
ABSTRACT

Title of dissertation: Heap Data Allocation To
Scratch-Pad Memory In Embedded
Systems

Angel Dominguez
Doctor of Philosophy, 2007

Dissertation directed by: Professor Rajeev K. Barua
Department of Electrical and Computer Engineering

This thesis presents the first-ever compile-time method for allocating a portion

of a program’s dynamic data to scratch-pad memory. A scratch-pad is a fast directly

addressed compiler-managed SRAM memory that replaces the hardware-managed

cache. It is motivated by its better real-time guarantees vs cache and by its signifi-

cantly lower overheads in access time, energy consumption, area and overall runtime.

Dynamic data refers to all objects allocated at run-time in a program, as opposed to

static data objects which are allocated at compile-time. Existing compiler methods

for allocating data to scratch-pad are able to place only code, global and stack data

(static data) in scratch-pad memory; heap and recursive-function objects(dynamic

data) are allocated entirely in DRAM, resulting in poor performance for these dy-

namic data types. Runtime methods based on software caching can place data in

scratch-pad, but because of their high overheads from software address translation,

they have not been successful, especially for dynamic data.

In this thesis we present a dynamic yet compiler-directed allocation method

for dynamic data that for the first time, (i) is able to place a portion of the dynamic

data in scratch-pad; (ii) has no software-caching tags; (iii) requires no run-time per-

access extra address translation; and (iv) is able to move dynamic data back and

forth between scratch-pad and DRAM to better track the program’s locality char-

acteristics. With our method, code, global, stack and heap variables can share the

same scratch-pad. When compared to placing all dynamic data variables in DRAM

and only static data in scratch-pad, our results show that our method reduces the

average runtime of our benchmarks by 22.3%, and the average power consumption

by 26.7%, for the same size of scratch-pad fixed at 5% of total data size. Significant

savings in runtime and energy across a large number of benchmarks were also ob-

served when compared against cache memory organizations, showing our method’s

success under constrained SRAM sizes when dealing with dynamic data. Lastly, our

method is able to minimize the profile dependence issues which plague all similar

allocation methods through careful analysis of static and dynamic profile informa-

tion.

Heap Data Allocation To Scratch-Pad
Memory In Embedded Systems

by

Angel Dominguez

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2007

Advisory Committee:
Professor Rajeev K. Barua, Chair/Advisor
Professor Manoj Franklin
Professor Shuvra S. Bhattacharrya
Professor Peter Petrov
Professor Chau-Wen Tseng

c© Copyright by
Angel Dominguez

2007

Dedication

Para mis padres, Angel y Belinda.

Gracias por todo sus ayuda, amor y paciencia durante mi carrera, sin la cual

nunca lo hubiera logrado!

ii

Acknowledgements

There are a few people I would like to thank who were instrumental to the
completion of my doctoral dissertation and academic career . First and foremost
among them are my parents, Angel and Belinda Dominguez, two of the most loving
and hard working people I have ever known. I can honestly say that I have been
truly blessed by having the tremendous luck to be born to two such wonderful and
caring people. Both my father and my mother have been completely supportive of
my academic pursuits, even through trying and difficult times. Without them, I
would not be the man I am today, and I can never truly thank them enough for all
they have done for our family.

There have been several teachers throughout my life that have instilled in me
a love of learning and a thirst for new knowledge that have driven me to complete
a doctoral degree. My first introduction to adult endeavors in science was given to
me by James Thompson, my science teacher at Archbishop Curley Notre Dame high
school for several years. He inspired hundreds of future scientists with his unique
balance of wisdom and humor while making science entertaining and interesting to
young people. Donald Yeung filled a similar role in my graduate studies and I was
lucky enough to have him as my academic and research advisor for my Master’s
degree. He is another truly dedicated individual with unquestionable morals and
possesses a perfectionist approach to research that I truly admire. Lastly, this
dissertation would not have been possible without my doctoral research advisor,
Rajeev Barua, an intelligent man with a great deal of enthusiasm for new research
directions. His proficiency in writing, discussing problems and people skills have
greatly helped my development in those areas.

Finally I would like to thank all my friends and family scattered across the
world. Without you, there would be no joy in sharing what I have learned or
accomplished in my life. I appreciate your patience and efforts while I have been
busy with work and academics, and hope to reconnect with as many of you as
possible while meeting new friends wherever I go. Leilei in particular has been with
me for the entirety of my dissertation and has been loving and supporting for the
many years I have spent in graduate school. As I complete this chapter of my life,
she is beginning her own graduate studies and I wish her the best of luck as she
embarks on her new career.

iii

iv

Contents

1 Introduction 1
1.1 Organization of thesis . 12

2 Embedded systems and software development 15
2.1 Embedded systems . 16
2.2 Intel StrongARM microprocessor . 24
2.3 Embedded software development . 27
2.4 C language compilers . 35
2.5 Heap data allocation . 41
2.6 Recursive functions . 46

3 Previous work on SPM allocation 49
3.1 Overview of related research . 49
3.2 Static SPM allocation methods . 51
3.3 Dynamic SPM allocation techniques 56
3.4 Existing methods for dynamic program data 60
3.5 Heap-to-stack conversion techniques 63
3.6 Memory hierarchy research . 65
3.7 Dynamic memory manager research 71
3.8 Other related methods . 73

4 Dynamic allocation of static program data 77
4.1 Overview for static program allocation 78
4.2 The Dynamic Program Region Graph 83
4.3 Allocation method for code, stack and global objects 88
4.4 Algorithm modifications . 97
4.5 Layout and code generation . 106
4.6 Summary of results . 111

5 Dynamic program data 113
5.1 Understanding dynamic data in software 114
5.2 Obstacles to optimizing software with dynamic data 125
5.3 Creating the DPRG with dynamic data 130

6 Compiler allocation of dynamic data 139
6.1 Overview of SPM allocation for dynamic data 141
6.2 Preparing the DPRG for allocation 145
6.3 Calculating heap bin allocation sizes 146
6.4 Overview of the iterative portion . 149

v

6.5 Transfer minimizations . 150
6.6 Heap safety transformations . 153
6.7 Memory layout technique for address assignment 158
6.8 Feedback driven transformations . 162
6.9 Termination of iterative steps . 164
6.10 Code generation for optimized binaries 166

7 Robust dynamic data handling 169
7.1 General optimizations . 170
7.2 Recursive function stack handling . 175
7.3 Compile-time unknown-size heap objects 181
7.4 Profile sensitivity . 194

8 Methodology 205
8.1 Target hardware platform . 207
8.2 Software platform requirements . 210
8.3 Compiler implementation . 215
8.4 Simulation platform . 223
8.5 Benchmark overview . 228
8.6 Benchmark classes . 228
8.7 Benchmark suite . 231

9 Results 235
9.1 Dynamic heap allocation results . 236

9.1.1 Runtime and energy gain . 236
9.1.2 Transfer method comparison 241
9.1.3 Reduction in heap DRAM accesses 244
9.1.4 Effect of DRAM latency . 246
9.1.5 Effect of varying SPM size . 246

9.2 Unknown-size heap allocation . 247
9.3 Recursive function allocation . 251
9.4 Comparison with caches . 257
9.5 Profile sensitivity . 265

9.5.1 Profile input variation . 268
9.6 Code allocation . 272

10 Conclusion 279

A Additional results 281
A.1 Detailed recursive stack allocation results 281
A.2 Cache comparison results . 283
A.3 Profile sensitivity results . 288

vi

List of Figures

1.1 Example heap allocation using our method 8

2.1 Diagram of a typical desktop computer. 17
2.2 Diagram of a typical embedded computer. 19
2.3 Memory types common to embedded platforms 20
2.4 Comparison between popular embedded memory types. 24
2.5 Diagram of the Intel StrongARM embedded CPU. 25
2.6 Compilation of an application from source files. 37
2.7 Compiler view of program memory 41
2.8 Sample memory layout for an embedded application 43
2.9 Heap manager example . 44
2.10 Stack growth of a recursive function. 48

4.1 DPRG created for a sample program. 85
4.2 Algorithm for dynamic allocation of static program data. 91
4.3 DPRG enhanced with code regions. 96

5.1 Memory map for a typical ARM application. 117
5.2 Example of a recursive data structure. 124
5.3 Example program fragment . 133
5.4 DPRG showing a heap allocation site. 134
5.5 DPRG for a sample function with heap data. 135

6.1 Algorithm for dynamic allocation of heap data. 142
6.2 Calculating heap bin sizes for allocation. 149
6.3 Allocation scenario for an example program 159

7.1 DPRG of a recursive function. 177
7.2 Binary tree showing access frequency. 180
7.3 Sample program containing unknown-size heap allocation 189
7.4 Example function containing unknown-size heap allocation 201
7.5 DPRG for a region with access frequencies 202

8.1 GCC compiler flow for an application. 218
8.2 Main stages of our allocation algorithm. 219
8.3 Benchmark suite information - Part 1 233
8.4 Benchmark suite information - Part 2 233
8.5 Benchmark suite information - Part 3 234

9.1 Normalized runtime of our method for the default scenario. 237

vii

9.2 Normalized energy usage of our method for the default scenario . . . 240
9.3 Power consumption using different transfer methods 244
9.4 Percentage of heap accesses going to DRAM after allocation. 245
9.5 Effects of varying DRAM latency on runtime gain (Part 1). 247
9.6 Effects of varying DRAM latency on runtime gain (Part 2). 248
9.7 Effect of varying SPM size on runtime gain using our approach. . . . 249
9.8 Normalized runtime for the unknown-size benchmark subset. 250
9.9 Normalized energy usage for the unknown-size benchmark subset. . . 251
9.10 Normalized runtime for the unknown-size benchmark subset when

varying SPM size. 252
9.11 Normalized energy usage for the unknown-size benchmark subset

when varying SPM size. 253
9.12 Normalized runtime for the recursive benchmark subset. 254
9.13 Reduction in energy consumption for the recursive benchmark subset. 256
9.14 Runtime improvements for the recursive benchmark subset at 25%

SPM. 257
9.15 Reduction in energy usage for the recursive benchmark subset at 25%

SPM. 258
9.16 Average normalized runtimes for benchmarks using combinations of

SPM and cache. 261
9.17 Averaged normalized energy usage for benchmarks using combina-

tions of SPM and cache. 263
9.18 Normalized runtimes for benchmarks using the second benchmark

input set. 267
9.19 Normalized energy usage for benchmarks using the second benchmark

input set. 268
9.20 Average runtime gain for benchmarks using both benchmark input

sets. 269
9.21 Average energy savings for benchmarks using both benchmark input

sets. 270
9.22 Runtime gains for benchmarks showing profile input sensitivity (Input

A). 271
9.23 Runtime savings for benchmarks showing profile input sensitivity (In-

put B). 272
9.24 Improvement in runtime from profile averaging passes (Input A). . . . 273
9.25 Improvement in energy usage from profile averaging passes (Input B). 274
9.26 Runtime gain when code as well as global, stack and heap data are

allocated. 276
9.27 Energy savings when code as well as global, stack and heap data are

allocated. 277

A.1 Runtime improvement for the recursive application subset when SPM
size varies (Part 1). 282

A.2 Runtime improvement for the recursive application subset when SPM
size varies (Part 2). 283

A.3 Energy savings for the recursive application subset when SPM size
varies (Part 1). 284

A.4 Energy savings for the recursive application subset when SPM size
varies (Part 2). 285

viii

A.5 Runtime details for cache experiments using the JEC benchmark subset286
A.6 Runtime details for cache experiments using the known-size heap

benchmark subset . 287
A.7 Runtime details for cache experiments using the unknown-size heap

benchmark subset . 288
A.8 Runtime details for cache experiments using the recursive benchmark

subset . 289
A.9 Energy results for cache experiments using the JEC benchmark subset290
A.10 Energy results for cache experiments using the known-size heap bench-

mark subset . 291
A.11 Energy details for cache experiments using the unknown-size heap

benchmark subset . 292
A.12 Energy details for cache experiments using the recursive benchmark

subset . 293
A.13 Further details on the runtime gains from profile sensitivity experiments.294
A.14 Further details on the energy savings from profile sensitivity experi-

ments. 295
A.15 Additional runtime improvement results from profile sensitivity ex-

periments when inputs are applied in reverse 296
A.16 Additional energy saving results from profile sensitivity experiments

when inputs are applied in reverse . 297

ix

Chapter 1

Introduction

This thesis presents an entirely new approach to dynamic memory allocation for

embedded systems with scratch-pad memory. In embedded systems, program data

is usually stored in one of two kinds of write-able memories – SRAM or DRAM

(Static or Dynamic Random-Access Memories). SRAM is fast but expensive while

DRAM is slower (by a factor of 10 to 100) but less expensive (by a factor of 20 or

more). To combine their advantages, often a large DRAM is used to build low-cost

capacity, and then a small SRAM is added to reduce runtime by storing frequently

used data. The gain from adding SRAM is likely to increase in the future since the

speed of SRAM is increasing by 60% a year versus only 7% a year for DRAM [64].

In desktops, the usual approach to adding SRAM is to configure it as a hard-

ware cache. The cache dynamically stores a subset of the frequently used data.

Caches have been a success for desktops – a trend that is likely to continue in the

future. One reason for their success is that code compiled for caches is portable to

1

Chapter 1. Introduction

different sizes of cache; on the other hand, code compiled for scratch-pad is usually

customized for one size of scratch-pad. Binary portability is valuable for desktops,

where independently distributed binaries must work on any cache size. In embed-

ded systems, however, the software is usually considered part of the co-design of

the system: it resides in ROM or another permanent storage medium, and cannot

be easily changed. Thus, there is really no harm to the binaries being customized

to one memory size, as required by scratch pad. Source code is still portable, how-

ever: re-compilation with a different memory size is automatically possible in our

framework. This is not a problem, as it is already standard practice to re-compile

for better customization when a platform is changed or upgraded.

For embedded systems, the serious overheads of caches are less defensible.

Caches incur a significant penalty in area cost, energy, hit latency and real-time

guarantees. All of these other than hit latency are more important for embedded

systems than desktops. A detailed recent study [17] compares caches with scratch

pad. Their results are definitive: a scratch pad has 34% smaller area and 40%

lower power consumption than a cache of the same capacity. These savings are

significant since the on-chip cache typically consumes 25-50% of the processor’s area

and energy consumption, a fraction that is increasing with time [17]. Even more

surprising, the run-time cycle count they measured was 18% better with a scratch

pad using a simple static knapsack-based [17] allocation algorithm, compared to a

cache. Defying conventional wisdom, they found absolutely no advantage to using a

cache, even in high-end embedded systems in which performance is important. With

2

the superior dynamic allocation schemes proposed here, the run-time improvement

will be larger. Given the power, cost, performance and real time advantages of

scratch-pad, and no advantages of cache, it is not surprising that scratch-pads are the

most common form of SRAM in embedded CPUs today (eg: [28, 4, 102, 135, 101]),

ahead of caches. Trends in recent embedded designs indicate that the dominance of

scratch-pad will likely consolidate further in the future [120, 17], for regular as well

as network processors.

Although many embedded processors with scratch-pad exist, compiling pro-

gram data to effectively use the scratch-pad has been a challenge. The challenge

is different for static data like code, global and stack variables, on one hand, and

dynamic data like heap and recursive stack variables, on the other. The basis of this

difference lies in the fundamental nature of the two data types and how program

behavior affects their utilization. We note that these are not traditional terms used

in computer science, but are useful for discussion in this thesis. Static data refers

to all program objects allocated at compile-time with a known total size for all such

objects. Code occupies a known size when created, as do global and non-recursive

stack variables during compilation. Dynamic data refers to all program objects

whose total size is unknown at compile-time; i.e., heap data and recursive function

stack objects.

Recent advances have made much progress in compiling code, global and non-

recursive stack variables into scratch-pad memory. Two classes of compiler methods

for allocating these objects to scratch-pad exist. First, static allocation methods are

3

Chapter 1. Introduction

those in which the allocation does not change at run-time; these include [16, 127,

66, 15, 126] and others not listed here. In such methods, the compiler places the

most frequently used variables, as revealed by profiling, in scratch pad. Placing a

portion of the stack variables in scratch-pad is not easy – [16] is the first method to

solve this difficulty by partitioning the stack into two stacks, one for scratch-pad and

one for DRAM. Second, recently proposed dynamic methods improve upon static

methods by allowing variables to be moved at run-time [136, 132, 84, 140]. Being

able to move variables enables tailoring the allocation to each region in the program

rather than having a fixed allocation as in a static method. Dynamic methods

aim to keep variables that are frequently accessed in a region in scratch-pad during

the execution of that region. The methods in [136, 84] explicitly copy variables

from DRAM into scratch-pad just before a region in which they are expected to

the frequently accessed. Other variables are evicted to DRAM by explicit copy out

instructions to make space for incoming variables. Details concerning these and

other existing methods relating to SPM allocation will be presented in chapter 3.

Heap data

Allocating dynamic data to scratch-pad has proven far more difficult. Indeed, as

far as we know, no one has proposed a successful method to allocate a portion of

a program’s dynamic data to scratch-pad memory. To see why, it is useful to un-

derstand dynamic data and their available analysis techniques; an overview follows.

We will focus on heap variables as the main target of this thesis although we have

also applied similar concepts for the allocation of recursive stack objects (described

4

in Section 7.2). Heap objects are allocated in programs by dynamic memory allo-

cation routines, such as malloc in C and new in Java. They are often used to store

dynamic data structures such as linked lists, trees and graphs in programs. Many

compiler techniques for heap analysis group all heap objects allocated at a single

site into a single heap ”variable”. Additional techniques such as shape analysis have

aimed to identify logical heap structures, such as trees. Finally, in languages with

pointers, pointer analysis [42, 129] is able to find all possible heap variables that a

particular memory reference can access.

Having understood heap variables, let us consider why heap data is difficult to

allocate to scratch-pad memory at compile-time. Two reasons for this difficulty are

as follows. First, heap variables are usually of unknown size at compile-time. For

example, linked lists, trees and graphs allocated on the heap typically have a data-

dependent number of elements, and thus a compile-time-unknowable size. Thus it is

difficult to guarantee at compile-time that the heap variable will fit in scratch-pad.

Such a guarantee is needed for a compiler to place that heap variable in scratch-pad.

Second, moving data at run-time, as is required for any dynamic allocation method

to scratch-pad, usually leads to the invalid pointer problem if the moved data is a

heap object. To see why, consider that heap data often contains pointers to other

heap data, such as the child pointers in a tree node. When a heap object is moved

between scratch-pad and DRAM, all the pointers into it become invalid. Updating

all these pointers at run-time is prohibitively expensive since it involves scanning

through entire, possibly large, heap structures at each move. Static methods avoid

5

Chapter 1. Introduction

this problem, but lack the better per-region customization of dynamic methods.

Lacking compile-time methods for heap allocation to scratch-pad, people have

investigated run-time methods, i.e., methods that decide what to place in scratch-

pad only at run-time; however largely they have not been successful. Primary among

run-time methods is software caching [100, 60]. This class of methods emulate the

behavior of a hardware cache in software on the scratch-pad. Since caches decide

their contents at run-time, software caching decides the subset of heap data to

store in scratch-pad at run-time. Software caching is implemented as follows. A

tag consisting of the high-order bits of the address is stored for each cache line

in software. Before each load/store, additional instructions are compiler-inserted to

mask out the high-order bits of the address, access the tag, compare the tag with the

high-order bits and then branch conditionally to hit or miss code. Some methods

are able to reduce the number of such inserted overhead instructions [100], but

much of it remains, especially for non-scientific programs and for heap data. This

implementation points to the primary drawbacks of software caching: the inserted

code before each load/store adds significant overhead, including (i) additional run-

time; (ii) higher code size and dollar cost; (iii) higher data size and cost from tags;

and (iv) higher power consumption. These overheads, especially for heap data, can

easily exceed the gains from locality.

In conclusion, lacking compile-time methods and successful run-time methods

for heap allocation to scratch-pad, heap data is usually not allocated to scratch-pad

at all in modern embedded systems; instead it is placed entirely in DRAM.

6

Heap allocation approach

This paper proposes a new dynamic method for allocating a portion of the heap to

scratch-pad. The method is outlined in the following three steps. First, it partitions

the program into regions such that the start and end of every procedure and every

loop is the beginning of a new region, which continues until the next region begins.

This is not the only possible choice of regions; the reasons for this choice are in

section 5.3. Second, straightforward analysis is done to determine the time-order

between the regions by finding the set of possible predecessors and successors of each

region. Third, copying code is inserted by the compiler at the beginnings of regions

to copy in portions of heap variables into the scratch-pad; these portions are called

bins. A cost-model driven heuristic method is used to determine which variables to

copy in and what size their bins should be.

At first glance, the above method is similar in flavor to our compile-time

dynamic method for code, global and stack data [132] in that it copies in data when

the compiler expects that it will be frequently used in the next region. However its

real novelty is seen in how it solves the unknown size problem and the invalid data

problem mentioned earlier. How these problems are solved result in virtually every

aspect of the algorithm being different from our earlier method. The solutions to

the unknown size problem and the invalid data problem are described in the next

two paragraphs.

First, our heap method solves the problem of unknown-size heap variables by

not storing all the elements of a heap allocation site in its SRAM bin, but only a

7

Chapter 1. Introduction

Site Bin size Regions
(bytes) accessed

A 256 2,4
B 256 1,2,3
C 256 3,4
D 512 3
E 256 4

offset
Memory

1 2 3 4

Regions

256

0

512

768

1024

B B

A

B

C

D
A

E

C

(a) (b)

Figure 1.1: Example heap allocation using our method showing (a) Heap allocation
sites for a program; (b) Memory layout of heap bins after allocation with our method.

fixed-size subset. (From here on “site” is used to mean the objects allocated at a

site). This fixed-size portion for each site in scratch-pad is called the bin for that

site. Fixed-size bins make possible compile-time guarantees that they will fit in

scratch-pad. For example consider a linked list having nodes of size 16 bytes and an

unknown number of nodes. Here, the compiler may allocate a bin of size 192 bytes

for the allocation site of the list – this will hold only 192/16 = 12 nodes from the list.

The total number of nodes may be larger, but only twelve are allocated to the bin

and the rest to DRAM. A bin is copied into SRAM just before every region where

it is accessed (unless it is already in SRAM) and is subsequently evicted before a

region where it is not 1 . When a bin is evicted it is maintained as a contiguous

block in DRAM; it is copied back later to SPM contiguously if needed. This ensures

that the offset of a particular data object inside its bin is not changed during its

lifetime, regardless of whether the bin is in SRAM or DRAM.

1This is the default behavior but it is selectively changed for some regions by the optimizations
in section 6.5.

8

It is important to understand that objects may be allocated or freed from

either memory – separate free lists are maintained for each bin, and there is a

unified free list for heap data that are not in bins. The bins are moved between

SRAM and DRAM, but non-bin data is always in DRAM. New objects from a site

are allocated to its bin if space is available, and to DRAM otherwise. Sites having a

higher data re-use factor are assigned larger bins to increase the total run time gain

from using bins. Figure 1.1(a) is an example showing the five allocation sites for a

hypothetical program and bin size and regions-of-access for each site. Four regions

1-4 are assumed in the program, numbered in order of their timestamps (defined in

section 5.3).

Second, our heap method solves the problem of invalid pointers by never chang-

ing the bin offset or size for any site in the regions it is accessed. For example, fig-

ure 1.1(b) shows the bin layout in scratch-pad for the sites in figure 1.1(a), for each

of the four regions in the program. It shows that the offset of each bin is always the

same when it is present. For example, site A is allocated at the same offset 512 in

both regions 2 & 4 it is accessed. An entire bin may be evicted to DRAM in a region

it is not accessed (as revealed by pointer analysis). For example, site A is copied to

DRAM in region 3. Moving a bin to DRAM temporarily results in invalid pointers

that point to objects in the bin, but those invalid pointers are never dereferenced

as they occur only during regions that pointer analysis has proven to not access the

site.

Our heap method effectively improves run-time for three reasons. First, like a

9

Chapter 1. Introduction

cache it allocates more frequently used data to SRAM. This is achieved by assigning

larger bins to sites with high frequency-per-byte of access. Heap area is traded off

with global and stack data as well – the frequency-per-byte of variables of all types

(from profile data) are compared to determine which ones are actually copied to

SRAM 2 . Any variable is placed in scratch-pad only if the cost model estimates

that the benefits of locality exceed the cost of copying. Second, like caching our

heap method is able to change the contents of the SRAM at runtime to match the

requirements of different phases of the program. The allocation is dynamic, but is

decided at compile-time. Third, unlike software caching, our method has no tags

and no per-memory-access overhead.

Recursive functions

Recursion in computer programming defines a function in terms of itself. Recursion

is deeply embedded in the theory of computation, with the theoretical equivalence

of mu-recursive functions and Turing machines at the foundation of ideas about the

universality of the modern computer. A good example application of recursion is

in parsers for programming languages. The great advantage of recursion is that an

infinite set of possible sentences, designs or other data can be defined, parsed or

produced by a finite computer program.

Unfortunately, even the best compiler analysis tools are unable to place a

bound (except in trivial cases) on the total size of stack memory allocated by a

2The use of frequency-per-byte itself is not new. It has been used earlier for allocating global
and stack variables to SPM [126, 111]. The novelty in this thesis is in the solution to the unknown
size and invalid pointer problems; this allows heap data to be placed in SPM.

10

recursive function at run-time, as it strictly depends on the inputs applied. This

presents a serious problem for existing SPM allocation schemes which only han-

dle static program data. Using concepts obtained from our methods for heap data

allocation, we have developed the first methods able to allocate recursive stack func-

tions to SPM at run-time. By treating individual function invocations like individual

heap objects, we are able to make minor modifications to our framework to sup-

port recursive stack optimization. We will later present results showing significant

improvements for applications making heavy use of recursive functions.

Comparison with caches

The primary measure of success of our heap method is not its performance versus

hardware caches, but versus all-DRAM heap allocation, the only existing method

for scratch-pad. (Software caching has not been a success). There are a great many

chips that have scratch-pad memory (SPM) and DRAM but no data cache; examples

include low-end CPUs [105, 6, 115], mid-grade CPUs [7, 14, 12, 67, 72] and high-end

CPUs [8, 68, 104]. We found at least 80 such embedded processors with SPM and

DRAM but no D-cache in our search but have listed only the above eleven for lack

of space. Thus our method delivers its full promised benefits for a great variety of

chips. It is nevertheless interesting to see a quantitative comparison of our method

for SPM against a cache. Section 9.4 presents such a comparison. It shows that our

compile-time method is comparable to or out-performs a cache of the same area in

both run-time and energy usage for the majority of our benchmark suite for small

SRAM sizes.

11

Chapter 1. Introduction

1.1 Organization of thesis

This thesis is organized in the following manner. The first four chapters constitute

the background and related material for understanding the contributions of this

thesis. Chapter 2 presents background material on embedded systems with a focus

on typical hardware and software approaches for memory. The concept of static

and dynamic data for compiler-based code optimization is also presented in this

chapter. Chapter 3 presents a thorough review of recent research concerned with

SPM allocation as well as related optimization concepts. Chapter 4 presents the

best existing SPM allocation method for code, global and stack data, which is

used in conjunction with our dynamic data method for a comprehensive program

optimization approach. While the material in this chapter is not a new contribution

from this thesis, it is presented as essential reading for a full understanding of our

allocation methods.

The main contributions of this thesis are presented in chapters 5– 7. We have

decided to first present our core method for optimizing typical heap data before

expanding on this for our handling of other types of dynamic data. We present our

core method for analyzing and understanding heap data in chapter 5. Chapter 6

presents a step-by-step explanation of our algorithm for SPM allocation. Once the

core method for heap data has been presented, chapter 7 completes our presentation

with discussion of the extensions we have developed for all other program objects

currently not handled by existing SPM allocation schemes.

The final four chapters of this thesis present our supporting material. Chap-

12

1.1 Organization of thesis

ter 8 discusses the development and simulation methodology employed to properly

host and evaluate our compiler methods. The results obtained from a wide range of

experiments are presented in chapter 9 with focus on interesting scenarios. Chap-

ter 10 concludes the thesis by summarizing our findings. Finally, chapter A is an

appendix containing some additional results of interest which are not explicitly dis-

cussed in chapter 9.

13

Chapter 1. Introduction

14

Chapter 2

Embedded systems and software

development

This chapter will primarily present a brief review of those concepts on which we

base our method for dynamic memory allocation of SPM for embedded systems.

The chapter begins with a review of what exactly constitutes an embedded system,

with emphasis placed on typical hardware configurations for these systems. This

is followed by some background on the C programming language[43], which is by

far the dominant language for embedded systems development. We will discuss

both language and compiler specific material as they apply to optimizing memory

allocation for compiled applications.

To perform optimal memory allocation for a program requires both knowledge

of the program and information on the target machine that will execute the appli-

cation. This in turn requires advanced compiler techniques involving many areas

15

Chapter 2. Embedded systems and software development

from both the hardware engineering and computer science disciplines. For exam-

ple, in order for compilers to make the best decisions when creating intermediate

implementations of high-level language programs, they require complete knowledge

of the language being compiled and its associated memory and semantic details.

Further, the final back-end requires lower-level information on the hardware and

instructions available for a target platform in order to generate optimized assembly

programs. This is a daunting task for modern compilers and developers to handle

in its entirety without some basic concepts in place. The following overview should

help the reader understand the fundamentals behind our compiler directed memory

allocation approach.

2.1 Embedded systems

At its simplest, an embedded system can be defined as any processing system that

has been embedded inside of a larger product. For most engineers, embedded sys-

tems are more strictly defined as dependable, efficient, low-cost processing modules

which are used as small components for a larger and more complicated technology.

Regardless of the definition, embedded systems have become pervasive on modern

society as advancements in technology have fostered an era of ubiquitous computing.

Embedded devices have become a part of everyday life for most people and compose

critical components in products such as automobiles, aircraft, mobile phones, media

players and medical devices, among many more everyday objects. This proliferation

in embedded systems has come about due to the advances in computer microproces-

16

2.1 Embedded systems

sor technologies which have provided the boosts in size, complexity and efficiency

needed.

As technology advanced, the exact definition of what constitutes an embedded

system versus a traditional computer has become murky and difficult to pinpoint in

some applications. General computing is generally divided among super-computers

at its high-end and powerful servers and mainframes at its middle-level of perfor-

mance. At the low-end of the traditional computer field lies the personal computer,

most commonly found in the form of a desktop or laptop machine. A diagram of

the components making up a typical consumer computer is shown in figure 2.1.

Figure 2.1: A block diagram view of a typical consumer computer.

From this figure, a typical PC has a large main memory to hold the operating

system, applications, and data, and an interface to mass storage devices (disks and

17

Chapter 2. Embedded systems and software development

DVD/CD-ROMs). It has a variety of I/O devices for user input (keyboard, mouse,

and audio), user output (display interface and audio), and connectivity (networking

and peripherals). The fast processor requires a system manager (BIOS) to monitor

its core temperature and supply voltages, and to generate a system reset.

Large-scale embedded computers may also take the same form. For example,

they may act as a network router or gateway, and so will require one or more

network interfaces, large memory, and fast operation. They may also require some

form of user interface as part of their embedded application and, in many ways, may

simply be a conventional computer dedicated to a specific task. Thus, in terms of

hardware, many high-performance embedded systems are not that much different

from a conventional desktop machine.

Smaller embedded systems use microcontrollers as their processor, with the

advantage that this processor will incorporate much of the computer’s functionality

on a single chip. An arbitrary embedded system, based on a generic microcon-

troller, is shown in figure 2.2. The microcontroller has, at a minimum, a CPU, a

small amount of internal memory (ROM and RAM), and some form of I/O, which

is implemented within a microcontroller as subsystem blocks. These subsystems

provide the additional functionality for the processor and are common across many

processors.

Many types of memory devices are available for use in modern computer sys-

tems. Most software developers think of memory as being either random-access

(RAM) or read-only (ROM). Not only are there several distinct subtypes of each

18

2.1 Embedded systems

Figure 2.2: A block diagram view of a typical embedded computer.

but the past decade has seen an upsurge of a third class of hybrid memories. In a

RAM device, the data stored at each memory location can be read or written as de-

sired. In a ROM device, the data stored at each memory location can be read at will,

but never written. In some cases, it is possible to overwrite the data in a ROM-like

device. Such devices are called hybrid memories because they exhibit some of the

characteristics of both RAM and ROM. Figure 2.3 provides a classification system

for the memory devices that are commonly found in embedded systems.

Types of RAM

There are two important memory devices in the RAM family: SRAM and DRAM.

The main difference between them is the lifetime of the data stored. SRAM (static

RAM) retains its contents as long as electrical power is applied to the chip. However,

if the power is turned off or lost temporarily then its contents will be lost forever.

19

Chapter 2. Embedded systems and software development

Figure 2.3: Memory types commonly used in embedded systems.

DRAM (dynamic RAM), on the other hand, has an extremely short data lifetime-

usually less than a quarter of a second. This is true even when power is applied

constantly, which is typically the case for DRAM memory organizations. DRAM

thus tends to incur a much higher power as well as access time due to its design.

When deciding which type of RAM to use, a system designer must also consider

access time and cost. SRAM devices offer extremely fast access times (approximately

four times faster than DRAM) but are much more expensive to produce. Generally,

SRAM is used only where access speed is extremely important. A lower cost per

byte makes DRAM attractive whenever large amounts of RAM are required. Many

embedded systems include both types: a small block of SRAM (a few hundred

kilobytes) along a critical data path and a much larger block of DRAM (in the

megabytes) for everything else.

Types of ROM

Memories in the ROM family are distinguished by the methods used to write new

data to them (usually called programming) and the number of times they can be

20

2.1 Embedded systems

rewritten. This classification reflects the evolution of ROM devices from hardwired

to one-time programmable to erasable-and-programmable. A common feature across

all these devices is their ability to retain data and programs physically and not

electronically, saving information even when power is not applied.

The very first ROMs were hardwired devices that contained a preprogrammed

set of data or instructions. The contents of the ROM had to be specified before

chip production, so the actual data could be used to arrange the transistors inside

the chip. Hardwired memories are still used, though they are now called “masked

ROMs” to distinguish them from other types of ROM. The main advantage of a

masked ROM is its low production cost. Unfortunately, the cost is low only when

hundreds of thousands of copies of the same ROM are required and used to store

data that will never be modifiable.

One step up from the masked ROM is the PROM (programmable ROM), which

is purchased in an unprogrammed state. The process of writing data to a PROM

involves the use of specialized device programming hardware. The programmer

attaches to the PROM device and writes data to the device one word at a time by

applying electrical charges to the input pins of the chip. Once a PROM has been

programmed this way, its contents can never be changed as the electrical charges

fuse the internal transistor logic gates open or closed. If the code or data stored in

the PROM must be changed, the current module must be discarded and replaced

with a new memory module. As a result PROMs are also known as One-Time

Programmable (OTP) devices.

21

Chapter 2. Embedded systems and software development

An EPROM (Erasable-and-Programmable ROM) is a memory type that is

programmed in the same manner as a PROM, but that can be erased and repro-

grammed repeatedly. Depending on the silicon production process involved, these

memory modules are created using different structures able to store data bits in the

chip wafer that can also be reset using external stimuli in the form of radiation. Like

PROMs, EPROMs must be erased completely and programming occurs on the entire

contents of memory each time. Though more expensive than PROMs, their ability

to be reprogrammed makes EPROMs an essential part of the software development

and testing process as well as for firmware which will be upgraded occasionally.

Hybrid types of memory

As memory technology has matured in recent years, the line between RAM and

ROM devices has blurred. There are now several types of memory that combine

the best features of both. These devices do not belong to either group and can be

collectively referred to as hybrid memory devices. Hybrid memories can be read and

written as desired, like RAM, but maintain their contents without electrical power,

just like ROM. Two of the hybrid devices, EEPROM and Flash, are descendants of

ROM devices; the third, NVRAM, is a modified version of SRAM.

EEPROMs are electrically-erasable-and-programmable. Internally, they are

similar to EPROMs, but the erase operation is accomplished electrically, rather

than by exposure to more cumbersome methods like ultraviolet light. Any byte

within an EEPROM can be erased and rewritten individually instead of requiring

the entire module to be formatted. Once written, the new data will remain in

22

2.1 Embedded systems

the device forever-or at least until it is electrically erased. The trade-off for this

improved functionality is mainly its higher cost. Write cycles are also significantly

longer than writes to a RAM, rendering EEPROM a poor choice for main system

memory.

Flash memory is the most recent advancement in memory technology. It com-

bines all the best features of the memory devices described thus far. Flash memory

devices are high density, low cost, nonvolatile, fast (to read, but not to write), and

electrically reprogrammable. These advantages are overwhelming and the use of

Flash memory has increased dramatically in embedded systems as a direct result.

From a software viewpoint, Flash and EEPROM technologies are very similar. The

major difference is that Flash devices can be erased only one sector at a time, not

byte by byte. Typical sector sizes are in the range of 256 bytes to 16 kilobytes. De-

spite this disadvantage, Flash is much more popular than EEPROM and is rapidly

displacing many of the ROM devices as well.

The third member of the hybrid memory class is NVRAM (nonvolatile RAM).

Non-volatility is also a characteristic of the ROM and hybrid memories discussed

earlier. However, an NVRAM is physically very different from those devices. An

NVRAM is usually just an SRAM with a battery backup. When the power is turned

on, the NVRAM operates just like any other SRAM. But when the power is turned

off, the NVRAM draws just enough electrical power from the battery to retain its

current contents. NVRAM is fairly common in embedded systems. However, it

is very expensive-even more expensive than SRAM-so its applications are typically

23

Chapter 2. Embedded systems and software development

limited to the storage of only a few hundred bytes of system-critical information

that cannot be stored in any better way.

We summarize our review of common embedded memory technologies with a

table comparing their distinguishing features in figure 2.4.

Table 6 1. Memory Device Characteristics

Memory Type Volatile? Writeable? Erase Size Erase Cycles Relative Cost Relative Speed

SRAM yes yes byte unlimited expensive fast

DRAM yes yes byte unlimited moderate moderate

Masked ROM no no n/a n/a inexpensive fast

PROM no once, with programmer n/a n/a moderate fast

EPROM no yes, with programmer entire chip limited (see specs) moderate fast

EEPROM no yes byte limited (see specs) expensive fast to read, slow to write

Flash no yes sector limited (see specs) moderate fast to read, slow to write

NVRAM no yes byte none expensive fast

Figure 2.4: Comparison of the salient features for memory types common to em-
bedded systems.

2.2 Intel StrongARM microprocessor

Having overviewed memory designs in the previous section, this section will now

discuss the hardware organization of a typical embedded processor. As a case study,

an example processor from the Intel StrongARM family will be highlighted in this

section and used throughout the rest of the thesis as our reference platform. The

Intel StrongARM Microprocessor (SA-1110) is a highly integrated communications

microcontroller that incorporates a 32-bit StrongARM RISC processor core, system

support logic, multiple communication channels, an LCD controller, a memory and

PCMCIA controller, and general-purpose I/O ports. The SA-1110 provides power

efficiency, low cost, and high performance in an embedded package with flexible

memory options. Typical embedded deployments will contain a StrongARM CPU

24

2.2 Intel StrongARM microprocessor

along with a variety of memory configurations, such as a cache(SRAM) with DRAM

as main memory, or an SPM-only system with only an SPM(SRAM) module as

main memory (cache modules disabled). Figure 2.5 shows a block diagram of the

component modules for the SA-1110.

Figure 2.5: Block diagram for an Intel StrongARM within a complete embedded system.

The SA-1110 is a general-purpose, 32-bit RISC microprocessor with a clock

speed adjustable up to 206 MHz. The embedded processor has a configurable in-

struction and data cache, memory-management unit (MMU), and read/write buffers

for efficient data processing. The memory bus interfaces to many device types in-

cluding SRAM(SPM), synchronous DRAM (SDRAM) and Flash(EEPROM). The

StrongARM is software compatible back to the ARM V4 architecture processor fam-

25

Chapter 2. Embedded systems and software development

ily and can be used with ARM coprocessor chips such as I/O, memory, and video

components. The ARM instruction set is a good target for compilers of many differ-

ent high-level languages. Where required for critical code segments, assembly code

programming is also straightforward, unlike some RISC processors that need sophis-

ticated compiler technology to manage complicated instruction interdependencies.

The SA-1110 has been designed to run at a reduced voltage to minimize its power

requirements. This makes it a good choice for portable applications where both of

these features are essential.

Deployments using the StrongARM processor can choose from memory mod-

ules such as DRAM or SRAM to use as main memory, as well as FLASH for code

storage. All memory modules are cacheable in the StrongARM using its on-board

cache hardware. The SA-1110 contains a 16 Kb instruction cache as well as an

8Kb data cache. Each module can be enabled or disabled via a control register,

with fine-grain management available using the MMU to control which addresses

are cacheable. Deployments concerned with power and realtime guarantees often

choose to disable the cache modules and operate the device using only SRAM and

ROM modules.

Embedded design trends

The StrongARM was designed with the same goals as all other embedded processors,

from low-end 8-bit and 16-bit processors that may cost less than a dollar,to high-

end embedded processors (that can execute a billion instructions per second and

cost hundreds of dollars) for the newest portable video game system. All embedded

26

2.3 Embedded software development

systems are ultimately designed to be cheap, fast and power-efficient. Although the

range of computing power in the embedded computing market is very large, price

is a key factor in the design of computers for this space. Performance requirements

do exist, of course, but the primary goal is often meeting the performance need at

a minimum price, rather than achieving higher performance at a higher price.

Two other key characteristics exist in many embedded applications: the need

to minimize memory and the need to minimize power. In many embedded applica-

tions, the memory can be substantial portion of the system cost, and memory size

is important to optimize in such cases. Sometimes the application is expected to fit

totally in the memory on the processor chip; other times the applications needs to

fit totally in a small off-chip memory. In any event, the importance of memory size

translates to an emphasis on code size, since data size is dictated by the application.

Larger memories also mean more power, and optimizing power is often critical in

embedded applications. When hardware methods alone are insufficient, designers

can still turn to software-only and hybrid methods to squeeze the most performance

from embedded hardware to reduce cost and power while maximizing performance.

2.3 Embedded software development

One of the few constants across almost all embedded systems is the use of the

C programming language. More than any other, C has become the language of

embedded programmers. This has not always been the case, and it will not continue

to be so forever. However, at this time, C is the closest thing there is to a standard

27

Chapter 2. Embedded systems and software development

in the embedded world. Because successful software development is so frequently

about selecting the best language for a given project, it is surprising to find that

one language has proven itself appropriate for both 8-bit and 64-bit processors;

in systems with bytes, kilobytes, and megabytes of memory; and for development

teams that consist of from one to a dozen or more people. Yet this is precisely the

range of projects in which C has thrived.

Of course, C is not without advantages. It is small and fairly simple to

learn, compilers are available for almost every processor in use today, and there

is a very large body of experienced C programmers. In addition, C has the benefit

of processor-independence, which allows programmers to concentrate on algorithms

and applications rather than on the details of a particular processor architecture.

However, many of these advantages apply equally to other high-level languages,

which has led many researchers in embedded systems to wonder why has C suc-

ceeded where so many other languages have mostly failed.

Perhaps the greatest strength of C,and what sets it apart from languages

like Java, C++, Pascal and FORTRAN, is that C is a very “low-level” high-level

language. As we shall see throughout the book, C gives embedded programmers

an extraordinary degree of direct hardware control without sacrificing the benefits

of high-level languages. The “low-level” nature of C was a clear intention of the

language’s creators. In fact, Kernighan and Ritchie included the following comment

in the opening pages of their book The C Programming Language :

28

2.3 Embedded software development

C is a relatively ”low level” language. This characterization is not pe-

jorative; it simply means that C deals with the same sort of objects that

most computers do. These may be combined and moved about with the

arithmetic and logical operators implemented by real machines.

Few popular high-level languages can compete with C in the production of

compact, efficient code for almost all processors. And, of these, only C allows pro-

grammers to interact with the underlying hardware so easily. The two other popular

languages in use today for desktop and high-end embedded systems are C++ and

Java. Both are object-oriented programming (OOP) languages which are more so-

phisticated than the C language in some ways, but that very complexity tends to

be problematic for embedded systems development. Java and many other OOP

languages enforce the use of garbage collectors to manage dynamically allocated

memory. Garbage collectors greatly decrease the real-time guarantees for that sys-

tem, an important consideration for many embedded designers. One of the other

strengths of OOP languages lies in their abstraction of programs in terms of objects,

which in turn requires more layers of translation during compilation to produce ma-

chine code. While allowing for more powerful and concise programming, these layers

cause a disconnect when programming an embedded system that requires low-level

control over addressing to correctly use memory mapped devices, data allocation

that is known and completely controllable by the programmer, as well as a myriad

of low-level software interactions designers must employ when working with limited

hardware platforms.

29

Chapter 2. Embedded systems and software development

C-language allocation basics

Having understood some of the reasons for C’s popularity in embedded development,

a discussion of how C handles data allocation of program variables is also beneficial

to understanding how compilers translate a C program into final machine code for a

target processor. Traditional programming languages such as C and C++ maintain a

list of attributes for each variable declared that minimally consists of its name, type,

size, value, storage class, scope and linkage. Fundamental variable types and sizes

are specified by that language’s implementation, with names and values specified

through user assigned identifiers in a valid program. Variable types in a language

define its size, use and operator definitions for correct statement construction in a

programming language. After a programmer declares a variable instance to possess

a certain name and type, the instance declaration will also require a storage class

specifier which dictates how its processed by the compiler for data allocation in the

final machine code.

A variable’s storage class specifier determines its storage class, scope and link-

age in a compiler. The storage class also determines the lifetime of a variable during

execution since variables can exist briefly, be repeatedly created and destroyed or

exist and live throughout the entirety of program execution. The automatic stor-

age class has automatic storage duration, and will create a declared variable when

its declaration block is entered, exist while its active and destroy the variable once

the block has been exited. Local variables declared inside functions have automatic

storage duration by default. The static storage class includes those variables and

30

2.3 Embedded software development

functions which exist from the point at which the program begins execution. For

variables, storage is allocated and initialized upon beginning program execution and

for functions the name of the function exists from program inception in a global sym-

bol table. Although static duration variables and functions are created and exist

throughout the entire program, their particular scope in the C-language will deter-

mine whether they may actually be referenced at any given point during program

execution and the machine code generated will also reflect this.

Having looked at how the C-language dictates requirements for the compiler

generation of program memory objects, we can now give a higher-level programmer

view of C language memory objects which most people will be familiar with. Global

variables are created by placing variable declarations outside any function definition

by the compiler, and they retain their values throughout execution of the program.

Global variables and functions can be referenced by any function that follows their

declarations or definitions in the file. This is one of the main reasons for specifying

function prototypes in included definition files such as ’stdlib.h’, which allows the

programmer to use a function interface properly even if that function body is present

in another source file. This becomes of extreme importance when multiple source

files are to be compiled together to produce an executable, as even a single source

file program will likely use functions implemented in a system library file provided

for low-level I/O support. A compiler must be able to differentiate between local

and included source instance identifiers for program elements, and know how to

link separately compiled bundles of code together properly to produce a working

31

Chapter 2. Embedded systems and software development

executable. For any serious high-level implementation, this becomes of paramount

importance and proper use of ’extern’ and ’static’ identifiers allow programmer’s

control over individual components as they relate to each other across multiple

source files. By declaring a variable instance as ’extern’, this tells the compiler that

the variable exists in another file that will be included in the final program by the

linker. Similarly, external function prototypes allow the linker to find the proper

function implementation in another compiled object file.

The other static duration identifier is appropriately named ’static’, and is

most commonly used for local variable declarations which need to retain their values

and storage throughout program execution. Local variables declared static are still

bound to their local function scope, but retain their value when the function is exited

and still available the next time it is entered. Local variables that are not declared

static will be created upon entering a block with an initial value if specified and

destroyed upon leaving that block. Static takes on further meaning when applied

in a multi-file program being compiled. Normally global variables and functions

have external linkage and can be accesses from other files if those files contain

proper declarations and function prototypes. By adding the ’static’ keyword to

such declarations, this restricts the scope of such instances to the file in which if

is defined, preventing its use by any function that is not defined in the same file.

This allows a programmer to enforce the principle of least privilege in a C program,

which consequently helps restrict compiler analysis to proper scopes and lifetimes

as specified.

32

2.3 Embedded software development

An important component of a declared data type concerns variable scope,

which determines from where in the program that variable’s identifier can be refer-

enced correctly. For example, when a local variables is declared in a block, it can be

referenced only in that block or in blocked nested within that program block. C pro-

vides function, file, block and function-prototype scope identifiers for a programmer

to make use of. Only code labels have function scope and can be referenced any-

where inside the function they appear, but not outside of it. These generally appear

in the form of case switches and ‘goto’ statements. Any variables declared outside

a function have file scope, and their instances can be referenced from the point at

which they are declared until the end of the file. Global variables, function decla-

rations and function prototypes placed outside functions, such as include files, have

file scope. Any variables declared inside a code block have block scope, denoted in C

by enclosing the block inside of braces, eg: “{ int a; }”. Local variables declared at

the beginning of a function have block scope including the parameters passed to the

function and any block can contain variable declarations. Any nested blocks that

contain variables with the same instance names as those present in outer blocks will

only reference the instances in the local block of scope. Even local variables that are

declared static will only have block scope even though they exist from the time the

program begins execution, illustrating that storage duration does not necessarily

determine the scope of a variable. Finally, function-prototype scope only applies

to the declarations inside the parameter list of a function prototype, for which the

names are ignored but the types must match and function implementations in the

33

Chapter 2. Embedded systems and software development

file being compiled.

The largest and longest lived scope is that of global variables. Truly globally

defined variables in C will have their label and associated memory requirement

present in all files for a program being compiled, while those with only file-level

scope will only be considered in scope for that file containing its declaration. The

presence of procedures in the form of function blocks requires a more limited scope

to be declared for stack variables while they are live. Locally scoped variables are

those variables created for use by a function by occupying memory on the system’s

stack space. Creation of local stack variables occurs upon entering a procedure and

are removed from the stack once it has been returned from or exited.

The nature of imperative languages such as C allow functions to call other

functions, including themselves, and as execution progresses, a varying amount and

number of locally scoped variables may live on the stack at any given time. These

are not nearly as easy to predict and analyze for compiler optimization purposes

as compared to global variables, since they may depend heavily on the control flow

execution path dynamically taken through a program at run-time. Furthermore,

compiler translation and optimization passes will affect how local variables are au-

tomatically created upon reaching their declaration block, and passes such as register

allocation will decide final memory storage among registers and stack memory.On

the other hand, global variables may be considered static in size and allocation

terms, just as stack variables can be considered to be static in size and dynamic in

allocation terms depending on the program path visited during execution.

34

2.4 C language compilers

The third and final type of variables in C are heap variables. When pro-

gram’s require a dynamic size and allocation method to efficiently handle inputs,

most platforms provide access to dynamic memory management systems through

OS-level application calls. Dynamic memory managers maintain information on

available free and used memory dedicated to heap memory. Indeed, the flexibility

this buys programmers is in allowing size-efficient data structure creation as well

as complete control over lifetimes of such structures that does not have to correlate

with particular whole function lifetimes. This flexibility comes with a cost, and

memory pointers must be used to access heap variables in addition to the memory

management that must be performed explicitly by an operating system or another

user program. Embedded systems usually require very fine-grain control over ma-

chine code running on limited hardware, so the loss of flexibility has minimal impact

for most developers.

