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Abstract

Consider an additive noise channel with inputs and outputs in the field GF(q) where ¢ > 2;
every time a symbol is transmitted over such a channel, there are ¢ — 1 different errors that
can occur, corresponding to the ¢ — 1 non-zero elements that the channel can add to the
transmitted symbol. In many data communication/storage systems, there are some errors
that occur much more frequently than others; however, traditional error correcting codes -
designed with respect to the Hamming metric ~ treat each of these ¢ — 1 errors the same.
Fuja and Heegard have designed a class of codes, called focused error control codes, that offer
different levels of protection against “common” and “uncommon” errors; the idea is to define
the level of protection in a way based not only on the number of errors, but the kind as well.
In this paper, the performance of these codes is analyzed with respect to idealized “skewed”
channels as well as realistic non-binary modulation schemes. It is shown that focused codes,
used in conjunction with PSK and QAM signaling, can provide more than 1.0 dB of additional
coding gain when compared with Reed-Solomon codes for small blocklengths.

"*Supported in part by the National Science Foundation Engineering Research Centers Program, NSFD CDR-
§803012; and by NSF Grant NCR-8957623. Parts of this paper were presented at the 1990 International Symposium
on Information Theory, January 14-19, 1990, San Siego, California.
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1 Introduction and Motivation

When a symbol from GF(q) is sent over a channel with additive noise, there are ¢ — 1 different
non-zero noise symbols that can corrupt the transmitted field element. “Traditional” error control
codes, designed with respect to the Hamming metric, treat each of these ¢ — 1 possibilities the
same — as simply representing a generic “error”.

However, in many non-binary data transmission and storage channels, there are some errors
that occur much more frequently than others. As an example, consider a modulation scheme in
which data is mapped onto one of M = 2 signal points using a Gray code, so that the most
likely detection errors cause exactly one bit error per symbol. In such a system the most likely
errors will result in a received symbol that differs from the transmitted symbol in exactly one
bit of their binary representation; thus, while there are 2° — 1 different posstble errors, there are
only b that are likely. A similar situation arises in byte-organized memory systems; while a code
with “byte wide” symbols may be structurally appropriate for such a system, the dominant error
types are often single-bit-per-byte failures. It is obviously inefficient to provide the same degree
of protection against the uncommon errors as against the common ones.

It was this observation that led Fuja and Heegard to develop the idea of a focused error
control code [1]. These codes were designed to give one level of protection against a specific
set of common errors while maintaining another (lower) level of protection against uncommon
errors. In [1] results are obtained regarding the existence and construction of such codes as well
as bounds on their rates.

This paper analyzes the unique rate/performance tradeoffs made possible by focused error
control codes. First, the pertinent results from [1] are reviewed; then, the performance of focused
codes over an idealized skewed channel is analyzed and that analysis is applied to M-ary PSK
and QAM signaling.



2 Background on Focused Codes
In this section the pertinent results from [1] are reviewed.

2.1 Definitions and a Sufficient Condition

For any x € GF(q)", denote the Hamming weight of x by ||x||; that is, if x = [zo, 21, ..., Tn-1],
then
A n=-1
%l = " 1areg)s(z:)
=0
where GF(q)* consists of the non-zero elements of GF(¢) and 1(-) is the indicator function - i.e.,
14(2) equals one if 2 € A and equals zero otherwise.
More generally, for any x € GF(¢)™ and any set A C GF(q)*, define the A-weight of x as the

number of components of x that lie in A; if the A-weight of x is denoted by ||x||a, then

n-1
EERENED

t=0
Definition: Let B C GF(g)* be a set of non-zero elements of GF(g). (Here, B will represent
the set of common errors.) A code is (;,%2)-focused on B if it can correct up to t; + t, errors
provided at most ¢, of these errors lie outside B. More precisely, such a code is a set C of n-tuples
over GF(q) with the following property: There exists a decoding function f : GF(g)* — C such
that f(c + e) = c for any ¢ € C and any e € GF(q)" satisfying the following two conditions:

1. ||e” S ty + to;
2. |lellge < t1.

Note that a (t,0)-focused code is a “traditional” t-error correcting code, while a (0,?)-focused
code is a code that is completely focused on B - i.e. it can correct up to t errors, provided they

are all common.

The following result from [1] provides a sufficient condition for the existence of a code that

is (t1,t2)-focused on a set B.



