behavior of the network clearance time is, as

expected, very similar to that of the average evacuation time. Figure 4.11 shows that the

average trip time does drop with a steady the network clearance time. Note that the results do

not change much after 75 iterations as reported in Table 4.5.
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Figure 4.9 Network clearance time and LNCT-DTA objective convergence pattern
for LNCT-DTA algorithm for Nine-node network – 5,000 vehicles
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Figure 4.10 Average evacuation time and network clearance time convergence pattern
for LNCT-DTA algorithm for Nine-node network – 5,000 vehicles
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Figure 4.11 Average trip time and network clearance time convergence pattern
for LNCT-DTA algorithm for Nine-node network – 5,000 vehicles
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Table 4.5 Summary of LNCT-DTA optimality results for the Nine-node network – 5,000 vehicles

Measure of Effectiveness Initial
Conditions

Results at
Optimality

Results after
75 Iterations

Iteration 0 49 75

Network Clearance Time (min) 162.6 88.95 88.85

Average LNCT-DTA Objective (min) N/A 3.25 3.29

Average Evacuation Time (min) 59.5 44.65 44.63

Average Trip Time (min) 59.5 3.28 3.31

The same experiment is repeated for a demand level of 10,000 vehicles and a target network

evacuation time of 178.54 min. Figure 4.12 depicts the network clearance time and the

(transformed) average LNCT-DTA objective results of the first 75 iterations of the algorithm.

The optimal objective value is 10.25 min and is achieved after 66 iterations. The

corresponding network clearance time is 175.48 min, a 1.7% decrease over the target

evacuation time. The average evacuation time is 90.49 min, a 2.3% increase over the MNCT-

DTA problem (88.42 min). The higher average evacuation time coupled with the lower

network clearance time suggest that the network clearance time obtained by the associated

MNCT-DTA problem could be still be further improved, however, the differences are rather

small.

The average trip time is 10.25 min, which is exactly the same as the (transformed) average

LNCT-DTA objective since all vehicles managed to exit the network within the target

evacuation time. Moreover, the average trip time represents a 27% improvement over the

MNCT-DTA problem (6.99 min). Figure 4.13 shows that the behavior of the network

clearance time is very similar to that of the average evacuation time. Figure 4.14 shows that

the average trip time does indeed drop with a steady the network clearance time. The results

do not change much after 75 iterations as reported in Table 4.6.
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Figure 4.12 Network clearance time and LNCT-DTA objective convergence pattern
for LNCT-DTA algorithm for Nine-Node network – 10,000 vehicles
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Figure 4.13 Average evacuation time and network clearance time convergence pattern
for LNCT-DTA algorithm for Nine-Node network – 10,000 vehicles
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Figure 4.14 Average trip time and network clearance time convergence pattern
for LNCT-DTA algorithm for Nine-Node network – 10,000 vehicles

Table 4.6 Summary of LNCT-DTA optimality results for the Nine-node network – 10,000 vehicles

Measure of Effectiveness Initial
Conditions

Results at
Optimality

Results after
75 Iterations

Iteration 0 66 75

Network Clearance Time (min) 324.6 175.48 175.77

Average LNCT-DTA Objective (min) N/A 10.25 11.85

Average Evacuation Time (min) 159.8 90.49 90.67

Average Trip Time (min) 159.8 10.25 11.85

This series of experiments showed that the LNCT-DTA model is capable of minimizing the

average trip times for evacuees while still achieving network clearance (and average

evacuation) times very close to specified target evacuation times. Since the target evacuation

times are obtained from solving the respective MNCT-DTA problem, the LNCT-DTA

solutions are in fact equivalent to the ODS-DTA solutions. Table 4.7 cross-compares the

LNCT-DTA (or more accurately ODS-DTA) convergence results with MNCT-DTA results.
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Table 4.7 Comparison of LNCT-DTA with MNCT-DTA optimal results for the Nine-node network

LNCT-DTA Optimal Solutions MNCT-DTA Optimal Solutions

Demand
Level
(veh)

Average
Evacuation Time

(min)

Network
Clearance Time

(min)

Average
Trip Time

(min)

Average
Evacuation Time

(min)

Network
Clearance Time

(min)

Average
Trip Time

(min)

2,000 20.71 46.32 2.49 19.6 46.1 4.2

5,000 44.65 88.95 3.28 44.60 87.8 4.63

10,000 90.49 175.48 10.25 88.42 178.54 6.99

4.5.2 Experiments on Fort Worth Network

The following set of experiments is aimed at analyzing the performance of the MNCT-DTA,

LNCT-DTA, and ODS-DTA algorithms on reasonably sized networks.

4.5.2.1 Convergence Pattern Analysis for MNCT-DTA Algorithm

The first series of experiments aims to examine the convergence pattern of the MNCT-DTA

algorithm. The analysis is made for two evacuation demand levels namely, 30,000 vehicles

(light-moderate traffic) and 45,000 vehicles (heavy traffic). For each demand level, the

analysis is made for three solution points: 1) initial conditions, 2) at minimum average

evacuation time (optimal objective value), and 3) after 100 iterations. Zone 2 is designated as

the safety destination (see Figure 3.13).

Depicted in Figure 4.15 are the results of the first 100 iterations of the MNCT-DTA

algorithm for an evacuation demand of 30,000 vehicles. Initial conditions for such a demand

level are a network clearance time of 195.5 min, an average evacuation time of 105.3 min,

and an average trip time is 105.3 min as well. The minimum average evacuation time for this

scenario is 54.2 min and is achieved after 61 iterations with a corresponding minimum

network clearance time of 108.6 min and an average trip time is 39.1 min. Therefore, the

MNCT-DTA algorithm managed to improve the network clearance time by 44%, the average

evacuation time by 49%, and the average trip time by 63% from initial conditions. After 100
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iterations, the average evacuation time is 54.4 min, the network clearance time is 109.7 min,

and the average trip time is 39.7 min, all slightly higher than at optimal solution, which also

validates the appropriateness of the descent method embedded in the MNCT-DTA solution

algorithm. Table 4.8 summarizes the results for the MNCT-DTA algorithm.

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

Iteration

A
vg

. E
va

c.
 T

im
e 

(m
in

) .

100

125

150

175

200

N
et

. C
le

ar
an

ce
 T

im
e 

(m
in

) .

Average Evacuation Time Network Clearance Time

Figure 4.15 Convergence pattern for MNCT-DTA algorithm for Fort Worth network – 30,000 vehicles

Table 4.8 Summary of MNCT-DTA optimality results for Fort Worth network – 30,000 vehicles

Measure of Effectiveness Initial
Conditions

Results at
Optimality

Results after
100 Iterations

Iteration 0 61 100

Network Clearance Time (min) 195.5 108.6 109.7

Average Evacuation Time (min) 105.3 54.2 54.4

Average Trip Time (min) 105.3 39.1 39.7

Depicted in Figure 4.16 are the results of the first 100 iterations of the MNCT-DTA

algorithm the for an evacuation demand level of 45,000 vehicles. Initial conditions for such a

demand level are a network clearance time of 386.3 min, an average evacuation time of 206.9

min and an average trip time is 206.9 min as well. The minimum average evacuation time for
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this scenario is 83.4 min and is achieved after 88 iterations with a corresponding minimum

network clearance time of 166.8 min and average trip time is 60.1 min. Therefore, the

MNCT-DTA algorithm managed to improve the network clearance time by 57%, the average

evacuation time by 60%, and the average trip time by 71% from initial conditions. After 100

iterations, the average evacuation time is 83.8 min, the network clearance time is 166.9 min,

and the average trip time is 60.8 min, all slightly higher than at optimal solution, which also

validates the appropriateness of the descent method embedded in the MNCT-DTA solution

algorithm. Table 4.9 summarizes the results for the MNCT-DTA algorithm.
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Figure 4.16 Convergence pattern for MNCT-DTA algorithm for Fort Worth network – 45,000 vehicles

Table 4.9 Summary of MNCT-DTA optimality results for Fort Worth network – 45,000 vehicles

Measure of Effectiveness Initial
Conditions

Results at
Optimality

Results after
100 Iterations

Iteration 0 88 100

Network Clearance Time (min) 386.3 166.8 166.9

Average Evacuation Time (min) 206.9 83.4 83.8

Average Trip Time (min) 206.9 60.1 60.8
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4.5.2.2 Convergence Pattern Analysis for LNCT-DTA Algorithm

The first experiment is conducted for an evacuation demand of 30,000 vehicles and a latest

evacuation time of 108.6 min. Figure 4.17 depicts the network clearance time and the

(transformed) average LNCT-DTA objective results of the first 100 iterations of the

algorithm. The optimal objective value is 35.62 min and is achieved after 86 iterations. The

corresponding network clearance time is 108.14 min, a 0.4% decrease over the target

evacuation time. The average evacuation time at optimality is 53.98 min, a 0.41% decrease

over the associated MNCT-DTA problem (54.2 min). The average trip time is 34.83 min,

which is slightly less (2.2%) than the (transformed) average LNCT-DTA objective, means

that almost all vehicles managed to exit the network within the target evacuation time of

108.6 min. Moreover, the average trip time represents a 10.9% improvement over the

associated MNCT-DTA problem (39.1 min). Figure 4.18 shows that the behavior of the

network clearance time is, as expected, very similar to that of the average evacuation time.

Figure 4.19 shows that the average trip time does indeed drop with a steady the network

clearance time. The results do not change much after 100 iterations as reported in Table 4.10.
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Figure 4.17 Network clearance time and LNCT-DTA objective convergence pattern
for LNCT-DTA algorithm on Fort Worth network – 30,000 vehicles
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Figure 4.18 Average evacuation time and network clearance time convergence pattern
for LNCT-DTA algorithm on Fort Worth network – 30,000 vehicles
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Figure 4.19 Average trip time and network clearance time convergence pattern
for LNCT-DTA algorithm on Fort Worth network – 30,000 vehicles
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Table 4.10 Summary of LNCT-DTA optimality results for Fort Worth network – 30,000 vehicles

Measure of Effectiveness Initial
Conditions

Results at
Optimality

Results after
75 Iterations

Iteration 0 86 100

Network Clearance Time (min) 195.5 108.14 108.36

Average LNCT-DTA Objective (min) N/A 35.62 36.07

Average Evacuation Time (min) 105.3 53.98 54.37

Average Trip Time (min) 105.3 34.83 35.21

The second experiment is conducted for an evacuation demand of 45,000 vehicles and a

latest evacuation time of 166.8 min. Figure 4.20 depicts the network clearance time and

transformed (average) LNCT-DTA objective results of the first 100 iterations of the

algorithm. The optimal objective value is 45.91 min and is achieved after 92 iterations. The

corresponding network clearance time is 168.07 min, a 0.8% decrease over the target

evacuation time. The average evacuation time at optimality is 84.82 min, a 1.7% increase

over the associated MNCT-DTA problem (83.4 min).

