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Chapter 1: Introduction

1.1 Background

One of the central topics in algebraic geometry is to study the spaces whose

points represent objects of same class. Such objects can be schemes, morphisms and

sheaves, and usually come in families. Moduli spaces can be thought of as solutions

to the classification problems of certain geometric objects. Many moduli spaces arise

as quotients of schemes by reductive algebraic groups. The construction of such

spaces are frequently done by utilizing Grothendieck’s Quot scheme and Mumford’s

geometric invariant theory. If we can understand the geometric structure of moduli

spaces, we will get a better insight into the geometry of those objects themselves.

The main interest of this thesis is about moduli spaces of stable sheaves and

the main tools come from toric geometry. The first formal definition of toric variety

was introduced by Demazure [Dem70] in 1970. Back then, it was referred to as

the toroidal embedding [KKMS73]. After 1980, the study of toric varieties grew

rapidly and gradually became a important part of modern algebraic geometry. A

toric variety X is an algebraic variety containing an torus (C∗)n as an open dense

subset such that the natural action of the torus on itself extends to an action on

X. Toric varieties can be constructed by fans [CLS11, Ful93]. A fan is a collection
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of strongly convex rational polyhedral cones closed under taking intersections and

faces. As the geometric properties of toric varieties are translated and encoded in

the combinatorial data of fans, they are more computable. Toric geometry creates

a deep connection between algebraic geometry and convex geometry, and provides

a testing ground for many general theorems.

Toric stacks are stacky generalizations of toric varieties. The word “stack”

was first introduced by Deligne and Mumford [DM69] for the original French term

“champ” given by Giraud [Gir66]. Roughly speaking, each point in an algebraic

stack comes with an automorphism group. A scheme can be thought of as an

algebraic stack in which this group is trivial. The major motivation for stacks comes

from moduli problems. In many moduli problems, there are no fine moduli schemes,

because the geometric objects that we want to parametrize usually have nontrivial

automorphism groups. The moduli stacks can remember the automorphisms.

Toric stacks were first introduced by Borisov, Chen and Smith [BCS05]. Just

as a toric variety corresponds to a fan, a toric stack is associated with a stacky fan.

Fantechi, Mann and Nironi showed that every smooth toric Deligne-Mumford stack

X has an open dense orbit isomorphic to a Deligne-Mumford torus T ∼= T × BG,

where T is a torus and G is a finite abelian group. The natural action of T on itself

extends to an action on X [FMN10]. Similar to toric varieties, toric stacks serve as

an important class to test conjectures about algebraic stacks.

The central topic of this thesis is about moduli spaces of torus-equivariant sta-

ble sheaves on Hirzebruch orbifolds, which form an important class of 2-dimensional

toric stacks. Every toric variety or orbifold contains an torus as an open dense
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subset and the regular action of this torus can be lifted to the moduli space. Using

the technique of torus localization, one can give a combinatorial description of the

fixed point loci of these moduli spaces.

Torus-equivariant vector bundles on toric varieties were first introduced by

Klyachko [Kly90] in terms of multi-filtrations of vector spaces satisfying certain

compatibility conditions. This combinatorial description was extended to torsion

free sheaves and applied to study moduli problems for P2 [Kly91]. Knutson and

Sharpe extended Klyachko’s work and made his results accessible for physicists

[KS97]. A systematic approach to classify arbitrary coherent sheaves was proposed

by Perling [Per04a]. Based on the idea of filtrations, he defined ∆-families and

constructed moduli spaces of vector bundles of rank 2 on any smooth toric varieties

[Per04b]. Later, Payne showed that the moduli space of toric vector bundles can

be constructed as a locally closed subscheme of a product of partial flag varieties

[Pay08].

Extending techniques used by Payne, Kool constructed coarse moduli spaces

of pure toric sheaves on toric varieties via GIT [Koo11]. He matched µ-stability

and Gieseker stability with GIT stability, and gave a combinatorial description of

the fixed point loci of moduli spaces of µ-stable reflexive sheaves. Gholampour,

Jiang and Kool extended Perling’s ∆-families of toric varieties to S-families of toric

stacks. For weighted projective stacks P(a, b, c), they showed that toric sheaves can

be locally described by multi-filtrations with both torus grading and fine grading

induced by the stabilizer group [GJK17].

One central object of studying moduli problems is to compute invariants as-
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sociated to the moduli spaces such as the Euler characteristics, Donaldson-Thomas

invariants and BPS invariants. Torus localization is an important tool for comput-

ing invariants when the underlying algebraic variety or stack is toric. The Euler

characteristic of a quasi-projective variety with an regular torus action is the Euler

characteristic of the fixed point locus. With the combinatorial description of the fix

point loci of moduli spaces, Kool calculated explicitly the generating functions of

Euler characteristics of moduli spaces of stable sheaves on P2 and the Hirzebruch

surface [Koo15]. Following Nironi’s construction on moduli spaces of sheaves on pro-

jective Deligne-Mumford stacks [Nir08b], Gholampour, Jiang and Kool calculated

the generating functions for P(a, b, c) and proved their modularity for P(1, 1, 2) and

P(1, 2, 2), generalizing Klyachko’s result for P2 [GJK17]. We extended their work to

another important class of toric stacks, namely Hirzebruch orbifolds.

The general problem of counting geometric objects is classical in enumerative

geometry, among which curve counting has gained most attention. The Donaldson-

Thomas invariants, introduced by Thomas and Donaldson [Tho00, DT98], are the

virtual counts of stable sheaves on a Calabi-Yau threefold X. Several significant

contributions have been made since then. To name a few, Maulik, Nekrasov, Ok-

ounkov and Pandharipande flourished the case of ideal sheaves of curves [MNOP06].

Okounkov and Pandharipande studied DT invariants for local curves by localization

and degeneration methods [OP05]. Joyce and Song generalized DT invariants for

semistable sheaves [JS12]. Recently, Bryan, Oberdieck, Pandharipande and Yin

studied reduced DT invariants of abelian threefolds and related them to modular

forms [BOPY15]. Toda showed that generating functions of generalized DT in-
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variants of semistable sheaves on local P2 can be described in terms of modular

forms [Tod17].

Other counting theories include Gromov-Witten theory, Gopakumar-Vafa the-

ory and Pandharipande-Thomas theory. They share many properties and have close

connections to Donaldson-Thomas theory. Maulik, Nekrasov, Okounkov, Pandhari-

pande related GW theory of curves and DT theory of ideal sheaves in the case of local

toric surfaces [MNOP06]. Katz proved the DT/GV correspondence for semistable

sheaves on local contractible curves [Kat08]. Toda proved the unweighted Euler

characteristic version of DT/PT correspondence for torsion free sheaves of rank one

on a Calabi-Yau 3-fold [Tod10] and Bridgeland proved the weighted version [Bri11].

Donaldson-Thomas invariants are constructed based on the perfect obstruction

theory on the moduli space of stable sheaves [BF97, LT98]. Consider the moduli

space of stable sheaves on a Calabi-Yau threefold X with class α. The coarse moduli

space, denote byMs(X;α), is a quasi-projective scheme [HL10]. When there are no

strictly semistable sheaves, it admits a virtual fundamental class [Ms(X;α)]vir. The

Donaldson-Thomas invariant DT (X;α) is defined as
∫

[Ms(X;α)]vir
1. Behrend proved

that DT invariants can also be expressed as the weighted Euler characteristic of

some constructible function, called Behrend function [Beh09]. In the presence of

strictly semistable sheaves, Joyce and Song introduced generalized DT invariants

via PT invariants [JS12].

As an important application of torus-equivariant sheaves, Gholampour and

Sheshmani studied the case when X is the total space of the canonical bundle

of P2 [GS15b]. They showed that any compactly supported semistable sheaves are

5



scheme theoretically supported on the zero section and DT (X;α) is the signed Euler

characteristic of the moduli space of stable sheaves on P2 when there are no strictly

semistable sheaves. They also adopted Joyce-Song’s stable-pair theory [JS12] and

tested the integrality property of the generalized DT invariants for certain classes of

strictly semistable sheaves. We extend part of their results to the local Hirzebruch

orbifold and will continue to investigate in the future work.

1.2 Outline

There is a nice class of vector bundles and projective bundles over toric va-

rieties. They can be constructed from toric fans and hence are also toric varieties.

This type of bundles has been well studied in the book [CLS11]. Given a fan, one

can construct the line bundle corresponding to a Cartier divisor by extending the

fan. Consequently, every vector bundle that can be decomposed into line bundles

and its projectivization can be constructed from a fan.

This construction can be naturally generalized to the toric Deligne-Mumford

stacks. Such stacks can be described by a stacky fan as in [BCS05]. In the chapter

2, we show that certain types of vector bundles can be constructed from stacky fans.

As an application, we first give a general fan description of the weighted projective

stacks. Then we construct projective bundles over weighted projective lines P(a, b)

and describe the Hirzebruch stacks, denoted by Hab
r . When gcd(a, b) = 1, in which

case Hab
r is an orbifold, the stacky fan can be drawn as below. Here s, t ∈ Z are

chosen so that r = sa+ bt. Note that the fiber of the Hirzebruch surface over P1 is
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always P1. But this is not true for Hirzebruch stacks, in which case only the fiber

over a non-stacky point is P1.

x

y

ρ1 = (b, s)

ρ3 = (−a, t)
ρ2 = (0, 1)

ρ4 = (0,−1)

σ1σ2

σ3 σ4

Let X be a nonsingular toric variety of dimension d. A. A. Klyachko [Kly90],

M. Perling [Per04a] and M. Kool [Koo10] have given a combinatorial description

of T-equivariant coherent sheaves on toric varieties. The idea is that every toric

variety can be covered by affine T-equivariant subvarieties Uσ ∼= Cd, corresponding

to the maximal cones in the fan. Locally, a sheaf is described by families of vector

spaces, called σ-families. Those σ-families agree on the intersection of cones and

satisfy some gluing conditions.

The above idea is generalized to smooth toric Deligne-Mumford stacks first

by A. Gholampour, Y. Jiang and M. Kool in [GJK17]. Such stacks are covered by

open substacks Uσ ∼= [Cd/N(σ)] [BCS05, Proposition 4.1]. Hence locally, a sheaf

corresponds to a module with both X(T)-grading and X(N(σ))-fine-grading. The

local data of such a sheaf consists of families of vector spaces with fine-gradings,

called S-families. To obtain a sheaf globally, the gluing conditions are imposed.

In the case of weighted projective stacks P(a, b, c), the gluing conditions are given
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explicitly in [GJK17].

In the chapter 3, we give the gluing conditions for Hirzebruch orbifolds. To

glue the local data for any two substacks Uσi and Uσi+1
, we pull back the local data

to their stack theoretic intersection. Matching S-families over the intersection allows

us to describe T-equivariant coherent sheaves on Hirzebruch orbifolds. Then we can

study torsion free sheaves and locally free sheaves on Hab
r and construct the moduli

spaces.

In the chapter 4, we investigate some basic properties of Hab
r including its

coarse moduli scheme and modified Hilbert polynomial. From F. Nironi’s work

[Nir08b], we know that a modified version of Hilbert polynomial is needed to define

the Gieseker stability for stacks. Let ε be the structure morphism from Hab
r to its

coarse moduli scheme H. With fixed polarization L on H and generating sheaf E on

Hab
r , we define the modified Hilbert polynomial for a sheaf F as

PE(F , T ) = χ(Hab
r ,F ⊗ E∨ ⊗ ε∗LT )

and the modified Euler characteristic as

χE(F) = PE(F , 0)

In the chapter 5, we consider the moduli scheme of Gieseker stable and µ-stable

torsion free sheaves of rank 1 and 2 on Hirzebruch orbifolds. Extending the work

of [Koo10], we generalize the characteristic function and match the GIT stability
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with Gieseker stability. By lifting the action of the torus T to the moduli scheme

Mµs
PE

[Section 5.1], we can describe explicitly the fixed point locus (Mµs
PE

)T by the

GIT quotient Mµs
~χ with gauge-fixed characteristic function ~χ similar to [Koo10,

Theorem 4.15].

In the case of rank 1, it leads to the counting of partitions, which generalizes L.

Göttsche’s result for nonsingular projective surface in [Göt90]. In the case of higher

rank, we express the relation between generating functions of the moduli space of

µ-stable torsion free and locally free sheaves, which generalizes L. Göttsche’s result

in [Göt99].

Theorem 1.2.1. Suppose gcd(a, b) = 1. Let PE be a choice of modified Hilbert

polynomial of a reflexive sheaf of rank R on Hab
r and χE be the modified Euler

characteristic. Then

∑
χE∈Z

e(MHabr (R, c1, χE))q
χE =

∞∏
k=1

∑
χE∈Z e(M

vb
Habr

(R, c1, χE))q
χE

(1− q−ak)2R(1− q−bk)2R
.

We compute the generating function Hvb
c1

(q) :=
∑
e(Mvb

Habr
(2, c1, χE))q

χE for

locally free sheaves over Hirzebruch orbifolds Hab
r with fixed generating sheaf E

and polarization L given in [Section 4.4]. Especially when r = 0, we obtain an

expression for the orbifold P(a, b) × P1, which is parallel to M. Kool’s result for

P1 × P1 [Koo10, Corollary 2.3.4].

Theorem 1.2.2. Suppose gcd(a, b) = 1. Let f = (n
2

+ 1)(m + C) where C =

a + b + ab − 1. Let p = gcd(b, r) = b and q = gcd(a, r) = a as r = 0. Then for

fixed first Chern class c1(F) = m
a
x + ny where c1(Dρ1) = x, c1(Dρ2) = y, Dρi is the
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divisor corresponding to the ray ρi, the generating function Hvb
c1

(q) for the orbifold

P(a, b)× P1 is

(
−
∑
C1

+
∑
C4

+
∑
C5

+2
∑
C6

)
qf−

1
2
ji +

(
2
∑
C2

+2
∑
C3

)
qf−

1
4
ij+ 1

4
jk− 1

4
kl− 1

4
li

where

C1 = {(i, j, k, l) ∈ Z4 : 2 | m+ i, 2 | n+ j, 2 | j − l, 2b | i− k, 2a | i+ k, i = pqj,

− j < l < j,−pqj < k < pqj},

C2 = {(i, j, k, l) ∈ Z4 : 2 | m+ i, 2 | n+ j, 2 | j − l, 2b | i− k, 2a | i+ k,

− i < k < pql < i,−pqj < k, l < j},

C3 = {(i, j, k, l) ∈ Z4 : 2 | m+ i, 2 | n+ j, 2 | j − l, 2a | i− k, 2b | i+ k,

− i < k < pql < i,−pqj < k, l < j},

C4 = {(i, j, k) ∈ Z3 : 2 | m+ i, 2 | n+ j, 2 | j + k, b | i,− i

pq
< k <

i

pq
< j},

C5 = {(i, j, k) ∈ Z3 : 2 | m+ i, 2 | n+ j, 2 | j + k, a | i,− i

pq
< k <

i

pq
< j},

C6 = {(i, j, k) ∈ Z3 : 2 | m+ i, 2 | n+ j, 2a | i+ k, 2b | i− k,

− pqj < k < pqj < i}.

Moreover, in the case of a = 1, b = 2, we can get more explicit expressions

[Proposition 5.2.5].

In the last chapter, we study the Donaldson-Thomas invariant DT (X ;α) when
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X is the total space of the canonical bundle over a Hirzebruch orbifold Hab
r and α is

the class of a compactly-supported coherent sheaf. If a 2-dimensional coherent sheaf

F is semistable, then we can show that F is stack theoretically supported on the

zero section. Hence we can use the result of chapter 5 to calculate DT invariants.

However, in the orbifold case, sheaves of different K-group classes might have

same modified Euler characteristic. We need to count colored partitions to track

K-group classes. In the case when r = 0, we can obtain an explicit formula for the

generating function of Donaldson-Thomas invariants DT (X ;α).

Theorem 1.2.3. Suppose gcd(a, b) = 1. Let X be the total space of the canonical

bundle over P(a, b) × P1 and i : S ∼= P(a, b) × P1 ↪→ X be the inclusion of the

zero section. Denote by g := [(−1, 0)], h := [(0,−1)] the K-group classes of the

generators of Pic(P(a, b)× P1) ∼= Z⊕ Z. Then

∑
α∈K0(X )

DT
(
X ;α)p#pia

ia q
#qjb
jb

= (−1)a+bG2(−p0, pia︸︷︷︸
i 6= 0, b− 1

,−p(b−1)a)H
′2(−q0, qjb︸︷︷︸

j 6= 0

;−p0, pia︸︷︷︸
i 6= 0, b− 1

,−p(b−1)a),

where α is given by

i∗

(
1−

b−1∑
i=0

#pia(1− ga)(1− h)gi −
a−2∑
j=0

#qjb(1− gb)(1− h)gj
)

11



and G(pia), H
′(qjb; pia) are defined as

G(pia) =
1∏

k≥0

∏b−1
i=0

(
1− p0pa · · · pia(p0pa · · · p(b−1)a)k

) ,
H ′(qjb; pia) =

1∏
k>0

(
1− (p0pa · · · p(b−1)a)k

)
· 1∏

k≥0

∏a−2
j=0

(
1− q0qb · · · qjb(p0pa · · · p(b−1)a)k

) .
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Chapter 2: Toric Stacks

In this section, we will briefly review various definitions of stacky fans and

their associated toric Deligne-Mumford stacks. Toric stacks were first introduced

in [BCS05] and later in [FMN10]. The theory was further generalized in [GS15a]

which encompasses all the notions of toric stacks before. In this paper, we will refer

to [BCS05] the notation of toric stacks most of the time, but use [GS15a] when

constructing the vector bundles.

Definition 2.0.1. A stacky fan [BCS05] is a triple (N,Σ, β : Zn → N) where

• N is a finitely generated abelian group of rank d, not necessarily free.

• Σ is a rational simplicial fan in NQ := N⊗ZQ with n rays, denoted by ρ1, ..., ρn.

• β : Zn → N is a homomorphism with finite cokernel such that β(ei)⊗ 1 ∈ NQ

is on the ray ρi for 1 ≤ i ≤ n.

Given a stacky fan, the way to construct its corresponding toric stack [ZΣ/Gβ]

is as follows:

The variety ZΣ is defined as Cn − V (JΣ) where JΣ = 〈
∏

ρi 6⊂σ zi |σ ∈ Σ〉 is a

reduced monomial ideal. Suppose N is of rank d, then there exists a free resolution

0→ Zr Q−→ Zd+r → N → 0 of N . Let the matrix B : Zn → Zd+r be a lift of the map
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β : Zn → N . Define the dual group DG(β) = (Zn+r)?/Im([BQ]?), where (−)? is the

dual HomZ(−,Z). Let β∨ : (Zn)? → DG(β) be the composition of the inclusion map

(Zn)? → (Zn+r)? and the quotient map (Zn+r)? → DG(β). By applying the functor

HomZ(−,C∗) to β∨, we get a homomorphism Gβ := HomZ(DG(β),C∗) → (C∗)n

which leaves ZΣ invariant.