2.4 C language compilers

Figure 2.6 illustrates how a typical compiler platform can take various input files and

generate appropriate output files to ultimately be used in building an executable

image for a target processor. The developer writes the program in the C/C++

source files and header files. Some parts of the program can be written directly

in assembly language when fine-grain control is needed, and are produced in the

corresponding assembly source files. The developer creates a “Makefile” for use

with the “make” utility to facilitate an environment that can easily track the file

35

Chapter 2. Embedded systems and software development

modifications and invoke the compiler and the assembler to rebuild the source files

when necessary. From these source files, the compiler and the assembler produce

object files that contain both machine binary code and program data. The archive

utility concatenates a collection of object files to form a library. The linker takes

these object files as input and produces either an executable image or an object file

that can be used for additional linking with other object files. The linker command

file instructs the linker on how to combine the object files and where to place the

binary code and data in the target embedded system.

The main function of the linker is to combine multiple object files into a

larger relocatable object file, a shared object file, or a final executable image. In a

typical program, a section of code in one source file can reference variables defined

in another source file. A function in one source file can call a function in another

source file. The global variables and non-static functions are commonly referred to

as global symbols. In source files, these symbols have various names, for example, a

global variable called “foobar” or a global function called “functionA”. In the final

executable binary image, a symbol refers to an address location in memory. The

content of this memory location is either data for variables or executable code for

functions.

Of course, each processor has its own unique ISA, so it is important to choose

a compiler that is capable of producing programs for that specific processor. In the

embedded systems case, this compiler almost always runs on a host computer. It

simply does not make sense to execute the compiler on the embedded system itself.

36

2.4 C language compilers

Figure 2.6: The typical compilation process for building an embedded executable
from source files.

A compiler such as this-that runs on one computer platform and produces code for

another-is called a cross-compiler. The use of a cross-compiler is one of the defining

features of embedded software development. The GCC compiler and assembler can

be configured as either native compilers or cross-compilers. As cross-compilers these

tools support an impressive set of host-target combinations including state of the

art support for the ARM architecture.

The job of a compiler is mainly to translate programs written in some human-

37

Chapter 2. Embedded systems and software development

readable language into an equivalent set of binary code for a particular processor.

In that sense, an assembler is also a compiler but one that performs a much simpler

one-to-one translation from one line of human-readable mnemonics to the equivalent

binary opcode. There are good reasons for using a high-level language, yet pro-

grammers often write directly in assembly language. Assembly and machine code,

because they are “hand-written,” can be finely tuned to get optimum performance

out of the processor and computer hardware. This can be particularly important

when dealing with time-critical operations with I/O devices. Furthermore, coding

directly in assembly can sometimes (but not always) result in a smaller code space.

If a programmer is trying to cram complex software into a small amount of memory

and needs that software to execute quickly and efficiently, assembly language may be

their best (and only) choice. The drawback, of course, is that the software is harder

to maintain and has zero portability to other processors. A good software engineer

can create more efficient code than the average optimizing C compiler; however,

a good optimizing compiler will probably produce tighter code than a mediocre

assembly-language software engineer.

Compiler optimization

Code optimization refers to the techniques used by a compiler to improve the exe-

cution efficiency of the generated object code. It involves a complex analysis of the

intermediate code and the performance of various transformations; but every opti-

mizing transformation must also preserve the semantics of the program. A compiler

should not attempt any optimization that would lead to a change in the program’s

38

2.4 C language compilers

semantics.

Optimization can be machine-independent or machine-dependent. Machine-

independent optimizations can be performed independently of the target machine for

which the compiler is generating code; the optimizations are not tied to the target

machine’s specific platform or language. Examples of machine-independent opti-

mizations are elimination of loop invariant computation, induction variable elimina-

tion, and elimination of common subexpressions. Machine-dependent optimization

requires knowledge of the target machine. An attempt to generate object code that

will utilize the target machine’s registers more efficiently is an example of machine-

dependent code optimization. The process of code optimization is somewhat of

a misnomer; even after performing various optimizing transformations, there is no

guarantee that the generated object code will be optimal. Hence, a compiler actually

performs code improvement. When attempting any optimizing transformation, the

following criteria should be applied. First, the optimization should capture most of

the potential improvements without an unreasonable amount of effort. Second, the

optimization should be such that the meaning of the source program is preserved.

Finally, the optimization should, on average, reduce the time and space expended

by the object code.

Code generation is the last phase in the compilation process. Being a machine-

dependent phase, it is not possible to generate good code without considering the

details of the particular machine for which the compiler is expected to generate

code. Even so, a carefully selected code-generation algorithm can produce code

39

Chapter 2. Embedded systems and software development

that is twice as fast as code generated by an ill-considered code-generation algo-

rithm. Code generated by using simple statement-by-statement conversion strategies

contain redundant instructions and suboptimal constructs. Therefore, to improve

the quality of the target code, optimization is required. Peephole optimization is

an effective technique for locally improving the target code. Short sequences of

target code instructions are examined and replaced by faster sequences wherever

possible. Other optimizations can account for larger regions of program code to

perform transformations affecting different program areas, such as function inlining

and outlining.

One of the important tasks that a compiler must perform is to allocate the

resources of the target machine to represent the data objects that are being ma-

nipulated by the source program. That is, a compiler must decide the run-time

representation of the data objects in the source program. Source program run-time

representations of the data objects, such as integers and real variables, usually take

the form of equivalent data objects at the machine level; whereas data structures,

such as arrays and strings, are represented by several words of machine memory.

The strategies that can be used to allocate storage to the data objects are

determined by the rules defining the scope and duration of the names in the pro-

gramming language. The simplest strategy is static allocation, which is used in

languages like FORTRAN. With static allocation, it is possible to determine the

run-time size and relative position of each data object during compilation. A more-

complex strategy for dynamic memory allocation that involves stacks is required for

40

2.5 Heap data allocation

languages that support recursion: an entry to a new block or procedure causes the

allocation of space on a stack, which is freed on exit from the block or procedure. An

even more-complex strategy is required for languages, which allows the allocation

and freeing of memory for some data in a non-nested fashion. This storage space

can be allocated and freed arbitrarily from an area called a “heap”. Therefore,

implementation of languages like PASCAL and C allow data to be allocated under

program control. The run-time organization of memory as viewed by many com-

pilers will be as shown in figure 2.7. The run-time storage has been subdivided to

hold the generated target code and the data objects, which are allocated statically

for the stack and heap. The sizes of the stack and heap can change as the program

executes.

Figure 2.7: The typical compiler view of a program memory layout.

2.5 Heap data allocation

Figure 2.8 shows that the program code, program data, and system stack occupying

physical memory after typical program initialization completes. Either the RTOS

41

Chapter 2. Embedded systems and software development

or the kernel typically uses the remaining physical memory for dynamic memory

allocation at run-time. This memory area is called the heap . Memory management

in the context of this chapter refers to the management of a contiguous block of

physical memory, although the concepts introduced in this section apply to the

management of non-contiguous memory blocks as well. These concepts also apply

to the management of various types of physical memory. In general, a memory

management facility maintains internal information for a heap in a reserved memory

area called the control block. Typical internal information includes the starting

address of the physical memory block used for dynamic memory allocation, the

overall size of this physical memory block, and the allocation table that indicates

which memory areas are in use, which memory areas are free, and the size of each

free region.

This section examines aspects of heap memory management through an ex-

ample implementation of the malloc and free functions for an embedded system. In

the example implementation, the heap is broken into small, fixed-size blocks. Each

block has a unit size that is power of two to ease translating a requested size into

the corresponding required number of units. In this example, the unit size is 32

bytes. The dynamic memory allocation function, malloc, has an input parameter

that specifies the size of the allocation request in bytes. Malloc allocates a larger

block, which is made up of one or more of the smaller, fixed-size blocks. The size of

this larger memory block is at least as large as the requested size; it is the closest

to the multiple of the unit size. For example, if the allocation requests 100 bytes,

42

2.5 Heap data allocation

Figure 2.8: Example Memory Layout for an embedded application after being loaded
by the OS.

the returned block has a size of 128 bytes (4 units x 32 bytes/unit). As a result, the

requester does not use 28 bytes of the allocated memory, which is called memory

fragmentation. This specific form of fragmentation is called internal fragmentation

because it is internal to the allocated block.

The allocation table can be represented as a bitmap, in which each bit repre-

sents a 32-byte unit. Figure 2.9 shows the states of the allocation table after a series

of invocations of the malloc and free functions. In this example, the heap is 256

bytes in size. After Step 5, the fifth and eighth blocks are free but all other blocks

are occupied. Step 6 shows two free blocks of 32 bytes each. Step 7, instead of

maintaining three separate free blocks, shows that all three blocks are combined to

form a 128-byte block. Because these blocks have been combined, a future allocation

43

Chapter 2. Embedded systems and software development

request for 96 bytes should succeed.

Figure 2.9: Example heap management system for tracking free and used heap chunks.

If Step 6 were to be another malloc request for a block of 64 bytes in length, it

would fail because no contiguous blocks of memory were available, despite the fact

that 64 bytes of total heap space are still free. The existence of these two trapped

blocks is considered to be external fragmentation because the fragmentation exists

in the table, not within the blocks themselves. One way to eliminate this type

of fragmentation is to compact the area adjacent to these two blocks. Memory

compaction occurs block by block to try and group all occupied heap memory blocks

together in physical memory and generally continues until all of the free blocks are

combined into one large chunk.

Several problems occur with memory compaction. It is time-consuming to

transfer memory content from one location to another. The cost of the copy opera-

tion depends on the length of the contiguous blocks in use. The tasks that currently

44

2.5 Heap data allocation

hold ownership of those memory blocks are prevented from accessing the contents of

those memory locations until the transfer operation completes. Memory compaction

is almost never done in practice in embedded designs. The free memory blocks are

combined only if they are immediate neighbors, as illustrated in figure 2.9

Memory compaction is allowed if the tasks that own those memory blocks

reference the blocks using virtual addresses. Memory compaction is not permitted

if tasks hold physical addresses to the allocated memory blocks. In many cases,

memory management systems should also be concerned with architecture-specific

memory alignment requirements. Memory alignment refers to architecture-specific

constraints imposed on the address of a data item in memory. Many embedded

processor architectures cannot access multi-byte data items at any address. For

example, some architecture requires multi-byte data items, such as integers and long

integers, to be allocated at addresses that are a power of two. Unaligned memory

addresses result in bus errors and are the source of memory access exceptions.

Some conclusions can be drawn from this example. An efficient memory man-

ager needs to perform the following tasks quickly. First, it must determine if a free

block that is large enough exists to satisfy the allocation request. This work is part

of the malloc operation. It must also update its internal management information

after requests. This work is part of both the malloc and free operations. Finally

it must determine if the just-freed block can be combined with its neighboring free

blocks to form a larger piece. This work is part of the free operation. The struc-

ture of the allocation table is the key to efficient memory management because the

45

Chapter 2. Embedded systems and software development

structure determines how the operations listed earlier must be implemented. The

allocation table is part of the overhead because it occupies memory space that is

excluded from application use. Consequently, one other requirement is to minimize

the management overhead.

2.6 Recursive functions

Any function in a C program can be called recursively; that is, it can call itself. C

and virtually all other programming languages in use today allow the direct speci-

fication of recursive functions and procedures. When such a function is called, the

computer (for most languages on most stack-based architectures) or the language

implementation keeps track of the various instances of the function (on many archi-

tectures, by using a call stack, although other methods may be used). The number

of recursive calls is limited to the size of the stack. Each time the function is called,

new storage is allocated for the parameters and for the auto and register variables

so that their values in previous, unfinished calls are not overwritten. Parameters

are only directly accessible to the instance of the function in which they are created.

Previous parameters are not directly accessible to ensuing instances of the function.

Many examples of the use of recursion may be found as the technique is useful

both for the definition of mathematical functions and for the definition of data struc-

tures. Many mathematical functions can be defined recursively, such as factorials,

Fibonacci series, Euclid’s GCD (greatest common denominator), Fourier Transforms

and Newton’s Method. In Newton’s method, for example, an approximate root of

46

2.6 Recursive functions

a function is provided as initial input to the method. The calculated result is then

used as input to the method, with the process repeated until a sufficiently accurate

value is obtained. Other problems can be solved recursively, such as games like the

Towers of Hanoi or more complex ones like chess. In games, the recursive solutions

are particularly convenient because, having solved the problem by a series of recur-

sive calls, it is easy to find the path arriving at the correct solution. By keeping

track of the move chosen at any point, the program call stack does the accounting

automatically.

Recursive function example

One simple recursive function is found in the mathematical formula used to compute

the factorial of a number n:

if n>1 : n! = n * (n-1)!

n<1 : n! = 1

The function recursively expands until reaching a lower boundary when n is equal

to one. The factorial computation can be expressed in C code using the following

function:

int factorial (int number)

{

if (number < 2)

return 1;

else

return (number * factorial(number - 1));

}

By looking at this function, we see that the invocation depth of this function

will increase linearly with the input value applied. Figure 2.10 gives an illustration

47

Chapter 2. Embedded systems and software development

of how the program stack would look after two different inputs are applied to the

factorial function. The left figure shows the case where the factorial of three is

calculated, and involves three total calls to the function. Similarly, the right figure

shows a call depth of five invocations when calculating the factorial of five. From

these figures, it can also be observed that the each function invocation consumes an

equal amount of stack space, which is known at compile-time. Unfortunately, even

the best compiler analysis tools are unable to place a bound on the total size of

stack memory allocated by this function at run-time, as it strictly depends on the

inputs applied except in trivial cases.

factorial(3)

factorial(2)

factorial(1)

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

Direction of
Stack Growth

Executing

factorial(3)

Executing

factorial(5)

Figure 2.10: Stack growth of recursive factorial() function for two different invocations.

48

Chapter 3

Previous work on SPM allocation

3.1 Overview of related research

This chapter will primarily focus on related research targeting embedded platforms

that contain scratchpad memory along with a slower main memory and perhaps

additional flash or ROM memories. We will begin with a discussion of research

presented that performs static allocation decisions to take advantage of SPM for

energy and/or run-time improvement in section 3.2. These methods are able to

statically allocate some portion of code, global and stack(non-recursive) variables

for a program to SPM at run-time. Dynamic allocation methods for the same types

of objects constitute the most recent thrusts in this area and are described in sec-

tion 3.3. Section 3.4 will present the only relevant research to allocating heap data

to SPM while section 3.5 will discuss methods aimed at converting heap data to

stack data to possibly apply existing stack allocation methods. Section 3.6 will dis-

49

Chapter 3. Previous work on SPM allocation

cuss variations on static and dynamic schemes targeted at helping designers choose

hierarchies of SPM and cache memories when designing an embedded platform.

These are generally variations on existing static and dynamic allocation methods to

take into account heterogeneous latency and access costs when designing new mem-

ory organizations. Section 3.7 briefly discusses related work in the area of dynamic

memory managers for heap data and how they apply to our own research. Finally,

section 3.8 completes the chapter with mention of any other related research that is

worth mentioning in relation to our SPM allocation technique.

It should be noted that many high-end embedded platforms contain instruction

and/or data caches in addition to SPM and other memories, although our techniques

were not designed to take full advantage of those platforms. Instead, we attempt to

avoid the use of caches altogether. The past decade has shown a great deal of related

work on allocation approaches for both SPM and cache memories to avoid some of

the energy/latency penalties incurred by poor cache performance. Our methods were

designed to allow designers to only use SPM in embedded platforms instead of cache

for better real-time guarantees, lower power consumption and reduced execution

time. All three benefits are achieved through compiler-directed dynamic allocation

techniques which provide the informed control that cache memories lack. As a final

reminder, SPM allocation methods can help maximize both performance and power

efficiency in an embedded system, regardless of what other memories that system

contains.

50

3.2 Static SPM allocation methods

3.2 Static SPM allocation methods

Several static methods have been proposed to allocate data to SPM. These methods

make compile-time decisions to produce a static allocation of SPM among program

objects at run-time. Since SPM does not have many of the drawbacks that caches

do, static placements of important program memory objects are a very effective

way of improving performance and reducing power consumption without requiring

hardware redesign or massive additional software support. Indeed, for many small

applications, static methods can perform almost as well as dynamic methods for

certain SPM sizes, explaining the variety of recent investigations into this area.

Until very recently, most published static allocation methods only handled simpler

program objects for optimized memory placement since optimal allocation solutions

become more difficult as objects exhibit different lifetimes and more complicated

execution behavior at run-time.

From the earlier overview on variable lifetimes and storage durations in lan-

guages such as C, global variables are the most suited to static memory allocations.

Global variables are technically alive and have storage allocation throughout pro-

gram execution, matching them to the scope that a static memory allocation scheme

can handle. The earliest work on SPM allocation dealt only with allocation of global

data objects for a program executed on an embedded system with only an SPM and

main memory[126]. They use a static compiler program profile to predict the most

profitable global objects to place in SPM and place all other program memory ob-

jects in main memory. The research presented in [109, 110, 111] is similar except

51

Chapter 3. Previous work on SPM allocation

that it assumes the presence of a data cache as well, and attempts to map main

memory placements to avoid excessive cache conflicts for those global scalars and

arrays which did not fit into SPM. As a natural progression to these placement

methods for global variables, other static schemes have been proposed which also

handle program code placement to SPM.

Program instructions for an embedded applications must also be stored in

memory for loading and execution of the instructions, as well as accesses to the pro-

gram symbol table, literal pools, constant declarations and other supporting binary

data that are present along with executable machine instructions. For those embed-

ded processors that possess SPM without an instruction cache, a program binary

will reside in some type of system memory. Generally most platforms may provide

EEPROM, ROM, or some other type of permanent memory meant for reading pro-

gram code during execution. For embedded systems that only contain main memory

and SPM, software developers can also take advantage of SPM for code allocation

as well as data variable allocation. A discussion of the benefits and complications

involved with SPM code placement will appear at the end of section 3.3.

Earlier SPM allocation methods were developed to statically allocate code

objects in addition to global variables, since both have the same lifetime and storage

duration and thus have similar allocation considerations. The research described

in [17, 131] are related and describe a knapsack-based formulation approach to

place code blocks and global variables to make best use of SPM as a viable cache

alternative with better power and latency performance. Another scheme proposed in

52

3.2 Static SPM allocation methods

[10] uses a binary patching approach which attempts to redirect commonly executed

code segments to SPM through a static mapping. A recent contribution in [61]

extends the knapsack formulation for code placement by considering architectures

with limited addressing modes or segmented memory spaces which would require

more care in deciding SPM and main memory allocations.

SPM allocation methods progressed beyond just global and code objects with

whole-program lifetimes, and have been extended to statically allocate stack objects

with limited lifetimes and dynamic storage duration during program execution. Any

stack-based programming language will use memory space to grow local variables

allocated by function blocks as they become nested at run-time. Traditionally this

space is placed in main memory to ensure it is large enough for program execution

without exhausting memory. Using stack space for temporary storage of information

between program points is generally referred to as spill code generation. This is also

one of the consequences of the modular object approach to binary generation used

in most popular compilers, as functions must ensure that they preserve important

information when calling a child function that will be needed after returning from

that subroutine. Modern interprocedural analysis can alleviate some spill-code gen-

eration with whole program knowledge and by considering cross-procedure locality

when performing register allocation to determine which program data can reside in

registers as opposed to stack memory and thereby reduce the amount of spill-code

generated.

Indeed, the benefit of having a small compiler controlled memory such as SPM

53

Chapter 3. Previous work on SPM allocation

was proposed for the desktop domain in [41] for reduction of spill code memory ac-

cesses, which account for a considerable portion of execution time in complicated

applications. Their results were similar to those shown in [17] which confirmed the

benefits of having a small, fast memory like SPM which is compiler controlled for

better allocation of heavily referenced program objects without the complications

of caches and higher level memory hierarchies. A very similar technique was also

proposed by [94] precisely for the embedded domain which inspired [41] but is other-

wise essentially the same proposed spill-code optimization to fast memory. Another

method[127], refining the one proposed in [126], attempts to allocate global vari-

ables as well as partial or entire stack space for applications to SPM instead of main

memory, as well as performing some pointer packing for efficient addressing between

the two. This method employs an Integer Linear Programming(ILP) approach to

deciding memory allocations, which produces optimal results compared to knapsack

and other heuristic methods. The benefits and disadvantage of ILP methods will

be discussed at the end of section 3.3. These methods all still lack handling for

limited lifetime variables, dynamic memory allocations and recursive function opti-

mizations, although recently more robust methods have been investigated to better

handle local variables.

Another interesting method was proposed by Angiolini et al in [9] and at-

tempts to optimize the design process for an embedded platform which will include

SPM. Their algorithm uses profile information to choose a set of SPM partitions

and mappings for a chip design to improve the energy efficiency of an applica-

54

3.2 Static SPM allocation methods

tion through bank-selective power-saving features in the memory hierarchy. Their

method is static and provides a simple mapping scheme to match program data

access characteristics rather than automatic allocation of data to different types of

memory. The approach is meant for hardware designers looking to design and cus-

tomize an embedded processor (ASIP) design for energy performance using static

program data placement methods and to take advantage of energy-saving techniques

available in some embedded hardware.

The final set of static methods are those that can handle global variables and

individual local stack variables while also accounting for their limited lifetimes. For

those programs which do not use heap variables or recursive functions, the methods

described in [16] produce ILP-based allocations to SPM for embedded systems with

heterogeneous memory organizations. This provably optimal static method uses a

fairly detailed ILP technique to arrive at exact static allocations for global and stack

variables, easily extended to also handle code segments as well. The ILP formula-

tion works well in practice with commercial-level compilers such as GCC, although

realistically solutions are limited to kernels and simple programs, as even heuristic

methods may not converge for complicated program formulations with thousands

of variables of variable lifetimes and with varying input dependencies. Luckily, a

heuristic greedy allocation method that accounts for lifetimes was also presented in

[16] which achieved very close performance to the ILP solution at a much reduced

cost. This led another group to extend that work to also include support for caches

using existing cache placement techniques[66]. This allowed their group to generate

55

Chapter 3. Previous work on SPM allocation

allocations automatically for program global and stack variables and achieve close to

the optimal results obtained from the method in [16] for moderate sized applications

using both SPM and cache.

3.3 Dynamic SPM allocation techniques

In order to best emulate a cache’s ability to dynamically adapt to program local-

ity during execution, dynamic methods are required to make optimal use of SPM.

Dynamic methods are those which can change SPM allocation during run-time, at-

tempting to capture more memory accesses to SPM than static methods are capable

of. As an extension to their static global and code SPM allocation method in [131],

the method presented in [130] allows them to dynamically allocate code segments at

chosen program points to copy popular code segments into SPM when needed and

out when no longer profitable. Their results show a large improvement compared

to their previous static version, both using an ILP-based formulation. A similar

method using a knapsack based formulation was proposed in [33] for a compiler-

based dynamic code allocator for SPM, although no implementation results were

reported. The most recent work was reported in [117] in which a compiler managed

dynamic instruction placement scheme is implemented in SPM. They investigated

ILP formulations for allocation decisions but pursued a heuristic algorithm to achieve

solutions for more complex programs that are problematic for ILP solvers. Their

methods were primarily motivated to reducing the energy requirements for code exe-

cuted compared to an instruction cache implementation. A very similar method was

56

3.3 Dynamic SPM allocation techniques

recently proposed in [1] which brings SPM code allocation methods to the desktop

domain in an effort to approximate an instruction cache through the use of an SPM

and a run-time instruction memory management module.

Another approach in a similar vein was proposed by Poletti et al. in [51]. In

this publication they propose the additions of a mix of hardware and software tech-

niques to manage SPM for embedded platforms at run-time. Their method targets

high-end embedded processors with certain memory hardware and provides a high-

level programmer API to access SPM and DRAM as separate main memory areas.

Unfortunately this method leaves the burden of optimization on the programmer to

make best use of the SPM available. This paper does, however, serve to illustrate

software techniques most researchers use to transfer data back and forth from SPM

and main memory when performing dynamic SPM allocations.

Besides dynamic code allocation, a few research groups have focused heav-

ily on handling array variables for dynamic SPM allocation. The focus of Kan-

demir et all has been in the areas of array and loop transformation for locality

optimization[85] and has also been extended heavily into the embedded domain for

SPM allocation[82, 83, 84]. Dynamic global and stack array placement in SPM

through the use of Presburger Formulas was proposed in [83], a formulation that

attempts to minimize copying of data between main memory and SPM needed to

implement a dynamic allocation scheme. Their followup work makes use of added

cost models but also tackles the problem of dynamic array allocations to SPM while

minimizing transfer costs[84, 82]. The method in [84] can place global and stack ar-

57

Chapter 3. Previous work on SPM allocation

rays accessed through affine functions of enclosing loop induction variables in SPM.

No other variables are placed in SPM; further the optimization for each loop is local

in that it does not consider other code in the program. More recently, Absar et. all

refined these methods to take further advantage of DMA-capable memories to re-

duce transfer costs and enable more dynamic array transfers to be profitable[2]. Of

related interest are two other recent works that tackle the problem of array splitting

for the purpose of providing smaller size granularity for SPM allocation algorithms.

Affine array access optimizations [96] and non-affine array access optimizations[3]

have been proposed to improve array handling inside whole-program optimization

frameworks through compiler-implemented array and loop transformations. An-

other recent contribution in [75] proposed a language conversion tool for transfor-

mation of loops into structures more amenable to SPM array analysis and allocation

techniques. Finally, research presented in [91] applies traditional register allocation

methods to program arrays and performance a heuristic dynamic SPM allocation

on promising arrays at compile-time.

Up until now, there have only been two compiler-directed methods published

that can dynamically allocate local, global and code objects to SPM to take ad-

vantage of limited lifetime and optimize all program objects present in a typical

program. The first was our earlier method on dynamic allocation of local and global

variables to SPM using compile-time decisions[136]; the final version of which is

in [132]. This scheme handles all code, global and non-recursive stack program

data, providing a way to account for changing program requirements at run-time,

58

3.3 Dynamic SPM allocation techniques

avoid software caching overheads and yield completely predictable memory access

times, all while still having extremely low overheads. This method makes use of

compiler analysis to drive a heuristic algorithm for whole program analysis of data

variable behavior and optimal dynamic allocation decisions during execution. The

method inserts code during compilation at appropriate program points to transfer

selected data in and out of SPM to take advantage of program data locality. Results

show that compared to the provably static allocation scheme for stack and global

data, the dynamic method is considerably more powerful at reducing run-time and

power consumption by taking full advantage of SPM. A full overview will be pre-

sented in the next chapter to illustrate how dynamic allocation of code, global and

stack data can be performed as a complement to our new methods for heap and

recursive stack data.

The recent paper by Verma et al [140] also implements a dynamic strategy

similar to the previous heuristic method. Their approach is motivated by the ILP

formulation for global register allocation shown in [54]. Both parts of the problem

- finding what variables should be in SRAM at different points in the program and

what addresses they should be assigned - are solved using ILP formulations. Code

is then inserted to transfer the variables between SRAM and DRAM. Being ILP

based, their solution is likely to be optimal; however, ILP based solutions have some

fundamental issues that limit their usefulness.

Problems with ILP-based methods

ILP formulations have been known to be undecidable in the worst case and in

59

Chapter 3. Previous work on SPM allocation

many practical situations are NP hard. Their solution times, especially for large

programs can be exponential. Using ILP solutions is also constrained by issues

like intellectual property of source code from different vendors, maintenance of the

resulting large combined code and the financial cost of ILP solvers. Due to these

practical difficulties of ILP solvers, it is very rare to find ILP solvers as part of

commercial compiler infrastructures despite many papers being published that use

ILP techniques.

Another drawback of the approach in [140] is that like global register allocation

methods, the solution though optimal, is only so per procedure. In other words, the

formulation does not attempt to exploit for SPM reuse across procedures. This

might lead to data being needlessly swapped out even if retaining it in SRAM

might be more beneficial across two procedures. Another important issue that is

not addressed in [140] is the issue of correctness in the presence of pointers to stack

and global data, something fully accounted for in both our previous scheme [132] as

well as by the methods resented in this thesis. A final drawback of the scheme in

[140] is that it does not discuss how a compiler would generate code to implement

their ILP solutions in a typical embedded system.

3.4 Existing methods for dynamic program data

From a careful survey of all research related to the area of SPM allocation, both

static and dynamic, for whole and partial program optimization, we have not found

any published methods that can automatically optimize energy and run-time for all

60

3.4 Existing methods for dynamic program data

types of program and data objects, particularly heap and recursive-function stack

objects. The method proposed in this thesis is currently the most robust among

the existing technologies for automatic software optimization to take advantage of

SPM. We were unable to locate any related work on recursive function handling for

SPM, and in fact were unable to find any research on allocation of recursive-function

stack data. Heap placement in SPM has been studied somewhat although only two

papers directly deal with optimizing dynamic program data allocated on the heap,

presented by Catthoor et all in [13, 51].

The work described in [51] was touched on the previous section and consists of

implementing a tailored dynamic memory manager for embedded systems with DMA

hardware. This is aimed at replacing standard malloc/free library implementations

to provide integration with existing SPM allocation schemes. Their contribution

was to make high-level APIs that programmers can use to create a new instance

of the SPM manager at run-time for handling API calls for SPM heap allocation,

while using the system malloc/free for main memory heap allocation. This process

manages the SPM for allocation and movement to and from main memory with ex-

plicit DMA transfers to make it more amenable for use with existing SPM allocation

schemes for code, global, and stack data. This allows them to provide programmers

with explicit tools to implement their own manual dynamic allocation operations

when creating new programs, but does not provide any analysis or optimization

to best allocate SPM memory among all program objects for automatic dynamic

management with better performance. Their technique requires explicit hardware

61

Chapter 3. Previous work on SPM allocation

support for the DMA memory system they target, and simply provides high-level

language versions of basic assembly functions for accessing that DMA hardware to

transfer data to and from main memory. They also require invocation of a persis-

tent memory manager to interface with the SPM, which is more cumbersome than

simply placing SPM under standard library malloc/free control by modifying the

OS or embedded code libraries if that approach is desired.

The followup work in [13] focused on improving the internal algorithms for

their SPM-aware dynamic memory manager for increased energy savings compared

to their earlier dynamic memory manager algorithm. While these methods are useful

in enabling hardware-exposed optimizations to software developers seeking to use

earlier SPM schemes, it is otherwise not capable of automatic optimization and

allocation of SPM memory to account for heap data in a whole-program compiler

optimization framework and has been superseded by the automatic dynamic SPM

allocation methods presented by our group in [132] and [46].

Summarizing the above work, we can see that all the automatic static and

dynamic allocation methods are restricted to code, global and non-recursive stack

data. As far as we know, our method is the first and only method to be able to place

a portion of the heap data in SPM under automatic compiler control as well as the

first able to handle and optimize recursive-function variables. We have developed

both static and dynamic allocation methods for heap data allocations to SPM as

well as the first static and dynamic method to also handle recursive functions for

SPM allocation, and that can be applied to support other types of memory as well.

62

3.5 Heap-to-stack conversion techniques

Our methods employ completely predictable, compiler-controlled software insertions

to control dynamic management of SPM and main memory for improved program

performance without requiring additional hardware and which is adaptable to any

memory organizations that includes SPM.

3.5 Heap-to-stack conversion techniques

At first glance, it seems that recent work on converting heap data to stack data [26,

27, 36] or to stack-like constructs called regions [25, 59] may help in allocating heap

data to scratch-pad. Here is some background on these methods. These methods

use escape analysis [113, 142] to try to prove that a heap data structure is never

accessed outside a certain procedure. If so, the heap variable can be placed on the

procedure’s stack frame, instead of the heap. The advantage of stack allocation

is that the high overhead of heap allocation and de-allocation is avoided. Heap

de-allocation is particularly expensive for object-oriented languages since it is done

using garbage collection. In contrast, heap data on the stack is de-allocated at low

cost when its corresponding procedure exits. One restriction with stack allocation is

that it requires fixed-size heap variables, except in some cases when the data is on the

frame on the top of the stack. Since this is restrictive, region-based schemes [25, 59]

have been proposed for when heap data is of unknown size. Regions, like stack

frames, are associated with procedures but are physically allocated on the heap

so that they can grow and shrink at runtime. A region is de-allocated when its

corresponding procedure exits.

63

Chapter 3. Previous work on SPM allocation

If some heap variables can be allocated to stacks or regions using these meth-

ods, then, we ask, can our global/stack method be used to allocate most heap

variables to scratch-pad? Unfortunately this approach fails for most heap variables

for two reasons. First, heap data structures with compile-time-unknown size cannot

be allocated to scratch pad even if they can be converted to stack or region alloca-

tion. Dynamic data structures such as linked lists, trees and graphs almost always

have compile-time-unknown size, and thus cannot be allocated to scratch-pad by

stack/region conversion. Second, the fraction of heap data that is of fixed size, and

can be converted to stack allocation using escape analysis, is small. Such data can

be allocated to scratch pad using our stack/global method, but [36] reports that only

19% of the heap data in their benchmarks could be converted to fixed-size stack data.

This low percentage is not surprising – most heap data is in dynamic data struc-

tures. Fixed-size heap variables occur mostly in object-oriented languages, where

objects are often allocated on the heap so that they can be returned as results from

their method (object-oriented function) of allocation. For most heap variables, since

they are not of fixed size, stack or region allocation does not help in scratch-pad

allocation.

In conclusion, allocating heap data to stack or regions reduces allocation and

de-allocation overhead in all embedded systems, but cannot be used to allocate most

heap data to scratch-pad.

64

3.6 Memory hierarchy research

3.6 Memory hierarchy research

The presence of SPM on low-power, low-cost computing devices such as today’s

typical embedded systems is a clear indication that most hardware and software de-

velopers feel that SPM is a better choice than caches for many applications. Other

researchers have repeatedly demonstrated [10, 17] the power, area and run-time ad-

vantages of scratch-pad over caches, even with simple static allocation schemes such

as the knapsack scheme used in [17]. Further, scratch-pads deliver better real-time

guarantees than caches. Research into software-controlled cache memory manage-

ment schemes has shown success in partitioning cache memories into a normal cache

space as well as a more predictable equivalent scratchpad space[35], allowing de-

signers more flexibility with traditionally hardware managed memory systems. In

addition, our method is useful regardless of caches since our goal is to more effec-

tively use the scratch-pad memory already present in a large number of embedded

systems today [4, 28, 70, 71, 101, 102, 135], as well as show that proper SPM and

compiler management can enable a software only system to outperform a dedicated

cache for a given embedded application. In fact, this has prompted a great deal of

research into using allocation optimization frameworks to help design better mem-

ory hierarchies consisting of different SPM-like memories, or even including some

cache memories as well. The contributions of this thesis are useful regardless of the

allocation method or framework chosen to exploit SPM or similar memory with or

without the presence of caches, as it is the only known method to automatically

allocate heap and recursive data to SPM, and can thus be either directly applied

65

Chapter 3. Previous work on SPM allocation

or easily modified to apply to most other existing frameworks that deal with stack,

global and code allocation.

The area of software/hardware co-design has been especially important in the

field of embedded systems, where low-cost and low-power are the norm. Researchers

in this field try to make the best use of software to perform as efficiently as possible

in its interaction with processor hardware to create optimal deployed systems from

the ground up. The performance benefits of SPM have prompted several researchers

to look into hardware-driven solutions to improving program memory performance

on embedded platforms. The problem of designing a suitable memory hierarchy for

a target embedded application has been studied at the hardware level and resulted

with exploration of custom memory hierarchies and organizations that include SPM

and cache. Those that only include SPM designs generally attempt to provide the

locality benefits of cache without its larger latency and power cost. They primarily

accomplish this by suggesting different SPM sizes and configurations tailored for an

application for maximal power savings, execution improvement or real-time guaran-

tees. A brief overview of memory hierarchy design using SPM and related allocation

studies follows, with a discussion of cache related techniques afterward.

There have been a few methods proposed that choose an SPM memory hier-

archy and memory allocation to maximize the performance of a program without

using caches. Kandemir et all presented their scheme for dynamic array allocation

to either existing or an algorithmically calculated set of SPM memories for em-

bedded benchmarks[80], although this is an adaptation of their work on dynamic

66

3.6 Memory hierarchy research

array allocation to SPM in [84]. Another improvement upon their technique was

developed in [74], which updates the dynamic array allocation method in [80] by

accounting for data reuse across dynamic allocation program points, as well as sup-

port for a hierarchy of SPM memories for better allocation placement compared to

the single SPM case. In a similar vein, they have also recently proposed a method

to apply data compression to SPM allocated data to increase SPM usage for exist-

ing allocation methods[106]. A recent publication from Wehmeyer et all describes a

compiler-optimized method to partition SPM memory for static allocation of global

and code objects for improved performance[144]. This is also an adaptation from

their previous work on static allocation of code and global objects for single SPM

systems[131]. Noting the trend among researchers, any of the previous related SPM

allocation methods can be adopted for memory space exploration among multiple

SPM memories for an embedded system for improved results assuming a designer is

so inclined. Our static and dynamic methods for heap and recursive function han-

dling will enable whole-program optimization for any such extended frameworks.

Given the rise in embedded systems research and usage, hundreds of differ-

ent models and platforms are in production today. Generally the very low-end are

nothing more than simple microcontrollers without any explicit memory organiza-

tions while middle and high-end embedded platforms generally have some kind of

advanced memory system. Most include at least some form of internal memory for

program or data storage, and some kind of external memory controller for larger

storage requirements. A great many include some form of SPM or SRAM while some

67

Chapter 3. Previous work on SPM allocation

include only an additional cache hierarchy, and many manufacturers even include

both. With the presence of both an SPM and cache on the same system, allocation

and placement can have a large impact on performance and several methods have

been proposed to make best use of both. Building upon the earlier work of Panda in

[109], Dutt et all describe an updated method in [49],that explores the choices avail-

able to designers in memory organizations. By exploring different scratchpad and

cache configurations their method can decide on an appropriate choices for SPM and

cache based on analysis and designed to cooperate with their allocation decisions.

Their method involves mapping global variables onto SPM, applying array and loop

optimizations for global arrays and mapping the rest of the program data onto cache

memory for minimal cache conflict through careful address placement. They update

their method in [110] to include a performance estimation framework on top of the

memory exploration results that can be used to predict the performance of appli-

cations without prior implementation or simulation. A further follow-up from the

group for cache-only memories that lack SPM was later described in [56].

The methods just described were primarily targeted at designers who may wish

to explore optimal memory configuration and hierarchies from a hardware point of

view, as well as providing the compiler framework to make better use of those mem-

ories. The majority of research in the SPM allocation domain instead focuses on

maximizing performance of popular existing embedded platforms that already con-

tain a determined amount of SPM, cache and other memories. By far the most

popular area has been that of placing some subset of program data in SPM and

68

3.6 Memory hierarchy research

the rest in the cache, with a host of refinements for actual memory assignment and

cache pollution avoidance. Our own method can also be applied to any developed

methods that take caches into consideration for memory layout, or more simply used

as the interface to main memory. Besides the works already mentioned[49, 110, 56],

other methods have been proposed for systems containing both SPM and cache with

different goals in mind. Verma et all proposed a similar update to their previous

work in[131] which originally dealt with static SPM allocation of code and global

objects. Their new method instead produces a static allocation of code blocks to

SPM attempting to reduce the number of conflicts incurred by the instruction cache

during execution, providing efficient instruction loading from both SPM and cache

with less wasted cache activity[95, 141]. In the area of cache-conscious SPM allo-

cation for program data, Xtream-Fit produces SPM allocations for constants and

scalars while for other programs and code it employs energy conservation techniques

targeting SDRAM accesses through a cache[116]. Their method is primarily directed

at improving media application execution through cache prefetching and SPM allo-

cation for popular global variables to avoid cache pollution.

As a natural benefit of SPM allocations instead of using cache memories to

provide memory locality, studies have been conducted to show how SPM can im-

pact real-time applications by providing better access guarantees. Many real-time

systems require programs to be tightly bounded by their Worst-Case Execution

Time(WCET) to ensure they can complete periodic tasks in a timely fashion. For

this reason, most designers of real-time systems will avoid caches at all costs, de-

69

Chapter 3. Previous work on SPM allocation

spite their locality benefits. The variable delay in accessing memory through a

cache hierarchy makes these systems unpredictable from a WCET point of view,

and can make cache usage infeasible. The recent exploration by Marwedel et all in

[97, 145] presents their earlier SPM allocation work in light of real-time concerns

and shows that using SPM memory allocation techniques can greatly improve the

WCET bounds as well as power consumption bounds. Recently a method with very

similar goals was also proposed in[65]. These studies further impress upon designers

the benefits that SPM can produce when used instead of or in addition to cache

memories for modern embedded systems.

Orthogonal power minimization methods

There exist several other complementary techniques aimed at reducing latency and

run-time by placement to a particular memory module among those available in a

heterogeneous memory hierarchy. These range in granularity from methods which

design entire memory organizations to maximize application performance, down to

detailed methods controlling individual sections of a single memory bank to reduce

power consumption. Research for taking advantage of DRAM characteristics for ef-

ficient instruction sequencing, address calculation, bank management, etc, to reduce

power and execution for systems has been popular[55, 38, 93, 44]. Another related

optimization method attempts to perform data-layout optimizations, which affect at

what addresses and in which order program variables should be mapped to memory

banks in an embedded system, for reduced address calculation code, improved offset

assignment for minimized addressing widths, among others[30, 37, 57, 34, 81, 79].

70

3.7 Dynamic memory manager research

There also exists a great body of work relating to data and program transforma-

tions to improve cache locality, performance, energy consumption, or a combination

of these and other goals. These cache-only memory organizations are all hard-

ware managed and lack a controllable scratchpad although a wide variety of them

exist[112, 118, 107, 90, 77]. A general overview of these types of optimization meth-

ods for embedded systems can also be found in [108]. From reading the non-SPM

allocation research, it becomes apparent that they are generally orthogonal to the

SPM allocation methods for embedded systems described in the rest of this chapter

and can thus be selectively combined with many of these approaches, and so will

not be discussed further in this thesis.

3.7 Dynamic memory manager research

As far as heap data allocation is concerned, there exists a large body of research

in the desktop, and a very small amount in the embedded domain, that optimizes

heap memory managers for better application performance. For the most part these

memory managers are all orthogonal to our existing SPM allocation techniques, since

these can be used to implement the system main memory heap manager. The SPM

heap management is implicitly handled by our compiler method through insertion of

wrapper code to replace the dynamic memory implementation being used with that

embedded compiler. Our own method does not attempt to optimize the dynamic

memory manager for main memory, and so any optimized implementation can be

used to handle main memory. The advantage of such a large body of work in the

71

Chapter 3. Previous work on SPM allocation

desktop domain is that some of it can be applied to the embedded domain to make

heap memory more efficient for embedded programmers.

Several methods exist for producing customized dynamic memory manager im-

plementations for languages such as C which re-implement traditional malloc/free li-

braries tailored to that platforms expected workload. The major works in composing

high performance uniprocessor memory allocators for C are those in [57, 143, 22, 21]

all of which provide frameworks to produce tailored dynamic memory manager func-

tions from compiler and profile analysis. The usage of dynamic memory has tra-

ditionally been slim for embedded systems due to the generally poor performance

of most traditional desktop dynamic memory managers ported to the embedded

domain. Also, the non-deterministic nature of dynamic memory management func-

tions prevent their use in real-time systems that must have bounded allocation and

access times for memory. An overview is presented in [48] which surveys a variety of

desktop management methods and presents an optimized version that allows usage

in real-time systems. A similar method to bound allocation but with the use of

added hardware was later suggested in [47]. Interest in making dynamic memory

managers more cache-aware for allocation/deallocation decisions has prompted a

number of papers that discuss different implementations to improve cache perfor-

mance with dynamic memory used in a system [121, 122, 123, 18, 124, 98, 50]. Some

of these ideas influenced the optimization of heap variable placement in my own al-

gorithm, and were inspired by the works on heap object analysis and prediction.

The concept of segregating heap objects by their request size as correlated with

72

3.8 Other related methods

static and dynamic analysis of performance of our initial implementation has led to

advances in the handling and allocation of unknown-size malloc allocation sites for

my method.

3.8 Other related methods

Runtime methods such as software caching [100, 60] emulate a cache in SRAM using

software. The tag, data and valid bits are all managed by compiler-inserted code at

each memory access. Software overhead is incurred to manage these fields, though

compiler optimizes away the overhead in some cases [100]. Software caching schemes

suffer from large overheads from inserted checks before every memory instruction,

which are hard to optimize away especially for heap data. Lacking good methods

for heap data, the current practice is to place all heap data to DRAM in systems

with scratch-pad. Our proposed dynamic method promises to be the first to success-

fully place heap data in scratch-pad, and our earlier work on fully general dynamic

stack,global and code allocation provides locality benefits without the sometimes

extreme software caching overheads incurred by a system such as FlexCache. The

Cool-Cache method proposed in [139] takes inspiration from earlier SPM alloca-

tion research and the FlexCache ideas to provide a hybrid software caching scheme.

They make use of SPM to allocate popular global scalar data, and use an optimized

software caching system to manage a larger SRAM bank. Their results show the

benefit of avoiding software emulation of hardware cache operations by using SPM

and compiler optimizations to try and overcome the crippling cost that software

73

Chapter 3. Previous work on SPM allocation

caching incurs.

Some software caching schemes have been proposed for desktops that use dy-

namic compilation [69] which changes the program at run-time in RAM. Most em-

bedded systems, however, store the program in unchangeable ROM, and dynamic

compilation cannot be used. Other software caching schemes have been proposed

with different goals and/or non-applicable platforms [138, 20, 31, 119, 23, 76]. For

lack of space, we do not discuss these further.

Our work is in some aspects also analogous to the offline paging problem first

formulated by [19]. The offline paging problem deals with deriving an optimal page

replacement strategy when future page references are known in advance. Analo-

gously we look at finding a memory allocation strategy when program behavior is

known in advance. Offline paging, however, cannot be used for our purposes since

it makes its page transfer decisions at run-time (address translation done by virtual

memory), while we need to associate memory transfers with static program points.

Recursive functions

While a thorough search of all related research was performed, very little that related

to the allocation of recursive function stack data exists as far as we were able to

determine. This is not surprising, all other SPM allocation publications discussed

in the first few sections either failed to mention recursive stack handling (only 4

mentioned heap data) or a very few simply referred to them as unhandled and left

in main memory. We did find a large amount of research aimed at transformation

of recursive functions for different approaches to optimization.

74

3.8 Other related methods

The most popular class of methods attempting to transform recursive functions

into iterative functions is known as tail recursion (or tail-end recursion) optimiza-

tion. Tail recursion is a special case of recursion that can be easily transformed

into an iteration using different methods [24, 39]. Such a transformation is possible

if the recursive call is the last thing that happens in a function. Replacing recur-

sion with iteration, either manually or automatically, can drastically decrease the

amount of stack space used and improve efficiency. This technique is commonly

used with functional programming languages, where the declarative approach and

explicit handling of state promote the use of recursive functions that would other-

wise rapidly fill the call stack. Most modern compilers such as GCC support tail

recursion optimizations to reduce run-time and reduce stack overhead.

Tail recursion optimization has a long and rich history, prompting other re-

searchers to look into ways to extend their usefulness to modern problems. One

method performs procedure inlining to convert mutual recursion to direct recur-

sion [86]. This allows use of optimization techniques that are most easily applied to

directly recursive procedures, in addition to the well-known benefits of inlining. A

recent method proposes complete recursive function inlining in restricted cases which

aims at total transformation of the original function [134]. Transformation methods

have also been studied converts certain general recursive functions into loops [62].

Finally, another recent publication [148] takes advantage of the significant perfor-

mance benefits of recursive algorithms on both multi-level memory hierarchies and

shared-memory systems. They found that recursive algorithms tended to have the

75

Chapter 3. Previous work on SPM allocation

data reuse characteristics of blocked-algorithm, blocked at many different levels.

They target promising loops for conversion into recursive functions for optimized

memory performance.

76

Chapter 4

Dynamic allocation of static

program data

This chapter presents an overview of our earlier work in [132], which details the first

compiler method to dynamically allocate code, global and stack (non-recursive) data

to SPM using whole program analysis. This earlier work is part of the thesis of my

co-researcher, Sumesh Udayakumaran, and is not a new contribution of this thesis.

Nevertheless, my method for allocation of heap and recursive stack data builds upon

our earlier work in [132] for its code, global and stack handling methods. For this

reason, this chapter presents that scheme as necessary background information to

understand how whole program allocation to SPM occurs.

The concept of using heterogeneous memory for optimal memory layouts has

been researched heavily in the past few years, particularly in the case of embedded

systems having SPM. The more recent research has presented powerful automatic

77

Chapter 4. Dynamic allocation of static program data

compiler methods for the static and dynamic allocation of program data to minimize

runtime and power. Unfortunately, many of these earlier methods focused on narrow

optimizations using SPM which have only scratched the surface of the powerful

compiler analysis and optimization tools available today.

Our preliminary research on SPM allocation was presented in [136] and ac-

counts for changing program requirements at runtime, has no tags like those used

by runtime methods, requires no run-time checks per load/store, has extremely low

overheads and yields 100% predictable memory access times. Our completed re-

search was presented in [132]. This publication explained our complete compiler

method for allocating three types of static program objects - global variables, stack

variables and program code - to scratch-pad while still being to dynamically mod-

ify runtime allocation without excessive overheads. With tools in place to handle

static program data, we were able to integrate them with our proposed research on

dynamic program data and enable full program memory optimization for the first

time.

4.1 Overview for static program allocation

A general outline of the dynamic allocation method in [132] for static program data

follows. The compiler begins by analyzing the program to identify locations termed

program points where it may be beneficial to insert code to copy a variable from

DRAM into the scratch-pad. It is beneficial to copy a variable into scratch-pad if the

latency gain from having it in scratch-pad rather than DRAM is greater than the

78

4.1 Overview for static program allocation

cost of its transfer. A profile-driven cost model estimates these benefits and costs

for a program. The compiler ensures that the program data allocated to scratch-pad

fits at all times by occasionally evicting existing variables in scratch-pad to make

space for incoming variables. In other words, just like in a cache, data is moved

back and forth between DRAM and scratch-pad, but under compiler control, and

with no additional overhead.

Key components of the method consist of the following. (i) To reason about the

contents of scratch-pad across time, it helps to attach a concept of relative time to the

above-defined program points. Towards this end, a new data structure is introduced

called the Data-Program Relationship Graph (DPRG) which associates a unique

timestamp with each program point. (ii) A detailed cost model is presented to

estimate the run-time cost of any proposed data transfer at a program point. (iii) A

compile-time heuristic is presented that uses the cost model to decide which transfers

minimize the run-time. The well-known data-flow concept of liveness analysis [11]

is used to eliminate unnecessary transfers provably dead variables 1are not copied

back to DRAM; nor are newly alive variables in this region copied in from DRAM

to SRAM 2. In programs, where the final results (only global) need to be left in the

memory itself, this optimization can be turned off in which case the benefits may

1In compiler terminology a variable is dead at a point in the program if the value in it is not used
beyond this point, although the space could be. A dead variable becomes live later if it is written to
with subsequently used data. As a special case it is worth noting that every un-initialized variable
is dead at the beginning of the program. It becomes live only when written to first. Further, a
variable may have more than one live range separated by times when it is dead.

2The current implementation only does data-flow analysis for scalars and a simple form of
array data-flow analysis that can prove arrays to be dead only if they are never used again. If
more-complex array data-flow analysis is included then the results can only get better.

79

Chapter 4. Dynamic allocation of static program data

be reduced. 3This optimizations also needs to be turned off for segments shared

between tasks.

There are three desirable features of the algorithm which can be readily ob-

served. (i) No additional transfers beyond those required by a caching strategy are

done. (ii) Data that is accessed only once is not brought into the scratch-pad, unlike

in caches, where the data is cached and potentially useful data evicted. This is par-

ticularly beneficial for streaming multimedia codes where use-once data is common.

(iii) Data that the compiler knows to be dead is not written out to DRAM upon

eviction, unlike in a cache, where the caching mechanism writes out all evicted data.