Lemma 1: Let C be a set of g-ary n-tuples with the following property. For any ¢1,c3 € C,
at least one of the following conditions holds:

e |c1 = c2|| > 2ty + 2ty;
) ||c1 - C2|| + ||c1 — c2||Bc > 411 + 2t,.

Then C is (2, t;)-focused on B.

The implications of Lemma 1 are presented graphically in Figure 1. We can plot every g-ary
n-tuple in two dimensions by its Hamming weight and its B®weight. As long as no codeword
difference lies in the shaded region, the code will be (t1,t;)-focused on B. By comparison, to
insure correction of all error patterns of Hamming weight ¢; + t2 or less would require that all
codeword differences have Hamming weight greater than 2¢; + 2t;; by lowering the requirements

a “notch” has been cut in the “forbidden zone”. This suggests that rate improvements are likely.

2.2 Construction of Combined Focused Codes for Odd-Weight-per-Byte Er-
rors

In {1] a method for constructing focused codes was presented. The codes thus constructed were
called combined focused codes, and in this section we review that method.

Suppose the goal is to construct a code with blocklength n over GF(2°) that is (t1,1;)-focused
on the set of odd-weight symbols; that is, the common error set B consists of all the elements
of GF(2%) with a binary representation containing an odd number of 1’s. (Note that this would
include the set of single-bit errors.)

The construction from [1] is described as follows. For any n-tuple x over GF(2%), let b(x) be
the binary n-tuple obtained by taking the mod-two sum of each component of x. For example,
if x=[0011,0100,1101,1010,1111], then b(x)=[01100]. Let C; be an (n,nR;) binary inner code
with minimum distance d; = 2t; + 2t, + 1; let C; be an (n,nR;) outer code over GF(be‘l) with

minimum distance d = 2¢; + t2 + 1. To construct a codeword from the focused code, first take



a codeword ¢; from C; and a codeword ¢, from C3. Then add one bit to each symbol from ¢,
such that c, the resulting n-tuple over GF(2%), satisfies b(c) = ¢;.

It can be seen that the code thus constructed is (t¢1,%3)-focused on B by considering the
following decoding algorithm. Given a received 2°-ary n-tuple r, compute b(r); find the codeword
x € C that is closest to b(r). As long as at most ¢, + ¢, odd-weight errors have occurred, x will
be equal to b(c), where c is the codeword that was actually transmitted. Mark the locations
where x differs from b(r) as erasures; strip off the last bit in each code symbol and pass the
resulting 26=1-ary n-tuple plus erasure locations to a decoder for C,.

Suppose ¢; common and {5 uncommon errors occur during transmission; then as long as

b < [(di - 1)/2)
and
£, < [(d2 -4 - 1)/2]
the above algorithm will correctly estimate the transmitted codeword. It is trivial to show that

as long as £ + £, < t; + t2 and £; < t; the above inequalities are met; thus, the code described
above is (t1,t2)-focused.

Indeed, there are other error patterns — other values of ¢; and ¢; - that satisfy the above
inequalities. As an example, suppose we wish to construct a (0,2)-focused code over GF(2%)
using the above technique. Then we would need a binary inner code with minimum distance
d; = 5 and an outer code over GF(2b‘1) with minimum distance dy = 3. Such a code would be
able to correct any single uncommon error - as long as there were no common errors - in addition
to the error patterns described by the “(0,2)-focused” designation.

Note that the overall rate of this code is (1/0)Ry + (b — 1)R2/b. Furthermore, this technique

can be generalized to cover a variety of common error sets; for details, refer to [1}.

3 Performance of Focused Codes on an Idealized Channel

Now consider the performance of a (t1,t2)-focused code over an idealized “skewed” channel.
One of the fundamental questions to be considered is: Under what conditions does a (#1,%2)-

focused code perform identically to a ¢; + t-error correcting code ? Since a (t;,t2)-focused code



can generally be constructed at a higher rate than a #; + ts-error correcting code, answering

this question will give insight into when focused codes might be appropriate for a particular
application.