The quotient stack [ZΣ/Gβ] is called the toric Deligne-Mumford stack associ-

ated to the stacky fan Σ.

Definition 2.0.2. A (non-strict) stacky fan [GS15a] is a pair (Σ, β : L→ N), where

Σ is a fan on the lattice L and N is a finitely generated abelian group.

Remark 2.0.3. Since the fan is defined on L instead of N , we are allowed to assume

that β is of not finite cokernel. Interested readers can read [GS15a] for more details.

In our paper, we will only consider β with the finite cokernel, in which case the

construction of Gβ in [GS15a] essentially agrees with [BCS05].

Remark 2.0.4. The stacky fan defined in Definition 2.0.1 is a special case of Defi-

nition 2.0.2. When N is free, the toric stack arising from such a stacky fan is called

a fantastack in [GS15a]. When N is not free, the toric stack can be realized as a

closed substack of a fantastack, called the non-strict fantastack.

Let β : L = Zn → N = Zd be a homomorphism with the finite cokernel as in

Definition 2.0.1. Given a cone σ ∈ Σ in N , set σ̂ = cone ({ei|ρi ∈ σ}) where {ei}ni=1

is the standard basis for L. Define Σ̂ in L as the fan generated by all the cones σ̂.

Then the stack defined by a triple (N,Σ, β : L → N) [GS15a] is same as the stack

defined by a pair (Σ̂, β : L → N) [GS15a]. Conversely, if the rays of Σ̂ in L are ei,
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the image of Σ̂ under β is a stacky fan Σ in N . Since these two definitions agree in

the case of the fantastack, we will use them interchangeably when constructing the

vector bundle.

Remark 2.0.5. In general, Σ can be a non-complete fan in L. A non-complete

fantastack is essentially the extended toric Delign-Mumford stack defined in [Jia08].

2.1 Weighted Projective Stack

Let w1, w2, ..., wn+1 ∈ Z>0. The weighted projective stack P(w1, ..., wn+1)

is the quotient stack [Cn+1 − {0}/C∗] where µ ∈ C∗ acts by µ(x1, ..., xn+1) =

(µw1x1, ..., µ
wn+1xn+1). We will give a general description of the stacky fan for the

weighted projective stack. Firstly, we assume gcd(w1, ..., wn+1) = 1, which means

P(w1, ..., wn+1) is an orbifold and the lattice N is free.

Proposition 2.1.1. Let gcd(wi, ..., wn+1) = λi for 1 ≤ i ≤ n. Suppose λ1 = 1.

Define the map β : Zn+1 → Zn by the following n× (n+ 1) matrix B:



λ2

λ1

b12 · · · b1,i−1 b1i b1,i+1 · · · b1,n−1 b1n b1,n+1

...
. . .

...

0 0 · · · λi
λi−1

bi−1,i bi−1,i+1 · · · bi−1,n−1 bi−1,n bi−1,n+1

0 0 · · · 0
λi+1

λi
bi,i+1 · · · bi,n−1 bi,n bi,n+1

...
. . .

...

0 0 · · · 0 0 0 · · · λn
λn−1

bn−1,n bn−1,n+1

0 0 · · · 0 0 0 · · · 0
wn+1

λn
−wn
λn


15



where bij are chosen so that

λi+1

λi
wi +

n+1∑
j=i+1

bijwj = 0 for 1 ≤ i ≤ n− 1, (2.1.1)

0 ≤ b1i, b2i, · · · , bii <
λi+1

λi
for 2 ≤ i ≤ n− 1.

Each column represents a ray in the fan Σ. The maximal cones of the fan are

given by any n rays. Then the triple (Zn,Σ, β) corresponds to the weighted projective

orbifold P(w1, ..., wn+1).

Note that the choice is not unique.

Proof. The triple induces P(w1, ..., wn+1) if the following two statements are true:

• DG(β) = Z.

• β∨ : Zn+1 → Z is given by

[
w1 w2 ... wn+1

]
.

If DG(β) = Zn+1/Im(B?) ∼= Z, then

[
w1 w2 ... wn+1

]
spans the integer

null space of the matrix B because bij are chosen to satisfy (2.1.1). Let Bi

denote the minor of B by removing the ith column. If we can show that

gcd(det(B1), ..., det(Bn+1)) = 1, then there exists a matrix

b
B

 with determinant

1. Hence Zn+1/Im(B?) = Z.

When i = n, n + 1, we obtain two diagonal matrices and det(Bn+1) =

wn+1, det(Bn) = −wn. For 1 ≤ i ≤ n − 1, we compute by induction that
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det(Bi) = (−1)n+1−iwi. Denote by

Ci =



bi,i+1 · · · bi,n−1 bi,n bi,n+1

λi+2

λi+1

· · · bi+1,n−1 bi+1,n bi+1,n+1

. . .
...

0 · · · λn
λn−1

bn−1,n bn−1,n+1

0 · · · 0
wn+1

λn
−wn
λn


the bottom-right (n− i+1)× (n− i+1) submatrix of B, then det(Bi) = λi ·det(Ci).

For i = n− 1, because gcd(wn, wn+1) = λn and λn−1|wn−1, integers bn−1,n and

bn−1,n+1 can be chosen so that

det(Cn−1) = −bn−1,n
wn
λn
− bn−1,n+1

wn+1

λn
=
wn−1

λn−1

.

Suppose integers bi,i+1, ..., bi,n+1 are chosen so that

det(Ci) = (−1)n−i
n+1∑
j=i+1

bi,j
wj
λi+1

= (−1)n+1−iwi
λi
,

then we can expand the matrix Ci−1 by the first column and get

det(Ci−1) = bi−1,i det(Ci)−
λi+1

λi
det(C ′i)

= (−1)n+1−ibi−1,i
wi
λi
− (−1)n−i

λi+1

λi

n+1∑
j=i+1

bi−1,j
wj
λi+1

= (−1)n−i
wi−1

λi−1

,

17



where C ′i is the submatrix of Ci−1 by removing the first column and the second row.

Now we get det(Bi) = (−1)n−iwi and gcd(det(B1), ..., det(Bn+1)) = 1.

If bji ≥ λi+1

λi
or bji < 0, then we can left multiply a elementary matrix and the

integer null space will be unchanged.

Example 2.1.2. Consider the stack P(1, 2, 4, 8). Since gcd(2, 4, 8) = 2, gcd(4, 8) =

4, the matrix for β : Z4 → Z3 will be


2 a b c

0 2 d e

0 0 2 −1


such that 4 + 4d+ 8e = 0, 2 + 2a+ 4b+ 8c = 0. One of the solutions for this system

is as follows: 
2 1 1 −1

0 2 1 −1

0 0 2 −1

 .

When λ1 6= 1, the lattice N is not free and can be identified as Zn ⊕ Z/λ1Z.

In this case, P(w1, ..., wn+1) is a µλ1-banded gerbe over P(w1

λ1
, ..., wn+1

λ1
), which is

isomorphic to the root stack [FMN10]

λ1

√
OP(

w1
λ1
,...,

wn+1
λ1

)(1)/P(
w1

λ1

, ...,
wn+1

λ1

).

Proposition 2.1.3. Choose c1, ..., cn+1 so that
∑n+1

i=1 ci
wi
λ1
≡ 1 mod λ1. Set c =

([c1], ..., [cn+1]) where [ci] is the class of ci modulo λ1. Let B′ the matrix corresponding

18



to P(w1

λ1
, ..., wn+1

λ1
) as in Proposition 2.1.1. Define the map β : Zn+1 → Zn⊕Z/λ1Z by

B =

B′
c

 . Then the triple (Zn,Σ, β) corresponds to the weighted projective stack

P(w1, ..., wn+1).

Proof. The [BQ] matrix as in [BCS05] is given by

B′ 0

c λ1

. Since
∑n+1

i=1 ci
wi
λ1
≡

1 mod λ1, the vector

[
w1 w2 · · · wn+1 ∗

]
spans the integer null space of the

matrix [BQ].

2.2 Vector Bundles

In [CLS11], it mentions a class of toric morphisms that have a nice local

structure. This can be naturally generalized to the morphisms of fantastacks.

Let N1, N2 be free abelian groups. Denote the bases of Zn1 and Zn2 by

{e1, ..., en1} and {en1+1, ..., en1+n2}. By abuse of notation, we also assume the ba-

sis of Zn1+n2 is {e1, ..., en1 , en1+1, ..., en1+n2}. Consider the exact sequence of the

fantastacks given by a commutative diagram

0 Zn1 Zn1 ⊕ Zn2 Zn2 0

0 N1 N1 ⊕N2 N2 0

(Id,0)

β1

pr2

β β2

f

g

(1.2.1)

such that the rows are exact and the column morphisms are of the finite cokernel.

Suppose there exists a splitting morphism g satisfying the following conditions:
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1. A is a rkN1 × rkN2 integer matrix such that

β(ei) =



f(β1(ei)) =

β1(ei)

0

 if 1 ≤ i ≤ n1

g(β2(ei)) =

Aβ2(ei)

β2(ei)

 if n1 + 1 ≤ i ≤ n1 + n2.

2. Given cones σ1 ∈ Σ1 and σ2 ∈ Σ2, the sum σ1 + σ2 lies in Σ, and every cone

of Σ arises this way.

Then we say (Σ, β : Zn1+n2 → N1⊕N2) is globally split by (Σ1, β1 : Zn1 → N1)

and (Σ2, β2 : Zn2 → N2).

Theorem 2.2.1. If (Σ, β : Zn1+n2 → N1⊕N2) is globally split by (Σ1, β1 : Zn1 → N1)

and (Σ2, β2 : Zn2 → N2), then XΣ,β
∼= XΣ1,β1 ×XΣ2,β2 .

Proof. Denote the matrices for β1 and β2 by

B1 =

[
β1(e1) β1(e2) · · · β1(en1)

]
,

B2 =

[
β2(en1+1) β2(en1+2) · · · β2(en1+n2)

]
.

The matrix for β is given by B =

B1 AB2

0 B2

 . It is not hard to show that DG(β) ∼=

DG(β1)⊕DG(β2) and β∨ ∼= β∨1 ⊕ β∨2 , which implies α ∼= α1 × α2, where α, α1 and

α2 are obtained by applying HomZ(−,C∗) to β∨, β∨1 , β
∨
2 .

It remains to show ZΣ = ZΣ1×ZΣ2 . The C-valued points of ZΣ are z ∈ Cn1+n2
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such that the cone generated by the set {ρi : zi = 0}, where ρi is the cone generated

by bi in NQ, belongs to Σ. Since every cone of Σ is the sum of cones in Σ1 and Σ2,

the C-valued points of ZΣ are exactly the product of C-valued points of ZΣ1 and

ZΣ2 .

Example 2.2.2. Consider the following exact sequence of fantastacks

1
(0, 1)

(1, 0) 1

0 Z1 Z2 Z1 0

0 Z1 Z2 Z1 0.

1


1 2

0 2

 2

It can be shown that XΣ,β = [C2/µ2] ∼= C× [C/µ2] = XΣ1,β1 ×XΣ2,β2 .

Remark 2.2.3. The above exact sequence of fantastacks can be better understood

if we draw the corresponding stacky fans defined in [BCS05]. The morphism from

the middle stacky fan to the right can be viewed as the projection of rays from the

lattice Z2 to Z,

(0, 1)
(2, 2)

projection−−−−−→
2

which is compatible with XΣ,β → XΣ2,β2 induced from the projection onto the second

coordinate.

Remark 2.2.4. The morphism of stacky fans below corresponds to a morphism

of stacks XΣ,β → [C1/µ2]. Indeed, XΣ,β is a line bundle over [C1/µ2] whose fiber
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over the stacky point corresponds to the non-trivial representation of µ2. Hence the

stacky fan of XΣ,β is not globally split.

(0, 1) (2, 1)
projection−−−−−→

2

With the above theorem and examples in mind, we can generalize [CLS11,

Definition 3.3.18].

Definition 2.2.5. Given an exact sequence like (1.2.1), we say (Σ, β : Zn1+n2 →

N1 ⊕ N2) is (locally) split by (Σ1, β1 : Zn1 → N1) and (Σ2, β2 : Zn2 → N2) if there

exists a morphism g : N2 → N1 ⊕N2 satisfying the following conditions:

1. For every maximal cone σj ∈ Σ2, there exists an rkN1 × rkN2 integer matrix

Aj such that

β(ei) =



f(β1(ei)) =

β1(ei)

0

 if 1 ≤ i ≤ n1

g(β2(ei)) =

Aiβ2(ei)

β2(ei)

 if ei ∈ σj.

2. Given cones σ1 ∈ Σ1 and σ2 ∈ Σ2, the sum σ1 + σ2 lies in Σ, and every cone

of Σ arises this way.

Remark 2.2.6. The map g here essentially gives the bijection σ′ → σ̂ for the case

of toric varieties in [CLS11, Definition 3.3.18].
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Theorem 2.2.7. If (Σ, β : Zn1+n2 → N1 ⊕N2) is (locally) split by (Σ1, β1 : Zn1 →

N1) and (Σ2, β2 : Zn2 → N2), then φ : XΣ,β → XΣ2,β2 is a locally trivial fiber

bundle with fiber XΣ1,β1, i.e., XΣ2,β2 has a cover by affine open substacks U satisfying

φ−1(U) ∼= XΣ1,β1 × U .

Proof. The proof is similar to that of [CLS11, Theorem 3.3.19].

Therefore, if the stacky fan of a vector bundle is locally split, then for every

stacky point of the base, the representation of the stabilizer group at that point on

the fiber is trivial.

Note that the above theorem can be generalized to the case where N1 and N2

are not free.

Example 2.2.8. Consider the following morphism of stacky fans.

(1, 1)
(0, 1)(−2, 2)

projection−−−−−→
−2 1

The induced morphism φ : XΣ,β → P(2, 1) corresponds to a line bundle such that

its fan is locally split. But it cannot be written globally as the product of one-

dimensional toric stacks. Indeed, it represents OP(2,1)(−4) by the next theorem.

For a vector bundle over a stack, the fiber over a stacky point might correspond

to a non-trivial representation of the stabilizer group. In this case, the corresponding

stacky fan is not locally split. To include this type of stacky vector bundles, we

generalize [CLS11, Sec. 7.3] to the case of toric stacks.
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Let’s assume N is free. Given a triple (N,Σ, β : Zn → N), we define the new

stacky fan (N × Z, Σ̃, β̃ : Zn+1 → N × Z) as follows:

1. β̃(ei) = (β(ei),−ai) for 1 ≤ i ≤ n.

2. β̃(en+1) = (0, 1).

3. Given σ ∈ Σ, set σ̃ = Cone
(

(0, 1), β̃(ei)⊗ 1 | β(ei)⊗ 1 ∈ σ(1)
)
∈ NQ × Q,

and let Σ̃ be the set consisting of σ̃ for all σ ∈ Σ and their faces.

The natural projection Zn+1 → Zn is compatible with Σ̃ and Σ. Therefore it gives

a toric morphism π : XΣ̃,β̃ → XΣ,β.

Theorem 2.2.9. Denote by Dρi the divisor corresponding to the ray ρi. Then

π : XΣ̃,β̃ → XΣ,β is a line bundle whose sheaf of sections is

OXΣ,β
(D) = OXΣ,β

(
∑
i

aiDρi).

Recall that the category of locally free sheaves on [Z/G] is equivalent to that

of G-linearized locally free sheaves on Z. These G-linearized invertible sheaves Li,

without considering the equivariant structure, are all isomorphic to the trivial sheaf

OZ . By the construction of a toric stack, G can be thought of as a subgroup of

(C∗)n. Each g = (λ1, ..., λn) ∈ G induces an isomorphism OZ → g∗OZ sending 1

to λi. The sheaf Li has a G-invariant global section zi such that g∗zi = λizi and

corresponds to OΣ,β(Dρi). [BH06]

Proof of Theorem 2.29. We will use the definition of stacky fan from [GS15a].
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Given a triple (N,Σ, β : Zn → N), we can construct the corresponding fan Σ̂

in Zn, which corresponds to a toric variety ZΣ̂. Then by [CLS11], we can construct a

new fan Σ̂′ ∈ Qn×Q. Given σ̂ ∈ Σ̂, set σ̂′ = Cone ((0, 1), (ei,−ai)|ei ∈ σ̂) and let Σ̂′

be the set consisting of cones σ̂′ for all σ̂ ∈ Σ̂ and their faces. By [CLS11, Proposition

7.3.1], π : ZΣ̂′ → ZΣ̂ is a line bundle whose sheaf of sections is OZ
Σ̂
(
∑

i aiDei) where

Dei is the divisor corresponding to the ray generated by ei in Σ̂. Note that Σ̂ is not

a complete fan, but the proposition still keeps true.

It suffices to show that the Gβ-linearizion of this bundle exists and the action

of Gβ on ZΣ can be lifted . Define β̂′ : Zn × Z→ N × Z by the following matrices

β(e1) · · · β(en) 0

0 · · · 0 1

 .

Then Gβ̂′
∼= Gβ and its action on the line bundle is compatible with the action of

Gβ on ZΣ. The toric stack XΣ̂′,β̂′ defined by the stacky fan (Σ̂′, β̂′ : Zn×Z→ N×Z)

induces the above line bundle.

However, the rays of Σ̂′ do not form a standard basis. Hence XΣ̂′,β̂′ is not a

fantastack and it is not a stacky fan defined in Definition 2.0.1.

Consider the morphism of stacky fans given by the following commutative

diagram

Σ̃ Σ̂′

Zn × Z Zn × Z

N × Z N × Z

α

β̃:=β̂′◦α β̂′

∼=
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where α is defined by the matrix

 In 0

−a1 −a2 · · · −an 1



and In is the n × n identity matrix. Let σ̃ = Cone
(
ei|α(ei) ∈ Σ̂′

)
. The morphism

satisfies the conditions mentioned in [GS15a, Theorem B.3]. Thus XΣ̃,β̃ → XΣ̂′,β̂′ is

an isomorphism and XΣ̃,β̃ is a fantastack. The matrix of β̃ is given by

β(e1) · · · β(en) 0

−a1 · · · −an 1

 .

Example 2.2.10. Consider the morphism of stacky fans as below.

(1, 1)

(0, 1)

(−2, 1) projection−−−−−→
−2 1

Then φ : XΣ,β → P(2, 1) is a line bundle whose sheaf of sections is OP(2,1)(−3) and

its fan is not locally split.

Again this theorem can be generalized to the case where N is not free.
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2.3 Projective Bundles

Consider the locally free sheave

E = OXΣ,β
(D0)⊕ · · · ⊕ OXΣ,β

(Dr)

given by the cartier divisors Di =
∑n

j=1 aijDρj for 0 ≤ i ≤ r, then P(E)→ XΣ,β is a

projective bundle.

Assume N is free. Given a triple (N,Σ, β : Zn → N), we define the new stacky

fan (N × Zr, Σ̃, β̃ : Zn+r+1 → N × Zr) as follows:

1. β̃(ej) = (β(ej), a1j − a0j, · · · , arj − a0j) for 1 ≤ j ≤ n.

