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An Optimal Algorithm for Finding a Maximum Independent Set

of a Circular-Arc Graph

by

Sumio Masuda and Kazuo Nakajima

Abstract

A new algorithm is presented for finding a maximum independent set of a circular-
arc graph. When the graph is given in the form of a family of » arcs, our algorithm
requires only O (n -logn ) time and O (n ) space. Furthermore, if the endpoints of the arcs
are already sorted, it runs in O(n) time. This algorithm is time- and space-optimal to

within a constant factor.



1. Introduction

Let G=(V,E) be a graph. Two distinct vertices » and » in V are said to be
independent from each other if (u,v) € E; otherwise they are said to be adjacent to each
other. A subset X of V is called an independent set of G if any two vertices in X are
independent. A mazimum independent set of G is an independent set whose cardinality

is the largest among all independent sets of G .

Consider a finite family S of non-empty sets. A graph G =(V,E) is called an inter-
section graph for S if there is a one-to-one correspondence between S and V such that
two sets in S have a non-empty intersection if and only if the corresponding vertices in
V are adjacent to each other. If § is a family of intervals on the real line, then @ is
called an interval graph. When § is a family of arcs on a circle, G is called a circular-

arc graph for S.

Interval graphs have been used in many practical applications {10,12-13], and, as
such, a wide variety of algorithms have been developed [2,5-6,8-9]. Furthermore, as a
generalization of interval graphs, circular-arc graphs have received considerable attention
in recent years. Tucker [11] proposed an O (n®) time algorithm for recognizing circular-
arc graphs, where n is the number of the vertices in a given graph. Garey, Johnson,
Miller and Papadimitriou [3] showed that the coloring problem is NP-complete for
circular-arc graphs. Gavril [4] developed polynomial time algorithms for finding a max-
imum clique, a maximum independent set, and a minimum covering by disjoint cliques
of a circular-arc graph. When the graph is given in the form of a family of n arcs, the
algorithms produce solutions in O (n*%), O(n?), and O(n®) time, respectively. Later,
Gupta, Lee and Leung [6] gave O (n?) time implementations of the last two algorithms of

Gavril’s. Recently, Hsu [7] presented an algorithm for finding a maximum weight clique



for the case when each vertex is assigned a real number as its weight. Its time complex-

ity is O (n-m), where m is the number of the edges of the graph.

In this paper, we present a new algorithm for finding a maximum independent set
of a circular-arc graph. We show an O (n logn) time and O (n) space implementation of
the algorithm when the graph is given in the form of a family of n arcs on a circle. If

the endpoints of the arcs are already sorted, the algorithm is shown to run in O (n ) time.

It should be noted that Gupta et al. [6] have proven that it requires Q(n -logn ) time
in the worst case to find a maximum independent set of an interval graph with » ver-
tices. Since every circular-arc graph is an interval graph, our algorithm is both time-

and space-optimal to within a constant factor.

2. Definitions and Notations

Let S={a,a, ..., a,} be a family of arcs on a circle ¢. Each endpoint of the
arcs is assigned a positive integer, called a coordinate. The endpoints are located on the
circumference of C in the ascending order of the values of the coordinates in the clock-
wise direction. Without loss of generality, we can assume that (i) all endpoints of the

arcs in $ are distinct, and (ii) no single arc in § covers the entire circle C by itself.

For simplicity, we call the endpoint with coordinate j as point j. Suppose that an
arc begins at point j and ends at point k in the clockwise direction. Then, we denote
such an arc by (5,k), and call points j and k as the head and the tail, respectively, of
the arc (j,k). For i=1,2,...,n, let h; and ¢ denote the coordinates of the head and tail,
respectively, of arc ¢;, that is, a;=(h;,t;). We show an example of a family of arcs in
Fig. 1, where a,=(1,7), a;=(3,5), a5=(6,9), a,=(8,12), as—(10,13), ag=(11,15), a,=(14,4)

and a 82(16,2)



For an arc ¢; € § and an endpoint j of another arc in S, we say that a; contains
point j if one of the following three conditions holds (see Fig. 2).
(i) 1<h;<j<t;<2n.
(i) 1<t;<h;<j<2n.
(i) 1<j<t;<h;<2n.
For two distinct arcs ¢; and a; in S, we say that they intersect with each other if one of
them contains at least one of the endpoints of the other arc; otherwise ¢; and a; are said
to be independent from each other. If a; contains both endpoints of ¢;, we say that a;
contains a;. The circular-arc graph for S, denoted by Gs, is defined as follows:

Gs & (Vs, Es),

where Vg & {vjvg ..., 0.},
and Es 2 {(w,v;) | & and a; intersect with each other}.