3.1 Block Error Probability Over a Skewed Symmetric Channel

Consider the following model for a communication/storage channel. A character X € GF(q) is
transmitted and the character Y = X + Z € GF(q) is received. Here, the noise Z is assumed to

be i.i.d. and independent of the input X and is distributed according to

1—c¢, if z=0;
P(Z=2)= {6(1—7)/lBl, if > € B;
ev/|B9, if z € B¢,

where B is a set of non-zero field elements, ¢ = P(Z # 0) is the probability of symbol channel
error, and v = P(Z ¢ B|Z # 0) is thie probability that Z lies outside B, given that Z # 0. This
channel - called the skewed symmetric channel (SSC) for the focus set B — was introduced in
(1] as an idealized model of a channel that exhibits the “skewing” property that focused codes
were designed to address. Note that in the case of interest, B represents the class of common
errors and so v < 1; further, within each class of errors, a uniform distribution on the errors is
assumed.

We now proceed to analyze the performance of a (ty,t;)-focused code operating over a SSC
as described above. A (t;,%;)-focused code can correct up to t; + t; errors provided at most t;
errors are uncommon. The decoder block error probability of a (#;,1;)-focused code on a skewed

symmetric channel (SSC) can thus be written as

titts 1 i\ . .
Py = Z Z ( 1: ) ( ; )ei(l— 6)"“171(1—7)1—]

1=t 41 j=t1 41

£ 3 (7)eamo ®

=ty +ia+1

The first sum in (1) is the probability that there are at most t; + ¢ errors in a block of n

transmitted symbols, but more than ¢; of them are uncommon; the second sum is the probability
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that there are more than ¢, + t2 errors. Thus, the second sum is the probability of decoder error

for a “traditional” ¢; + tp-error correcting code.

If e € 1, we can approximate P; by taking only the first terms in the sums in equation (1):

n
P P t1+1 _ o An—ti=1_t1+1
d (h+1>€ (1-¢ Y

n titta+liq _ \n=ti—tz—1
#(qomen )emano ®

Figure 2 shows P; versus v on a log-log scale for fixed ¢ = 1073, blocklength n = 50 and for
values of ¢; and ¢ such that ¢; 4+ 2 = 4. Each curve can be broken up into two distinct regions;
for large values of 7, the graph is a straight line with slope t; + 1, whereas for small values of
~r the graph has slope zero and coincides with the graph of P; for a (4,0)-focused code - i.e., a
four-error correcting code. This is because, for large values of v, the channel is not very focused
- i.e., the uncommon errors are not that uncommon - and so the dominant cause of decoder error
is the occurrence of ¢; + 1 uncommon errors; to put it more simply, when v &£ 1, the first term
in equation (2) is dominant. Similarly, when 7 <« 1 then the uncommon errors are so uncommon
that the primary source of decoder error is the occurrence of ¢; +t4 + 1 errors, which means that
a (t1,t2)-focused code performs identically to a t; + ¢,-error correcting code — i.e., the second
term in equation (2) dominates.

So, partially answering the question that was posed at the beginning of this section: For fixed
€, a (t1,t2)-focused code has the same decoder error probability as a ¢; + ¢,-error correcting code
when the second term in equation (2) is much larger than the first term. If we define (for fixed ¢)

“erit t0 be the value of 4 for which the two terms in equation (2) are equal to one another, then

n
t1+t2+1

(a21)

It is observed from Figure 2 that 7. is a good approximation to the point at which a (¢1,%2)-

€
logyg Yerit = tzlogo (1___6') + logyo (3)

1
t+1

focused code begins to “match” the decoder error probability of a t; + ¢2-error correcting code;



that is, for v < v.is the two codes perform equivalently.

A similar analysis can be performed if we assume that ¥ is held constant and ¢ is varied.
Figure 3 shows P; versus ¢ for fixed v = 10~3, blocklength n = 50, and values of t; and t, such
that ¢; + 3 = 4. Analogous to the case described above, there is a critical value of € — call it
€rit — such that for € > €. the decoder error probability for a (t1,t2)-focused code is identical

to that of a 1 + tp-error correcting code. Here, €. is given by

(05

1
logyg €crit = t—2' (1 + 1) log;o 7 +logg ( " ) . (4)

lhh+ta+1

(Note: In obtaining equation (4) we have made the simplifying assumption that ¢/(1 — €) ~ ¢.)

Finally, we note that the above analysis implicitly assumes that ¢ and ¥ can be specified
independently of one another. As Section 4 shows, ¢ and v are often both dependent on a third
parameter — e.g., signal-to-noise ratio. If this is the case, then we can guarantee “performance

matching” by insuring that the second term in equation (2) is much larger than the first term; if

I P e <t1 + 1>
ﬂ" [[6/(1—6)}'52} ( n ) ? (5)

we define a “benchmark” 8 by

h+t2+1

then as long as 3 <« 1 the decoder error probability of a (¢, ¢2)-focused code will be the same as

that of a ¢; + t2-error correcting code.