2. β̃(en+1+i) = (0, ei) ∈ N × Zr for 0 ≤ i ≤ r, where e0 = −e1 − ...− er ∈ Zr.

3. Given σ ∈ Σ, set σ̃i = Cone
(
β̃(ej)⊗ 1|β(ej)⊗ 1 ∈ σ(1)

)
+ Cone ((0, e0), ...,

(0, ei−1), (0, ei+1), ..., (0, er)) and let Σ̃ be the set consisting of cones σ̃i for all

σ ∈ Σ, 1 ≤ i ≤ r and their faces.

Then the natural projection of the fan Σ̃ induces a toric morphism π : XΣ̃,β̃ → XΣ,β.

Theorem 2.3.1. XΣ̃,β̃ is the projective bundle P(E).

Proof. The proof is similar to that of [CLS11, Theorem 7.3.3].

Suppose gcd(a, b) = 1, then by Propostion 2.1.1, the fan of P(a, b) is given by

β(e1) = b and β(e2) = −a . Suppose r = sa+ tb, then consider

E = OP(a,b) ⊕OP(a,b)(sDe1 + tDe2)
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where Dei is the divisor corresponding to the ray generated by ei. Hence β̃ : Z4 → Z2

is given by

β̃(e1) = (b, s), β̃(e2) = (−a, t),

β̃(e3) = (0,−1), β̃(e4) = (0, 1).

(2.3.1)

If gcd(a, b) = d 6= 1 and c1
a
d

+ c2
b
d
≡ 1 mod d, then by Proposition 2.1.3, the

fan of P(a, b) is given by β′ : Z2 → Z⊕ Z/dZ such that

β′(e1) = (
b

d
, c1 mod d), β′(e2) = (−a

d
, c2 mod d).

Suppose d | r and r = sa
d

+ t b
d
, then β̃ : Z4 → Z2 ⊕ Z/dZ is given by

β̃(e1) = (
b

d
, s, c1 mod d), β̃(e2) = (−a

d
, t, c2 mod d),

β̃(e3) = (0,−1, 0), β̃(e4) = (0, 1, 0).

(2.3.2)

Definition 2.3.2. The Hirzebruch stack Hab
r is defined as

Hab
r = P(OP(a,b) ⊕OP(a,b)(r))

and its fan is given by (2.3.1) when gcd(a, b) = 1 and by (2.3.2) when gcd(a, b) =

d 6= 1 and d | r.

From now on, to simplify the notation, we assume gcd(a, b) = 11. In this case,

1Our method still works without this assumption.
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x

y

ρ1 = (b, s)

ρ3 = (−a, t)
ρ2 = (0, 1)

ρ4 = (0,−1)

σ1σ2

σ3 σ4

Figure 2.1: Hab
r

the matrix for β : Z4 → Z2 is given by

B =

b 0 −a 0

s 1 t −1

 (2.3.3)

where r = sa + bt. The stacky fan can be drawn as below and Hab
r is called the

Hirzebruch orbifold.

2.4 Bundles over Gerbes

In (2.3.2), we require the condition that d | r. The reason is that when N is

not free [Definition 2.0.1], XΣ is a banded gerbe over X rig
Σ [FMN10]. Hence the line

bundles OXΣ
(Dρi) do not generate the K-theory any more.

Example 2.4.1. The stacky fan for the weighted projective line P(6, 4) is given by

ρ2 = (−3 | 0) ρ1 = (2 | 1)

where the last coordinate comes from the torsion part Z/2Z. HoweverOP(6,4)(Dρ1) ∼=
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OP(6,4)(6) and OP(6,4)(Dρ2) ∼= OP(6,4)(4). The construction in the previous two sec-

tions won’t give us the total space of OP(6,4)(1).

In general, given a line bundle L on a toric Deligne-Mumford stack XΣ, if there

exists a minimal positive integer n such that

Ln ∼= OXΣ
(ΣiaiDρi),

then we can modify the stacky fan construction in the last section to show that the

total space of L is toric.

Consider a toric stack given by the fan (N,Σ, β : Zn → N), N not necessarily

free. We define the new stacky fan (N × Z, Σ̃, β̃ : Zn+1 → N × Z) as follows:

1. β̃(ei) = (β(ei),−ai) for 1 ≤ i ≤ n.

2. β̃(en+1) = (0, n).

3. Given σ ∈ Σ, set σ̃ = Cone
(

(0, n), β̃(ei)⊗ 1 | β(ei)⊗ 1 ∈ σ(1)
)
∈ NQ × Q,

and let Σ̃ be the set consisting of σ̃ for all σ ∈ Σ and their faces.

Theorem 2.4.2. XΣ̃,β̃ is the total space of the line bundle L over XΣ,β

Proof. The proof is similar to that of Theorem 2.2.9.

Example 2.4.3. Consider the line bundle L ∼= OP(6,4)(1). Since L2 ∼= OP(6,4)(Dρ1 −
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Dρ2), the stacky fan for the total space of L is given by

(2,−1 | 1)

(0, 2 | 0)

(−3, 1 | 0)

where the last coordinate comes from the torsion part Z/2Z. One can show that

XΣ̃
∼= [C3 − V (x, z)/C∗] where the action is given by

τ ∈ C∗ : (x, y, z)→ (τ 6x, τy, τ 4z).

Now we can extend the construction to the projective bundles. Given a triple

(N,Σ, β : Zn → N), consider the locally free sheaf

E = OXΣ
⊕ L1 ⊕ · · · ⊕ Lr

over the corresponding toric stack XΣ. Suppose there exist minimal positive integers

ni such that

Lnii ∼= OXΣ
(
n∑
j=1

aijDj)

for 1 ≤ i ≤ r. We define the new stacky fan (N × Zr, Σ̃, β̃ : Zn+r+1 → N × Zr) as

follows:

1. β̃(ej) = (β(ej), a1j, · · · , arj) for 1 ≤ j ≤ n.

2. β̃(en+i) = (0, niei) ∈ N × Zr for 1 ≤ i ≤ r.
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3. β̃(en+r+1) = (0, e0) ∈ N × Zr where e0 = −n1e1 − ...− nrer.

4. Given σ ∈ Σ, set σ̃i = Cone
(
β̃(ej)⊗ 1|β(ej)⊗ 1 ∈ σ(1)

)
+ Cone ((0, e0), ...,

(0, ni−1ei−1), (0, ni+1ei+1), ..., (0, nrer)) and let Σ̃ be the set consisting of cones

σ̃i for all σ ∈ Σ, 1 ≤ i ≤ r and their faces.

Theorem 2.4.4. XΣ̃,β̃ is the projective bundle P(E).

Now we can finally give the fan description of the Hirzebruch stack Hab
r when

gcd(a, b) = d 6= 1 and d - r.

Suppose there exists a minimal positive integer n such that nr = sa+ tb, then

the stacky fan of Hab
r is given by β̃ : Z4 → Z2 ⊕ Z/dZ as follows:

β̃(e1) = (
b

d
, s, c1 mod d), β̃(e2) = (−a

d
, t, c2 mod d),

β̃(e3) = (0, n, 0), β̃(e4) = (0,−n, 0).

Example 2.4.5. Let E ∼= OP(6,4)⊕OP(6,4)(1). Then the stacky fan for P(E) is given

by

(2, 1 | 1)

(0, 2 | 0)

(−3,−1 | 0)

(0,−2 | 0)

where the last coordinate comes from the torsion part Z/2Z. One can show that
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XΣ̃
∼= [C4 − V (xy, yz, zw, wx)/(C∗)2] where the action is given by

(τ, λ) ∈ C∗ : (x, y, z, w)→ (τ 6x, λy, τ 4z, τλw).
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Chapter 3: Sheaves on Hirzebruch Orbifolds

The Hirzebruch orbifold can be covered by open substacks of the form [C2/H]

where H is a finite group. Hence, to describe a sheaf on the Hirzebruch Orbifold,

we can define it locally over each substack and then glue each part together.

Let T ∼= (C∗)2 act linearly on Spec C[x1, x2] and suppose the action is given

as t · xi = χ(mi)(t)(xi) for some mi in the character lattice X(T). Given a T-

equivariant sheaf F on [C2/H], the corresponding module can be decomposed into

X(T)-graded weight spaces:

H0(C2,F) =
⊕

m∈X(T)

F (m).

Suppose H acts by h ·xi = χ(ni)(h)(xi), then F (m) can be further decomposed into

X(H)-graded weight spaces:

F (m) =
⊕

n∈X(H)

F (m)n.

Hence the category of T-equivariant sheaves on [C2/H], by [GJK17], is equiv-

alent to the category of stacky S-families. A object F̂ in this category consists of

the following data:
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• A collection of vector spaces {F (m)n}m∈X(T),n∈X(H).

• A collection of linear maps

{χi(m) : F (m)→ F (m+mi)}i=1,2,m∈X(T).

induced by multiplication by xi satisfying

χi(m) : F (m)n → F (m+mi)n+ni , χj(m+mi) · χi(m) = χi(m+mj) · χj(m)

for i, j = 1, 2, m ∈ X(T) and n ∈ X(H).

3.1 Open Affine Covers

Let Nσi be the subgroup of N ∼= Z2 generated by the rays of σi and N(σi) be

the quotient group N/Nσi . By [BCS05], each 2-dimensional cone σi defines an open

substack Ui ∼= [C2/N(σi)] of Hab
r . One can show that

U1
∼= U4

∼= [C2/(Z/bZ)], U2
∼= U3

∼= [C2/(Z/aZ)].

The integer null space of the matrix B (2.3.3) is spanned by

[
a 0 b r

]
and

[
0 1 0 1

]
. Hence (τ, λ) ∈ Gβ

∼= (C∗)2 acts on ZΣ = Spec C[x, y, z, w] −

V (xy, yz, zw, wx) by

(τ, λ) : (x, y, z, w)→ (τax, λy, τ bz, τ rλw)
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and Hab
r = [ZΣ/Gβ].

Let β1 be the morphism given by the first two columns of the matrix B. It

induces a stacky fan with two rays and the corresponding toric stack [Z1/G1] is ex-

actly [C2/(Z/bZ)]. Consider the open subvariety U1 of ZΣ defined as the complement

of the vanishing locus of the monomial zw. There is a natural closed embedding

φ1 : Z1 → U1 given by

φ1(Z1) = C2 × 1 = {(x, y, 1, 1)} ∈ C2 × (C∗)2 ∼= U1.

By [BCS05], an element g ∈ Gβ belongs to G1 if and only if φ1(Z1)·g∩φ1(Z1) 6=

∅. In this case,

τ b = 1, τ rλ = 1 =⇒ λ = τ−r.

Let µb be the group of bth roots of unity, then

U1
∼= [C2/µb], τ ∈ µb : (x, y)→ (τax, τ−ry).

Similarly, one can show that

U2
∼= [C2/µa], τ ∈ µa : (y, z)→ (τ−ry, τ bz),

U3
∼= [C2/µa], τ ∈ µa : (z, w)→ (τ bz, τ rw),

U4
∼= [C2/µb], τ ∈ µb : (w, x)→ (τ rw, τax).

Consider the morphism φ̃i : Ui ↪→ Hab
r induced by Zi

φi−→ Ui ↪→ ZΣ. We can
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compute stack theoretic intersections via the fiber product of Ui and Uj over Hab
r .

U12 := U1 ×Habr U2 [spec C[x, y]/µb]

[spec C[y, z]/µa] Hab
r

φ̃1

φ̃2

By calculating the fiber product of the corresponding groupoids [ALR07], one can

show that

U12
∼= [C× C∗/µb × µa], (µ, ν) ∈ µb × µa : (y, τ)→ (µ−ry, νµ−1τ).

Similarly, the fiber products of other open substacks are given as follows:

U23
∼= [C× C∗ × µa/µa × µa], (µ, ν) ∈ µa × µa : (z, λ, τ)→ (µbz, µrλ, νµ−1τ).

U34
∼= [C× C∗/µa × µb], (µ, ν) ∈ µa × µb : (w, τ)→ (µrw, νµ−1τ).

U41
∼= [C× C∗ × µb/µb × µb], (µ, ν) ∈ µb × µb : (x, λ, τ)→ (µax, ν−rλ, νµ−1τ).

Actually U23 can be further simplified. Consider the groupoid morphism

(ψ1 × ψ0, ψ0) : (µa × C× C∗ →→C× C∗) −→ (µa × µa × C× C∗ × µa→→C× C∗ × µa)

defined by

ψ1(µ) = (µ, µ), ψ0(z, λ) = (z, λ, 1).

One can show that it is a Morita equivalence and hence

U23
∼= [C× C∗/µa], µ ∈ µa : (z, λ)→ (µbz, µrλ).
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Similarly,

U41
∼= [C× C∗/µb], µ ∈ µb : (x, λ)→ (µax, µ−rλ).

The open immersions φ̃ij : Uij = [Zij/Gij] ↪→ Ui = [Zi/Gi] and φ̃ji : Uij ↪→ Uj

are induced from φij : Zij → Zi and φji : Zji = Zij → Zj.

φ12 : (y, τ)→ (τ−a, y) φ21 : (y, τ)→ (yτ−r, τ b).

φ23 : (z, λ)→ (λ−1, z) φ32 : (z, λ)→ (z, λ).

φ34 : (w, τ)→ (τ−b, w) φ43 : (w, τ)→ (τ rw, τa).

φ41 : (x, λ)→ (λ−1, x) φ14 : (x, λ)→ (x, λ).

To find X(T )-grading on each open substack Ui, we need to determine how

the torus T is embedded in Hab
r . One can show that

U1234 := U12 ×Habr U34
∼= [(C∗)2/µb × µa]

(µ, µ′) ∈ µb × µa : (α, β)→ (µ(µ′)−1α, µ−rβ).

Hence U1234
∼= (C∗)2. Suppose (α, β) acts on itself by multiplication, then we can

extend this action to the orbifold Hab
r by requiring all the open immersions to be

T-equivariant.
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For example, from the following commutative diagram

Z1234 Z12
∼= C× C∗ Z1 = spec C[x, y] Z2 = spec C[y, z]

(α, β) (β, α−1) (αa, β) (βαr, α−b)

(t1α, t2β) (t2β, t
−1
1 α−1) (ta1α

a, t2y) (t2βt
r
1α

r, t−b1 α−b)

(0,1)(1,0) (−1,0)(0,1) (0,1)(a,0) (−b,0)(r,1)

we see that T-weights are (0, 1) and (−1, 0) on Z12, (a, 0) and (0, 1) on Z1, (r, 1)

and (−b, 0) on Z2.

Similarly, one can show that T-weights are given by the following tables:

T-weights on Zi

U1 (a, 0), (0, 1)

U2 (r, 1), (−b, 0)

U3 (−b, 0), (−r,−1)

U4 (0,−1), (a, 0)

T-weights on Zij

U12 (0, 1), (−1, 0)

U23 (−b, 0), (−r,−1)

U34 (−r,−1), (1, 0)

U41 (a, 0), (0, 1)

3.2 Gluing Conditions

To describe T-equivariant torsion free sheaves on Hab
r , we first determine the

stacky S-family F̂i of the sheaf Fi on each open cover Ui. Then we pull back those
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families to the intersection Uij and match them for all i, j. This allows us to glue

those sheaves Fi to get a sheaf F on Hab
r . Note that this gluing approach follows

closely the work of [GJK17].

Let’s first compute the family F̂1,12, which is the pullback of F̂1.

Given a torus action t · xi = χ(mi)(t)(xi), the associated box BT [GJK17] is

defined as the subset of X(T) of the form
∑

i qimi with 0 ≤ qi ≤ 1. By the above

table, the T-weights on U1 are (a, 0) and (0, 1). Hence q1 = k
a

for 0 ≤ k ≤ a− 1 and

q2 = 0. Note that the box BT of U1 can also be viewed as [0, a− 1]× 0 and the size

of this box is a.

For the stacky family F̂1, denote by

(k/a,0)F1(l1, l2)

the vector space whose T-weight is (k/a+ l1)(a, 0) + (0 + l2)(0, 1).

Consider the inclusion U12 ↪→ U1 induced from

C× C∗ → C2, φ12 : (y, τ)→ (τ−a, y) = (x, y).

We first restrict the sheaf F1 to Im(φ12) ∼= C∗ × C and then pull it back along the

morphism φ12.

The sheaf F is torsion free, hence the vector spaces (k/a,0)F1(l1, l2) stabilize for

l1 � 0, l2 fixed. It means that they are isomorphic for l1 � 0 [Koo11]. We denote
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this limit by

(k/a,0)F1(∞, l2).

The sheaf F1|C∗×C corresponds to a S-family Ĝ1 and

(k/a,0)G(l1, l2) = (k/a,0)F1(∞, l2)

is independent of l1 because G1 is a C[x±, y]-module and multiplication by x induces

an isomorphism of vector spaces.

Pulling back the family Ĝ1 to Z12 along the étale morphism φ12, we get a

C[τ±, y]-module. An element of F̂1,12 at the weight (k/a + l1)(a, 0) + (0 + l2)(0, 1)

can be uniquely written as ⊕
0≤k′≤a−1

vk′ ⊗ τ k
′−k

where vk′ ∈ (k′/a,0)G1(l1, l2), since the T-weight of τ is (−1, 0) on U12.

Next, we set the fine-grading on the limit space (k/a,0)F1(∞, l2) by

(k/a,0)F1(∞, l2)m = (k/a,0)G1(0, l2)m.

Thus the fine-grading of S-family Ĝ1 for any l1 will be

(k/a,0)G1(l1, l2)m = (k/a,0)G1(0, l2)m−al1 ⊗ µ̂al1b .

Here ⊗µ̂b means tensoring with the 1-dimensional representation of the group µb of

weight 1 ∈ Z/bZ.
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Since the µb × µa-weight of τ is (−1, 1) on U12, the S-family of F̂1,12 at the

T-weight (k/a+ l1)(a, 0) + (0 + l2)(0, 1) with the fine grading is

⊕
0≤k′≤a−1
m∈Zb

(k′/a,0)G1(l1, l2)m ⊗ µ̂k−k
′

b ⊗ µ̂k′−ka

=
⊕

0≤k′≤a−1
m∈Zb

(k′/a,0)F1(∞, l2)m ⊗ µ̂k−k
′+al1

b ⊗ µ̂k′−ka .

Similarly, one can show that the S-family of F̂2,12 at the T-weight (0 + l1)(r,−r) +

(j/b+ l2)(−b, 0) is

⊕
0≤j′≤b−1
n∈Za

(0,j′/b)F2(l1,∞)n ⊗ µ̂j−j
′

a ⊗ µ̂j
′−j+bl2
b

Since multiplication by τ is an isomorphism, the S-family F̂1,12 is determined by its

elements at the weight (0/a+ 0)(a, 0) + (0 + l)(0, 1) = (0, l) for all l ∈ Z. Therefore

it suffices to compute the S-family F̂1,12 at the above weight, which is given by

⊕
0≤k′≤a−1
m∈Zb

(k′/a,0)F1(∞, l2)m ⊗ µ̂−k
′

b ⊗ µ̂k′a .