For example, Fig. 3 depicts the circular-arc graph for the family of arcs given in Fig. 1.

A subfamily S’ of S is called an independent arc family (abbreviated to an IAF) if
any two arcs in S' are independent from each other. A mazimum independent arc fam-
ily (abbreviated to an MIAF) of S is an IAF whose cardinality is the largest among all
IAF’s of S. For example, the family of arcs shown in Fig. 1 has two MIAF’s,
{agas,a50g} and {agagagas}. Clearly, the MIAF’s of § and the maximum indepen-
dent sets of Gy are in one-to-one correspondence. In the following section, we will

present an algorithm for finding an MIAF of a family of arcs.

3. Outline of the Algorithm

Let § ={ay,as, ..., a, } be a family of » arcs on a circle C. § Is said to be canon-

ical if (i) h;’s and ¢’s for i=1,2,...,n are all distinct integers between 1 and 22, and (i)



point 1 is the head of arc ¢;. For instance, the family of arcs shown in Fig. 1 is canoni-
cal, but the one given in Fig. 4 is not. It should be noted, however, that these two fami-
lies of arcs correspond to the same circular-arc graph, which is shown in Fig. 3. When §
is not canonical, one can construct in O (n -logn) time a family of arcs S’ such that
Gs=Gg by using a regular sorting algorithm [1]. Throughout this paper, we assume

that the family S is canonical.

For a subfamily S' of S, let o(S' ) denote the cardinality of a maximum indepen-
dent set of Gg:, or equivalently that of an MIAF of §' . We start with the following

theorem.

Theorem 1. Suppose that an arc ¢; € S contains another arc a¢; € S. Then, any

MIAF of S - {¢; } is an MIAF of §.

Proof. 1t is clear that a(S)>a(S - {a;}). Let X be an MIAF of S. If g; ¢X, then
X is an IAF of § —{e;}. On the other hand, if ¢; € X, then (X - {a;}) U {a; } is an [AF
of $ ~{a;}. These imply that o(S)<aS - {a;}). Thus, (S )=a(S - {a;}), and hence
any MIAF of § — {¢;} is an MIAF of §. O

An arc a;=(h; t;) € S is called a forward arc if h; <t;; otherwise g; is called a back-
ward arc. For example, there are two backward arcs, a¢; and ag, in the family of arcs of
Fig. 1. In our algorithm, we first remove all forward arcs which contain other forward
arcs. Let Sy denote the resultant family of the forward arcs, and let Sp denote the fam-

ily of all backward arcs in S. Then, we have the following lemma and theorem.
Lemma 1. Sp5£4.

Proof. Since S is canonical, it has at least one forward arc, that is, a;. If a, 1s the
only forward arc in S, Sr=—{a,}s%4¢4. On the other hand, if S has more than one forward

arc, there exists at least one forward arc which does not contain any other forward arc.



Thus, Sr5£¢ in either case. O
Theorem 2. 1 < o(Sr) < a(S) < oSp)+1.

Proof. Since Sp4¢ from Lemma 1 and Sp € 5, 1<a(5r)<a(S). From Theorem
1, o(S)=a(Sr U Sp), and hence a(S)<a(Sr)+a(Sp). Furthermore, it is clear that

a(Sp)=1 if Sp£4, and that a(Sz)=0 if Sp=¢. Therefore, the theorem holds. O

Our algorithm tests whether there exist an MIAF, X of Sr and an arc a¢; € Sp
such that X U {e;} is an IAF. From Theorem 2, if such an MIAF, X and an arc q;
exist, then X U {a;} is an MIAF of $; otherwise any MIAF of Sp is an MIAF of 5. In
general, the number of MIAF’s of S may be an exponential function of |Sr|. However,
our algorithm efficiently perform this test by exploiting the property of an MIAF of S
which will be described later in Theorem 3.