The average trip time is 45.51 min, which is slightly less (0.9%) than the (transformed)

average LNCT-DTA objective (45.91 min), means that almost all vehicles managed to exit

the network within the target evacuation time of 166.8 min. Moreover, the average trip time

represents a 24% improvement over the associated MNCT-DTA problem (60.1 min). Figure

4.21 shows that the behavior of the network clearance time is, as expected, very similar to

that of the average evacuation time. Figure 4.22 shows that the average trip time does indeed

drop with a steady the network clearance time. The results do not change much after 100

iterations as reported in Table 4.11.
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Figure 4.20 Network clearance time and LNCT-DTA objective convergence pattern
for LNCT-DTA algorithm on Fort Worth network – 45,000 vehicles
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Figure 4.21 Average evacuation time and network clearance time convergence pattern
for LNCT-DTA algorithm on Fort Worth network – 45,000 vehicles
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Figure 4.22 Average trip time and network clearance time convergence pattern
for LNCT-DTA algorithm on Fort Worth network – 45,000 vehicles

Table 4.11 Summary of LNCT-DTA optimality results for Fort Worth network – 45,000 vehicles

Measure of Effectiveness Initial
Conditions

Results at
Optimality

Results after
75 Iterations

Iteration 0 92 100

Network Clearance Time (min) 386.3 168.07 168.66

Average LNCT-DTA Objective (min) N/A 45.91 46.65

Average Evacuation Time (min) 206.9 84.82 84.51

Average Trip Time (min) 206.9 45.51 45.95

4.5.2.3 Convergence Pattern Analysis for ODS-DTA Algorithm

The ODS-DTA algorithm is a two stage process. The MNCT-DTA problem is solved in the

first stage to determine the network clearance time and the LNCT-DTA is solved in the

second stage, given the network clearance time from the first stage, to minimize trip times in

the network. In this set of experiments however, the second stage, i.e. the LNCT-DTA

problem, is solved with the MNCT-DTA solution as the starting solution. That is, the initial

solution for the LNCT-DTA problem is not obtained by an AON assignment, but rather from

the MNCT-DTA. Such a solution is therefore feasible and is expected to converge faster.
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The first experiment pertains to an evacuation demand level of 30,000 vehicles. Initial

conditions are a network clearance time of 195.5 min, and average evacuation and trip times

of 105.3 min. Figure 4.23, Figure 4.24, Figure 4.25 show the convergence patterns of the

network clearance time, average evacuation time, and average trip time, respectively. The

first stage of the ODS-DTA algorithm, i.e. the MNCT-DTA algorithm converges after 61

iterations. The minimum network clearance time is reduced by 44% to 108.6 min, the

average evacuation time is reduced by 49% to 54.2 min, and the average trip time is reduced

by 63% to 39.1 min. The MNCT-DTA solution is then used as the initial solution to the

LNCT-DTA algorithm (Stage II) with a target evacuation time of 108.6 min.

The LNCT-DTA algorithm converges after 20 iterations. The network clearance time

remains virtually unchanged at 108.71; the average evacuation time is slightly higher at 54.92

or a 1.3% increase; and the average trip time is reduced by 8.7% to 35.71 min. These results

compare favorably with the LNCT-DTA results obtained without a feasible starting solution

as shown in Table 4.12. The interesting finding is that it only took 20 iterations for the

LNCT-DTA algorithm to converge if the MNCT-DTA optimal solution is used as the starting

solution as opposed to 86 iterations for the case where an AON assignment is used (not a

feasible solution).
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Figure 4.23 Network clearance time convergence pattern for ODS-DTA algorithm
for Fort Worth network – 30,000 vehicles
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Figure 4.24 Average evacuation time convergence pattern for ODS-DTA algorithm
for Fort Worth network – 30,000 vehicles
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Figure 4.25 Average trip time convergence pattern for ODS-DTA algorithm
for Fort Worth network – 30,000 vehicles

Table 4.12 Summary of ODS-DTA optimality results for Fort Worth network – 30,000 vehicles

Measure of Effectiveness Initial
Conditions

Results at
End of Stage I
(MNCT-DTA)

Results at
End of Stage II
(LNCT-DTA)*

Results at end of
Stand-alone

LNCT-DTA**

Iteration 0 61 20 (81 total) 86

Network Clearance Time (min) 195.5 108.6 108.71 108.14

Average LNCT Time (min) N/A N/A 36.58 35.62

Average Evacuation Time (min) 105.3 54.2 54.92 53.98

Average Trip Time (min) 105.3 39.1 35.71 34.83

* Initial solution is obtained from stage I
** Initial solution is AON

The second experiment pertains to an evacuation demand level of 45,000 vehicles. Initial

conditions are a network clearance time of 386.3 min, and average evacuation and trip times

of 206.9 min. Figure 4.26, Figure 4.27, Figure 4.28 show the convergence patterns of the

network clearance time, average evacuation time, and average trip time, respectively. The

first stage of the ODS-DTA algorithm, i.e. the MNCT-DTA algorithm converges after 88

iterations. The resulting network clearance time is reduced by 57% to 166.8 min, the average
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evacuation time is reduced by 60% to 83.4 min, and the average trip time is reduced by 71%

to 60.1 min. The MNCT-DTA solution is then used as the initial solution to the LNCT-DTA

algorithm (Stage II) with a target evacuation time of 108.6 min, which converges after 37

iterations. The resulting network clearance time is 1.3% higher than the target evacuation

time of 166.8 min, the average evacuation time is slightly higher at 84.4 or a 1.2% increase,

and the average trip time is improved by 23% to 46.5 min. These results compare favorably

with the LNCT-DTA results obtained without a feasible starting solution as shown in Table

4.13. It only took 37 iterations for the LNCT-DTA algorithm to converge if the MNCT-DTA

optimal solution is used as the starting solution as opposed to 92 iterations for the case where

no feasible solution is used.
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Figure 4.26 Network clearance time convergence pattern for ODS-DTA algorithm
for Fort Worth network – 45,000 vehicles
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Figure 4.27 Average evacuation time convergence pattern for ODS-DTA algorithm
for Fort Worth network – 45,000 vehicles
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Figure 4.28 Average trip time convergence pattern for ODS-DTA algorithm
for Fort Worth network – 45,000 vehicles
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Table 4.13 Summary of ODS-DTA optimality results for Fort Worth network – 45,000 vehicles

Measure of Effectiveness Initial
Conditions

Results at
End of Stage I
(MNCT-DTA)

Results at
End of Stage II
(LNCT-DTA)*

Results at end of
Stand-alone

LNCT-DTA**

Iteration 0 88 37 (125 total) 92

Network Clearance Time (min) 386.3 166.8 168.98 168.07

Average LNCT Time (min) N/A N/A 47.31 45.91

Average Evacuation Time (min) 206.9 83.4 84.44 84.82

Average Trip Time (min) 206.9 60.1 46.56 45.51

* Initial solution is obtained from stage I
** Initial solution is AON

4.5.2.4 Staging Policy

The objective of demand scheduling is to evacuate the network in stages rather than

simultaneously. Therefore, it is important to compute the staging policy, i.e. how much traffic

to evacuate every departure time period. We refer to this distribution as the staging policy.

Figure 4.29 depicts the fraction of demand loaded as a function of time for the 30,000

vehicles evacuation demand as imputed from the MNCT-DTA, LNCT-DTA, and ODS-DTA

solutions for zone 1.

Figure 4.29 shows the clear differences between the staging policies of the MNCT-DTA and

the LNCT-DTA (or ODS-DTA) solutions. In the MNCT-DTA staging policy, and as

expected, more demand is concentrated on early departure periods, with total demand spread

over 75 min. In contrast, the LNCT-DTA (and ODS-DTA) algorithms shift more demand

towards the later departure periods, with a total spread of 90 min.

Another way to look at the inherent differences between the MNCT-DTA and LNCT-DTA

(or ODS-DTA) algorithms, is to look at the cumulative demand loading curve. For example,

the MNCT-DTA algorithm loads 41% of the demand in the first 5 min, whereas the LNCT-

DTA and ODS-DTA algorithms load 31% and 27%, respectively (Figure 4.30).



141

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Time (min)

Fr
ac

tio
n 

of
 D

em
an

d 
Lo

ad
ed

.

MNCT-DTA LNCT-DTA ODS-DTA

Figure 4.29 Fraction of demand loaded as a function of time for Fort Worth – 30,000 vehicles
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Figure 4.30 Cumulative demand loaded as a function of time for Fort Worth – 30,000 vehicles



142

Figure 4.31 depicts the fraction of demand loaded as a function of time for the 45,000

vehicles evacuation demand as imputed from the MNCT-DTA, LNCT-DTA, and ODS-DTA

solutions for zone 1. The MNCT-DTA staging policy concentrates (or front-loads) the

demand on early departure periods, with total demand spread over 100 min. In contrast, the

LNCT-DTA and ODS-DTA algorithms shift more demand towards the later departure

periods, with a total spread of 130 min. Figure 4.32 shows that the MNCT-DTA algorithm

loads 32% of the demand in the first 5 min, whereas the LNCT-DTA and ODS-DTA

algorithms load 24% and 20%, respectively. Figure 4.32 also show that there are not much

difference between the LNCT-DTA and ODS-DTA solutions.

Note that the network clearance times for all these experiments have been obtained by

assuming vehicles follow an SO-type of route choice behavior. While there is no guarantee

that vehicles would follow such route a choice behavior, it may be easier to enforce the

staging policy instead. Therefore, it would be interesting to know, under pre-trip information

provisions, the impact of the staging policies as imputed from the LNCT-DTA or ODS-DTA

solutions, on network clearance time versus simultaneous evacuations, however, this is

beyond the scope of this dissertation.
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Figure 4.31 Fraction of demand loaded as a function of time for Fort Worth – 45,000 vehicles
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Figure 4.32 Cumulative demand loaded as a function of time for Fort Worth – 45,000 vehicles
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5 CONTRAFLOW DESIGN PROBLEMS FOR EVACUATION
APPLICATIONS

5.1 CONCEPTS AND NOTATIONS

Let )(tca  be the travel time for link a  at time step t . The relationship between link costs and

path costs are defined as:

,,,)().( ,
,,,, psrttcC

t a

a
psrapsr (5.1)

Similarly, let )(~ tca  be the marginal travel time for link a  at time step t . The relationship

between link marginal costs and path marginal costs are defined as:

,,,)().(~~ ,
,,,, psrttcC

t a

a
psrapsr (5.2)

Although all links may be reversed, in this study and consistent with current practice, we

only consider freeway links and major arterials to be reversible. Consider a directed link

Aa  with al  lanes, where A  is  the  set  of  reversible  links.  In  this  study,  the  analysis  is

based on the concept of coupled links ),( 1aa  where 1a  is the link running in opposite

direction to a  [Tuydes (2005)]. Let a  be the number of reversible lanes added to or

subtracted from link a , i.e. a  is algebraic. A positive value for a  means that link a  will

receive an additional a  lanes from its coupled link 1a  or equivalently link 1a  will have

a  of its lanes reversed, and vice-versa. That is the extra capacity received by link a

implies a similar capacity reduction for its coupled link 1a . Mathematically, this can be

stated as follows:

Aaatt aa
1,0)()( 1 (5.3)

The number of lanes that can be reversed in a given link a  is  bounded  by  the  existing

number of lanes on that link al . Moreover, the number of lanes that can be added to a  is
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bounded by the number of lanes on its coupled link 1al :

Aaall aaa
1,1 (5.4)

5.2 THE DISCRETE CONTRAFLOW NETWORK DESIGN PROBLEM

While network design problems are generally UE-based, the contraflow network design

problem in this dissertation is SO-based. We refer to the problem as CF-DTA and it is stated

as follows: given the time dependent O-D demand desires srd ,  and a set of candidate

reversible links A ; we want to find the time-dependent path-flow assignments psrf ,,  as

well as the number of lanes reversed a  for each reversible link Aa  to minimize the total

system travel time subject to feasibility and DTA constraints.