Similarly, we only compute the S-family F̂2,12 at the weight (0 + l)(r, 1) + (0/b +

0)(−b, 0) = (lr, l), which is given by

⊕
0≤j′≤b−1
n∈Za

(0,j′/b)F2(l,∞)n ⊗ µ̂−j
′

a ⊗ µ̂
j′

b .
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We can’t equate them since they are at different weights. To jump from the weight

(lr, l) to (0, l), we multiply the second family by τ lr as the T-weight of τ is (−1, 0).

As a result, the fine grading is changed to

⊕
0≤j′≤b−1
n∈Za

(0,j′/b)F2(l,∞)n ⊗ µ̂−j
′+lr

a ⊗ µ̂j
′−lr
b .

Hence the gluing conditions on the substack U12 are given by:

m∈Zb⊕
0≤k≤a−1

(k/a,0)F1(∞, l)m ⊗ µ̂−kb ⊗ µ̂
k
a =

n∈Za⊕
0≤j≤b−1

(0,j/b)F2(l,∞)n ⊗ µ̂−j+lra ⊗ µ̂j−lrb

for all l ∈ Z. Here ⊗µ̂kb means tensoring with the 1-dimensional representation of

the group µb of weight k ∈ Z/bZ and ⊗µ̂ja means tensoring with the 1-dimensional

representation of the group µa of weight j ∈ Z/aZ.

Similarly, we can get gluing conditions for other substacks.

Proposition 3.2.1. The category of T-equivariant torsion free sheaves on the Hirze-

bruch orbifold Hab
r is equivalent to the category of finite stacky S-families {F̂i}i=1,2,3,4

on Ui satisfying the gluing conditions given by the following equalities of µa×µb rep-
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resentations:

⊕
0≤k≤a−1
m∈Zb

(k/a,0)F1(∞, l)m ⊗ µ̂−kb ⊗ µ̂
k
a =

⊕
0≤j≤b−1
n∈Za

(0,j/b)F2(l,∞)n ⊗ µ̂−j+lra ⊗ µ̂j−lrb

⊕
m∈Za

(0,j/b)F2(∞, l)m =
⊕
n∈Za

(j/b,0)F3(l,∞)n

⊕
0≤j≤b−1
m∈Za

(j/b,0)F3(∞, l)m ⊗ µ̂−ja ⊗ µ̂
j
b =

⊕
0≤k≤a−1
n∈Zb

(0,k/a)F4(l,∞)n ⊗ µ̂−k−lrb ⊗ µ̂k+lr
a

⊕
m∈Zb

(0,k/a)F4(∞, l)m =
⊕
n∈Zb

(k/a,0)F1(l,∞)n

for all l ∈ Z and similar gluing conditions between the corresponding inclusions.

3.3 Examples

In this section, we will give some examples of torsion free sheaves of rank 1

and 2 on Hab
r .

Example 3.3.1. Let F be a torsion free sheaf of rank 1 on the Hirzebruch surface

H11
r . Then the gluing conditions are

(0,0)F1(∞, l) = (0,0)F2(l,∞), (0,0)F2(∞, l) = (0,0)F3(l,∞),

(0,0)F3(∞, l) = (0,0)F4(l,∞), (0,0)F4(∞, l) = (0,0)F1(l,∞).

On each chart, (0,0)F̂i can be described as follows:
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F̂1

•
(A1, A2)

C

F̂2

•
(A2, A3)

C

F̂3

•
(A3, A4)

C

F̂4

•
(A4, A1)

C

Example 3.3.2. Let F be a locally free sheaf of rank 1 on the Hirzebruch orbifold

Hab
r . The charts U1 and U4 has a box of size a, while the charts U2 and U3 has a box

of size b. Since the rank is 1, the only possible choice for nonzero biF̂i is

b1 = (k/a, 0), b2 = (0, j/b), b3 = (j/b, 0), b4 = (0, k/a).

For fixed i, j, The T-weights of the generator on each chart are given by

U1 : (k/a+ A1)(a, 0) + A2(0, 1), U2 : A2(r, 1) + (j/b+ A3)(−b, 0),

U3 : (j/b+ A3)(−b, 0) + A4(−r,−1), U4 : A4(0,−1) + (k/a+ A1)(a, 0).

Set

B1 = k + aA1, B2 = A2, B3 = j + bA3, B4 = A4.

The sheaf F is uniquely determined by Bi. We will show below that the fine grading

is also determined.
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Suppose the µb-weight of the generator is m1 on chart U1, then

(k/a,0)F1(A1, A2)m1 =(k/a,0) G1(0, A2)m1−aA1 =(k/a,0) F1(∞, A2)m1−aA1 .

The first equation of the gluing conditions implies that

m1 ≡ k + aA1 + j − rA2 ≡ B1 +B3 − rB2 mod b.

Similarly, one can show that the fine gradings of all the generators are deter-

mined as follows:

B1 +B3 − rB2 mod b on U1, B1 +B3 − rB2 mod a on U2,

B1 +B3 + rB4 mod a on U3, B1 +B3 + rB4 mod b on U4.

Denote by L(B1,B2,B3,B4) the T-equivariant locally free sheaf of rank 1 corre-

sponding to (B1, B2, B3, B4) ∈ Z4.

Proposition 3.3.3. Let PicT (Hab
r ) be the T-equivariant Picard group of the Hirze-

bruch orbifold. Then

(B1, B2, B3, B4) ∈ Z4 7−→ L(B1,B2,B3,B4) ∈ PicT (Hab
r )

is a group isomorphism.

Remark 3.3.4. The non-equivariant Picard group of the Hirzebruch orbifold Hab
r
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is Z⊕ Z and

L(1,0,0,0) = (−1, 0) L(0,0,1,0) = (−1, 0)

L(0,1,0,0) = (0,−1) L(0,0,0,1) = (−r,−1)

Example 3.3.5. Let F be a locally free sheaf of rank 2 on the Hirzebruch surface

H11
r . On each chart, F̂i can be described by a double filtration of C2:

F̂1

•
(A1, A2)

C2P1

P2P12

OO

��
∆2

//oo
∆1

F̂2

•
(A2, A3)

C2P2

P3P23

OO

��

∆3

//oo
∆2

F̂3

•
(A3, A4)

C2

P3

P4P34

OO

�� ∆4

//oo
∆3

F̂4

•
(A4, A1)

C2P4

P1P41

OO

��
∆1

//oo
∆4

Hence F is fully determined by A1, A2, A3, A4 ∈ Z, ∆1,∆2,∆3,∆4 ∈ Z≥0 and

P1, P2, P3, P4 ⊂ C2, which can also be viewed as a point (P1, P2, P3, P4) ∈ (P1)4. The

label Pij stands for the vector space Pi ∩ Pj.

Generally, for torsion free sheaves, the double filtrations may not have strict
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corners [Koo10].

F̂1

•
(A1, A2)

C2P1

P2

P ′ OO

��
∆2

//oo
∆1

Example 3.3.6. Let F be a locally free sheaf of rank 2 on the Hirzebruch orbifold

Hab
r . Since the rank is 2, either 1 or 2 box summands are nonempty. There are 4

possible choices for biF̂i to be nonzero.

1. biF̂i 6= 0 for b1 = (k/a, 0), b2 = (0, j/b), b3 = (j/b, 0), b4 = (0, k/a).

On each chart, it is described by a double filtration as for H11
r .

Since we will later work on stable sheaves and the decomposable sheaves are

not stable, we’d like to classify all the types of indecomposable sheaves. They

are listed below:

(a) Pi’s are mutually distinct and ∆i > 0 for all i.

(b) Pi’s are mutually distinct and ∆i = 0 for only one i.

(c) Only two of Pi’s are same and ∆i > 0 for all i.

2. biF̂i 6= 0 for b1 = (k/a, 0), b2 = (0, j/b), b2 = (0, j′/b), b3 = (j/b, 0), b3 =

(j′/b, 0), b4 = (0, k/a).

Suppose A′2 − A2 = ∆2 ≥ 0 and A′4 − A4 = ∆4 ≥ 0. Denote ∆3 = A′3 −

A3. Sheaves of this type are fully determined by A1, A2, A3, A4, b - ∆3 ∈ Z,
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∆1,∆2,∆4 ∈ Z≥0, and P1 6= P2 ⊂ C2. They are decomposable and can be

described as follows:

(k/a,0)F̂1

•
(A1, A2)

C2P2

P1

OO

��
∆2

//oo
∆1

(0,j/b)F̂2

•
(A2, A3)

P1

(0,j′/b)F̂2

•
(A′2, A

′
3)

P2

(0,j/b)F̂3

•
(A3, A4)

P1

(0,j′/b)F̂3

•
(A′3, A

′
4)

P2

(0,k/a)F̂4

•
(A4, A1)

C2P1

P2

OO

��
∆1

//oo
∆4

3. biF̂i 6= 0 for b1 = (k/a, 0), b1 = (k′/a, 0), b2 = (0, j/b), b3 = (j/b, 0), b4 =

(0, k/a), b4 = (0, k′/a).

It’s similar to the second case and all the sheaves of this type are decomposable.

4. Two box summands are nonzero for all the charts.

It can be easily seen that F is decomposable in this case.
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Chapter 4: Hilbert Polynomial

4.1 K-Group

Let K0(Hab
r ) be the Grothendieck group of coherent sheaves on the Hirzebruch

orbifold Hab
r . By [BH06], K0(Hab

r )Q is isomorphic to the quotient of the Laurent

polynomial ring Q[x±, y±, z±, w±] by the ideal generated by the relations



xbz−a = 1

xsyztw−1 = 1

(1− x)(1− y)(1− z) = 0

(1− x)(1− y)(1− w) = 0

(1− x)(1− z)(1− w) = 0

(1− y)(1− z)(1− w) = 0.

It is isomorphic to the quotient ring Q[g±, h±]/I where I is generated by



(1− ga)(1− gb)(1− h)

(1− ga)(1− gb)(1− grh)

(1− ga)(1− h)(1− grh)

(1− gb)(1− h)(1− grh).
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Here g := [(−1, 0)], h := [(0,−1)] areK-group classes of the generators of Pic(Hab
r ) ∼=

Z⊕ Z.

Recall that the T-action on Hab
r has four fixed points corresponding to the

origin of each chart. Denote them by P1, P2, P3, P4.

Proposition 4.1.1. In K0(Hab
r ), we have

[OP1 ⊗ µ̂ib] = (1− ga)(1− h)gi, [OP2 ⊗ µ̂ia] = (1− gb)(1− h)gi,

[OP3 ⊗ µ̂ia] = (1− gb)(1− grh)gi, [OP4 ⊗ µ̂ib] = (1− ga)(1− grh)gi.

Proof. The sheaf OP1 ⊗ µ̂ib is described by a S-family where F̂2 = F̂3 = F̂4 = 0 and

F̂1 only consists of a single vector space C with µb-weight i at the position (0, 0).

F̂1

•
(0, 0)

(1, 1)

(1, 0)

(0, 1)

C

Using the description of the line bundle introduced in Proposition 3.3.3, we

can construct the exact sequence:

0 −→ L(a·1,1,0,0) −→ L(a·1,0,0,0) ⊕ L(0,1,0,0) −→ L(0,0,0,0) −→ OP1 −→ 0.

Hence

[OP1 ] = 1 + gah− ga − h = (1− ga)(1− h).

Since B1 = aA1 = 0, B2 = A2 = 0, the fine grading of OP1⊗ µ̂ib is equal to B3 mod b
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on U1. As a result,

[OP1 ⊗ µ̂ib] = [OP1 ⊗ L(0,0,i,0)] = (1− ga)(1− h)gi.

The calculation for other charts is similar.

Now let’s consider the general case. Suppose there is a S-family such that

F̂2 = F̂3 = F̂4 = 0 and F̂1 consists of a single space C with µb-grading i at the position

(k/a+A1)(a, 0)+A2(0, 1). The corresponding sheaf is OP1⊗L(k+aA1,A2,i−k−aA1+rA2,0).

Therefore its class in K0(Hab
r ) is

(1− ga)(1− h)gi+rA2hA2 = (1− ga)(1− h)gi.

As a result, the class of such a sheaf in K0(Hab
r ) only depends on the fine

grading. This is quite useful when we calculate the Hilbert polynomial later.

4.2 Riemann-Roch

Riemann-Roch on Deligne-Mumford stacks was first proved in [Toe99]. Later,

[Edi12] gives a simpler proof based on the equivariant localization theorem. In our

paper, we will follow the notation of inertia stacks used in the appendix of [Tse10],

which is essentially same as [Edi12, Section 4].

Recall from [BCS05] that for each d-dimensional cone in the fan Σ, Box(σ) is

the set of elements v ∈ N ∼= Z2 such that v =
∑

ρi∈σ qibi where bi is the ith column

of the matrix B (2.3.3). Denote by Box(Σ) the union of Box(σ) for all d-dimensional
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cones.

Since Hab
r
∼= [Z/G] is a quotient stack, each component of its inertia stack

is isomorphic to [Zg/G] where Zg denotes the locus of points fixed in Z by g. By

[BCS05], the elements v ∈ Box(Σ) are in one-to one correspondence with elements

g ∈ G that fix a point of Z.

Suppose gcd(a, b) = 1. A box element for the stacky fan of the Hirzebruch

orbifold Hab
r can be in ρ1, ρ3, σ1, σ2, σ3, σ4. Hence to find all the components of the

inertia stack, we classify all the substacks which correspond to the minimal cones

that contain the box elements.

If a box element is on ρ1, then x = 0 and the corresponding stabilizer g = (τ, λ)

must satisfy λ = 1, τ b = 1, τ rλ = 1. Suppose gcd(r, b) = p, then

g = (e2π
√
−1 l

p , 1), l = 1, ..., p− 1.

Hence the corresponding component of the inertia stack is

Xρ1
∼= [Zg/G] ∼= [C3 − V (yz, zw)/(C∗)2], (τ, λ) : (y, z, w)→ (λy, τ bz, τ rλw).

Let gcd(r, a) = q. We summarize all the components in the table below:
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stablizer g substack [Zg/G] (τ, λ) ∈ (C∗)2-action

ρ1

(e2π
√
−1 l

p , 1)

l = 1, ..., p− 1

[C3 − V (yz, zw)/(C∗)2] (y, z, w)→ (λy, τ bz, τ rλw)

ρ3

(e2π
√
−1 l

q , 1)

l = 1, ..., q − 1

[C3 − V (xy, wx)/(C∗)2] (x, y, w)→ (τax, λy, τ rλw)

σ1

(e2π
√
−1 l

b , e−2π
√
−1 sal

b )

b
p
- l, l = 1, ..., b− 1

[C2 − V (zw)/(C∗)2] (z, w)→ (τ bz, τ rλw)

σ2

(e2π
√
−1 l

a , e−2π
√
−1 tbl

a )

a
q
- l, l = 1, ..., a− 1

[C2 − V (xw)/(C∗)2] (x,w)→ (τax, τ rλw)

σ3

(e2π
√
−1 l

a , 1)

a
q
- l, l = 1, ..., a− 1

[C2 − V (xy)/(C∗)2] (x, y)→ (τax, λy)

σ4

(e2π
√
−1 l

b , 1)

b
p
- l, l = 1, ..., b− 1

[C2 − V (yz)/(C∗)2] (y, z)→ (λy, τ bz)

Write IHab
r for the inertia stack of the Hirzebruch orbifoldHab

r . Let π : IHab
r →

Hab
r be the natural projection. Suppose a vector bundle V on IHab

r is decomposed

into a direct sum ⊕ζiVi of eigenbundles with eigenvalue ζi. Let µ∞ be the group of all

roots of unity, then we define ρ(V ) :=
∑

ζi
ζiV

i and c̃h : K0(Hab
r )→ A∗(IHab

r )⊗µ∞
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as the composition

K0(Hab
r )

π∗−→ K0(IHab
r )

ρ−→ K0(IHab
r )⊗ µ∞

ch−→ A∗(IHab
r )⊗ µ∞.

For a line bundle L on Hab
r , define T̃ d : Pic(Hab

r )→ A∗(IHab
r )⊗ µ∞ as

T̃ d(L) =


Td(π∗L) if the eigenvalue of π∗L is 1

1

ch(1− ζ−1 · π∗L∨)
if the eigenvalue of π∗L is ζ 6= 1.

Then by Riemann-Roch, the Euler characteristic of a coherent sheaf F on Hab
r is

given by

χ(F) =

∫
IHabr

c̃h(F) · T̃ d(O(Dρ1)) · T̃ d(O(Dρ2)) · T̃ d(O(Dρ3)) · T̃ d(O(Dρ4))

where Dρi is the divisor corresponding to the ray ρi in Figure 2.1.

Proposition 4.2.1. Suppose gcd(a, b) = 1. Consider the line bundle (m,n) ∈

Pic(Hab
r ) (Remark 3.3.4). The Euler characteristic is given as follows:

χ((m,n)) =
1 + n

2a
+

1 + n

2b
+

(1 + n)m

ab
− n(n+ 1)r

2ab
+

p−1∑
l=1

ωmlp
1− ω−alp

n+ 1

b
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+

q−1∑
l=1

ωmlq
1− ω−blq

n+ 1

a
+

b−1∑
l = 1

b
p

- l

ωmlb
1− ω−alb

(
1− ω−(n+1)sal

b

1− ω−salb

)
1

b

+
a−1∑
l = 1

a
q

- l

ωmla
1− ω−bla

(
1− ω−(n+1)tbl

a

1− ω−tbla

)
1

a
.

where p = gcd(b, r), q = gcd(a, r) and ωk = e
2π
√
−1
k for k = a, b, p, q. Especially,

χ(OHabr ) = χ(O(Dρ1)) = χ(O(Dρ3)) = 1. Suppose r = uab − v1a − v2b such that

0 ≤ v1 < b, 0 ≤ v2 < a, then χ(O(Dρ2)) = 2− u.

Proof. The only 2-dimensional component of IHab
r is Hab

r itself. By [EM13] and

[CLS11], the orbifold Chow ring is

Q[x, y, z, w]/(xz, yw, bx− az, sx+ y + tz − w) ∼= Q[x, y]/(x2, ay2 + rxy)

and
∫
Habr

xy = 1
b
.

The 1-dimensional components come from ρ1 and ρ3. By [BCS05], the substack

[Zg/G] for ρ1 is isomorphic to the substack constructed from the quotient stacky

fan Σ/ρ1 [BCS05]. One can show that Z(ρ1) ∼= C2 − V (y, w) and the action of

G(ρ1) ∼= C∗ × µb on Z(ρ1) is given by (λ, ζ)(y, w) = (λy, λζsw). Hence the Chow

ring is Q[y]/(y2) and
∫
Xρ1

y = 1
b
.

Similarly, the Chow ring is Q[y]/(y2) for another type of 1-dimensional com-

ponents and
∫
Xρ3

y = 1
a
.

There are 4 types of 0-dimensional components induced by σi. Two of them are

isomorphic to Bµb, and others Bµa. The Chow ring is Q and
∫
Bµb

1 = 1
b
,
∫
Bµa

1 = 1
a
.
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Thus IHab
r is the disjoint union of 7 types of components in general. Depending

on the relations among a, b and r, there may be fewer types.