Let X={a; ,a;, ..., a,} with h <t <h <t; < - <h, <t be an TAF of Sp.
Then we call k; (resp., t,) the starting coordinate (resp., the ending coordinate) of X
and denote it by sc (X)) (resp., ec (X)). Let X; and X, be two IAF’s of Sp. We say that
X, dominates X, if one of the following conditions holds.

(i) sc(X1)>sc(Xo) and ec (X )<ec (Xo).
(i) se (X1)=sc (Xy) and ec (X ) <ec (Xo).
An MIAF, X of Sp is called a dominant mazimum independent arc family (abbreviated

to a DMIAF) of Sp if no other MIAF of Sr dominates X .

Lemma 2. Let X be an MIAF of Sp U Sp. If there exists an MIAF, X, of Sp
which dominates X N Sp, then X, U (X N Sp) is an MIAF of .

Proof. Suppose that X NSp=¢. Then o(Sr)=a(Sr U Sp)=a(5). Since
| X, | =a(Sr), X1 U (X N Sp)=X, is an MIAF of §. On the other hand, suppose that

X N Sps£4. Since o(Sz)<1, | X N Sp |=L1. Let ¢; be the unique element in X NSp.



Then, it is clear that ¢ <sc(X -{e;}) and ec(X - {¢; })<h;. Since X, dominates
X NSp=X -{a;}, sc(X{)>sc(X NSr) and ec(X;)<ec(X N Sp). Therefore, we have
t; <sc(X,) and ec(X,)<h; (see Fig. 5). This implies that X, U {¢;} is an IAF of §.
Since | X, U {e¢}|=a(Sp)+1l, X;U(X NSp)=X,U{e} 1s an MIAF of § from

Theorem 2. O

Lemma 3. Let X be an MIAF of S U Sp. Then, there exists a DMIAF, X, of Sy

such that X; U (X N S5) is an MIAF of S.

Proof. If X N Sr is a DMIAF of Sp, then the theorem trivially holds. Otherwise,
there exists a DMIAF of Sz, say X, which dominates X N Sp. From Lemma 2,

XU (X N Sp)is an MIAF of §. O

Lemma 3 implies that it suffices to consider DMIAF’s of Sy in order to test whether
there exist an MIAF, X of Sr and an arc a; € Sp such that X U {e;} is an IAF of §.
In the following, we will show that the space which must be searched to find a desired

MIAF of $r can be reduced further.
The next lemma is obvious from the definition of a DMIAF.

Lemma 4. Let X; and X, be two DMIAF’s of Sr. Then, sc(X,)=sc(X,) if and
only if ec (X)==ec (Xy). Furthermore, sc (X;)<sc (Xg) if and only if ec (X;)<ec (X2). O
Let D be the set of all DMIAF’s of Sp. A subset of D, R={X,X,, ..., X} is
called an essential DMIAF set for Sp if it satisfies the following two conditions.
(i) se(X;)s#sc (X;) for any 1<i#j <k.
(i) For any DMIAF, X of S, there exists an integer j such that 1<;j<k and
se (X; )=s¢ (X).

Let us consider the family S of arcs shown in Fig. 6. In this particular case, Sr consists

of eight arcs aj,ag ..., as and has ten MIAF’s: {aj,a4aq}, {a,aqas8}, {ay,asag},



{anaeag}, {agagpa7}, {agagas}, {agasag}, {ega40as), {asa5as) and {agagas}
Among them, {as,a4,a7}, {as,a50a5} and {asaq,ag} are DMIAF’s. Since the last two have
the same starting coordinate, each of the sets { {aq,a4,a7}, {as,as,a5} } and { {as,a4a7},
{as,aq,ag} } is an essential DMIAF set for Sp.

From Lemma 3 and the first half of Lemma 4, we have the following theorem.

Theorem 3. Let X be an MIAF of Sp U Sy, and let Br be an essential DMIAF
set for Sp. Then, there exists a DMIAF, X, € Rr such that X, U (X N Sp) is an MIAF
of §.0

We now show the framework of our algorithm. Its correctness follows directly from

Theorems 2 and 3.