Given: Ad sr ,,

Find: apsrf ,,,

To:
r s p

psrpsrZ fC ,,,,)(Min f (5.5)

Subject to: ,,,,, srdf sr
p

psr (5.5.a)

Aaaaa
1,01 (5.5.b)

Aaalaa
1,01 (5.5.c)

Aal aa 0 (5.5.d)

,,,0,, psrf psr (5.5.e)

DTA constraints (5.5.f)
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5.3 FIRST-ORDER OPTIMALITY CONDITIONS

The optimality conditions of the model are studied to investigate the underlying assignment

principle, which in turn will shape the solution algorithm for the problem. Let

),,,~,,( fL  be the Lagrangian of the program (5.5), where ~ , , , and  denote

the vector of Lagrangian variables associated with the constraints (5.5 .a), (5.5.b), (5.5.c), and

(5.5.d), respectively.

a
aaa

a
aaa

a
aaa

p
psrsr

r s
sr

r s p
psrpsr

ll

fdfC

11

,,,,,,,,
~),,,~,,(Min fL

(5.6)

The necessary conditions for a minimum of this program are given by the first-order

conditions:

0),,,~,,(
f

fL
(5.6.a)

0),,,~,,(
f

ff L
(5.6.b)

0~
),,,~,,( fL

(5.6.c)

0),,,~,,( fL
(5.6.d)

0),,,~,,( fL
(5.6.e)

0),,,~,,( fL
(5.6.f)

0),,,~,,( fL
(5.6.g)

0),,,~,,( fL
(5.6.h)
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0),,,~,,( fL
(5.6.i)

0),,,~,,( fL
(5.6.j)

,,,0,, psrf psr (5.6.k)

DTA constraints (5.6.l)

Optimality conditions (5.6.a), (5.6.b), and (5.6.c) are the usual SO-DTA optimality conditions.

Evaluating the partial derivative f /),,,~,,(L  with respect to a random link a  we

get:

1

11

,,,,,,,,
~

),,,~,,(

aa
a

a
aaa

a
a

aaa

a
a

aaa

a

p
psrsr

r s
sr

a

r s p
psrpsr

a
ll

fdfC
fL

(5.7)

Similarly, for f /),,,~,,(L , we get:

1

11

,,,,,,,,
~

),,,~,,(

aa
a

a
aaa

a
a

aaa

a
a

aaa

a

p
psrsr

r s
sr

a

r s p
psrpsr

a

l

ll

fdfC
fL

(5.8)

and for /),,,~,,( fL  we get:
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aa
a

a
aaa

a
a

aaa

a
a

aaa

a

p
psrsr

r s
sr

a

r s p
psrksr

a

l

ll

fd

fC

11

,,,,

,,,,

~

),,,~,,( fL

(5.9)

Therefore, conditions (5.6.f), (5.6.g), and (5.6.i) will result in obtaining the same set of

constraints in program (5.5). Evaluating the partial derivative f /),,,~,,(L  with

respect to a random reversible link a  we get:

a
a

aaa

a
a

aaa

a
a

aaa

a

p
psrsr

r s
sr

a

r s p
psrpsr

a

ll

fd

fC

11

,,,,

,,,,

~

),,,~,,( fL

(5.10)

The classical assumption of no link interactions will not hold in this formulation for coupled

links since we have 01aa , which means that

1aa (5.11)

Therefore a change in the capacity of link a  is expected to influence changes in link flows

for both a  and 1a . Let us evaluate the first term on the RHS of (5.10):
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r s p a

psr
psr

a

psr
psr

a

r s p
psrpsr

f
C

C
f

fC
,,

,,
,,

,,

,,,,
(5.12)

Consider the first term on the RHS of (5.12):

a
a

t a
a

a

tx

r s p

a
psrpsr

t a
a

a
t a

a
psra

r s p
psr

a

psr

r s p
psr

tctx

tftc

ttc

f
C

f

a

)()(

)()(

)()(

)(

,
,,,,

,
,,

,,
,,

,,

(5.13)

Now consider the second term on the RHS of (5.12):

a
a

t a
a

a

tx

r s p

a
psrpsr

t a
a

a
t a

a
psra

r s p
psr

a

psr

r s p
psr

txtc

tftc

ttc

f
f

C

a

)()(

)()(

)()(

)(

,
,,,,

,
,,

,,
,,

,,

(5.14)

Equation (5.12) may now be re-written as:

a
a

t a
a

a
a

t a
a

a

r s p
psrpsr

txtctctx

fC
)()()()(

,,,,
(5.15)
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Note that equation (5.15) could have been easily reached by replacing the objective function

in (5.5) by the following link-based objective function:

t a
aa txtcZ )()(Min (5.16)

Consider the second term in the RHS of equation (5.10):

a
a

t a
a

a

s r t a p
psrsr

a
psra

a

p
psrsr

r s
sr

txt

fdtt

fd

)()(~

)()(~

~

,,,
,

,,

,,,,

(5.17)

Assuming there are no link interactions, i.e.

otherwise0
;,if0)( 1 Aaaaatc

a
a (5.18)

and

otherwise0
;,if0)( 1 Aaaaatx

a
a (5.19)

further reduces (5.13) to

t a
a

aa
aa

a

psr

r s p
psr

tc
txtctx

C
f

)(
)()()(

1
1

,,
,, (5.20)

and (5.14) to



151

t a
a

aa
aa

a

psr

r s p
psr

tx
tctxtc

f
C

)(
)()()(

1
1

,,
,, (5.21)

and (5.17) to

t a
aa

a
aa

a

p
psrsr

r s
sr

tx
ttxt

fd
)(

)(~)()(~

~
1

,,,,
(5.22)

Now consider the remaining terms in the RHS of (5.10). Keeping in mind

that 1aa , we have:

0

)(

11

1

aaaa
a

a
aaa

(5.23)

and

1

1 )(

aa
a

a
aaa l

(5.24)

and

1aa
a

a
aaa l

(5.25)

The partial derivative f /),,,~,,(L  can now be expressed in a link-based format

as follows:
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aa

aa

t

a
aa

a
aa

a
a

aa
aa

a
a

aa
aa

a
tx

ttxt

tx
tctxtc

tc
txtctx

1

1

1

1
1

1
1

)(
)(~)()(~

)(
)()()(

)(
)()()(

),,,~,,( fL
(5.26)

The first-order optimality conditions for program (5.6) are summarized below:

,,,0~~
,,, psrC srpsr (5.27.a)

,,,0~~
,,,,, psrCf srpsrpsr (5.27.b)

,,,,, srdf sr
p

psr (5.27.c)

Aat

tx
ttxt

tx
tctxtc

tc
txtctx

aa

aa

t

a
a

a
a

a
a

a
a

aa
a

a

a
a

aa
a

a

,0

)(
)(~)()(~

)(
)()()(

)(
)()()(

1

1

1

1
1

1
1

(5.27.d)

Aat

tx
ttxt

tx
tctxtc

tc
txtctx

aa

aa

t

a
aa

a
aa

a
a

aa
aa

a
a

aa
aa

a

a ,0

)(
)(~)()(~

)(
)()()(

)(
)()()(

1

1

1

1
1

1
1

1
(5.27.e)

Aaaaa
1,01 (5.27.f)

Aaalaa
1,01 (5.27.g)
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Aaalaaaa
1,011 (5.27.h)

Aal aa 0 (5.27.i)

Aaal aaaa
1,01 (5.27.j)

,,,0,, psrf psr (5.27.k)

DTA Constraints (5.27.l)

Note that optimality condition (5.27.e) is automatically satisfied since 01aa  by

definition. An assignment principle can be derived from the above optimality conditions for

the case when total reversibility is not attained, i.e. optimality conditions (5.27 .g) and (5.27.i)

are non-binding:

Aaalaa
1,01 (5.28)

and

Aal aa 0 (5.29)

which means we must have 0a , 01a , 0a , and 01a . Moreover, we have,

otherwise0
;,if0)( 1 Aaaaatc

a
a (5.30)

and

otherwise0
;,if0)( 1 Aaaaatx

a
a (5.31)

therefore

t a
a

aa
aa

a
a

t a
a

tc
txtctxtctx

)(
)()()()()(

1
1 (5.32)
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and

t a
a

aa
aa

a
a

t a
a

tx
tctxtctxtc

)(
)()()()()(

1
1 (5.33)

and

t a
a

aa
aa

a
a

t a
a

tx
ttxttxt

)(
)(~)()(~)()(~ 1

1 (5.34)

thus, optimality condition (5.27.d) is further simplified to

Aaa
tx

ttctxttc

tc
txtctx

t t a

a
aaa

aaa

t t a

a
aa

aa
1,0

)(
)(~)()()(~)(

)(
)()()(

1

1
11

1

1
1

(5.35)

We know that condition (5.35) will always be binding at any SO assignment regardless of the

lane reversibility variable  since replacing )(~ ta  by
)(
)()()(

tx
tctxtc

a
aaa  and )(~ 1 ta

by
)(

)(
)()(

1

1
11

tx

tc
txtc

a

a
aa  renders (5.35) to be zero. Therefore, there needs to be

another (sufficient) condition to simultaneously satisfy optimality condition (5.35). Consider

the following equality condition:

t a

a
a

t a
aa

tc
txtctx

1

1
1

)(
)()()( (5.36)

Condition (5.36) renders condition (5.35) to be binding and hence it is the sufficient

condition we are looking for. It also makes perfect sense as it relates the lane reversibility

variables for coupled links and states that optimality occurs when the total increase in system

cost due to an additional vehicle is the same for couple links. In simpler terms, optimality
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occurs when an additional vehicle will have the same contribution to the system cost whether

it is traverses reversible link a  or its couple 1a . Simple numerical examples, as we will

show shortly, have been found to support condition (5.36).