On each type of components, the Chern character of a line bundle c̃h((m,n))

is given by

(
1 + (

m

a
x+ ny) +

1

2
(
m

a
x+ ny)2, (1 + ny)ωmlp , (1 + ny)ωmlq ,

ω
(m−nsa)l
b , ω(m−ntb)l

a , ωmla , ωmlb

)
.

Note that l runs over {1, ..., p− 1} for the 2nd type, {1, ..., q − 1} for the 3rd type,

{1, ..., b− 1; b
p
- l} for the 4th and 7th types, {1, ..., a− 1; a

q
- l} for the 5th and 6th

types.

One can also show that T̃ d(O(Dρ1)) · T̃ d(O(Dρ2)) · T̃ d(O(Dρ3)) · T̃ d(O(Dρ4))

on each type of components is

(
1 + y + (

b

2a
+

r

2a
+

1

2
)x+ (

b

2a
+

1

2
)xy,

1 + y

1− ω−alp

,
1 + y

1− ω−blq

,

1

(1− ω−alb )(1− ωsalb )
,

1

(1− ω−bla )(1− ωtbla )
,

1

(1− ω−bla )(1− ω−tbla )
,

1

(1− ω−alb )(1− ω−salb )

)
.

Adding all the integrals together, we get the desired result.

To prove χ(OHabr ) = χ(O(Dρ1)) = χ(O(Dρ3)) = 1, we repeatedly use the

following two facts:
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• If a, p are coprime,

p−1∑
l=1

1

1− ω−alp

=

p−1∑
l=1

1

1− ωlp
.

• 1

1− ωlp
+

1

1− ω−lp
= 1.

Adding all the integrals together, we get the desired result.

To show χ(OHabr ) = χ(O(Dρ1)) = χ(O(Dρ3)) = 1, we repeatedly use the

following two facts:

• If a, p are coprime,

p−1∑
l=1

1

1− ω−alp

=

p−1∑
l=1

1

1− ωlp
.

• 1

1− ωlp
+

1

1− ω−lp
= 1.

Since O(Dρ2) ∼= (0, 1) ∈ Pic(Hab
r ),

χ(O(Dρ2)) = −s
b
− t

a
+ 2−

b−1∑
l = 1

b
p

- l

1− ωslb
1− ωlb

1

b
−

a−1∑
l = 1

a
q

- l

1− ωtla
1− ωla

1

a
.

Now suppose r = sa + bt is chosen so that s ≥ 0 and t ≤ 0. Assume s =

u1b − v1 and t = −u2a − v2 where 0 ≤ v1 < b, 0 ≤ v2 < a, u1 ≥ 0, u2 ≥ 0. Then

r = (u1 − u2)ab − v1a − v2b. Set u = u1 − u2. Hence r can be written uniquely as

r = uab− v1a− v2b satisfying the conditions of the proposition.

One can show that

b−1∑
l = 1

b
p

- l

ωjlb =


−p if p | j and b - j

b− p if b | j

0 otherwise.
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Therefore,

b−1∑
l = 1

b
p

- l

1− ωslb
1− ωlb

=
b−1∑
l = 1

b
p

- l

s−1∑
j=0

ωjlb = (
s

p
− 1− (u1 − 1))(−p) + (b− p)u1 = −s+ bu1.

Similarly,
a−1∑
l = 1

a
q

- l

1− ωtla
1− ωla

= −t− au2.

Hence χ(O(Dρ2)) = −u1 + u2 + 2 = 2− u.

4.3 Coarse Moduli Space

Suppose gcd(a, b)=1. Then the coarse moduli space of the Hirzebruch orbifold

Hab
r is a toric variety H given by the following fan

x

y

ρ1 = (b/p, s/p)

ρ3 = (−a/q, t/q)
ρ2 = (0, 1)

ρ4 = (0,−1)

σ1σ2

σ3 σ4
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where r = sa + bt, p = gcd(b, r) and q = gcd(a, r). Since gcd(a, b) = 1, s
p

and t
q

are

integers. Let Di be the divisor corresponding to the ray ρi. Then


b

p
D1 ∼

a

q
D3

s

p
D1 +D2 +

t

q
D3 ∼ D4.

To find the Picard group, we need to determine when a Weil divisor is Cartier.

Suppose D = t1D1 + t2D2 is Cartier. Denote by nρ the primitive generator of the

ray ρ. Then for each σi, there exists mσi = (xi, yi) such that 〈mσi , nρ〉 = −tρ for all

ρ ∈ σi(1), where σi(1) denotes the collection of rays of σi [CLS11].

For σ1, it implies 
b

p
x1 +

s

p
y1 = −t1

y1 = −t2

from which we get b
p
| −t1 + s

p
t2. By checking each σi, one can show that the

conditions for D to be Cartier are b
p
| t1, bapq | t2. Therefore

Pic(H) ∼= {t1
b

p
D1 + t2

ba

pq
D2} ∼= {t1

b

p
D1 + t4

ba

pq
D4} ∼= Z2.

The Cartier divisor t1
b
p
D1 + t4

ba
pq
D4 is ample if and only if for each σi, there

exists mσi = (xi, yi) such that


〈mσi , nρ〉 = −tρ for all ρ ∈ σi(1)

〈mσi , nρ〉 > −tρ for all ρ ∈ Σ(1)/σi(1)
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One can compute that

mσ1 = (−t1, 0),mσ2 = (0, 0),mσ3 = (
bt

pq
t4,

ba

pq
t4),mσ4 = (−sa

pq
t4 − t1,

ba

pq
t4)

is a solution. We get several inequalities which reduce to t1 > 0, t4 > 0. Thus

OH(t1
b

p
D1 + t4

ba

pq
D4) is ample if and only if t1, t4 > 0.

Consider the ample line bundle L = OH( b
p
D1 + ba

pq
D4). By the property of

the root stack [FMN10], we see that ε : Hab
r → H is a morphism with divisor

multiplicities (p, 1, q, 1). Hence

ε∗L = OHabr (bDρ1 +
ba

pq
Dρ4) ∼= (ba(1 +

r

pq
),
ba

pq
) ∈ Pic(Hab

r ).

For any coherent sheaf F on Hab
r , we can then define the Hilbert polynomial

of F with respect to ε∗L as

P (F , T ) := χ(F ⊗ ε∗LT ).

Proposition 4.3.1. Suppose gcd(a, b) = 1. Consider the line bundle (m,n) ∈

Pic(Hab
r ), then

P ((m,n), T ) =

(
bar

2p2q2
+
ba

pq

)
T 2 +

(
a+ b+ 2m+ r

2pq
+ n+ 1+

+

p−1∑
l=1

ωmlp
1− ω−alp

a

pq
+

q−1∑
l=1

ωmlq
1− ω−blq

b

pq

)
T + χ((m,n)).
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Proof. To calculate χ((m+ ba(1 + r
pq

)T, n+ ba
pq
T )), we note that

ω
ba
pq
sa

b = ω
ba
pq

(r−tb)
b = 1, ω

ba
pq
tb

a = ω
ba
pq

(r−sa)
a = 1.

Then the result follows.

4.4 Modified Hilbert Polynomial

By [OS03] [Nir08b], A locally free sheaf E on Hirzebruch orbifold Hab
r is a

generating sheaf if for every geometric point x of Hab
r , the representation Ex of the

stabilizer group at that point contains every irreducible representation.

One can show that E =
⊕ab−1

k=0 (−k, 0) is a generating sheaf, although is not

of minimal rank usually. Let ε : Hab
r → H be the structure morphism. Fix the

generating sheaf E as above and the ample invertible sheaf L = O( b
p
D1 + ba

pq
D4). We

define the modified Hilbert polynomial for a sheaf F on the Hirzebruch orbifold Hab
r

as

PE(F , T ) = χ(Hab
r ,F ⊗ E∨ ⊗ ε∗LT )

and the modified Euler characteristic as

χE(F) = PE(F , 0).

62



Proposition 4.4.1. Suppose gcd(a, b) = 1. Then

PE((m,n), T ) =

(
b2a2r

2p2q2
+
b2a2

pq

)
T 2 +

(
ab

2pq
(a+ b+ r + 2m− 1 + ab)

+ab(n+ 1)
)
T +

1 + n

2
(a+ b+ 2m+ ab− 1− nr).

Proof. To prove the proposition, we note that:

•
ab−1∑
k=0

q−1∑
l=1

ω
(m+k)l
p

1− ω−alp

=

q−1∑
l=1

∑ab−1
k=0 ω

(m+k)l
p

1− ω−alp

= 0, since p | ab.

•
ab−1∑
k=0

b−1∑
l = 1

b
p

- l

ω
(m+k)l
b

1− ω−alb

= 0.

Then the result follows.

Proposition 4.4.2.

PE([OP1 ⊗ µ̂ib] , T ) = PE([OP4 ⊗ µ̂ib] , T ) = a,

PE([OP2 ⊗ µ̂ia] , T ) = PE([OP3 ⊗ µ̂ia] , T ) = b.

Proof. Recall from Proposition 4.1.1 that [OP1⊗ µ̂ib] = gi+ga+ih−ga+i−gih. Hence

PE([OP1 ⊗ µ̂ib], T ) = PE((−i, 0), T ) + PE((−a− i,−1), T )

− PE((−a− i, 0), T )− PE((−i,−1), T ) = a.

Similarly, we can obtain the other results.

Generally, if there is a S-family such that F̂2 = F̂3 = F̂4 = 0 and F̂1 consists

of a single space C with µb-weight i at the position (k/a+A1)(a, 0) +A2(0, 1), then
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the K-group class of the corresponding sheaf is (1 − ga)(1 − h)gi and PE(OP1 ⊗

L(k+aA1,A2,i−k−aA1+rA2,0), T ) = a.

Thus the modified Hilbert polynomial of a sheaf corresponding to a single

space C in one chart only depends on the chart itself.

We will now look at the modified Hilbert polynomial of indecomposable locally

free sheaves of rank 2 on the Hirzebruch orbifold Hab
r .

Recall that a necessary condition for such a sheaf to be indecomposable is

exactly one nonzero box summand for each chart. In this case, we set

B1 = k + aA1, B2 = A2, B3 = j + bA3, B4 = A4

Λ1 = a∆1,Λ2 = ∆2,Λ3 = b∆3,Λ4 = ∆4

A locally free sheaf of such kind is entirely determined by B1, B2, B3, B4 ∈ Z,

Λ1,Λ2,Λ3,Λ4 ∈ Z≥0 such that a | Λ1, b | Λ3 and P1, P2, P3, P4 ⊂ C2. It is in-

decomposable if and only if it satisfies one of the conditions in the first case of

Example 3.3.6

Proposition 4.4.3. Let F be a sheaf with exactly one nonzero box summand for

each chart. Then the modified Hilbert polynomial of F is given by

PE ((−B1 −B3 −B4r,−B2 −B4))

+ PE ((−B1 − Λ1 −B3 − Λ3 −B4r − Λ4r,−B2 − Λ2 −B4 − Λ4))

− (1− δP1P2)Λ1Λ2 − (1− δP2P3)Λ2Λ3 − (1− δP3P4)Λ3Λ4 − (1− δP4P1)Λ4Λ1.

where δPiPi is 1 if Pi = Pj and 0 if Pi 6= Pj.
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Proof. We can define another toric sheaf G such that its S-family Ĝ satisfies

dim(bGi(l1, l2)m) = dim(bFi(l1, l2)m)

for all charts. Then according to [GJK17, Lemma 7.7], [F ] = [G] ∈ K0(Hab
r ).

To define the S-family Ĝ, we set

bGi(l1, l2) := bL(B1,B2,B3,B4),i(l1, l2)⊕ bL(B1+Λ1,B2+Λ2,B3+Λ3,B4+Λ4),i(l1, l2)

in the following regions

l1 ≥ Ai + ∆i or l2 ≥ Ai+1 + ∆i+1,

l1 < Ai + ∆i and l2 < Ai+1 + ∆i+1, if Pi = Pi+1

for 1 ≤ i ≤ 4 . Note that if Pi 6= Pi+1, then a rectangle of size ∆i∆i+1 is removed.

Hence the modified Hilbert polynomial is decreased by ΛiΛi+1.
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Chapter 5: Moduli Space of Torsion Free Sheaves

5.1 Moduli Functor

Suppose the modified Hilbert polynomial of a pure coherent sheaf F of dimen-

sion d is

PE(F , T ) =
d∑
i=0

αE,i(F)
T i

i!
.

Then the reduced modified Hilbert polynomial is defined as

pE(F , T ) =
PE(F , T )

αE,d(F)

and the slope of F is defined as

µE(F) =
αE,d−1

αE,d
.

Definition 5.1.1. F is Gieseker-stable if pE(F ′) < pE(F) for every proper subsheaf

F ′ ⊂ F . [Nir08b]

Definition 5.1.2. F is µ-stable if µE(F ′) < µE(F) for every proper subsheaf F ′ ⊂

F .
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For toric varieties or orbifolds, we only need to check all the equivariant sub-

sheaves for stability. It’s proved for reflexive sheaves in [Koo11] and recently for

torsion-free sheaves in [BDGP18].

We can then define a moduli functorMs
PE

, whereMs
PE

(S) is the set of equiva-

lent classes of S-flat families of Gieseker stable torsion-free sheaves on the Hirzebruch

orbifold Hab
r with the modified Hilbert polynomial PE . It’s shown in [Nir08b] that

there exists a quasi-projective scheme Ms
PE

that corepresents Ms
PE

and is indeed

a coarse moduli space. The closed points of Ms
PE

are therefore in bijection with

isomorphism classes of Gieseker stable torsion free sheaves on Hab
r with the modified

Hilbert polynomial PE .

We also define a moduli functor Mµs
PE
⊂ Ms

PE
which only consists of µ-stable

locally free shaves. The coarse moduli space is an open subset Mµs
PE
⊂Ms

PE
.

To get similar results of [Koo11, Theorem 4.15], we need to modify the defi-

nition of the characteristic function for Hab
r and match the GIT stability with the

Gieseker stability.

Definition 5.1.3. Suppose gcd(a, b) = 1. Let F be a torsion free sheaf on the

Hirzebruch orbifold Hab
r . The characteristic function ~χF is defined as the disjoint

union

~χF =
a−1∐
k=0

b−1∐
j=0

(k,j)~χF
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where (k,j)~χF : (Z2)4 → Z4 is the characteristic function

(
(k,j)χ

σ1
F (m1), (k,j)χ

σ2
F (m2), (k,j)χ

σ3
F (m3), (k,j)χ

σ4
F (m4)

)
=

(
dimC((k/a,0)F

σ1
m1

), dimC((0,j/b)F
σ2
m2

), dimC((j/b,0)F
σ3
m3

), dimC((0,k/a)F
σ4
m4

)
)
.

restricted to the following box summand

b1 = (k/a, 0), b2 = (0, j/b), b3 = (j/b, 0), b4 = (0, k/a).

Let F be a torsion free sheaf of rank 2, then F is µ-stable if and only if F∗∗

is µ-stable. Since F∗∗ is locally free, indecomposability of F∗∗ implies that the S-

family biF̂
∗∗
i 6= 0 for only one box element by Example 3.3.6. Hence biF̂i 6= 0 for the

same bi. As a result, the characteristic function of a stable sheaf F must be of the

form

~χF = (k,j)~χF .

Denote by Gr(m,n) the Grassmannian of m-dimensional subspaces of Cn. We

define the following ambient quasi-projective variety:

A =
a−1∐
k=0

b−1∐
j=0

 4∏
i=1

∏
mi∈Z2

Gr((k,j)χ
σi
F (mi), 2)

 .

Then there is a locally closed subcheme N~χ of A whose closed points are framed

[Koo10] torsion-free S-families with characteristic function ~χ. Consider the special

linear group G = SL(2,C). Then G acts regularly on A leaving N~χ invariant. For

any G-equivariant line bundle L ∈ PicG(N~χ), we can define the GIT stability with
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respect to L [Dol03]. Denote by N s
~χ the G-invariant open subset of GIT stable

points. We obtain a geometric quotient π : N s
~χ →Ms

~χ = N s
~χ/G.

Proposition 5.1.4. Let ~χ be the characteristic function of a torsion free sheaf of

rank 2 on the Hirzebruch orbifold Hab
r . Let PE be the modified Hilbert polynomial

with respect to the ample sheaf L = O( b
p
D1 + ba

pq
D4) and the generating sheaf E =⊕ab−1

k=0 (−k, 0). Then there exists an ample equivariant line bundle L~χ ∈ PicG(N~χ)

such that any torsion free sheaf F on Hab
r with characteristic function ~χ is Gieseker

stable if and only if it is GIT stable w.r.t. L~χ.

Proof. If ~χF = (k,j)~χF , then the S-family has exactly one nonzero box summand for

each chart. Hence the double filtrations are similar to the cases of toric varieties as

in [Koo11] and the proof carries over without any difficulties.

Remark 5.1.5. For locally free sheaves of rank 2, we can also match the µ-stability

with the GIT stability w.r.t some line bundle Lµ~χ. But in general, the line bundle

Lµ~χ is different from L~χ. We denote the GIT quotient w.r.t this line bundle byMµs
~χ .

Suppose F is a T-equivariant sheaf on the Hirzebruch orbifold Hab
r . By ten-

soring a character of T, the equivariant structure is changed, but not the underlying

sheaf. This degree of freedom can be fixed by requiring B3 = B4 = 0. In this case,

we call ~χF gauge-fixed. Note that our definition is slightly different from [Koo11]

as we choose B3, B4 from σ4, which has the largest index, to make the calculation

easier.

By [Koo11], the Hilbert polynomial of a torsion free sheaf on a smooth toric

variety is fully determined by the characteristic function of that sheaf. The result
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also applies to the Hirzebruch orbifold Hab
r . Therefore, we can write XPE for the set

of characteristic functions with the modified Hilbert polynomial PE .

Since the T-action lifts naturally to M s
PE

, we get the following two theorems

similar to [Koo11].

Theorem 5.1.6. For any choice of a generating sheaf E on the Hirzebruch orbifold

Hab
r , there is a canonical isomorphism

(Ms
PE

)T ∼=
∐

~χ∈(XPE )gf

Ms
~χ.

Since (geometrically) µ-stability and locally freeness are open properties for

the moduli functor Ms
PE

[Koo11] [HL10], we obtain

Theorem 5.1.7. For any choice of a generating sheaf E on the Hirzebruch orbifold

Hab
r , there is a canonical isomorphism

(Mµs
PE

)T ∼=
∐

~χ∈(XPE )gf

Mµs
~χ .

5.2 Generating Functions

Denote the moduli scheme of µ-stable torsion free, resp. locally free, sheaves

of rank R with first Chern class c1 and modified Euler characteristic XE by

MHabr (R, c1, χE), resp. Mvb
Habr

(R, c1, χE). Our goal is to use the idea of fixed point loci

70



to compute the following two generating functions:

∑
χE∈Z

e(MHabr (R, c1, χE))q
χE

∑
χE∈Z

e(Mvb
Habr (R, c1, χE))q

χE

for R = 1, 2 with fixed c1.