Algorithm FIND-MIAF.
Input: A canonical family of arcs S={a,a,, ..., a, }.
Output: An MIAF of S.
Method:
1. Determine Sy and Sp.
2. Find an essential DMIAF set for Sp, Rp={X,Xo, ..., X }-
3. If there exist a DMIAF X; € R and an arc a; € Sp such that ¢; <sc(X;) and
ec (X;)<h;, then generate X; U {a; }; otherwise generate an arbitrary MIAF of Sp. O

In the next section, we give a linear time implementation of this algorithm.

4. Efficient Implementation of the Algorithm

4.1 Determination of Sp and Sp

Suppose that a canonical family of ares S={a,as, ..., a,} IS given as an instance

to Algorithm FIND-MIAF. Let Sy denote the family of all forward arcs in §. Recall



that Sp is the family of all forward arcs in S which do not contain any other forward
arc in §. Note that S =S» U Sp and Sp N Sy =¢. We can partition § into Sp and Sp
in O(n) time. In order to extract Sr from Sy , we first create an empty queue Q and
initialize Sp to be empty. Then we visit the endpoints of the arcs in Sf one by one in
the ascending order of their coordinates. If we find the head of some arc ¢;, we insert
integer 7 into @ . If we find the tail of some arc a;, we delete from @ the integers which

are placed before 1. Then we delete ¢ from @ and add it to Sy.

Suppose that an integer j is deleted when the tail of a; (7545 ) is visited. Since the
tail of a; has not been visited, # <t;. Furthermore, h; <h; since the integers are
inserted into @ in the ascending order of the coordinates of the heads of the correspond-
ing arcs. These imply that ¢; contains a;. Thus, q; ¢Sp. On the other hand, arc g
does not contain any other forward arc; otherwise the tail of some arc e; such that
ki >h; would have been visited earlier than that of a; and integer ¢ would have already

been deleted. Therefore, ¢; € Sy.

Since S is canonical, the coordinates of the endpoints of the arcs in S are distinct
integers between 1 and 2n . Therefore, this procedure determines S in O(n) time and

with O (n) space. Thus, the next theorem follows.

Theorem 4. Determination of Sp and Sy can be done in O(n) time and with

O (n ) space. [J

4.2 Finding an Essential DMIAF Set for Sg

Suppose that Sy has been obtained. Without loss of generality, we assume that
Sp={ayag ..., 0 s, |} owith hy<ho< -+ <h s, - (The renumbering of the subscripts

of the arcs can be performed in O (n) time by a bucket sort [1}, if necessary.) The fol-



lowing lemma provides an important property of an essential DMIAF set for Sp.

Lemma 5. Let Rp={X X, ..., X} be an essential DMIAF set for Sr. Then,
X; N X;=¢ for 1<isj<k.

Proof. Let 7 and j be two integers such that 1<i¢s£j; <k. By definition, X; and
X; are DMIAF’s of Sp. Without any loss of generality, we can assume that
se (X )<se (X;) and ec (X;)<ee (X;).

Assume that X; N X;7#£¢, and let ¢, be an element in X; N X;. Let X; - and X; *
denote {¢, € X; | t, <hi} and {a, € X; | h, >}, respectively. Similarly, let X;~ and
X;* denote {a, € X; | t, <hy} and {a, € X; | h, >t }, respectively. Then, clearly
X;7U{a}uX;” is an IAF of Sr. This implies that |X;* |>]|X; " | since
X;=X;” U{ay} UX;” is an MIAF of Sp. Similarly, since X; - U {a; } U X; 7 is an IAF
of S and X; is an MIAF of Sp, we have |X;*|<|X;*|. Therefore,
| X;7 |=|X; 7 |. By the same reasoning, we can show that |X;” |=|X;~|. These
imply that X;” U{a}UX;* is an MIAF of S$r since it is an IAF of S and
| X" U{a}UX; " |=|X; |=|X;|. It is clear that se (X;)<sec(X;)=sc(X;™ U {a;}
UX;*) and ec(X;)=ec(X;” U{gt }UX; *)<ec(X;). Therefore, X;" U{q,}UX; "
dominates both X; and X;. This contradicts the facts that X; and X; are DMIAF’s of
Sp. Consequently, X; N X;=¢. O

Corollary 1. Let Rp={X,X,, ..., X; } be an essential DMIAF set for Sp. Then
| X |+ X+ X ] < S ]

Proof. 1t is clear from Lemma 5. O

Let Z be defined as {a; €Sy | h<h; <t;}. Then, the following lemma is

obtained.