Therefore, for the case where total reversibility is not attained, the first-order optimality

conditions for program (5.6) will be:

,,,0~~
,,, psrC srpsr (5.37.a)

,,,0~~
,,,,, psrCf srpsrpsr (5.37.b)

,,,,, srdf sr
p

psr (5.37.c)

Aaat
tc

txtctx
t t a

a
aa

aa
1,,

)(
)()()(

1

1
1 (5.37.d)

Aaaaa
1,01 (5.37.e)

Aaalaa
1,01 (5.37.f)

Aal aa 0 (5.37.g)

,,,0,, psrf psr (5.37.h)

DTA Constraints (5.37.i)

5.4 SIMPLE NUMERICAL EXAMPLES

Two sets of simple examples are conducted in this section to verify the optimality conditions

for the CF-DTA problem derived in this chapter. Both sets are conducted over two networks

and solved using the nonlinear solver in Microsoft Excel. The first network consists of two

links and involves only determination of the lane reversibility variables vector i.e. no flow
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assignment is necessary. The second network is a 4-link network involves both flow

assignment and lane reversibility. The BPR link delay function is used in the first set of

examples, whereas the Greenshields link delay function is used in the second set of examples.

5.4.1 Examples Using BPR Functions

Consider the following BPR volume-delay function:

a

a
aaa y

xcc 1min (5.38)

where ac  is the link travel time on link a , min
ac  is the minimum travel time on link a

corresponding to free-flow conditions, ax  is the volume on link a , ay  is the physical

capacity of link a , and a  is the shape parameter associated with link a . The link capacity

may be computed as follows:

jam.)( aaaaa Lly (5.39)

where al  is the original number of lanes for link a , aL  is the length of link a , and jam
a  is

the jam density on link a . Differentiating link cost with respect to flow, we get

1

jam
min

.)(
1

.)(

1.
a

aaaa

a
jam

aaaa
aa

a
a

Ll

x

Ll
c

x
c (5.40)

Differentiating the link cost with respect to lane reversibility variable, we get

1

jam2
min

.)(
1.

)(

1

.
.

a

aaaa

a

aa
jam

aa

a
aa

a
a

Ll

x

lL

xcc (5.41)



157

Example 1

This example is designed to investigate the optimality conditions of coupled links with

identical link delay functions. Consider the 2-link network shown in Figure 5.1.

A B
Link 2

1 mile, 4 lanes, 400 veh
jam density = 250 veh/mile/lane

speed = 60 mph, = 3

Link 1
1 mile, 3 lanes 200 veh

jam Density = 250 veh/mile/lane
speed = 60 mph,  = 3

Figure 5.1 Two-link network for example 1

Assume that link travel times are given by the BPR function in (5.38). Assuming no

reversibility, ( 021 ), results in travel times of 2.03 and 2.74 min for links 1 and 2,

respectively for an average system travel time of 2.51 min. Allowing for lane reversibility,

we get 67.01  and 67.02  lanes. The average system travel time at optimality is 2.42

min, a reduction of 3.6% from initial conditions. The final parameter values show that

98.158// 222111 cxcx  veh-min/lane, which satisfy optimality condition (5.36).

Moreover, the travel times and marginal travel times are equal for links 1 and 2, which is

attributed to having the same link cost specification ( jammin ,,c ). Table 5.1 summarizes

the parameter values for this example.
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Table 5.1 Example 1 optimal parameter values
Parameter Link 1 Link 2

x  (vehicles) 200 400

 (lanes) – 0.67 0.67

l  (lanes) 2.33 4.67

c  (min) 2.42 2.42

c
 (min/lane) – 0.79 – 0.40

x
c

 (min/vehicle) 0.0093 0.0046

cx  (veh-min/lane) – 158.98 – 158.98

x
cxc  (min) 4.28 4.28

Initial objective function value (no lane reversals)  2.51 min
Final objective function value (with reversals) 2.42 min

Example 2

The second experiment is designed to investigate the effect of different link cost functions on

optimality condition(5.36). The jam densities, speeds, and the shape parameters are different

for links 1 and 2 (Figure 5.2).

A B
Link 2

1 mile, 4 lanes, 400 veh
jam density = 250 veh/mile/lane

speed = 60 mph,  = 2.75

Link 1
1 mile, 3 lanes 200 veh

jam density = 200 veh/mile/lane
speed = 70 mph,  = 3.25

Figure 5.2. 2-link network for example 2

Assuming no reversibility ( 021 ) results in travel times of 2.18 and 2.52 min for links

1 and 2, respectively for an average system travel time of 2.41 min. Allowing for lane

reversibility, we get the link reversibility variables to be 34.01  and 34.02  lanes.

The average system travel time at optimality is 2.38 min, a reduction of 1.2% from initial
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conditions. The final parameter values show that 69.161// 222111 cxcx  veh-

min/lane, which satisfy optimality condition (5.36). However, unlike case 1, the travel times

and marginal travel times are not equal for links 1 and 2  due to the use of different link cost

function specifications. Table 5.2 summarizes the parameter values at optimality.

Table 5.2 Example 2 optimal parameter values

Parameter Link 1 Link 2

x  (vehicles) 200 400

 (lanes) – 0.34 0.34

l  (lanes) 2.66 4.34

c  (min) 2.42 2.37

c
 (min/lane) – 0.81 – 0.40

x
c

 (min/vehicle) 0.0107 0.0044

cx  (veh-min/lane) – 161.69 – 161.69

x
cxc  (min) 4.57 4.12

Initial objective function value (no lane reversals) 2.41 min
Final objective function value (with reversals) 2.38 min

Example 3

In this example the number of links is increased to four with links 2 and 3 being reversible

(Figure 5.3). The link cost functions are identical for links 2 and 3 and different for links 1

and 4 (Table 5.3). 500 vehicles are going from A to B and 1000 vehicles from B to A.

A B
Link 3

Link 2

Link 4

Link 1

Figure 5.3. 4-link network for example 3
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Table 5.3 Link cost function attributes for example 3

Link  Lanes Length
(miles)

Jam Density
(veh/mile/lane)

Free-Flow Speed
(mph)

Shape Parameter
( )

1 2 2 250 70 3.25
2 4 1 250 60 3
3 4 1 250 60 3
4 2 1.5 250 65 2.75

Assuming no reversibility, i.e. 032 , the optimal flow assignment for this problem is

3781x  veh, 6222x  veh, 3153x  veh, and 1854x  veh with an average system travel

time of 3.78 min. Allowing for lane reversibility, we get 276.22  lanes and 276.23

lanes. The optimal flow assignment corresponding to this lane reversibility scheme is

2651x  veh, 7352x  veh, 2023x  veh, and 2984x  veh with an average system travel

time of 3.32 min, a 12% reduction from initial conditions.

Moreover, parameter values at optimality show that 52.354// 333222 cxcx

veh-min/lane, which satisfy optimality condition (5.36). The travel times and marginal travel

times are equal for links 1 and 2, and link 3 and 4 which verify SO optimality conditions.

Furthermore, the travel times and marginal travel times are equal for links 2 and 3 due to the

specification of identical link cost functions (in fact all links have equal marginal travel times

in this particular example). Table 5.4 summarizes the optimal parameter values for this

example.
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Table 5.4 Example 3 optimal parameter values

Parameter Link 1 Link 2 Link 3 Link 4

x  (vehicles) 265 735 202 298

 (lanes) N/A 2.276 – 2.276 N/A

l  (lanes) 2 6.276 1.724 2

c  (min) 3.68 3.17 3.17 3.48

c
 (min/lane) – 1.26 – 0.48 – 1.76 – 1.36

x
c

 (min/vehicle) 0.0095 0.0041 0.0150 0.0091

cx  (veh-min/lane) – 332.99 – 354.52 – 354.52 – 405.3

x
cxc  (min) 6.19 6.19 6.19 6.19

Initial objective function value (no lane reversals) 3.78 min
Final objective function value (with reversals) 3.32 min

Example 4

In this experiment, the link attributes for the 4-link network in Figure 5.3 are designed in

such a way that no two links have identical cost attributes (Table 5.5).

Table 5.5 Link attributes for example 4

Link  Lanes Length
(miles)

Jam Density
(veh/mile/lane)

Free-Flow Speed
(mph)

Shape Parameter
( )

1 2 2 250 70 3.25
2 4 1 225 60 2.5
3 4 1 275 55 3
4 2 1.5 200 65 2.75

Assuming no reversibility, i.e. 032 , the optimal flow assignment for this problem is

3411x  veh, 6592x  veh, 3403x  veh, and 1604x  veh with an average system travel

time of 3.58 min. Allowing for lane reversibility, we get 84.12  lanes and 84.13

lanes. The optimal flow assignment corresponding to this lane reversibility scheme is
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2521x  veh, 7482x  veh, 2613x  veh, and 2394x  veh with an average system travel

time of 3.26 min, a 9% reduction from initial conditions. Moreover, parameter values at

optimality show that 82.358// 333222 cxcx  veh-min/lane, which satisfy

optimality condition (5.36). Moreover, the marginal travel times are equal for links 1 and 2,

and links 3 and 4, which also verifies SO optimality conditions. Table 5.6 summarizes the

parameter values at optimality for this example.

Table 5.6 Example 4 optimal parameter values

Parameter Link 1 Link 2 Link 3 Link 4

x  (vehicles) 252 748 261 239

 (lanes) N/A 1.84 – 1.84 N/A

l  (lanes) 2 5.84 2.16 2

c  (min) 3.56 3.09 3.25 3.48

c
 (min/lane) – 1.16 – 0.48 – 1.38 – 1.37

x
c

 (min/vehicle) 0.0092 0.0037 0.0114 0.0114

cx  (veh-min/lane) – 292.41 – 358.82 – 358.82 – 326.77

x
cxc  (min) 5.88 5.89 6.22 6.22

Initial objective function value (no lane reversals) 3.58 min
Final objective function value (with reversals) 3.26 min

5.4.2 Examples Using Greenshields Traffic Flow Relationship

In this set of experiments, we will repeat the examples 1 through 4 using the Greenshields

traffic model, which relates speed to density as follows:

jam
jam

free 1 aa
a

aaa

a

(5.42)
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This model is different from the “modified” Greenshields model embedded in

DYNASMART however; the analysis is just as valid. The link density a  can be expressed

in terms of flow as follows:

aaa
aa Ll

x
)( (5.43)

Expressing the speed as the quotient of link length by link travel time, we have:

jam
jam

free ,
.)(

1 aa
aaaa

aa
a
a

a

Ll

x
c
L (5.44)

Rearranging the terms we get the following link delay function:

jam

jam
free

,

.)(
1

aa

aaaa

aa
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a

Ll

x

Lc
(5.45)

Adjusting the model to incorporate lane reversibility variables, we get:

jam

jam
free

,

.)(
1
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aaaa

aa
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a

Ll

x

Lc
(5.46)

Differentiating the link cost with respect to link volume, we get
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1

jamjamfree ,
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Similarly differentiating link cost with respect to link lanes we get:

jam
1

jam2jamfree ,
.)(

1
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1

.
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a
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c (5.48)
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Example 5

Consider the 2-link network shown in Figure 5.1. Assume that link travel times are now

given by the Greenshields link delay function given in (5.46). Assuming no reversibility,

( 021 ) results in travel times of 2.53 and 4.63 min for links 1 and 2, respectively for

an average system travel time of 3.93 min. Allowing for reversibility, we get 67.01  and

67.02  lanes. The average system travel time at optimality is 3.52 min, a reduction of

10% from initial conditions. The final parameter values show that

77.472// 222111 cxcx  veh-min/lane, which satisfy optimality condition

(5.36). Moreover, the travel and marginal travel times are equal for links 1 and 2, due to the

identical cost functions. Table 5.7 summarizes the parameter values for this example.