This method is clearly profile-dependent; that is, its improvements are de-

pendent upon how representative the profile data set really is. Indeed, all existing

scratch-pad allocation methods, whether compiler-derived or programmer-specified,

are inherently profile dependent. This cannot be avoided since they all need to pre-

dict which data will be frequently used. Further this method does not require the

profile data to be like the actual data in all respects so long as the relative re-use

trends between variables are similar in the profile and actual data, good allocation

decisions will be made, even if the re-use factors are not identical. A region’s gain

may even be greater with non-profile data if its data re-use is higher than in the

profile data.

Real-time guarantees

Not only does the method improve run-time and energy consumption, it also im-

3Such programs are likely to be rare. Typically data in embedded systems is used in a time
critical manner. If persistent data is required, it is usually written into files or logging devices.

80

4.1 Overview for static program allocation

proves the real-time guarantees of embedded programs. To understand why, consider

that the worst-case memory latency is a component of the worst-case execution time.

This method, like all compiler-decided allocation methods, guarantees that the la-

tency of each memory instruction is known for kernels and other programs with

minimal input profile dependence. This translates into total predictability of mem-

ory system behavior, thus helping designers immensely with improving Worst-Case

Execution Time(WCET). Such real time benefits of scratch-pad have been observed

before, such as in [145].

Program code

It is separately shown how this method can also be easily extended to allocate

program code objects. Although code objects are accessed more heavily than data

objects (one fetch per instruction), dynamic schemes like this one are not likely

to be applicable in all cases. First, compared to data caches, use of instruction

caches is much more feasible due to their effectiveness at smaller sizes and highly

predictable, minimally input-dependent execution profiles. It is not uncommon

to find use of instruction caches (but not data caches) in embedded systems like

the Motorola STARCORE, MFC5xx and 68HC processors. Second, for low and

medium-end embedded systems, code is typically stored in ROM/Flash. An example

of such a system is Motorolas MPC500, MCORE and 6812. Unlike DRAM devices,

ROM/Flash devices have lower seek times (in the order of 75ns-120ns, 20ns in

burst/page mode) and power consumption. For low-end embedded systems, this

would mean an access latency of only one or two cycles, because they operate at lower

81

Chapter 4. Dynamic allocation of static program data

clock speeds. For such low-end embedded systems using ROM/Flash where cost is an

important factor, speeding up accesses to code objects is not as critical as optimizing

data objects residing in DRAM. High-end systems such as the Intel StrongARM and

Motorola Dragonball operate at higher clock rates, which consequently increases the

relative cost of ROM/Flash access latency. The proposed extension for handling

code would thus enable the dynamic method to be used for speeding up code accesses

in such systems and increasing performance as the latency gap between SPM and

code memory increases.

Impact

The impact of this work will be a significant improvement in the cost, energy con-

sumption, and run-time of embedded systems. The results in [132] show up to 39.8%

reduction in run-time for this method for global and stack data and code vs. the

optimal static allocation method in [16] also extended for code. With hardware

support for DMA, present in some commercial systems, the run-time gain increases

up to 42.3%. The actual gain depends on the SRAM size, but the results show that

close to the maximum benefit in run-time and energy is achieved for a substantial

range of small SRAM sizes commonly found in embedded systems. Using an ac-

curate power simulator, the method also shows up to 31.3% reduction in energy

consumption vs. an optimal static allocation. This method does incur some code-

size increase due to the inserted transfers; the code size increase averages a modest

1.9% for the benchmarks compared to the unmodified original code for a uniform

memory abstraction; such as for a machine without scratch-pad memory.

82

4.2 The Dynamic Program Region Graph

The next few section will discuss the method for static program data in more

detail.

4.2 The Dynamic Program Region Graph

The dynamic memory allocation method in [132] for code, stack and global program

objects takes the following approach. At compile-time, the method inserts code into

the application to copy program objects from DRAM into the scratch-pad whenever

it expects them to be used frequently thereafter, as predicted by previously collected

profile data. Program objects in the scratch-pad may be evicted by copying them

back to the DRAM to make room for new variables. Like in caching, all data

is retained in DRAM at all times even when the latest copy is in the scratch-pad.

Unlike software caching, since the compiler knows exactly where each program object

is at each program point, no run-time checks are needed to find the location of any

given variable. It is show in [132] that the number of possible dynamic allocations

is exponential in both the number of instructions and the number of variables in the

program. The problem is almost certainly NP-complete, though there has not been

an attempt to formally prove this.

Lacking an optimal solution, a heuristic is used. The cost-model driven greedy

heuristic presented has three steps. First, it partitions the program into regions

where the start of each region is a program point. Changes in allocation are made

only at program points by compiler inserted code that copies data between the

scratch-pad and DRAM. The allocation is fixed within a region. The choice of

83

Chapter 4. Dynamic allocation of static program data

regions is discussed in the next paragraph. Second, the method associates a unique

timestamp with every program point such that (i) the timestamps form a partial

order; and (ii) the program points are reached during run-time roughly in timestamp

order. In general, it is not possible to assign timestamps with this property for all

programs. Later in this section, however, a method is shown, that by restricting

the set of program points and allowing multiple timestamps per program point, is

able to define timestamps for all programs. Third, memory transfers are determined

for each program point, in timestamp order, by using the cost-driven algorithm in

section 4.3.

Deriving regions and timestamps

The choice of program points and therefore regions, is critical to the algorithms

success. Regions are the code between successive program points. Promising pro-

gram points are (i) those after which the program has a significant change in locality

behavior, and (ii) those whose dynamic frequency is less than the frequency of its

following region, so that the cost of copying into the scratch-pad can be recouped

by data re-use from scratch-pad in the region. For example, sites just before the

start of loops are promising program points since they are infrequently executed

compared to the insides of loops. Moreover, the loop often re-uses data, justifying

the cost of copying into scratch-pad. With the above two criteria in mind, program

points are defined as (i) the start and end of each procedure; (ii) just before and

just after each loop (even inner loops of nested loops); (iii) the start and end of each

if statements then part and else part as well as the start and end of the entire if

84

4.2 The Dynamic Program Region Graph

statement; and (iv) the start and end of each case in all switch statements in the

program as well as the start and end of the entire switch statement. In this way,

program points track most major control-flow constructs in the program. Program

points are merely candidate sites for copying to and from the scratch-pad whether

any copying code is actually inserted at those points is determined by a cost-model

driven approach, described in section 3.

Figure 4.1: Example program on left with its DPRG representation on right.

Figure 4.1 shows an example illustrating how a program is marked with times-

tamps at each program point. Figure 4.1(a) shows the program outline. It consists

of five procedures, namely main(), proc-A(),proc-B(), proc-C() and proc-D(), one

loop and one if-then-else construct. The only program constructs shown are loops,

procedure declarations and calls, and if statements other instructions are not. Ac-

cesses to two selected variables X and Y are also shown.

Figure 4.1(b) shows the Data-Program Relationship Graph (DPRG) for the

program in figure 4.1(a). The DPRG is a new data structure introduced to help

85

Chapter 4. Dynamic allocation of static program data

represent regions for reasoning about their time order. The DPRG is essentially

the programs call graph appended with new nodes for loops, if-thens and variables.

In the DPRG shown in figure 4.1(b), there are five procedures, one loop, one if

statement, and two variables represented by nodes. Separate nodes are shown for

the entire if statement (called if-header) and for its then and else parts. On the

figure oval nodes represent procedures, circular nodes represent loops, rectangular

nodes represent if statement nodes, and square nodes represent variables. Edges to

procedure nodes represent calls; edges to loop and if nodes shows that the child is

in its parent; and edges to program object nodes represent memory accesses to that

program object from its parent. No additional edges exist to model continue and

break statements. The DPRG is usually a directed acyclic graph (DAG), except for

recursive programs, where cycles occur.

Figure 4.1(b) also shows the timestamps (1-18) for all program points, namely

the beginnings (shown on left of nodes) and ends (shown on right) of every procedure,

loop, if-header, then and else node. The goal is to number timestamps in the order

they are encountered during the execution. This numbering is computed at compile-

time by the well-known depth-first-search (DFS) graph traversal algorithm. the DFS

marks program points in the order seen with successive timestamps. The DFS is

modified, however, in two ways. First, the DFS is modified to number then and else

nodes of if statements starting with the same number since only one part is executed

per invocation. For example, the start of the then and else nodes shown in the figure

both are marked with timestamp 3. The numbering of the end of if-header node

86

4.2 The Dynamic Program Region Graph

(marked 7 in the figure) follows the numbering of either the then and else parts,

whichever consumes more timestamps. Second, it traverses and timestamps nodes

every time they are seen, rather than only the first time. This still terminates since

the DPRG is a DAG for non-recursive functions. Such repeated traversal results in

nodes that have multiple paths to them from main() getting multiple timestamps.

For example, node proc-c() gets timestamps 9 & 13 at its beginning, and 10 & 14

at its end.

It can be seen that the timestamps provide a partial order rather than a total

order. For example, the two possible alternatives for a simple if-then conditional

block will never have an edge between them showing a relative order between these

two regions. Instead, relative orderings can only be correlated with timestamps for

those regions along an execution path. Timestamps are useful since they reveal

dynamic execution order: the run-time order in which the program points are vis-

ited is roughly the order of their timestamps. The only exception is when a loop

node has multiple timestamps as descendants. Here the descendants are visited in

every iteration, repeating earlier timestamps, thus violating the timestamp order.

Even then, we can predict the common case time order as the cyclic order, since

the end-of-loop backward branch is usually taken. Thus we can use timestamps,

at compile- time, to reason about dynamic execution order across the whole pro-

gram. This is a useful property, and it has been speculated that timestamps may be

useful for other compiler optimizations as well that need to reason about execution

order, such as compiler-controlled prefetching [92],value prediction [87] and specu-

87

Chapter 4. Dynamic allocation of static program data

lation [29]. Timestamps have their limitations in that they do not directly work

for Goto statements or the insides of recursive cycles; but workarounds for both are

mentioned in section 4.4 for the method in [132] described in this chapter.

4.3 Allocation method for code, stack and global

objects

This section describes the algorithm from [132] for determining the memory transfers

of global and stack variables at each program point. The next section shows how this

method can be extended with some minor modifications to also allocate program

code.

Before running this algorithm, the DPRG is built to identify program points

and mark the timestamps. Next, profile data is dynamically collected to measure

the frequency of access to each variable separately for each region. This frequency

represents the weight of the edge from a parent node to a child variable. Profiling

also measures the average number of times a region is entered from a parent region.

This represents the edge weight between two non variable nodes. The total frequency

of access of a variable is the product of all the edge weights along the execution path

from the main() node to the variable.

At each program point, the algorithm then determines the following memory

transfers: (i) the set of variables to copy from DRAM into the scratch-pad and

(ii) the set of variables to evict from DRAM to the scratch-pad to make way for

88

4.3 Allocation method for code, stack and global objects

incoming variables. The algorithm computes the transfers by visiting each program

point (and hence each region) once in an order that respects the partial order of

the timestamps. For the first region in the program, variables are brought into

the scratch-pad in decreasing order of frequencyper byte of access. Thereafter for

subsequent regions, variables currently in DRAM are considered for bringing into

the scratch-pad in decreasing order of frequency-per-byte of access, but only if a cost

model predicts that it is profitable to do so. Variables are preferentially brought

into empty space if available, else into space evicted by variables that the compiler

has proven to be dead at this point, or else by evicting live variables. Completing

this process for all variables at all timestamps yields the complete set of all memory

transfers.

Transfers are not performed blindly, and follow a cost-benefit analysis applied

to the DPRG. Given a proposed incoming variable and one-or-more variables to

evict for the incoming variable, the cost model determines if this proposed swap

should actually take place. In particular, copying a variable into the scratch-pad

may not be worthwhile unless the cost of the copying and the lost locality of evicted

variables is overcome by its subsequent reuse from scratch-pad of the brought-in

variable. The cost model used models each of these components to derive if the

swap should occur.

The pseudocode representation of the main allocation algorithm is shown in

Figure 4.2, and begins by declaring several compiler variables. These include V-fast

and V-slow to keep track of the set of application variables allocated to the scratch-

89

Chapter 4. Dynamic allocation of static program data

pad and DRAM, respectively, at the current program point. Bring-in-set, Swap-

out-set and Retain-in-fast-set store their obvious meaning at each program point.

Dead-set refers to the set of variables in V-fast in the previous region whose lifetime

has ended. The frequency-per-byte of access of a variable in a region, collected from

the profile data, is stored in freq-per-byte[variable, region].

The algorithm proceeds in the following manner. Lines 1-2 computes the allo-

cation for the first region in the application program. For the first region, variables

are greedily brought into the scratchpad in decreasing order of frequency-per-byte

of access. Line 3 is the main for loop that steps through all the subsequent program

points in timestamp order. At each program point, line 7 steps through all the vari-

ables, giving preference to frequently accessed variables in the next region. For each

variable V in DRAM (line 8), it tries to see if it is worthwhile to bring it into the

scratch-pad (lines 9-21). If the amount of free space in the scratch-pad is enough to

bring in V, V is brought in if the cost of the incoming transfer is recovered by the

benefit (lines 10-13). Otherwise, if variables need to be evicted to make space for V,

the best set of variables to evict is computed by procedure Find-swapout-set() called

on line 15 and the swap is made (lines 16-20). If the variable V is in the scratch-pad

(line 22), then it is retained in the scratch-pad provided it has not already been

swapped out so far by a higher frequency-per-byte variable (line 23-25). Finally,

after looping through all the variables, lines 28 and 29 update, for the next program

point, the set of variables in scratch-pad and DRAM, respectively. Line 30 stores

this resulting new memory map for the region after the program point.

90

4.3 Allocation method for code, stack and global objects

Figure 4.2: Algorithm for static program data allocation.

91

Chapter 4. Dynamic allocation of static program data

Next, Find-swapout-set() (lines 33-47) is called in line 15. It calculates and

returns the best set of variables to copy out to DRAM when its argument V is

brought in. Possible candidates to swap out are those in scratch-pad, ordered in

ascending order of size (line 34); but variables that have already been decided to be

swapped out, brought in, or retained are not considered for swapping out (line 35).

Thus variables with higher frequency-per-byte of access are not considered since they

have already been retained in scratch-pad in line 24. Among the remaining variables

of lower frequency-per-byte, as a simple heuristic small variables are considered

for eviction first since they cost the least to evict. Better ways of evaluating the

swapout set of least cost by evaluating all possible swapout sets are avoided to avoid

an increase in compile-time; moreover we found these to be unnecessary since only

variables with lower frequency-per-byte than the current variable are considered for

eviction. The while loop on line 37 looks at candidates to swap out one at a time

until the space needed for V has been obtained. A cost model is used to see if the

swap is actually beneficial (line 38); if it is the swapout set is stored (lines 40-41).

More variables may be evicted in future iterations of the while loop on line 37 if the

space recovered by a single variable is not enough. If swapping out variables that

are eligible and beneficial to swap out did not recover enough space (line 44), then

the swap is not made (line 45). Otherwise procedure Find-swapout-set() returns the

set of variables to be swapped out.

Cost model

Finally, Find-benefit() (lines 36-43) is called in lines 10 & 38. It computes whether

92

4.3 Allocation method for code, stack and global objects

it is worthwhile, with respect to run-time, to copy in variable V in its first argument

by copying out variable Swapout-candidate in its second argument. The net benefit

of this operation is computed in line 51 as being the latency-gain minus latency-loss

minus Migration-overhead. The three terms are explained as follows. First, the

latency gain is the gain from having V in the scratch-pad in the next region (line

48). Second, the latency loss is the loss from not having Swapout-candidate in the

scratch-pad in the next region (line 49). Third, the migration overhead is the cost of

copying itself, estimated in line 50. The overhead depends on the point at which the

transfer is done. So the overhead of transfers done outside a loop is less than inside

it. The algorithm conservatively chooses the transfer point that is outside as many

inner loops as possible. The choice is conservative in two ways. One, points outside

the procedure are not considered. Two, transfers are not moved beyond points with

earlier transfer decisions. An optimization done here is that if variable Swapout-

candidate in scratch-pad is provably not written to in the regions since it was last

copied into the scratch-pad, then it need not be written out to DRAM since it has

not been modified from its DRAM copy. This optimization provides functionality to

the dirty bit in cache, without needing to maintain a dirty bit since the analysis is

at compile-time. The end result is an accurate cost model that estimates the benefit

of any candidate allocation that the algorithm generates.

Optimization

One optimization was developed which ignores the multiple allocation decisions

inside higher level regions and instead adopts one allocation inside the particular

93

Chapter 4. Dynamic allocation of static program data

region. The static allocation adopted is found by doing a greedy allocation based on

the frequency per byte value of the variables used in the region. Such an optimization

can be useful in cases when transfers are done inside loops and the resulting transfer

cost is very high. In cases where the method in [132] would guarantee that the high

cost can be recouped, it might be beneficial to adopt a simple static allocation for

the particular region. To aid in making this choice, the method compares the likely

benefit from a purely dynamic allocation with a static allocation for the region.

Based on the result either the dynamic allocation strategy is retained or the static

allocation used for the region.

Code objects

The above framework was also extended to allocate program code objects. There ex-

ist several key questions when performing code allocation that need to be answered.

First, at what granularity should code objects be allocated(basic-block/procedures/files).

Second, how should a code object be represented in the DPRG. Third, how is the

algorithm and cost model modified. The first issue concerns the granularity of the

program objects. As with data objects, the smaller the size of the code objects, the

larger the benefits of scratch-pad placement is likely to be. Keeping this in mind,

the granularity of code objects was originally proposed as having units of basic-

blocks. However, code generation for allocations at such fine granularity is likely

to introduce too many branch instructions while also precluding the use of existing

linker technology for its implementation. Another drawback is increased complexity

of profiling. A step up from using basic-blocks was chosen and the algorithm creates

94

4.3 Allocation method for code, stack and global objects

code objects on the basic of functions, with selective divisions for loop boundaries in-

side functions. New code object divisions are selectively created at loop boundaries

since it is often profitable to place loops in scratch-pad to capture localized re-use.

This optimization is based on function outlining (inverse of inlining where loops are

instead outlined into procedures), and is available in some commercial compilers

like IBMs XLC compiler. Both methods can yield code objects of smaller size but

at vastly different implementation costs. For its ease of implementation, function

outlining was chosen to provide program objects with fine enough granularity to

make allocation and code generation more feasible.

The next issue to be handled is that of representing code objects in the DPRG.

Since the choice of program objects is at the level of procedures (native or out-

lined),code objects are attached to parent procedures just like variables are (hence-

forth called code variable nodes). Figure 4.3 shows an example of a DPRG which

also includes code objects shown as rectangular nodes. Every procedure node has

a variable child node representing the code executed before the next function call.

For example in figure 4.3 code A.1 represents all the instructions in proc A executed

before the procedure proc C is called and code A.2 represents all the instructions in

proc A executed after return from proc C until the end the proc A. An advantage of

such a representation is that the framework for allocating data objects can be used

with little modification for allocating code objects as well. As in the case of data

objects, profiling is used to find for every node the frequency of access of each child

code variable accessed by that node. For a code variable its frequency is given by

95

Chapter 4. Dynamic allocation of static program data

its corresponding number of dynamic instructions executed. The size of the code

variable is the size of the portion of the procedure until the next call site in the pro-

cedure. A modified DPRG structure is also created in which non-procedure DPRG

nodes have been coalesced into the parent procedure node. This new structure is

named the Coalesced-DPRG. Figure 4.3 also shows the Coalesced-DPRG for the

DPRG in figure 4.3.

Figure 4.3: Left: Example DPRG with code nodes. Right: An example Coalesced DPRG.

The original allocation algorithm described in the previous section is modified

in the following manner. When a procedure node in the DPRG is visited, first we

check if the procedure node can be allocated in the scratch-pad. Such an approach

is motivated by the same considerations as for the choice of procedures over basic

blocks. Using the original algorithm would have required using expensive profiling

to find the frequency of the code variable in much smaller portions of code. To

determine if a procedure node can be allocated to scratch-pad, it is helpful to use

the Coalesced-DPRG. It suffices to find out if a hypothetical allocation (lines 4-30)

96

4.4 Algorithm modifications

done at the corresponding procedure node using the Coalesced-DPRG(using lines

7-21), would allocate the procedure node to the scratch-pad. If the procedure gets

allocated to the scratch-pad then the available scratch-pad memory is decreased by

the size of the procedure node. Then the algorithm proceeds with the rest of the

pseudo-code explained in the previous section(lines 4-30) using the original DPRG.

The only other difference is that the procedure node is ignored, that is it is neither

considered for swap-in or swap-out, for that region. Thus the modified algorithm is

able to allocate both data and code while retaining the same overall framework.

4.4 Algorithm modifications

For simplicity of presentation, the algorithm in the previous two sections leaves

some issues unaddressed. Solutions to these issues are proposed in this section. All

the modifications proposed here are carried out by the algorithm presented before

and are driven by the same cost model. They do not define a new algorithm. and

GOTO’s simply extend the functionality of the algorithm.

Function pointers and pointer variables that point to global

and stack variables

Function pointers and pointer variables in the source code that point to global and

stack variables can cause incorrect execution when the pointed-to object is moved.

For example, consider a pointer variable p that is assigned to the address of global

variable a in a region where a is in SPM. Later if p is de-referenced in a region when

97

Chapter 4. Dynamic allocation of static program data

a is in DRAM, then p points to the incorrect location of a, leading to corrupt data

and probable program failure. We now discuss two different alternative strategies

to handle this issue. An advantage of both these schemes is that both alternatives

need only basic pointer information. However, pointer analysis information can also

be used to optimize both the schemes and further reduce their overhead.

Alternative 1:

The first alternative presented involves using a run-time disambiguator that corrects

the address of the pointer variable. This alternative involves four steps. First,

pointer analysis is performed to find the pointers to global/stack and code objects.

Second, all statements where the address of a global/stack or a code variable is

assigned, including when passed as a reference parameters, are updated to to use

the DRAM address assigned to that object by the compiler. This is not hard since

all compilers identify such statements explicitly in the intermediate code. With such

a reassignment, all pointer variables in the program refer to the DRAM locations of

variables. The advantage of DRAM addresses of objects is that they are unique and

fixed during the program objects lifetime; unlike their current address which changes

every time the program object is moved between scratch-pad and DRAM. Note that

only direct assignments of addresses need to be taken care, statements which copy

address from one pointer to another do not need any special handling. The third

step inserts code at each pointer de-reference in the program to perform run-time

translation into its current address in case its resident in SPM for that region. This

translation is done using a custom run-time data structure which, given the DRAM

98

4.4 Algorithm modifications

address, returns the current location of the program object. Since pointer arithmetic

is allowed in C programs, the data structure must be able to look up addresses to

the middle of program objects and not just to their beginnings. The data structure

used is a height-balanced tree having one node for each global/stack and code object

whose address is taken in the program. Each node stores the DRAM address range

of the variable and its current starting address. Since recursive procedures are not

allocated to the scratch-pad, each variable has only one unique address range. 4 The

tree is height-balanced with the DRAM address as the key. The tree is updated at

run-time when a pointed-to variable is transferred between banks and it is accessed

through pointers before its next transfer. Since n-node height-balanced trees offer

O(log2N) lookup this operation is reasonably efficient. An advantage of both these

schemes if that both alternatives need only basic pointer information. However

pointer analysis information can be used to immensely, simplify both the schemes.

Once the current base address of the program object in scratch-pad is obtained, the

address value may need to be adjusted to account for any arithmetic that has been

done on the pointer. This is done by adding the offset of the old pointer value from

the base of the DRAM address of the pointed-to variable to the newly obtained

current location. The final step that we do is that after the dereference the pointer

is again made to point to its DRAM copy. Similar to when translating, the pointer

value may need adjustments again to account for any arithmetic done on the pointer.

It appears that the scheme for handling pointers described above suffers from high

4With pointer analysis information this translation can be replaced by a simpler comparison
involving only the dram addresses of variables in the pointed-to set

99

Chapter 4. Dynamic allocation of static program data

run-time overhead since an address translation (and re-translation) is needed at

every pointer de-reference. Fortunately this overhead is actually very low for four

reasons. First, pointers to global/stack and code objects are relatively rare; pointers

to heap data are much more common. Only the former require translation. Second,

most global/stack and code accesses in programs are not pointer de-references and

thus need no translation. Third, even when translation and hence a subsequent re-

translation is needed in a loop (and thus is time consuming) it is often loop-invariant

and can be placed outside the loop. The translation is loop invariant if the pointer

variable or aggregate structure containing the pointer variable is never written to in

the loop with a address taken expression. 5 This was found to often be the case and

in almost all situations the translation can be done before the loop. Consequently

the retranslation can be done after the loop. Finally, one optimization is employed

for cases where it can be conservatively shown that the variables address does not

change between the address assignment and pointer de-reference. For these cases

the current address of the program object, regardless of it is in the scratch-pad or

DRAM, can be assigned and no translation is required. Such instances most trivially

happen in cases when for optimized code generation, the address is assigned to a

pointer just before the loop and then the pointer variable is used in the loop. For

all these reasons, the run-time overhead of translation was found to be under 1the

benchmarks by the much larger gain from the method in access latency. Finally, the

memory footprint of the run-time structure was observed to be very small for the

5Pointer arithmetic is not a problem since it is not supposed to change the pointed-to variable
in ANSI-C semantics.

100

4.4 Algorithm modifications

benchmark suite.

Alternative 2:

A second alternative was taken from the work in this thesis for heap data allocation.

It uses a strategy of restricting the offsets a pointed-to variable can take. The

strategy proceeds in the following steps. First, a variable whose address is never

taken is placed with no restrictions since no pointers can point into it. Address-taken

information is readily available in most compilers; in this way, many global/stack

variables are unaffected by pointers. Second, variables whose address is taken have

the following allocation constraint for correctness: for all regions where the variables

address is taken or the variable may be accessed through pointers, the variable

must be allocated to the same memory location. For example if variable a has

its address taken in region R1, and may be accessed through a pointer in region

R5, then both regions R1 and R5 must allocate a to the same memory location.

This ensures correctness as the intended and pointed-to memory will be the same.

The consensus memory bank for such regions is chosen by first finding the locally

requested memory bank for each region; then the chosen bank is the frequency-

weighted consensus among those requests. Regions in which a variable with address

taken is accessed but not through pointers are unconstrained, and can allocate the

variable anywhere. Currently, the results presented in [132] only explored alternative

1 for the benchmarks and future work is planned to compare both alternatives as

well as hybrids of the two in an effort to maximize performance.

101

Chapter 4. Dynamic allocation of static program data

Join nodes

A second complication with the allocation algorithm from [132] arises for any pro-

gram point visited from multiple paths (hence having multiple timestamps). For

these program points, the pseudo-code loop in line 4 from figure 4.2 is visited more

than once, and thus more than one allocation is made for that program point. An

example is node proc C() from figure 4.3. These nodes with multiple timestamps

are termed “join” nodes since they join multiple paths through the DPRG during

program execution. Join nodes can arise due to many program constructs including

(i)in the case of a procedure invoked at multiple call sites, (ii)at the end of con-

ditional path or (iii) in the case of a loop. For parents of join nodes, considering

the join node multiple times in the algorithm is not a problem - indeed it the right

thing to do, so that the impact of the join node is considered separately for each

parent. However, for the join node itself, multiple recommended allocations result,

one from each path to it, presenting a problem. One solution is cloning the join

node and the sub-graph below it in the DPRG along each path to the join node, but

the code growth can be exponential for nested join nodes. Even selective cloning

is probably unacceptable for embedded systems. Instead, the strategy avoids all

cloning by choosing the allocation desired by the most frequent path to the join

node for the join node. Subsequently compensation code is added on all incoming

edges to the join node other than for the most frequent path. The compensation

code changes the allocation on that edge to match the newly computed allocation

at the join node. The number of instances of compensation code is upper-bounded

102

4.4 Algorithm modifications

by the number of incoming edges to join nodes We now consider the most common

scenarios separately.

Join nodes: Procedure join nodes

The method chooses the allocation desired by the most frequent path to the proce-

dure join node for the join node. Subsequently as discussed before, compensation

code is added on all incoming edges to the join node other than for the most fre-

quent path. Join nodes: Conditional join nodes Join nodes can also arise due to

conditional paths in the program. Examples of conditional execution include if-then,

if-then-else and switch statements. In all cases, conditional execution consists of one

or more conditional paths followed by an unconditional join point. Memory alloca-

tion for the conditional paths poses no difficulty each conditional path modifies the

incoming memory allocation in the scratch-pad and DRAM memory to optimize for

its own requirements. The difficulty is at the subsequent unconditional join node.

Since the join node has multiple predecessors, each with a different allocation, the

allocation at the join node is not fixed at compile-time. The solution used is the

same as for procedure join nodes and is used for similar reasons. Namely, the allo-

cation desired by the most frequent path to the join node is used for the join node,

just as above.

Join nodes: Loops

A third modification is needed for loops. A problem akin to join nodes occurs for

the start of such loops. There are two paths to the start of the loop a forward edge

103

Chapter 4. Dynamic allocation of static program data

from before the loop and a back edge from the loop end. The incoming allocation

from the two paths may not be the same, violating the desired condition that there

be only one allocation at each program point. To find the allocation at the end of

the back edge, Procedure Find-swapout-set is iterated once over all the nodes inside

the loop. The allocation before entering the loop is then reconciled to obtain the

allocation desired just after entering the loop in this way, the common case of the

back edge is favored for allocation over the less common forward edge.

Recursive functions

The approach discussed so far does not directly apply to stack variables in recursive

or cross-recursive procedures. With recursion the call graph is cyclic and hence the

total size of stack data is unknown. Hence for a compiler to guarantee that a variable

in a recursive procedure fits in the scratch-pad is difficult. The baseline technique

is to collapse recursive cycles to single nodes in the DPRG, and allocate their stack

data to DRAM. Edges out of the recursive cycle connect this single node to the

rest of the DPRG. This provides a clean way of putting all the recursive cycles in a

black box 6. The method can now handle the modified DPRG like any other DPRG

without cycles.

Goto statements

The DPRG formulation in section 4.3 does not consider arbitrary Goto statements.

This is mostly because it is widely known that Goto statements are poor program-

6Recursive functions will not be considered in the future by Udayakumaran, as methods pre-
sented later in this thesis have been developed to allocate them.

104

4.4 Algorithm modifications

ming practice and they are exceedingly rare in any domain nowadays. Nevertheless,

it is important to handle them correctly as valid language feature. Only Goto state-

ments are being in question here; breaks and continues in loops are fine for DPRGs.

The solution to correctly handle Goto statements involves two steps. First,

the DPRG is built and the memory transfers are decided without considering Goto

statements. Second, the compiler detects all Goto statements and inserts memory

transfer code along all Goto edges in the control-flow graph to maintain correctness.

The fundamental condition for correctness in the overall scheme is that the memory

allocation for each region is fixed at compile-time; but different regions can have

different allocations. Thus for correctness, for each Goto edge that goes from one

region to another, memory transfers are inserted just before the Goto statement to

convert the contents of scratch-pad in the source region to that in the destination

region. In this way Goto statements are handled correctly but without specifically

optimizing for their presence. Since Goto statements are very rare, such an approach

adds little run-time cost for most programs.

The DPRG construct along with the extensions in this section enable this

method to handle all ANSI C programs. For other languages, structured control-

flow constructs likely will be variants, extensions or combinations of constructs men-

tioned in [132], namely procedure calls, loops, if and if-then-else statements, switch

statements, recursion and goto statements.

105

Chapter 4. Dynamic allocation of static program data

4.5 Layout and code generation

This section has three issues. First, it discusses the layout assignment of variables

in scratch-pad. Second, it discusses the code generation for this scheme. Third, it

discusses how the data transfer code may be optimized.

Layout assignment

The first issue in this section is deciding where in the scratch-pad to place the

program objects being swapped in. A good layout at a region should be able to

place most or all of the program objects desired in the scratch-pad by the memory

transfer algorithm in section 4.3. To increase the chances of finding a good layout,

the layout assignment algorithm should have the following two characteristics. First,

the layout should minimize fragmentation that might result when program objects

are swapped out, so as to increase the chance of finding large-enough free holes in

future regions. Second, when a memory hole of a required size cannot be found,

compaction in scratch-pad should be considered along with its cost.

The layout assignment algorithm runs as a separate pass after the memory

transfers are decided. It visits the regions of the application in the partial order of

their timestamps. At each region, it does the following four tasks. First, the method

updates the list of free holes in the scratch-pad by de-allocating the outgoing vari-

ables from the previous region. Second, it attempts to allocate incoming variables

to the available free holes in the decreasing order of their size. The largest variables

are placed first since they are the hardest to place in available holes. When more

106

4.5 Layout and code generation

than one hole can be used to fit a variable, the best-fit rule is followed: the smallest

hole that is large enough to fit the incoming program object is used for allocation.

The best-fit rule is commonly used for memory allocation in varying domains such

as segmented memory and sector placement on disks [133].

Third, when an adequate-sized hole cannot be found for a variable, compaction

in the scratch-pad is considered. In general, compaction is the process of moving

variables toward one end of memory so that a large hole is created at the end.

However, a limited form of compaction is considered that has lower cost: only the

subset of variables variables that need to be moved to create a large-enough hole for

the incoming request are moved. Also, for simplicity of code generation, compaction

involving blocks containing program objects used inside a loop is not allowed inside

the loop. Compaction is often more attractive than leaving the incoming program

object in DRAM for lack of an adequate hole this is because compaction only

requires two scratch-pad accesses per word, which is often much lower cost than

even a single DRAM access. The cost of compaction is included in the layout-

phase cost model; it is done only when its cost is recovered its benefit. Compaction

invalidates pointers to the compacted data and hence is handled just like a transfer

in the pointer-handling phase (section 5) of the method. Pointer handling is delayed

to after layout for this reason.

Fourth, in the case that compaction is not profitable, the approach attempts to

find a candidate program object to swap out to DRAM. Again, the cost is weighed

against the benefit to decide if the program object should be swapped out. If no

107

Chapter 4. Dynamic allocation of static program data

program object in the scratch-pad is profitable to swap out, the approach decides to

not bring in the requested-incoming program object to the scratch-pad. Fortunately,

the results from [132] show that this simple strategy is quite effective.

Code generation

After the method decides the layout of the variables in SRAM in each region, it

generates code to implement the desired memory allocation and memory transfers.

Code generation for the method involves changing the original code in three ways.

First, for each original variable in the application (Eg: a) which is moved to the

scratchpad at some point, the compiler declares a new variable(Eg: a fast) in the ap-

plication corresponding to the copy of a in the scratch-pad. The original variable a is

allocated to DRAM. By doing so, the compiler can easily allocate a and a fast to dif-

ferent offsets in memory. Such addition of extra symbols causes zero-to-insignificant

code increase depending on whether the object formats includes symbolic informa-

tion in the executable or not. Second, the compiler replaces occurrences of variable

a in each region where a is accessed from the scratch-pad by the appropriate ver-

sion of a fast instead. Third, memory transfers are inserted at each program point

to evict some variables and copy others as decided by the method. The memory

transfer code is implemented by copying data between the fast and slow versions

of to-be-copied variables (Eg: between a fast and a). Data transfer code can be

optimized; optimizations are described later in this section.

Since the method is dynamic, the fast versions of variables (declared above)

have limited lifetimes. As a consequence different fast variables with non-overlapping

108

4.5 Layout and code generation

lifetimes may have overlapping offsets in the scratch-pad address space. Further,

if a single variable is allocated to the scratch-pad at different offsets in different

regions, multiple fast versions of the variables are declared, one for each offset. The

requirement of different scratch-pad variables allocated to the same or overlapping

offsets in the scratch-pad in different regions is easily accomplished in the back-end

of the compiler.

Although creating a copy in scratch-pad for global variables is straightforward,

special care must be taken for stack variables. Stack variables are usually accessed

through the stack pointer which is incremented on procedure calls and decremented

on returns. By default the stack pointer points to a DRAM address. This does not

work to access the stack variable in scratch-pad; moreover the memory in scratch-

pad is not even maintained as a stack! Allocating whole frames to scratch-pad

means losing allocation flexibility. The other option of placing part of stack frame

in scratch-pad and the rest in main memory requires maintaining two stack pointers

which can be a lot of overhead. The easiest way to place a stack variable ’a’ in

scratch-pad is to declare its fast copy ’a fast’ as a global variable but with the

same limited lifetime as the stack variable. Addressing the scratch-pad copy as a

global avoids the difficulty that the scratch-pad is not maintained as a stack. Thus

all variables in scratch-pad are addressed as globals. Having globals with limited

lifetimes is equivalent to globals with overlapping address ranges. The handling of

overlapping variables was mentioned in the previous paragraph.

Code generation for handling code blocks involves modifying the branch in-

109

Chapter 4. Dynamic allocation of static program data

structions between the blocks. The branch at the end of the block would need to be

modified to jump to the current location of the target. This is easily achieved when

the unit of the code block is a procedure by leveraging current linking technology.

Similar to the case of variables, the compiler inserts new procedure symbols corre-

sponding to the different offsets taken by the procedure in the scratch-pad. Then

it suffices to modify the calls to call the new procedures. The back-end and the

linker would (without any modifications) then generate the appropriate branches.

As mentioned earlier, outlining or extracting loops into extra procedures can be used

to create small sized code blocks. For this optimization to work, the local variables

that are shared between the loop and the rest of the code are promoted as global

variables. These are given unique names prefixed with the procedure name. In the

set of benchmarks, it was observed that the overhead due to these extra symbols

was very small.

Reducing run-time and code size of data transfer code

The method copies data back and forth between the scratch-pad and DRAM. This

overhead is not unique to this approach hardware caches also need to move data be-

tween scratch-pad and DRAM. The code-size overhead of such copying is minimized

by using a shared optimized copy function. In addition, faster copying is possible in

processors with the low-cost hardware mechanisms of Direct Memory Access (DMA)

such as in ARMv6 or ARM7. DMA accelerates data transfers between memories

and/or I/O devices.

110

4.6 Summary of results

4.6 Summary of results

This chapter presents our previously published compiler-driven memory allocation

scheme for embedded systems that have SRAM organized as a scratch-pad memory

instead of a hardware cache. Most existing schemes for scratch-pad rely on static

data assignments that never change at run-time, and thus fail to follow changing

working sets; or use software caching schemes which follow changing working sets

but have high overheads in run-time, code size memory consumption and real-time

guarantees. The scheme in this chapter [132] follows changing working sets by

moving data from scratch-pad to DRAM, but under compiler control, unlike in a

software cache, where the data movement is not predictable. Predictable movement

implies that with this method the location of each variable is known to the compiler

at each point in the program, and hence the translation code before each load/store

needed by software caching is not needed. The benefit of our method depends on

the scratch size used. The method in [132] is implemented in the GCC v3.2 cross-

compiler, targeting the Motorola M-Core embedded processor. After compilation,

the benchmarks are executed on the public-domain and cycle-accurate simulator

for the Motorola M-Core available as part of the GDB v5.3 distribution. When

compared to a provably optimal static allocation, results show that this scheme

reduces run-time by up to 39.8% and overall energy consumption by up to 31.3%

on average for the benchmarks, depending on the scratch-pad size used.

111

Chapter 4. Dynamic allocation of static program data

112

Chapter 5

Dynamic program data

For simpler programs that use only static program data such as global and stack

variables, many effective allocation methods have been proposed to take advantage

of SPM for embedded systems. Chapter 3 presented a summary of all relevant

SPM allocation methods. The previous chapter discussed the best existing SPM

allocation method in detail. Surprisingly enough, after searching through more

than two dozen papers presenting SPM allocation methods, we only found a few

that mentioned heap data. These few did so only in the context that their methods

lacked automatic compiler support for its handling. None were able to alter heap

allocation at runtime for runtime and energy savings using existing dynamic SPM

allocation methods.

In order to optimize dynamic program data with compiler methods, we have

built upon ideas from previous allocation methods and have incorporated several

new concepts. This chapter will begin with a discussion of dynamic program data

113

Chapter 5. Dynamic program data

including the motivation behind its use and the characteristics which make it hard

to optimize. This is followed by a section which discusses the modifications we have

made to the DPRG to incorporate dynamic program data in its representation.

Finally we conclude the chapter with an introduction to our compiler method for

dynamic allocation of dynamic program data using the enhanced DPRG, before

discussing it in complete detail in the next chapter.

5.1 Understanding dynamic data in software

Our methods will most interest those programmers designing modern software for

embedded platforms that rely on high-level compiler languages for development.

Compiler tools for dynamic program memory have lagged far behind that of static

program code, stack and global data objects for embedded platforms. It is only in the

past few years that modern embedded engineers have enjoyed advanced compilers

capable of generating efficient machine code targeting embedded processors from

high-level languages. With the benefits of our dynamic memory allocation methods,

programmers can now make best use of Scratch-Pad Memory on their embedded

platforms for a much wider range of software applications. Of course, even with the

extensions proposed and implemented for our current compiler platform, there are

classes of applications which make poor candidates for our methods. During the

course of this research, we have observed a variety of development scenarios where

our methods are most and least profitable. This section will discuss the observed

program characteristics and their effect on our method’s efficacy.

114

5.1 Understanding dynamic data in software

A program that dynamically allocates data at runtime is the single most likely

candidate to benefit from our dynamic memory allocation method. Almost all pro-

grams will benefit from our previously developed methods that are able to dynam-

ically allocate stack, global and code data to Scratchpad Memory. This becomes

critical as target applications become more complex, consuming more storage space

at runtime and overflowing local register storage into main memory. Our current

methods handle the complicated problem of managing runtime allocated dynamic

data for optimal placement among heterogeneous memory banks. Dynamic memory

allocation is an essential feature for high-level languages such as C and C++, where

most advanced applications will employ some form of runtime memory manage-

ment and until now has been strictly placed into main memory for other allocation

schemes. Dynamic program data can take two forms, one being program objects

allocated from heap memory and the other being program objects grown recursively

inside of self-referencing function calls. This chapter will present an overview of

dynamic program data and how our method views these program objects for opti-

mization.

Heap Memory in C

The C programming language normally manages memory either statically or auto-

matically. Static-duration (global)variables are allocated in main (fixed) memory

and persist for the lifetime of the program; automatic-duration variables are allo-

cated on the stack and are created and destroyed as functions are called and return.

Both these forms of allocation are limited, as the size of the allocation must be a

115

Chapter 5. Dynamic program data

compile-time constant. If the required size will not be known until run-time. For

example, if data of arbitrary size is being read from a file or input buffer, then using

fixed-size data objects becomes inadequate.

The lifetime of allocated memory is also a concern for programmers. Nei-

ther static- nor automatic-duration memory is adequate for all situations. Stack-

allocated data can obviously not be persisted across multiple function calls, while

global data persists for the life of the program whether you need it to or not. In

many situations the programmer requires greater flexibility in managing the lifetime

of allocated memory.

These limitations are avoided by using dynamic memory allocation in which

memory is more explicitly but more flexibly managed, typically by allocating it from

a heap, an area of memory structured for this purpose. In C, one uses the library

function Malloc to allocate a block of memory on the heap. The program accesses

this block of memory via a pointer which malloc returns. When the memory is no

longer needed, the pointer is passed to Free which deallocates the memory so that

it can be reused by other parts of the program.

Figure 5.1 shows a view of main memory for an ARM binary executable that

has been loaded onto an embedded platform. Stack memory traditionally begins

at the topmost available memory address and grows downward into lower memory

addresses as the program call depth increases. Program code is typically loaded

at the lowest memory segment available on an ARM platform, with static global

data placed immediately above. The heap memory area begins at the lowest free

116

5.1 Understanding dynamic data in software

memory address available for the system and grows upwards as objects are allocated

at runtime.

Figure 5.1: View of main memory for a typical ARM compiled binary
application, showing heap, stack and global memory areas.

The malloc function is the basic function used to allocate memory on the heap

in C. Its prototype is:

void *malloc(size_t size);

This code fragment allocates size bytes of memory. If the allocation request

fails, a null pointer is returned. If the allocation succeeds, a pointer to the block of

memory is returned. This pointer is typically cast to a more specific pointer type

by the programmer before being used.

Memory allocated via malloc is persistent: it will continue to exist until the

program terminates or the memory is explicitly deallocated by the programmer (that

117

Chapter 5. Dynamic program data

is, the block is said to be “freed”). This is achieved by use of the free function. Its

prototype is

void free(void *pointer);

This code fragment releases the block of memory pointed to by pointer. pointer

must have been previously returned by malloc or calloc and must only be passed to

free once.

The standard method of creating an array of ten integers on the stack or as a

global variable is:

int array[10];

To allocate a similar array dynamically, the following code could be used:

int *ptr = malloc(10 * sizeof (int));

There exist several other ANSI C heap management functions which program-

mers sometimes make use of. One alternative is to use the calloc function, which

allocates memory and then initializes all allocated bytes to zero. Another function

named realloc allows a programmer to grow or shrink a block of memory allocated

by a previous heap function. Many variants exist among different implementation

of the standard C libraries, particularly among embedded systems which attempt

to optimize for space and time complexity (or a combination of both) when deal-

ing with restricted hardware platforms. In general, libraries targeted for embedded

platforms usually use a compact and highly tuned implementation to manage heap

memory and can vary widely in practice.

118

5.1 Understanding dynamic data in software

Recursive Functions

The concept of recursion is one essential for computer programmers in languages

such as LISP, which is a language based mostly on recursive function calls and dy-

namic list data structures. Virtually all programming languages in use today allow

the direct specification of recursive functions and procedures. When such a recursive

function is called in C for example, the computer or the language implementation

keeps track of the various instances of the function usually by using a call stack, al-

though other methods may be used. Since many recursive functions reach a dynamic

stack call depth, they are generally unbounded at compile-time and not amenable

to typical bounded memory allocation optimization strategies.

The Oxford English Dictionary recursively defines recursion as “The applica-

tion or use of a recursive procedure or definition”! Recursive is defined as “Involving

or being a repeated procedure such that the required result at each step except the

last is given in terms of the result(s) of the next step, until after a finite number

of steps a terminus is reached with an outright evaluation of a result.” In software,

recursion is when a function or method calls itself repeatedly (usually with slightly

different input arguments). Recursion allows the writing of elegant and terse code

for some algorithms although its programming complexity increases dramatically

as the recursive function is redesigned to handle more possible situations. The in-

creased complexity generally comes with a loss of automatic compiler optimization

effectiveness because of the explosion of possible paths through a recursive function

graph.

119

Chapter 5. Dynamic program data

Recursion in computer programming defines a function in terms of itself. Re-

cursion is deeply embedded in the theory of computation, with the theoretical equiv-

alence of mu-recursive functions and Turing machines at the foundation of ideas

about the universality of the modern computer. A good example application of re-

cursion is in parsers for programming languages. The great advantage of recursion is

that an infinite set of possible sentences, designs or other data can be defined, parsed

or produced by a finite computer program. The popular Quicksort and Mergesort

algorithms are also commonly done using recursion. Some numerical methods for

finding approximate solutions to mathematical equations rely entirely on recursion.

In Newton’s method, for example, an approximate root of a function is provided as

initial input to the method. The calculated result (output) is then used as input to

the method, with the process repeated until a sufficiently accurate value is obtained.

Dynamic Data Structures

Dynamically created data structures like trees, linked lists and hash tables (which

can be implemented as arrays of linked lists) are key to the construction of many

large software systems. For example, a compiler for a programming language will

maintain symbol tables and type information which is dynamically constructed by

reading the source program. Many modern compilers also parse the source program

and translate it into an internal tree form (abstract syntax tree) that is also dynam-

ically created. Graphics programs, like 3D rendering packages, also make extensive

use of dynamic data structures. In fact it is rare to find any program that is larger

than a couple of thousand lines that does not make use of dynamically allocated

120

5.1 Understanding dynamic data in software

data structures.

For programmers dealing with large sets of data, it would be problematic to

have to name every structure variable containing every piece of data in the code – for

one thing, it would be inconvenient to enter new data at run time because you would

have to know the name of the variable in which to store the data when you wrote the

program. For another thing, variables with names are permanent – they cannot be

freed and their memory reallocated, so you might have to allocate an impractically

large block of memory for your program at compile time, even though you might

need to store much of the data you entered at run time temporarily. Fortunately,

complex data structures are built out of dynamically allocated memory, which does

not have these limitations. All a program needs to do is keep track of a pointer to

a dynamically allocated block, and it will always be able to find the block.

There are some advantages to the use of dynamic storage for data structures.

Since memory is allocated as needed, we don’t need to declare how much we shall

use in advance. Complex data structures can be made up of lots of ”lesser” data

structures in a modular way, making them easier to program. Using pointers to

connect structures means that they can be re-connected in different ways as the

need arises. Data structures can be more easily sorted, for example.

Dynamic program memory management is one of the main reasons that high-

level object oriented programming languages such as Java have become popular.

Java does not support explicit pointers (which are a source of a lot of complexity

in C and C++) and it supports garbage collection. This can greatly reduce the

121

Chapter 5. Dynamic program data

amount programming effort needed to manage dynamic data structures. Although

the programmer still allocates data structures, they are never explicitly deallocated.

Instead, they are ”garbage collected” when no live references to them are detected.

This avoids the problem of having a live pointer to a dead object. If there is a live

pointer to an object, the garbage collection system will not deallocate it. When an

object is no longer referenced, its memory is automatically recovered. In theory,

Java avoids many of the problems programmers have with dynamic memory. The

cost, however, is in performance and predictability. Automatic garbage collection

is usually much less efficient than adequate programmer managed allocation and

deallocation. Also, garbage collectors tend to deallocate objects from a low level,

which can further hurt performance. Finally, garbage collection severely degrades

real-time bounds for designers concerned with WCET. For embedded processors,

the cost of managed high-level languages is simply too high and they are rarely used

in practice.

Recursive Data Structures

Dynamically allocated data is particularly useful for representing recursively defined

data structures. These types of structures are common when working with high-

level languages, and are ubiquitous in computer algorithms. Programmers often use

a particular kind of recursive data structure called a tree to represent hierarchical

data. A tree is recursively defined in graph theory as a root with zero or more

subtrees. Each subtree itself consists of a root node with zero or more subtrees. A

subtree node with no branches or children is a leaf node. A classic use of recursion

122

5.1 Understanding dynamic data in software

is for tree traversal, where actions can be performed as the algorithm visits each

node in the dynamically allocated tree.

The following example will illustrate use of tree data structure in a C applica-

tions. A tree can be implemented in various ways, depending on the structure and

use of the tree. Let us assume a tree node consists of a scalar data element and

three pointers for the possible children of the node:

typedef struct Tree_Node {

int data;

Tree_Node* left;

Tree_Node* middle;

Tree_Node* right;

}

In figure 5.2, we see a 5 level tree data structure labeled with individual nodes

from A - O. Node A is the root of the tree since it is the only node with no parents

and node G is a leaf node since it has no children. With these types of recursive

data structures, recursive algorithms are often used to dynamically traverse the

structures to perform operations on the data or structure itself. There are three

types of recursive tree traversals: preorder, inorder and postorder - each defines the

particulars of whether you work on a node before or after working on its children.

Given the tree pictured in figure 5.2, let us walk through what would happen

on an post-order traversal (DFS) of the tree. First we would call the postorder

algorithm on the root node (node A), placing this method call on the stack. Node A

has 3 children so we call the postorder function recursively on the first child (node

B), pushing that call on the stack. Node B has 2 children, so we again call the

postorder function on the first child (node C), placing that call on the stack. We

123

Chapter 5. Dynamic program data

Figure 5.2: An example of a binary tree node data structure with a recursive data
pointer.

then call the method on node Cs first child, node D. Now the stack is 4 function

calls deep, but this final node is a leaf, so some processing is done to its data and

the deepest postorder function call returns. Now the algorithm is back in Node C,

but the postorder function has moved on to its second child (node E), increasing the

stack depth to 4 again. After the function finishes processing the lead node data,

execution works its way recursively up and down across all children for all nodes.