3.2 Symbol Error Probability Over a Skewed Symmetric Channel

It is often more important to consider the symbol error probability of a coding scheme rather
than the block error probability — i.e., the probability that any particular symbol is decoded

incorrectly, as opposed to the probability that a codeword is decoded incorrectly.



Let N denote the expected number of symbol errors in a decoded block of length n; then the
symbol error rate P, is given by P, = N/n. By definition, as long as no more than #; +¢, channel
errors occur and no more than t; of them are uncommon, then there will be no symbol errors
in the decoder output. Furthermore, we make the pessimistic assumption that, when more than

t1 +t2 error occur or more than ¢; uncommon error occur, the decoder adds an additional ¢ + t5

errors to its output; thus,

1 ti1+ty 7 . . .. -
P, = ;&- Z Z min(t1 + 1 + i,n) ( 7; ) ( ; ) el(l _ 6)"—17‘7(1 _,},)z—J

=ty 41 j=t1+1
1 = . . n : n—i
+- E min(ty +t2 +4,n) | . | €(l—¢)""
. (3
=ty +i2+1
Note that for € < 1 this can be approximated by
N 261+t + 1 n Tt +1 n—-t;—1_%1+1
P, =~ ~ <t1+1>€ (1-¢€) ¥
2t1+2t2+1 n ; Rty =ty =
+———7—z—_— ( i+t +1 ) TETH(L - T (6)

To guarantee that the symbol error probability of a (¢, t3)-focused code matches that of a ¢; +
tp-error correcting code requires that the second term in equation (6) be dominant. Furthermore,
note the similarity between equation (6) above and the formula for the decoder error probability
in equation (2); the two terms in (6) are the terms from (2) weighted by (slightly) different
constants. For reasonable values of #; and t; these constants are close enough that matching the
decoder error probability of a (#1,%2)-focused code to that of a t; + ty-error correcting code is

equivalent to doing the same for the symbol error probability.

3.3 Performance of “Combined” Focused Codes

tecall the technique for constructing “combined” (#1,t,)-focused codes that was described in
Section 2.2. Specifically, recall that the construction sometimes yields codes and decoding algo-
rithms that are capable of correcting more errors than those indicated by the “(ty,t2)-focused”

label — for instance, some error patterns that contain more than t; uncommon errors. In this
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section we show briefly how this enhanced capability can be taken into account when computing

the performance of such a code.

Suppose that £; common and £, uncommon errors occur in a codeword during transmission.
It was noted that the decoding algorithm described in Section 2.2 will yield a correct estimate
provided £; < [(d1—1)/2] and £, < [(d;—{1—-1)/2], where d; = 2(¢;+t2)+1 and dy = 2t +1,+1.
If we assume that such a combined code is employed over a SSC with parameters ¢ and 7, then
the decoder error probability is given by

L(d1-1)/2] n—4
Pl = (

n G446\ 44 —ti—ty ¢ ¢
1—et~h-taylarq _ 1
) (45 ) et griaseg )

Zy_ =0 L=
[(dz =2y —1)/2]+1

+ i (Z) [e(1= 7)1 — (1 =70,

l(d1 =1)/2)+1

Similarly, the symbol error probability can be pessimistically approximated by

1 Wdi=1)/2] n—{
P’ = = Z Z min({y + &3 + |(d2 — 41 — 1)/2], n)

4, =0 =
=8 -1)/2]+1

1

b+ 4
n={
1 i S
F20 Y min(l + b+ ((d - /2] + |(da = (e~ 1)/2] = 1)/2),m)
L(dl“li)=/2.’+1 £=0
n £1+£2 4o n—~01—43 ¢ 14 P
. — 1- 1
(£1+£2>< 0 >€ (1-¢) 72 (1-7) (7)

4 Performance of Focused Codes with Non-Binary Modulation
Schemes

In this section it will be shown how common non-binary modulation techniques can be approxi-

mated by the skewed symmetric channel with appropriate choice of parameters. Specifically, the
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results {rom Section 3 will be used to analyze the effectiveness of focused codes operating over

an additive white Gaussian noise channel in conjunction with PSK and QAM modulation.