Table 5.7 Example 5 optimal parameter values

Parameter Link 1 Link 2

x  (vehicles) 200 400

 (reversible lanes) – 0.67 0.67

l  (lanes) 2.33 4.67

c  (min) 3.52 3.52

c
 (min/lane) – 2.36 – 1.18

x
c

 (min/vehicle) 0.0276 0.0138

cx  (veh-min/lane) – 472.77 – 472.77

x
cxc  (min) 9.04 9.04

Initial objective function value (no lane reversals) 3.93 min
Final objective function value (with reversals) 3.52 min

Example 6

In this example, example 2 is now repeated with link costs being given by the Greenshields

link delay function. Assuming no reversibility ( 021 ) results in travel times of 3.2 and
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4.07 min for links 1 and 2, respectively for an average system travel time of 3.78 min.

Allowing for reversibility, we get 3.01  and 3.02  lanes. The average system travel

time at optimality is 3.68 min, a reduction of 2.65% from initial conditions. The final

parameter values show that 39.545// 222111 cxcx  veh-min/lane, which satisfy

optimality condition (5.36). However, unlike case 1, the travel times and marginal travel

times are not equal for links 1 and 2  due to the specification of different link cost functions.

Table 5.8 summarizes the optimal parameter values of this example.

Table 5.8 Example 6 optimal parameter values

Parameter Link 1 Link 2

x  (vehicles) 200 400

 (lanes) – 0.3 0.3

l  (lanes) 2.7 4.3

c  (min) 3.85 3.59

c
 (min/lane) – 2.73 – 1.36

x
c

 (min/vehicle) 0.0368 0.0147

cx  (veh-min/lane) – 545.39 – 545.39

x
cxc  (min) 11.22 9.46

Initial objective function value (no lane reversals) 3.78 min
Final objective function value (with reversals) 3.68 min

Example 7

In this example, example 3 is repeated with link costs being given by the Greenshields link

delay function. Assuming no reversibility,( 032 ) results in 4581x  veh, 5422x

veh, 2983x  veh, and 2024x  veh with an average system travel time of 8.61 min.

Allowing for reversibility, we get 203.22  lanes and 203.23  lanes. The optimal
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flow assignment corresponding to this lane reversibility scheme is 3371x  veh, 6632x

veh, 1923x  veh, and 3084x  veh with an average system travel time of 5.72 min, a 34%

reduction from initial conditions. Moreover, parameter values at optimality show that

76.8821// 333222 cxcx  veh-min/lane, which satisfy optimality condition

(5.36). The travel times and marginal travel times are equal for links 1 and 2, and link 3 and 4

which verify SO optimality conditions. Furthermore, the travel times and marginal travel

times are equal for links 2 and 3 due to the specification of identical link cost functions (in

fact all links have equal marginal travel times in this particular example). Table 5.9

summarizes the optimal parameter values for this example.

Table 5.9 Parameter values at optimality for example 7

Parameter Link 1 Link 2 Link 3 Link 4

x  (vehicles) 337 663 192 308

 (lanes) N/A 2.203 – 2.203 N/A

l  (lanes) 2 6.203 1.797 2

c  (min) 6.51 5.33 5.33 5.92

c
 (min/lane) – 5.39 – 1.93 – 6.65 – 5.68

x
c

 (min/vehicle) 0.0319 0.018 0.0622 0.0369

cx  (veh-min/lane) – 1812.56 – 1276.88 – 1276.88 – 1748.22

x
cxc  (min) 17.28 17.28 17.28 17.28

Initial objective function value (no lane reversals) 8.61 min
Final objective function value (with reversals) 5.72 min

Example 8

In this example, example 4 is repeated with link costs being given by the Greenshields

volume delay function. Assuming no reversibility, ( 032 ), results in 4591x  veh,
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5412x  veh, 3303x  veh, and 1704x  veh with an average system travel time of 8.54

min. Allowing for reversibility we get 872.12  lanes and 872.13  lanes. The optimal

flow assignment corresponding to this lane reversibility scheme is 3481x  veh, 6522x

veh, 2483x  veh, and 2524x  veh with an average system travel time of 5.96 min, a 30%

reduction from initial conditions.

Moreover, parameter values at optimality show that 23.4811// 333222 cxcx

veh-min/lane, which satisfy optimality condition (5.36). Moreover, the travel times and

marginal travel times are equal for links 1 and 2, and link 3 and 4 which verify SO optimality

conditions. Table 5.10 summarizes the parameter values for this example.

Table 5.10 Parameter values at optimality for example 8

Parameter Link 1 Link 2 Link 3 Link 4

x  (veh) 348 652 248 252

 (lanes) N/A 1.872 – 1.872 N/A

l  (lanes) 2 5.872 2.128 2

c  (min) 6.88 5.47 5.72 6.16

c
 (min/lane) – 5.97 – 2.27 – 5.96 – 6.12

x
c

 (min/veh) 0.0343 0.0205 0.0510 0.0487

cx  (veh-min/lane) – 2077.03 – 1481.23 – 1481.23 – 1539.68

x
cxc  (min) 18.82 18.82 18.41 18.41

Initial objective function value (no lane reversals) 8.54 min
Final objective function value (with reversals) 5.96 min
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5.5 CF-DTA SOLUTION ALGORITHM

Numerical examples 1, 3, 5, and 7 highlighted a special condition, when link cost functions

are identical, that renders the link travel time marginals for coupled links to be identical at

optimality. Such a condition is rather intuitive and suggests reversing lanes from links with

lower marginal costs to links with higher marginal costs until equilibrium in marginal costs is

reached. This implies the following simple solution heuristic for a given flow pattern f :

Step 1:  Given flow pattern f , set of reversible links A . Set iteration counter 0 , and

the lane reversibility vector 0)0( .

Step 2:  Perform dynamic network loading of f  using the current number of lanes vector

)(l . Compute the link total travel time marginals )(~
ac  for each reversible link

Aa .

Step 3: If Aacc aa ,~~ )()(
1  (present convergence threshold), or

Aalaa ,1 )()(  (total reversibility) stop, or max  (maximum number

of iterations), lane reversible vector )(  is optimal, otherwise continue to Step 4.

Step 4: For each coupled links Aaa 1, , if )()(
1~~

aa cc , reverse a lane from link

1a , i.e. 1)()(
11 aa  and 1)()(

aa . Update lane vector

)()()1( ll  and go to step 2. Set 1 .

5.6 OPTIMAL DEMAND SCHEDULING WITH CONTRAFLOW PROBLEM

In this section, the demand and supply strategies are combined into one model to form the

ODS-CF-DTA model.

5.6.1 Problem Statement and Formulation

Consider an urban setting represented by the directed graph ),( ANG  with multiple origins

Rr , requires evacuation due to an extreme event. Assume that a set of shelter destinations
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Ss  for that type of event has been identified. Assume that the set of reversible links A  has

been identified. Assume that the total demand to be evacuated at each origin rd  is known

and must be evacuated before a target time W . Additionally, assume that the network is

empty at the time of evacuation.

The ODS-CF-DTA problem is therefore to determine the time-dependent path-flow pattern

f  and the lane-reversibility vector  that minimize network clearance time W  while

keeping the total system trip time at a minimum. As in previous models, the destination

choice is incorporated by connecting all the destinations s  to a super-sink s  via zero-cost

infinite capacity links. This transforms the problem from a multi-destination to a single-

destination DTA problem. The problem is inherently bi-objective but is formulated as a

single-level minimization program as follows:

Given: Asdr ,,

Find: apsrf ,,,

To:
r p

psrpsr fCZ ,,,,)(Min f (5.49)

Subject to: rdf r
p

psr ,, (5.49.a)

,,0ˆ~
,,,,, prf srpsrpsr (5.49.b)

,,0ˆ~
,,, prsrpsr (5.49.c)

1jam. AaLly aaaaa (5.49.d)

Aaaaa
1,01 (5.49.e)

Aaalaa
1,011 (5.49.f)
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Aal aa 01 (5.49.g)

,,0,, prf psr (5.49.h)

DTA Constraints (5.49.i)

The objective function is to minimize the average trip times in the network. Constraints

(5.49.b) and (5.49.c) represent the MNCT-DTA optimality conditions, which in combination

with constraints (5.49.a), (5.49.h) and (5.49.i) form the ODS-DTA problem. Constraints

(5.49.e)-(5.49.g) are specific to the CF-DTA model. The optimality conditions for this

problem will be the aggregation of the ODS-DTA and CF-DTA optimality conditions.

5.6.2 Optimal Demand Scheduling with Contraflow Problem Solution Heuristic

The solution procedure for the ODS-CF-DTA problem is also a two-stage procedure. In

Stage I, the MNCT-DTA and CF-DTA problems are combined to solve for the optimal joint

flow pattern and lane distribution configuration that results in minimizing the network

clearance time. The resulting problem is referred to as MNCT-CF-DTA and is solved in an

iterative bi-level framework where an MNCT-DTA problem is solved in the lower level,

given current optimal lane configuration to find the optimal flow pattern that minimizes

network clearance time and a CF-DTA problem is solved in the upper level, given current

optimal flow pattern, to find the optimal lane configuration that minimizes trip times in the

network. The process iterates until convergence. In the second stage, an LNCT-DTA problem

is solved, given the optimal lane configuration * , minimum network clearance time *f ,

and using the MNCT-CF-DTA solution as the starting solution.

5.6.3 The MNCT-CF-DTA Solution Algorithm

The solution algorithm for the MNCT-CF-DTA is described in detail below:

Step 1: Initialization

Set outer-loop iteration counter 1k  and inner-loop iteration counter 1 .
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Set lane reversibility vector 0)1( .

Let the lane configuration vector )1(l  = )(kl

Connect safety destinations s  to super sink s  with zero-time infinite capacity links.

Solve for the time-dependent MNCT-DTA marginal cost shortest path tree
)(k

sr,P

for all ),,( sr  combinations assuming free-flow link travel times.

For each origin r , search across all shortest paths trees ,
)(k

sr,P  and select  the

departure time and path combination *)*,( p  that results in lowest possible MNCT-

DTA marginal cost. Let )(
,

k
srp  be that path, i.e.,:

)(
,,,

)(*
*,,

)(
,

~min~|**,
k

psrp

k
psr

k
sr pp

Perform an AON of the demand rd  onto )(, ksrp  for every r  to obtain path

assignments )(
,,

k
psrf .

Inner-Loop: CF-DTA Algorithm

Step 2: Dynamic Network Loading Problem

Use DYNASMART to simulate path assignments )(
,,

k
psrf  using the current lane

configuration vector )(l .

Compute the link total travel time marginals )(~
ac  for each reversible link Aa .

Step 3: Convergence Checking

If Aacc aa ,~~ )()(
1  (convergence threshold), or Aalaa ,1 )()(

(total reversibility) or max  (maximum number of inner-loop iterations), stop.