During this process, the program is using pointers to traverse the data structures,

performing memory accesses for each visit to heap objects as well as the growing

and shrinking stack objects.

Binary trees, linked lists, graphs and skip lists are only a few of the many

kinds of recursive data structures frequently used by programmers. Unfortunately,

dynamic data structures and even simple heap objects are problematic for optimiza-

124

5.2 Obstacles to optimizing software with dynamic data

tion precisely because of their dynamic runtime behavior. The following section will

discuss the problems with existing SPM allocation methods that optimize static

program data allocation. As we will see in our results chapter, being able to analyze

and optimize dynamic program data with compiler methods can have a dramatic

effect on efficiency for programs at all levels of complexity.

5.2 Obstacles to optimizing software with dynamic

data

Our methods will most interest those programmers designing modern software for

embedded platforms that rely on high-level languages for development. As em-

bedded devices become more prevalent, so has the sophistication of the software

deployed on these devices. The increased sophistication generally requires more lev-

els of abstraction in the software development layer. Instead of traditional assembly

languages, most modern embedded developers now employ high-level languages and

compiler support in the embedded domain. One distinct advantage of high-level

languages is the ease with which programmers can dynamically allocate memory to

handle inputs or algorithms of widely varying sizes. Unfortunately, the performance

of dynamically allocated memory has lagged far behind that of statically allocated

program objects due to a number of reasons.

From the previous section we saw that dynamic data structures provide pro-

grammers with a powerful tool for flexible memory storage in their complex appli-

125

Chapter 5. Dynamic program data

cations. This implementation flexibility is also the root for the fundamental diffi-

culty in automatic compiler analysis of applications using dynamic program memory.

Many accurate methods have been developed to statically predict the relative ex-

ecution paths and access frequencies for simpler applications which rely on static

program data allocation. For complex programs using dynamic data allocation, it

is no longer sufficient to only perform a static analysis, since much of the program

behavior will instead be input dependent. The very presence of dynamic memory

usage in a program implies that the application expects program input of some sort

that in unknown at design-time. The actual path an application takes at runtime

and the relative access frequencies to data objects during its lifetime can vary dra-

matically for programs operating on dynamic data structures. From this we see that

we must include comprehensive methods in our SPM allocation methods to ensure

that it is able to optimize a given application across the most number of inputs and

minimize the over-customization typical of profile-guided methods. We note that

by necessity all locality enhancement schemes such as ours are inherently profile de-

pendent and this is not a problem unique to our method. Nevertheless, while other

published research has glossed over this aspect, it becomes critical when dealing

with larger applications and so must be addressed for our proposed methods.

The nature of dynamic memory implementation for C has been seen as both

a blessing and a curse by most programmers due to its completely manual ap-

proach to dynamic memory management. As noted previously, C is the lowest-level

”high-level” language in use today, which explains its overwhelming popularity for

126

5.2 Obstacles to optimizing software with dynamic data

embedded design. C programmers have fine-grain control over dynamic memory al-

location at runtime in their programs, but must also be careful to properly manage

and make use of that dynamic memory. The actual implementation of the C library

routines implementing heap management is also of frequently interest to embedded

designers and should be investigated in parallel with orthogonal dynamic memory

optimizations. The choice of a heap management algorithm can heavily influence

the overhead and predictability for a platform using many programs with dynamic

memory. Whenever possible, research in dynamic memory optimizations has striven

to minimize overhead for dynamic memory management and improve safety and pre-

dictability whenever possible. Our own research in SPM management for dynamic

data provides a customized memory management solution for embedded program-

mers with low overhead, predictable latencies and safe dynamic memory transfers

for improved locality.

Finally, the largest concern for any memory locality optimization that per-

forms dynamic runtime changes to memory is that of data access safety and cor-

rectness. This is a concern for the entire range of dynamic memory optimizations,

from automatic hardware methods such as caches to software methods like software

caching. Because dynamic memory is accessed entirely through pointers in C and

C++, pointer correctness much be maintained across the entire program for any

changes made. This is avoided in more complex compiler languages such as Java,

although not without incurring significant costs in efficiency and complexity. Our

own methods were developed with memory safety as one of the cornerstones of its

127

Chapter 5. Dynamic program data

implementation. Using detailed static and dynamic program analysis, our compiler

method enforces memory safety before modifying a program’s memory allocations

at runtime to improve access locality.

Comparison with existing dynamic memory optimizations

To illustrate the difficulties in optimizing dynamic program data for dynamic SPM

placement, it is helpful to review the advances made in the similar research into

optimizing the layout of dynamic data structures to improve cache performance.

In general, the goal of any memory optimization is to improve the effectiveness

of a computer memory system. The goal for a software optimizer is to help the

memory system by improving the program locality, either temporal, spatial or both.

To alter the temporal locality, an optimizer must be able to modify the algorithm

of the program, which has only proved possible for certain stylized scientific code,

where transformations such as loop tiling and loop interchange can significantly

increase temporal and spatial locality. Unfortunately, many program structures are

usually too complex to be transformed using these types of optimizations. This

is a situation common in programs that manipulate pointer-based data structures

and most schemes to optimize dynamic program memory placement have focused

on making such structures cache conscious.

Perhaps the most researched field concerning the optimized placement of dy-

namic program memory is that of data-layout optimization for cache hierarchies.

Indeed, this has become the standard for dynamic memory investigation because

almost all modern computer systems employ cache hierarchies in their design, in an

128

5.2 Obstacles to optimizing software with dynamic data

attempt to dynamically exploit data locality among its running applications. By

looking at the progress made in data-layout cache optimization, we can draw simi-

larities between that field and and our own research on dynamic SPM management

for dynamic program data.

Data-layout optimizations create a layout with good spatial locality generally

by (i) attempting to place contemporaneously accessed memory locations in physical

proximity (i.e., in the same cache block or main-memory page), while (ii) ensuring

that frequently accessed memory cells do not evict each other from caches. It turns

out that these goals make the problem of finding a good layout not only intractable

but also poorly approximable [114]. The key practical implication of this hardness

result is that it may be difficult to develop data-layout heuristics that are both robust

and effective (i.e., able to optimize a broad spectrum of programs consistently well).

The hardness of the data-layout problem is also reflected in the lack of tools

that static program analysis offers to a data layout optimizer. First, there appear to

be no static models for predicting the dynamic memory behavior of general-purpose

programs that are both accurate and scalable, although some successes have been

achieved for small C programs [5]. Second, while significant progress has been made

in deducing shapes of pointer-based data structures, in order to create a good layout

it is necessary to also understand the temporal nature of accesses to these shapes.

This problem appears beyond current static analyzers even for powerful compiler

packages. The inadequacy of static analysis information has been recognized by

existing data layout optimizations, which are all either profile- guided or exploit

129

Chapter 5. Dynamic program data

programmer-supplied application knowledge. Although many of these techniques

manage to avoid the problem of statically analyzing the program memory behavior

by instead observing it at run-time, they are still fundamentally constrained by

the difficult problem of selecting a good layout for the observed behavior [114].

Typically based on greedy profile guided heuristics, these techniques provide no

guarantees of effectiveness and robustness. By observing which areas have proven

difficult for other researchers working with dynamic program data, we have been

able to incorporate a number of features into our own approach to overcome such

problems.

5.3 Creating the DPRG with dynamic data

The previous sections presented material to help in understanding the characteristics

that make dynamic program data both useful and difficult to work with. In this

section, we begin the presentation of our own methods for optimizing dynamic data

by introducing our compiler analysis framework. Our optimization methods operate

on a modified version of the Dynamic Program Region Graph(DPRG), which was

reviewed in the last chapter on SPM allocation for static program data. The DPRG

is a combination of the control flow graph and data flow graph for a particular

application, augmented with dynamic profile information. This section will present

details on the version of the DPRG used for our research on dynamic program data

optimizations.

Our method defines regions and timestamps in the same way as for our method

130

5.3 Creating the DPRG with dynamic data

for global and stack data [132]. A region is a contiguous portion of code in which

the allocation to scratch-pad is fixed. Boundaries of regions are called ‘program

points’, and thus regions can be defined by defining a set of program points. Code

to transfer data between scratch-pad and DRAM is inserted only at the program

points.

Program points and hence regions are found as follows. Promising program

points are (i) those after which the program has a significant change in locality be-

havior, and (ii) those whose dynamic frequency is preferably less than the frequency

of its following region, so that the cost of copying into SRAM can be recouped by

data re-use from SRAM in the region. For example, sites just before the start of

loops are promising program points since they are infrequently executed compared

to the insides of loops. Moreover, the loop often re-uses data, justifying the cost of

copying into SRAM. With the above two criteria in mind, we define program points

as (i) the start and end of each procedure; (ii) just before and just after each loop

(even inner loops of nested loops); (iii) the start and end of each if statement as

well as the start and end of each possible path of the evaluation dependent code

blocks; and (iv) the start and end of each case in all switch statements as well as

the start and end of the entire switch statement. These points correspond to the

finest granularity of the compiler which is the assembly language level.

To illustrate the DPRG and how we augment it to handle dynamic program

data, let us assume our compiler encounters the program shown in figure 5.3. The

code fragment in figure 5.3 contains a simple program outline for illustrative pur-

131

Chapter 5. Dynamic program data

poses. It consists of three procedures, namely main(), func-A() and func-B(). Pro-

cedure main() contains an if-then conditional block of code which chooses between

the two functions func-A and func-B. The ”then” code block assigns the pointer

variable Ptr the value returned by procedure Func-A. Procedure func-A allocates

4-bytes of memory from the heap and returns a pointer to the allocated memory.

The ”else” code block instead calls procedure Func-B if that path through the if-

then condition is taken. Procedure func-B contains a loop that we name Loop 1

and which makes accesses to the stack array variable Y by allocating heap memory

for its array of pointers. Only loops, conditional blocks, procedure declarations and

procedure calls are shown along with three selected variables Ptr, x and Y – other

instructions and constructs are not. We will present more detailed presentation on

some special cases for the DPRG in the next two chapters.

Figure 5.4 shows the DPRG constructed during the initial phases of our op-

timization scheme for the same program example. The initial phase of our method

conducts static compiler analysis to create a static version of our DPRG. This is

augmented later with profile information from the application to provide dynamic

access statistics and complete the DPRG. For very simple program code which does

not take an input, the static and dynamic DPRG structures are almost identical

and so may be used interchangeably without coalescing into the final DPRG. The

dynamic information concerning access frequency is carried inside the edge data

structure between all nodes in the DPRG and comes mostly from run-time profile

information. Static analysis is able to determine frequencies for some global,code

132

5.3 Creating the DPRG with dynamic data

[example.c]

main() {

if (...) {

Ptr = func-A() }

else {

func-B(x) }

...

return

}

func-A() {

return malloc(4)

}

func-B(int x) {

for (i=1 to x) {

Y[i] = func-A()

}

}

Figure 5.3: A sample program containing three functions and three variables.

and stack variable at compile-time. But, as with our example, often there is insuffi-

cient information from just the program code without knowledge of program inputs

and runtime behavior. For heap data, the static analysis only reveals the heap allo-

cation sites in an application, along with their allocation size without reliable access

information or runtime behavior prediction. Dynamic program behavior informa-

tion is gathered from runtime profiles, using a target input set where applicable.

The example code in 5.4 shows the most common type of heap object allocation

site, that of a known-size unit for every call. For heap data with an allocation size

that cannot be bound at compile-time, we present methods in chapter 7 to handle

these types of objects.

133

Chapter 5. Dynamic program data

Main()

Func-A()

Func-B()

then

If_header

else

Loop

Heap_A

Ptr

Y[]

x

x

Figure 5.4: Static DPRG representation of the example code showing a heap allo-
cation site.

In the DPRG shown in figure 5.4, there are three procedures, one loop, one

heap allocation site and one if-then condition construct. Separate nodes are shown

for the entire if statement(called if-header) and for its then and else parts. The oval

nodes in the figure represent procedures, circular nodes represent loops, rectangular

nodes represent if statement nodes, square nodes represent global and regular stack

variables and octagonal nodes represent heap objects. Edges in the diagram directed

to procedures indicate a call to that function. Edges to loop and if nodes show that

the node is the child to its originating parent. Edges to program objects represent

memory accesses to that program object from its parent. the DPRG is usually

a directed acyclic graph (DAG), except for recursive programs which are handled

specially and will be shown later.

134

5.3 Creating the DPRG with dynamic data

Of particular importance in the DPRG shown in figure 5.4 is the representation

of a program’s heap objects. The octagonal node in this figure represents a Heap

Allocation Site in the program. This is defined as every unique segment of program

assembly code existing in a compiled application which calls a library function to

allocate space from the program heap. All individual heap objects allocated using

the same allocation site are associated with this node in the DPRG. To better explain

the way the DPRG handles heap object creation sites in a program, we present a

more detailed picture in figure 5.5 which shows the DPRG structure for func-A in

greater detail.

Func-A()

Heap_A

A_1

Func-A()

Heap_A

A_2

Then-taken DPRG

Func-A()

A_1

A_3

A_4

Else-taken DPRG

Func-A()

Figure 5.5: Detailed view of the DPRG for Func-A, including heap objects.

Figure 5.5 depicts a detailed view of the DPRG for procedure func-A from our

example program, for the two alternate paths through the if-then conditional block

at runtime. From this we see that func-A only performs a single call to the malloc

135

Chapter 5. Dynamic program data

library function to allocate 4 bytes of data and returns its address, no matter which

branch is taken. This is the only location in figure 5.4 which invokes a heap creation

procedure, and is thus the only heap allocation site for the program. The left side

of the figure shows the DPRG when the if condition is true, with only a single heap

object allocated from this site named A 1 . The right side of the figure shows

the DPRG when the condition is not met, allocating 4 heap objects from this site,

labeled A 1 - A 4. From dynamic profile information, our compiler can estimate

the number of objects which were allocated from this site during different visits to

its program region for a program input. We use the creation and access frequency

data from the program profile to create the overall heap allocation site node in the

DPRG. We have also developed techniques to analyze multiple program inputs for

such dynamic regions, used to reduce profile sensitivity and is discussed in 7.4.

When using the DPRG to optimize heap variables, we denote the memory

assigned to each heap allocation site as being the profiled heap bin size. Throughout

this thesis, a heap bin is simply a collection of memory locations corresponding to

storage space allocated from the program heap. For allocation purposes, a heap

bin is more specifically a set of 1 or more individual heap objects of the same size

allocated from the same heap allocation site in a program. For example, we can

apply our method to the example program assuming the program input leads to the

execution of func-B in the if-then condition block. In this case, we see that the stack

array variable ”Y” is used to store pointers to four heap objects, each allocated with

a size of 4 bytes. We can say that the four heap objects created in this program

136

5.3 Creating the DPRG with dynamic data

region make up a heap bin for this heap allocation site with a total size of 16 bytes

for this example. The bin is of a reasonable size with small individual heap objects

accessed inside a loop, making it a likely candidate for SPM placement. Later we

will see how our method determines which heap objects constitute a promising bin

set for optimization purposes and how our method determines the final sizes for all

heap bins in a program when accounting for dynamic SPM movement.

To uniquely identify each region in the DPRG, we mark each newly visited

node during the runtime profile with a unique increasing timestamp. Internally, our

compiler method actually uses a three integer index of the 3-tuple form (A,B,C) to

uniquely identify each program point in the DPRG during compilation. We have

adopted this form during development of our profiling tools to deal with programs

using multiple C-language source files, common for realistic applications. In the

index, A corresponds to the file number, B to the function number and C to the

function marker number. Each is assigned as parsed during compilation of each

function from each file that makes up a complete application. This allows us to

properly track program regions at the assembly code level at which the program

executes on an embedded processor, and correctly profile program regions for access

activity.

As each program point is reached during execution, the compiler-assigned

triple is associated with a runtime timestamp when the profiler first sees that re-

gion to make analysis and optimization passes simpler. We note that when a sim-

ple program is timestamped using static compiler analysis such as in our previous

137

Chapter 5. Dynamic program data

work [132], the relative ordering of timestamps can help illuminate relationships

between different program points and access patterns for static program data. Our

method incorporates dynamic program data which voids most of the existing static

compiler analysis methods for reliable runtime behavior prediction. We note that

not all program code regions contain executable code since compilers to not always

generate useful code between marker boundaries as they occur in optimized assem-

bly output. It should also be noted that we can have uniquely timestamped program

regions between any two markers which can be reached using an edge on the DPRG,

even if the markers come from different files or functions.

Recursive Functions

The approach discussed so far does not directly apply to stack variables in recursive

or cross-recursive procedures. With recursion the call graph is cyclic and hence the

total size of stack data is unknown. For a compiler to guarantee that a variable in

a recursive procedure fits in the scratchpad is difficult. The baseline technique is

to collapse recursive cycles to single nodes in the DPRG, and allocate their stack

data to DRAM. Edges out of the recursive cycle connect this single node to the

rest of the DPRG. This provides a clean way of putting all the recursive cycles in

a black box while we first describe our core method for heap variables. Section 7.2

will change the way we handle recursive functions by modifying both the DPRG

representation of these functions as well as the core allocation algorithm explained

in the next chapter.

138

Chapter 6

Compiler allocation of dynamic

data

In this thesis we propose a framework that enables efficient, effective and robust

data-layout optimizations for dynamic program data. Our compiler method finds

a good dynamic program data layout by iteratively searching the space of possible

layouts, using profile feedback to guide the search process. A naive approach to

profile-guided search may transform the program to produce a candidate data layout,

then recompile and rerun it for evaluation and feedback for further tuning. This

leads to extremely long search cycles and is too slow and cumbersome to be practical.

To avoid this tedious process, our framework instead iteratively evaluates possible

dynamic layouts by simulating their program memory behavior using the DPRG.

Simulation using the DPRG is also more informative than rerunning since it allows

us not only to measure the resulting performance of the candidate data layouts,

139

Chapter 6. Compiler allocation of dynamic data

but also to easily identify the objects that are responsible for its poor memory

performance. Having understood how program information is represented by the

DPRG in the last chapter, we now move on to discussion of our allocation method

which relies on DPRG information.

This chapter presents a discussion on the core steps of our allocation method

for heap objects. Our compiler method operates in three main phases: (1) DPRG

initialization and initial allocation computation, (2) iterative allocation refinement

and (3) code generation. Only the essential steps from our complete allocation

algorithm for dynamic program data will be presented in this chapter to ease un-

derstanding of the concepts. Once our basic method for regular heap objects has

been presented, the next chapter will go into further detail on the improvements

developed over our core algorithm.

Section 6.1 presents an overview of our method for dynamic SPM allocation

of heap objects. The preparation required for our main algorithm is described in

sections 6.2 and 6.3. Sections 6.4, 6.5, 6.6, 6.7, 6.8 and 6.9 detail the individual steps

comprising the iterative portion of our allocation algorithm. Section 6.10 concludes

this chapter by reviewing our methods to perform code generation of an optimized

application binary. The next chapter will complete the presentation of our full

method by presenting additional optimization modules developed to handle more

complicated dynamic data.

140

6.1 Overview of SPM allocation for dynamic data

6.1 Overview of SPM allocation for dynamic data

Figure 6.1 shows the core steps that our method takes to allocate all types of data –

global, stack and heap – to scratch-pad memory. The proposed memory allocation

algorithm is run in the optimizing compiler just after parsing and initial optimiza-

tions but before register allocation and code generation. This allows the compiler to

insert the transfer code before the compiler code optimizations, register allocation

and code generation passes occur for best efficiency. Although the main contribution

of this paper is the method for heap, the figure shows how our allocation method

is able to handle global and non-recursive stack variables using findings from our

previous research in [132] to give a comprehensive allocation solution. While our

method uses many of the concepts presented in [132], our dynamic data allocation

algorithm is completely original. The compiler implementation in this thesis was

redesigned several times and evolved into a highly integrated optimization frame-

work that properly considers all program variables for best overall placement to

SPM using dynamic methods. However, our methods for handling heap data can

also be applied independently with any other SPM allocation scheme for global and

non-recursive stack data. For example, a developer may decide to split the total

SPM space amongst heap and non-heap data, and separately apply different alloca-

tion methods for each variable type. We found that this separate handling approach

tends to greatly reduce the benefit of SPM allocation by unduly limiting the flexi-

bility of the allocation search space. The separation of optimization approaches was

thus abandoned in favor of our more efficient comprehensive approach for whole

141

Chapter 6. Compiler allocation of dynamic data

Step 1. Create DPRG and prepare it for usage. /* Section 6.2 */
Step 2. Find idealized SPM allocation for global, stack and heap. /* Section 6.2 */
Step 3. Compute initial heap bin sizes. /* Section 6.3 */
Step 4. Compute consensus heap bin sizes. /* Section 6.3 */

/* Iteration loop start*/
Step 5. Allocation Feedback Optimizations(not used for first iteration). /* Section 6.8 */
Step 6. Transfer Minimization Passes. /* Section 6.5 */
Step 7. Heap Safety Transformations. /* Section 6.6 */
Step 8. Complete Memory Layout for global, stack and heap. /* Section 6.7 */

/* Iteration loop end*/ /* Section 6.9 */
Step 9. (a) If (estimated runtime of current solution < estimated runtime of best solution)

Update best solution so far.
(b) If (estimated runtime of current solution same as last two)

Goto Step 10. /* End search */
(c) If (number of iterations < THRESHOLD)

Goto Step 5. /* Next iteration */
Step 10. Do code generation to implement best allocation found. /* Section 6.10 */

Figure 6.1: Algorithm for allocating global, stack and heap data to scratch-pad
memory.

program optimization to SPM presented in this thesis.

Here we overview the steps shown in figure 6.1. Details are found later in the

sections listed in the right margin for each step in the figure. Step 1 partitions the

program into a series of regions during compilation while gathering static program

information. The region boundaries are the only program points where the SPM

allocation is allowed to change through compiler-inserted copying code. This step

ends by adding the dynamic profile information from regions and variables to create

the final DPRG. Step 2 performs an idealized variable allocation of available SPM

for stack, global and dynamic data variables for all program regions using the final

DPRG. Given a target SPM size, Step 3 computes an initial bin size for each heap

variable for each region based upon the relative frequency-per-byte of all variables

accessed in that region. Variables of any kind with a higher frequency-per-byte

142

6.1 Overview of SPM allocation for dynamic data

of access are thus preferred when deciding initial heap, stack and global variable

allocations. Step 4 computes a single consensus bin size for each heap ”variable”

(allocation site) equal to the weighted average of the initial bin sizes for that variable

across all regions which access that variable; weighted by frequency-per-byte of

that variable in each region. Step 5 begins the iterative loop and performs the

feedback optimizations based on the results of the previous iteration’s allocation

findings (beginning with the second iteration). Step 6 applies a set of transfer

minimization passes to try and reduce the overhead from transfers in our dynamic

SPM placement. Step 7 performs a set of heap safety transformations to ensure

our allocation conforms to our heap bin allocation requirements. Step 8 computes

the memory address layout for the entire program which includes finding the fixed

offset assigned to each heap bin at runtime. Step 9 performs an iterative step on the

algorithm. Step 9(a) maintains the best solution seen so far. Step 9(b) terminates

the algorithm if the iterative search is making no progress. Step 9(c) is the heart of

the iteration in that it repeats the entire allocation computation, but this time with

feedback from the results of this iteration. After the iterative process has exited,

step 10 generates code to implement the best allocation found among all iterations.

Handling global and stack data

Our method as implemented is capable of allocating all possible types of program

data, whether they be dynamic or static data types. The compiler infrastructure

created for this thesis is able to dynamically place global, stack, heap and code ob-

jects to SPM at runtime and is not limited to just dynamic data, although the main

143

Chapter 6. Compiler allocation of dynamic data

contributions of this thesis encompass dynamic data types. While it is possible to

apply only our techniques for dynamic data on top of another existing allocation

scheme, for best performance our implementation actually tightly integrates han-

dling for both types to best trade off SPM space for runtime gain. For all our passes,

we attempt to allocate all variables with best FPB regardless of type. All passes were

created to allow flexible allocation attempts using all types of variables, and taking

advantage of their different properties, most notable liveness and pointer analysis

results, to be able to dynamically allocate to SPM and main memory throughout

program execution for most benefit. The only differences between dynamic and static

data allocation result from the different allocation behaviors, lifetime properties and

access profiles seen in the DPRG for a program. With a firm understanding of

how each object type can possible interact during program execution, it becomes

much easier to develop a single complete infrastructure to perform total program

allocation.

This thesis has culminated in the development of a robust framework that is

able to account for these distinguishing features and handle all data types in one

package. While there are no new contributions for code or global object allocation

from this thesis, we do contribute a new method to allocate recursive stack data,

which completes the list of allocatable stack objects. The compiler platform de-

veloped in this thesis makes use of our previous work on code, global and stack

allocation in [132] for any difficulties or optimizations affecting static data types.

Otherwise, this thesis only discusses the contributions for dynamic data handling

144

6.2 Preparing the DPRG for allocation

except where it is necessary to mention static data handling in context. It should

be understood that the majority of our general allocation passes apply to code, global

and stack variables as well, except when a pass is explicitly targeting heap data. For

example, transfer minimization is important for any type of variable, with the type

simply helping to determine the flexibility with which a variable can be manipulated

or allocated within the confines of the entire program.

6.2 Preparing the DPRG for allocation

Before engaging the main iterative body of our allocation methods for dynamic

SPM placement, we must first make a few internal modifications of the DPRG to

accommodate extra information. For each program region in the DPRG we will

also have a memory map of the SPM space available for the program in each region.

This will allow us to keep track of which region variables are candidates for SPM

placement for that iteration as well as available SPM space. Our allocation method

prepares the DPRG for use by incorporating these memory maps and other reference

structures to create a complex internal graph structure. This graph represents all

DPRG nodes, including all static and dynamic variable and edge information for

each node, as well as the node’s SPM memory map and allocator feedback data.

Once the complete allocator DPRG has been loaded, we finish processing by visiting

each program region to find the region with the largest memory occupation, which

in turn defines the maximum memory occupancy for the program.

After the DPRG has been loaded and prepared for use, we attempt an idealized

145

Chapter 6. Compiler allocation of dynamic data

allocation pass for the entire program in order to find a good starting point for our

search. This is accomplished by first visiting each region in the DPRG and sorting

its variable list by FPB for that region. Each variable with a positive FPB is

processed in decreasing order and placed in SPM if the variable fits in the SPM

free space. At the end of this pass, we can see an idealized view of our SPM

allocation as execution progresses from region to region through the DPRG. This

view represents the situation where the most frequently accessed variables (that fit)

are resident in SPM for each region. Of course, this is an ideal because this placement

is not concerned with the greater issues of consistency and transfer costs that plague

dynamic allocation schemes. With an allocation goal in place, we proceed to the

final step of our preparatory phase.

6.3 Calculating heap bin allocation sizes

Our next phase uses the program allocation derived in the last step to decide on

realistic initial values for the heap bin sizes for each allocation site. The bin size

assignment heuristic assigns a single bin size for each heap variable in two steps.

First, each region requests an initial bin size for each heap variable considering

only its own accesses (Step 2 in figure 6.1). Second, a single consensus bin size is

computed for each heap variable (Step 3 in figure 6.1) as a weighted average of the

initial bin sizes of regions accessing that variable. This section discuss these two

steps in detail.

Before looking at the algorithm for bin size computation, let us consider two

146

6.3 Calculating heap bin allocation sizes

intuitions on which the algorithm is based. The first intuition is that the bin

size assignment heuristic assigns larger bins to sites having greater frequency-per-

byte(FPB) of access. The reason is that the expected runtime gain from placing a

heap bin in scratch-pad instead of DRAM is proportional to the expected number of

accesses to the bin. Thus for a fixed amount of scratch-pad space, the gain from that

space is proportional to the number of accesses to it, which in turn is proportional

to the frequency-per-byte of data in that space. A second intuition is also needed:

the constraint of fixed-sized bins implies that even heap variables of lower frequency-

per-byte should get a share of the scratch-pad. This intuition counter-balances the

first intuition. To see why this is needed, consider that according to the first intu-

ition alone, a heap variable with the highest frequency-per-byte in a certain region

should be given all the scratch-pad space available. This may not be wise because

of the fixed size constraint: doing so would mean a huge bin for the variable that

would crowd out all other heap objects in all regions it is accessed, even those with

higher frequency-per-byte in other regions. A better overall performance is likely if

we ‘diversify the risk’ by allocating all bins some scratch-pad, even those with lower

frequency-per-byte.

The initial bin size computation algorithm is shown in procedure find initial -

bin size() in figure 6.21 . It proceeds as follows. For every region in the program

(line 1), all the variables accessed in that region are considered one by one, in

decreasing order of their frequency-per-byte of access in that region (line 3). In

this way, more frequently accessed variables are preferentially allocated to scratch-

1Due to space considerations, we abbreviate frequency-per-byte as FPB in this figure.

147

Chapter 6. Compiler allocation of dynamic data

pad. For each variable, if it is a global or stack variable, then space is also reserved

for it (line 5). This reserved space is an estimate, however – the global or stack

variable is not actually assigned to SRAM (scratch-pad) yet ; that is done after bin

size assignment by Step 6 in figure 6.1. This design allows for our heap method to

be de-coupled from the global-stack method, allowing the use of any global-stack

method.

Returning to initial bin size assignment, if the variable v is heap variable (line

6 in figure 6.2) then an initial bin size is computed for it (lines 7-12). Only when the

frequency-per-byte of the site in the region exceeds one (i.e., there is reuse of the

site’s data in the region), is a non-zero bin size is requested (lines 8-10). Then, the

bin size is computed by proportioning the available SRAM in the ratio of frequency-

per-byte among all sites accessed by that region (line 8). Only sites that having

freq per byte(Si, R) > 1 are included in the formula’s denominator. The bin size is

revised to never be larger than the variable’s total size in the profile data (line 9):

this heuristic prevents small variables from being allocated too-large bins. Finally,

the bin size is revised to be a multiple of the heap object size (line 10), to avoid

internal fragmentation inside bins.

Finally, a single final bin size is computed as a consensus among the initial

bin size assignments above, as shown in procedure find consensus bin size() in

figure 6.2. For each heap variable v, the consensus bin size (line 16) is computed as

the weighted average of the initial bin size assignments for that site across all regions

that access S, weighted by the frequency-per-byte of that variable in that region.

148

6.4 Overview of the iterative portion

void find initial bin size() {
1. for (each region R in any order) do

2. SRAM remaining = MAX SRAM SIZE
3. for (each variable v of any kind accessed in R sorted in decreasing FPB(v,R) order) do

4. if (v is a global or stack variable)
5. SRAM remaining = SRAM remaining - size(v)
6. else { /* v is heap variable */
7. if (FPB(v,R) > 1) /* if variable v is reused in R */

8. init bin size(v,R) = SRAM available × FPB(v,R)
Σall variablesuiin R FPB(ui,R) which are > 1

9. init bin size(v,R) = MIN(init bin size(v,R), size of v in profile data)
10. init bin size(v,R) = next-higher-multiple-of-heap-objects-size(init bin size(v,R))
11. else /* no reuse in variable v in R */
12. init bin size(v,R) = 0
13. SRAM remaining = SRAM remaining - init bin size(v,R)
14. return

void find consensus bin size() {
15. for (each heap variable v in any order) do

16. consensus bin size(v) = Σall R init bin size(v,R)×freq per byte(v,R)
Σall R freq per byte(v,R)

17. return

Figure 6.2: Bin size computation for heap variables.

Through experimentation with other methods, we found that a weighted average

across all program regions generally gave us the best starting point for heuristically

finding an optimal SPM allocation.

6.4 Overview of the iterative portion

With our preparatory steps completed, we can now apply the bulk of our allocation

algorithm to arrive at a realistic allocation with best performance improvement. The

next four sections will present the passes which constitute the iterative portion of

our algorithm for heap memory allocation. Additional modifications have also been

developed to handle different dynamic program objects as well as to optimize han-

149

Chapter 6. Compiler allocation of dynamic data

dling of specific scenarios for robust performance. Those optimizations not essential

to our core approach will be presented in the next chapter to avoid unnecessary

confusion while explaining our essential allocation steps.

Our heap bin consensus step allowed us to bind the heap bins for all heap

allocation sites in a program, giving each a known size for use in our allocator.

With this in place, we can now analyze heap objects more easily because all now

have memory occupancies which can be used for determining the best distribution

of limited SPM space among all program objects. To refine our allocation from an

ideal and impractical starting point to a realistic and efficient solution we make use

of two basic concepts in our iterative core. The first concept we keep in mind is that

greedy search algorithms tend to fall into valleys, so we must incorporate methods to

constantly perturb the search space to explore different optimal optimization valleys

using efficient heuristics. The second important concept to keep in mind is that it

is impossible to give all variables their desired SPM allocations without incurring

excessive overhead in transfers, so a delicate balance must be maintained among all

variables for all program regions.

6.5 Transfer minimizations

The first iterative step shown in figure 6.1 performs allocation modifications based

on feedback from the previous iteration’s results. Because this is not meaningful

until the second iteration, this will be discussed at the end of this section in context

and we instead begin by discussing our Transfer Minimization Passes. These passes

150

6.5 Transfer minimizations

are primarily aimed at reducing the costs incurred by the memory transfers required

to implement a chosen dynamic allocation scheme. Before presenting these mini-

mization passes, we first mention the other methods we use to reduce the overhead

due to transfers.

Reducing runtime and code size of data transfer code

Our method copies heap bins back and forth between SRAM and DRAM. This

overhead is not unique to our approach – hardware caches also need to move data

between SRAM and DRAM for the same reasons. The simplest way to copy is a for

loop for each bin which copies a single word per iteration. We speed up this transfer

in the following three ways. First, we generate assembly-level routines that imple-

ment optimized transfers suited to the block size being copied. Copying blocks of

sizes larger than a few words are optimized by unrolling the for loop by a small con-

stant. Second, code size increase from the larger generated copying code are almost

eliminated by placing the code in a memory block copy procedure that is called for

each block transfer. Third, faster copying is possible in processors with the low-cost

hardware mechanisms of Direct Memory Access (DMA) (e.g., [28, 45]) or pseudo-

DMA(e.g., [102]). DMA accelerates data transfers between memories and/or I/O

devices. Pseudo-DMA accelerates transfers from memory to CPU registers, and thus

can be used to speed memory-to-memory copies via registers. Despite the reduced

cost for transfers gained from these methods, our allocation scheme strives to keep

these as low as possible to achieve the best performance available.

151

Chapter 6. Compiler allocation of dynamic data

Reducing the number of transfers made at runtime

The first compiler pass we apply to lower the cost of transfers is one which does so

by attempting to reduce the number of transfers required at runtime. It is based on

the set of passes originally developed for our previous work on dynamic stack and

global allocation 4 which have been modified to account for dynamic program data

as well. These include all passes which perform special analysis on procedure and

conditional join nodes as well as loop node optimizations. When we have excessive

transfers in regions inside of loops for example, poor dynamic placement drives up

the transfer costs and voids any benefits from SPM placement. For all three types of

nodes, we attempt to optimize for the most frequent case to reduce transfer overhead

while placing useful objects of all types in available SPM. These nodes correspond

to the program regions most likely to be problematic when trying to find a good

solution across an entire program. Another optimization in this pass is inspired

from our research on static allocation and attempts to find the best static solution

for problematic program regions. When our dynamic allocation solution for regions

has an SPM locality benefit that is about equal to its transfer costs, we generally

choose the static allocation to improve the chances that dynamic allocations will

benefit other regions. Another optimization ensures that unnecessary transfers are

removed for regions where a variable is considered dead by compiler analysis.

Lazy leave-in optimization

The second of our transfer minimization passes is our Lazy Leave-In optimization.

This optimization is applied per variable and looks at the variable access frequency

152

6.6 Heap safety transformations

and SPM placements for all regions in the candidate DPRG allocation. Our default

behavior is to copy a bin out to memory in regions where it is not accessed. Instead

in some cases, it may be profitable to leave a bin in scratch-pad even in regions

where it is not accessed, if the cost of copying the bin out to DRAM exceeds the

benefit of using that scratch-pad space for other variables. With this optimization

there are no heap safety concerns since there is no correctness constraint for regions

which do not access a variable.

During refinement, we know what other variables were assigned to the space

evicted by a bin. If the profile-estimated net gain in latency from these other

variables is less than the estimated cost of the transfer, then the compiler lazily leaves

the bin in scratch-pad and does not bring the other variables in. The implementation

of this optimization relies on an estimated gain vs. estimated cost comparison as

applied to contiguous groups of regions, but this time the groups are of those regions

which do not access a bin. This optimization expands the peephole optimizations for

particular region nodes to minimize transfers for candidate allocations for improved

SPM benefit.

6.6 Heap safety transformations

At the end of our iterative pass for refining the current candidate allocation, we must

perform some validation steps before solving for a valid memory address layout and

estimating the total program runtime and energy costs. An essential requirement

for correctness in our method is that we must not allow the possibility of incorrect

153

Chapter 6. Compiler allocation of dynamic data

program pointers as a result of our dynamic allocations. At the end of our iterative

search, our algorithm must ensure that the bin offset and size never changes in SPM

for all regions in the program where heap objects from that site may be accessed.

While stack and global variables also suffer from the same problem, pointers to those

data types are rare and generally easier to analyze. Because heap data is entirely

accessed through pointers, and the C language does not enforce strict pointer data

typing, this becomes a serious concern for program safety when performing runtime

data movement.

Our methods make use of the full range of static and dynamic analysis available

to modern compiler developers. We create a modified version of the DPRG that also

contains full alias and pointer analysis information provided by our compiler analysis

passes. We maintain constant bin size across regions for each heap allocation site

throughout our algorithm as a requirement for operation. Our layout pass verifies

that pointer safety is maintained for all regions where optimized heap bins may be

accessed. We use the information obtained from pointer analysis across all program

regions where a variable is live, and with this information are able to mark regions

with a variable’s access guarantees. Our method is able to determine if a variable

will, will not, or may be accessed in a particular region, which in turn dictates the

flexibility we can have with required transfers of heap data across program regions.

The first part of this transformation pass uses the DPRG with access guaran-

tees to evaluate all heap allocation sites which have been optimized in at least one

region, in decreasing order of their total FPB. Each bin is examined for the entirety

154

6.6 Heap safety transformations

of its lifetime and its placement benefits and transfer costs are evaluated. We an-

alyze its current candidate allocation and modify the allocation DPRG so that the

bin is placed in SPM in all regions where we can not guarantee it is not accessed.

We note that like a few of our other iterative transformations, we allow about 20%

extra SPM space for overfitting in passes which attempt to bring in more variables

to SPM to lower costs. We do this to allow a wider but reasonable search space

for better allocations, and rely on our final validation and layout passes to trim the

candidate allocation to fit into available SPM.

At the end of this heap transformation pass, all of the heap bins optimized

for this program will have guarantees for safe program behavior at runtime. As a

final note, even the best current pointer analysis methods often are unable to make

certain guarantees on the majority of heap variables in a program, which tends to

make our allocations conservative in nature. Improvements in the predictability

of memory accesses for pointers in the C language pointer will only improve the

performance of our approach.

Indirection optimization

Our second heap transformation pass is applied directly after our first safety trans-

formation. We noticed that an opportunity for improving our algorithm can arise

because of the following undesirable situation. In our strategy it is possible that

in a certain region, the cost of copying a bin into scratch-pad before that region

can exceed the gain in latency of accesses in the region. Leaving the bin in DRAM

in such a case would improve runtime, but unfortunately this violates correctness

155

Chapter 6. Compiler allocation of dynamic data

because of the fixed-offset requirement of our method. To see why correctness is vi-

olated consider that a heap bin must be in the same memory bank in all regions

that access it, as otherwise, if the bin remained in a different memory bank in a

some of those regions, pointers into objects in the bin might be incorrect. Thus the

optimization of leaving the bin in DRAM cannot be applied.

Fortunately, there is a way to make this optimization legal. It is legal to leave

the bin in DRAM when it is not profitable to copy it into scratch-pad at the start

of a region, provided, in addition all accesses to the bin in the region are translated

at runtime to convert their addresses from scratch-pad to DRAM addresses. Doing

so will ensure that all pointers to the bin – which are really invalid since they

point incorrectly to scratch-pad – will become valid after translation. Scratch-pad

addresses can be translated at runtime to DRAM addresses by inserting code before

every memory reference that adds to each address the difference between the starting

memory offset of the bin in DRAM and SRAM. In this way, a level of indirection

is introduced in addressing, and hence the name of this optimization. We present a

method for doing so in our discussion of our previous methods for stack and global

data 4.4.

One may wonder why the indirection optimization is used as an optimization,

and not the default scheme. Recall than the default scheme ensures that a bin is

allocated at the same offset in SRAM whenever it is accessed, and uses indirection

only as an exception. The reason that indirection is not used as the default is that

indirection has a cost – extra code must be inserted before every access to check

156

6.6 Heap safety transformations

if its address is in SRAM and if so, to add a constant to translate it to a DRAM

address. This extra code consumes run-time and energy. It is therefore profitable to

apply indirection only if the cost of the transfer exceeds the overhead of indirection.

For regions where a bin is frequently used, the opposite is true – the overhead,

which increases with frequency of use, will increase and often far exceed the cost

of transfer; so indirection is not profitable. Since regions where bins are accessed

frequently make up most of the run-time the default behavior should match their

requirements; indirection is used sparingly for other regions where its overhead is

justified.

The indirection optimization (step 4 in figure 6.1) is applied as follows. For

every heap variable v in the program in any order, the compiler looks at all groups

of contiguous regions in which v is accessed. For each such group of regions, it

estimates whether the cost of copying the bin into scratch-pad at the start of the

group (a known function of the size of the block to be copied) is justified by the

profile-estimated gain in access latency of accesses to v in the group. If the estimated

cost exceeds the estimated gain, then the transfer of the bin to scratch-pad is deleted,

and instead all references to v in the group are address-translated as described in the

previous paragraph. The address translations themselves add some cost, which is

included as an increase in the estimated cost above. A consequence of the indirection

optimization is that scratch-pad space for a some bins is freed in address-translated

regions.

157

Chapter 6. Compiler allocation of dynamic data

6.7 Memory layout technique for address assign-

ment

At the end of our iterative allocation steps, the next step in our method is to

compute the layout of all variables in scratch-pad memory (Steps 5-7 in figure 6.1).

The layout refers to the offsets of variables in memory. Computing the layout is done

in three steps. First, the layout of heap variables is computed (Step 5). Second, the

placement of global and stack variables is computed (i.e., which global and stack

variables to keep in scratch-pad is decided) (Step 6). The placement takes into

account the amount of space remaining in scratch-pad after heap layout. Third, the

layout for global and stack variables is computed by allocating such variables in the

spaces remaining in scratch-pad after heap layout. This section only discusses how

the heap layout is computed. The placement and layout of global and stack variables

is independent of this paper, and any dynamic method for global and stack variables

can be used, such as [132].

Before we compute the heap layout, it is instructive to consider why heap

layout is done before the placement and layout of global and stack variables. The

reason the heap layout is done first is that the layout of heap bins is more constrained

than that of global and stack variables. In particular, heap bins must always be laid

out at the same offset in every region they are accessed. Thus, allowing the heap

layout to have full access to the whole scratch-pad memory increases the chance of

finding a layout with the largest possible number of heap variables in scratch-pad.

158

6.7 Memory layout technique for address assignment

Site Bin Regions
size accessed
(bytes)

A 256 2,4
B 256 1,2,3
C 256 3,4
D 512 3
E 256 4

offset
Memory

1 2 3 4

Regions

256

0

512

768

1024

A A

B B B

C C offset
Memory

1 2 3 4

Regions

256

0

512

768

1024

B B

A

B

C

D
A

E

C

(a) (b) (c)

Figure 6.3: Example of heap allocation using our method showing (a) heap Alloca-
tion sites; (b) greedy compiler algorithm for layout – D does not fit; and (c) layout
after backtracking – D fits.

The less constrained global and stack variables, which typically can be placed in

any offset [132], can be placed in whatever spaces that remain after heap layout.

Placing heap data first does not mean, however, that heap variables are preferentially

allocated in scratch-pad. Global, stack and heap variables were given an equal chance

to fit in scratch pad in the initial bin size computation phase. At that point, we had

already reserved space for global and stack variables of high frequency-per-byte.

The layout of heap bins is computed as follows. Finding the layout involves

computing the single fixed offset for each bin for all regions in which the bin’s site is

accessed. Further, different bins must not conflict in any region by being allocated

to the same memory. We use a greedy heuristic that allocates bins to scratch pad in

decreasing order of their overall frequency per byte of access, so the most important

bins are given preference. Each bin is placed into the first block in memory that is

free for all the regions accessing the bin’s site. Figure 6.3(b) shows the result of the

greedy heuristic on sites A-C listed in figure 6.3(a). This heuristic can, however,

fail to find a free block for a bin. Figure 6.3(b) shows this situation – the bin for D

cannot be placed since no contiguous block of size 512 is available in region 3.

159

Chapter 6. Compiler allocation of dynamic data

To increase the number of bins allocated to scratch-pad, we selectively use

a back-tracking heuristic whenever the greedy approach fails to place a bin. Fig-

ure 6.3(b) shows how the greedy heuristic fails to place bin D. Figure 6.3(c) shows

how D can be placed if the offset choices for A and C are revisited and changed

as shown. To find the solution in figure 6.3(c), our back-tracking heuristic tries to

place such a bin by moving a small set of bins placed earlier to different offsets. This

heuristic is written as a two-level iterative algorithm as follows. To try to place a

bin that does not fit, it finds the offset in scratch-pad at which the fewest number of

other bins, called conflicting bins, are assigned. Then it iteratively tries to move all

the conflicting bins to non-conflicting locations, up to two levels deep. If successful,

the original bin is placed in the space cleared by the moved conflicting bins. The

iterative procedure is bounded to two levels to ensure a reasonable compile-time.

More levels increased the compile-time significantly with little additional benefit.

An example of this method is when block D cannot be placed in figure 6.3(b). The

offset with the minimum number of conflicts (2) is 512, and the conflicting block set

is C. Thus block D is placed at offset 512 by moving C, which in turn moves block

A. The conflict-free assignment in figure 6.3(c) results. Of course, even this iterative

search may fail to place a bin – in this case the corresponding heap allocation site

places all its data in DRAM.

When we are unable to find a suitable chunk of SPM to assign a heap bin for

all accessed program regions, we apply one final method. This approach attempts

to split the heap bin into smaller chunks at the granularity of an individual heap

160

6.7 Memory layout technique for address assignment

object slot. This heuristic gathers the free chunk list across all DPRG regions where

the variable is live. If splitting of the heap bin among the free chunks is possible, we

attempt that allocation and distribute the heap bin among the memory blocks. If no

free space is available, we apply a two-level swapping heuristic that attempts to free

up any memory blocks of the appropriate size among regions with the most SPM

contention, similar to the back-tracking heuristic described above. We observed

that a combination of swapping and splitting is usually able to place most of the

profitable heap bins into SPM which would not otherwise have fit.

Although we usually layout heap variables first, for some instances it becomes

advantageous to modify this somewhat. For our algorithm, we have modified this

step so that it alternates the search order each time the layout algorithm is applied.

All searches are always ordered by a variable’s overall FPB. For many situations,

placement of heap objects first and them stack and global objects is generally a good

idea, since it allows the harder to place heap objects more freedom for placement.

Unfortunately, sometimes this can also cause poor initial allocations which must be

refined over multiple iterations. This can happen when less frequent heap objects

crowd out much more frequent stack and global data. We attempt to avoid this

overspecification by having the second iteration instead search for variable layouts

purely by FPB, regardless of object type. By alternating the search space, we help

refine our iterative search for the lowest cost allocation.

At the end of the layout pass, we now have a realistically implementable dy-

namic SPM allocation for an entire program. Although some of our transformations

161

Chapter 6. Compiler allocation of dynamic data

allowed overallocation of available SPM for some DPRG regions, our layout pass

ensures the chosen allocation reflects a realistic implementation for the target SPM

and trims out excess variables. It is important to note that throughout the layout

pass, we keep track of those variables which succeeded and failed different portions of

the allocation process. We make use of all such feedback information from our pre-

vious allocation iteration to guide the initial transformation for our next iteration.

The following section will discuss our feedback-driven allocation refinements.

6.8 Feedback driven transformations

On the second iteration of our algorithm, there is now feedback information from

the last allocation pass that guides us in how to modify variable placements for

the next iteration. Using this information, we apply the following two refinement

passes.

Heap bin resizing

This pass attempts to improve the relative distribution of heap bin sizes using feed-

back from the previous iteration. In this pass, we begin by obtaining a list of heap

variables which were considered for allocation in the previous iteration. This list is

processed in decreasing order of overall FPB. For each heap variable, we attempt

to refine its assigned bin size. If a variable was placed successfully in SPM during

the last iteration, we attempt to grow the size of the bin. If a heap variable failed

allocation, then we attempt to decrease its bin size. This increase or decrease of each

162

6.8 Feedback driven transformations

individual bin will change the relative distribution of SPM space among all heap

objects. Finally, before actually resizing each slot, we examine the DPRG to ensure

that their is enough SPM space in each affected region where the heap variable can

possibly be accessed. For this step we allow a 20% overhead for SPM storage at each

region to allow for allocation exploration and will be rectified in the final memory

layout step.

For each allocation site that has a known size, we increment or decrement

a heap bin using the heap slot size. We see that here, a heap bin is made up of

an integer number of these heap allocation slot units. As each heap variable is

processed, those which fail to be allocated over successive iterations will have their

attempted SPM allocations reduced to zero. Similarly, successfully placed variables

are allowed to instead grow to their maximum profiled size as an upper limit. We

have also added a further optimization for programs which use large numbers of

small heap objects. For these programs, our bins are resized using exponentially

grown slot increments. Since our algorithm is designed for fast results, having a low

iteration count tended to constrain our heap bin resizing pass when relying on a

strictly linear approach to slot size modifications.

Variable swapping

This optimization is applied primarily to global and stack variables, although in

the next chapter we see that it is also applied to code variables as well. This is a

last-chance optimization that is applied to those variables with a non-zero FPB that

have failed allocation the past three consecutive iterations. As the name implies,

163

Chapter 6. Compiler allocation of dynamic data

we apply a heuristic algorithm that attempts to swap a combination of variables

having a lower FPB than those unsuccessful variables with a high FPB. For this we

go through all regions where the variable is accessed in DRAM, and build a list of

SPM variables that we may swap out for each region to make room for the DRAM

variable. We also keep a tally of the total benefits and transfer costs for each region

for all variables affected by these possible swaps. At the end we attempt to choose

the most common set of variables which satisfied the allocation for each region with

a reasonable cost-benefit value. Because this is a rather lengthy process, we only

apply this when a variable has failed three consecutive allocation attempts, after

which we wait another three iterations before re-attempting variable swapping.

6.9 Termination of iterative steps

From looking at the iterative steps, we can see that our transformation passes serve

to perturb the search space to evaluate different possible allocations, while our

iterative passes serve to minimize transfers and find the best possible dynamic SPM

placement. This serves to guide our iterative search toward better rather than

less efficient solutions, while ensuring that our approach does not fall into repetitive

allocation attempts without forward progress. Once the iterative portion is complete

and we have a candidate layout, the algorithm reaches the end of its iterative loop

and can take several paths from there.

Although the scratch-pad allocation algorithm is essentially complete after

layout assignment, there is an opportunity to do better by iteratively running the

164

6.9 Termination of iterative steps

entire algorithm again and again, each time taking into account feedback from the

previous iteration. This iterative process is depicted in step 9 of figure 6.1. Step

9(a) maintains the best allocation solution seen amongst all iterations seen so far.

Step 9(b) terminates the algorithm if the iterative search is making no progress.