4.1 Parameters for PSK Modulation

If M-ary PSK modulation is used with a Gray code so that the difference between the binary
representation of any two adjacent signals is one bit, then an additive Gaussian noise channel
can be approximated by an M-ary SSC for the focus set B consisting of all elements of GF(M)
with a binary representation containing exactly one “1”.

Assume that every T seconds a signal s;(t) is transmitted for some 7, 0 < ¢ < M — 1. Here,

si(t) is given by

si(t) = {ai¢1(t) +biga(t), fO<tLT;
1 0, otherwise,

where a? + b? = E, and b;/a; = fan(?rri/M). Here, ¢1(t) and #,(t) are a pair of orthonormal
real-valued signals - i.e.,

[ sweitie={ b 5227

Thus, a; and b; represent the coordinates of the signal s;(¢) with respect to the basis signals
#1(t) and @2(t), and E, is the symbol energy. (See Figure 4.) We assume further that the channel
is zero-mean additive white Gaussian with power spectral density S,(f) = No/2. Finally, it is
assumed that hard-decisions are made at the demodulator, meaning that the received signal r(t)
is mapped onto the signal s;(¢) that minimizes the Euclidean distance.

In order to compute the symbol error probability P for a focused code used in conjunction
with such a system, one must determine ¢ and 7, the parameters of the associated SSC. Recall
that € is the probability of channel error while v is the probability of an uncommon error, given
that an error has occurred; in the PSK context, v is the probability that the received signal lies
outside of the decision regions adjacent to the one containing the transmitted signal, given that
the received signal lies outside the region containing the transmitted signal. (See Figure 4.)

Given the symmetry of M-ary PSK, it is permissible to assume that any signal s;(t) was
transmitted. Then ¢ is just the probability that the received signal lies outside s;(t)’s decision

region, given s;(t) was transmitted. This is well known [2] to be approximated by

12



e~ 2Q (Msin%) (8)

Qz) = 7-15_;/:0 exp[—t2/2] dt.

We now turn our attention to computing 7. For M = 4 the problem is trivial; the only way

where

an “uncommon” error can occur is if a transmitted signal is perturbed by the noise into the

decision region of the signal directly opposite. Thus it can be shown that

P(Uncommon error) = P(1/E;/2 4+ nqy < 0,/ Es/2 + 12 < 0),

where n; and ny are independent zero-mean Gaussian random variable with variance No/2.

Therefore
2 Es
P(Uncommon error) = @ =,
No

_ P(Uncommon error) _ Q* (\/ Es/No)
T = P(Error) - 20 (\/W)

1 E,
= 5Q (\/;> . (9)

To obtain 4 for M > 8 the following approximation for the pdf of the angle of the received

and so

signal [3] is useful:
fo(8) = \/ Es /(7 No) cos 8 exp[—(E,/No) sin” 6],

(This approximation is valid for E,/Np >> 1 and for small angle §.) An uncommon error is made
if, for any j, the noise causes a phase displacement greater than 37 /M in absolute value. Using

the above approximation for fg(8), it can be shown that

2E, . 3«
P(Uncommon error) = 2 (\/ No sin M) ,

13




and so

P(Uncommon error)
P(Error)

Q (VZE./Ns sin(37/M))
Q (VZE.[Ns sin(z/M))

4.2 Parameters for a Square Constellation (QAM)

(10)

An additive white Gaussian noise (AWGN) channel and an M-ary square signal constellation
can be approximated by an M-ary SSC channel with parameters € and 4 to be determined. For
the square constellatioh, we assume that a two-dimensional Gray code is used so that the binary
representation of two signals immediately adjacent to each other either horizontally or vertically
differ in only one bit; thus, our set of common errors is (once again) the elements of GF(M)
containing a single “1” in its binary representation. For example, when M = 16 as shown in
Figure 5, if signal s; is sent, then a common error will be made if the demodulator estimates the
transmitted signal to be 39, s3, s4 or ss.