Lane reversibility vector )(  is optimal. Set )1(kl = )(l ,  and  go  to  step  5.

Otherwise continue to Step 4.

Step 4: Update Number of Lanes

For each coupled links Aaa 1, , if )()(
1~~

aa cc , reverse a lane from link 1a ,

i.e. 1)()(
11 aa  and 1)()(

aa .
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Update lane configuration vector )()()1( ll .

Increment inner-loop counter 1  and go to Step 2.

Outer-Loop: MNCT

Step 5: Dynamic Network Loading Problem

Use DYNASMART to simulate path assignments )(
,,

k
psrf .

Estimate time-dependent link travel times )( )(kc f  and time-dependent link marginal

travel times )(~ )(kc f  from simulation results.

Step 6: Update Objective Function

Compute )(
MNCT

~ kG  according to (4.14).

Compute average evacuation time (proxy for MNCT-DTA objective) as

r p

k
psr

r p

k
psr

k
psr

k

f

f

AET )(
,,

)(
,,

)(
,,

)( (5.50)

Step 7: Check Convergence

Count the number of times the condition
)(

,,
)1(

,,
k

psr
k

psr ff  is satisfied for

all ),,( pr  combinations and denote that number by )(V .

If )()( VV  or kk  then stop, otherwise set 1kk  and go to step 5.

Step 8: Time-Dependent MNCT-DTA Marginal Cost Shortest Path Problem

Solve for the time-dependent least MNCT-marginal time path tree
)(k

sr,P  for  all

),,( sr  combinations using link travel times )( )(kc f  and link marginal travel times

)(~ )(kc f .

Add
)(

,
k

srp  for all departure times  to the active-path set )(, ksrP  for each r .

Step 9: Update of Path Assignments

Find the optimal un-adjusted shifts
)(

,,
k

psr  for all paths in active set )(, ksrP

according to equations (4.15) and (4.16).
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Find the optimal adjusted shifts
)(

,,
~ k

psr  for all paths in )(, ksrP  according  to

equations (4.18) and (4.19).

Update the assignments
)1(

,,
k

psrf  for the next iteration )1(k  using for each

),,( pr  using (4.20).

5.7 EXPERIMENTAL RESULTS

The following set of experiments is aimed at analyzing the performances of the MNCT-CF-

DTA and ODS-CF-DTA algorithms. In these experiments, we assume that each reversible

link a  will keep at least one lane in the direction of link a . The reason for this is two fold.

First, from a logistics point of view, it allows for emergency vehicles and first responders to

have complete accessibility, and secondly, from a modeling point of view, it guarantees full

network connectivity and consequently better performance of the solution algorithms. We

then have:

Aaall aaa
1,11 1 (5.51)

5.7.1 Convergence Pattern for the MNCT-CF-DTA Algorithm

The first series of experiments aims to examine the convergence pattern of the MNCT-DTA

algorithm. Two evacuation demand levels are considered, namely, 30,000 vehicles (light-

moderate traffic) and 45,000 vehicles (heavy traffic). For each demand level, the analysis is

made for three solution points: 1) at initial conditions, 2) at minimum average evacuation

time (optimal objective value), and 3) after 100 iterations. Zone 2 is designated as the safety

destination with all the freeway links being candidates for lane reversal (Figure 5.4).
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Figure 5.4 Reversible highway lanes in Fort Worth network
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Depicted in Figure 5.5 are the results of the first 100 iterations of the MNCT-CF-DTA

algorithm for an evacuation demand of 30,000 vehicles. Initial conditions for such a demand

level are a network clearance time of 195.5 min, an average evacuation time of 105.3 min,

and an average trip time is 105.3 min as well. The minimum average evacuation time is 43.64

min and is reached after 80 (outer-loop) iterations with a corresponding minimum network

clearance time of 83.78 min and the average trip time of 30.62 min. Therefore, the MNCT-

CF-DTA algorithm managed to improve the network clearance time by 57%, the average

evacuation time by 59%, and the average trip time by 71% from initial conditions. Moreover,

the contraflow capability within the MNCT-CF-DTA improved the minimum average

evacuation time obtained by the MNCT-DTA algorithm (54.2 min) by a further 20% and the

network clearance time (108.6 min) by a further 25%.

After 100 iterations, the average evacuation time is 46.91 min, a 7% increase over optimal

conditions. The network clearance time is 84.27 min, a 0.6% decrease over optimal

conditions. The  average trip time is 29.22 min, a 5% decrease over optimal conditions. All

these values are slightly different from the values from at optimal solution, which validates

the appropriateness of the descent method embedded in the MNCT-CF-DTA solution

algorithm. Table 5.11 summarizes the results for the MNCT-CF-DTA algorithm.
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Figure 5.5 Convergence pattern for the MNCT-CF-DTA algorithm
for Fort-Worth network – 30,000 vehicles

Table 5.11 Summary of MNCT-CF-DTA optimality results for Fort Worth network – 30,000 vehicles

Measure of Effectiveness Initial
Conditions

Results at
Optimality

Results after
100 Iterations

Iteration 0 80 100

Network Clearance Time (min) 195.5 83.78 84.27

Average Evacuation Time (min) 105.3 43.64 46.91

Average Trip Time (min) 105.3 30.62 29.22

Depicted in Figure 5.6 are the results of the first 100 iterations of the MNCT-CF-DTA

algorithm for an evacuation demand of 45,000 vehicles. Initial conditions for such a demand

level are a network clearance time of 386.3 min, an average evacuation time of 206.9 min,

and an average trip time is 206.9 min as well. The minimum average evacuation time is 61.16

min and is reached after 83 (outer-loop) iterations with a corresponding minimum network

clearance time is 122.87 min and an average trip time in the network is 43.67 min. Therefore,

compared with initial conditions, the MNCT-CF-DTA algorithm managed to improve the

network clearance time by 70% and network clearance time by 68%. Moreover, the

contraflow capability within the MNCT-CF-DTA improved the minimum average evacuation
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time obtained by the MNCT-DTA algorithm (83.4 min) by a further 27% and the network

clearance time (166.8 min) by a further 26%.
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Figure 5.6 Convergence pattern for the MNCT-CF-DTA algorithm
for Fort-Worth network – 45,000 vehicles

After 100 iterations, the network clearance time is 126.54 min, a 2.9% increase over optimal

MNCT-CF-DTA conditions. The average evacuation time is 62.73 min, a 2.5% increase over

optimal MNCT-CF-DTA conditions. The average trip time is 43.10 min, a 1% decrease over

optimal MNCT-CF-DTA conditions. All these values are slightly different from optimal

values which validates the appropriateness of the descent method embedded in the MNCT-

CF-DTA solution algorithm. Table 5.12 summarizes the results for the MNCT-CF-DTA

algorithm.
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Table 5.12 Summary of MNCT-CF-DTA optimality results for Fort Worth network– 45,000 vehicles

Measure of Effectiveness Initial
Conditions

Results at
Optimality

Results after
100 Iterations

Iteration 0 83 100

Network Clearance Time (min) 386.3 122.87 126.54

Average Evacuation Time (min) 206.9 61.16 62.73

Average Trip Time (min) 206.9 43.67 43.10

5.7.2 Lane Reversibility Simulation Results

Figure 5.7, Figure 5.8, Figure 5.9 and Figure 5.10 show the optimal lanes redistribution of the

reversible highway links in Forth Worth network, starting with the freeway links farthest

from safety destination. These plots reveal that, no flip-flopping of lane-reversals in the

network occurred, which validates the lane-distribution heuristic (CF-DTA) embedded in the

MNCT-CF-DTA algorithm. Moreover, the closer the links are to the safety destination, the

faster the lane reversibility occurred. For example, for coupled links 117-200 and 200-117, a

lane is reversed from 200-117 to 117-200 every iteration of the CF-DTA until full

reversibility (Figure 5.10), whereas for links 119-116 and 116-119, which are the farthest

from safety, the first reversal is only made after 13 iterations of the algorithm, and in fact, did

not even reach require reversibility Figure 5.7. The lane distribution for the sections in-

between revealed a smooth transition between these extremes, though all did require full-

reversibility at optimality.
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Figure 5.7 Lanes re-distribution for coupled links 119-116 and 116-119
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Figure 5.9 Lanes re-distribution for coupled links 44-49 and 52-48
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5.7.3 Convergence Pattern Analysis for the ODS-CF-DTA Algorithm

The ODS-CF-DTA algorithm is a two stage process. The MNCT-CF-DTA problem is solved

in the first stage to determine the network clearance time and the optimal lane configuration.

The LNCT-DTA is then solved in the second stage, given the network clearance time and

optimal lane configuration from the first stage, to minimize trip times in the network. In this

set of experiments however, the second stage, i.e. the LNCT-DTA problem is solved with the

MNCT-CF-DTA solution, i.e. path assignments, as the starting solution. That is, the initial

solution for the LNCT-DTA problem is not obtained by an AON assignment but rather from

the outcome of solving the MNCT-CF-DTA. Such a solution is therefore feasible and is

expected to converge faster.

The first experiment pertains to an evacuation demand level of 30,000 vehicles. Initial

conditions are a network clearance time of 195.5 min, and average evacuation and trip times

of 105.3 min. Figure 5.11, Figure 5.12, and Figure 5.13 show the convergence patterns of the

network clearance time, average evacuation time, and average trip time, respectively.
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Figure 5.11 Network clearance time convergence pattern for ODS-CF-DTA algorithm
for Fort Worth network – 30,000 vehicles
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Figure 5.12 Average evacuation time convergence pattern for ODS-CF-DTA algorithm
for Fort Worth network – 30,000 vehicles
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Figure 5.13 Average trip time convergence pattern for ODS-DTA algorithm
for Fort Worth network – 30,000 vehicles
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The first stage of the ODS-CF-DTA algorithm, i.e. the MNCT-CF-DTA algorithm converges

after 80 (outer-loop) iterations. The resulting network clearance time is reduced by 57.14% to

83.78 min, the average evacuation time is reduced by 58.56% to 43.64 min, and the average

trip time is reduced by 70.92% to 30.62 min. The MNCT-CF-DTA solution is then used as

the initial solution to the LNCT-DTA algorithm (Stage II) with a target evacuation time of

83.78 min. The LNCT-DTA algorithm converges after 26 iterations. The network clearance

time is slightly higher (0.92%) at 84.55 min; the average evacuation time is slightly higher at

44.55 min or a 2.09% increase; and the average trip time is reduced by 25.47% to 22.82 min.

These results compare favorably with the LNCT-DTA results obtained without a feasible

starting solution as shown in (5.13). Note that it only took 26 iterations for the LNCT-DTA

algorithm to converge if the MNCT-CF-DTA optimal solution is used as the starting solution

as opposed to 86 iterations for the case where no feasible solution is used.