Step 9(c) jumps back to step 2 to repeat the entire allocation computation, but this

time with feedback from the results of the previous iteration.

The iterative process described above is a heuristic, and is not guaranteed to

improve runtime at each iteration. Indeed, the runtime cost may even increase, and

after some number of iterations it often does, so for this reason, rather than use

the results of the last iteration as the final allocation, the solution with the best

estimated runtime among all iterations is maintained. It is fairly straightforward

to estimate the runtime cost of a solution at compile-time by counting how many

references are converted from accessing DRAM to scratch-pad by a given allocation

for the profile data.

A desirable feature of our iterative approach is that it is tunable to any given

amount of desired compile-time by modifying the threshold for exiting the iterations

in step 9(c). In practice, however, we found that we find close to the best solution

in a small number of iterations; usually less than three to five iterations. Thereafter

it may get worse, but that is no problem as the best solution seen so far is stored,

and worse solutions are discarded. After exiting the iterative process (step 10 of

figure 6.1), the best solution seen so far is implemented.

165

Chapter 6. Compiler allocation of dynamic data

6.10 Code generation for optimized binaries

Once the best candidate allocation layout has been selected by our algorithm, it

must be implemented through changes to the program code before proceeding with

the rest of the compilation process to create an executable. For code, stack and

global variables, we use the same method as used in our previous method, discussed

in 4.5. This consists of declaring an SPM version for each optimized variable in

the program and then using this version in all places where the variable has been

allocated to SPM. Of course, we also insert transfer code at all appropriate regions

as well as memory address initialization code for all affected variables.

Heap memory is managed in C through library functions, and hence must be

handled differently than code, global or stack data to implement a dynamic SPM

allocation. Luckily, our constant-size bin and same-offset assignment constraints

make this portion relatively straightforward and has three main aspects. First,

the memory transfers are inserted where-ever the method has decided. Second,

addressing of heap variables does not need modification since they are addressed

(usually through pointers) in the same way. Third, calls to malloc() are replaced

by calls to a new wrapper function around malloc(). This wrapper first searches for

space in fast memory for that bin using a new free-list for fast memory. This free-list

contains a list of the memory locations our allocator has assigned this bin for SPM,

generally contiguous. An argument is passed to the wrapper malloc specifying which

site is calling it. In this way the wrapper becomes aware of which site is calling it, so

that it can look in the bin free list for that site. If space cannot be found in that sites

166

6.10 Code generation for optimized binaries

bin free list, then malloc is called on the original unified free-list in slow memory.

The code for malloc() is the same for fast and slow memory, but works on different

free lists. Similar modifications are made for other heap memory allocation routines

such as calloc() and realloc(). Free() functions are also modified to release the block

to the either the sites bin free list or the unified DRAM free list, depending on the

address of the object to be freed.

After all the heap library functions in the program have been modified to

match the chosen optimized layout, the appropriate transfer code is inserted at all

region boundaries for heap bins. As mentioned previously, these consist of calls to

optimized transfer functions tailored to the particular platform capabilities. The

best performance is observed with those processors able to take advantage of DMA

transfers to reduce latency and power costs. We have implemented transfer functions

which make use of software, pseudo-DMA and DMA methods, all of which will be

discussed in chapter 8.

167

Chapter 6. Compiler allocation of dynamic data

168

Chapter 7

Robust dynamic data handling

After exploring the best ways to dynamically allocate heap data to SPM, we pro-

ceeded to create other methods to handle those dynamic program objects our base

scheme does not handle. These methods enable allocation of other previously un-

handled program objects and complete the spectrum of possible compiler decided

program allocations. Our first section will give a brief overview of the optimizations

employed throughout this research that are directly relevant to our method’s per-

formance. The second section discusses our method for handling of heap allocation

sites which create objects of an unknown size at compile-time. Our third method

presents our algorithm for dynamic allocation of recursive stack functions to SPM.

Finally, the last section is dedicated to exploring our method for profile sensitivity

and how we minimize its effects for our method.

169

Chapter 7. Robust dynamic data handling

7.1 General optimizations

While our primary research focused on finding the best methods for handling dy-

namic program data, in the process we also applied other general optimizations to

the problem of minimizing runtime and energy consumption for embedded applica-

tions. Because our method is compiler based, we primarily focused on improving

our compiler platform as much as possible. To ensure that our methods would be

applicable to the widest range of embedded products, we also strove to implement

the best simulation platform possible for evaluation.

Our original research on heap allocation to SPM was conducted based on the

Motorola MCore embedded processor. At the time, we used the best tools available

for which we were able to obtain source code for modification, which were GCC

2.95 and GDB 5.1. The simulator included with GDB was contributed by Motorola

for the Mcore, and was a very basic functional simulator for that CPU, which we

augmented with memory organizations and power models to emulate a complete

platform. Unfortunately, that version of GCC was also the first to offer a back-end

supporting the MCore. This back-end was a bare-bones implementation, includ-

ing little optimization and generally poor quality code generation. Also, Newlib

(the only system library distribution available for the Mcore) contains a minimal

C library implementation for the Mcore and only the most essential system stubs

were implemented, preventing many complex applications from being compiled or

simulated. The general lack of consumer and manufacturer support for this proces-

sor is the main reason the MCore is now considered to be on the lower end of the

170

7.1 General optimizations

embedded processor spectrum, albeit still popular for simpler deployments. To sum-

marize, the poor development platform available for the MCore limited our research

due to a severe lack of compilable and executable benchmarks, poor code generation

and crippled compiler optimizations(leading to redundant use of excessive stack and

global objects which should have been optimized out).

Because we aim to optimize the allocation of dynamic program objects, it is

vital that we have a development and simulation infrastructure which allows ex-

ecution of applications using dynamic data. It became apparent after thorough

analysis of our preliminary results in [46] that our previous platform was severely

limited in many ways. We thereafter dedicated some time to finding an embedded

platform more representative of the current embedded market on which to evaluate

our allocation methods, as well as one that enjoyed better development support for

academic research. After a thorough exploration of academic publications, com-

pilers, embedded processors and internet websites, we came to the conclusion that

the ARM processor family offered the best resources to carry out state of the art

research into compiler-driven memory allocation. ARM processors enjoy continual

support from their manufacturer, have a large open-source following in the devel-

opment world, and have cores which are designed to be backwards compatible for

greater longevity in the marketplace and academia.

A large portion of academic publications concerning memory optimizations

for embedded systems chose a processor from the ARM product family to evaluate

their methods. Most researchers either used a complete silicon compiler and silicon

171

Chapter 7. Robust dynamic data handling

simulation framework or used a software compiler and software emulation platform.

Full-blown silicon development packages are all proprietary and were not a viable op-

tion for this research. They are commonly used to evaluate hardware modifications

to existing ARM processor designs instead of for use with purely software-based

optimizations. Among the software-based approaches, a large portion made use of

the Simplescalar simulator ported for the ARM architecture.

We first attempted to use the Simplescalar-ARM simulation platform due to

its integrated energy models for simulated execution of ARM applications. Sim-

plescalar implements a more realistic processor simulation in that it uses the ARM

binary description interface to decode and execute binary files. This is what many

processors running an OS on an ARM CPU use, and allows the use of optimized

C libraries tailored to embedded platforms, such as ucLibC. This makes a good

pairing for industrial-strength compilers from vendors aimed at software engineers

creating real-world products. In the open-source world however, support for this

format in GCC was problematic. We were able to compile many applications using

ucLibC with GCC but were unable to execute them on the Simplescalar simulator

properly, due to incompatibilities with system hooks and low-level calls. Instead,

we found that a better solution was obtained when we paired GCC with GDB and

the associated open-source C library, Newlib. After much searching and evaluation,

we were able to obtain the highest levels of compiler performance, broadest range of

compilable and executable benchmarks as well as the best simulation environment

to evaluate our method using only freely available tools.

172

7.1 General optimizations

The ARM family enjoys broad support in both its simulation and the range

of compiler optimizations available to take advantage of its hardware design. The

highly active compiler community support for this architecture was one of the de-

ciding factors for redeveloping our development framework for the MCore. This was

most apparent in the continual contribution of high quality compiler optimizations

which began with the inception of Code Sourcery to the GCC project in 2000. Since

then, there have been significant improvements in GCC such as the transition to an

SSA intermediate form, addition of ARM hardware information to the GCC com-

piler and incorporation of cutting edge compiler optimizations tailored to take best

advantage of the ARM architecture. Code Sourcery and other contributors have im-

proved the performance of the GCC compiler to levels which rival industrial-strength

compilers, something unheard of in the embedded world for open-source compilers.

The many improvements in GCC in general as well as in its ARM back-end

has allowed us to pursue more aggressive compiler optimizations, for tighter code

and smaller memory footprints for executables. Producing more efficient code in

both execution latency and memory occupation is of primary importance for any

embedded system, and whenever possible orthogonal methods should be applied.

Our switch from the MCore to the ARM showed that our method was even more

beneficial for scenarios where a modern industrial-strength compiler has optimized

static program data as much as it can. Because compilers can only currently analyze

static program data for optimal placement, even the best methods can only reduce

the costs due to accessing static program data at compile-time. When static program

173

Chapter 7. Robust dynamic data handling

data has been optimized as much as possible through existing methods, this only

serves to raise the importance of any remaining, unoptimized dynamic program data,

which will then consume a correspondingly larger ratio of the applications runtime

and energy usage. Any further optimizations targeting static program objects will

yield diminishing returns for an increased level of effort at compile-time, prompting

the shift to handling dynamic program data efficiently.

Like any industrial-strength compiler, GCC is a very complicated software

package and required a large time investment to yield results. The C compiler alone

consists of hundreds of thousands of lines of code, with tens of thousands dedicated

to the ARM architecture alone. To take full advantage of its different strengths,

we have tightly integrated our methods throughout the compilation process, de-

tailed in our chapter on methodology. Worth noting is that with the increased

complexity of the compiler analysis and optimization passes, we were able to tailor

our methods for application at the highest levels of available compiler optimization.

The most complex compiler optimizations deal with program transformation on a

large scale, something which is problematic for memory analysis and optimizations

of code. Understanding of these advanced compiler analysis and transformation

passes were instrumental in the development of both our base approach and of our

other optimizations presented in this chapter.

174

7.2 Recursive function stack handling

7.2 Recursive function stack handling

While expanding our set of benchmarks, we discovered that a great deal of pro-

grams that use heap memory also tended to employ recursive functions in their core

processing. This was problematic since there are no existing methods to handle

recursive functions for memory allocation purposes and is rarely even mentioned in

published SPM research. Our previous research into static program data [132] also

recognized the problem that recursive functions present for existing static program

data methods. Just like heap data, recursive function data has also always been

left in main memory by previous SPM allocation schemes. By applying concepts

developed in our heap memory methods to recursive function data, we devised the

first method able to analyze and optimize recursive functions to SPM as part of our

complete optimization framework.

In order to handle recursive functions and optimize their stack data we treat

these functions similarly to our method for heap variables. Recursive functions can

contain zero or more bytes of stack allocated storage upon entry into the function at

runtime used for register-spilled storage. Recursive functions contain self-referencing

calls, and so can continue to call itself at runtime, invoke more instances of itself

and continue growing the allocated stack space indefinitely. This behavior places

them in the category of dynamically allocated program data, just like heap memory,

because neither can usually be analyzed and bounded at compile-time. The function

stack frame (allocated each time the procedure is called) is fixed at compile-time for

recursive procedures, granting each invocation instance the same fixed-size property

175

Chapter 7. Robust dynamic data handling

that we take advantage of for known-size heap allocation sites.

Handling recursive functions required some changes to the way we construct

and process the DPRG for a compiled program. Profiling these functions correctly

required careful code generation changes for region marker insertions used to track

individual function invocations at runtime. Our previous SPM allocation method

collapsed recursive function DPRG instance nodes into a single node which was

then left in DRAM. Our current method also collapses all possible nodes resulting

from varying runtime invocation depths into a single recursive variable node corre-

sponding to the entire recursive region, with information on the individual instances

invoked at runtime. For functions inside recursive regions, we do not allow individ-

ual SPM placement of stack variables, and instead treat them in terms of their entire

allocated function stack frame. This allows us to maintain the same fixed-size slot

semantics that we use for heap data allocation in our iterative algorithm, treating

each invocation of a recursive function stack frame the same way we would treat

the allocation of a heap object at a heap allocation site. Once our recursive region

nodes and variable instance information has been added, we treat recursive variable

nodes just like heap variables for optimization purposes, with the same restrictions

on placement in regions where that variable is accessed or could be accessed through

a pointer.

Figure 7.1 shows a sample DPRG representation of a recursive function. In

this figure we can see that the function is represented by a single node, and contains

a function stack variable for each invocation captured by the runtime profile. Like

176

7.2 Recursive function stack handling

heap objects, we use runtime behavior to number each created program object

according to its relative time of allocation. Thus, the original invocation to recursive

function FuncRec would be labeled FuncRec 1, the next recursive invocation would

be FuncRec 2, and so on while the recursive stack depth increases through self-calls.

FuncRec()

FuncRec_1

FuncRec_2

FuncRec_3

Figure 7.1: DPRG representation of a recursive function FuncRec() with three in-
vocations shown.

There is one significant difference between individual heap objects and recur-

sive stack objects, and that lies in their de-allocation order. Individual heap objects

are allocated in some runtime order, but can be de-allocated at any time through-

out the program, in any order desired. Recursive function stack frames must be

de-allocated in reverse order of their creation, so each stack frame is de-allocated

once that invocation has exited and returned to its parent function. We take ad-

vantage of this restriction to make better guarantees on predicting the accesses to

different instances of recursive variables and correlation of different depths to access

frequency of those variables.

With a way to analyze and optimize recursive function variables in place, we

177

Chapter 7. Robust dynamic data handling

can apply our SPM allocation method to the augmented DPRG for affected pro-

grams. Having fixed-size stack frames as its basic allocation unit (or slot), we treat

recursive functions like heap variables in deciding relative SPM allocations. Code

generation for SPM-allocated recursive functions is also more similar to our method

for heap variables than our method for non-recursive stack and global program vari-

ables. Instead of assigning this stack function a global symbol with two copies for

its possible locations in SPM and DRAM, each optimized invocation of the function

must still reserve enough space to store a stack pointer address for use when swap-

ping the current function in and out of SPM. We also create a small global variable

which contains the current call depth for each recursive function. We insert a few

lines of code at the beginning and end of each recursive function cycle to increment

the counter upon entry and decrement the counter upon exit, as well as to check

when a stack pointer update must be performed.

For example, let us assume our allocator gives a recursive function three slots

of memory in SPM, with each slot corresponding to the stack frame for a single

recursive cycle invocation. Part of the call-depth counter code inserted into each

optimized region performs a check on that counter after the region has been entered

and the counter incremented to the current call-depth. For the first three invocations

of the recursive function, the stack pointer will be updated to the address in SPM

assigned for that stack frame by our allocator. Afterward, the original program

stack pointer to main memory in DRAM will instead be used for placement of the

remaining, unoptimized stack frames. This allows to selectively allocate certain

178

7.2 Recursive function stack handling

recursive data to SPM while not having to optimize the entire possible depth at

runtime. If more than one function were to be involved, each would use the same

counter to determine each function’s allocation to SPM as part of that overall cycle.

Figure 7.2 shows an example of a binary tree, a popular data structure used

in many applications that is often traversed using recursive functions. By looking

at the relative accesses to the stack variables as the recursive functions traverse this

tree, many applications generally fall into uneven frequency distributions across the

different recursive function invocations. In figure 7.2, the data structure shows the

majority of memory accesses occurring near the root of the tree, and the nodes

tend to receive a decreasing ratio of accesses as they grow further away from the

root. Other applications with different recursive data structures may exhibit the

opposite behavior, where the majority of memory operations occur at the leaves of

a structure in the deepest invocation depths of recursive functions. The majority

of the recursive benchmarks in our suite that made use of such directed growth

data structures did so with recursive functions that were weighted according to

their depth. For functions which exhibited a strong correlation between call depth

and stack accesses, we were able to take advantage of the linear allocation and

de-allocation property for recursive function and their stack-allocated data. By

selecting which counter depths will trigger the assignment of an SPM stack address

upon, we can target our SPM placement to those stack frames at depths which

were profiled to be the most profitable at runtime. While trivial for top-heavy data

structure accesses, this becomes very useful for optimizing bottom-heavy structures

179

Chapter 7. Robust dynamic data handling

and placing frequent stack data in SPM, even at the bottom of long recursive call

depths.

900

500 400

200 200 100

Figure 7.2: Binary Tree with each node marked by its access frequency for use by
allocation analysis.

Recursive function nodes in our DPRG represent an entire recursive cycle, even

if that cycle is made up of more than one function. More complex programs may

employ a series of functions that make up a single recursive cycle when represented

as an unmodified DPRG. During the creation of our final DPRG, we collapse all

complete recursive cycles detected into single DPRG nodes, even if they span several

functions. These nodes encompass the entire amount of stack memory allocated by

a single invocation of an entire cycle. Recursive cycles which span more than a sin-

gle function are rare due to their design difficulty, and our own large benchmark set

only exhibits a single program with multi-function recursive program regions, that

being BC, a popular program for recursion-based mathematical expression evalua-

tion. However, to support the full range of possible programs , we developed and

implemented support for multi-function recursive regions as well as single-function

180

7.3 Compile-time unknown-size heap objects

regions.

Once we were able to analyze and optimize programs with recursive objects,

we found that many programs which made heavy use of recursive functions also

used these functions in conjunction with heap allocated dynamic data structures.

Moreover, these truly dynamic functions tended to allocate a larger proportion of

unknown-size heap variables than non-recursive applications. This prompted further

development of our methods to handle unknown-size heap objects for dynamic SPM

placement.

7.3 Compile-time unknown-size heap objects

When dealing with heap allocation sites, there are situations where the requested

size at runtime is not fixed for that site throughout the program. Programs with

such unknown-size heap variables present problems for our base method, because

we no longer have the niceties given by our treatment of heap variable instances in

terms of heap bins made up of known-size heap allocation slots. Fortunately, for

many simpler programs this does not impact allocation significantly because these

sites tend to allocate objects with a low FPB, making them poor choices for place-

ment. For more complicated programs, such as those employing recursive algorithms

and recursive dynamic heap structures, unknown-size sites become more common

and more important with respect to their FPB. To overcome this problem, we first

developed an optimization which attempts to transform certain heap allocation sites

to fix their allocation size at compile-time. We then incorporated handling of the

181

Chapter 7. Robust dynamic data handling

remaining unknown-size sites into our method for allocation to SPM and have col-

lected preliminary results of its performance. These types of program objects are

fundamentally the most difficult for a compiler to analyze and predict, presenting

new challenges for researchers in this field.

Heap data in complicated applications is generally dependent on an applica-

tion’s input data and results in an unknown-size heap allocation site for several

common program scenarios. We will briefly discuss the different scenarios where we

observed unknown-size allocation sites from the many benchmark suites we sampled

to help the reader understand when and why these types of allocation sites are used

by programmers.

Typical uses for unknown-size allocation sites

The first and perhaps most common type of site with unknown-size at compile time is

for those which allocate a few small chunks of memory for temporary program use at

runtime. This is common in many of the benchmarks we compiled for variables such

as temporary file names, temporary node names, id tags, temporary swap variables

and other variables which are created and destroyed without being accessed more

than a few times for references at different program regions. Because these types of

variables tend to be infrequently accessed and of unknown size, they are generally

low priority candidates for SPM placement for any memory allocation scheme and

so can be safely ignored for special allocation effort.

The second type of unknown-size site resides in programs that contain inter-

nal memory management routines for runtime application use. This kind of site is

182

7.3 Compile-time unknown-size heap objects

very common in complex desktop programs such as JPEG, M88kSim and GCC and

usually are the only program locations where a call to one of the C heap creation

functions is found. These sites tend to allocate extremely large amounts of memory

for program use (once at initialization and then when more system heap memory is

required), with the application designed to allocate from that chunk using internal

heap management routines. These kinds of applications show a large investment in

programmer development to optimize memory usage internally and are not directly

compatible with fine-grain methods such as ours. Also, many of these applications

were far too complex and library dependent to reasonably be considered embedded

software, and would more likely benefit from cache optimizations geared for their

target workstation platforms. Our benchmark suite only contains programs with

basic memory management, minimal library requirements, reasonable memory oc-

cupancies(less than 8 MB max and typically less than 300kb), no user interaction,

and no allocation sites of this second type.

The third common usage for unknown-size sites is for the allocation of input

data for program lifetime, usually in the form of a large array which constitutes more

than 15% of the total program memory occupancy. This is common for any appli-

cation which performs data processing on text or media data, such as dictionaries,

images, movies and numeric arrays. We have included many benchmarks which al-

locate compile-time known and unknown-size arrays for program processing, such as

GSM, Susan, Mpeg2Decode, Mpeg2Encode, Imp, Bzip, Spiff, and Heapsort. Most

of these programs allocate large the large arrays and although they are frequently

183

Chapter 7. Robust dynamic data handling

accessed, their large size with respect to other program variables makes them poor

candidates for SPM placement when our target platform can only use an SPM with

a size 5-25% of the total program memory footprint. For those programs that con-

tain unknown-size sites with very low FPB values and/or which made up more than

25% of the data occupancy, these sites are never placed into SPM, and instead our

scheme places smaller and more valuable heap objects from other more profitable

heap allocation sites.

The first three common uses for unknown-size heap allocation sites were all for

situations where it was either impossible or unprofitable to place objects from these

sites into SPM for an embedded system. The final three types are typically moder-

ately sized and make better candidates for placement into limited SPM space for an

allocation method. Many of our predominantly known-size site benchmarks contain

a few of the next few types of sites, and our unknown-size and recursive benchmark

subsets tend to make heavy use among the final three kinds of unknown-size sites.

Following the discussion of the final three types, we will present an overview of our

methods for handling these three kinds of unknown-size heap allocation sites for

dynamic SPM placement.

The fourth type of site is perhaps the single most common unknown-size site

across all the programs and even textbooks dealing with heap memory allocation.

This site is characterized by being the allocation site inside a simple wrapper function

which many programmers use to allocate memory safely. Remember that the C

system library does not guarantee that there will be enough system memory available

184

7.3 Compile-time unknown-size heap objects

to satisfy every heap allocation request. Because of this, many programmers place

heap allocation requests inside a function which makes the request and then verifies

that the pointer corresponded to a valid memory location. Generally allocation

failure causes a program exit for embedded applications to avoid memory corruption.

This common programmer practice of placing heap allocation calls inside of simple

validation functions is often described as being malloc wrapper functions, because

of the simple validation function wrapped around the heap allocation call. As we

will see shortly, wherever possible we apply a transformation that attempts do fix

the allocation size of these sites through cloning and inlining, allowing us to apply

our fixed-size heap allocation site methods.

The fifth typical use for unknown-size sites is for small temporary array or

simple data structures which operate on sections of the large input arrays allocated

by our third type of heap site. These are common in many media processing appli-

cations such as GSM and Susan, and often only allocate a few different size objects

from these sites no matter what inputs are applied. Although these are unknown-

size to our compiler analysis, many programs tend to use these sites as centralized

allocation program locations for a few hard-coded data structures used for internal

processing support. Those applications which used unknown-site allocation sites

but which always allocated the same objects for different inputs can be considered

known-size and are so grouped for our benchmark experiments. Those applications

which allocate different temporary array objects for different inputs are one of the

primary targets for our general unknown-size allocation support.

185

Chapter 7. Robust dynamic data handling

Finally, the sixth type of unknown-size site are those used by programs employ-

ing randomized dynamic data structures, such as trees or graphs, which are heavily

input dependent for creation, processing and intermediate modification. These are

common among benchmarks which rely on recursive function algorithms to traverse

dynamic structures and add nodes in integer multiples during runtime processing.

Also common is the allocation of many small objects used for token processing

with iterative algorithms such as in the Spiff benchmark, which are created and

destroyed throughout program execution. While these types of variables tend to

exhibit mediocre FPB ratios at best, they are usually only of small benefit for

SPM placement but important nonetheless to complete a robust compiler-directed

dynamic SPM allocation method for embedded platforms.

Optimizing unknown-size variables

Many application suitable for embedded systems employ algorithms of moderate

complexity which are usually more specific for their target logic than desktop appli-

cations. Many of these use heap data, but do so in an organized and type-specific

fashion, resulting in fixed-size heap allocation sites with very specific program pur-

pose and typically predictable behavior across individual objects from that site. For

more complex programs or for situations where heap data is managed collectively

to reduce heap library interface program locations, we found that unknown-size al-

location sites were more common. As we noted in the last few paragraphs, many of

the objects allocated at such unknown-size sites tend to either be very small or very

large, with low access frequency, thus making them poor candidates for any memory

186

7.3 Compile-time unknown-size heap objects

optimization scheme. From analysis of the different ways programs used moderate

size unknown-size allocation sites with more frequently accessed objects, we devel-

oped a few different methods for handling the more promising of these unknown-size

heap variable sites for placement into SPM.

Once our basic method for known-size heap objects was completed, we turned

to adding support for the other types of dynamic program data. In the previous

section on recursive function handling, we discussed our methods for handling re-

cursive DPRG nodes and bounding their dynamic memory consumption through

fixed-size stack frames similar to our fixed-size heap bin slots corresponding to indi-

vidual heap object allocations. Our upgrade in compiler infrastructure also allowed

the development of similar methods for unknown-size heap allocation sites. The

most important compiler pass that we modified was the function inlining pass, a

pass which clones the contents of a called function into its calling code location to

avoid the invocation cost of a new function stack frame as well as its setup and

return code. This is best explained with the help of an example program situation

where this is useful.

Looking at figure 7.3 we can see an example program that contains a heap

allocation site of unknown-size inside of procedure func-A. Depending on a condi-

tional statement, either a heap object of size 4 or size 8 bytes is requested using the

same allocation site inside this procedure and could be called with different sizes

from other procedures, making it a compile-time unknown allocation site. This is

what we term a malloc wrapper, albeit the most basic one possible for explanatory

187

Chapter 7. Robust dynamic data handling

purposes. From seeing the popularity of this heap interface approach in different

applications, we focused on this scenario and attempted to take advantage of this

behavior. GCC, like many compilers, is essentially a function-by-function compiler,

and relies on a linker to create a final executable binary to tie together all the sepa-

rate code modules corresponding to functions in a typical multi-source C program.

With later versions of GCC and the improved compiler analysis passes for the ARM,

we were able to take better advantage of interprocedural knowledge to analyze mal-

loc wrapper functions such as this one and how they are called from other functions

in a program. We modified our compiler to analyze all functions which contained

a heap creation call of unknown-size, which were smaller than 30 lines of code and

which appeared in multiple program regions from the program call-graph. Those

which matched our criteria had the wrapper function calls replaced by an inlined

copy of the body of that wrapper function. Using this compiler pass, we were able

to transform many unknown-size sites into known-size allocation sites for better

guarantees and optimizations possible from our allocation method for known-size

heap variables.

For those program locations which we are unable to transform to inlined

known-size allocation sites, we have developed additional modifications for our iter-

ative allocation method for their support.

Impact on our method

Unknown-size heap allocation sites are treated like known-size sites when analyzing

a program and optimizing its allocation, with only a few important differences. For

188

7.3 Compile-time unknown-size heap objects

[unknown.c]

main() {

if (...) {

VarA = func-A(4) }

else {

VarA = func-A(32) }

...

Return

}

func-A(int size) {

Return (malloc(size))

}

func-B(){

VarB = func-A(20)

}

Figure 7.3: Example of an unknown-size heap allocation site inside of a program.

unknown-size sites, the DPRG contains no static information, and all the informa-

tion concerning allocated objects and their access frequencies comes directly from

profile data. Variable instance nodes for that site remain the same as for regular

heap nodes, although unlike known-size sites these will contain allocated objects of

different sizes in the program DPRG. Initial heap bin and consensus computations

are accomplished the same way for these objects as for known-size objects in our

iterative method. The primary difference in the consensus bin is that it represents

a single amorphous chunk for that site as opposed to being made up of an integer

number of known-size optimized heap objects. The use of a single contiguous chunk

is enforced throughout our algorithm and dictates the approach to code generation

for these sites. Lacking individual instance slots for this kind of heap bin, opti-

189

Chapter 7. Robust dynamic data handling

mized variables of this type are assigned a more general kind of malloc wrapper.

This wrapper does not restrict allocations to fixed allocation slot sizes, and instead

treats the bin as a general free pool of memory allocated with a simple first-fit algo-

rithm. While this allows us to optimize profitable unknown-size heap variables, the

lack of a consistent allocation unit causes many problems for our current iterative

approach.

Our allocation method is easily extended to support unknown-size heap objects

for analysis and allocation purposes. Unfortunately, the extensions remove many

of the heap variable properties which we take advantage of in our approach. The

first apparent problem is the issue of fragmentation upon repeated allocations and

freeing of heap space from amorphous heap bins. Because we no longer have fixed-

size allocation requests, we can not guarantee that this heap bin will not become

internally fragmented over time. Fortunately, this is not a problem our technique

alone incurs, as its a problem typical of all heap manager algorithms. For long run-

ning benchmark applications, a programmer would simply investigate either a more

advanced malloc-wrapper creation scheme, or use one of several already published

schemes that tries to avoid this very problem for heap management.

The other problem with not having fixed size slots in our bins is that we lose

fine-grain control over allocation of heap objects by size, which is usually directly

related to their program data type in C. For example, suppose there exists a heapsite

that tends to allocate varying sizes of heap objects, of size M, N, and O 90% of

the time with a wide variety of other sizes the other 10% fo the time, and only

190

7.3 Compile-time unknown-size heap objects

objects of size M were deemed to have an FPB worth placing in SPM. Without

a runtime method of controlling which particular objects are allocated to SPM

for this unknown-size site, we are less able to guarantee the the most beneficial

type of heap objects allocated at this site will actually be placed into SPM at

runtime. Specialized methods are needed to filter incoming requests dynamically

and guess which objects allocated at runtime are the ones will receive the most

accesses and should thus be allocated to SPM first. We noticed that in many

cases for such optimized sites, very often heap objects which are actually placed

in runtime with our First-Come-First-Served are those with low FPBs, with the

truly profitable objects being allocated at much later program timestamps. This is

important because objects allocated with the same size in C programs tend to also

be of the same type, and often only certain types have a large proportion of total

memory accesses for a program. This was the motivation behind our compile-time

transformation to inline and create separate heap allocation sites for a program, each

with a fixed-size, from an originally unknown-size site. This gives us finer control

over objects by site for SPM allocation, raising the guarantees that the objects we

with to place in SPM at runtime are actually placed into SPM.

Finally, the lack of a consistent base unit of allocation for a heapsite prevents

the majority of our iterative optimizations from being effective. First, the heap

bin consensus pass for initial allocation assigns all unknown-size sites with a single

amorphous bin of memory for possible SPM placement. Lacking smaller units which

make up this bin, this site receives a fixed size allotment of available SPM and

191

Chapter 7. Robust dynamic data handling

cannot be changed by any of our refinement methods. Thus, we cannot apply

heap bin resizing except for the trivial case where we do or do not place the entire

consensus bin into SPM for a particular iteration. As a trade off, we do apply our

variable swapping pass to unknown-size heap variables in our feedback refinement

step, a step usually used with only stack and global variables. Unknown-size sites

also tend to use a large variety of pointers to different data types, making pointer

analysis particularly obscure for these variables, and greatly reducing our access

guarantees for different program regions to minimize transfers. Finally, our layout

pass is unable to split these bins into smaller chunks when this site conflicts with

other variables with higher FPBs. Without a guaranteed fixed unit of allocation for

this site, splitting the bin into smaller pieces may render it completely unusable by

any allocation requests at this site, resulted in unused and wasted SPM space.

Possible improvements

Handling unknown-size allocation sites robustly and optimally for all cases is most

likely an unsolvable problem because of their completely dynamic nature. In fact,

even after much research and studying of these structures in typical programs, our

most successful methods for optimizing this type of variable is to transform them

into more predictable known-size heap allocation sites. Otherwise, our best results

for beneficial allocation of unknown-size heap objects were for those applications in

which always allocated a set of known-size objects across different inputs. For the

truly dynamic unknown-size sites, our allocation extensions improved performance

somewhat, but mostly prompted the development of our profile sensitivity reduction

192

7.3 Compile-time unknown-size heap objects

approach. This will be covered in the next section, but first we will present a

discussion on other investigations we undertook to improve allocation for these kinda

of objects as well as future areas of research for further improvement.

One method we looked into was specializing our malloc wrappers for unknown-

size sites to filter and only place those sizes which were profiled to be profitable

into SPM. Although we experimented with several versions of this approach, we

found that many programs exhibited behavior for different inputs which caused the

filtering to fail. For example, one program showed 3 different common allocation

sizes for one input (one very profitable), and then showed 3 completely different

common allocation sizes for a different input. By specializing our wrappers for the

first three expected sizes(and only allowing one size into SPM), when this optimized

application was run with the second input, no objects from that site had matching

sizes and none were placed into SPM, resulting in completely wasted SPM space. In

a similar vein was an attempt to track the size requests as well as the time-ordering of

different requests from the same site throughout program execution. This was done

on the observation that for some unknown-size sites, there seems to be more usage

for earlier or later requests for certain size objects, according to profile results. This

also tended to over-specialize the generated malloc wrappers however, again causing

problems with many applications and was not used for our final implementation.

Like caches, our performance is also affected by a program’s dynamic behav-

ior. When an optimized heap allocation site creates more objects than fit into the

available SPM space, the rest of the objects will be placed into main memory. If for

193

Chapter 7. Robust dynamic data handling

this program the most accessed variables were those that reside in main memory,

and not those placed into SPM, then we reap little or even negative benefit from

having placed them into SPM(transfers not justified by the accesses). We experi-

mented with constraining SPM placement through temporal tracking, similar to our

recursive method. For example, if a program were to allocate a binary tree from

the root down, the shallowest levels of the tree would be placed into SPM for an

optimized site with limited bin slots. If this program performed most of its accesses

to objects allocated later in time, our method might build a wrapper that placed

the first ten requests to main memory at that site, and then attempt SPM. This

worked well when used with the same profile. For applications which exhibited the

wide access distribution among heap objects from the same site, this tended to fail

miserably for different inputs however.

Instead of overspecializing for these cases, we focused effort on methods to

reduce our profile sensitivity and make better general predictions using full profile

information. Our next section presents the final contribution of this research con-

cerning our methods to reduce the profile sensitivity of our proposed allocations

for programs which exhibit a great deal of profile-dependent memory and execution

behavior, typical of those using a large proportion of unknown-size objects.

7.4 Profile sensitivity

This section will discuss the issues involved with making general allocation decisions

based on a combination of static analysis and dynamic execution characteristics.

194

7.4 Profile sensitivity

When dealing with dynamically allocated data, static analysis is insufficient and

generally of very little use in predicting which objects should be preferentially al-

located to faster rather than slower memory areas. Lacking comprehensive static

compiler analysis tools, methods dealing with dynamic program data must instead

rely on comprehensive dynamic profiling of the program using typical inputs. Some

dynamic program variables are more predictable than others by their nature, and

there are many programs with variables whose runtime behavior is completely de-

termined by a choice of program inputs, making them unpredictable for an unknown

input. For any allocation scheme which seeks to optimally place dynamic program

data at runtime, it is vitally important to reduce the sensitivity of the program al-

location scheme to the choice of program profiles analyzed. Comprehensive analysis

methods greatly increase the chance that a chosen allocation will work well for the

majority of expected program inputs.

For some applications profile sensitivity is not a problem, as their allocation

and execution patterns vary minutely when different program inputs are applied.

For other applications however, there is an intrinsic dependence between input data

and a heap allocated object’s behavior at runtime. For example, if we have a

program that allocated a dynamic data structure such as a binary tree to represent

an input set, the shape, size and access behavior for the trees produced by different

program executions may change greatly depending on the input used. For some

applications, the heap objects allocated at a particular heapsite may not only behave

differently for different inputs, but some also vary widely for the same input. This

195

Chapter 7. Robust dynamic data handling

could cause serious problems if our allocator makes the poor assumption that a

program heapsite will request a homogeneous heap variable repeatedly from the

same site, when in reality it may request different sizes depending on the input. The

previous section detailed our methods for reducing profile sensitivity for unknown-

size heap allocation sites from the same input set. The following paragraphs detail

our expanded methods to further reduce our method’s sensitivity to the profile

training data needed to guide our allocation process for input-dependent programs.

Reducing profile sensitivity is traditionally accomplished using static, dynamic

and most often a combination of both static and dynamic compiler analysis ap-

proaches. For dynamic program data such as heap or recursive stack frames, static

analysis with basic dynamic profile information are sufficient to make good predic-

tions for programs with generally unchanging program behavior for possible (and

non-trivial) program inputs 1. As program complexity increases, generally so does

the dynamic memory usage, with a corresponding increase in a program’s memory

allocation patterns and complexity of transformations(eg: larger, more convoluted

data structures for complex processing such as in databases). As with any profile-

based scheme, the larger the profile sample, the more information will be available

for a prediction scheme to take into account. Any compile-time scheme such as ours

is essentially predicting future program behavior and attempting to place certain

portions of the program into SPM for locality benefits. The best allocation re-

sults come from schemes which closely tailor program memory placement to match

1Program inputs which cause errors or other program termination are not considered useful for
optimization purposes because these are not normal application behavior

196

7.4 Profile sensitivity

profiled usage, and for which the predictions prove consistently accurate.

The importance of reducing profile sensitivity became most apparent after

analyzing the performance of our allocation method on applications with truly

unknown-size allocation sites as well as its general performance when non-profile

input program data was applied and performance measured. We focused our time

on developing methods to overcome these problems by applying the same concepts

we used for our recursive and unknown-size extensions. We studied in particular

those situations where our method made bad predictions, resulting in little or nega-

tive runtime gain, and tried to find ways to avoid as many of these bad decisions as

possible. We had some success with transforming unknown-size allocation sites to

separate them into different known-size sites with more predictable behavior. For

all other situations, we decided that the only effective way to make the best general

predictions for programs with statically unpredictable behavior was to increase our

knowledge of its dynamic behavior and combine it with what static information our

compiler is able to obtain. This led to our modification of the way we build the

DPRG for applications to reduce our profile sensitivity.

To better predict dynamic program behavior, more information on its previous

behavior for different situations is generally the only useful source available to com-

piler designers. With increased information comes the price of greatly increased cost

for an allocation algorithm to store and process that information efficiently. This

can be seen in our choice of the DPRG to represent a program under compiler anal-

ysis for SPM optimization. This structure contains control-flow and dynamic access

197

Chapter 7. Robust dynamic data handling

information, but discards execution-path information with detailed cycle-accurate

behavior recording, which would greatly increase storage and processing require-

ments. While such temporal information is important for other optimizations, we

found that the increased complexity entailed by path-based profiling provided little

additional and generally applicable insight into optimal allocations to limited SPM

space at runtime. This concept of collapsing path-based information in favor of total

program access behavior for our regular method was adopted when we developed

methods to reduce our profile sensitivity for input-dependent applications.

Reducing profile sensitivity requires a better understanding of how a program

will behave with respect to its input data. Accordingly, we have modified our own

DPRG to capture the important additional information we need to better predict

how a candidate allocation will benefits an application for the broadest number of

input scenarios. We first begin by capturing separate DPRG structures for each

program using individual program inputs. This provides static and dynamic behav-

ior information in a compact representation of different ways a program can behave

when it executes. Theoretically, the only way to account for all possible program

behavior is to sample all possible program behavior at design-time, similar to how

programmers perform validation experiments on their code designs. In practice this

proves to be generally impossible, and infeasible for most embedded engineers to

perform in practice, leading them to choose safer and less invasive optimization

methods. Ideally, a good compiler analysis and optimization scheme will be able to

use the minimum amount of dynamic information possible, reducing analysis time

198

7.4 Profile sensitivity

and complexity, but generally also reducing its overall accuracy as well. Our entire

method tries to create an effective and efficient heuristic analysis and optimization

tool to deduce an optimal memory allocation for a particular program, even if that

program exhibits dynamic and hard to predict behavior at runtime. A key observa-

tion is that it is often more desirable to give more SPM space to predictable and less

profitable variables, then hoping for highly accurate predictions for more profitable

(but much less predictable) dynamic program objects.

The DPRG was created as a tool for efficient static and dynamic information

storage for a program. While this is sufficient for many programs, dynamic data

requires some modifications to the DPRG to better account for dynamic program

behavior across different inputs, both in terms of its possible execution path and data

access pattern. Knowing that we need a way to better predict program behavior, and

lacking static analysis methods applicable to these dynamic program variables, we

instead gather more dynamic profile information for use in a new DPRG structure.

By looking at those programs which were very input-sensitive, we saw that in many

cases it was very hard for even a trained human to correlate a particular input

to how those unpredictable variables would behave. Instead, we theorized that

instead of over-specializing our methods to try and find useful patterns, we would

be better served by instead minimizing the possibility of poor allocations by placing

less importance on unpredictable variables, despite their FPB. We found that by

using profile inputs that behaved quite differently, and combining the information

from both inputs, we were able to better automatically identify which dynamic

199

Chapter 7. Robust dynamic data handling

allocation sites were predictable and deserved more SPM placement.

Let us return to the same example program presented in figure 7.3 to see

how we should modify our DPRG to account for different program profiles resulting

from different program inputs. The main function is extracted and redisplayed in

figure 7.4. For this function, we assume that with the first program input applied,

the if condition is taken, and VarA is assigned 4 bytes of space from the heap and is

very frequently used throughout the program. Now with a second program input,

the if condition was not taken and VarA is instead assigned 32 bytes of space from

the heap and is barely accessed throughout the remainder of the program execution.

If we use only the DPRG generated from the first input, running the second input on

the optimized application would show suboptimal performance. This is because our

allocation was based on the first input, where VarA was smaller and more frequently

accessed, and placed into SPM by the compiler. Using the second input reveals that

the optimized heap bin should not have been placed in SPM and instead its space

should most likely have been given to another variables for increased benefit. Indeed,

this becomes even more serious for realistic heap sites that allocate a large number

of heap objects regardless of program input. Instead, our DPRG should reflect as

many different program profiles as possible for those applications which are shown

to be input dependent.

We take the following steps to prepare our DPRG for representation of multi-

ple, possibly conflicting program execution profiles resulting from different program

inputs. First we prepare a copy of the static program DPRG from the compiler,

200

7.4 Profile sensitivity

[unknown.c]

main() {

if (...) {

VarA = func-A(4) }

else {

VarA = func-A(32) }

...

Return

}

...

Figure 7.4: Example of an unknown-size heap allocation site inside of a function.

listing all program regions and any statically discoverable variables and access fre-

quencies. We then process each program region by collecting the access information

for all variables alive for that region from all available DPRGs corresponding to

different program inputs. Our master copy, or averaged-DPRG, then updates the

region node being processed with averaged information using all access statistics

from the various profile DPRGs. Each region node is assigned an average value for

the frequency that the region is accessed, and all edges visiting that region also re-

ceive average frequency assignments. Each region node also contains every variable

node alive for that region which appears in any input DPRG. Each variable in that

region is also averaged in terms of its access frequency among all DPRGs read in. In

concept, this is similar to how we handle repeated program visits to a region at run-

time which exhibit different memory access behavior for different execution paths,

or even the same execution path. By not overspecializing our approach to such a

fine-grained, time-dependent view, our heuristic method is better able to trade-off

201

Chapter 7. Robust dynamic data handling

Node DPRG 1 DPRG 2 Average
Freq. Freq. Freq.

REGION 1 100 200 150
Heap-A 100 100 100
Heap-B 40 40 40
Stack 1 100 10 55
Global 20 200 110

Figure 7.5: DPRG for a program region showing access frequencies for different
input profiles as well as the average frequency used to reduce per-profile sensitivity.

SPM allocation among all program objects by looking at the broader picture.

To illustrate how this averaging process works, let us refer to a simplified

DPRG for a sample program region called Region 1 shown in figure 7.5. This figure

only lists the nodes and frequencies for that region, and lists the data collected from

two different program inputs as well as the value for the averaged DPRG created.

From the table, we can see that this region was visited 100 times for the first program

input and 200 times for the second program input, receiving an average value of 150

for its access frequency in our averaged-DPRG. We see the same methods applied to

all variables alive in that region. Of particular interest are variables Stack 1 (a stack

variable from this region) and Global (a global variable). An SPM allocation derived

solely from the first program input would place Stack 1 into SPM and leave Global

in DRAM, while one based on the second profile would do the opposite. Which

one is the right decision? Using the averaged-DPRG, our allocation algorithm is

better able to guide its decisions based on the average trend among all variables for

different program inputs.

The creation of the averaged-DPRG is similar in many respects to the way we

202

7.4 Profile sensitivity

create a single DPRG for an application and its static and dynamic behavior for a

single program input. The same program regions appear in all DPRGs regardless

of program inputs, the only differences are in the contents of the region nodes and

the edge frequencies between region nodes for each DPRG. Common conflicts are

resolved as follows. The first apparent conflict occurs when a variable does not

appear inside the same region for two different DPRGs. This can only occur for

dynamic program variables such as heap objects or recursive stack frames and is

not a problem. The variable will appear in the averaged-DPRG, but with zero

access contribution from each of the DPRGs in which that variable did not exist.

The other problem of having a variable appear in the same region, but with different

sizes has already been addressed in the previous section for unknown-size objects,

and is a problem unique to heap variables.

By averaging the contents of several DPRGs, our method is given much more

information on the typical program behavior observed for different inputs. Very

little variation is seen for many applications which have very predictable program

behavior as well as dynamic data usage, and so any DPRG can be used to optimize

these applications for general inputs. When significant differences between DPRGs

are observed for different inputs, we can immediately identify which program regions

and variables are input-dependent and for which allocation predictions may be in-

accurate. By averaging the DPRG structures together from the different inputs, we

are able to strengthen the relative importance of predictable variables which retain

constant FPB values, while tending to decrease the relative FPBs of those variables

203

Chapter 7. Robust dynamic data handling

which large input-dependence and profile variation. This is also helpful for programs

containing unknown-size allocation sites, which tend to be the hardest to predict

accurately using a single input profile.

In conclusion, reducing profile sensitivity is important for any allocation scheme,

because they are all inherently profile dependent. Using our averaging approach to

creating a representative program representation in an averaged-DPRG helps guide

our iterative search toward placement of those variables which are consistently shown

to be of benefit, regardless of program input. To achieve best results, a designer

should pay special attention to programs which exhibit significant behavior varia-

tion and attempt to capture a representative set of program inputs for the expected

range of common behaviors. Our method is able to achieve profile-insensitive results

using only a single program input for about half of our benchmark suite. Using only

a single additional profile input with our averaging technique reduces our profile

sensitivity by a further quarter of our total benchmark suite. As with any other

approach, for best prediction of dynamic program behavior, the widest range of

possible profiled input information should be collected and fed into our memory

allocator.

204

Chapter 8

Methodology

To evaluate the effectiveness of our SPM allocation techniques, we have imple-

mented our methods using readily available open-source compiler tools and tested

them using a set of free benchmark applications on open-source simulation tools.

Despite being open-source, the chosen packages possess many of the desirable fea-

tures present in industrial development software for code analysis and optimization.

While software support is not available in the open-source world for all embedded

platforms, the compiler used for this research produces code of industrial quality for

the targeted platform, as well as providing a fairly accurate simulation framework for

benchmark execution and power statistics. Although tools provided by commercial

vendors generally produce more efficient executables and more accurate simulations,

they are also very heavily copyrighted, rendering access to compiler source close to

impossible. The proposed method instead relies on a modern open-source devel-

opment infrastructure including a compiler, assembler and linker for development,

205

Chapter 8. Methodology

along with an open-source platform simulator for profiling and execution. Our meth-

ods were designed to make use of a variety of software-hardware interfaces targeting

the widest range of embedded hardware platforms that would benefit from our tech-

niques. Similarly, we have chosen a large set of open-source applications to compile

with our methods and evaluate their execution and power characteristics. Our cho-

sen combination of hardware and software platforms have the advantage of being in

common use today, enjoy industry-level open-source support for development and

simulation, and have been instrumental in the development of the dynamic memory

allocation methods applicable to a wide range of embedded applications.

Section 8.1 will describe the class of embedded hardware platforms targeted by

this research, chosen for its popularity in industry as well as academia. Section 8.2

will discuss the general software requirements for implementation of our dynamic

allocation methods. Details on the compiler software developed and implemented

for this research will be presented in section 8.3. Section 8.4 will discuss the sim-

ulation engines employed to evaluate our method’s impact on execution time and

power consumption for benchmarks. Sections 8.5, 8.6 and 8.7 will discuss the bench-

mark set chosen for simulation, the typical classes of applications observed during

investigation and finally present the relevant execution and allocation statistics for

the set.

206

8.1 Target hardware platform

8.1 Target hardware platform

This section describes our target embedded system platform, one which is represen-

tative of a large number of the popular chips in use today. Generally, our method

is useful on any typical commercial processor platform that includes a compiler-

exposed scratchpad (or SRAM-like) memory along with other heterogeneous mem-

ories that can be controlled or accessed through processor instructions. While our

method is potentially useful on a very large number of existing hardware platforms,

the research described in this document was tested with the Advanced Risc Ma-

chines Ltd.(ARM) v4 Instruction Set Architecture(ISA) CPU family. This is a

good example of a popular RISC CPU family that supports various memory config-

urations along with efficient compiler and ISA interfaces. Our methods are equally

applicable on the ARM or any other CPU supporting scratchpad memory with a

compiler-friendly ISA, allowing improved performance at a reduced energy cost for

programs using dynamic memory.

The ARM V4 is the earliest ISA version supported by this research, which

is still currently used in a number of processor cores. This is currently the oldest

ISA version still in production and being supported by ARM. They also produce

the ARMv4T, ARMv5TE-J, ARMv6, and ARMv7 core families, comprising their

current processor offerings. While the actual hardware implementation of their

cores may vary and evolve, the ISA implementation remains consistent and ensures

programmers will enjoy the same or better level of hardware instruction depth as

the core design evolves. In general the market leaders in embedded processors have

207

Chapter 8. Methodology

been those that have produced energy/performance efficient cores and have kept

a consistent well-designed ISA as their hardware designs evolved. By targeting

our methods toward common embedded hardware configurations that employ a

standardized, compiler-accessible ISA interface, we ensure our methods are directly

applicable to a very large range of current and future processors.

The individual processor core we target in our research is the Intel StrongARM

SA-1100 [73], a processor that has been heavily investigated in academia. The In-

tel StrongARM was developed for portable and embedded application requirements

requiring low power consumption while maintaining reasonable performance. It con-

sists of a 32-bit ARM pipelined RISC(Reduced Instruction Set Computer) processor

with adjustable speeds between 60MhZ at 0.8V to 206 MHz at 1.5V. The adjustable

speeds are consistent with the power-management modes available to the device,

aimed at saving energy when the processor enters long idle or sleep modes of op-

eration. As with the majority of the ARM processor implementations, it contains

general purpose hardware to implement memory controllers and I/O devices among

other useful peripherals for complete platform deployment.Our research targets the

Intel StrongARM processor platform in particular, operating at 1.5V and with a

206MHz clock speed.

This particular core implementation was chosen as a model representative

of commercial embedded cores and because of the power and latency information

available for use in simulation. More detailed information available concerning our

chosen embedded hardware and its hardware models will be presented at the end of

208

8.1 Target hardware platform

this chapter.