5.2.1 Rank 1

Consider µ-stable torsion free sheaves of rank 1 on the Hirzebruch orbifold Hab
r

with fixed first Chern class c1 = mx
a

+ ny where x = c1(Dρ1), y = c1(Dρ2). Let

Gc1(q) =
∑
χE∈Z

e(MHabr (1, c1, χE))q
χE

be the generating function. Note that e(MHabr (1, c1, χE) = e(MHabr (1, c1, χE)
T) by

torus localization.

Proposition 5.2.1.

Gmx
a

+ny(q) = q
1+n

2
(a+b+2m+ab−1−nr)

∞∏
k=1

1

(1− q−ak)2(1− q−bk)2
.

Proof. An equivariant line bundle L(B1,B2,B3,B4) is non-equivariantly trivial if and

only if

B1 +B3 + rB4 = 0;B2 +B4 = 0.
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If F is a torsion free sheaf of rank 1, then F ⊗ L(B3+B4r,B4,−B3,−B4) is gauge-

fixed. Therefore, we only consider torsion free sheaves of rank 1 with reflexive

hulls L(B1,B2,0,0).

For fixed c1, the reflexive hull is uniquely determined as L(−m,−n,0,0)
∼= (m,n).

The modified Euler characteristic is given by

χE((m,n)) =
1 + n

2
(a+ b+ 2m+ ab− 1− nr).

For a torsion free sheaf F with the reflexive hull L(−m,−n,0,0), the cokernel sheaf

Q of the exact sequence

0→ F → L(−m,−n,0,0) → Q→ 0

can be described by young diagrams. By Proposition 4.4.2, the modified Euler

characteristic of Q increases by a, resp. by b for each cell in the young diagrams on

charts U1 and U4, resp. U2 and U3. Hence the closed points of MHabr (1, c1, χE)
T are

in bijection with four partitions (λ1, λ2, λ3, λ4) such that

1 + n

2
(a+ b+ 2m+ ab− 1− nr)− a(#λ1 + #λ4)− b(#λ2 + #λ3) = χE .

Remark 5.2.2. By Proposition 4.4.2 and Proposition 4.1.1, the modified Euler

characteristic of Q is independent of the fine grading, whereas the K-group class is
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not. Hence we do not need to consider the colored Young diagrams as in [GJK17].

5.2.2 Rank 2

For a toric surface, there is a nice expression that relates the generating func-

tions of torsion free and locally free sheaves given by [Göt99]. We also derive a

similar relation for the Hirzebruch orbifold Hab
r , which is given in Theorem 1.2.1.

Proof of Theorem 1.0.1. The proof is similar to that of [GJK17, lemma 7.4] except

in our case the moduli scheme is stratified by the modified Euler characteristics.

Let F be a locally free sheaf of rank 2 on the Hirzebruch orbifold Hab
r . By

tensoring with L(B3+rB4,B4,−B3,−B4), we only consider sheaves with B3 = B4 = 0,

which are gauge-fixed.

From Example 3.3.6, we know that there are three types of indecomposable

sheaves. Hence, the connected components of the fixed locus Mvb
Habr

(R, c1, χE)
T can

be explicitly classified as follows:

1. Pi are mutually distinct and Λi are all positive. 1

Consider four equivariant line bundles L1, L2, L3, L4 ⊂ F generated by

P1, P2, P3, P4 respectively.

L1 = LB1,B2+Λ2,Λ3,Λ4 , L2 = LB1+Λ1,B2,Λ3,Λ4 ,

L3 = LB1+Λ1,B2+Λ2,0,Λ4 , L4 = LB1+Λ1,B2+Λ2,Λ3,0.

1For notation, see Section 4.4 and Example 3.3.6
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Any equivariant subsheaf of F is contained in one of Li and does not have

bigger slope. Hence it suffices to test µE(Li) < µE(F) for all Li. The stability

conditions are given by

Λ1 < pqΛ2 + Λ3 + (r + pq)Λ4, pqΛ2 < Λ1 + Λ3 + (r + pq)Λ4,

Λ3 < Λ1 + pqΛ2 + (r + pq)Λ4, (r + pq)Λ4 < Λ1 + pqΛ2 + Λ3.

Denote by D the set of points (P1, P2, P3, P4) ∈ (P1)4 where P1, P2, P3, P4 are

mutually distinct. Then the connected component of the fixed locus is given

by D/SL(2,C) and e(D/SL(2,C)) = e(P1 − {0, 1,∞}) = −1.

2. Pi are mutually distinct and one of Λi is 0.

Suppose Λ1 is 0, then the above inequalities are reduced to

pqΛ2 < Λ3 + (r + pq)Λ4, Λ3 < pqΛ2 + (r + pq)Λ4,

(r + pq)Λ4 < pqΛ2 + Λ3.

Hence the connected component is D/SL(2,C), where D is the set of

points (P2, P3, P4) ∈ (P1)3 where P2, P3, P4 are mutually distinct, and

e(D/SL(2,C)) = 1.

3. Pi = Pj for some i, j and Λi are all positive.

Suppose P1 = P2, P3, P4 are mutually distinct. Then we need to consider line

bundles L′1, L3, L4 where L′1 = L(B1,B2,Λ3,Λ4)). The stability conditions are are
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given by

Λ1 + pqΛ2 < Λ3 + (r + pq)Λ4, Λ3 < Λ1 + pqΛ2 + (r + pq)Λ4,

(r + pq)Λ4 < Λ1 + pqΛ2 + Λ3.

Similar to the case 2, the topological Euler number of this component is 1.

Thus there are 11 types of incidence spaces contributing to the generating

function similar to the case of Hirzebruch surface in [Koo15].

Consider locally free sheaves of rank 2 with fixed first Chern class c1 = m
a
x+ny

where c1(Dρ1) = x, c1(Dρ2) = y. By Proposition 4.4.3, one can show that

c1 = −(2B1 + Λ1 + Λ3 + Λ4r)
x

a
− (2B2 + Λ2 + Λ4)y.

Hence

2B1 + Λ1 + Λ3 + Λ4r = −m, 2B2 + Λ2 + Λ4 = −n.

If F is of the first type mentioned above, then the modified Euler characteristic

is given by

PE ((−B1,−B2), 0) + PE ((−B1 − Λ1 − Λ3 − Λ4r,−B2 − Λ2 − Λ4), 0)

−Λ1Λ2 − Λ2Λ3 − Λ3Λ4 − Λ4Λ1

=
1

2
(C − r)n+ C +m+

mn

2
− n2r

4
− 1

2
(Λ2 + Λ4)(Λ1 +

r

2
Λ2 + Λ3 −

r

2
Λ4)

where C = a+b+ab−1. Similarly, we can obtain the modified Euler characteristics

for other types.
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Let

Hvb
c1

(q) =
∑

e(Mvb
Habr (2, c1, χE))q

χE

be the generating function. Define f = 1
2
(C − r)n+ C +m+ mn

2
− n2r

4
. Then

Hvb
m
a
x+ny(q) = −

∑
Λ1,Λ2,Λ3,Λ4 ∈ Z>0, a | Λ1, b | Λ3

2 | −m− Λ1 − Λ3 − rΛ4, 2 | −n− Λ2 − Λ4

Λ1 < pqΛ2 + Λ3 + (r + pq)Λ4

pqΛ2 < Λ1 + Λ3 + (r + pq)Λ4

Λ3 < Λ1 + pqΛ2 + (r + pq)Λ4

(r + pq)Λ4 < Λ1 + pqΛ2 + Λ3

qf−
1
2

(Λ2+Λ4)(Λ1+ r
2

Λ2+Λ3− r2 Λ4)

+
∑

Λ1,Λ2,Λ3,Λ4 ∈ Z>0, a | Λ1, b | Λ3

2 | −m− Λ1 − Λ3 − rΛ4, 2 | −n− Λ2 − Λ4

Λ1 + Λ3 < pqΛ2 + (r + pq)Λ4

pqΛ2 < Λ1 + Λ3 + (r + pq)Λ4

(r + pq)Λ4 < Λ1 + pqΛ2 + Λ3

qf−
1
2

(Λ2+Λ4)(Λ1+ r
2

Λ2+Λ3− r2 Λ4)

+
∑

Λ1,Λ2,Λ3,Λ4 ∈ Z>0, a | Λ1, b | Λ3

2 | −m− Λ1 − Λ3 − rΛ4, 2 | −n− Λ2 − Λ4

pqΛ2 + (r + pq)Λ4 < Λ1 + Λ3

Λ1 < pqΛ2 + Λ3 + (r + pq)Λ4

Λ3 < Λ1 + pqΛ2 + (r + pq)Λ4

qf−
1
2

(Λ2+Λ4)(Λ1+ r
2

Λ2+Λ3− r2 Λ4)

+
∑

Λ1,Λ2,Λ3,Λ4 ∈ Z>0, a | Λ1, b | Λ3

2 | −m− Λ1 − Λ3 − rΛ4, 2 | −n− Λ2 − Λ4

Λ1 + pqΛ2 < Λ3 + (r + pq)Λ4

Λ3 < Λ1 + pqΛ2 + (r + pq)Λ4

(r + pq)Λ4 < pqΛ2 + Λ3 + Λ1

qf−
1
2

(Λ2+Λ4)(Λ1+ r
2

Λ2+Λ3− r2 Λ4)+Λ1Λ2

+
∑

Λ1,Λ2,Λ3,Λ4 ∈ Z>0, a | Λ1, b | Λ3

2 | −m− Λ1 − Λ3 − rΛ4, 2 | −n− Λ2 − Λ4

pqΛ2 + Λ3 < Λ1 + (r + pq)Λ4

Λ1 < pqΛ2 + Λ3 + (r + pq)Λ4

(r + pq)Λ4 < pqΛ2 + Λ3 + Λ1

qf−
1
2

(Λ2+Λ4)(Λ1+ r
2

Λ2+Λ3− r2 Λ4)+Λ2Λ3
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+
∑

Λ1,Λ2,Λ3,Λ4 ∈ Z>0, a | Λ1, b | Λ3

2 | −m− Λ1 − Λ3 − rΛ4, 2 | −n− Λ2 − Λ4

Λ3 + (r + pq)Λ4 < Λ1 + pqΛ2

Λ1 < pqΛ2 + Λ3 + (r + pq)Λ4

pqΛ2 < Λ1 + Λ3 + (r + pq)Λ4

qf−
1
2

(Λ2+Λ4)(Λ1+ r
2

Λ2+Λ3− r2 Λ4)+Λ3Λ4

+
∑

Λ1,Λ2,Λ3,Λ4 ∈ Z>0, a | Λ1, b | Λ3

2 | −m− Λ1 − Λ3 − rΛ4, 2 | −n− Λ2 − Λ4

Λ1 + (r + pq)Λ4 < pqΛ2 + Λ3

pqΛ2 < Λ1 + Λ3 + (r + pq)Λ4

Λ3 < Λ1 + pqΛ2 + (r + pq)Λ4

qf−
1
2

(Λ2+Λ4)(Λ1+ r
2

Λ2+Λ3− r2 Λ4)+Λ4Λ1

+
∑

Λ2,Λ3,Λ4 ∈ Z>0, b | Λ3

2 | −m− Λ3 − rΛ4, 2 | −n− Λ2 − Λ4

pqΛ2 < Λ3 + (r + pq)Λ4

Λ3 < pqΛ2 + (r + pq)Λ4

(r + pq)Λ4 < pqΛ2 + Λ3

qf−
1
2

(Λ2+Λ4)( r
2

Λ2+Λ3− r2 Λ4)

+
∑

Λ1,Λ3,Λ4 ∈ Z>0, a | Λ1, b | Λ3

2 | −m− Λ1 − Λ3 − rΛ4, 2 | −n− Λ4

Λ1 < Λ3 + (r + pq)Λ4

Λ3 < Λ1 + (r + pq)Λ4

(r + pq)Λ4 < Λ1 + Λ3

qf−
1
2

Λ4(Λ1+Λ3− r2 Λ4)

+
∑

Λ1,Λ2,Λ4 ∈ Z>0, a | Λ1

2 | −m− Λ1 − rΛ4, 2 | −n− Λ2 − Λ4

Λ1 < pqΛ2 + (r + pq)Λ4

pqΛ2 < Λ1 + (r + pq)Λ4

(r + pq)Λ4 < Λ1 + pqΛ2

qf−
1
2

(Λ2+Λ4)(Λ1+ r
2

Λ2− r2 Λ4)

+
∑

Λ1,Λ2,Λ3 ∈ Z>0, a | Λ1, b | Λ3

2 | −m− Λ1 − Λ3, 2 | −n− Λ2

Λ1 < pqΛ2 + Λ3

pqΛ2 < Λ1 + Λ3

Λ3 < Λ1 + pqΛ2

qf−
1
2

Λ2(Λ1+ r
2

Λ2+Λ3)

Note that the first term corresponds to the component of the first type and the
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negative sign comes from e(P1−{0, 1,∞}) = −1. The signs for the remaining terms

are positive because the topological Euler number is 1 for the other components.

Using proper substitutions, we can simplify this generating function further.

Proposition 5.2.3. Suppose gcd(a, b) = 1. Let f = 1
2
(C − r)n+C +m+ mn

2
− n2r

4

where C = a+ b+ ab− 1. If r ≥ 0, the generating function Hvb
m
a
x+ny(q) equals

Hvb
m
a
x+ny(q) =

(
−
∑
C1

+
∑
C6

+
∑
C7

+
∑
C8

+
∑
C9

)
qf−

1
2
j(i+ r

2
j)

+

(∑
C2

+
∑
C3

+
∑
C4

+
∑
C5

)
qf−

1
4
ij+ 1

4
jk− 1

4
kl− 1

4
li− r

4
l2

where

C1 = {(i, j, k, l) ∈ Z4 : 2 | m+ i, 2 | n+ j, 2 | j − l, 2a | i+ k + r(j − l),

2b | i− k, i = pqj,−j < l < j,−pqj − r(j − l) < k < pqj},

C2 = {(i, j, k, l) ∈ Z4 : 2 | m+ i, 2 | n+ j, 2 | j − l, 2a | i+ k + r(j + l),

2b | i− k, k < pql < i, l < j,−i− r(j + l) < k,−pqj − r(j + l) < k},

C3 = {(i, j, k, l) ∈ Z4 : 2 | m+ i, 2 | n+ j, 2 | j − l, 2b | i+ k + r(j − l),

2a | i− k, k < pql < i, l < j,−i− r(j + l) < k,−pqj − r(j + l) < k},

C4 = {(i, j, k, l) ∈ Z4 : 2 | m+ i, 2 | n+ j, 2 | j − l, 2b | i+ k − r(j − l),

2a | i− k, k < pql < i, l < j,−i+ r(j − l) < k,−pqj < k},

C5 = {(i, j, k, l) ∈ Z4 : 2 | m+ i, 2 | n+ j, 2 | j − l, 2a | i+ k − r(j − l),

2b | i− k, k < pql < i, l < j,−i+ r(j − l) < k,−pqj < k},
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C6 = {(i, j, k) ∈ Z3 : 2 | m+ i, 2 | n+ j, 2 | j + k, 2b | 2i+ r(j + k),

− r

2
(j + k) < i, i < pqj − i

r + pq
− rj

r + pq
< k <

i

pq
},

C7 = {(i, j, k) ∈ Z3 : 2 | m+ i, 2 | n+ j, 2 | j + k, 2a | 2i+ r(j + k),

− r

2
(j + k) < i, i < pqj − i

r + pq
− rj

r + pq
< k <

i

pq
},

C8 = {(i, j, k) ∈ Z3 : 2 | m+ i, 2 | n+ j, 2a | i+ k + 2rj, 2b | i− k,

− pqj − 2rj < k < pqj < i},

C9 = {(i, j, k) ∈ Z3 : 2 | m+ i, 2 | n+ j, 2a | i+ k, 2b | i− k,

− pqj < k < pqj < i},

Proof. Set i = Λ1 + Λ3 − rΛ4, j = Λ2 + Λ4, k = Λ1 − Λ3 − rΛ4, l = Λ2 − Λ4. The

first term is split into two

−
∑

i, j, k, l ∈ Z

2 | m + i, 2 | n + j, 2 | j − l

2b | i− k, 2a | i + k + r(j − l)

pqj ≤ i,−j < l < j

−pqj − r(j − l) < k < pqj

qf−
1
2
j(i+ r

2
j) −

∑
i, j, k, l ∈ Z

2 | m + i, 2 | n + j, 2 | j − l

2b | i− k, 2a | i + k + r(j − l)

i < pqj,−i < pql < i + r(j − l)

−i− r(j − l) < k < i

qf−
1
2
j(i+ r

2
j)

based on whether pqj ≤ i or pqj > j. By same substitutions, the first three terms

can be combined into one. The remaining terms can be obtained by the following

substitution.
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Term Substitutions

4th i = Λ1 + Λ3 − rΛ4, j = Λ2 + Λ4, k = Λ1 − Λ3 − rΛ4, l = Λ4 − Λ2

5th i = Λ1 + Λ3 − rΛ4, j = Λ2 + Λ4, k = −Λ1 + Λ3 − rΛ4, l = Λ4 − Λ2

6th i = Λ1 + Λ3 + rΛ4, j = Λ2 + Λ4, k = −Λ1 + Λ3 + rΛ4, l = Λ2 − Λ4

7th i = Λ1 + Λ3 + rΛ4, j = Λ2 + Λ4, k = Λ1 − Λ3 + rΛ4, l = Λ2 − Λ4

8th i = Λ3 − rΛ4, j = Λ2 + Λ4, k = Λ4 − Λ2

9th i = Λ1 + Λ3 − rΛ4, j = Λ4, k = Λ1 − Λ3 − rΛ4

10th i = Λ1 − rΛ4, j = Λ2 + Λ4, k = Λ4 − Λ2

11th i = Λ1 + Λ3, j = Λ2, k = Λ1 − Λ3

If r = 0, the above result yields the Theorem 1.2.2 for the orbifold P(a, b)×P1.

Remark 5.2.4. If a = b = 1, the orbifold becomes the variety P1 × P1 and f =

mn
2

+ m + n + 2. Consider a torsion free sheaf F of rank 2 with c1 = mx + ny

where c1(Dρ1) = x, c1(Dρ2) = y. Suppose c2(F) = cxy. One can show that X (F) =

−c + mn + m + n + 2. Hence the above generating function agrees with the one

given in [Koo10, Corollary 2.3.4] when λ = 1. Note that the divisor D4 in [Koo10]

is really D2 in our paper, but D2 ∼ D4 in the case of P1 × P1.

Let (i, j) ∈ Pic(Hab
r ). One can show that tensoring − ⊗ (i, j) preserves µ-
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stability. Suppose F is a locally free sheaf of rank 2 on the Hirzebruch orbifold Hab
r

with c1(F) = m
a
x+ ny. Then

χE(F ⊗ (i, j)) = χE(F) + i(2 + n+ 2j) + j(ab+ a+ b− 1− r +m− nr − rj).