For a square (v/M x /M where log, M is even) constellation of QAM signals, the coordinates
of the signals with respect to the basis signals ¢;(¢) and ¢;(t) are:

ai=(2i+1—\/—1\2)£21-

and 4
bj=(2j+l—m)§

where ¢ and j take on the values 0,1,2,...,v/M —1, and d is the constant horizontal or vertical

distance between any two neighbors. The value of d is determined by the average symbol energy

| 6E,
d= M-1

In computing the parameters € and v a pessimistic approach will be used. It will be assumed

E, and is given by

that an error occurs whenever the received signal lies outside of a square with sides d in length

14



centered on the transmitted signal; furthermore, an uncommon error occurs whenever the re-
ceived signal lies outside of such a square and outside of the four squares immediately adjacent
(horizontally and vertically) to it. (Such an assumption is pessimistic because the points on
the exterior of the signal constellation will actually have lower probabilities of error than those

indicated.) It is well known [3] that € ~ the probability of channel error - is given by

e=2q-¢ (11)

where

3 E,
q“2Q< M-l?\%)'

Now consider the derivation of 4. Using the same pessimistic assumption used in deriving e,

P(Uncommon Error) = P(|ni] > d/2,|ns| > d/2) + P(|n1| > 3d/2,|no| < d/2)
+P(Inal > 3d/2, | < 4/2),

where n; and n; are independent zero-mean Gaussian random variables with variance Ng/2. If

p1 and po are defined as

o

Y41

Q (4/V2R) =Q< : E)

M—-1N,
1
= 5P(lnll > df2)

and
;= Q(3d/vaNo) =Q |3 2 5
? ° M —1N
= SP(ml > 3d/2)
then

P(Uncommon error) = 4p? + 4pa(1 — 2p1).

This in turn implies

15



_ pi+pa(l-2p)
n(l-p) ’

v (12)

where p; and p; are as above.

4.3 Performance Matching for Focused Codes Used with PSK and QAM
Modulation

Recall the question posed at the beginning of of Section 3: Under what conditions does a (t1,t3)-
focused code perform identically to a t; + to-error correcting code ? In Sections 3.1 and 3.2 this
question was answered for a skewed symmetric channel; it was shown that the two have the same
block error rate as long as the second term in equation (2) was dominant - or, equivalently, if
B < 1, where § is defined in (5).

Having shown in Sections 4.1 and 4.2 how M-ary PSK and QAM can be approximated by
a SSC, we are now prepared to determine when a (#;,12)-focused code operating in conjunction

with these modulation schemes perform identically to a ¢; + t;-error correcting code.

PSK: Equations (8)-(10) give the values of € and v that approximate M-ary PSK at a given
signal-to-noise ratio; substituting these values into equation (5) and determining when 3 < 1

yields the following results.

e M=28: For octal PSK, a (0,t)-focused code performs identically to a t-error correcting code
for t = 1,2, 3 for all values of E,;/Ny and all blocklengths n > 7.

¢ M=16: For 16-ary PSK, a (0, t)-focused code performs identically to a t-error correcting
code for t = 1,2,3,4,5,6 for all values of E;/Ng and all blocklengths n > 10.

The above results indicate that a code capable of correcting ¢t adjacent-region errors will per-
form identically to a code capable of correcting any ¢ errors for many blocklengths and many
values of t. It is interesting at this point to compare the “focused approach” to PSK modu-
lation with that taken by Lee-metric codes. A t-error correcting Lee-metric code will provide
error correction to a transmitted word provided that the total Lee distance between what was

transmitted and what was received is no more than t; a received signal that is ¢ regions away

16



from the transmitted signal contributes a value i to the Lee distance between the transmitted
and received words. Thus, a 2-error correcting code with respect to the Lee metric, when used
with M-ary PSK, can correct any two adjacent-region errors and it can correct any single error
where the received symbol is two regions away from what was transmitted. The above results
suggest that the added capability of Lee-metric codes — the ability to correct a (reduced) number

of non-adjacent errors — often provides negligible performance improvement to PSK modulation.

Square Signal Sets: Equations (11) and (12) give the values of ¢ and v that approximate M-ary
QAM at a given signal-to-noise ratio; substituting these values into equation (5) and determining

when § < 1 yields the following results.

e M=64: For an 8 x 8 constellation at all values of E;/Ng and all blocklengths n > 7:

- A (0,1)-focused code performs identically to a 1-error correcting code.

A (1,1)-focused code performs identically to a 2-error correcting code.

A (1,2)-focused code performs identically to a 3-error correcting code.

A (2,2)-focused code performs identically to a 4-error correcting code.

A (2, 3)-focused code performs identically to a 5-error correcting code.

e M=256: For a 16 x 16 constellation at all values of E;/Ng and all blocklengths n > 8:

A (0, 1)-focused code performs identically to a l-error correcting code.

A (1,1)-focused code performs identically to a 2-error correcting code.