Since ARM provides a variety of synthesizable cores, an end-user can generally

expect a choice in configurable fast memory devices to deploy on the core in the

form of Scratch-Pad Memory(SPM) or Tightly-Coupled Memory(TCM), and also

in the form of instruction and data caches. Many of their cores also include a

variety of DRAM, FLASH and ROM modules when required on-chip and the broad

majority implement on-chip memory controllers for off-chip memory modules. This

research uses the Intel StrongARM SA-1100 core configured with common embedded

memory configurations to evaluate the effectiveness of our allocation methods. In

order to capture the widest selection of embedded platform configurations, we have

evaluated and simulated various sizes of ScratchPad, Cache, SRAM, DRAM and

ROM memory modules. While most of our results focus on ScratchPad and DRAM

as typical memory configurations, our methods are also applicable when other types

of heterogeneous memory is present on the same platform. Further details on the

particular configurations explored will be presented in the simulation section as well

as the results and analysis chapters.

Although our current research is based on an ARM embedded system, our

methods were first developed and applied on the more primitive Motorola MCore

processor family. The Motorola Mcore is a 32-bit RISC microprocessor designed

for low power operation between 2.7 and 3.6 volts at 33MHz. This microprocessor

comes packaged with 8-32 Kb of ScratchPad Memory, 0-256 KB of Flash Memory,

and external memory controllers for up to 32MB in the form of DRAM, ROM, Flash

209

Chapter 8. Methodology

or other memory peripherals. The Mcore ISA contained standard memory load and

store instructions, as well as versions that operated on multiple registers at once,

allowing pseudo-DMA operation when loading from memory banks. Lacking cache

memory support, the MCore processor proved to be a perfect target for our SPM

allocation methods.

Unfortunately, lack of adequate compiler tools led us to switch to the ARM

platform to best evaluate our compiler allocation methods. The open-source GCC

compiler available for the MCore was inferior and produced almost unoptimized

code. We observed the compiler produce redundant memory operations, lacked

library support for realistic applications and generally employed few compiler op-

timizations and working executables. For the MCore applications we were able to

evaluate, the benefits of our system were consistent with the improvements observed

on the ARM platform after accounting for the disparity in platforms. A short sec-

tion in the Results chapter will discuss results obtained on the MCore platform. By

examining these combined results, we find that our methods are equally applicable

to low-end processors such as the Mcore and mid-level or high-end processors such

as those in the ARM family, employing varying levels of software and hardware

support.

8.2 Software platform requirements

Before implementing our allocation strategy, we surveyed a variety of embedded

platforms to determine common hardware features and typical software interfaces.

210

8.2 Software platform requirements

By choosing an entirely software driven approach to memory allocation, our method

is readily applicable to a large number of embedded platforms, without requiring

the costly hardware redesign and modification other methods require. Because our

method is entirely compiler-based, memory and processor instructions are deciding

factors in the software implementations possible. High-end embedded processors

generally contain specialized memory instructions and hardware which would make

the mechanics of our dynamic allocation methods considerably more efficient. In-

stead of focusing on high-end processors with advanced memory hardware/software,

we instead looked for the most common embedded instructions in current use across

low and middle range processors with heterogeneous memory hardware. This section

will discuss the software considerations when applying our methods to a particular

embedded platform, both in terms of requirements from the ISA for allocation as

well as requirements for the development platform on which our method will be

applied.

The proposed allocation methods attempt to improve performance by dynam-

ically allocating and transferring program objects using common instructions, with-

out requiring additional hardware or esoteric ISA support. As a bare minimum,

our methods requires the presence of basic read and write memory instructions able

to access data at the different memory banks. The compiler methods can make

use of the same data transfer instructions used for program operation to implement

dynamic memory allocation to SPM as well as slower system memory. In order to

do this efficiently across different embedded platforms, our methods can be tailored

211

Chapter 8. Methodology

further according to the software and instructions available for a particular architec-

ture. Our method is able to make use of optimized memory transfer methods such

as Direct Memory Access(DMA) instructions or pseudo-DMA software methods.

As opposed to hardware caches and other forms of hardware memory man-

agers, our methods can use any improved software exposed interfaces such as DMA

for the lowest overheads for our allocations. DMA support is available in many

embedded processors and consists of an enhanced software-controlled memory con-

troller able to operate in parallel with the CPU and perform memory transfers

more quickly than through serialized instruction-based word transfers. We have de-

veloped compiler methods for both the ARM and MCore that make use of DMA

transfer functions to transfer data more efficiently than when using standard load

and store instructions. For our results, we model DMA operation at a cycle cost

of N*DRAM LATENCY/4 cycles per N words plus a 10 instruction overhead from

the DMA instruction code executed for each transfer, along with associated power

costs for memory and instructions.

Many embedded processors that do not support DMA do support some form

of pseudo-DMA, a term we use to describe software methods that speed up data

transfer over the basic word-level load/store method. Pseudo-DMA methods in-

clude those which use instructions that can read or write to a range of registers

from external memory, taking advantage of DRAM data pipelining of sequential

accesses. These can also include methods that use structured loops for large data

transfers which take advantage of interrupts to better tolerate long-latency DRAM

212

8.2 Software platform requirements

operations while processing instructions in the background. These and many other

software-based methods exist today, many of which can be used to further decrease

the overhead of dynamic data transfers incurred by our allocation methods but

none of which are necessary to its success. We apply pseudo-DMA operations only

to transfer blocks of 24 bytes or larger, since smaller blocks do not overcome the

instruction overhead needed by the transfer method. For our results, an N-word

transfer requires N*DRAM LATENCY/2 cycles for the dram access cost plus an

additional cycle for every 4 words transferred. Similar to DMA, pseudo-DMA is

implemented using structured functions, so each transfer also adds a 10 instruction

overhead for the processor instructions required, along with associated power costs

for memory and instructions.

Regardless of the ISA features available for a hardware platform, some form

of compiler or development framework is required to automatically perform dy-

namic memory allocation during program execution. Our very first static allocation

method relied on a compiler to produce assembly versions for all benchmark C

source files, after which we would scan the assembly for memory operations affect-

ing memory objects identified by reading the assembly code. To perform profiling

our allocator would add assembly files containing custom profiling functions as well

as assembly calls to these functions at program locations that accessed, allocated or

de-allocated memory for program objects. Allocation was similarly performed with

our method by parsing and modifying the assembly files just before final compila-

tion into binary executables. The benefit of this approach was the ability to perform

213

Chapter 8. Methodology

profiling and static allocation without requiring access to or modification of a com-

piler, simulation package or hardware platform. Unfortunately, this approach also

lacks the benefits of compiler passes such as those used to identify and allocate all

program objects at the smallest granularity as well as alias analysis passes to enable

dynamic allocation in the presence of pointers. Furthermore, the software inserted

profiling dramatically slowed execution and its effects on benchmark simulation and

execution speed were difficult to distinguish without access to a modifiable simu-

lator or advanced hardware testing platform, prompting us to look at open-source

development platforms.

The majority of this research was conducted using the Gnu Compiler Collec-

tion(GCC) open-source compiler framework, the Gnu DeBugger(GDB) open-source

simulator and an entirely open-source software benchmark library, modified to im-

plement our memory allocation schemes. The use of open-source software allowed

us much greater flexibility in seamlessly applying our allocation methods to produce

an enhanced development platform with minimal impact to the typical development

process. Access to the source code that compiles and simulates an ISA was crucial

to building an industrial strength compiler method that performs efficiently for the

majority of applications and places no additional burden on the programmer. The

following section will detail the modifications we have made to the compiler, while

the final section in this chapter will discuss the simulation software used to evaluate

our allocation scheme.

214

8.3 Compiler implementation

8.3 Compiler implementation

As for any compiler-based method, the choice of compiler platform is crucial in

determining how much program information is available and to what degree the

compiler may be modified to perform advanced passes. Since complex methods re-

quire tighter coordination with the compiler, we focused on compilers which were

open-source or for which we could obtain source code to properly integrate our

allocation techniques. As part of our initial investigation, we evaluated several dif-

ferent compiler alternatives targeting different processor platforms before choosing

the open-source GCC compiler for the ARM. Our search was restricted to open-

source platforms only after we failed to obtain access to any commercial compilers

for academic research. Being open-source was not the only requirement for our dy-

namic memory allocation method, and this section focuses on the reasons GCC was

chosen for our research and its impact on our success. The four major compilation

steps comprising our method will be discussed to provide insight into the additions

and modifications required to implement our research using the GCC C-compiler.

Finally, this section ends with a brief discussion of any difficulties that arose while

using this particular compiler and development platform.

GCC C compiler

Our current dynamic memory allocation scheme is based on the most recent Gnu

Compiler Collection(GCC) C-language compiler targeting the ARM embedded pro-

cessor ISA. The ARM continue to be a popular ISA for embedded developers and

215

Chapter 8. Methodology

benefits from full open-source support through one of their divisions, Code Sourcery

Ltd. Code Sourcery, in combination with a large developer community, has con-

tributed a wide variety of optimizations and software solutions aimed at producing

efficient application code using GCC. With the support of ARM, Code Sourcery,

and countless users, the latest GCC 4.x family contains many of the features found

in high-end commercial compilers and has contributed to the success and validity

of our compiler-based research.

The two biggest reasons we chose GCC for this research was due to both its

high level of development support for the target platform as well as the breadth

of compiler interfaces available to us in an open-source package. As this research

was developed, our methods were integrated and adapted to successive evolutions

of GCC, including two major version releases beginning with version 2.95 and up

to the current version 4.1 package. The Motorola MCore was first supported in

the 2.9x release with a very poor code generation backend and even worse library

support, after which no further improvements were made for the MCore. On the

other hand, the ARM branch of GCC has had excellent support and has evolved

with the compiler to include all the modern features of GCC as well as a high quality

code generator, very good development library support and other software features

to take advantage of ARM hardware. Further information on the current status

of GCC can be found on the Gnu website[53] for ARM and all other supported

platforms. While we expect our techniques to perform even better on commercial

compilers, we were unable to obtain access to source code for any industrial compiler

216

8.3 Compiler implementation

packages for the ARM platform, typical of all commercial compilers.

Figure 8.2 gives an overview of the typical steps the GCC compiler takes

when compiling an application from source files. While we have taken advantage

of several of the optimizations present in GCC, we will only discuss in detail those

modifications essential to our process. Although over a dozen are listed, the steps

shown represent only a small number of all the compiler passes performed inside

GCC when creating an application executable. Details concerning individual steps

GCC performs can be found in [128].

GCC compiler modifications

In general, GCC was made for portability and runs on a variety of host machines,

generating code compliant with the target machine specification provided by a ven-

dor. The compiler begins by reading in a source file, and then proceeds to parse

and compile the source code in that file function by function to produce an assem-

bly equivalent for that file. For multi-source programs, this happens for each file

in the program and then handed off to the linker to produce a final object binary.

Only those steps which are directly affected by our method will be detailed, avoiding

common compilation steps such as parsing, code optimizations and specific back-end

optimizations for the target processor.

Figure 8.2 shows a high-level representation of the steps applied to each bench-

mark to obtain the results presented in this thesis. The first stage involved compiling

the target application into an executable containing profile code for use in the sim-

ulator, during which it gathers static profile information on variables and program

217

Chapter 8. Methodology

Optimisation
(Repeated)

Jump

Parsing
Tree

Optimisation
RTL

Generation

Sibling Call
Optimisation

SSA Based
Optimisation

Jump
Threading

Common
Subexpression
Elimination

Global Common
Subexpression
Elimination

Loop
Optimisation

Data Flow
Analysis

Jump
Optimisation

Instruction
Combination

Register
Movement

Instruction
Scheduling

Register Class
Preferencing

Instruction
Scheduling

Global Register
Allocation

Local Register
Allocation

Basic Block
Reordering

Delayed Branch
Scheduling

Branch
Shortening

Final Pass:
Assembler
Output

Register Scan

Reloading

Figure 8.1: Detailed view of GCC compiler flow for a typical application.

control flow. The second stage executes the instrumented binary on an accurate

platform simulator using desired program inputs to generate dynamic information

concerning the program memory allocation and program execution behavior. The

second stage ends by annealing all static and dynamic program information gath-

ered so far into the application DPRG. The complete DPRG is used in the third

stage as an input to the SPM memory allocation process, which processes the pro-

file information to guide its allocation process. After iterating through different

218

8.3 Compiler implementation

solutions, the best one is chosen and implemented by recompiling the application

using the dynamic layout calculated. Finally, the fourth stage concludes the process

by executing the optimized binary, after also instrumenting it with profile code, to

check on the performance of the chosen SPM allocation for the program.

1. Profile Compilation

- Static profile analysis

- Profile code insertion
prof.exe

2. Profile Simulation

- Configure Inputs

- Gather dynamic results

DPRG

4. Optimized Profile

- Execute Optimized binary

- Read power and exec data opt.exe

3. Optimized Compilation

- Compute DPRG Allocation

- Insert and modify code

Figure 8.2: Four stages comprising the results collection process for SPM allocation
experiments.

Static and dynamic profiling

The earliest change made to the compiler is immediately after the compiler has

completed its optimizations on the low-level Register Transfer Language(RTL) rep-

resentation of the function currently being compiled. At this point, we can build

the Control-Flow-Graph information augmented with variables and static analysis

of variable frequency by examining code generated and relevant control structures

such as loops or conditional paths. This information is dumped for each function

from each file compiled and later reconstituted to provide a static DPRG represen-

tation used in our optimization pass. The static profile information will also be used

219

Chapter 8. Methodology

during simulation to match local variables with their assigned stack pointer offsets

once a function is entered, for accurate variable profiling. By waiting until the end of

the compilation process, we know which variables the compiler was able to allocate

to registers, and which were placed on the program stack and are candidates for

SPM allocation.

Immediately after we gather the static profile information, we then scan through

the chain of RTL nodes representing the current function. This low-level form closely

corresponds with the assembly instructions which will be produced shortly by the

final step of the backend. It is at this point that we can perform our own code

insertions used to mark the start and endpoints of regions corresponding to those

used in the DPRG representation. These markers are also associated with unique

program points for use by the simulator to gather dynamic profile statistics as well

as for optimization purposes. At this point we also collect pointer analysis informa-

tion provided through new alias analysis modules added to the GCC 4 release. The

alias analysis information is used to determine regions where a heapsite may or will

not be referenced. These regions are then used to define the limited lifetime region

sets for heap instances allocated from that call site.

Profile collection

Once the profile-augmented binary has been produced, it is then fed into the ARM

simulator for execution with a variety of representative inputs. By collecting the

dynamic DPRG information through these profile runs, we can produce a coalesced

DPRG that contains the static and dynamic program information used by our al-

220

8.3 Compiler implementation

location pass to decide which variables are most profitable to place in SPM. Since

we are mostly concerned with dynamically allocated memory objects placed on the

heap, this is an essential step in predicting average trends for a program that may

exhibit widely varying behavior due to input dependence. Using the static dprg

created during compilation as the basic framework, dynamic execution information

is added to the structure as the program executes. Upon loading the binary, the

simulator reads the binary file descriptor used in ELF format binaries to extract

information concerning code, text and data segments. These segment descriptors

contain the global symbol table, declarations of all library and user functions present

in the program as well as the addresses corresponding to each variable type. Heap

variables are discovered as calls to the relevant allocation functions are intercepted

with the size and assigned address information. Edge information between dprg

regions is also discovered dynamically as the program encounters profile markers

during execution. Despite the large amount of information collected during profile

runs, the simulation speed does not degrade enormously through the use of efficient

data structures for looking up address accesses caused by memory instructions.

SPM allocation

The resulting dprg is then used to determine which regions and variables should be

allocated to SPM dynamically or statically to minimize overall execution and energy

costs for the target program. The detailed explanation of this process is discussed

in chapter 6.

221

Chapter 8. Methodology

Optimized compilation

Using the results of the SPM allocation pass, we now proceed to recompile the target

program with the allocation decisions arrived at. Those stack variables that were

promoted to global variable status for SPM allocation purposes are so modified when

the program has been described in its initial tree form before RTL generation. Opti-

mized stack variables are replaced by either DRAM or SRAM labels corresponding

to that variable in all regions where it is present. This is also done for global vari-

ables that were optimized for any program regions. Once the compiler lowers the

tree structures into RTL code, we can then replace optimized heap allocation sites

with calls to wrapper functions that contain information on the bin assignments for

use at runtime in generating addresses. Similarly, we can now also place at needed

region transition points the code necessary to perform memory transfers for opti-

mized variables between SPM and DRAM at runtime. The necessary code for the

optimized heap allocation functions is also included as part of the compiled binary,

ensuring that no unforeseen optimization passes are performed on this supporting

code. Finally if code allocation was also optimized, then the final assembly files are

modified to implement the code allocation scheme chosen, after which the code is

linked into a final program binary.

Results collection

The optimized binary can now be executed on the simulator which has a specified

address area assigned as the SPM bank with associated access and latency costs.

The simulator can also enable or disable the presence of a cache hierarchy for all

222

8.4 Simulation platform

memory accesses to those address spaces marked as cacheable in the simulator. A

detailed report is presented which specifies variables and their memory access types,

information on transfers, information on stalls due to memory or instruction delays,

cache performance and other execution data.

8.4 Simulation platform

To estimate the effectiveness of our compiler-based SPM allocation scheme, a stan-

dard ARM embedded platform is the only real requirement for executing optimized

executables and extracting power and execution data. Lacking access to laboratory

and ARM development hardware, we have chosen a software simulator augmented

with execution and power models tailored to our chosen ARM hardware platform.

Indeed, for most embedded developers, cross-platform development is the standard,

as it offers access to more powerful compiler analysis and optimization tools.

CPU core

To simulate our target CPU, we use the ARM simulation framework available in

the Gnu Debugger (GDB) software along with several modifications to accurately

model the Intel StrongARM’s execution and power characteristics. The simulation

package in GDB was originally contributed by the ARM corporation, and consists

of a simulator (ARMulator) that emulates the complete ARMv4 ISA. We further

tailored the simulation engine using execution latency specifications from the Intel

StrongARM Technical Manual[73] and instrumented the simulator with additional

223

Chapter 8. Methodology

custom-built profiling modules. To accurately model power consumption during pro-

gram execution, we incorporated the research presented in [125], a paper describing

power estimation research conducted using the Intel StrongARM processor. By

drawing from these different resources, our research hardware model for the Intel

StrongARM processor, operating at 1.5V and with a clock rate of 206MHz, produces

highly accurate execution information for the benchmark results presented in the

next chapter.

ScratchPad Memory

In addition to the CPU core, we have modeled several types of memory common to

embedded systems and have primarily focused on Scratch-Pad Memory. Scratch-

Pad Memory is usually present on embedded platforms as a small user-controlled

SRAM memory module that is built directly into the processing chip for low-latency

and low-power access by the CPU. Our modified simulator is capable of mapping

different simulated memory modules such as SPM to sections of its addressable

memory space. When simulating memory instructions, our execution simulator

model includes the cost of the CPU access to internal memory by the processor

pipeline, while the power and latency costs for activity inside the SRAM memory

module is calculated using a modified version of the Cacti hardware estimation tool.

We have adopted a similar approach as that presented in [17],[131] and [83], in which

we simplify the CACTI estimation model for a single-level, direct-mapped cache to

match a ScratchPad memory module.

Our scratchpad memory model is calculated using CACTI [147] for various

224

8.4 Simulation platform

common sizes using a 0.5u technology size at 1.5V to match processor specifications.

CACTI is a popular transistor-level estimation tool for parametrized cache designs

that estimates the circuitry required for all cache components and their time and

power requirements. SPM is modeled in CACTI as an SRAM memory array with

its accompanying sense amplifiers, column multiplexers, output driver circuitry, row

and column circuitry logic and decoder module. Using circuit models, CACTI is

able to generate area, power and latency requirements for SPM configurations of

various sizes and types by removing from its estimation process the extra circuitry

needed only for a complete cache system.

Cache hierarchy

In addition to standard SRAM memory modules, our simulator includes support for

cache memory hardware in both its power and execution models. While primarily

the domain of desktops, caches have become more and more common as embedded

processors have increased in complexity. Designed to take advantage of dynamic

memory locality, they are useful for many applications although at a higher energy

and area cost than SPM. The cache behavior for our simulator is modeled during

instruction execution by directing all cache memory accesses to the Dinero IV[137]

cache simulation software. Dinero IV is a popular academic highly functional and

highly configurable cache access simulator integrated into our simulator memory

hierarchy to provide latency information for cache memory traffic. For our estimates

on power, area and latency characteristics for a given cache configuration, we have

integrated the original CACTI [147] transistor-level cache simulator. In general, we

225

Chapter 8. Methodology

model a direct-mapped single-level data cache for our benchmark comparisons with

configuration details available in the relevant results discussion sections. Similar to

our SPM model, the cache memory used for this research is based on 0.5u technology

size operating at 1.5V to match our ARM processor statistics.

DRAM

On-chip memory like SRAM is fast and consumes less power than cache or DRAM

memory designs, but it also consumes a large amount of silicon area and is much

more expensive to design than the ubiquitous DRAM memory module. The most

basic embedded processors usually include a small amount of fast on-chip memory

or registers for common operations, hence the term Scratch-Pad Memory, along with

instruction memory to hold program code. Middle and High-level processors gener-

ally include a much larger amount of off-chip memory in the form of ROM, Flash,

SRAM or most commonly DRAM for application data exceeding internal register

and SPM storage. DRAM is cost-effective, standardized and available in very large

sizes, making it the main memory of choice for most embedded platforms requiring

balanced read and write access to data. For our experiments the simulated ARM

CPU accesses external DRAM memory through its memory mapped controller using

various software control methods to perform read and write operations for bench-

mark data. We have incorporated the DRAM power estimation model provided by

MICRON [78] for their external DDR Synchronous DRAM chip [99]. Using this

model inside our simulator allows us to calculate power consumption characteristics

for DRAM chips of different sizes. Our simulation model also accounts for aggressive

226

8.4 Simulation platform

energy and latency saving techniques commonly employed in embedded platforms in

the course of simulating memory transactions to DRAM for benchmark applications.

Other memory types

Besides various types of SRAM and DRAM memory, embedded systems generally

contain other types of memory such as Flash and ROM memory. Many platforms

contain some form of ROM memory to serve as non-volatile storage and contain

firmware and other system level software needed for regular platform operation. Pro-

cessors performing identical tasks during their lifetimes typically also store program

code in ROM as long as it is always read and never written during execution. As em-

bedded processors have become more powerful, they generally have looked to newer

memory technologies such as Flash to provide more flexible alternatives, which is

really a re-programmable version of ROM memory known as EEPROM(Electrically

Erasable Programmable Read Only Memory). We also note that their power con-

sumption was comparable to SRAM for reads but was much more costly than DRAM

for writes, making it a good choice for data that changes very little during execution,

such as instruction code or data constants used frequently for applications, but a

poor choice for compiler-controlled dynamic data allocation techniques. As we have

looked at its application for code storage in other work, we have not considered it

as a practical choice for meaningful benchmark results containing heap data.

227

Chapter 8. Methodology

8.5 Benchmark overview

While drawn from a large number of sources, the benchmarks used for evaluation

of our compiler methods were chosen because they all perform significant dynamic

data allocation, require only standard C-language libraries and resemble programs

typically executed on embedded systems. Each benchmark included in our suite

performs at least some amount of heap memory allocation for the inputs profiled.

In general, many of the programs chosen for study are memory intensive; the runtime

instruction mix is made up of 1-30% memory instructions for all applications. All

benchmarks were compiled using full optimization levels with the Redhat Newlib

C library [52] using the GCC ARM compiler described above. Wherever possible,

we have chosen both programs and inputs typical of what may usually execute on

an embedded platform, striving to keep memory occupancy limited to less than a

few megabytes and a runtime that averages a few million processor cycles. For all

applications we have two program input sets for generation of results, and whenever

possible have chosen the two inputs whose profiles were least alike among those

available.

8.6 Benchmark classes

In order to understand how our methods can improve program performance, it

is helpful to group the benchmarks into sets that exhibit certain characteristics.

During the course of our research into optimizing dynamically allocated memory

228

8.6 Benchmark classes

objects for embedded systems, we have found three main types to be considered.

We have found it necessary to create extensions to our main method to handle the

difficulties each type entails. Below we discuss the distinguishing traits for each type

according to their dynamic data allocation characteristics.

The first type are those benchmarks in the Known-Size Heap set and denotes

benchmarks with almost all heap objects allocated with a compile-time known size.

These are the simplest of the dynamic memory types to analyze for SPM allocation

purposes. With object sizes for heap allocation sites fixed at a compile-time known

size, our method is able to apply our full range of heap allocation optimizations,

including bin resizing. These additionally have better access guarantees since all

objects allocated with the same known-size also tend to be of the same type for C

applications and exist at unique code locations for individual handling. While every

benchmark in our suite contains known-size allocation sites, this subset contains

those compiled benchmarks for which the majority of heap accesses are to known-

size sites but which may also contain unknown-size sites with a low FPB which are

too large to be placed in SPM.

The second type are those in the Unknown-Size Heap set and refer to those ap-

plications which mainly use heap objects that come from heap allocation sites with

a compile-time unknown size. This is common in applications that create wrapper

functions around their heap function calls to detect errors, but makes it more dif-

ficult to allocate individual objects by fixing their location in code. Luckily, the

GCC ARM compiler used in this research is capable of function inlining which we

229

Chapter 8. Methodology

have used to very effectively eliminate simple wrappers and turning many such sites

into compile-time known size sites. More complicated heap allocation interfaces

(common in user memory managers) will significantly deteriorate the effectiveness

of our method and we avoided benchmarks which employed a completely internal

management solution(such as JPEG). We have developed extra methods to han-

dle unknown-size heap allocation sites as part of our overall allocation framework.

This subset of our benchmark suite contains those applications which primarily use

unknown-size allocation sites which are frequent enough and similar enough in size

to other variables to be considered good candidates for SPM allocation. These

benchmarks also tend to use a few very large heap objects of unknown-size which

do not make good candidates for SPM placement.

The third type of benchmark is the Recursive Stack set and refers to those

benchmarks that contain some form of heap data but also contain recursive stack

objects. Recursive stack objects are the memory objects allocated on the program

stack by user functions containing self-referencing function calls. Because of their

dynamic nature, and compile-time unpredictability in terms of behavior or memory

consumption, recursive function stack variables are usually ignored and unhandled

for memory existing allocation schemes. We have developed the first methods for

handling of recursive variables after finding that a large proportion of heap-using

benchmarks also relied on recursive functions. This subset from our benchmark suite

consists of those benchmarks which contain recursive functions forming part of the

core program and which are executed at runtime. A few benchmarks in other subsets

230

8.7 Benchmark suite

may contain one or two recursive functions, but these are usually for debugging or

verification and are never executed in practice. We note that a few benchmarks

may appear in both the unknown-size and recursive benchmark subsets for results

if those benchmarks make significant use of both types of dynamic program data at

runtime.

8.7 Benchmark suite

To fully evaluate the performance of our dynamic heap allocation methods, we have

drawn our benchmark applications from a large number of freely available software

distributions. We have applied our approach to applications ranging from simple

kernel programs to typical desktop software. We include programs from popular

academic suites such as PTRdist, MediaBench [89], Olden [32], MIBench [58] and

from other public-domain benchmark suites such as DhryBench [146], MallocBench

and FreeBench, SciMark2, McCat [63], PROLANGS and the benchmark suite from

the LLVM compiler distribution [88]. We include those benchmarks from each of

these suites which uses heap memory, compiles using only standard libraries and

which would be present on an embedded system. For benchmark suites aimed at

higher end computer platforms such as MIBench, we were unable to choose most of

the heap-using applications since they were either desktop oriented or used unsup-

ported library calls. Also included are a few other applications such as the popular

desktop compression program Bzip, a Huffman encoding application and the Sorting

benchmark, which performs common sorting algorithms on dynamically allocated

231

Chapter 8. Methodology

arrays. All of the programs used for this research are freely available as C source files

and almost all are in their original untouched form. A few programs were slightly

changed to remove unsupported system or library calls not necessary for the core

algorithm, had their I/O redirected to files instead of interactive terminal streams or

have had minor changes to remove unnecessary verification and debug code if it was

problematic. Figures 8.3-8.5 show details for all individual benchmarks including

information on their allocation behavior and other notable characteristics.

There are several characteristics of interest when looking at each of the bench-

marks we have collected and optimized. Of primary importance is the percentage

of memory accesses made to heap objects for a program, which will impact how

much benefit we may receive with proper allocation. Figures 8.3-8.5 show the most

relevant statistics from the benchmark applications evaluated in this thesis. Also of

interest are the dynamic memory characteristics of each heap-using program as well

as how much total memory a program occupies. Programming styles vary widely,

and the benchmarks included in our research are almost entirely untouched so that

we may evaluate our methods against a wide range of programming styles. We apply

our techniques wherever possible without manually changing application behavior

to better suit our allocation strategy.

232

8.7 Benchmark suite

Benchmark Dhrystone Gsm Huffman KS Susan Chomp Dhrystone-Float Dijkstra

Suite DhryBench MediaBench Misc PtrDist MiBench ProLangs Suite LLVM Suite MiBench

Class Known-Size Known-Size Known-Size Known-Size Known-Size Known-Size Known-Size Known-Size

Total Data Size 10884 17728 3296 29324 378110 2596 21496 45060

Global and Stack Size 10788 17064 352 28820 370324 188 21392 40916

Heap Data Size 96 664 2944 1168 17774 2408 104 4144

 Memory Instructions 880056 19361186 244029 146655 5227928 9927 730058 5725441

 Non-memory instructions 1250075 114472920 332942 383589 22417964 34751 2400084 13338524

 Heap Accesses 440013 7472622 206705 88016 4891730 6648 60014 684945

 Global and Stack Accesses 440043 11888564 37324 58639 336198 3279 670044 5040496

 Heap Allocation Sites 2 2 4 5 4 10 2 2

 Heap Object Instances 2 2 4 146 4 227 2 260

Cycles (Baseline 5%SPM) 11440410 285801079 4504577 2824498 120924402 171750 6170466 44082140

 Cycles (My Method 5%SPM) 3080170 169807181 3012241 1151146 27981532 104699 5030200 36443095

Benchmark EKS FFT FT Heapsort Lists LluBenchmark Matrix Misr

Suite McCat Suite MiBench PtrDist LLVM Suite LLVM Suite LLVM Suite LLVM SuiteProLangs Suite

Class Known-Size Known-Size Known-Size Known-Size Known-Size Known-Size Known-Size Known-Size

Total Data Size 43368 16724 5860 6468 1052 11188 416 408

Global and Stack Size 424 308 156 60 56 52 56 276

Heap Data Size 43248 16416 5704 6408 996 11136 360 132

 Memory Instructions 23449790 456105 21768 86429 1110605 95749 129732 1307100

 Non-memory instructions 23912454 619111 84654 188439 1252821 319304 312762 3892246

 Heap Accesses 7506460 78856 14601 61152 1100400 95616 129113 578043

 Global and Stack Accesses 15943330 377249 7167 25277 10205 133 619 729057

 Heap Allocation Sites 5 6 7 1 3 3 6 1

 Heap Object Instances 107 6 318 1 3 1345 18 11

Cycles (Baseline 5%SPM) 189984984 2573520 383841 1436771 23271121 2283610 2907402 29806028

 Cycles (My Method 5%SPM) 169408630 2417720 374880 1436771 20478121 2057299 2194712 28551952

Figure 8.3: Benchmark Suite Information Part 1 of 3.

Benchmark Objinst PiFFT Sorting Anagram BC BH Bisort Cfrac

Suite LLVM Suite FreeBench Public Domain PtrDist PtrDist Olden Olden MallocBench

Class Known-Size Known-Size Known-Size Recursive Recursive Recursive Recursive Recursive

Total Data Size 72 29732 1344112 73306 73306 14164 2076 2042

Global and Stack Size 40 2888 104 21266 21266 3808 552 1648

Heap Data Size 32 26844 1344008 52080 52080 10356 1524 394

 Memory Instructions 56093 8852440 2015467.875 145811 145811 1858190 48385 68624

 Non-memory instructions 147490 9252740 6103929 521913 521913 1985257 62135 114936

 Heap Accesses 56083 2633845 743068 70193 70193 126054 16271 20493

 Global and Stack Accesses 10 6218595 1272400 75618 75618 1732136 32114 48131

 Heap Allocation Sites 4 12 3 2 2 4 1 8

 Heap Object Instances 4 12 3 6 6 82 127 29

Cycles (Baseline 5%SPM) 1269350 71763841 22510353 2051457 4254868 27109175 773230 615322

 Cycles (My Method 5%SPM) 1269350 71754018 8119409 2041577 3318833 9250543 773230 615322

Benchmark Epic Health Imp MST Patricia Perimeter Qbsort TreeAdd

Suite MediaBench Olden McCat Suite Olden MiBench Olden McCat Suite Olden

Class Recursive Recursive Recursive Recursive Recursive Recursive Recursive Recursive

Total Data Size 726568 13512 381992 13956 36688 17580 28228 12700

Global and Stack Size 328294 532 952 256 428 864 508 424

Heap Data Size 398274 12980 381612 13700 36480 16716 27720 12276

 Memory Instructions 710255 103794 13936346 61009 66049 78311 101916 45045

 Non-memory instructions 2852333 149570 42485832 160751 148870 137766 346324 76774

 Heap Accesses 168066 14526 9097271 19025 55519 17064 80810 1025

 Global and Stack Accesses 542189 89268 4839075 41984 10530 61247 21106 44020

 Heap Allocation Sites 3 3 14 5 6 1 5 1

 Heap Object Instances 51 829 267 1058 2736 597 3185 1023

Cycles (Baseline 5%SPM) 9378062 625188 229270600 595604 1303753 697729 2098887 224762

 Cycles (My Method 5%SPM) 8365316 518645 182380563 501269 637575 534519 1516496 140933

Figure 8.4: Benchmark Suite Information Part 2 of 3.

233

Chapter 8. Methodology

Benchmark TreeSort Trie TSP Voronoi Yacr2 AllRoots Bzip EM3D

Suite LLVM Suite McCat Suite Olden Olden PtrDist ProLangs Suitemercial Application Olden

Class Recursive Recursive Recursive Recursive Recursive Unknown-Size Unknown-Size Unknown-Size

Total Data Size 87084 30380 3196 15208 44030 652 1077462 35104

Global and Stack Size 75084 4176 928 1708 892 264 80332 272

Heap Data Size 12000 26294 2268 13500 43498 408 997130 34832

 Memory Instructions 60846 433905 42365 42152 9906423 24962 1294819 104633

 Non-memory instructions 133316 803043 66172 37048 25121946 70547 2066947.875 241600

 Heap Accesses 19000 81860 20698 10895 5930953 5004 327825 44236

 Global and Stack Accesses 41846 352045 21667 31257 3975470 19958 966994 60397

 Heap Allocation Sites 5 8 1 4 26 2 5 15

 Heap Object Instances 1000 1318 63 119 60 8 7 1030

Cycles (Baseline 5%SPM) 701972 8286630 814849 803170 155184341 378961 9592000 1202097

 Cycles (My Method 5%SPM) 386860 3543926 796606 709680 80513743 378961 9479026 1079832

Benchmark Mpeg2Decoder Mpeg2Encoder SciMark2-C Sgefa Spiff

Suite MediaBench MediaBench SciMark2 Suite LLVM Suite LLVM Suite

Class Unknown-Size Unknown-Size Unknown-Size Unknown-Size Unknown-Size

Total Data Size 13364 913468 250152 15100 816954

Global and Stack Size 11188 4092 436 4232 806280

Heap Data Size 2176 909376 249716 10872 10674

 Memory Instructions 1581194 7949331 7692309 1114431 24635

 Non-memory instructions 2781366 36662352 11324136 3302422 57678

 Heap Accesses 297088 2963228 5239318 1014114 3810

 Global and Stack Accesses 1284106 4986103 2452991 100317 20825

 Heap Allocation Sites 4 11 11 5 1

 Heap Object Instances 10 25 211 77 385

Cycles (Baseline 5%SPM) 20310996 101296615 153849468 23957654 191565

 Cycles (My Method 5%SPM) 19547310 97914603 124965953 23055154 186796

Figure 8.5: Benchmark Suite Information Part 3 of 3.

234

Chapter 9

Results

This chapter presents the results obtained by comparing our allocation method for

dynamic data against the usual practice of placing such data in DRAM, for a va-

riety of compiler and architecture configurations. For comparison, we use the best

existing compiler-directed SPM allocation scheme for global and non-recursive stack

data from [132], since there exists no other automatic compiler methods to optimally

allocate dynamic data using either static or dynamic memory placement. Both our

method and the dynamic method for global and stack variables in [132] are imple-

mented in the same GCC ARM compiler and simulation framework. All applications

are compiled automatically using full optimization levels without requiring the user

to specify anything other than the SPM space available for data allocation on the

target platform. An external DRAM with 20-cycle latency and an internal SRAM

(scratch-pad) with 1-cycle latency is simulated in the default configuration. The

default configuration has an SRAM size which is 5% of the total data size in the

235

Chapter 9. Results

program. The total data size for a program is the maximum memory occupancy

during the course of its execution and not simply a sum of the total data objects

allocated throughout its lifetime. The DRAM size, of course, is assumed to be large

enough to hold all program data. Instruction code is placed in SRAM by the com-

piler for all experiments to remove its influence from SPM allocation. However, for

completeness we also present a study that considers code allocation in section 9.6.

9.1 Dynamic heap allocation results

9.1.1 Runtime and energy gain

Figure 9.1 compares the normalized runtime from our method versus from the exist-

ing practice of placing all dynamic data in DRAM. For each benchmark the SRAM

size is the same in both configurations – 5% of the combined global, stack and heap

data size in that program. Without our method, this SRAM is used only by global

and non-recursive stack data; with our method the SRAM is shared by all types of

global, stack and heap data. In both cases, global and non-recursive stack data is

allocated by the best existing method for global and stack data, which is the one

in [132]. The figure shows that the average runtime reduces by 22.3% by using our

method for the exact same architecture. The large improvements show the poten-

tial of our method to reduce runtime of the application beyond the state-of-the-art

today.

236

9.1 Dynamic heap allocation results

0

10

20

30

40

50

60

70

80

90

100

D
ry

s
to

n
e

G
s
m

H
u

ff
K

S
S

u
s
a
n

C
h

o
m

p
D

h
ry

s
to

n
e
-F

lo
a
t

D
ij
k
s
tr

a
E

k
s

F
F

T F
t

H
e
a
p

S
o

rt
L

is
ts

L
L

U
B

e
n

c
h

m
a
rk

M
a
tr

ix
M

is
r

O
b

jI
in

s
t

P
iF

F
T

S
o

rt
in

g
A

n
a
g

ra
m B
c

B
h

B
is

o
rt

C
fr

a
c

E
p

ic
H

e
a
lt

h
Im

p
M

s
t

P
a
tr

ic
ia

P
e
ri

m
e
te

r
Q

b
S

o
rt

T
re

e
A

d
d

T
re

e
S

o
rt

T
ri

e
T

S
P

V
o

ro
n

o
i

Y
a
c
r2

A
ll
ro

o
ts

B
zi

p
E

m
3
d

M
p

e
g

2
D

e
c
o

d
e

M
p

e
g

2
E

n
c
o

d
e

S
c
iM

a
rk

2
S

g
e
fa

S
p

if
f

A
V

E
R

A
G

E

N
o

rm
a
li
z
e
d

 R
u

n
ti

m
e

Heap in DRAM Heap Optimized

Figure 9.1: Normalized runtime from using our method versus allocating heap data in
DRAM.

Why do we do well?

Before looking at additional experiments, it is insightful to look at why an improve-

ment of 22.3% can be obtained with an SRAM of only 5% of the total data size

of the program. We identify three reasons. First, it is well-known that a small

fraction of frequently used data usually accounts for a large fraction of the accesses

in the program. This is often referred to informally as the ninety-ten rule [64]: on

average 10% of the data accounts for 90% of the accesses. Consequently, we find

that our method is able to place the most frequently used dynamic data variables,

either fully or in large part, in SRAM – this is verified later in figure 9.4. Without

our method, they all go to DRAM, which is much slower. A second reason for the

237

Chapter 9. Results

significant improvement is that our earlier global and non-recursive stack method,

and our current dynamic data method, are both dynamic. Thus even though the

SRAM is 5% of the total data size, by sharing this space across different frequently

used data variables in different regions, it is possible to place more than 5% of the

frequently used data in SRAM. Note that a scratch-pad improves performance for

the same reasons as a cache. Just as even a small cache can significantly improve

run-time [64], it is not surprising that a small scratch-pad can too. Third, many

of the benchmarks selected have a significant fraction of their accesses going to dy-

namic data, and thus our method to optimize for dynamic data does well. For other

benchmarks where the fraction of dynamic data accesses is zero or small, allocation

of such variables is, of course, not a problem, and hence, they do not need SRAM

placement.

Here we look at two examples from our benchmarks which illustrate why some

heap data is accessed frequently. First, Susan is a typical image-processing applica-

tion which stores the image in a large stack array. It performs iterative smoothing

on small chunks of the image at a time; the chunks and associated look-up tables

needed for smoothing are stored on the stack and on the heap. Because smoothing

accesses each pixel many times, the most-frequently used chunk data is allocated to

SRAM, but the infrequently used large image array and less-frequently used chunk

data are placed in DRAM. Second, Huffman performs Huffman encoding, meant

for data compression. Here most of the program data is on the heap and there is

little other data. There are four heap variables of total sizes 60 bytes, 260 bytes,

238

9.1 Dynamic heap allocation results

14Kb, and 4Kb. The first is used to store the encoder structure; the second holds

the coded bits of the character currently being encoded; the third stores the alpha-

bet used; and the fourth holds the current block array used in encoding. The last

two are somewhat frequently used with frequency-per-byte of about 150 but only

a small portion of them fit in SRAM. The first two, however, are very highly used

with frequency-per-bytes of about 40000 and 1000, respectively, and our method is

able to place them in SRAM.

Energy gain

Figure 9.2 compares the energy consumption of application programs with our dy-

namic data method versus placing dynamic data in DRAM. The figure shows that

we measure an average reduction of 26.7% in energy consumption for our appli-

cations by using our method versus placing dynamic data in DRAM. This result

demonstrates that our approach has the potential to not only significantly improve

runtime, but also energy consumption. We see that the improvement in execution

costs is reflected in the reduced power consumption for optimized applications, a

correlation commonly seen by researchers working in compiler optimization. While

our method primarily seeks to reduce runtime, this also generally leads to a propor-

tionate reduction in the energy consumption of the system for most applications.

Comparing figures 8.3 - 8.5 against 9.1, we see that our method does not

always show more benefit for applications with a larger ratio of heap data among

all program data. In general, our method will tend to improve the performance of

an application in proportion to the percentage of the program data is heap data. If

239

Chapter 9. Results

0

10

20

30

40

50

60

70

80

90

100

D
ry

s
to

n
e

G
s
m

H
u

ff

K
S

S
u

s
a
n

C
h

o
m

p
D

h
ry

s
to

n
e
-F

lo
a
t

D
ij
k
s
tr

a

E
k
s

F
F

T F
t

H
e
a
p

S
o

rt
L

is
ts

L
L

U
B

e
n

c
h

m
a
rk

M
a
tr

ix
M

is
r

O
b

jI
in

s
t

P
iF

F
T

S
o

rt
in

g
A

n
a
g

ra
m B
c

B
h

B
is

o
rt

C
fr

a
c

E
p

ic
H

e
a
lt

h

Im
p

M
s
t

P
a
tr

ic
ia

P
e
ri

m
e
te

r
Q

b
S

o
rt

T
re

e
A

d
d

T
re

e
S

o
rt

T
ri

e
T

S
P

V
o

ro
n

o
i

Y
a
c
r2

A
ll
R

o
o

ts
B

z
ip

E
m

3
d

M
p

e
g

2
D

e
c
o

d
e

M
p

e
g

2
E

n
c
o

d
e

S
c
iM

a
rk

2
s
g

e
fa

s
p

if
f

A
V

E
R

A
G

E

N
o

rm
a

li
z
e

d
 E

n
e

g
e

ry
 U

s
a

g
e

Heap in DRAM Heap Optimized

Figure 9.2: Normalized energy consumption comparing our method against the baseline.

heap data makes up a larger percentage of the program footprint, there is a much

higher chance that heap objects will exist that are important and frequently used at

runtime. Looking at heapsort, we see that the 98% of its memory footprint is due to

the single heap allocation site in the program that allocates a single large array, that

is also input dependent and of unknown-size. A single heap object makes up almost

the entire allocation requirements for this program in the form of an array. Without

having an SPM large enough to hold 98% of the memory footprint, this site will

never be optimized and will never be placed to SPM. These types of scenarios are

also common in streaming media applications, such as MPEG2Dec and MPEG2Enc,

where our method is unable to place their larger, unknown-size heap allocation sites

240

9.1 Dynamic heap allocation results

into SPM due to lack of available space. Further, even if enough space in SPM were

available to consider storing such large heap objects, it is unlikely that their access

frequency will be high enough in comparison to other smaller objects to ensure that

placing the larger objects in SPM will be profitable.

9.1.2 Transfer method comparison

The results in figure 9.1 and the rest of the paper use DMA for the memory transfers

in our method. In our preliminary research, we measured that the gain from our

method as compared to the baseline method from [132] only reduced slightly by a

few percent with all-software transfers, although this was gathered from only five

benchmark applications. After refining our own methods, as well as greatly expand-

ing our suite of applications, we now see the opposite behavior when comparing

transfer methods. Figure 9.1.2 shows the changes in runtime gain when comparing

our method to the baseline method from [132] for our entire benchmark set. We can

see that on average, our benchmarks show an increase in the average runtime gain

when less efficient software transfer methods are used. When both allocation meth-

ods use software transfers, there is an average runtime gain of 24.12%. Pseudo-DMA

transfers show an average of 22.99% gain and the default DMA transfer method gives

an average of 22.03% gain. Figure ?? presents the change in energy savings for the

same experiment and exhibits similar trends to the runtime results in figure ??. Re-

gardless of the direction of change as transfer methods are varied, both our method

and the baseline for global and stack [132] rely on memory transfers; a change in

241

Chapter 9. Results

the transfer mechanism affects both and changes their ratio only slightly.

0

10

20

30

40

50

60

70

80

90

100

D
ry

s
to

n
e

G
s
m

H
u

ff

K
S

S
u

s
a
n

C
h

o
m

p
D

h
ry

s
to

n
e
-F

lo
a
t

D
ij
k
s
tr

a
E

k
s

F
F

T F
t

H
e
a
p

S
o

rt
L

is
ts

L
L

U
B

e
n

c
h

m
a
rk

M
a
tr

ix
M

is
r

O
b

jI
in

s
t

P
iF

F
T

S
o

rt
in

g
A

n
a
g

ra
m B
c

B
h

B
is

o
rt

C
fr

a
c

E
p

ic
H

e
a
lt

h

Im
p

M
s
t

P
a
tr

ic
ia

P
e
ri

m
e
te

r
Q

b
S

o
rt

T
re

e
A

d
d

T
re

e
S

o
rt

T
ri

e
T

S
P

V
o

ro
n

o
i

Y
a
c
r2

A
ll
ro

o
ts

B
zi

p
E

m
3
d

M
p

e
g

2
D

e
c
o

d
e

M
p

e
g

2
E

n
c
o

d
e

S
c
iM

a
rk

2
s
g

e
fa

s
p

if
f

A
V

E
R

A
G

E

R
u

n
ti

m
e

 I
m

p
ro

v
e

m
e

n
t

%
Software Pseudo DMA

To implement a dynamic allocation scheme, both our method and the method

in [132] rely on available processor methods for copying data to and from different

memory locations. Regardless of the actual mechanism used to perform the trans-

fers, the transfers themselves are important to both methods, as well as any other

dynamic allocation scheme such as those implemented by cache memories. When

comparing two dynamic methods, it is important to keep in mind that both will have

the same total amount of SPM space available. The two techniques can trade off

their allocation and transfer decisions, generally causing either more or less transfers

when we allocate dynamic data objects in addition to static data. Sometimes trans-

fers increase when stack and global variables of importance must be in SPM for some

242

9.1 Dynamic heap allocation results

regions, but swapped more heavily to place heap variables, or vice versa. Sometimes

transfers decrease because the placement of heap variables precludes the placement

of stack and global variables which were incurring transfers. This unpredictability

is typical of memory allocation problems, requiring sophisticated methods, analysis

and program profile information for best prediction of performance at runtime.

Looking at the results for the Health application, we see that the use of better

transfer methods decreases the runtime gain from our method compared to the

baseline method. This is because the transfers are used much more often for stack

and global variables in the baseline method, than in our allocation with the heap

variables in the improved method. Sometimes we can improve performance by

allocating heap objects to SPM instead of attempting to dynamically allocate more

stack and global variables, which in turn incur more transfers at runtime. This

causes the ratio between the two methods to change as the transfer costs shift for

each individual transfer method, affecting the runtime improvement ratios between

the two methods. Let us assume that the stack and global allocation had a large

number of transfers, and those are sped up using DMA, but the heap allocation had

many less transfers. The ratio comparing the two methods would thus decrease as

the stack and global allocation costs are decreased at a greater rate than the heap

results. Usually what we see is that when we allocate heap data, it consumes SPM

space which would have been given to less profitable stack and global variables fitted

in using transfers. We generally do not transfer heap variables in and out of SPM

as often, due to safety constraints on possible pointer accesses and the high cost of

243

Chapter 9. Results

transferring entire bins. Stack and global objects tend to be smaller and much safer

to dynamically transfer at runtime with safety guarantees.

0

10

20

30

40

50

60

70

80

90

100
D

ry
s
to

n
e

G
s
m

H
u

ff

K
S

S
u

s
a
n

C
h

o
m

p
D

h
ry

s
to

n
e
-F

lo
a
t

D
ij
k
s
tr

a

E
k
s

F
F

T F
t

H
e
a
p

S
o

rt
L

is
ts

L
L

U
B

e
n

c
h

m
a
rk

M
a
tr

ix

M
is

r
O

b
jI
in

s
t

P
iF

F
T

S
o

rt
in

g
A

n
a
g

ra
m B
c

B
h

B
is

o
rt

C
fr

a
c

E
p

ic
H

e
a
lt

h

Im
p

M
s
t

P
a
tr

ic
ia

P
e
ri

m
e
te

r
Q

b
S

o
rt

T
re

e
A

d
d

T
re

e
S

o
rt

T
ri

e

T
S

P
V

o
ro

n
o

i
Y

a
c
r2

A
ll
ro

o
ts

B
zi

p
E

m
3
d

M
p

e
g

2
D

e
c
o

d
e

M
p

e
g

2
E

n
c
o

d
e

S
c
iM

a
rk

2
s
g

e
fa

s
p

if
f

A
V

E
R

A
G

E

E
n

e
rg

y
 I

m
p

ro
v
e
m

e
n

t
%

Software Pseudo DMA

Figure 9.3: Improvement in power consumption comparing our method against the base-
line using varied transfer methods

9.1.3 Reduction in heap DRAM accesses

Figure 9.4 shows the percentage of memory accesses to heap data going to DRAM

after application of our method. In this figure, any applications without a bar

indicates that our method was able to allocate all accessed heap variables into SPM

of 5% data size. The number of DRAM accesses is sometimes increased by the

transfer code but is reduced much more by the increased locality afforded by the

SRAM bins. Considering both effects, the average net reduction across benchmarks

244

9.1 Dynamic heap allocation results

is a significant 35.76% reduction in heap DRAM accesses for an SPM size that is

only 5% of the total data size. Analyzing the results shows that our method was

able to place many important heap variables into SRAM without involving transfers,

explaining the high reduction in DRAM accesses for heap data in benchmarks such

as Dhrystone and Susan. This was correlated with a small increase in transfers for

less important stack and global variables, which were evicted to make room for the

more frequently accessed heap variables allocated. This figure does not account for

the reduction in DRAM accesses from recursive stack variables optimized by our

method, which will be discussed in section 9.3

0

10

20

30

40

50

60

70

80

90

100

D
ry

s
to

n
e

G
s
m

H
u

ff
K

S
S

u
s
a
n

C
h

o
m

p
D

h
ry

s
to

n
e
-F

lo
a
t

D
ij
k
s
tr

a
E

k
s

F
F

T F
t

H
e
a
p

S
o

rt
L

is
ts

L
L

U
B

e
n

c
h

m
a
rk

M
a
tr

ix
M

is
r

O
b

jI
in

s
t

P
iF

F
T

S
o

rt
in

g
A

n
a
g

ra
m B
c

B
h

B
is

o
rt

C
fr

a
c

E
p

ic
H

e
a
lt

h
Im

p
M

s
t

P
a
tr

ic
ia

P
e
ri

m
e
te

r
Q

b
S

o
rt

T
re

e
A

d
d

T
re

e
S

o
rt

T
ri

e
T

S
P

V
o

ro
n

o
i

Y
a
c
r2

A
ll
ro

o
ts

B
zi

p
E

m
3
d

M
p

e
g

2
D

e
c
o

d
e

M
p

e
g

2
E

n
c
o

d
e

S
c
iM

a
rk

2
S

g
e
fa

S
p

if
f

A
V

E
R

A
G

E

P
e

rc
e

n
t

o
f

H
e

a
p

 i
n

 D
R

A
M

Figure 9.4: Percentage of heap memory accesses going to DRAM for each benchmark.