Let g(i, j) = i(2 + n + 2j) + j(ab + a + b− 1− r + m− nr − rj). We obtain

an isomorphism

Mvb
Habr (2, c1, χE) ∼= Mvb

Habr (2, c1 +
2i

a
x+ 2jy, χE + g(i, j)),

which induces

∑
χE∈Z

e(Mvb
Habr (2, c1 +

2i

a
x+ 2jy, χE))q

χE = qg(i,j)
∑
χE∈Z

e(Mvb
Habr (2, c1, χE))q

χE .

Thus for the Hirzebruch orbifold, the only interesting cases for the generating

functions are (m,n) = (0, 0), (0, 1), (1, 0) and (1, 1).

Proposition 5.2.5. Consider the orbifold H12
0 , which is P(1, 2)× P1. In this case,

r = 0, a = 1, b = 2, p = 1, q = 2, C = 4. Let c1(F) = mx + ny where c1(Dρ1) = x

and c1(Dρ2) = y.
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1. If (m,n) = (0, 0), then f = 4.

Hvb
0 (q) = −

∞∑
t=1

(2t− 1)2q4−4t2

+
∞∑
t=1

∞∑
u=1

2t∑
p=1

4q4−(4t+4)(t−p+1)−2p−2u q−(2u+2p)p − q−(2u+2p)(2t+1)

1− q−(2u+2p)

+
∞∑
t=1

∞∑
u=1

2t∑
p=1

4q4−(4t+2)(t−p+1) q−(2u+2p−2)p − q−(2u+2p−2)(2t+1)

1− q−(2u+2p−2)

+
∞∑
t=1

2t∑
p=1

4q4−(4t+4)(t−p+1)−2p q−2p2 − q−(2t+1)(2p)

(1− q−(4t+4−2p))(1− q−2p)

+
∞∑
t=1

2t−1∑
p=1

4q4−2t(2t−2p+1) q−2p2 − q−4pt

(1− q−(4t−2p))(1− q−2p)

+
∞∑
t=1

2(2t− 1)
q4−4t(t+1)

1− q−4t
+
∞∑
t=1

2(2t− 1)
q4−(4t−2)t

1− q−(4t−2)

+
∞∑
t=1

2(2t− 1)
q4−4t(t+1)

1− q−4t
+
∞∑
t=1

2(2t− 1)
q4−2t(2t+1)

1− q−4t

= 2q2 + 5 +
8

q2
+

18

q4
+O

[
1

q

]5

.

2. If (m,n) = (1, 0), then f = 5.

Hvb
x (q) =

∞∑
t=1

∞∑
u=1

2t∑
p=1

2q5−(4t+1)(t−p+1) q−(2u+2p−2)p − q−(2u+2p−2)(2t+1)

1− q−(2u+2p−2)

+
∞∑
t=1

∞∑
u=1

2t∑
p=1

2q5−(4t+2)(t−p+1)+t+u q−(2u+2p−2)p − q−(2u+2p−2)(2t+1)

1− q−(2u+2p−2)

+
∞∑
t=1

∞∑
u=1

2t−1∑
p=1

2q5−(4t−1)(t−p) q−(2u+2p−2)p − q−2t(2u+2p−2)

1− q−(2u+2p−2)

+
∞∑
t=1

∞∑
u=1

2t∑
p=1

2q5−(4t+2)(t−p+1)−t−u q−(2u+2p−2)p − q−(2u+2p−2)(2t+1)

1− q−(2u+2p−2)
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+
∞∑
t=1

2t−1∑
p=1

2q5−(4t+1)(t−p)−2p q−2p2 − q−4pt

(1− q−(4t−2p))(1− q−2p)

+
∞∑
t=1

2t−1∑
p=1

2q5−(4t+1)(t−p)−p q−2p2 − q−4pt

(1− q−(4t−2p))(1− q−2p)

+
∞∑
t=1

2t−1∑
p=1

2q5−(4t+3)(t−p)−2p q−2p2 − q−4pt

(1− q−(4t−2p))(1− q−2p)

+
∞∑
t=1

2t−1∑
p=1

2q5−(4t+3)(t−p)−3p q−2p2 − q−4pt

(1− q−(4t−2p))(1− q−2p)

+
∞∑
t=1

2t
q5−(4t+1)(t+1)

1− q−(4t+1)
+
∞∑
t=1

2t
q5−(4t−1)t

1− q−(4t−1)
+
∞∑
t=1

4t
q5−(4t+1)t

1− q−2t

= 2q3 + 4q2 + 6q + 8 +
12

q
+

12

q2
+

14

q3
+

20

q4
+O

[
1

q

]5

.

3. If (m,n) = (0, 1), then f = 6.

Hvb
y (q) = −

∞∑
t=1

4t2q6−(2t+1)2

+
∞∑
t=1

∞∑
u=1

2t−1∑
p=1

4q6−2t(2t−2p+1) q−(2u+2p−2)p − q−2t(2u+2p−2)

1− q−(2u+2p−2)

+
∞∑
t=1

∞∑
u=1

2t−1∑
p=1

4q5−4t(t−p+1)−2u q−(2u+2p)p − q−2t(2u+2p)

1− q−(2u+2p)

+
∞∑
t=1

2t∑
p=1

4q6−(4t+2)(t−p+1) q−2p2 − q−2p(2t+1)

(1− q−(4t+2−2p))(1− q−2p)

+
∞∑
t=1

2t−1∑
p=1

4q5−4t(t−p+1) q−2p2 − q−4pt

(1− q−(4t+2−2p))(1− q−2p)

+
∞∑
t=1

(4t− 1)
q6−2t(2t+1)

1− q−4t
+
∞∑
t=1

(4t− 3)
q6−(2t−1)(2t+1)

1− q−(4t−2)

+
∞∑
t=1

2(2t− 1)
q6−2t(2t−1)

1− q−(4t−2)
+
∞∑
t=1

4t
q6−(2t+1)(2t+3)

1− q−(4t+2)

= 2q4 + q3 + 6q2 + q + 9 +
5

q
+

14

q2
− 3

q3
+

17

q4
+O

[
1

q

]5

.
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4. If (m,n) = (1, 1), then f =
15

2
.

Hvb
x+y(q) =

∞∑
t=1

∞∑
u=1

2t∑
p=1

2q7−(4t+3)(t−p)−2p q−(2u+2p−2)p − q−(2u+2p−2)(2t+1)

1− q−(2u+2p−2)

+
∞∑
t=1

∞∑
u=1

2t−1∑
p=1

2q7−(4t−1)(t−p+1)−u+p q−(2u+2p−2)p − q−2t(2u+2p−2)

1− q−(2u+2p−2)

+
∞∑
t=1

∞∑
u=1

2t−1∑
p=1

2q8−(4t−1)(t−p)−2p q−(2u+2p−2)p − q−2t(2u+2p−2)

1− q−(2u+2p−2)

+
∞∑
t=1

∞∑
u=1

2t−1∑
p=1

2q7−(4t+1)(t−p)−p+u q−(2u+2p−2)p − q−2t(2u+2p−2)

1− q−(2u+2p−2)

+
∞∑
t=1

2t∑
p=1

2q8−(4t+3)(t−p+1) q−2p2 − q−2p(2t+1)

(1− q−(4t+2−2p))(1− q−2p)

+
∞∑
t=1

2t∑
p=1

2q8−(4t+3)(t−p+1)−p q−2p2 − q−2p(2t+1)

(1− q−(4t+2−2p))(1− q−2p)

+
∞∑
t=1

2t∑
p=1

2q7−(4t+1)(t−p+1) q−2p2 − q−2p(2t+1)

(1− q−(4t+2−2p))(1− q−2p)

+
∞∑
t=1

2t∑
p=1

2q7−(4t+1)(t−p+1)+p q−2p2 − q−2p(2t+1)

(1− q−(4t+2−2p))(1− q−2p)

+
∞∑
t=1

2t
q

15
2
− 1

2
(2t+1)(4t+1)

1− q−(4t+1)
+
∞∑
t=1

2t
q

15
2
− 1

2
(2t+1)(4t−1)

1− q−(4t−1)

+
∞∑
t=1

2(2t− 1)
q

15
2
− 1

2
(2t−1)(4t+1)

1− q−(4t−2)
+
∞∑
t=1

2(2t− 1)
q

15
2
− 1

2
(2t−1)(4t−1)

1− q−(4t−2)

= 2q6 + 4q5 + 6q4 + 8q3 + 10q2 + 14 +
14

q
+

18

q2
+

24

q3
+

22

q4
+O

[
1

q

]5

.

Proof. We will show how to rewrite the sums over C2 and C3 in the case of (m,n) =

(0, 0). The calculation of other parts is similar.
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The second and third terms can be combined into one

∑
C′2

4q4− 1
4
ij+ 1

4
jk− 1

4
kl− 1

4
li

where

C ′2 ={(i, j, k, l)∈ Z4 : 2 | i, 2 | j, 2 | l, 2 | k, 4 | i−k,−i < k < 2l < i,−2j < k, l < j}.

It can be then split into two terms by either i < 2j or 2j ≤ i.

(∑
C′′2

+
∑
C′′3

)
4q4− 1

4
ij+ 1

4
jk− 1

4
kl− 1

4
li

where

C ′′2 ={(i, j, k, l) ∈ Z4 : 2 | i, 2 | j, 2 | l, 2 | k, 4 | i− k, −2j < −i < k < 2l < i < 2j},

C ′′3 ={(i, j, k, l) ∈ Z4 : 2 | i, 2 | j, 2 | l, 2 | k, 4 | i− k, −i < −2j < k < 2l < 2j < i}.

Suppose i = 4t+ 4, then we have the following picture for the case i < 2j.

4t+ 4

i

2t+ 2

i
2

−2t− 2

− i
2

−4t− 4

−i
0

j 2jl2lk
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Hence j = 2t+ 2 + 2u, l = 2t+ 2− 2p, k = 4t+ 4− 4p− 4s and

∑
C′′2

q
1
4
ij− 1

4
jk+ 1

4
kl+ 1

4
li =

∞∑
t=1

∞∑
u=1

2t∑
p=1

2t+1−p∑
s=1

q4t2+8t−4pt−4p+2up+2p2+4+2s(u+p)

=
∞∑
t=1

∞∑
u=1

2t∑
p=1

q(4t+4)(t−p+1)+2p+2u q(2u+2p)p − q(2u+2p)(2t+1)

1− q2u+2p
.

This is the second term of the generating function in the case of (m,n) = (0, 0).

Suppose i = 4t+ 2, we will obtain the third term. The fourth and fifth terms

come from the case when 2j ≤ i.

Basically, we split the terms by 4 | i or 4 | i+ 2 when i is even, and by 4 | i+ 1

or 4 | i+ 3 when i is odd. Then the result follows from tedious calculation.
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Chapter 6: Donaldson-Thomas Invariants

The Donaldson-Thomas invariant DT (X;α) of a Calabi-Yau manifold X, con-

structed by [Tho00], is the virtual count of stable sheaves on X with Chern character

α. It is originally defined in the case when there are no strictly semistable sheaves.

Let X be a Calabi-Yau threefold over C. Denote by K0(X) = K0(coh(X)) the

Grothendieck group of the abelian category coh(X) of coherent sheaves on X. The

Euler form [JS12] is an anti-symmetric bilinear map:

χ̄ : K0(X)×K0(X)→ Z

χ̄([E ], [F ]) =
∑

i≥0(−1)i dim Exti(E ,F)

for all E ,F ∈ coh(X). The numerical Grothendieck group K(X) is the quotient of

K0(X) by the two-sided kernel of χ̄. The Euler form descends to a non-degenerate

anti-symmetric bilinear form on K(X).

Define the positive cone C(X) to be

{[F ] ∈ K(X) | 0 � F ∈ coh(X)}.

Fix an ample line bundle OX(1) on X. For any α ∈ C(X), write Ms(X;α) (resp.
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Mss(X;α)) for the moduli space of Gieseker-(semi)stable sheaves on X with class

α. It is shown in [HL10] that Mss(X;α) is a quasi-projective scheme of finite type

and Ms(X;α) is an open subscheme.

In the case Ms(X;α) = Mss(X;α), i.e. there are no strictly semistable

sheaves, Ms(X;α) is proper and admits a virtual class [Ms(X;α)]vir ∈

A0(Ms(X;α)). The Donaldson-Thomas invariant is defined as

DT (X;α) =

∫
[Ms(X;α)]vir

1.

One can also define DT (X;α) via a constructible function vMs(X;α) :

Ms(X;α)→ Z, called the Behrend function [Beh09]. Then the Donaldson-Thomas

invariant can be expressed as the weighted Euler characteristic:

DT (X;α) = χ(Ms(X;α), vMs(X;α)).

In addition, if Ms(X;α) is smooth, then

DT (X;α) = (−1)dim(Ms(X;α))e(Ms(X;α)). (6.1)

If the moduli space Mss(X;α) contains strictly semistable sheaves, then

DT (X;α) cannot be defined via the virtual cycle. It is also not a good idea to

use (6.1) as the definition because it is not unchanged under deformations of X.

Instead, Joyce and Song defined aQ-valued invariant D̄T (X;α) forMss(X;α),

called the generalized Donaldson-Thomas invariant [JS12], which is given by the
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näıve Euler characteristic [Joy06] weighted by the Brehend function. Their version

of stable-pair theory provides us a concrete tool to compute D̄T (X;α).

D̄T (X;α) is deformation-invariant. WhenMs(X;α) =Mss(X;α), D̄T (X;α)

coincides with the original invariant DT (X;α).

In the previous discussion, the Calabi-Yau 3-fold X is assumed to be compact.

If X is non-compact, the Euler form on coh(X) may not be defined. Hence we need

to consider the abelian category cohcs(X) of compactly-support coherent sheaves on

X [JS12, Section 6.7].

By [Ful13], K0(cohcs(X)) can be identified with the image of the compactly-

supported Chern characteristic chcs : K0(cohcs(X)) → Heven
cs (X;Q). Hence the

Euler form

χ̄ : K0(coh(X))×K0(cohcs(X))→ Z

is well-defined and mapped to the pairing

Heven(X;Q)×Heven
cs (X;Q)→ Q

(α, β) = deg(α∨ · β · td(X))3

given by the Poincaré duality.

For any coherent sheaf F with compact support, the Hilbert polynomial is

defined as χ̄(OX(−t),F).

If X is compactly-embeddable [JS12], one can still define D̄T (X;α) via the

Behrend function and stable-pair theory. But the moduli space is not necessarily

proper if X is not compact. As a result, the Donaldson-Thomas invariant may not
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be deformation-invariant.

6.1 Local Hirzebruch Orbifolds

Now we study the Donaldson-Thomas invariant DT (X ;α) when X is the total

space of the canonical bundle over a Hirzebruch orbifold Hab
r and α is the class of

a compactly-supported coherent sheaf. In the case when r = 0 and α is the class

of a 2-dimensional sheaf such that c1(α) is the class of the zero section, we find an

explicit formula for the generating function of Donaldson-Thomas invariants.

Suppose gcd(a, b) = 1. Recall that the stacky fan of the Hirzebruch orbifold

Hab
r is given by

x

y

ρ1 = (b, s)

ρ3 = (−a, t)
ρ2 = (0, 1)

ρ4 = (0,−1)

σ1σ2

σ3 σ4

Hence bDρ1 ∼ aDρ3 , Dρ4 ∼ sDρ1 +Dρ2 + tDρ3 where Dρi is the divisor corresponding

to the ray ρi. The canonical bundle of the Hirzebruch orbifold Hab
r is

ωHabr
∼= OHabr (

∑
i

−Dρi) ∼= OHabr (−a+ b− r
a

Dρ1 − 2Dρ4),

Let X be the total space of the canonical bundle ωHabr over Hab
r . Then X is a
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Calabi-Yau stack [PS06] of dimension 3, called the local Hirzebruch orbifold.

Denote by S ∼= Hab
r the zero section of ωHabr . By [Beh04], the compactly-

supported cohomology groups of X can be identified with the cohomology groups

of Hab
r :

Hk
cs(X ,Q) ∼= Hk−2(Hab

r ,Q).

Let ε : Hab
r → H be the morphism from Hab

r to its coarse moduli scheme.

x

y

ρ1 = (b, s)

ρ3 = (−a, t)
ρ2 = (0, 1)

ρ4 = (0,−1)

σ1σ2

σ3 σ4

Hab
r

ε
H

x

y

ρ′1 = (b/p, s/p)

ρ′3 = (−a/q, t/q)

ρ′2 = (0, 1)

ρ′4 = (0,−1)

σ′1σ′2

σ′3 σ′4

Recall that p = gcd(b, r), q = gcd(a, r), r = sa + bt and Pic(Hab
r ) ∼= Z⊕ Z. Fix the

ample sheaf L ∼= OH( b
p
D1 + ba

pq
D4) on H and the generating sheaf E =

⊕ab−1
k=0 (−k, 0)

on Hab
r [Section 4.4]. Denote by π : X → Hab

r the projection map. Let F be a

compactly-supported coherent sheaf of dimension 2 on X such that c1(F) = k[S]

for some k > 0. Its modified Hilbert polynomial is defined as

Pπ∗E = χ̄(π∗E ⊗ π∗ε∗L−1,F).
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Since O(Dρ1) ∼= (a, 0) and O(Dρ4) ∼= (r, 1), we have

ωkHabr
∼= OHabr (−k(a+ b− r)

a
Dρ1 − 2kDρ4) ∼= (−k(a+ b+ r),−2k)

By Proposition 4.4.1, PE(OHabr , T ) > PE(ω
k
Habr

, T ) for any k > 0. It implies that

H0(ωkHabr
) ∼= Hom(OHabr , ω

k
Habr

) = 0. Hence F is set theoretically supported on S.

Proposition 6.1.1. If F as above is semistable, then the stack theoretical support of

F is S. Denote by Mss(X ;P ) (resp. Mss(Hab
r ;P )) the moduli space of compactly-

supported semistable torsion-free sheaves of dimension 2 on X (resp. Hab
r ) with

modified Hilbert polynomial P . Then

Mss(X ;P ) ∼=Mss(Hab
r ;P ).

Proof. The ideal sheaf of S in X is isomorphic to ω−1
Habr
∼= OHabr (a+b−r

a
Dρ1 + 2Dρ4),

hence there exists an exact sequence

F ⊗ ω−1
Habr
→ F → F|S → 0.

Since F is semistable, to prove Hom(F ⊗ ω−1
Habr

,F) = 0, it suffices to show that

P (F ⊗ω−1
Habr

) > P (F) by [HL10], where P (F) := PE(F , T ) = χ(Hab
r ,F ⊗E∨⊗ ε∗LT )

denotes the modified Hilbert polynomial.

Because of the generating sheaf E =
⊕ab−1

k=0 (−k, 0), the only new contribution

to the linear term of the modified Hilbert polynomial comes from the 2-dimensional
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component of the inertial stack IHab
r , which is Hab

r itself.