10



Lemma 6. For any MIAF, X of Sz, | X N Z |=L1.

Proof. Any two arcs in Z intersect with each other, and hence |X nZ | <1
Furthermore, |X N Z | 5£0; otherwise, X U {a¢,} would be an IAF of Sp. Therefore,

IXNnZ|=1.0O

For an IAF of Sp, X={qa; ,q

iy a,—J} with hy <hy <o <h,«j, 4, is called the
starting arc of X. For each arc a; € Sp, an IAF containing «; as its starting arc is
called a largest IAF for g; if it contains the maximum number of arcs. Then we define
YS; as the set of all largest IAF’s for ;. For example, consider the family of arcs of
Fig. 6 again. Then, YS,={{a,aq4,a7}, {ai,a4,as}, {a,a5as}, {e¢,a5a5}} and
YSa={ {as,as0ag}, {a3,a4,08} }.

For 1=12,.,]Sr |, let ¥; be an IAF in Y5; whose ending coordinate is the
minimum among all IAF’s in YS;. Suppose that Z={a,ay, ..., ¢, }. By assumption,

hi<hy< -+ <h,. We show below several theorems and lemmas which play important

roles in finding an essential DMIAF set for Sz .

Lemma 7. Let X be a DMIAF and let a; be its starting arc. Then, 1<¢<m and
Y; is a DMIAF of Sp.

Proof. From Lemma 6, ¢; € Z, that is, 1<¢<m. It is clear that X is a largest
IAF for a;. Therefore, | Y; |=|X |, and hence ¥; is an MIAF of Sp. Furthermore,
since Y; has the minimum ending coordinate among all IAF’s in YS; and X is not dom-
inated by Y;, ec(Y;)=ec (X). These imply that ¥; is a DMIAF of Sp. O

Theorem 5. Let B be the set of all DMIAF’s in {Y,,Y,, ..., Y, }. Then, R is
an essential DMIAF set for Sp.

Proof. Let X be any DMIAF of Sp. Then, from Lemma 7, a DMIAF of Sp, Y;

exists in R such that 1<i <m and sc (X )==sc (Y;). Therefore, there exists a subset of R

11



which is an  essential DMIAF set for Sp. Since  hy<hg< - -+ <h,,
sc(Y)<sc(Yq)< + -+ <sc(Y,). This implies that no two DMIAF’s in R have the same

starting coordinate. Thus, R itself is an essential DMIAF set for Sp. O

Lemma 8. Suppose that Y; is not an MIAF of Sr for some integer ¢ such that

1<i¢<m. Then, Y; is not an MIAF of Sp for j=i+1,/42,...,m.

Proof. Assume that Y, is an MIAF of Sy for some k such that ¢ +1<k <m . Then
| Y | >|Y:; | 21, and hence |Y, |>2. Since k; <h, and e does not contain a,
t; <t . Furthermore, it is clear that t <sc (Y —{ay}). Therefore, {a;} U (Y} - {a;}) is
an MIAF of Sp. Since its starting arc is ¢;, every IAF in YS; is an MIAF of . This
contradicts the hypothesis that Y; is not an MIAF of Sr. Therefore, there does not

exist such an integer k that ¢ +1<k <m and Y, is an MIAF of Sr. O
Corollary 2. Y, is an MIAF of S5.
Proof. 1t is clear from Lemmas 7 and 8. O

Lemma 9. Suppose that Y; is an MIAF of Sr for some integer ¢ such that
1<i<m. Then, if Y¥; is not a DMIAF of Sp, there exists an integer j such that

i <j <m and that Y; is a DMIAF of S which dominates Y;.

Proof. If Y; is not a DMIAF of Sp, then there exists a DMIAF of Sy, say X, which
dominates Y;. By definition, Y; has the smallest ending coordinate among all longest
IAF’s for a;, and hence g ¢X. This implies that &, =sc(Y;)<sc(X) and
ec (X )<ec(Y;). Let a; be the starting arc of X. Then, from Lemma 7, y <m and Y; is
a DMIAF of Sp. Since sc(X)=h;, h; <h;, and hence 1 <j <m. Furthermore, since

sc (Y;)=sc (X), ec (Y;)=ec (X) from Lemma 4. Therefore, ¥; dominates ¥;. O

Corollary 3. If Y, is an MIAF of S, then it is a DMIAF of Sp.