A (1,2)-focused code performs identically to a 3-error correcting code.

A (2,2)-focused code performs identically to a 4-error correcting code.

A (2,3)-focused code performs identically to a 5-error correcting code.

4.4 Coding Gain of Focused Codes Used with PSK and QAM Modulations

In this section the performance of some (#1,t2)-focused codes is compared with the performance

of t; +tp-error correcting codes. The focused codes under consideration are constructed using the
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technique outlined in Section 2.2; the channel under consideration is PSK and QAM signaling
over additive white Gaussian noise.

The approach taken is to compare a (t1,1;)-focused code with a ¢; + t,-error correcting code
such that the two codes have identical symbol error rate; because the focused code can (in
general) be constructed at a higher rate than the “traditional” code, there will be some coding
gain enjoyed by the focused code. For example, Section 4.3 shows that a (0, 1)-focused code over
GF(8) with blocklength n = 7 will perform identically to a single-error correcting code of the
same blocklength when used with octal PSK; however, using the procedure described in Section
2.2 it’s possible to construct a (0, 1)-focused code at a rate of 16/21 ~ 0.762, whereas a single-
error correcting Reed-Solomon code over GF(8) with blocklength n = 7 has rate 5/7 ~ 0.714.
The 6.7% rate improvement offered by the focused code translates into a constant coding gain
of 0.28 dB.

Equation (6) gives the symbol error rate for a (t1,%;)-focused code operating over a skewed
symmetric channel with parameters ¢ and v; equation (7) gives the same when the code is one of
the “combined” codes from Section 2.2. Equations (8), (9), and (10) give ¢ and v for an AWGN
channel employing PSK modulation; equations (11) and (12) give € and 4 for an AWGN channel
when the modulation is QAM with a square signal set. Thus, for a given signal-to-noise ratio we
can use equations (8)-(12) to compute € and v and then use (6)-(7) to yield P,. To make a fair
comparison between codes with different rates, P, is computed as a function of E;/Ng, where E},
is the energy per information bit - i.e., for a code with rate R,

E,

By = Rlog, M’

Figures 6 shows P, versus Ep/Ng for 16-ary PSK used in conjunction with various coding
schemes. The solid line in Figure 6 gives the performance of uncoded 16-ary PSK, while the
dotted line shows the performance of an (8,4) two-error correcting shortened Reed-Solomon code
over GF(16). The two dashed lines display the performance of a (0, 2)-focused code over GF(16)
with blocklength n = 8 that is constructed using the technique described in Section 2.2; the
short-dashed line shows P, as computed by equation (6), while the long-dashed line gives P, as

determined by equation (7). (Since the code is capable of correcting any single uncommon error
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- a fact that equation (7) takes into account, while (6) does not - we find that equation (7) shows
the performance to be slightly improved over that suggested by (6).)

Figure 6 shows that, at a symbol error rate of P, = 10~¢, the focused code provides approxi-
mately 1.13 dB of coding gain above that of the Reed-Solomon code; comparing the focused code
with uncoded 16-ary PSK, we find a coding gain of approximately 2.48 dB.

Similarly, Figure 7 compares a blocklength n = 11 (1, 2)-focused code with a 3-error correcting
shortened Reed-Solomon code when used with a 8 X 8 square signal constellation. In this case the
performance given by equations (6) and (7) were identical; the focused code provided a constant
0.91 dB of coding gain over the Reed-Solomon code and provided 2.38 dB of gain above uncoded
64-QAM at P, = 1078,

In each of the two figures, the focused code is constructed according to Section 2.2 with the in-
ner code being the highest-known-rate [4] binary code with minimum distance dpmin = 2(21+12)+1
and the outer code being a shortened Reed-Solomon code. The gains are significant primarily for
codes with blocklengths that are short relative to the field size; for instance, if the blocklength
goes above n = 20 for 64-QAM, then the focused code construction of Section 2.2 provides a
coding gain that is no more than 0.25 dB better than a shortened Reed-Solomon code. It would

appear that this limitation is more a function of the particular construction than of focused codes

in general.

5 Conclusions

This paper analyzed the performance of focused error control codes — both over idealized chan-
nels and in conjunction with non-binary signaling. It was shown that construction techniques
currently available can provide more than 1.0 dB of coding gain above that provided by short-
ened Reed-Solomon codes at small blocklengths when used in conjunction with PSK and QAM

signaling.
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