Recall that the Chow ring of the Hirzebruch orbifold Hab
r is Q[x,w]/(x2, aw2−

rxw). Then P (F ⊗ ω−1
Habr

) > P (F) because

∫
Habr

ch1(ε∗LT ) · ch1(ωHabr )

=

∫
Habr

(bx+
ba

pq
w)T ·

(
a+ b− r

a
x+ 2w

)
= (

a+ b+ r

pq
+ 2)T > 0.

Hence F ∼= F|S .

By Serre duality for Deligne-Mumford stacks [Nir08a], Ext2(F ,F) = Hom(F ,

F ⊗ ωHabr ) = 0 for any torsion-free semistable sheaf F on Hab
r as shown in the

proof of the previous proposition. Hence in the case when there are no strictly

semistable sheaves,Ms(X ;PE) andMs(X ;α) are unobstructed and smooth. Hence

the Donaldson-Thomas invariant DT (X ;α) is the signed Euler characteristic:

DT (X ;α) = (−1)dimMs(X ;α)e(Ms(X ;α))

In the variety case, i.e. a = b = 1, we also have

DT (X ;PE) = (−1)dimMs(X ;PE)e(Ms(X ;PE)).

But it does not hold when X is an orbifold. Sheaves of different K-group classes

might have same modified Hilbert polynomial. The moduli space Ms(X ;PE) will
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have components of different dimensions.

Denote byMeven (resp. Modd) the components of the moduli spaceMs(X ;PE)

with even (resp. odd) dimension. Then the Donaldson-Thomas invariant DT (X ;PE)

can be expressed as

DT (X ;PE) = e(Meven)− e(Modd).

Hence the coefficients of generating functions we obtained in Chapter 5, for

example Proposition 5.2.1, might not be Donaldson-Thomas invariants. We need to

modify those generating functions to track both K-group classes and Euler charac-

teristics. This process involves colored partitions.

Let α be the class of a 2-dimensional compactly-supported semistable sheaf on

X with c1(α) = [S]. Since this sheaf is stack theoretically supported on S ∼= Hab
r , it

corresponds to a semistable sheaf F of rank 1 on the Hirzebruch orbifold Hab
r . By

tensoring −⊗ (i, j), we assume that the reflexive hull of F is L(0,0,0,0), in which case

c1(F) = 0. The cokernel sheaf Q of the exact sequence

0→ F → L(0,0,0,0) → Q→ 0

is 0-dimensional.

By Example 3.3.2, in each chart Ui, the stacky family biF̂i is nonzero only for

94



j = k = 0. The set

{(l1, l2} ∈ Z2
≥0| (0,0)Qi(l1, l2) 6= 0 i.e. (0,0)Fi(l1, l2) = 0}

corresponds to the stacky family biQ̂i and defines a colored Young diagram for each

chart.

For example, in the chart U1, the µb-weight of (0/a,0)Q1(0, 0) is 0 by Example

3.3.2, because Bi = 0 for all i. Since the µb-action on U1 is given by

τ ∈ µb : (x, y)→ (τax, τ−ry),

the µb-weight of (0/a,0)Q1(l1, l2) is

l1a− l2r mod b.

The Young diagram associated to Q|U1 is nonempty if and only if (0/a,0)Q1(l1, l2) 6= 0.

The color assigned to each block is determined by the µb-weight. Similarly, Young

diagrams for other charts are also colored based on the fining gradings.

Example 6.1.2. Suppose gcd(a, b) = 1 and r = 0, then the orbifold is P(a, b)×P1.

The colored Young diagram associated to F for the first chart is illustrated as

follows:
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(0/a,0)F̂1

•
(0, 0)

C

0 a 2a 3a
0 a 2a 3a
0 a 2a 3a
0 a 2a 3a

⇔
0 a 2a
0 a 2a
0

Note that ia might be bigger than b, so the color is given by ia mod b.

Proposition 6.1.3. Let F be a torsion free sheaf of rank 1 on the Hirzebruch

orbifold Hab
r such that the reflexive hull of F is L(0,0,0,0). Denote by λi(F) the

corresponding colored Young diagram for chart Ui and #lλi(F) the number of boxes

with color l in the diagram λi(F). The K-group class of F is

1−
b−1∑
l=0

#lλ1(F)(1− ga)(1− h)gl −
a−1∑
l=0

#lλ2(F)(1− gb)(1− h)gl

−
a−1∑
l=0

#lλ3(F)(1− gb)(1− grh)gl −
b−1∑
l=0

#lλ4(F)(1− ga)(1− grh)gl

where g := [(−1, 0)], h := [(0,−1)] are K-group classes of the generators of

Pic(Hab
r ) ∼= Z⊕ Z.

Proof. The result follows from Proposition 4.1.1

Let MHabr (1, c1 = 0, χE) be the moduli scheme of stable torsion free sheaves of

rank 1 on Hab
r with first Chern class c1 = 0 and modified Euler characteristic χE .

Our goal is to stratify this moduli scheme by K-group classes and determine the

dimension of each component.

By the above proposition, we know that the K-group class of a torsion-free
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sheaf of rank 1 is fully determined by #lλi(F). So the problem of determining the

dimension is reduced to that of counting colored partitions.

When r = 0, i.e. the orbifold is P(a, b) × P1, the group action on each chart

always fixes one variable. For example, the action on the first chart is given by

τ ∈ µb : (x, y) → (τax, y). Hence the Young diagram is colored by layers as

illustrated in Example 6.1.2. In this case, there is a simple formula for the generating

function.

Proposition 6.1.4. Suppose a Young diagram is colored based on the weight of µb-

action on C2 given by τ ∈ µb : (x, y) → (τax, y). Let pi be the variable that tracks

the color i mod b. Then the generating function for the colored partition is given

by

G(pia) =
1∏

k≥0

∏b−1
i=0

(
1− p0pa · · · pia(p0pa · · · p(b−1)a)k

) .
Proof. The result follows from the observation that for each horizontal layer of a

Young diagram, the number of boxes with color (i + 1)a is always equal to or one

less than that of ia. For example, the Young diagram in Example 6.1.2 corresponds

to the term (p0pap2a) · (p0pap2a) · p0.

As a result, the generating functions for charts U1 and U4 are both G(pi).

Similarly, the generating functions for charts U2 and U3 are

H(qjb) =
1∏

k≥0

∏a−1
j=0

(
1− q0qb · · · qjb(q0qb · · · q(a−1)b)k

) .
Hence the partition function for stable torsion free sheaves of rank 1 with
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c1 = 0 on P(a, b)× P1 is given by

q
1
2

(a+b+ab−1)G2(q−apia)H
2(q−bqjb),

where q tracks the modified Euler chracteristic and pia (resp. qjb) tracks the number

of boxes with color ia mod b (resp. jb mod a) in charts U1 and U4 (resp. U2 and

U3).

Note that by setting pi = qi = 1, we will get back the generating function

G0(q) = q
1
2

(a+b+ab−1)

∞∏
k=1

1

(1− q−ak)2(1− q−bk)2

in Proposition 5.2.1

However the coefficients of the above partition function are still not Donaldson-

Thomas invariants. We need to determine χ(F ,F) for any torsion free sheaf F of

rank 1 with fixed K-group class.

When X is an orbifold, it is not easy to calculate χ(F ,F) directly. Given a

sheaf F on a variety X, if ch(F) = ⊕ivi ∈ ⊕iH2i(X,Q), then the dual class of F

is defined as ch∨(F) = ⊕i(−1)ivi. But this is not true for orbifolds because of the

existence of ρ in the definition of c̃h [Section 4.2]. The eigenvalues are assigned as

the weights for the decomposition of eigenbundles.

However, we are only interested in (−1)dimMs(X ;α). So we carry out the fol-

lowing steps to determine whether χ(F ,F) is even or odd.

Proposition 6.1.5. Given a sheaf F on the Hirzebruch orbifold Hab
r . Suppose there
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exists a locally-free resolution

0→
n2⊕
j=1

L2j →
n1⊕
i=1

L1i → F ,

then

χ(F ,F) = (n1 + n2) +
∑

i 6=i′

(
χ(L1i ⊗ L∨1i′) + χ(L1i′ ⊗ L∨1i)

)
+
∑

j 6=j′

(
χ(L2j ⊗ L∨2j′) + χ(L2j′ ⊗ L∨2j)

)
−
∑

i,j

(
χ(L1i ⊗ L∨2j) + χ(L2j ⊗ L∨1i)

)
.

The result also holds when the K-group class of F is [
⊕n1

i=1 L1i]− [
⊕n2

j=1 L2j].

Proof. The dual sheaf of F is defined as the derived dual. The Euler form is bilinear

and χ(OHabr ) = 1 by Proposition 4.2.1.

Therefore, to determine whether X (F ,F) is even or odd, we need to find the

pattern for χ(L) + χ(L∨) for any line bundle L on P(a, b)× P1.

Proposition 6.1.6. Define χ̃[L] := χ(L) + χ(L∨) and

δi,j :=


0 if i - j

1 if i | j.

Suppose gcd(a, b)=1. Consider the line bundle (m,n) ∈ Pic(P(a, b)× P1). Then

χ̃[(m,n)] ≡ (δb,m + δa,m)(n− 1) mod 2.

99



Proof. By Proposition 4.2.1, when r = 0, the Euler characteristic is given by

χ((m,n)) =
1 + n

2a
+

1 + n

2b
+

(1 + n)m

ab
+

b−1∑
l=1

ωmlb
1− ω−alb

n+ 1

b
+

a−1∑
l=1

ωmla
1− ω−bla

n+ 1

a
.

We first consider the case when n = 0. Using the fact that
b−1∑
l=1

ωmlb
1− ω−alb

=

b−1∑
l=1

ω−mlb

1− ωalb
and

ω−mlb

1− ωalb
+

ω−mlb

1− ω−alb

= ω−mlb , we get

χ̃[(m, 0)] =
1

a
+

1

b
+

b−1∑
l=1

ωmlb
1

b
+

a−1∑
l=1

ωmla
1

a
.

Note that

b−1∑
l=1

ωmlb =


−1 if b - m

b− 1 if b | m.

Therefore

χ̃[(m, 0)] = δb,m + δa,m.

When n = 1,

χ̃[(m, 1)] = 2χ((m, 0)) ≡ 0 mod 2.

When n ≥ 2,

χ((m,n))− χ((−m,−n)) = 2χ((m, 0)) + (δb,m + δa,m)(n− 1).

Hence

χ̃[(m,n)] ≡ (δb,m + δa,m)(n− 1) mod 2.
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Denote by #pia (resp. #qjb) the number of boxes with color ia mod b (resp.

jb mod a) in charts U1 and U4 (resp. U2 and U3).

From Proposition 6.1.3 , we know that changing the position of a colored box

won’t change the K-group class as long as the coloring is kept unchanged. Hence

we can assume that corresponding Young diagrams for F are empty for charts U3

and U4 and have the following shapes for charts U1 and U2.

(0, 0)

0 a · · · (b− 1)a←
↖0 a · · ·

· · ·· · ·· · ·
0 a
· · ·
0

#p0

#pa

#p(b−1)a

0 0 · · · 0 · · · 0
b b · · · b
· · ·· · ·· · ·

(a− 1)b
↓ ↘

(0, 0) #q(a−1)b #qb #q0

Consider the following sheaves:

F0 =
⊕

0≤i≤b−1

L(ia,#pia,0,0)

⊕
L(ba,0,0,0)

⊕
0≤j≤a−1

L(jb,#qjb,0,0)

⊕
L(0,0,ab,0)

=
⊕

0≤i≤b−1

(−ia,−#pia)
⊕

(−ba, 0)
⊕

0≤j≤a−1

(−jb,−#qjb)
⊕

(−ab, 0),

F1 =
⊕

0≤i≤b−1

L((i+1)a,#pia,0,0)

⊕
0≤j≤a−1

L((j+1)b,#qjb,0,0)

⊕
L(0,0,0,0)

=
⊕

0≤i≤b−1

(−(i+ 1)a,−#pia)
⊕

0≤j≤a−1

(−(j + 1)b,−#qjb)
⊕

(0, 0).

Then the K-Group class of F is [F0]− [F1].

Proposition 6.1.7. Suppose gcd(a, b)=1. Given a sheaf F on P(a, b)×P1 as above,
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then

χ(F ,F) ≡ 1 + a+ b+ #p0 + #p(b−1)a + #q0 + #q(a−1)b mod 2.

Proof. By Proposition 6.1.5, we need to decide whether χ̃[L⊗L′∨] := χ(L⊗L′∨) +

χ(L∨ ⊗ L′) is even or odd for any summands L, L′ of F0 and F1.

Notice that

χ̃[(i− j)a,#pia −#pja] = χ̃[((i+ 1)− (j + 1))a,#pia −#pja],

χ̃[(i− j)b,#qib −#qjb] = χ̃[((i+ 1)− (j + 1))b,#qib −#qjb],

χ̃[(i− b)a,#pia] = χ̃[ia,#pia], χ̃[(i+ 1− b)a,#pia] = χ̃[(i+ 1)a,#pia],

χ̃[(j − a)b,#qib] = χ̃[jb,#qib], χ̃[(j + 1− a)b,#qib] = χ̃[(j + 1)b,#qib].

So they can be grouped into pairs and won’t influence the evenness of χ(F ,F).

Since

δa,ia−(j+1)b + δa,ia−jb + δb,ia−(j+1)b + δb,ia−jb =


odd if j = 0, a− 1

even otherwise,

one can show that

b−1∑
i=0

a−1∑
j=0

χ̃[ia− (j+1)b,#pia−#qjb]+ χ̃[ia− jb,#pia−#qjb] ≡ b(n0 +na−1) mod 2.
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Similarly,

b−1∑
i=0

a−1∑
j=0

χ̃[(i+ 1)a− (j + 1)b,#pia −#qjb] + χ̃[(i+ 1)a− jb,#pia −#qjb]

≡ b(n0 + na−1) mod 2.

So the sum of above terms is even.

Next, one can show that

b−1∑
i=0

b−1∑
j=0

χ̃[ia− (j + 1)a,#pia −#pja]

=
b−1∑
i=0

χ̃[−a, 0]+
b−1∑
i,j=0
i<j

(
χ̃[ia− (j + 1)a,#pia−#pja]+χ̃[(i+ 1)a− ja,#pia−#pja]

)

≡ b mod 2.

Similarly,
a−1∑
i=0

a−1∑
j=0

χ̃[ib− (j + 1)b,#qib −#qjb] ≡ a mod 2.

Lastly, one can also show that

b−1∑
i=0

χ̃[ia− ab,#pia] + χ̃[(i+ 1)a− ab,#pia] ≡ #p0 + #p(b−1)a.

a−1∑
j=0

χ̃[jb− ab,#qjb] + χ̃[(j + 1)b− ab,#qjb] ≡ #q0 + #q(a−1)b.

Since there are 2a+2b+3 summations in F0 and F1 in total, the result follows

from adding all the above terms together.

Proposition 6.1.8. Suppose gcd(a, b) = 1. When X is the total space of the

canonical bundle over P(a, b)× P1 and α is the class of a 2-dimensional compactly-
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supported sheaf over P(a, b)×P1 with c1(α) = [S], the Donaldson-Thomas partition

function is given by

(−1)a+bq
a+b+ab−1

2 G2(−q−ap0, q−apia︸ ︷︷ ︸
i 6= 0, b− 1

,−q−ap(b−1)a)H
2(−q−bq0, q−bqjb︸ ︷︷ ︸

j 6= 0, a− 1

,−q−bq(a−1)b).

Proof. The dimension of the moduli space is

1− χ(F ,F) ≡ a+ b+ #p0 + #p(b−1)a + #q0 + #q(a−1)b mod 2.

By setting pi = qi = 1, we get a generating function such that the coefficients

are DT (X ;PE).

Proposition 6.1.9. Suppose gcd(a, b) = 1. Let X be the total space of the canonical

bundle over P(a, b)× P1, then

∑
DT
(
X ;PE = abT 2 + (

1

2
(a+ b+ ab− 1) + ab)T + χE

)
qχE

= (−1)a+bq
a+b+ab−1

2 G2(−q−a, q−a, · · · , q−a︸ ︷︷ ︸
i 6=0,b−1

,−q−a)H2(−q−b, q−b, · · · , q−b︸ ︷︷ ︸
j 6=0,a−1

,−q−b),

where G(pia) and H(qjb) are given in Proposition 6.1.4.

Example 6.1.10. Suppose a = 1 and b = 2. Then X is the total space of the

canonical bundle over P(1, 2)× P1. The DT partition function is given by

−q2 1∏
k>0 (1− (p0p1q−2)k)2

1∏
k≥0 (1 + p0q−1(p0p1q−2)k)2

1∏
k>0 (1− (q0q−2)k)2 .
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By setting p0 = p1 = q0 = 1, we get

∑
DT
(
X ;PE = 2T 2 + 4T + χE

)
qχE

= −q2 1∏
k>0 (1− (q−2)k)2

1∏
k≥0 (1 + q−1(q−2)k)2

1∏
k>0 (1− (q−2)k)2 .

Next, we are interested in finding a generating function for DT (X ;α).

Recall that in Proposition 6.1.4, we introduced pia and qjb to track colored

boxes. Indeed, variables pia (resp. qjb) are keeping track of the K-group classes of

OP1 ⊗ µ̂iab and OP3 ⊗ µ̂iab (resp. OP2 ⊗ µ̂jba and OP2 ⊗ µ̂jba ) defined in Proposition

4.1.1, where Pk is the origin of chart Uk. By Proposition 4.1.1, we need to impose

the following relation among these variables:

p0pa · · · p(b−1)a = q0qb · · · q(a−1)b.

Our goal is to combine terms of the DT partition function in Proposition

6.1.8 that represent the same K-group class based on this relation. We modify the

function H(qjb) in Proposition 6.1.4 into

H ′(qjb; pia) =
1∏

k>0

(
1− (p0pa · · · p(b−1)a)k

)
· 1∏

k≥0

∏a−2
j=0

(
1− q0qb · · · qjb(p0pa · · · p(b−1)a)k

) .
Then we get a generating function for DT (X ;α), which is given by Theorem 1.2.3.

Example 6.1.11. Suppose a = 1 and b = 2. Let X be the total space of the

canonical bundle over P(1, 2)× P1 and i : S ∼= P(1, 2)× P1 ↪→ X be the inclusion of
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the zero section. In this case q0 = p0p1. Hence

∑
α∈K0(X )

DT
(
X ;α)p#p0

0 p#p1

1 = − 1∏
k>0 (1− (p0p1)k)4

1∏
k≥0 (1 + p0(p0p1)k)2 ,

where α is given by

i∗

(
1−#p0(1− g)(1− h)−#p1(1− g)(1− h)g

)
.

Remark 6.1.12. Let α be the class of a 2-dimensional compactly supported

semistable sheaf on X with c1(α) = k[S] for k > 1. This sheaf is stack theoret-

ically supported on S and hence corresponds to a semistable sheaf F of rank k on

Hab
r . If F is strictly semistable, the Donaldson-Thomas invariant DT (X ;α) is not

the signed Euler characteristic any more. We need to adopt the stable-pair theory

from [JS12] and generalize the method of [GS15b] to the orbifold case.
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