12



Proof. 1t is clear from Lemma 9. [J

Corollary 4. Suppose that ¥; is an MIAF of S, for some integer ¢ such that

1<i¢<m. Then, if Y;,; is not an MIAF of Sz, Y; is a DMIAF of Sy .
Proof. It is clear from Lemmas 8 and 9. [J

Lemma 10. Suppose that both Y; and Y;,, are MIAF’s of Sp for some integer 1
such that 1<i<m. Then, ¥; is a DMIAF of Sy if and only if ec (¥;)<ec (Y;41).

Proof. Clearly h;=sc (Y;)<sc(Y;41)=hi 1. So, if ec(Y;)>ec(Y;,y), then Y;,, dom-
mates Y;. Thus, if Y; is a DMIAF of Sp, then ec (Y;)<ec(Y; ).

Suppose that Y; is not a DMIAF of Sp. From Lemma 9, there exists an integer j
such that 1 +1<j7<m and that ¥; is a DMIAF of Sr which dominates Y;. Since ¢;
does not contain a; and Y; dominates Y;, |Y; | >2, and hence |Y; |>2. Further-
more, 1f §7i+1, t;,,<t;, and hence t;<sec(Y; ~{a;}). This inequality also holds
when j=i41. Therefore, ec(Y;)<ec(Y; - {a;}); otherwise {a;;,} U(Y; - {a;}) would
be selected as Y;,,. Since ec(Y; - {a;})=ec(Y;)<ec(Y;), we have ec(Y;,)<ec(Y;).
Thus, if ec (Y;)<ec (Y;,,), then Y; is a DMIAF of Sp. O

Theorem 6. Suppose that Y; is an MIAF of S for some integer ¢ such that
1<i<m. Then, ¥; is a DMIAF of Sr if and only if one of the following three condi-
tions holds.

(i) ¢<m and Y;,, is not an MIAF of Sr.
(i) §<m and ec(¥:)<ec(Yip)
(ili) ¢=m.

Proof. It is clear from Lemma 10 and Corollaries 3 and 4. O

13



We now present a procedure to find an essential DMIAF set for $. Its correctness

can easily be proven by using Theorems 5 and 6, Lemma 8 and Corollary 2.

Procedure FIND-EDS.

1. 7 «{e €5Sp | hy<h;<t;}. Suppose that Z={a,a,, ..., a,}

2. Fori=12,.,m, find ec(¥;) and | ¥; |, where Y; is defined as before.

3. R —¢. ¢ <1

4. While | Y; |=|7Y,| and ¢ <m, execute the following instructions (1) and (2).
(DI | Y| <Yy or ec(Y;)<ee(Y:,y), then determine ¥; and R « R U {Y;}.
(2) ¢ « i+1.

5. If i=m and |Y, |=|7Y,|, then determine Y,, and R «— R U {Y,, }.

6. Generate R. O

As an example, consider the family of arcs of Fig. 6. Since t,=6, Z is determined
as {a,aqaz} at Step 1. Then, Step 2 finds ec (Y )=17, | Y, | =3; ec (Yq)=17, | Y, | =3;
and ec (Y3)=19, | Y3|=3. At Step 4, Y is not added to R since | Y,|=|7;|=3 and
ec(Y,)=ec(Y,). On the other hand, Y, is added to R since ec (Y,)<ec(Y,). Similarly,
Y3 is added to R at Step 5. While Y, is uniquely determined as {aq,a4,a7}, Y5 may be
chosen from two candidates, {as,asag} and {ag,aq,ag}. Therefore, the resultant essential
DMIAF set is either { {ag,a4,a7}, {as,a5ag} } or { {ag,a4,a7}, {03,060} }.

In what follows, we describe an efficient implementation of Procedure FIND-EDS.