Table 5.13 Summary of ODS-DTA optimality results for Fort Worth network – 30,000 vehicles

Measure of Effectiveness Initial
Conditions

Results at
End of Stage I

(MNCT-CF-DTA)

Results at
End of Stage II
(LNCT-DTA)*

Results at end
of Stand-alone
LNCT-DTA**

Iteration 0 80 26 (106 Total) 86

Network Clearance Time (min) 195.5 83.78 84.55 86.48

Average LNCT Time (min) N/A N/A 23.31 22.61

Average Evacuation Time (min) 105.3 43.64 44.55 44.03

Average Trip Time (min) 105.3 30.62 22.82 22.01

* Initial solution is obtained from stage I
** Initial solution is AON

The second experiment pertains to an evacuation demand level of 45,000 vehicles. Initial

conditions are a network clearance time of 386.3 min, and average evacuation and trip times

of 206.9 min. Figure 5.14, Figure 5.15 and Figure 5.16 show the convergence patterns of the

network clearance time, average evacuation time, and average trip time, respectively. The

first stage of the ODS-CF-DTA algorithm, i.e. the MNCT-CF-DTA algorithm converges
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after 80 (outer-loop) iterations. The resulting network clearance time is reduced by 68.14% to

122.87 min, the average evacuation time is reduced by 70.23% to 61.16 min, and the average

trip time is reduced by 78.89% to 43.67 min. The MNCT-CF-DTA solution is then used as

the initial solution to the LNCT-DTA algorithm (Stage II) with a target evacuation time of

122.87 min and final lane reversibility values.

The LNCT-DTA algorithm converges after 24 iterations. The network clearance time is

slightly higher (0.75%) at 123.78 min; the average evacuation time is slightly higher at 62.3

min or a 1.86% increase; and the average trip time is reduced by 28.90% to 31.05 min. These

results compare favorably with the LNCT-DTA results obtained without a feasible starting

solution as shown in Table 5.14. Note that it only took 24 iterations for the LNCT-DTA

algorithm to converge if the MNCT-CF-DTA optimal solution is used as the starting solution

as opposed to 86 iterations for the case where no feasible solution is used.
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Figure 5.14 Network clearance time convergence pattern for ODS-CF-DTA algorithm
for Fort Worth network – 45,000 vehicles
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Figure 5.15 Average evacuation time convergence pattern for ODS-CF-DTA algorithm
for Fort Worth network – 45,000 vehicles
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Figure 5.16 Average trip time convergence pattern for ODS-DTA algorithm
for Fort Worth network – 45,000 vehicles
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Table 5.14 Summary of ODS-DTA optimality results for Fort Worth network – 45,000 vehicles

Measure of Effectiveness Initial
Conditions

Results at
End of Stage I

(MNCT-CF-DTA)

Results at
End of Stage II
(LNCT-DTA)*

Results at end
of Stand-alone
LNCT-DTA**

Iteration 0 83 24 (107 Total) 92

Network Clearance Time (min) 386.3 122.87 123.78 124.12

Average LNCT Time (min) N/A N/A 32.11 32.16

Average Evacuation Time (min) 206.9 61.16 62.3 62.22

Average Trip Time (min) 206.9 43.67 31.05 31.01
* Initial solution is obtained from stage I
** Initial solution is AON
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6 SUMMARY OF CONTRIBUTIONS AND FINDINGS

The main focus of this study is to develop Dynamic Traffic Assignment (DTA) models for

evacuation that incorporate demand and supply strategies to improve the mobility to safety.

Two strategies are considered in this dissertation namely, 1) demand scheduling whereby the

evacuation demand is spread over a larger period to alleviate congestion and minimize

network clearance time; and 2) contraflow design, whereby lanes are reversed (or capacity is

re-distributed) to create a temporary increase in outbound capacity. The development of these

models have resulted in research contributions in the fields of operational transportation

planning and evacuation management. A summary of the contributions and findings are

presented in the following sections.

6.1 RESEARCH CONTRIBUTIONS

This research has several contributions in the fields of operational transportation planning

and evacuation management. The first is the estimation of the minimum network clearance

time by formulating the Minimum Network Clearance Time (MNCT) DTA problem as a

mathematical model. While such a problem is not new, it has not been estimated optimally

because previous studies have fixed the departure times (existing evacuation models have

always associated evacuees with departure times obtained from demand mobilization curves).

This effectively reduces the problem to the classical System Optimal (SO) DTA problem. On

the other hand, by treating the departure times, destination, and route choices as decision

variables, a better lower bound is obtained. This is achieved by intelligently scheduling the

evacuation trips to minimize the network clearance time.

The second contribution of this dissertation is the combination of the MNCT-DTA and the

Latest Network Clearance Time (LNCT) DTA models in a bi-objective framework to

minimize the network clearance time while keeping the trip times in the network at a

minimum. None of the evacuation models reviewed in this dissertation, to the best
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knowledge of the author, has this capability.

The third contribution is the determination of the optimal capacity distribution principle for

the contraflow network design problem. Previous studies on this topic employed sensitivity

or trial-and-error type of analysis in order to find the optimal lane reversibility policy. In this

dissertation, the problem is formulated as a minimization problem and a solution algorithm is

proposed and tested based on its derived optimality conditions.

The fourth and the main contribution of this dissertation is the integration of demand

scheduling and contraflow strategies to minimize network clearance time at a minimum cost

to the users (evacuees) in a single framework. Again, to the best knowledge of the author, all

the evacuation studies have focused on either demand or supply strategies, but not both.

Finally, and as a by-product of this research, a contribution is made in the field of simulation-

based DTA. Since all the evacuation problems formulated in this dissertation are variations of

the classical SO-DTA problem, an efficient yet theoretically sound simulation-based solution

methodology that outperforms averaging heuristics such as the Method of Successive

Averages (MSA) has been developed. In this regards, the work of Lu (2007) on developing a

theoretically-sound simulation-based User Equilibrium (UE) DTA model and its solution

heuristic is extended to the SO-DTA case along with the necessary modifications.

6.2 RESEARCH SUMMARY AND FINDINGS

6.2.1 Efficient Solution for the Simulation-based SO-DTA Model

All the evacuation problems to be addressed in this dissertation are variations of the classical

SO-DTA problem. While SO-DTA models have been formulated analytically in the past,

their solution properties have been obtained at the cost realistic traffic flow behavior. On the

other hand, the solution quality of simulation-based DTA models has long been questioned

despite their ability to handle larger networks and realistically capture traffic dynamics.
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At the core of the mistrust in simulation-based DTA models are averaging heuristics such as

MSA. While very easy to implement, the lack of derivative information results in improper

determination of descent directions, which forces such methods to oscillate and sometimes

even diverge. For example, MSA shifts traffic from inferior paths to current optimal

(auxiliary) paths using predetermined step sizes with complete disregard to the degree of

inferiority. That is slightly inferior paths are penalized as much as the most inferior path and

this results in an improper descent direction.

Therefore, it is of great importance to have a hybrid model that combines the theoretical

elegance of analytical models with the traffic realism of their simulation counterparts.

Candidate traffic simulators must be able to push traffic through the network according to

acceptable traffic flow theory – modified Greenshields model in this study – all while

packing substantial modeling prowess that includes intersection control, formation and

dissipation of queues, information supply strategies, incidents, link closures, link priorities,

multiple user classes, and others.

The traffic simulator’s main role is therefore to evaluate the path-assignments through

simulation and capturing the network state, i.e. link travel times and turn penalties, in the

process. The link travel times and turn penalties are then fed into the analytical model to

determine the assignments for next iteration. The process then iterates until convergence or a

stable solution is found.

6.2.1.1 Theoretically Sound Simulation-based SO-DTA Model

The work done by Lu (2007) on developing a theoretically sound simulation-based UE-DTA

problem is extended to the SO-DTA case with appropriate modifications and enhancements

made to its solution algorithm. The SO-DTA problem is therefore reformulated via a gap

function, as a nonlinear minimization program. An efficient column generation-based

optimization framework is then used to integrate a descent method that minimizes the gap
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function with DTA constraints being satisfied via a dynamic traffic simulation model.

Computational results on both small and large real road networks demonstrate that the

proposed SO-DTA algorithm is efficient and effective in obtaining close-to-optimal

solutions.

The SO-DTA model is essentially a hybrid model that integrates a traffic simulation model

with an analytical model. The major advantage of having a traffic simulation model is to

bypass the need to use rudimentary link exit functions or link performance functions to model

traffic flow. The SO-DTA model is first formulated as a classical minimization program with

the exception that DTA constraints are satisfied through simulation. The optimality

conditions are then derived to gain insights in designing its solution algorithm. Given the

optimality conditions, the underlying Variational Inequality (VI) formulation of the SO-DTA

problem is identified and used to establish solution existence and uniqueness. Nonetheless,

the presence of simulation will most probably preclude from having unique solutions. The VI

is later reformulated as an equivalent nonlinear minimization program via an appropriate gap

function.

A solution framework that integrates both a simulation model and an analytical model is

devised to solve the SO-DTA model. The simulation model is responsible for evaluating the

time-dependent path-assignments solutions found by the analytical model as well as

estimating the link travel times and penalties. A descent method is used to solve the

analytical model. The negative of the projected gradient is used to determine the search

direction along which the objective function is expected to improve (decrease). A second-

order route-swap algorithm is then developed to find the optimal step sizes for the gradient-

based search direction on the active (non-zero flow) paths set.

6.2.1.2 Analytical Link Travel Time Marginals

The SO optimality conditions require that path marginal travel times be equilibrated for the
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same ),,( sr  combination. However, the travel time marginals require differentiating the

objective function twice with respect to flow (or the link cost once with respect to flow) and

this has been cumbersome in the past due to the use of simulation techniques an the lack of a

well-behaved link cost function. Hence, the common approach has been to estimate the link

cost derivatives, xxc /)( , using numerical techniques with all its instability and

shortcomings [Peeta (1994)].

To alleviate the instability, this study uses a differentiable link cost function to estimate the

link marginal travel times. This is done by expressing link speed term in the Greenshields

model as the quotient of the link length by travel time. Then the terms are rearranged to

express the link travel time as a function of the link attributes to obtain a continuous

differential link-performance function. Moreover, estimating the link marginal travel times

analytically requires less computation time and memory than numerical methods, making the

proposed descent method more attractive than non-derivative methods.

Tests on a Nine-node network showed that analytical marginals clearly resulted in a stable

system trip time whereas numerical marginals resulted in more fluctuations when

implemented within an MSA-based solution heuristic. A similar effect is noticed when

analyzing the extended convergence pattern for the relative gap.

6.2.1.3 Column Generation and Vehicle-based Implementation

All the models proposed in this study are path-based, which necessitates the explicit storage

of the grand path set and assignment results. Although it is straightforward to record all the

paths and their assignments in multi-dimensional arrays, memory requirements will grow

dramatically with network size, the number of Origin-Destination (O-D) pairs, number of

iterations, and planning horizon. To circumvent the intensive memory requirements

especially for large-scale network applications of these models, a vehicle-based

implementation technique is used throughout this dissertation.
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The vehicle-based method, which is only available for traffic simulators that track individual

vehicles in the network, extracts the active (non-zero flow) path set and the corresponding

flows from vehicle trajectories. Hence, there is no need to enumerate all paths in the network,

since non-used paths will never be stored. This is particularly advantageous for large-scale

DTA applications, as the total number of feasible path/alternatives generated by the iterative

solution algorithm, after a certain number of iterations, could be significantly greater than the

total number of vehicles, which is fixed a priori. The benefits are compounded when the

column generation technique is used to generate efficient new solutions. Therefore, at most,

the model needs to store an additional path per ODT.