245

Chapter 9. Results

9.1.4 Effect of DRAM latency

Figures 9.5 and 9.6 show the effect of increasing DRAM latency on the runtime

gains from our method for the entire benchmark suite. Since our method reduces

the number of DRAM accesses, the gain from our method is greater with higher

DRAM latencies. This is especially true when we are able to place most heap

data in SRAM, and the larger latency affects mostly the stack and global DRAM

data. The figure shows that the average runtime gain from our method versus heap

allocation in DRAM increases from 22.3% with a 20-cycle DRAM latency to 27.8%

with a 100-cycle DRAM latency. We can compare this figure against figure 9.4 to

see how the increased DRAM latencies only make a difference for those applications

where a significant number of heap accesses went to DRAM after optimization.

9.1.5 Effect of varying SPM size

Figure 9.7 shows the effect of increasing SRAM size on the percentage gain in run-

time from our method. The SRAM size is expressed as the percentage of the total

data size for the application. The average runtime gain from our method varies from

22.3% to 40.5%, when the scratch-pad size percentage is varied from 5% to 25%.

From this we see that increasing the SRAM space beyond 5% gives only a relatively

small additional benefit on average. This is because of only a small fraction of the

program data is frequently used. A similar effect is seen for caches: a very large

cache does not yield much better performance than a moderately sized cache [64].

The runtime and energy (not shown) results from this experiment reinforce the effec-

246

9.2 Unknown-size heap allocation

0

10

20

30

40

50

60

70

80

90

100

D
ry

st
one

G
sm H

uff
K
S

Susa
n

C
hom

p

D
hry

st
one-

Flo
at

D
ijk

st
ra

Eks
FFT Ft

H
ea

pSort

Lis
ts

LLU
B
en

ch
m

ar
k

M
at

rix
M

is
r

O
bjIi

nst

PiF
FT

Sort
in

g

R
u

n
ti

m
e

 I
m

p
ro

v
e

m
e

n
t

%

20 Cycles

40 Cycles

60 Cycles

80 Cycles

100 Cycles

Figure 9.5: Effect of varying DRAM latency on runtime gain from our method (Part 1).

tiveness of our technique for both smaller and larger amounts of SPM in embedded

platforms.

9.2 Unknown-size heap allocation

This section compares the performance of our method with and without support for

heap allocation sites of a compile-time unknown size. These types of sites are much

more difficult to optimize since there is no consistent unit of allocation for all heap

objects created at that site. Figure 9.8 shows the normalized runtime for the set of

applications with unknown-size heap allocation sites, for the default SPM size of 5%.

247

Chapter 9. Results

0

10

20

30

40

50

60

70

80

90

100

A
n
ag

ra
m B
c

B
h

B
is

o
rt

C
fr

ac
E

p
ic

H
ea

lt
h

Im
p

M
st

P
at

ri
ci

a
P

er
im

et
er

Q
b
S

o
rt

T
re

eA
d
d

T
re

eS
o
rt

T
ri

e
T
S

P
V

o
ro

n
o
i

Y
ac

r2
A

llR
o
o
ts

B
zi

p
E

m
3d

M
p
eg

2D
ec

o
d
e

M
p
eg

2E
n
co

d
e

S
ci

M
ar

k2
sg

ef
a

sp
if
f

A
V

E
R

A
G

E

R
u

n
ti

m
e

 I
m

p
ro

v
e

m
e

n
t

%

20 Cycles

40 Cycles

60 Cycles

80 Cycles

100 Cycles

Figure 9.6: Effect of varying DRAM latency on runtime gain from our method (Part 2).

The first bar is for the case where only stack and global data is allocated to SPM, to

which the other two bars are normalized for comparison. The second bar depicts the

situation where we leave unknown-size heap objects in DRAM but optimize all other

data types to SPM. The third bar shows the result when we allocate all supported

data types to SPM. The difference between the first bar and second bar shows the

improvement obtained from allocating known-size heap objects to SPM in addition

to stack and global, while the difference between the second and third bars shows

the separate improvement due to the addition of unknown-size heap objects. From

figure 9.8, we see that on average a 1.5% decrease in runtime is obtained when we

allocate unknown-size heap objects in addition to known-size heap objects to SPM.

248

9.2 Unknown-size heap allocation

0

10

20

30

40

50

60

70

80

90

100
D

ry
st

o
n
e

G
sm H
u
ff

K
S

S
u
sa

n
C

h
o
m

p

D
h
ry

st
o
n
e-

F
lo

at
D

ij
ks

tr
a

E
ks

F
F
T F
t

H
e
ap

S
o
rt

L
is

ts

L
L
U

B
en

ch
m

ar
k

M
at

ri
x

M
is

r
O

b
jIi

n
st

P
iF

F
T

S
o
rt

in
g

A
n
ag

ra
m B
c

B
h

B
is

o
rt

C
fr

a
c

E
p
ic

H
e
al

th
Im

p
M

st
P

at
ri

c
ia

P
er

im
et

e
r

Q
b
S

o
rt

T
re

eA
d
d

T
re

eS
o
rt

T
ri

e
T
S

P
V

o
ro

n
o
i

Y
ac

r2
A

ll
ro

o
ts

B
zi

p
E

m
3d

M
p
eg

2D
ec

o
d
e

M
p
eg

2E
n
c
o
d
e

S
ci

M
ar

k2
s
g
ef

a
s
p
if
f

A
V

E
R

A
G

E

R
u

n
ti

m
e

 I
m

p
ro

v
e

m
e

n
t

%

5% 10% 15% 20% 25%

Figure 9.7: Effect of varying SRAM size on runtime gain from our method, where SRAM
size is expressed as percentage of total data size for application.

Figure 9.9 shows the normalized enery usage for the same experiment, also averaging

a 1.5% decrease in energy consumption when allocating unknown-size heap objects.

Unlike known-size heap allocation sites, our method is currently unable to

apply the heap-resizing pass to unknown-size sites, since there is no unique allocation

size for all objects at that site. Also, with different heap objects being created at

the same site, our method has a much lower guarantee that the individual objects

placed in SPM at runtime were the ones most beneficial for allocation using profile

information. Figure 9.10 expands on this experiment by varying the SRAM size

from 5% to 25% to reduce allocation pressure from the more predictable known-size

249

Chapter 9. Results

0

10

20

30

40

50

60

70

80

90

100

A
llr

oots
B
zi
p

EM
3D

M
peg

2D
ec

ode

M
peg

2E
nco

de

Sci
M

ar
k2

Sgef
a

Spiff

A
VER

A
G
E

N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e

No Heap No VarHeap All Heap Opt

Figure 9.8: Normalized runtime for benchmarks with unknown-size heap allocation at
5% SRAM.

heap allocation sites. From this figure, we see that the runtime improvement from

handling unknown-size allocation sites rises from 1.5% at 5% SRAM, to 5.3% at

25% SRAM. Figure 9.11 shows the normalized energy usage obtained for the same

experiment, with the energy consumption reduced by 1.5% at 5% SRAM to 7.8% at

25% SRAM. These results show that our unknown-size heap allocation extension is

useful for handling these types of allocation sites although much more complicated

methods are necessary to fully exploit these allocation patterns as we do for recursive

stack and known-size heap objects.

250

9.3 Recursive function allocation

0

10

20

30

40

50

60

70

80

90

100

A
llr

oots
B
zi
p

EM
3D

M
peg

2D
ec

ode

M
peg

2E
nco

de

Sci
M

ar
k2

Sgef
a

Spiff

A
VER

A
G
E

N
o

rm
a
li
z
e
d

 E
n

e
rg

y
 U

s
a
g

e
No Heap No VarHeap All Opt

Figure 9.9: Normalized energy usage for benchmarks with unknown-size heap allocation
at 5% SRAM.

9.3 Recursive function allocation

In this section, we examine the effectiveness of our method for dynamically allocating

the stack data from recursive functions to SPM. With no other published research

related to allocation of recursive functions to SPM, our methods for stack data

are as novel as our methods for heap allocation and we compare its performance

against the best known SPM allocation scheme from [132]. We have developed

these methods for handling recursive stack data due to its similarity to heap data,

in that its total size is generally unbounded at compile-time and it is allocated at

251

Chapter 9. Results

0

10

20

30

40

50

60

70

80

90

100
A

llr
o
o
ts

5%
A

llr
o
o
ts

10
%

A
llr

o
o
ts

15
%

A
llr

o
o
ts

20
%

A
llr

o
o
ts

25
%

B
zi

p
5
%

B
zi

p
1
0%

B
zi

p
1
5%

B
zi

p
2
0%

B
zi

p
2
5%

E
M

3D
5
%

E
M

3D
1
0%

E
M

3D
1
5%

E
M

3D
2
0%

E
M

3D
2
5%

M
p
eg

2D
ec

o
d
e

5%

M
p
eg

2D
ec

o
d
e

10
%

M
p
eg

2D
ec

o
d
e

15
%

M
p
eg

2D
ec

o
d
e

20
%

M
p
eg

2D
ec

o
d
e

25
%

M
p
eg

2E
n
co

d
e

5%

M
p
eg

2E
n
co

d
e

10
%

M
p
eg

2E
n
co

d
e

15
%

M
p
eg

2E
n
co

d
e

20
%

M
p
eg

2E
n
co

d
e

25
%

S
ci

M
ar

k2
5%

S
ci

M
ar

k2
10

%

S
ci

M
ar

k2
15

%

S
ci

M
ar

k2
20

%

S
ci

M
ar

k2
25

%
S

g
ef

a
5%

S
g
ef

a
10

%
S

g
ef

a
15

%
S

g
ef

a
20

%
S

g
ef

a
25

%
S

p
if
f
5%

S
p
if
f
10

%
S

p
if
f
15

%
S

p
if
f
20

%
S

p
if
f
25

%

N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e

No Heap

No VarHeap

All Opt

Figure 9.10: Normalized runtime for benchmarks with unknown-size heap allocation for
varying SRAM sizes.

runtime dynamically instead of at compile-time. The results presented from these

experiments show the benefit achieved by allocating recursive stack data to SPM by

comparing allocation scenarios where a combination of stack, global and heap data

are also allocated using our methods. Figure 9.12 shows the runtime gains for those

applications using recursive functions when we apply different allocation schemes at

the default SPM size of 5%. All three bars are normalized against our baseline case

where only global and non-recursive stack data is allocated to SPM, and dynamic

data is left in DRAM. The first bar shows the runtime gain when we allocate global,

recursive and non-recursive stack data to SPM while leaving heap data in DRAM.

252

9.3 Recursive function allocation

0

10

20

30

40

50

60

70

80

90

100

A
ll
ro

o
ts

5
%

A
ll
ro

o
ts

1
0
%

A
ll
ro

o
ts

1
5
%

A
ll
ro

o
ts

2
0
%

A
ll
ro

o
ts

2
5
%

B
zi

p
5
%

B
zi

p
1
0
%

B
zi

p
1
5
%

B
zi

p
2
0
%

B
zi

p
2
5
%

E
M

3
D

5
%

E
M

3
D

1
0
%

E
M

3
D

1
5
%

E
M

3
D

2
0
%

E
M

3
D

2
5
%

M
p

e
g
2
D

e
c
o

d
e

5
%

M
p

e
g
2
D

e
c
o

d
e

1
0
%

M
p

e
g
2
D

e
c
o

d
e

1
5
%

M
p

e
g
2
D

e
c
o

d
e

2
0
%

M
p

e
g
2
D

e
c
o

d
e

2
5
%

M
p

e
g
2
E

n
c
o

d
e

5
%

M
p

e
g
2
E

n
c
o

d
e

1
0
%

M
p

e
g
2
E

n
c
o

d
e

1
5
%

M
p

e
g
2
E

n
c
o

d
e

2
0
%

M
p

e
g
2
E

n
c
o

d
e

2
5
%

S
c
iM

a
rk

2
5
%

S
c
iM

a
rk

2
1
0
%

S
c
iM

a
rk

2
1
5
%

S
c
iM

a
rk

2
2
0
%

S
c
iM

a
rk

2
2
5
%

S
g

e
fa

5
%

S
g

e
fa

1
0
%

S
g

e
fa

1
5
%

S
g

e
fa

2
0
%

S
g

e
fa

2
5
%

S
p

if
f

5
%

S
p

if
f

1
0
%

S
p

if
f

1
5
%

S
p

if
f

2
0
%

S
p

if
f

2
5
%

N
o

rm
a
li
z
e
d

 E
n

e
rg

y
 U

s
a
g

e
No Heap

No VarHeap

All Opt

Figure 9.11: Normalized energy usage for benchmarks with unknown-size heap allocation
for varying SRAM sizes.

The second bar shows the case when we leave recursive stack data in DRAM but

allocate global, non-recursive stack and heap data to SPM. The third bar represents

the final case where we apply our full allocation methods and allow all data types

to be considered for SPM allocation.

Looking at the first bar for each application in figure 9.12, we see on aver-

age a 13.8% decrease in runtime when we allocate recursive stack data as well as

non-recursive stack and global data. Looking at the second bar reveals a 11.8%

reduction on average in runtime when heap is allocated to SPM with non-recursive

stack and global data. Finally, looking at the third bar reveals the total contribu-

253

Chapter 9. Results

0

10

20

30

40

50

60

70

80

90

100

A
nag

ra
m

B
c

B
h

B
is

ort

C
fr
ac

E
pic

H
ea

lth Im
p

M
st

Pat
ric

ia

Per
im

et
er

Q
bSort

Tre
eA

dd

Tre
eS

ort
Trie

TSP

V
oro

noi

Y
ac

r2

A
VER

A
G
E

R
u

n
ti

m
e
 I

m
p

ro
v
e
m

e
n

t
%

Recursive(SRAM) Heap(DRAM)
Heap(SRAM) Recursive(DRAM)
All Optimized

Figure 9.12: Runtime improvement for benchmarks comparing recursive stack function
allocation methods.

tion from allocating both recursive stack as well as heap data to SPM, in addition

to non-recursive stack and global data objects. On average, we are able to reduce

runtime by an average of 25.4% by applying our combined allocation methods for

heap and recursive stack data. Looking at individual benchmarks shows that not all

benchmarks have similar contributions from the two additional allocation methods,

with some benchmarks heavily favoring either recursive stack or heap data in terms

of their access frequency. The overall results serve to reinforce the importance of be-

ing able to optimize the allocation of dynamically allocated objects for applications

which make significant use of these methods.

254

9.3 Recursive function allocation

Figure 9.13 shows the energy reduction obtained for the same allocation exper-

iment on the recursive benchmark set. On average, power consumption was reduced

by 26.4% when our recursive stack allocation method was added to the baseline

allocator. When we instead apply only our heap allocation method in addition to

the default allocator, we see a reduction of 15.5% in energy consumption on average.

Combining all allocation methods yields a total average reduction of 36.8% in energy

consumption. Looking at individual applications shows that the contributions of our

two additional methods are not additive and instead depend on which objects were

optimally allocated to SPM in each instance. Treesort is a good example, where its

energy decreases by 54.8% with recursive stack allocation and by 23.7% with heap

allocation enabled. With all allocation methods applied, a 68.9% reduction is seen

(less than both individual gains added together), showing that SPM space is flexibly

distributed among those variables it is able to best place for each scenario.

In an effort to further separate the effects from each of our proposed allo-

cation methods for these applications, we also present the same experiment but

with an SPM size that is 25% of the total application memory occupancy. Fig-

ure 9.14 shows the runtime improvement results for this experiment. By increasing

the SPM size and reducing the allocation contention among the different supported

data types, this figure shows a clearer picture of the demarcation between our two

additional methods for those applications that use both heap and recursive stack

data. On average there is a 18.3% reduction in runtime when we allow recursive

function optimization and a 25.2% reduction in runtime when we instead allow heap

255

Chapter 9. Results

0

10

20

30

40

50

60

70

80

90

100

A
nag

ra
m B

c
B
h

B
is

ort

C
fr
ac

Epic

H
ea

lth Im
p

M
st

Pat
ric

ia

Per
im

et
er

Q
bSort

Tre
eA

dd

Tre
eS

ort
Trie

TSP

Voro
noi

Yac
r2

A
VER

A
G
E

E
n

e
rg

y
 I
m

p
ro

v
e

m
e

n
t

%

Recursive(SRAM) Heap(DRAM)
Heap(SRAM) Recursive(DRAM)
All Optimized

Figure 9.13: Reduction in energy usage for benchmarks comparing recursive function
allocation methods.

object optimization. When both methods are applied to this benchmark set, the

average runtime is reduced by 46.7% across all benchmarks. Looking at Treesort

again, we see that the reduced allocation pressure allows a clearer look at the indi-

vidual contributions from both methods applied individually or in unison. Results

on the reduction in energy consumption for this larger SPM size are presented in

figure 9.15. On average, enabling recursive allocation reduces power consumption

by 31.7% compared to the default SPM allocation method. When heap allocation

is instead enabled, we observe a 28.8% decrease in energy consumption. When all

allocations are allowed, an average energy reduction of 56.9% is obtained, with both

256

9.4 Comparison with caches

allocation methods able to contribute in more independent manner than at smaller

and more constrained SPM sizes.

0

10

20

30

40

50

60

70

80

90

100

A
nag

ra
m B

c
B
h

B
is

ort

C
fr
ac

Epic

H
ea

lth Im
p

M
st

Pat
ric

ia

Per
im

et
er

Q
bSort

Tre
eA

dd

Tre
eS

ort
Trie

TSP

Voro
noi

Yac
r2

A
VER

A
G
E

R
u

n
ti

m
e
 I
m

p
ro

v
e
m

e
n

t
%

Recursive(SRAM) Heap(DRAM)
Heap(SRAM) Recursive(DRAM)
All Optimized

Figure 9.14: Runtime improvement for benchmarks comparing recursive function alloca-
tion at 25% SPM.

9.4 Comparison with caches

This section compares the performance of our method for scratch-pad memories

(SPM) versus alternative architectures using either cache memory, SPM or cache

and SPM together. It is important to note that our method is useful regardless of

the results of a comparison with caches because there are a great number of em-

257

Chapter 9. Results

0

10

20

30

40

50

60

70

80

90

100

A
nag

ra
m B

c
B
h

B
is

ort

C
fr
ac

Epic

H
ea

lth Im
p

M
st

Pat
ric

ia

Per
im

et
er

Q
bSort

Tre
eA

dd

Tre
eS

ort
Trie

TSP

Voro
noi

Yac
r2

A
VER

A
G
E

E
n

e
rg

y
 I
m

p
ro

v
e
m

e
n

t
%

Recursive(SRAM) Heap(DRAM)
Heap(SRAM) Recursive(DRAM)
All Optimized

Figure 9.15: Reduction in energy usage for benchmarks comparing recursive function
allocation at 25% SPM.

bedded architectures which have SPM and DRAM directly accessed by the CPU,

but have no data cache. Examples of such architectures include low-end chips such

as the Motorola MPC500 [105], Analog Devices ADSP-21XX [6], Motorola Coldfire

5206E [103]; mid-grade chips such as the Analog Devices ADSP-21160m [7], Atmel

AT91-C140 [14], ARM 968E-S [12], Hitachi M32R-32192 [67], Infineon XC166 [72]

and high-end chips such as Analog Devices ADSP-TS201S [8], Hitachi SuperH-

SH7050 [68], and Motorola Dragonball [104]. We found at least 80 such embedded

processors with no D-cache but with SRAM and external memory (usually DRAM)

in our search but have listed only the above eleven for lack of space. These ar-

258

9.4 Comparison with caches

chitectures are popular because SPMs are simple to design and verify, and provide

better real-time guarantees for global and stack data [145], power consumption, and

cost [10, 131, 141, 17] compared to caches.

Our dynamic SPM allocation method shares similarities with a cache mem-

ory design but also has some important differences. Like caches our method gives

preference to more frequently accessed sites by allocating them larger bins in SPM.

Another advantage of our method is that it avoids copying infrequently used data

to fast memory; a cache copies in infrequent data when accessed, possibly evicting

frequent data. One downside of our method is that a cache retains the used subset of

a heap variable in SRAM, while our method retains a fixed subset. Nevertheless, it

is interesting to see how our method compares against processors containing caches.

We compare three architectures (i) an SPM-only architecture; (ii) a cache-only

architecture; and (iii) an architecture with both SPM and cache of equal area. To

ensure a fair comparison the total silicon area of fast memory (SPM or cache) is

equal in all three architectures and roughly equal to the silicon area of the SPM in

section 9.1 (which holds 5% of the memory footprint for each benchmark). Since

cache must be a power of two in size and Cacti has a minimum line size of 8 bytes,

the sizes of caches are not infinitely adjustable. To overcome this difficulty we first

fix the size of cache whose SPM-equivalent in area holds the nearest to 5% of the

data size. Then an SPM of the same area is chosen; this is easier since SPM sizes

are less constrained. For an SPM and cache of equal area the cache has lower data

capacity because of the area overhead of tags and other control circuitry. Area and

259

Chapter 9. Results

energy estimates for cache and SPM are obtained from Cacti [40, 147]. The cache

simulated is direct-mapped (better hit rate for very small cache sizes), has a line

size of 8 bytes (minimum supported by Cacti), and is in 0.5 micron technology. The

SPM is of the same technology but we remove the tag memory array, tag column

multiplexers, tag sense amplifiers and tag output drivers in Cacti that are not needed

for SPM. The Dinero cache simulator [137] is used to obtain run-time results; it is

combined with Cacti’s energy estimates per access to yield the energy results.

Figure 9.16 shows the average normalized run-times for different architecture

and compiler pairs, obtained by averaging the results for each scenario across all

benchmarks. The first bar is without our heap and recursive stack allocation meth-

ods for the SPM-only design, against which the other bars are normalized. The

second bar shows the runtime for the SPM-only design when we apply our alloca-

tion methods, with global and non-recursive objects allocated to SPM for these first

two scenarios. The third and fourth bars are similar to the first and second, except

that for these two we have an SPM and cache available for use on the same system.

The third bar shows the results when we allocate global and non-recursive stack

objects to SPM and let the cache handle all DRAM accesses, including all heap and

recursive stack variables which are left in DRAM for this scenario. With a cached

DRAM present, both the transfers required for our methods as well as standard

DRAM memory accesses are accelerated through the cache. The fourth bar corre-

sponds to the case when we apply our full SPM allocation scheme to all data objects,

and let the cache handle all DRAM accesses made, again improving transfers and

260

9.4 Comparison with caches

accesses to DRAM. The fifth and final bar is for the cache only architecture where

all data resides in DRAM and is accessed through the cache only.

SPM-Cache Comparison Summary

0

10

20

30

40

50

60

70

80

90

100

SPM only

(Heap in

DRAM)

SPM only

(Heap in

SRAM)

SPM + Cache

(Heap in

Cache)

SPM + Cache

(Heap

optimized)

Cache only

A
v

e
ra

g
e

 N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e

Figure 9.16: Average normalized run-time for architectures containing different combi-
nations of SPM and cache.

From the results shown in figure 9.16, we see that the first and fifth bars

are almost equal, showing that the baseline SPM allocation method for global and

non-recursive stack data performs only slightly worse (1.8%) than the cache-only

platform. This was also shown to be the case in the results presented in [132] when

the baseline SPM method was compared against a cache for a different benchmark

set. The scenario where our method was applied on the Cache + SPM platform ob-

tained the best performance improvement of 33%. The other Cache + SPM scenario

261

Chapter 9. Results

where we do not apply our method showed a much smaller performance improve-

ment of 15.4% over the baseline. Finally, the scenario where our allocation scheme is

applied to an SPM-only platform performed the second best with a 28.4% improve-

ment in runtime compared to the baseline, and a remarkable 26.6% improvement

on average over the cache-only architecture.

Figure 9.17 shows the normalized energy consumption averaged across all

benchmarks for the same configurations as in figure 9.16. In this figure we see

that the cache-only scenario performs 8.5% better than the baseline in terms of

energy consumption, which is higher than the 1.5% improvement in runtime. This

is mainly due to the more efficient cache interface to DRAM which reduces power

by pipelining cache line loading and decreasing idle processor cycles while DRAM

operations complete. Looking at the third and fourth bars for the SPM+Cache sce-

narios, we see that the best energy savings of 37.6% is obtained when our method

is applied. When our method is not applied for these platforms, the energy savings

drop to 21.1%. The final scenario where we apply our method to an SPM-only

platform achieves an impressive 35.3% savings in power.

It is interesting to analyze the strengths and weaknesses of our method versus

caches in the light of these results. From careful analysis of individual benchmark

results (available in Appendix A), we have found that in many cases, caches simply

do not perform well for dynamically allocated program data, particularly at smaller

sizes where cache conflicts are more common. Comparing the results of the SPM +

cache scenarios, they show that caches generally have a much harder time with heap

262

9.4 Comparison with caches

Cache SPM Comparison Summary

0

10

20

30

40

50

60

70

80

90

100

SPM only

(Heap in

DRAM)

SPM only

(Heap in

SRAM)

SPM + Cache

(Heap in

Cache)

SPM + Cache

(Heap

optimized)

Cache only

A
v

e
ra

g
e

 N
o

rm
a

li
z
e

d
 E

n
e

rg
y

Figure 9.17: Average normalized energy usage averaged across all benchmarks for differ-
ent architecture/compiler pairs.

data (due to their random creation and access patterns) than with stack and global

data. The most common use of heap memory in applications is for allocation of dy-

namic data structures and for allocation of memory arrays for processing. Dynamic

and recursive traversal of such data structures is often unlocalized and pointer ref-

erence chains tend to access non-sequential memory locations, both problematic for

caches. Similarly, programs relying more heavily on recursive stack data also tend to

exhibit randomized access patterns which prove to be problematic for small caches.

Caches, on the other hand, perform best by localizing sequential memory accesses

from applications such as a media encoders and are also able to localize accesses

263

Chapter 9. Results

to individual variables too large to place in SPM. From the individual benchmark

results, we see that applications such as the MPEG encoder and decoder perform

better using only a cache than when using our method for SPM, mostly because

these applications operate on very large variables which our method is unable to fit

into SPM.

Looking further into benchmark statistics, we also observed that most pro-

grams which used both heap and recursive functions also tended to do so for creation

and traversal of dynamic data structures such as lists, trees and graphs. Further-

more, when the runtime stack for a recursive function is viewed as a stacked memory

array, most recursive functions also tend to make most of their memory accesses at

either the deepest or shallowest levels of recursion. Our method is able to select

which invocations of a recursive function are placed in SPM and allowed to evict

other variables. Caches, on the other hand, must transfer a cache line from DRAM

to SRAM for every access miss incurred. Often in recursive functions, the entire

recursive stack frame will be loaded into SRAM, evicting more useful data and

deteriorating the performance of cache-only systems.

In conclusion, the results in figures 9.16 and 9.17 show that our method

outperforms a cache-only architecture and also provides better run-time and energy

in an SPM + cache architecture. We believe it is remarkable for a compile-time

method for heap data to out-perform a cache – something many thought was not

possible. There are also two other advantages of SPMs over caches not apparent

from the results above. First, it is widely known that for data accesses, SPMs have

264

9.5 Profile sensitivity

significantly better real-time guarantees than caches [145, 131, 16]. Second, other

researchers and our own simulations have repeatedly demonstrated a significant

energy and run-time savings for platforms using only an SPM allocation scheme

rather than relying on a hardware cache system [10, 131, 141, 17].

9.5 Profile sensitivity

In this section we present several experiments to determine the consistency of our

method across different inputs. Because our method is profile-based, it is important

to quantify the degree to which the chosen profile affects program performance for

different inputs. We begin by presenting allocation results when using an input set

different from the one used in the rest of this chapter. For each benchmark, we

were able to obtain or create at least two different input sets. Due to the difficulty

in obtaining more input sets for all benchmarks, the large amount of time required

for simulation and the large number of experiments present, we have limited our

experiments to only two inputs. Instead, for those cases where we possessed more

than 2 inputs we chose the two exhibiting the most profile variation. The input

sets used were deemed reasonable for an embedded platform, and those benchmarks

or inputs requiring very large amounts of storage were discarded. All results pre-

sented in this section were obtained using the default simulation parameters unless

otherwise noted.

Figure 9.18 shows the normalized runtime results of our method when applied

to the benchmark suite using the second of the input data sets available. By com-

265

Chapter 9. Results

paring these individual results to the original ones from the first input in figure 9.1,

we can make several observations. We see that some benchmarks have static allo-

cation and execution patterns which do not vary much for different inputs. This

tends to be the case for computation benchmarks and kernels such as Dhrystone,

Dhrystone-Float, EKS, Heapsort, Lists, LLUBenchmark, Objinst, PiFFT and Sort-

ing. All of these accept iteration counts or array sizes as their main input, have

known-size heap allocation sites and have very predictable allocation and execution

patterns from compile-time analysis. Other benchmarks are highly input dependent

and their dynamic allocation and execution profile varies dramatically for different

inputs. This can be observed by the relative shift in normalized runtimes for applica-

tions using different inputs such as Chomp, Dijkstra, BC, Cfrac, Patricia, QBSort,

TSP, Allroots, Bzip, Mpeg2Decode, Mpeg2Encode, Scimark2 and spiff. We note

that all of these applications involved randomized access of dynamic data structures

highly dependent on the particular input set used. Many of these applications make

use of unknown-size heap allocation sites and recursive functions, further indications

of their dynamic input dependence.

Figure 9.19 shows the normalized energy usage results for the benchmark suite

using the second of the input data sets, and can be compared against the energy

results for the first input set in section 9.1. From the new experiment we can see the

energy improvement closely follows the runtime improvement for each benchmark

and our method is beneficial for both runtime and energy for applications with

different inputs.

266

9.5 Profile sensitivity

0

10

20

30

40

50

60

70

80

90

100

D
ry

s
to

n
e

G
s
m

H
u

ff

K
S

S
u

s
a
n

C
h

o
m

p
D

h
ry

s
to

n
e
-F

lo
a
t

D
ij
k
s
tr

a
E

k
s

F
F

T F
t

H
e
a
p

S
o

rt
L

is
ts

L
L

U
B

e
n

c
h

m
a
rk

M
a
tr

ix
M

is
r

O
b

jI
in

s
t

P
iF

F
T

S
o

rt
in

g
A

n
a
g

ra
m B
c

B
h

B
is

o
rt

C
fr

a
c

E
p

ic
H

e
a
lt

h

Im
p

M
s
t

P
a
tr

ic
ia

P
e
ri

m
e
te

r
Q

b
S

o
rt

T
re

e
A

d
d

T
re

e
S

o
rt

T
ri

e
T

S
P

V
o

ro
n

o
i

Y
a
c
r2

A
ll
ro

o
ts

B
z
ip

E
m

3
d

M
p

e
g

2
D

e
c
o

d
e

M
p

e
g

2
E

n
c
o

d
e

S
c
iM

a
rk

2
s
g

e
fa

s
p

if
f

A
V

E
R

A
G

E

N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e
Heap in DRAM Heap Optimized

Figure 9.18: Normalized runtime using for second benchmark input set.

In figure 9.20, we present a summarized view of our method’s benefit for the

two different input sets as we vary the SPM size from 5% to 25% of the application

memory footprint. From this figure we can see that despite the fluctuations in indi-

vidual benchmarks from different inputs, the benefits of our method are consistent

when the suite is examined as a whole. Our method is able to analyze dynamic

profiles from an input set and tailor the application for best performance on a tar-

get platform with SPM. The average runtime improvement is almost identical at

5% SPM for both input sets. As SPM size is increased, the average runtime remain

within a few percent of each other. A very similar situation is observed from the

average energy savings results graphed in figure 9.21.

267

Chapter 9. Results

0

10

20

30

40

50

60

70

80

90

100

D
ry

s
to

n
e

G
s
m

H
u

ff

K
S

S
u

s
a
n

C
h

o
m

p
D

h
ry

s
to

n
e
-F

lo
a
t

D
ij
k
s
tr

a

E
k
s

F
F

T F
t

H
e
a
p

S
o

rt
L

is
ts

L
L

U
B

e
n

c
h

m
a
rk

M
a
tr

ix
M

is
r

O
b

jI
in

s
t

P
iF

F
T

S
o

rt
in

g
A

n
a
g

ra
m B
c

B
h

B
is

o
rt

C
fr

a
c

E
p

ic
H

e
a
lt

h

Im
p

M
s
t

P
a
tr

ic
ia

P
e
ri

m
e
te

r
Q

b
S

o
rt

T
re

e
A

d
d

T
re

e
S

o
rt

T
ri

e
T

S
P

V
o

ro
n

o
i

Y
a
c
r2

A
ll
R

o
o

ts
B

z
ip

E
m

3
d

M
p

e
g

2
D

e
c
o

d
e

M
p

e
g

2
E

n
c
o

d
e

S
c
iM

a
rk

2
s
g

e
fa

s
p

if
f

A
V

E
R

A
G

E

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

 U
s

a
g

e

Heap in DRAM Heap Optimized

Figure 9.19: Normalized energy usage for second benchmark input set.

9.5.1 Profile input variation

Having shown that are method is able to analyze and optimize an application for a

given input set, we also wish to see how well our method performs on a nonprofiled

input set. This becomes particularly important for those applications whose runtime

behavior is demonstrably input dependent. To isolate the subset of profile sensitive

applications, we conducted two experiments using the two input data sets A and

B. For the first experiment, we used input A to generate a program profile for

our method and then evaluated its performance when input B was used with the

optimized binary. The second experiment simply reversed the order in which the

268

9.5 Profile sensitivity

0

5

10

15

20

25

30

35

40

45

50

5% 10% 15% 20% 25%

SPM Size (as % of Data)

R
u

n
ti

m
e

 I
m

p
ro

v
e

m
e

n
t

(%
)

Input A

Input B

Figure 9.20: Average runtime benefit for both input sets at different SPM sizes.

inputs were applied. The subset of benchmarks with results that varied more than

1% among the different profile and optimization pairs make up our profile-dependent

benchmark set. All other benchmarks were observed to have predictable runtime

execution patterns, changing only slightly in terms of their program execution and

allocation distribution for different inputs and will not be examined in the results

for this section.

Figure 9.22 shows the runtime gain comparison results for the first experiment

where we examine the profile dependence based on input A. The first bar shows

the scenario we use profile information from input A to optimize and also gather

improvement results. The second bar shows the case where we optimize based on

269

Chapter 9. Results

0

5

10

15

20

25

30

35

40

45

50

5% 10% 15% 20% 25%

SPM Size (as % of Data)

E
n

e
rg

y
 R

e
d

u
c

ti
o

n
 (

%
)

Input A

Input B

Figure 9.21: Average energy savings for both input sets at different SPM sizes.

input A’s profile, but gather results using input B. Figure 9.23 shows the same

scenario for the second experiment when the input order is reversed. Looking at

these two graphs shows us which applications are input dependent and quantifies

the effect of profile dependence on our basic approach. Those applications which

vary more than a few percent between different non-trivial inputs are considered to

be input-dependent and deserving of more careful study when comparing allocation

methods.

Our final experiment on profile sensitivity applies the profile averaging opti-

mization we have developed, which attempts to combine profile information from

different program inputs to decide on the best allocation strategy for the common

270

9.5 Profile sensitivity

0

10

20

30

40

50

60

70

80

90

100

D
ry

s
to

n
e

G
s
m

H
u
ff

K
S

S
u
s
a
n

C
h
o
m

p

D
h
ry

s
to

n
e
-F

lo
a
t

D
ij
k
s
tr

a
E

k
s

F
F
T F
t

H
e
a
p
S

o
rt

L
is

ts

L
L
U

B
e
n
c
h
m

a
rk

M
a
tr

ix
M

is
r

O
b
jI
in

s
t

P
iF

F
T

S
o
rt

in
g

A
n
a
g
ra

m B
c

B
h

B
is

o
rt

C
fr

a
c

E
p
ic

H
e
a
lt
h

Im
p

M
s
t

P
a
tr

ic
ia

P
e
ri

m
e
te

r
Q

b
S

o
rt

T
re

e
A

d
d

T
re

e
S

o
rt

T
ri

e
T
S

P
V

o
ro

n
o
i

Y
a
c
r2

A
ll
ro

o
ts

B
zi

p
E

m
3
d

M
p
e
g
2
D

e
c
o
d
e

M
p
e
g
2
E

n
c
o
d
e

S
c
iM

a
rk

2
s
g
e
fa

s
p
if
f

A
V

E
R

A
G

E

R
u

n
ti

m
e
 I

m
p

ro
v
e
m

e
n

t
(%

)
Input A (Profile A) Input A (Profile B)

Figure 9.22: Runtime improvement results illustrating profile input sensitivity. (Input
A)

case. We apply our optimization to those benchmarks identified as being input-

dependent and which showed more than 1% variation in the previous experiment.

Figure 9.24 shows the runtime improvement for three different scenarios. The first

bar shows the runtime improvement when we profile and optimize with Input A.

The second bar shows the improvement when profiling with input B but using input

A for results. The third bar shows the improvement when we apply our averaging

method to profiles from inputs A and B and use Input A to obtain the results. We

present similar results in figure 9.25 except these are based on input B instead of

A to determine the effectiveness of the profile averaging optimization. Looking at

271

Chapter 9. Results

0

10

20

30

40

50

60

70

80

90

100

D
ry

s
to

n
e

G
s
m

H
u

ff
K

S
S

u
s
a
n

C
h

o
m

p
D

h
ry

s
to

n
e
-F

lo
a
t

D
ij
k
s
tr

a
E

k
s

F
F

T F
t

H
e
a
p

S
o

rt
L

is
ts

L
L

U
B

e
n

c
h

m
a
rk

M
a
tr

ix
M

is
r

O
b

jI
in

s
t

P
iF

F
T

S
o

rt
in

g
A

n
a
g

ra
m B
c

B
h

B
is

o
rt

C
fr

a
c

E
p

ic
H

e
a
lt

h
Im

p
M

s
t

P
a
tr

ic
ia

P
e
ri

m
e
te

r
Q

b
S

o
rt

T
re

e
A

d
d

T
re

e
S

o
rt

T
ri

e
T

S
P

V
o

ro
n

o
i

Y
a
c
r2

A
ll
ro

o
ts

B
zi

p
E

m
3
d

M
p

e
g

2
D

e
c
o

d
e

M
p

e
g

2
E

n
c
o

d
e

S
c
iM

a
rk

2
s
g

e
fa

s
p

if
f

A
V

E
R

A
G

E

R
u

n
ti

m
e
 I
m

p
ro

v
e
m

e
n

t
(%

)

Input B (Profile B) Input B (Profile A)

Figure 9.23: Runtime improvement results illustrating profile input sensitivity (Input B).

both sets of results, we find that our averaging optimization is able to greatly reduce

the profile sensitivity from our allocation approach. We find that with as little as

two diffferent profile inputs, we can still achieve on average a runtime improvement

of 36.3% regardless of inputs for the profile-dependent benchmark subset.

9.6 Code allocation

Traditionally, code placement is usually one of the best ways a designer can im-

prove embedded platform performance. This is reflected in the observation that

instruction caches are much more common than data caches on existing embedded

272

9.6 Code allocation

0

10

20

30

40

50

60

70

80

90

100

K
S

Susa
n

C
hom

p

D
ijk

st
ra

FFT Ft

LLU
B
en

ch
m

ar
k

M
at

rix

PiF
FT

Sort
in

g B
c

B
is

ort

C
fr
ac

H
ea

lth Im
p

M
st

Pat
ric

ia

Per
im

et
er

Q
bSort

Tre
eA

dd

Tre
eS

ort

Voro
noi

Yac
r2

A
llr

oots

Em
3d

M
peg

2D
ec

ode

M
peg

2E
nco

de

Sci
M

ar
k2

sg
ef

a
sp

iff

R
u

n
ti

m
e

 I
m

p
ro

v
e

m
e

n
t

(%
)

Input A (Profile A) Input A (Profile B) Input A (Combined Profile)

Figure 9.24: Improvement in runtime with and without the profile averaging optimization
for Input A.

systems, because program instruction accesses tend to be highly predictable at run-

time. Unlike program data, which can have very unpredictable execution profiles,

program instructions are very amenable to exploitation of predicted access behavior.

Even if a program makes almost no memory accesses during execution to operate

on program data, the processor will be constantly reading instructions throughout

program execution and generally do so in a linear manner with branches to different

code segments.

Precisely because code allocation has been studied and exploited in so many

different ways, in this thesis we focus on the more difficult problem of data alloca-

273

Chapter 9. Results

0

10

20

30

40

50

60

70

80

90

100

K
S

Susa
n

C
hom

p

D
ijk

st
ra

FFT Ft

LLU
B
en

ch
m

ar
k

M
at

rix

PiF
FT

Sort
in

g B
c

B
is

ort

C
fr
ac

H
ea

lth Im
p

M
st

Pat
ric

ia

Per
im

et
er

Q
bSort

Tre
eA

dd

Tre
eS

ort

Voro
noi

Yac
r2

A
llr

oots

Em
3d

M
peg

2D
ec

ode

M
peg

2E
nco

de

Sci
M

ar
k2

sg
ef

a
sp

iff

R
u

n
ti

m
e

 I
m

p
ro

v
e

m
e

n
t

(%
)

Input B (Profile B) Input B (Profile A) Input B (Combined Profile)

Figure 9.25: Improvement in runtime with and without the profile averaging optimization
for Input B.

tion. Almost all mid-level and high-end embedded processors contain some form of

fast memory meant to be used for code placement. This can come in the form of

an instruction cache, Flash EEPROM, regular ROM or even SRAM. Because self-

modifying code is rare in practice, a read-only memory like ROM is popularly used

to store static program code like firmware or other permanent applications. Flash

has lately become a popular choice to load instructions into for execution, due to

its lower read latency and reduced power consumption compared to DRAM, with

the added flexibility of writable memory. For these reasons, it follows that SPM is

most beneficial for data placement, with code allocation handled through a number

274

9.6 Code allocation

of complementary designs in embedded systems.

Figure 9.26 presents the runtime gain from our method when code objects are

also considered for dynamic allocation to SPM, compared to the baseline method

in [132]. In this figure, results from the benchmark set are shown for different sizes

of SPM, from 5% to 25% of the total data size for each program. We see that on

average, when code objects are included by our scheme as well as the baseline scheme,

our relative improvement in execution is very similar to the default situation where

code is assumed to reside in SRAM. We see that at 5% SPM size, our method shows

a 20.5% decrease in runtime compared to the baseline case, when both methods also

allocate code to SPM with other objects. Without code allocation to SPM, we saw a

similar decrease of 22% in runtime when comparing our method to the baseline at 5%

SPM size. This correlation continues throughout the sizes of SPM explored. At 25%

SPM our method shows a 39.76% runtime gain when code is included, compared to a

gain of 40.45% for our default scenario where all code resides in SRAM. Figure 9.27

also presents the energy results from our code allocation experiment, and closely

follows the results of our execution results. Including code objects in the list of

allocatable objects for dynamic SPM methods only tends to put more pressure on

placement at small SPM sizes, but otherwise presents no problem for our scheme or

the baseline method.

275

Chapter 9. Results

0

10

20

30

40

50

60

70

80

90

100

D
ry

s
to

n
e

G
s
m

H
u

ff

K
S

S
u

s
a
n

C
h

o
m

p
D

h
ry

s
to

n
e
-F

lo
a
t

D
ij
k
s
tr

a

E
k
s

F
F

T F
t

H
e
a
p

S
o

rt
L

is
ts

L
L

U
B

e
n

c
h

m
a
rk

M
a
tr

ix
M

is
r

O
b

jI
in

s
t

P
iF

F
T

S
o

rt
in

g
A

n
a
g

ra
m B
c

B
h

B
is

o
rt

C
fr

a
c

E
p

ic
H

e
a
lt

h

Im
p

M
s
t

P
a
tr

ic
ia

P
e
ri

m
e
te

r
Q

b
S

o
rt

T
re

e
A

d
d

T
re

e
S

o
rt

T
ri

e

T
S

P
V

o
ro

n
o

i
Y

a
c
r2

A
ll
ro

o
ts

B
z
ip

E
m

3
d

M
p

e
g

2
D

e
c
o

d
e

M
p

e
g

2
E

n
c
o

d
e

S
c
iM

a
rk

2
A

V
E

R
A

G
E

R
u

n
ti

m
e

 I
m

p
ro

v
e

m
e

n
t

%

5% 10% 15% 20% 25%

Figure 9.26: Runtime gain when code as well as global, stack and heap data are allocated
to SPM of varying sizes.

276

9.6 Code allocation

0

10

20

30

40

50

60

70

80

90

100

D
ry

s
to

n
e

G
s
m

H
u

ff

K
S

S
u

s
a
n

C
h

o
m

p
D

h
ry

s
to

n
e
-F

lo
a
t

D
ij
k
s
tr

a

E
k
s

F
F

T F
t

H
e
a
p

S
o

rt

L
is

ts
L

L
U

B
e
n

c
h

m
a
rk

M
a
tr

ix

M
is

r
O

b
jI
in

s
t

P
iF

F
T

S
o

rt
in

g
A

n
a
g

ra
m B
c

B
h

B
is

o
rt

C
fr

a
c

E
p

ic
H

e
a
lt

h

Im
p

M
s
t

P
a
tr

ic
ia

P
e
ri

m
e
te

r
Q

b
S

o
rt

T
re

e
A

d
d

T
re

e
S

o
rt

T
ri

e

T
S

P
V

o
ro

n
o

i
Y

a
c
r2

A
ll
ro

o
ts

B
z
ip

E
m

3
d

M
p

e
g

2
D

e
c
o

d
e

M
p

e
g

2
E

n
c
o

d
e

S
c
iM

a
rk

2
A

V
E

R
A

G
E

E
n

e
rg

y
 S

a
v

in
g

s
 %

5% 10% 15% 20% 25%

Figure 9.27: Energy savings when code as well as global, stack and heap data are allocated
to SPM of varying sizes.

277

Chapter 9. Results

278

Chapter 10

Conclusion

This thesis presents the first-ever compile-time method for allocating a portion of

a program’s dynamic data to scratch-pad memory. Compile-time placement of dy-

namic data in scratch-pad is complicated by two factors. First, the size of dynam-

ically allocated structures is usually data-dependent and thus is not knowable at

compile-time. Consequently it is difficult guarantee at compile-time that a given

dynamic data object will fit in scratch-pad. Second, moving heap data between

scratch-pad and DRAM, required by all dynamic allocation methods, results in

pointers pointing into a moved block to become invalid after movement, violating

correctness.

The presented method for allocating dynamic data to scratch-pad solves the

above problems as follows. First, the problem of unknown size dynamic data struc-

tures is solved by placing only a fixed-size portion of the structure, called a bin, in

scratch-pad memory. Second, the problem of invalid pointers upon movement of bins

279

Chapter 10. Conclusion

is solved by ensuring that the bin location is the same at all program points where

the heap structure is accessed. However, for better scratch-pad utilization, bins

can be moved to other locations at program points where the heap structure is not

accessed. More frequently accessed dynamic data is allocated a larger bin in scratch-

pad to improve runtime. With our method, all types of global, code, stack and heap

variables can share the same scratch-pad. When compared to placing all dynamic

data variables in DRAM and only global and stack data in scratch-pad, our results

show that our method reduces the average runtime of our benchmarks by 22.3%, and

the average power consumption by 26.7%, for the same size of scratch-pad fixed at

5% of total data size. Furthermore, our method is shown to outperform equivalent

sized cache memory organizations for applications relying heavily on dynamic data

during execution. Finally, our method is able to minimize profile dependence issues

through careful analysis of dynamic profile information.

280

Chapter A

Additional results

This appendix chapter contains extra results, statistics and data concerning our

experiments on dynamic data allocation to SPM.

A.1 Detailed recursive stack allocation results

This section provides further results for the recursive function stack allocation

scheme. The following four figures exhibit the effects of varying the SRAM size

dedicated to each application on the performance of our allocation method with

and without our recursive stack function optimization. All three bars are normal-

ized against the baseline case where only global and non-recursive stack data is

allocated to SPM, and dynamic data is left in DRAM. The first bar shows the run-

time gain when we allocate global, recursive and non-recursive stack data to SPM

while leaving heap data in DRAM. The second bar shows the case when we leave re-

cursive stack data in DRAM but allocate global, non-recursive stack and heap data

281

to SPM. The third bar represents the final case where we apply our full allocation

methods and allow all data types to be considered for SPM allocation.

Figures A.1 and A.2 shows the improvement in run-time results for the

recursive benchmark subset when the total SPM size is varied between 5% and 25%

of the benchmark’s total working data size.

0

10

20

30

40

50

60

70

80

90

100

A
n

a
g

ra
m

5
%

A
n

a
g

ra
m

1
0
%

A
n

a
g

ra
m

1
5
%

A
n

a
g

ra
m

2
0
%

A
n

a
g

ra
m

2
5
%

B
c

5
%

B
c

1
0
%

B
c

1
5
%

B
c

2
0
%

B
c

2
5
%

B
h

5
%

B
h

1
0
%

B
h

1
5
%

B
h

2
0
%

B
h

2
5
%

B
is

o
rt

5
%

B
is

o
rt

1
0
%

B
is

o
rt

1
5
%

B
is

o
rt

2
0
%

B
is

o
rt

2
5
%

C
fr

a
c

5
%

C
fr

a
c

1
0
%

C
fr

a
c

1
5
%

C
fr

a
c

2
0
%

C
fr

a
c

2
5
%

E
p

ic
5
%

E
p

ic
1
0
%

E
p

ic
1
5
%

E
p

ic
2
0
%

E
p

ic
2
5
%

H
e
a
lt

h
5
%

H
e
a
lt

h
1
0
%

H
e
a
lt

h
1
5
%

H
e
a
lt

h
2
0
%

H
e
a
lt

h
2
5
%

Im
p

5
%

Im
p

1
0
%

Im
p

1
5
%

Im
p

2
0
%

Im
p

2
5
%

R
u

n
ti

m
e

 I
m

p
ro

v
e

m
e

n
t

(%
)

Recursive(SRAM) Heap(DRAM)

Heap(SRAM) Recursive(DRAM)

All Optimized

Figure A.1: Runtime gains for the recursive application subset when SRAM size is varied
as a percentage of the program data size (Part 1).

Figures A.3 and A.4 shows the energy improvement results for the recursive

benchmark subset as the total SPM size is varied between 5% and 25% of the

benchmark’s total working data size. These energy results correspond to the runtime

results presented in the Figures A.1 and A.2 from the recursive subset.