For each arc a; € Sy, let NEXT(¢;) be defined as an arc ¢ such that
hy =Min {h; | a; € Sp and h; >t} if {a; € Sp | h; >t; }5%4, and otherwise defined as
“pull”. For example, for the family of arcs of Fig. 6, NEXT (a,)—a4, NEXT (ajz)=ay,,

NEXT (a3)=as, NEXT (a,)=a;, NEXT (as)=ag, NEXT (ag)=ag, NEXT (a;)="null”, and

14



NEXT (ag)="null”.

For each arc ¢ € Sp, let N; be defined as {a,-lza,-,a,-z,...,a,-k} such that
NEXT(a,-j )=a,-J+1 for 7=12,...,k-1 and NEXT(a,-k)=“null”. Then we have the following
lemma.

Lemma 11. For each arc o, €Z, N, is an IAF of Sp. Furthermore,
| Y |=1N; | and ec(Yi)=ec (N;).

Proof. It is clear from the definitions that N; is an IAF of Sp. Suppose that
Ni={e; =a;,0;,, . .. 4;, } with h; <h;, <+ <k, and Y,-={a'.lr =00, O } with

h"ll <h'.2r < -+ <h;r. From the definition of ¥;, j>k. Since no arc in $» contains
J

any other arc in Sp, we can show that h‘pshi,,' and t,-pStip/ for p=1,2,...k by an easy
induction proof on the value of p. Furthermore, since t,-kgt'.k: and NEXT (¢; )="null”,
NEXT(a'.kr )="“null”.  This implies that k=j, that is, |N; |=]|Y; |. This further
implies from the definition of Y; that ec(N;)>ec(Y;), that is, t;thl.k:. Therefore,
ce (Ny)=ec (¥;). O

For each arc ¢; € Sp, NEXT (a;) can be determined as follows. We first create an
empty set P, and then start visiting the endpoints of the arcs of Sp in the ascending
order of their coordinates. Suppose we find the head of some arc a;. If P is empty, we
do nothing. On the other hand, if P is not empty, we set NEXT (a;) to a; for each ele-
ment a, in P and then delete all such elements from P. If we find the tail of some arc
a; which is not the last endpoint, we add a; to P. If the taill is the last endpoint, we
set NEXT (a;) to “null” for each element a, in P U {¢; }. Since the coordinates of the

endpoints of the arcs in Sp are distinct integers between 1 and 2n, this procedure

requires O (n) time and space.
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We now define a digraph Hy as follows:
Hp =(Wp, Ap),
where Wp ={w; | a; € Sp},
and Ap={ (w; »w;) | NEXT (a; )=a; }.
As an example, Fig. 7 illustrates the graph Hr which corresponds to the family of arcs of
Fig. 6.

Since the outdegree of each vertex in Hp is at most one, | Ap | < |Sp |. Thus, we

have the following lemma.

Lemma 12. The construction of Hr with the aforementioned computation of
NEXT () requires O (n ) time and space. O
The next lemma is obvious from the definition of Hp.
Lemma 13. Hy has the following properties.
(i) For each vertex w; with outdegree 0, | N; | =1 and ec (N;)=¢;.
(i) For each edge (w;—w;)in Ap, | N; | =|N; | +1 and ec (N; }=ec (N;).
(iif) For each arc ¢; € Z, the maximal directed path in Hy starting from w; corresponds
to N;. O
According to Lemma 13 (i) and (ii), one can easily determine | N; | and ec (N;) for
all arcs a; € Sp in O (| Sp |) time. From Lemma 11, for each arc ¢; € Z, | Y; | =| N; |

and ec (Y;)=ec (N;). Therefore, the following lemma is obtained from Lemma 12.
Lemma 14. Step 2 of Procedure FIND-EDS requires O (n ) time and space. O

Steps 4 and 5 of Procedure FIND-EDS can be performed based on Lemma 11 and
Lemma 13 (iii). Each time we find an integer ¢ for which the conditions of Step 4 (i) or

Step 5 are satisfied, we can determine Y; by finding a maximal directed path in Hp
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starting from w;. Therefore, Steps 4 and 5 can be executed in O(|Z |+ ), |Y:|)
Y, €R

time. Since Y, |Y; | <|Sr| from Corollary 1, the following theorem is obtained
Y, ER

from Lemma 14.