Previous experiments [Sbayti et al. (2007), Lu (2007)] show that this vehicle-based

implementation technique requires much less computer memory than the typical multi-

dimensional grand path set implementation method and is comparable in accuracy to non-

vehicle-based implementation techniques.

6.2.1.4 Optimal Route-swap Heuristic

The most important aspect of any simulation-based solution algorithms centers around

updating current assignments )(kf  for the next iteration to obtain )1(kf .  While  most

simulation-based models shift flow from non-optimal routes to optimal routes, they typically

apply a fixed swap rate to the search direction to determine the flow shifts. Still, the

determination of the swap rate is problematic. A small swap rate and convergence will take

forever to reach, and a large swap-rate and oscillations will occur [Szeto and Lo (2005)]. The

general approach has been to parametrically solve for the optimal swap-rate, however, often

than not, the resulting optimal swap-rate is network specific, flow-specific, and by all means

non-transferable to other networks.

Looking at the units, the swap-rate is actually a factor that converts differences in travel time

to vehicles. However, for the units of the swap-rate to be consistent, it must have units of
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vehicles/time, which corresponds to the inverse of the second derivative of the objective

function with respect to flow. Jayakrishnan et al. (1994) used a similar method based on the

inverse Hessian. This study, on the other hand, derives this conversion factor by solving a

system of equalities to obtain the optimal swap-rate to equilibrate the set of active paths in

the network. The calculated optimal swap-rates are then adjusted for feasibility and applied in

the path-assignment update step of the algorithm. The swap-rate computed by this method

differs slightly from the diagonal elements of the Hessian matrix used by Jayakrishnan et al.

(1994). We refer to this heuristic as the Optimal Route Swap (ORS) heuristic.

Experiments on the Nine-node network demonstrate that ORS guarantees descent at almost

each iteration due to the exploitation of local information and derivative information whereas

the MSA fluctuates considerably before stabilizing. Experiments on Fort Worth network also

shows that the ORS heuristic easily outperforms MSA under two levels of time-varying O-D

demand. The ORS heuristic shows consistent convergence properties irrespective of demand

levels. This essentially means that the ORS heuristic guarantees, on average, improving the

objective function with each additional iteration. The same cannot be said about the MSA.

Nonetheless, MSA has been shown to perform satisfactorily under light to medium

congestion levels, after which fluctuations take over.

6.2.2 Evacuation Demand Models

Two demand models are developed, namely the MNCT-DTA and the LNCT-DTA model.

The former is used to minimize the network clearance time. The latter is used to minimize the

system-wide average trip time while ensuring that demand exits the network before a

specified target evacuation time. These two models are then combined into one model which

we refer to in this dissertation as the Optimal Demand Scheduling (ODS) DTA model, whose

objective is to minimize network clearance time at a minimum cost to the network.
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6.2.2.1 The Minimum Network Clearance Time Problem

The MNCT-DTA model is formulated as a minimization program by replacing the network

clearance time objective by an equivalent yet much simpler objective, the average evacuation

time in this case. Figure 6.1 illustrates the difference between trip times and evacuation

times.
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Figure 6.1 Trip time versus evacuation time

The model is then successfully transformed into a structure analogous to an SO-DTA by

minimizing an appropriate path-cost function psr ,, :

,,,,,,, psrC psrpsr (6.1)

The optimality conditions for the MNCT-DTA model are derived and they show a marked

resemblance to the SO-DTA model. Whereas the SO-DTA model aims at equilibrating the

path marginal travel times among non-zero path flows for each ),,( sr , the MNCT-DTA

model aims at equilibrating another path cost, psr ,,
~  in this case, among non-zero path-

departure time combinations for each ),( sr , where

psrpsr C ,,,,
~~ (6.2)

is the marginal cost incurred by the MNCT-DTA system due to an additional vehicle

departing from r  to s  along path p  at departure time . The optimality conditions for the

MNCT-DTA problem can be formally expressed as follows:

,,0ˆ~ ,,,,, prf srpsrpsr (6.3.a)
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,,0ˆ~ ,,, prsrpsr (6.3.b)

Optimality condition (6.3.a) represents a gap function for the MNCT-DTA problem.

Minimizing such a gap function (6.4) is therefore equivalent to solving the original MNCT-

DTA problem. Moreover the solution algorithm devised for the SO-DTA problem can be

used to solve the MNCT-DTA problem as well.

r p
srpsrpsrfG ,,,,, ˆ~)(Min MNCT f (6.4)

Simulation experiments on the Nine-node network show that the MNCT-DTA problem

reduced the network clearance time by 28% to 45% and the average trip times by 83% to

93% over initial conditions (simultaneous evacuation). Similarly, simulation experiments on

the Fort Worth network show that the MNCT-DTA problem reduced the network clearance

time by 44% to 57% and the average trip times by 83% to 96% from initial conditions.

6.2.2.2 The Latest Network Clearance Time Problem

The second demand model developed in this dissertation is LNCT-DTA model, which is

formulated by adding arrival time constraints to the classical SO-DTA problem:

,,,, prWC psr (6.5)

The model is then successfully transformed into a structure analogous to an SO-DTA by

minimizing an appropriate path-cost function psr ,, :

0;,,,;),(

,,,;),(

,,,

,,,
,,

MpsrpMC

psrpC

srpsr

srpsr
psr (6.6)

where M  is a large positive number and sr,  is the set of restricted path-departure times

combinations for pair sr  (vehicles belonging to sr,  will exit the network later than the
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target evacuation time W ):

,,,;|),( ,,, psrWCp psrsr

The optimality conditions for the LNCT-DTA model show a marked resemblance to the SO-

DTA model. Whereas the SO-DTA model aims at equilibrating the path marginal travel

times among non-zero path flows for each ),,( sr ,  the  MNCT-DTA  model  aims  at

equilibrating another path marginal cost, psr ,,~  in this case, among non-zero path-departure

time combinations for each ),( sr , where

,,;),(;~

0;,,;),(;~
~

,,,

,,,
,,

prpC

MprpCM

srpsr

srpsr
psr (6.7)

is the marginal cost incurred by the LNCT-DTA system due to an additional vehicle

departing from r  to s  along path p  at departure time . The optimality conditions for the

LNCT-DTA problem are formally expressed as follows:

,,0~ ,,,,, prf srpsrpsr (6.8.a)

,,0~ ,,, prsrpsr (6.8.b)

Optimality condition (6.8.a) represents a gap function for the LNCT-DTA problem.

Minimizing such a gap function (6.9) is therefore equivalent to solving the original LNCT-

DTA problem. Moreover the solution algorithm devised for the SO-DTA problem can also be

used to solve the LNCT-DTA problem as well.

r p
srpsrpsrfG ,,,,, ~)(Min LNCT f (6.9)

Simulation experiments on the Nine-node network show that the LNCT-DTA problem, with
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target evacuation times set as the minimum network clearance times (as computed from the

corresponding MNCT-DTA problems) reduced the average trip times obtained by the

MNCT-DTA problem by an additional 27% to 41%. Similarly, simulation experiments on the

Fort Worth network show that the LNCT-DTA problem reduced the average trip times

obtained by the MNCT-DTA problem by an additional 11% to 24%.

6.2.2.3 Optimal Demand Scheduling Problem

Ideally, the best solution to an evacuation problem would be to clear the network in the least

amount of time, with the evacuees collectively accruing the least amount of travel times. This

is achieved by combining both the MNCT-DTA and LNCT-DTA problems in a bi-objective

framework whose solution is obtained in two sequential stages. An MNCT-DTA problem is

solved first to determine the minimum network clearance time *W , and an LNCT-DTA

problem is solved in the second stage to minimize system trip time, with a target evacuation

time equal to *W . The second stage can be solved in two approaches. The first approach is

to solve it as a typical LNCT-DTA problem, i.e. without a feasible initial solution. The

second approach, which will be the one adopted for the ODS-DTA problem, is to solve the

LNCT-DTA problem using the MNCT-DTA solution (from stage I) as the initial solution.

The initial solution is therefore feasible and will result in a much faster convergence rate.

Simulation results on the Fort Worth show that the ODS-DTA problem is capable of reducing

the average trip times in the network obtained by the MNCT-DTA problem by an additional

10% to 25%. Moreover, using the MNCT-DTA solution as the initial solution in stage II,

resulted in 30% to 70% less iterations for convergence over the typical LNCT-DTA problem.

6.2.3 Optimal Demand Scheduling with Contraflow Problem

The contraflow network design (CF-DTA) problem is formulated as simulation-based DTA

model with an SO objective. Additional constraints are added to account for lane
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reversibility. The first order optimality conditions failed to reveal any useful insights to the

solution of this problem. However, an reversibility principle is obtained under conditions of

no-total reversibility among coupled links.

t a

a
a

t a
aa

tc
txtctx

1

1
1

)(
)()()( (6.10)

Condition (6.10) states that, in the case where total reversibility is not attained, optimality

occurs when an additional vehicle will have the same contribution to the system cost whether

it is traverses reversible link a  or its couple 1a . Simple numerical examples show that such

a condition holds true. Moreover, numerical examples have found that, under the provision of

identical link cost functions for coupled links, the total link travel time marginals must be

equal at optimality.

t a

a
aa

t a
a

aa x
tc

txtc
x

tctxtc
1

1
11

)(
)()()()()( (6.11)

Condition (6.11) is extremely important in SO-based DTA models since the travel time

marginals (or more appropriately aa xtc /)( ) are readily available, whereas the

aa tc /)(  is problematic to compute or estimate.

The CF-DTA problem is then combined with the ORS-DTA problem to integrate the supply

and demand strategies considered in this study. The resulting problem is referred to as the

ODS-CF-DTA problem and its solution is a two-stage procedure. In Stage I, the MNCT-DTA

and CF-DTA problems are combined to solve for the optimal joint flow pattern and lane

configuration that results in minimizing the network clearance time. The resulting problem is

referred to as MNCT-CF-DTA and is solved in an iterative bi-level framework whereby an

MNCT-DTA problem is solved in the lower level, given current optimal lane configuration to

find the optimal flow pattern that minimizes network clearance time and a CF-DTA problem

is solved in the upper level, given current optimal flow pattern, to find the optimal lane
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configuration that minimizes trip times in the network. The process iterates until

convergence. In the second stage, an LNCT-DTA problem is solved, given the optimal lane

configuration * , minimum network clearance time *f , and using the MNCT-CF-DTA

solution as the starting solution. Simulation results on the Fort Worth network show that

allowing for contraflow further reduced the network clearance time and average trip times

obtained from solving an ODS-DTA problem by an additional 20% to 27%.
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