282

0

10

20

30

40

50

60

70

80

90

100
M

s
t
5
%

M
s
t
1
0
%

M
s
t
1
5
%

M
s
t
2
0
%

M
s
t
2
5
%

P
a
tr

ic
ia

5
%

P
a
tr

ic
ia

1
0
%

P
a
tr

ic
ia

1
5
%

P
a
tr

ic
ia

2
0
%

P
a
tr

ic
ia

2
5
%

P
e
ri

m
e
te

r
5
%

P
e
ri

m
e
te

r
1
0
%

P
e
ri

m
e
te

r
1
5
%

P
e
ri

m
e
te

r
2
0
%

P
e
ri

m
e
te

r
2
5
%

Q
b
S

o
rt

5
%

Q
b
S

o
rt

1
0
%

Q
b
S

o
rt

1
5
%

Q
b
S

o
rt

2
0
%

Q
b
S

o
rt

2
5
%

T
re

e
A

d
d

5
%

T
re

e
A

d
d

1
0
%

T
re

e
A

d
d

1
5
%

T
re

e
A

d
d

2
0
%

T
re

e
A

d
d

2
5
%

T
re

e
S

o
rt

5
%

T
re

e
S

o
rt

1
0
%

T
re

e
S

o
rt

1
5
%

T
re

e
S

o
rt

2
0
%

T
re

e
S

o
rt

2
5
%

T
ri

e
5
%

T
ri

e
1
0
%

T
ri

e
1
5
%

T
ri

e
2
0
%

T
ri

e
2
5
%

T
S

P
5
%

T
S

P
1
0
%

T
S

P
1
5
%

T
S

P
2
0
%

T
S

P
2
5
%

V
o

ro
n
o

i
5
%

V
o

ro
n
o

i
1
0
%

V
o

ro
n
o

i
1
5
%

V
o

ro
n
o

i
2
0
%

V
o

ro
n
o

i
2
5
%

Y
a
c
r2

5
%

Y
a
c
r2

1
0
%

Y
a
c
r2

1
5
%

Y
a
c
r2

2
0
%

Y
a
c
r2

2
5
%

R
u

n
ti

m
e

 I
m

p
ro

v
e

m
e

n
t

(%
)

Recursive(SRAM) Heap(DRAM)

Heap(SRAM) Recursive(DRAM)

All Optimized

Figure A.2: Runtime gains for the recursive application subset when SRAM size is varied
as a percentage of the program data size (Part 2).

A.2 Cache comparison results

This section contains detailed results from our cache comparison experiments. We

first present figures A.5-A.8 containing runtime results and follow with figures A.9-

A.12 for the corresponding energy savings from the cache comparison experiments.

Each figure shows detailed performance results for different subsets of applications

when executed on each of the five different memory allocation scenarios.

The first bar is without our heap and recursive stack allocation methods for

the SPM-only design, against which the other bars are normalized. The second bar

283

0

10

20

30

40

50

60

70

80

90

100

A
n

a
g

ra
m

5
%

A
n

a
g

ra
m

1
0
%

A
n

a
g

ra
m

1
5
%

A
n

a
g

ra
m

2
0
%

A
n

a
g

ra
m

2
5
%

B
c

5
%

B
c

1
0
%

B
c

1
5
%

B
c

2
0
%

B
c

2
5
%

B
h

5
%

B
h

1
0
%

B
h

1
5
%

B
h

2
0
%

B
h

2
5
%

B
is

o
rt

5
%

B
is

o
rt

1
0
%

B
is

o
rt

1
5
%

B
is

o
rt

2
0
%

B
is

o
rt

2
5
%

C
fr

a
c

5
%

C
fr

a
c

1
0
%

C
fr

a
c

1
5
%

C
fr

a
c

2
0
%

C
fr

a
c

2
5
%

E
p

ic
5
%

E
p

ic
1
0
%

E
p

ic
1
5
%

E
p

ic
2
0
%

E
p

ic
2
5
%

H
e
a
lt

h
5
%

H
e
a
lt

h
1
0
%

H
e
a
lt

h
1
5
%

H
e
a
lt

h
2
0
%

H
e
a
lt

h
2
5
%

Im
p

5
%

Im
p

1
0
%

Im
p

1
5
%

Im
p

2
0
%

Im
p

2
5
%

E
n

e
rg

y
 S

a
v
in

g
s
 (

%
)

Recursive(SRAM) Heap(DRAM) Heap(SRAM) Recursive(DRAM) All Optimized

Figure A.3: Energy savings for the recursive application subset when SRAM size is varied
as a percentage of the program data size.

shows the runtime for the SPM-only design when we apply our allocation methods,

with global and non-recursive objects allocated to SPM for these first two scenarios.

The third and fourth bars are similar to the first and second, except that for these

two we have an SPM and cache available for use on the same system. The third bar

shows the results when we allocate global and non-recursive stack objects to SPM

and let the cache handle all DRAM accesses, including all heap and recursive stack

variables which are left in DRAM for this scenario. With a cached DRAM present,

both the transfers required for our methods as well as standard DRAM memory

accesses are accelerated through the cache. The fourth bar corresponds to the case

284

0

10

20

30

40

50

60

70

80

90

100

M
s
t

5
%

M
s
t

1
0
%

M
s
t

1
5
%

M
s
t

2
0
%

M
s
t

2
5
%

P
a
tr

ic
ia

5
%

P
a
tr

ic
ia

1
0
%

P
a
tr

ic
ia

1
5
%

P
a
tr

ic
ia

2
0
%

P
a
tr

ic
ia

2
5
%

P
e
ri

m
e
te

r
5
%

P
e
ri

m
e
te

r
1
0
%

P
e
ri

m
e
te

r
1
5
%

P
e
ri

m
e
te

r
2
0
%

P
e
ri

m
e
te

r
2
5
%

Q
b

S
o

rt
5
%

Q
b

S
o

rt
1
0
%

Q
b

S
o

rt
1
5
%

Q
b

S
o

rt
2
0
%

Q
b

S
o

rt
2
5
%

T
re

e
A

d
d

5
%

T
re

e
A

d
d

1
0
%

T
re

e
A

d
d

1
5
%

T
re

e
A

d
d

2
0
%

T
re

e
A

d
d

2
5
%

T
re

e
S

o
rt

5
%

T
re

e
S

o
rt

1
0
%

T
re

e
S

o
rt

1
5
%

T
re

e
S

o
rt

2
0
%

T
re

e
S

o
rt

2
5
%

T
ri

e
5
%

T
ri

e
1
0
%

T
ri

e
1
5
%

T
ri

e
2
0
%

T
ri

e
2
5
%

T
S

P
5
%

T
S

P
1
0
%

T
S

P
1
5
%

T
S

P
2
0
%

T
S

P
2
5
%

V
o

ro
n

o
i
5
%

V
o

ro
n

o
i
1
0
%

V
o

ro
n

o
i
1
5
%

V
o

ro
n

o
i
2
0
%

V
o

ro
n

o
i
2
5
%

Y
a
c
r2

5
%

Y
a
c
r2

1
0
%

Y
a
c
r2

1
5
%

Y
a
c
r2

2
0
%

Y
a
c
r2

2
5
%

E
n

e
rg

y
 S

a
v

in
g

s
 (

%
)

Recursive(SRAM) Heap(DRAM) Heap(SRAM) Recursive(DRAM) All Optimized

Figure A.4: Energy savings for the recursive application subset when SRAM size is varied
as a percentage of the program data size.

when we apply our full SPM allocation scheme to all data objects, and let the cache

handle all DRAM accesses made, again improving transfers and accesses to DRAM.

The fifth and final bar is for the cache only architecture where all data resides in

DRAM and is accessed through the cache only.

Figure A.5 shows the normalized run-time results from our original JEC bench-

mark set for the different memory configuration and memory allocation methods we

explore.

Figure A.6 shows the normalized run-time results from our regular heap appli-

cations when exploring the different memory configurations and memory allocation

285

0

20

40

60

80

100

120

140

160

Drystone Gsm Huff KS Susan Average

N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e
 (

%
)

SPM only (Heap in DRAM)

SPM only (Heap in SRAM)

SPM + Cache (Heap in Cache)

SPM + Cache (Heap optimized)

Cache only

Figure A.5: Normalized run-times from the original JEC benchmark set for architectures
containing different combinations of SPM and cache.

methods we have developed.

Figure A.7 shows the normalized run-time results averaged across our unknown-

size heap applications from exploring the different memory configuration and com-

piler optimizations available.

Figure A.8 shows the normalized run-time results averaged across the recur-

sive benchmark set from exploring the different memory configuration and compiler

optimizations available.

Figure A.9 shows the normalized energy usage results for the JEC benchmark

set from exploring the different memory configuration and compiler optimizations

286

0

20

40

60

80

100

120

140

160

180

200

220

C
hom

p

D
hry

st
one-

Flo
at

D
ijk

st
ra

Eks
FFT Ft

H
ea

pSort

Lis
ts

LLU
B
en

ch
m

ar
k

M
at

rix
M

is
r

O
bjIi

nst

PiF
FT

Sort
in

g

A
VER

A
G
E

N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e
 (

%
)

SPM only (Heap in DRAM)

SPM only (Heap in SRAM)

SPM + Cache (Heap in Cache)

SPM + Cache (Heap optimized)

Cache only

Figure A.6: Normalized run-times from the known-size heap applications set for archi-
tectures containing different combinations of SPM and cache.

available.

Figure A.10 shows the normalized energy usage for regular heap applications

from exploring the different memory configuration and compiler optimizations avail-

able.

Figure A.11 shows the normalized energy usage results for the unknown-size

heap applications from exploring the different memory configuration and compiler

optimizations available.

Figure A.12 shows the normalized energy usage results averaged across the

recursive benchmark set from exploring the different memory configuration and

287

0

20

40

60

80

100

120

140

160

180

200

220

A
llr

oots
B
zi
p

Em
3d

M
peg

2D
ec

ode

M
peg

2E
nco

de

Sci
M

ar
k2

sg
ef

a
sp

iff

A
VER

A
G
E

N
o

rm
a

li
z
e

d
 R

u
n

ti
m

e
 (

%
)

SPM only (Heap in DRAM)

SPM only (Heap in SRAM)

SPM + Cache (Heap in Cache)

SPM + Cache (Heap optimized)

Cache only

Figure A.7: Normalized run-times from the unknown-size heap applications set for archi-
tectures containing different combinations of SPM and cache.

compiler optimizations available.

A.3 Profile sensitivity results

This section contains slightly expanded results from the profile sensitivity experi-

ments performed in chapter 9. The main difference is that these figures show three

sets of results, with different combinations of Inputs A and B along with their run-

time profiles used for our memory allocation scheme. Figure A.13 shows the runtime

gains from our profile sensitivity experiments based on Input A, with detailed re-

288

0

20

40

60

80

100

120

140

160

180

200
A

n
ag

ra
m B
c

B
h

B
is

o
rt

C
fr

ac

E
p
ic

H
ea

lt
h

Im
p

M
st

P
at

ri
ci

a
P

er
im

et
er

Q
b
S

o
rt

T
re

eA
d
d

T
re

eS
o
rt

T
ri

e

T
S

P
V

o
ro

n
o
i

Y
ac

r2
A

ve
ra

g
e

N
o

rm
a

lz
ie

d
 R

u
n

ti
m

e
 (

%
)

SPM only (Heap in DRAM)

SPM only (Heap in SRAM)

SPM + Cache (Heap in Cache)

SPM + Cache (Heap optimized)

Cache only

Figure A.8: Normalized run-times from the Recursive benchmark set for architectures
containing different combinations of SPM and cache.

sults for all applications, while Figure A.14 shows the corresponding energy results.

Figure A.15 shows the runtime gains from our profile sensitivity experiments, except

that these are based on Input B. Figure A.16 shows the energy savings from the

same experiment on profile sensitivity experiments.

289

0

20

40

60

80

100

120

140

Drystone Gsm Huff KS Susan Average

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

 (
%

)

SPM only (heap in DRAM)

SPM only (heap optimized)

SPM + Cache (heap in cache)

SPM + Cache (heap optimized)

Cache only

Figure A.9: Normalized energy usage from the original JEC benchmark set for architec-
tures containing different combinations of SPM and cache.

290

0

20

40

60

80

100

120

140

160

180

200

220

C
hom

p

D
hry

st
on

e-
Flo

at

D
ijk

st
ra

E
ks

FFT Ft

H
ea

pSor
t

L
is
ts

L
L
U

B
en

ch
m

ar
k

M
at

ri
x

M
is
r

O
bjI

in
st

PiF
FT

Sor
tin

g

A
ve

ra
ge

N
o
rm

a
li

ze
d

 E
n

er
g
y
 (

%
)

SPM only (heap in DRAM)

SPM only (heap optimized)

SPM + Cache (heap in cache)

SPM + Cache (heap optimized)

Cache only

Figure A.10: Normalized energy usage from the known-size heap benchmark set for
architectures containing different combinations of SPM and cache.

291

0

20

40

60

80

100

120

140

160

180

200

220

Allro
ots Bzip

Em3d

Mpeg2Decode

Mpeg2Encode

SciMark2
sgefa spiff

Average

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

 (
%

)

SPM only (Heap in DRAM)

SPM only (Heap in SRAM)

SPM + Cache (Heap in Cache)

SPM + Cache (Heap optimized)

Cache only

Figure A.11: Normalized energy usage from the unknown-size heap applications set for
architectures containing different combinations of SPM and cache.

292

0

20

40

60

80

100

120

140

160

180

200

A
nag

ra
m B

c
B
h

B
is

ort

C
fr
ac

Epic

H
ea

lth Im
p

M
st

Pat
ric

ia

Per
im

et
er

Q
bSort

Tre
eA

dd

Tre
eS

ort
Trie

TSP

Voro
noi

Yac
r2

A
ve

ra
ge

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

 (
%

)

SPM only (heap in DRAM)

SPM only (heap optimized)

SPM + Cache (heap in cache)

SPM + Cache (heap optimized)

Cache only

Figure A.12: Normalized energy usage from the recursive benchmark set for architectures
containing different combinations of SPM and cache.

293

0

10

20

30

40

50

60

70

80

90

100

D
ry

s
to

n
e

G
s
m

H
u
ff

K
S

S
u
s
a
n

C
h
o
m

p

D
h
ry

s
to

n
e
-F

lo
a
t

D
ij
k
s
tr

a
E

k
s

F
F
T F
t

H
e
a
p
S

o
rt

L
is

ts

L
L
U

B
e
n
c
h
m

a
rk

M
a
tr

ix
M

is
r

O
b
jI
in

s
t

P
iF

F
T

S
o
rt

in
g

A
n
a
g
ra

m B
c

B
h

B
is

o
rt

C
fr

a
c

E
p
ic

H
e
a
lt
h

Im
p

M
s
t

P
a
tr

ic
ia

P
e
ri

m
e
te

r
Q

b
S

o
rt

T
re

e
A

d
d

T
re

e
S

o
rt

T
ri

e
T
S

P
V

o
ro

n
o
i

Y
a
c
r2

A
ll
ro

o
ts

B
zi

p
E

m
3
d

M
p
e
g
2
D

e
c
o
d
e

M
p
e
g
2
E

n
c
o
d
e

S
c
iM

a
rk

2
s
g
e
fa

s
p
if
f

A
V

E
R

A
G

E

R
u

n
ti

m
e

 I
m

p
ro

v
e

m
e

n
t

(%
)

Input A Input B (Profile A) Input B (Profile B)

Figure A.13: Normalized runtime showing profile input sensitivity.

294

0

10

20

30

40

50

60

70

80

90

100

D
ry

s
to

n
e

G
s
m

H
u

ff
K

S
S

u
s
a
n

C
h

o
m

p
D

h
ry

s
to

n
e
-F

lo
a
t

D
ij
k
s
tr

a
E

k
s

F
F

T F
t

H
e
a
p

S
o

rt
L
is

ts
L
L

U
B

e
n

c
h

m
a
rk

M
a
tr

ix
M

is
r

O
b

jI
in

s
t

P
iF

F
T

S
o

rt
in

g
A

n
a
g

ra
m B
c

B
h

B
is

o
rt

C
fr

a
c

E
p

ic
H

e
a
lt

h
Im

p
M

s
t

P
a
tr

ic
ia

P
e
ri

m
e
te

r
Q

b
S

o
rt

T
re

e
A

d
d

T
re

e
S

o
rt

T
ri

e
T
S

P
V

o
ro

n
o

i
Y

a
c
r2

A
ll
ro

o
ts

B
zi

p
E

m
3
d

M
p

e
g

2
D

e
c
o

d
e

M
p

e
g

2
E

n
c
o

d
e

S
c
iM

a
rk

2
s
g
e
fa

s
p
if

f
A

V
E

R
A

G
E

E
n

e
rg

y
 R

e
d

u
c

ti
o

n
 (

%
)

Input A Input B (Profile A) Input B (Profile B)

Figure A.14: Normalized energy usage showing profile input sensitivity.

295

0

10

20

30

40

50

60

70

80

90

100

D
ry

s
to

n
e

G
s
m

H
u
ff

K
S

S
u
s
a
n

C
h
o
m

p

D
h
ry

s
to

n
e
-F

lo
a
t

D
ij
k
s
tr

a
E

k
s

F
F
T F
t

H
e
a
p
S

o
rt

L
is

ts

L
L
U

B
e
n
c
h
m

a
rk

M
a
tr

ix
M

is
r

O
b
jI
in

s
t

P
iF

F
T

S
o
rt

in
g

A
n
a
g
ra

m B
c

B
h

B
is

o
rt

C
fr

a
c

E
p
ic

H
e
a
lt
h

Im
p

M
s
t

P
a
tr

ic
ia

P
e
ri

m
e
te

r
Q

b
S

o
rt

T
re

e
A

d
d

T
re

e
S

o
rt

T
ri

e
T
S

P
V

o
ro

n
o
i

Y
a
c
r2

A
ll
ro

o
ts

B
zi

p
E

m
3
d

M
p
e
g
2
D

e
c
o
d
e

M
p
e
g
2
E

n
c
o
d
e

S
c
iM

a
rk

2
s
g
e
fa

s
p
if
f

A
V

E
R

A
G

E

R
u

n
ti

m
e
 I

m
p

ro
v
e
m

e
n

t
(%

)

Input B Input A (Profile B) Input A (Profile A)

Figure A.15: Normalized runtime showing profile input sensitivity, with the inputs ap-
plied in reverse order.

296

0

10

20

30

40

50

60

70

80

90

100

D
ry

s
to

n
e

G
s
m

H
u

ff
K

S
S

u
s
a
n

C
h

o
m

p
D

h
ry

s
to

n
e
-F

lo
a
t

D
ij
k
s
tr

a
E

k
s

F
F

T F
t

H
e
a
p

S
o

rt
L

is
ts

L
L

U
B

e
n

c
h

m
a
rk

M
a
tr

ix
M

is
r

O
b

jI
in

s
t

P
iF

F
T

S
o

rt
in

g
A

n
a
g

ra
m B
c

B
h

B
is

o
rt

C
fr

a
c

E
p

ic
H

e
a
lt

h
Im

p
M

s
t

P
a
tr

ic
ia

P
e
ri

m
e
te

r
Q

b
S

o
rt

T
re

e
A

d
d

T
re

e
S

o
rt

T
ri

e
T

S
P

V
o

ro
n

o
i

Y
a
c
r2

A
ll
ro

o
ts

B
zi

p
E

m
3
d

M
p

e
g

2
D

e
c
o

d
e

M
p

e
g

2
E

n
c
o

d
e

S
c
iM

a
rk

2
s
g

e
fa

s
p

if
f

A
V

E
R

A
G

E

E
n

e
rg

y
 R

e
d

u
c

ti
o

n
 (

%
)

Input B Input A (Profile B) Input A (Profile A)

Figure A.16: Normalized energy usage showing profile input sensitivity, with the inputs
applied in reverse order.

297

298

Bibliography

[1] A. Ignjatovic A. Janapsatya and S. Parameswaran. Adaptive exact-fit storage
management. Very Large Scale Integration (VLSI) Systems, IEEE Transac-
tions on, 14(8):816–829, 2006.

[2] Javed Absar, Francesco Poletti, Pol Marchal, Francky Catthoor, and Luca
Benini. Fast and power-efficient dynamic data-layout with dma-capable mem-
ories. In First International Workshop on Power-Aware Real-Time Computing
(PARC), 2004.

[3] M. J. Absar and F. Catthoor. Compiler-based approach for exploiting scratch-
pad in presence of irregular array access. In DATE ’05: Proceedings of the con-
ference on Design, Automation and Test in Europe, pages 1162–1167, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[4] M. Adiletta, M. Rosenbluth, D. Bernstein, G. Wolrich, and
H. Wilkinson. The Next Generation of Intel IXP Network
Processors. Intel Technology Journal, 6(3), August 2002.
http://developer.intel.com/technology/itj/2002/volume06issue03/.

[5] Martin Alt, Christian Ferdinand, Florian Martin, and Reinhard Wilhelm.
Cache behavior prediction by abstract interpretation. In SAS ’96: Proceed-
ings of the Third International Symposium on Static Analysis, pages 52–66,
London, UK, 1996. Springer-Verlag.

[6] ADSP-21xx 16-bit DSP Family. Analog Devices, 1996. http://-
www.analog.com/processors/processors/ADSP/index.html.

[7] SHARC ADSP-21160M 32-bit Embedded CPU. Analog Devices, 2001. http://-
www.analog.com/processors/processors/sharc/index.html.

[8] TigerSharc ADSP-TS201S 32-bit DSP. Analog Devices, Revised Jan. 2004.
http://www.analog.com/processors/processors/tigersharc/index.html.

[9] Federico Angiolini, Luca Benini, and Alberto Caprara. Polynomial-time al-
gorithm for on-chip scratchpad memory partitioning. In Proceedings of the
2003 international conference on Compilers, architectures and synthesis for
embedded systems, pages 318–326. ACM Press, 2003.

299

[10] Federico Angiolini, Francesco Menichelli, Alberto Ferrero, Luca Benini, and
Mauro Olivieri. A post-compiler approach to scratchpad mapping of code. In
Proceedings of the 2004 international conference on Compilers, architecture,
and synthesis for embedded systems, pages 259–267. ACM Press, 2004.

[11] Andrew W. Appel and Maia Ginsburg. Modern Compiler Implementation in
C. Cambridge University Press, January 1998.

[12] ARM968E-S 32-bit Embedded Core. Arm, Revised March 2004. http://-
www.arm.com/products/CPUs/ARM968E-S.html.

[13] David Atienza, Stylianos Mamagkakis, Miguel Peon, Francky Catthoor,
Jose M. Mendias, and Dimitrios Soudris. Power aware tuning of dynamic
memory management for embedded real-time multimedia applications. In In
Proceedings of the XIX Conference on Design of Circuits and Integrated Sys-
tems (DCIS ’04), pages 375–380, 2004.

[14] Atmel AT91C140 16/32-bit Embedded CPU. Atmel, Revised May 2004.
http://www.atmel.com/dyn/resources/prod documents/doc6069.pdf.

[15] Oren Avissar, Rajeev Barua, and Dave Stewart. Heterogeneous Memory Man-
agement for Embedded Systems. In Proceedings of the ACM 2nd International
Conference on Compilers, Architectures, and Synthesis for Embedded Systems
(CASES), November 2001. Also at http://www.ece.umd.edu/∼barua.

[16] Oren Avissar, Rajeev Barua, and Dave Stewart. An Optimal Memory Alloca-
tion Scheme for Scratch-Pad Based Embedded Systems. ACM Transactions
on Embedded Systems (TECS), 1(1), September 2002.

[17] R. Banakar, S. Steinke, B-S. Lee, M. Balakrishnan, and P. Marwedel. Scratch-
pad Memory: A Design Alternative for Cache On-chip memory in Embedded
Systems. In Tenth International Symposium on Hardware/Software Codesign
(CODES), Estes Park, Colorado, May 6-8 2002. ACM.

[18] David A. Barrett and Benjamin G. Zorn. Using lifetime predictors to improve
memory allocation performance. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 187–196, 1993.

[19] L.A. Belady. A study of replacement algorithms for virtual storage. In IBM
Systems Journal, pages 5:78–101, 1966.

[20] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Adaptive software cache
management for distributed shared memory architectures. In Proc. of the
17th Annual Int’l Symp. on Computer Architecture (ISCA’90), pages 125–135,
1990.

[21] E. Berger, B. Zorn, and K. McKinley. Reconsidering custom memory alloca-
tion, 2002.

300

[22] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. Composing
high-performance memory allocators. In PLDI ’01: Proceedings of the ACM
SIGPLAN 2001 conference on Programming language design and implemen-
tation, pages 114–124, New York, NY, USA, 2001. ACM Press.

[23] Azer Bestavros, Robert L. Carter, Mark E. Crovella, Carlos R. Cunha,
Abddsalam Beddaya, and Sulaiman A.Mirdad. Application-level document
caching in the internet. In Proceedings of the Second Intl. Workshop on Ser-
vices in Distributed and Networked Environments (SDNE)’95, pages 125–135,
1990.

[24] R. S. Bird. Notes on recursion elimination. Commun. ACM, 20(6):434–439,
1977.

[25] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region inference to
von neumann machines via region representation inference. In Proceedings of
the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 171–183. ACM Press, 1996.

[26] Bruno Blanchet. Escape analysis: correctness proof, implementation and ex-
perimental results. In Proceedings of the 25th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 25–37. ACM Press,
1998.

[27] Bruno Blanchet. Escape analysis for object-oriented languages: application to
java. In Proceedings of the 14th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 20–34. ACM Press,
1999.

[28] David Brash. The ARM architecture Version 6 (ARMv6). ARM Ltd., January
2002. White Paper.

[29] R. A. Bringmann. Compiler-Controlled Speculation. PhD thesis, University of
Illinois, Urbana, IL, Department of Computer Science, 1995.

[30] Yun Cao, Hiroyuki Tomiyama, Takanori Okuma, and Hiroto Yasuura. Data
memory design considering effective bitwidth for low-energy embedded sys-
tems. In ISSS ’02: Proceedings of the 15th international symposium on System
Synthesis, pages 201–206, New York, NY, USA, 2002. ACM Press.

[31] Martin C. Carlisle and Anne Rogers. Software caching and computation migra-
tion in Olden. Journal of Parallel and Distributed Computing, 38(2):248–255,
1996.

[32] Martin C. Carlisle and Anne Rogers. Software caching and computation migra-
tion in Olden. Journal of Parallel and Distributed Computing, 38(2):248–255,
1996.

301

[33] G. Chen, I. Kadayif, W. Zhang, M. Kandemir, I. Kolcu, and U. Sezer.
Compiler-directed management of instruction accesses. In DSD ’03: Pro-
ceedings of the Euromicro Symposium on Digital Systems Design, page 459,
Washington, DC, USA, 2003. IEEE Computer Society.

[34] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Making pointer-based
data structures cache conscious. Computer, 33(12):67–75, 2000.

[35] Derek Chiou, Prabhat Jain, Larry Rudolph, and Srinivas Devadas.
Application-Specific Memory Management in Embedded Systems Using
Software-Controlled Caches. In Proceedings of the 37th Design Automation
Conference, June 2000.

[36] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar,
and Sam Midkiff. Escape analysis for java. In Proceedings of the 14th ACM
SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, pages 1–19. ACM Press, 1999.

[37] Y. Choi and T. Kim. Address assignment combined with scheduling in dsp
code generation, 2002.

[38] Yoonseo Choi and Taewhan Kim. Memory layout techniques for variables
utilizing efficient dram access modes in embedded system design. In DAC ’03:
Proceedings of the 40th conference on Design automation, pages 881–886, New
York, NY, USA, 2003. ACM Press.

[39] William D. Clinger. Proper tail recursion and space efficiency. In PLDI ’98:
Proceedings of the ACM SIGPLAN 1998 conference on Programming language
design and implementation, pages 174–185, New York, NY, USA, 1998. ACM
Press.

[40] Cacti 3.2. P. Shivaumar and N.P. Jouppi, Revised 2004. http://-
research.compaq.com/wrl/people/jouppi/CACTI.html.

[41] Keith D. Cooper and Timothy J. Harvey. Compiler-controlled memory. In Ar-
chitectural Support for Programming Languages and Operating Systems, pages
2–11, 1998.

[42] Manuvir Das. Unification-based pointer analysis with directional assignments.
In Proceedings of the SIGPLAN ’00 Conference on Program Language Design
and Implementation, pages 35–46, Vancouver, BC, June 2000.

[43] H.M. Deitel and P.J. Deitel. C How To Program. Prentice Hall, 1994.

[44] V. Delaluz, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin. Energy-oriented
compiler optimizations for partitioned memory architectures. In CASES ’00:
Proceedings of the 2000 international conference on Compilers, architecture,
and synthesis for embedded systems, pages 138–147, New York, NY, USA,
2000. ACM Press.

302

[45] Document No. ARM DDI 0084D, ARM Ltd. ARM7TDMI-S Data sheet, Oc-
tober 1998.

[46] Angel Dominguez, Sumesh Udayakumaran, and Rajeev Barua. Heap Data Al-
location to Scratch-Pad Memory in Embedded Systems. Journal of Embedded
Computing(JEC), 1:521–540, 2005. IOS Press, Amsterdam, Netherlands.

[47] S. Donahue, M.P. Hampton, R. Cytron, M. Franklin, and K.M. Kavi. Hard-
ware support for fast and bounded time storage allocation. In Proceedings of
the Workshop on Memory Processor Interfaces (WMPI), 2001.

[48] Steven M. Donahue, Matthew P. Hampton, Morgan Deters, Jonathan M. Nye,
Ron K. Cytron, and Krishna M. Kavi. Storage allocation for real-time, embed-
ded systems. In Proceedings of the First International Workshop on Embedded
Software (EMSOFT), 2001.

[49] N. Dutt. Memory organization and exploration for embedded systems-on-
silicon, 1997.

[50] Y. Feng and E. Berger. A locality-improving dynamic memory allocator, 2005.

[51] Poletti Francesco, Paul Marchal, David Atienza, Francky Catthoor
Luca Benini, and Jose M. Mendias. An integrated hardware/software ap-
proach for run-time scratchpad management. In In Proceedings of the Design
Automation Conference, pages 238–243. ACM Press, June,2004.

[52] Bill Gatliff. Embedding with gnu: Newlib. Embedded Systems Programming,
15(1), 2002.

[53] GNU. GNU Compiler Collection. Cambridge, Massachusetts, USA,
http://gcc.gnu.org/, 2006. Also available at http://gcc.gnu.org/.

[54] D. W. Goodwin and K. D. Wilken. Optimal and near-optimal global register
allocation using 0-1 integer programming. In Software-Practice and Experi-
ence, pages 929–965, 1996.

[55] Peter Grun, Nikil Dutt, and Alex Nicolau. Memory aware compilation through
accurate timing extraction. In ACM, editor, Proceedings 2000: Design Au-
tomation Conference, 37th, Los Angeles Convention Center, Los Angeles, CA,
June 5–9, 2000, pages 316–321, New York, NY, USA, 2000. ACM Press.

[56] Peter Grun, Nikil Dutt, and Alex Nicolau. Apex: access pattern based memory
architecture exploration. In ISSS ’01: Proceedings of the 14th international
symposium on Systems synthesis, pages 25–32, New York, NY, USA, 2001.
ACM Press.

303

[57] Dirk Grunwald, Benjamin Zorn, and Robert Henderson. Improving the cache
locality of memory allocation. In PLDI ’93: Proceedings of the ACM SIG-
PLAN 1993 conference on Programming language design and implementation,
pages 177–186, New York, NY, USA, 1993. ACM Press.

[58] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin,
Trevor Mudge, and Richard B. Brown. Mibench: A free, commercially rep-
resentative embedded benchmark suite. In IEEE 4th Annual Workshop on
Workload Characterization, 2001.

[59] Niels Hallenberg, Martin Elsman, and Mads Tofte. Combining region inference
and garbage collection. In Proceedings of the ACM SIGPLAN 2002 Conference
on Programming language design and implementation, pages 141–152. ACM
Press, 2002.

[60] G. Hallnor and S. K. Reinhardt. A fully associative software-managed cache
design. In Proc. of the 27th Int’l Symp. on Computer Architecture (ISCA),
Vancouver, British Columbia, Canada, June 2000.

[61] Pu Hanlai, Ling Ming, and Jin Jing. Extended control flow graph based per-
formance optimization using scratch-pad memory. In DATE ’05: Proceedings
of the conference on Design, Automation and Test in Europe, pages 828–829,
Washington, DC, USA, 2005. IEEE Computer Society.

[62] Peter Harrison and Hessam Khoshnevisan. Efficient compilation of linear re-
cursive functions into object level loops. In SIGPLAN ’86: Proceedings of the
1986 SIGPLAN symposium on Compiler construction, pages 207–218, New
York, NY, USA, 1986. ACM Press.

[63] Laurie J. Hendren, Chris Donawa, and Maryam Emami et all. Designing the
McCAT Compiler Based on a Family of Structured Intermediate Represen-
tations. In Proceedings of the 5th International Workshop on Languages and
Compilers for Parallel Computing, pages 406–420. Springer-Verlag, LNCS 757,
1993.

[64] John Hennessy and David Patterson. Computer Architecture A Quantitative
Approach. Morgan Kaufmann, Palo Alto, CA, third edition, 2002.

[65] Vesa Hirvisalo and Sami Kiminki. Predictable timing behavior by using com-
piler controlled operation. In 4th Intl WORKSHOP ON WORST-CASE EX-
ECUTION TIME (WCET) ANALYSIS, 2004.

[66] Jason D. Hiser and Jack W. Davidson. Embarc: an efficient memory bank
assignment algorithm for retargetable compilers. In Proceedings of the 2004
ACM SIGPLAN/SIGBED conference on Languages, compilers, and tools for
embedded systems, pages 182–191. ACM Press, 2004.

304

[67] M32R-32192 32-bit Embedded CPU. Hitachi/Renesas, Revised July 2004.
http://documentation.renesas.com/eng/products/mpumcu/rej03b0019 -
32192ds.pdf.

[68] SH7050 32-bit CPU. Hitachi/Renesas, Revised Sep. 1999. http://-
documentation.renesas.com/eng/products/mpumcu/e602121 sh7050.pdf.

[69] C. Huneycutt and K. Mackenzie. Software caching using dynamic binary
rewriting for embedded devices. In Proceedings of the International Conference
on Parallel Processing, pages 621–630, 2002.

[70] The PowerPC 405 Embedded Processor Family. IBM Inc. Microelectronics,
2002. http://www-306.ibm.com/chips/products/powerpc/processors/.

[71] The PowerPC 440 Embedded Processor Family. IBM Inc. Microelectronics,
2002. http://www-306.ibm.com/chips/products/powerpc/processors/.

[72] XC-166 16-bit Embedded Family. Infineon, Revised Jan. 2001. http://-
www.infineon.com/cmc upload/documents/036/812/c166sv2um.pdf.

[73] Intel. Intel StrongARM SA1110 Embedded Procesor, 2000.
http://developer.intel.com/design/pca/applicationsprocessors/1110 brf.htm.

[74] Ilya Issenin, Erik Brockmeyer, Miguel Miranda, and Nikil Dutt. Data reuse
analysis technique for software-controlled memory hierarchies. In DATE ’04:
Proceedings of the conference on Design, automation and test in Europe, page
10202, Washington, DC, USA, 2004. IEEE Computer Society.

[75] Ilya Issenin and Nikil Dutt. Foray-gen: Automatic generation of affine func-
tions for memory optimizations. In DATE ’05: Proceedings of the conference
on Design, Automation and Test in Europe, pages 808–813, Washington, DC,
USA, 2005. IEEE Computer Society.

[76] Arun Iyengar. Design and performance of a general-purpose software cache.
Journal of Parallel and Distributed Computing, 38(2):248–255, 1996.

[77] Prabhat Jain, Srinivas Devadas, Daniel Engels, and Larry Rudolph. Software-
assisted cache replacement mechanisms for embedded systems. In ICCAD ’01:
Proceedings of the 2001 IEEE/ACM international conference on Computer-
aided design, pages 119–126, Piscataway, NJ, USA, 2001. IEEE Press.

[78] Jeff Janzen. Calculating Memory System Power for DDR SDRAM. In
DesignLine Journal, volume 10(2). Micron Technology Inc., 2001. http://-
www.micron.com/publications/designline.html.

[79] M. Kandemir, P. Banerjee, A. Choudhary, J. Ramanujam, and E. Ayguad.
An integer linear programming approach for optimizing cache locality. In
ICS ’99: Proceedings of the 13th international conference on Supercomputing,
pages 500–509, New York, NY, USA, 1999. ACM Press.

305

[80] M. Kandemir and A. Choudhary. Compiler-directed scratch pad memory hier-
archy design and management. In DAC ’02: Proceedings of the 39th conference
on Design automation, pages 628–633, New York, NY, USA, 2002. ACM Press.

[81] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. A graph based
framework to detect optimal memory layouts for improving data locality, 1999.

[82] Mahmut Kandemir and Ismail Kadayif. Compiler-directed selection of dy-
namic memory layouts. In CODES ’01: Proceedings of the ninth international
symposium on Hardware/software codesign, pages 219–224, New York, NY,
USA, 2001. ACM Press.

[83] Mahmut T. Kandemir, Ismail Kadayif, and Ugur Sezer. Exploiting scratch-
pad memory using presburger formulas. In ISSS, pages 7–12, 2001.

[84] Mahmut T. Kandemir, J. Ramanujam, Mary Jane Irwin, Narayanan Vijaykr-
ishnan, Ismail Kadayif, and A. Parikh. Dynamic management of scratch-pad
memory space. In Design Automation Conference, pages 690–695, 2001.

[85] Mahmut Taylan Kandemir. A compiler technique for improving whole-
program locality. In POPL ’01: Proceedings of the 28th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 179–192,
New York, NY, USA, 2001. ACM Press.

[86] Owen Kaser, C. R. Ramakrishnan, and Shaunak Pawagi. On the conversion of
indirect to direct recursion. ACM Lett. Program. Lang. Syst., 2(1-4):151–164,
1993.

[87] Eric Larson and Todd Austin. Compiler controlled value prediction using
branch predictor based confidence. In Proceedings of the 33th Annual In-
ternational Symposium on Microarchitecture (MICRO-33). IEEE Computer
Society, December 2000.

[88] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Life-
long Program Analysis & Transformation. In Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04), Palo
Alto, California, Mar 2004.

[89] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. Media-
bench: A tool for evaluating and synthesizing multimedia and communicatons
systems. In International Symposium on Microarchitecture, pages 330–335,
1997.

[90] Lea Hwang Lee, Bill Moyer, and John Arends. Instruction fetch energy reduc-
tion using loop caches for embedded applications with small tight loops. In
ISLPED ’99: Proceedings of the 1999 international symposium on Low power
electronics and design, pages 267–269, New York, NY, USA, 1999. ACM Press.

306

[91] Lin Gao Lian Li and Jingling Xue. Memory coloring: A compiler approach
for scratchpad memory management. In Proceedings of the 14th International
Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 329–338, Washington, DC, USA, 2005. IEEE Computer Society.

[92] Chi-Keung Luk and Todd C. Mowry. Cooperative instruction prefetching
in modern processors. In Proceedings of the 31st annual ACM/IEEE in-
ternational symposium on Microarchitecture, pages 182–194, November 30-
December 2 1998.

[93] V. De La Luz, M. Kandemir, and I. Kolcu. Automatic data migration for
reducing energy consumption in multi-bank memory systems. In DAC ’02:
Proceedings of the 39th conference on Design automation, pages 213–218, New
York, NY, USA, 2002. ACM Press.

[94] Mahesh Mamidipaka and Nikil Dutt. On-chip stack based memory organiza-
tion for low power embedded architectures. In Design, Automation and Test
in Europe Conference and Exhibition, pages 1082– 1087, 2003.

[95] Peter Marwedel Manish Verma, Lars Wehmeyer. Efficient scratchpad alloca-
tion algorithms for energy constrained embedded systems. In Power-Aware
Computer Systems(PACS), pages 41–56, 2003.

[96] Peter Marwedel Manish Verma, Stefan Steinke. Data parititioning for maxi-
mal scratchpad usage. In Asia South Pasific Design Automation Conference
(ASPDAC), 2003.

[97] Peter Marwedel, Lars Wehmeyer, Manish Verma, Stefan Steinke, and Urs
Helmig. Fast, predictable and low energy memory references through
architecture-aware compilation. In ASP-DAC ’04: Proceedings of the 2004
conference on Asia South Pacific design automation, pages 4–11, Piscataway,
NJ, USA, 2004. IEEE Press.

[98] Lewis J.A. Black B. Lipasti M.H. Avoiding initialization misses to the heap.
In International Symposium on Computer Architecture(ISCA), pages 183–194,
2002.

[99] 128Mb DDR SDRAM data sheet. (Dual data-rate synchronous DRAM) Micron
Technology Inc., 2003. http://www.micron.com/products/dram/ddrsdram/.

[100] Csaba Andras Moritz, Matthew Frank, and Saman Amarasinghe. FlexCache:
A Framework for Flexible Compiler Generated Data Caching. In The 2nd
Workshop on Intelligent Memory Systems, Boston, MA, November 12 2000.

[101] CPU12 Reference Manual. Motorola Corporation, 2000. (A 16-bit processor).
http://e-www.motorola.com/brdata/PDFDB/MICROCONTROLLERS/-
16 BIT/68HC12 FAMILY/REF MAT/CPU12RM.pdf.

307

[102] M-CORE - MMC2001 Reference Manual. Motorola Corporation,
1998. (A 32-bit processor). http://www.motorola.com/SPS/MCORE/-
info documentation.htm.

[103] Coldfire MCF5206E 32-bit CPU. Motorola/Freescale, Revised 2002. http://-
www.freescale.com/files/dsp/doc/fact sheet/CFPRODFACT.pdf.

[104] Dragonball MC68SZ328 32-bit Embedded CPU. Motorola/Freescale, Re-
vised April 2003. http://www.freescale.com/files/32bit/doc/fact sheet/-
MC68SZ328FS.pdf.

[105] MPC500 32-bit MCU Family. Motorola/Freescale, Revised July 2002. http://-
www.freescale.com/files/microcontrollers/doc/fact sheet/MPC500FACT.pdf.

[106] O. Ozturk, M. Kandemir, I. Demirkiran, G. Chen, and M. J. Irwin. Data
compression for improving spm behavior. In DAC ’04: Proceedings of the
41st annual conference on Design automation, pages 401–406, New York, NY,
USA, 2004. ACM Press.

[107] Krishna V. Palem, Rodric M. Rabbah, III Vincent J. Mooney, Pinar Korkmaz,
and Kiran Puttaswamy. Design space optimization of embedded memory sys-
tems via data remapping. In LCTES/SCOPES ’02: Proceedings of the joint
conference on Languages, compilers and tools for embedded systems, pages
28–37, New York, NY, USA, 2002. ACM Press.

[108] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer, C. Kulka-
rni, A. Vandercappelle, and P. G. Kjeldsberg. Data and memory optimization
techniques for embedded systems. ACM Trans. Des. Autom. Electron. Syst.,
6(2):149–206, 2001.

[109] P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient utilization of scratch-pad
memory in embedded processor applications. In Proc Eur. Design Test Conf,
pages 7–11, 1997.

[110] P. R. Panda, N. D. Dutt, and A. Nicolau. Local memory exploration and
optimization in embedded systems. In Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, pages 3–13, 1999.

[111] P. R. Panda, N. D. Dutt, and A. Nicolau. On-Chip vs. Off-Chip Memory:
The Data Partitioning Problem in Embedded Processor-Based Systems. ACM
Transactions on Design Automation of Electronic Systems, 5(3), July 2000.

[112] Sri Parameswaran and Jrg Henkel. I-copes: fast instruction code placement
for embedded systems to improve performance and energy efficiency. In IC-
CAD ’01: Proceedings of the 2001 IEEE/ACM international conference on
Computer-aided design, pages 635–641, Piscataway, NJ, USA, 2001. IEEE
Press.

308

[113] Young Gil Park and Benjamin Goldberg. Escape analysis on lists. In Proceed-
ings of the ACM SIGPLAN 1992 conference on Programming language design
and implementation, pages 116–127. ACM Press, 1992.

[114] Erez Petrank and Dror Rawitz. The hardness of cache conscious data place-
ment. In POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 101–112, New York,
NY, USA, 2002. ACM Press.

[115] LPC2290 16/32-bit Embedded CPU. Philips, Revised Feb. 2004. http://-
www.semiconductors.philips.com/acrobat download/datasheets/LPC2290-
01.pdf.

[116] Anand Ramachandran and Margarida F. Jacome. Xtream-fit: an energy-delay
efficient data memory subsystem for embedded media processing. In DAC ’03:
Proceedings of the 40th conference on Design automation, pages 137–142, New
York, NY, USA, 2003. ACM Press.

[117] Rajiv A. Ravindran, Pracheeti D. Nagarkar, Ganesh S. Dasika, Eric D. Mars-
man, Robert M. Senger, Scott A. Mahlke, and Richard B. Brown. Compiler
managed dynamic instruction placement in a low-power code cache. In CGO
’05: Proceedings of the international symposium on Code generation and op-
timization, pages 179–190, Washington, DC, USA, 2005. IEEE Computer So-
ciety.

[118] Shai Rubin, Rastislav Bodík, and Trishul Chilimbi. An efficient profile-
analysis framework for data-layout optimizations. In POPL ’02: Proceedings
of the 29th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 140–153, New York, NY, USA, 2002. ACM Press.

[119] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, James
R.Larus, and David A. Wood. Fine-grain Access Control for Distributed
Shared Memory. In Proceedings of the Sixth International Conference on Ar-
chitecture Support for Programming Languages and Operating Systems, pages
297–306, 1994.

[120] Compilation Challenges for Network Processors. Industrial Panel, ACM Con-
ference on Languages, Compilers and Tools for Embedded Systems (LCTES),
June 2003. Slides at http://www.cs.purdue.edu/s3/LCTES03/.

[121] M. L. Seidl and B. G. Zorn. Segregating heap objects by reference behavior and
lifetime. In Proceedings of the Eighth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS-
VIII), San Jose, 1998.

[122] Matthew L. Seidl and Benjamin Zorn. Low cost methods for predicting heap
object behavior. In Second Workshop on Feedback Directed Optimization,
pages 83–90, Haifa, Israel, 1999.

309

[123] Matthew L. Seidl and Benjamin G. Zorn. Implementing heap-object behav-
ior prediction efficiently and effectively. Software Practice and Experience,
31(9):869–892, 2001.

[124] Yefim Shuf, Manish Gupta, Rajesh Bordawekar, and Jaswinder Pal Singh.
Exploiting prolific types for memory management and optimizations. In Sym-
posium on Principles of Programming Languages, pages 295–306, 2002.

[125] Amit Sinha and Anantha Chandrakasan. JouleTrack - A Web Based Tool for
Software Energy Profiling. In Design Automation Conference, pages 220–225,
2001.

[126] Jan Sjodin, Bo Froderberg, and Thomas Lindgren. Allocation of Global Data
Objects in On-Chip RAM. Compiler and Architecture Support for Embedded
Computing Systems, December 1998.

[127] Jan Sjodin and Carl Von Platen. Storage Allocation for Embedded Proces-
sors. Compiler and Architecture Support for Embedded Computing Systems,
November 2001.

[128] R.M. Stallman. GNU Compiler Collection Internals. Cambridge, Mas-
sachusetts, USA, http://gcc.gnu.org/onlinedocs/gccint, 2002. Also available
at http://gcc.gnu.org/onlinedocs/gccint.

[129] Bjarne Steensgaard. Points-to analysis in almost linear time. In Symposium
on Principles of Programming Languages (POPL), St. Petersburg Beach, FL,
January 1996.

[130] S. Steinke, N. Grunwald, L. Wehmeyer, R. Banakar, M. Balakrishnan, and
P. Marwedel. Reducing energy consumption by dynamic copying of instruc-
tions onto onchip memory. In Proceedings of the 15th International Symposium
on System Synthesis (ISSS). ACM, 2002.

[131] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel. Assigning program and
data objects to scratchpad for energy reduction. In Proceedings of the con-
ference on Design, automation and test in Europe, page 409. IEEE Computer
Society, 2002.

[132] Angel Dominguez Sumesh Udayakumaran and Rajeev Barua. Dynamic Allo-
cation for Scratch-Pad Memory using Compile-time Decisions. ACM Trans-
actions on Embedded Computing Systems (TECS), 5(2):472–511, 2006.

[133] Andrew S. Tanenbaum. Structured Computer Organization (4th Edition).
Prentice Hall, October 1998.

[134] Peiyi Tang. Complete inlining of recursive calls: beyond tail-recursion elim-
ination. In ACM-SE 44: Proceedings of the 44th annual southeast regional
conference, pages 579–584, New York, NY, USA, 2006. ACM Press.

310

[135] TMS370Cx7x 8-bit microcontroller. Texas Instruments, Revised Feb. 1997.
http://www-s.ti.com/sc/psheets/spns034c/spns034c.pdf.

[136] Sumesh Udayakumaran and Rajeev Barua. Compiler-decided dynamic mem-
ory allocation for scratch-pad based embedded systems. In Proceedings of the
international conference on Compilers, architectures and synthesis for embed-
ded systems (CASES), pages 276–286. ACM Press, 2003.

[137] DineroIV Cache simulator. J. Edler and M.D. Hill, Revised 2004.
http://www.cs.wisc.edu/ markhill/DineroIV/.

[138] Osman S. Unsal, Rakshit Ashok, Israel Koren, C. Manik Krishna, and
Csaba Andras Moritz. Cool-cache for hot multimedia. In Proceedings of the
International Symposium on Microarchitecture, pages 274–283, 1990.

[139] Osman S. Unsal, Raksit Ashok, Israel Koren, C. Mani Krishna, and Csaba An-
dras Moritz. Cool-cache: A compiler-enabled energy efficient data caching
framework for embedded/multimedia processors. Trans. on Embedded Com-
puting Sys., 2(3):373–392, 2003.

[140] M. Verma, L. Wehmeyer, and P. Marwedel. Dynamic overlay of scratch-
pad memory for energy minimization. In International conference on Hard-
ware/Software Codesign and System Synthesis(CODES+ISIS). ACM, 2004.

[141] Manish Verma, Lars Wehmeyer, and Peter Marwedel. Cache-aware scratchpad
allocation algorithm. In Proceedings of the conference on Design, automation
and test in Europe, page 21264. IEEE Computer Society, 2004.

[142] Frdric Vivien and Martin Rinard. Incrementalized pointer and escape analy-
sis. In Proceedings of the ACM SIGPLAN 2001 conference on Programming
language design and implementation, pages 35–46. ACM Press, 2001.

[143] Kiem-Phong Vo. Vmalloc: A general and efficient memory allocator. Software
Practice and Experience, 26(3):357–374, 1996.

[144] Lars Wehmeyer, Urs Helmig, and Peter Marwedel. Compiler-optimized usage
of partitioned memories. In Proceedings of the 3rd Workshop on Memory
Performance Issues (WMPI2004), 2004.

[145] Lars Wehmeyer and Peter Marwedel. Influence of onchip scratchpad memo-
ries on wcet prediction. In Proceedings of the 4th International Workshop on
Worst-Case Execution Time (WCET) Analysis, 2004.

[146] Reinhold P. Weicker. Dhrystone: a synthetic systems programming bench-
mark. Commun. ACM, 27(10):1013–1030, 1984.

[147] S.J.E. Wilton and N.P. Jouppi. Cacti: An enhanced cache access and cycle
time model. In IEEE Journal of Solid-State Circuits, 1996.

311

[148] Qing Yi, Vikram Adve, and Ken Kennedy. Transforming loops to recursion for
multi-level memory hierarchies. In PLDI ’00: Proceedings of the ACM SIG-
PLAN 2000 conference on Programming language design and implementation,
pages 169–181, New York, NY, USA, 2000. ACM Press.

312