Theorem 7. An essential DMIAF set for S can be formed in O (n) time and with

O (n) space. O

4.8 Determination of an MIAF of S

Suppose that an essential DMIAF set for Sy, Rp={X,X, ...,X.} has been
obtained. For each arc a; € Sp, let NEXT (a;) be defined as X; such that
se (X;=Min {5¢ (X,) | X, €Rp and sc(X,)>4} if {X, €Rp | sc(X,)>4 )4, and
otherwise defined as “null”. Then, the following theorem holds.

Theorem 8. Suppose that there exist an arc ¢; € S5 and a DMIAF, X; € Ry
such that t; <sc (X;) and ec (X;)<h;. Then, ¢; <sc (NEXT (a;)) and ec (NEXT (a;))<h; .

Proof. Assume that X;5%NEXT (e;). From the definition of NEXT (a;),
t; <sc (NEXT (a;))<sc(X;). Therefore, ec (NEXT (a;))<ec(X;) from Lemma 4, and hence
ec (NEXT (a;))<h;. O

By a procedure similar to the one for computing NEXT () for the arcs in Sp, one
can determine NEXT (g;) for all arcs ¢; € Sy in O(n) time. In this case, after the crea-
tion of an empty set P, we visit the tails of the arcs in Sp and the heads of the starting
arcs of the DMIAF’s in Ry in the ascending order of their coordinates until the last head
is visited. The other part of the procedure is almost the same as that of the previous

one.
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After finding NEXT (-) for all arcs in Sg, according to Theorem 8, we can easily find
in O(|8g |) time an arc a; € Sp and a DMIAF, X; € Rp such that t; <sc¢(X;) and
ec (X;)<h; if they exist. If such an arc and a DMIAF do not exist, any DMIAF in Ry is

an MIAF of §. Thus, we have the following theorem.

Theorem 9. Suppose that an essential DMIAF set for Sr has been obtained.

Then, an MIAF of S can be obtained in O (n ) time and with O (n ) space. O

4.4 Time and space complexities of the algorithm
We now show the following two theorems.

Theorem 10. The time and space complexities of Algorithm FIND-MIAF each are

O (n).
Proof. It is clear from Theorems 4, 7 and 9. [J

Theorem 11. Given a family S of n arcs on a circle, a maximum independent set
of its corresponding circular-arc graph Gs can be found in O(n-logn) time and with

O (n) space. These complexities are optimal to within a constant factor.

Proof. As mentioned before, one can construct a canonical family of arcs §' such
that Gg=Gs in O (n-logn) time and with O(n) space. The application of Algorithm
FIND-MIAF to the resultant family of arcs S’ requires O(n) time and space due to
Theorem 10. Therefore, we can find a maximum independent set of Gs in O (n -logn)

time and with O (n) space.

Every circular-arc graph is an interval graph. Furthermore, it is known that it
requires n -logn) time in the worst case to find a maximum independent set of an
interval graph when the graph is given in the form of a family of n intervals [6]. There-

fore, our algorithm is time- and space-optimal to within a constant factor. O
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5. Conclusion

In this paper, we have presented an optimal algorithm for finding a maximum
independent set of a circular-arc graph. When the graph is given in the form of a family
of n arcs on a circle, our algorithm runs in O (n -logn ) time and with O (n) space. More-
over, it requires only O (n) time if the endpoints of the arcs are already sorted, in other

words, if the order of their appearances on the circle is known.

It does not seem that our algorithm can be extended to the problem of finding a
maximum weight independent set when each vertex is assigned a weight. It is interest-

ing to develop an optimal algorithm for such a problem.
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Fig. 1. A family of arcs on a circle C.

Q;

(a) (b) (c)

Fig. 2. Cases in which arc ¢; contains point j.
(e) 1<y <t; <h; <2n.
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Fig. 3. The circular-arc graph for the family of arcs in Fig. 1.

Fig. 4. A non-canonical family of arcs.
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—arc in X
—-—. qarc in X1

Fig. 6. A canonical family of arcs S. { {ao,a4a7}, {as,a5as} } and
{ {ag,aqaq}, {agaqag} } are essential DMIAF sets for Sr.
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W7 W8

Fig. 7. The graph Hr for the family of arcs of Fig. 6.
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