Solid Modeling of RC Beams
Part I: Data Structures and Algorithms
Part II: Computational Environment

by M.A. Austin and].L. Preston

TECHNICAL
RESEARCH
REPORT

SYSTEMS
RESEARCH

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 91-91r1

To appear in ASCE

Journal of Computing in Civil Engineering

SOLID MODELING OF RC BEAMS

PART 1 : DATA STRUCTURES AND ALGORITHMS

By M.A. Austin, A.M. ASCE!, and J.L. Preston?

ABSTRACT

This paper describes data structures and algorithms used in a solid modeling based methodology for the
interactive design and analysis of reinforced concrete (RC) beam structures. Data structures are described
for steel reinforcing bar trajectories, and a three-dimensional boundary representation of the concrete beam
solid. After the concrete beam model is setup, the envelope of ultimate flexural strength is obtained by slicing
the beam solid at selected locations, and extracting the cross section. Algorithms are given for the slicing

process, plus the calculation of cross section properties and ultimate flexural strength.

Keywords : Solid Modeling, Computer-Aided Design, Reinforced Concrete.

1 Assistant Professor, Department of Civil Engineering and Systems Research Center, University of

Maryland, College Park, MD 20742, USA.

2 Graduate Research Assistant, Department of Civil Engineering and Systems Research Center, Univer-

sity of Maryland, College Park, MD 20742, USA.

INTRODUCTION

During the past ten years, the termm Computer-Aided Structural Design has come to
mean the use of computers to assist the trained engineer as he or she takes the func-
tional specifications of an initial concept, and transforms them into a constructed three-
dimensional structure. An engineer’s perception of how and when a computer may provide
assistance is strongly aligned with the state of computer technology. With rapid advances
in the computational and graphical power of engineering workstations currently taking
place, the use of workstations to merely visualize a structure, or to provide basic analysis
of a completed design may soon be deemed inadequate. Instead, engineers may expect
significant computer assistance in (a) the synthesis of preliminary design alternatives, (b)
tradeoff analysis of design performance versus costs for design alternatives. (¢) strategies
of construction, (d) analysis of partially constructed structures, and (e) detailed analysis,
checking, and life-time cost analysis of the final design. To ensure that better designs are
produced in less time, all of the above tasks (a)-(e) should operate within a single integrated

-computing environment. _

Unfortunately, the technology needed to implement steps (a)-(e) is still in its infancy
(Westerberg 1989). The heart of the software integration problem lies in the formulation
of: (a) data representations for structures that contain enough information to be useful at
multiple levels of abstraction within the design process, and (b) algorithms that can operate
on these models for analysis and design evaluation. Subrahmanian et al. (1989) indicate
that an emerging theme in current research efforts is that such a model will make extensive
use of information and algorithms that remain invariant across range of applications within
a problem domain. Within the domain of structural design, notions of geometry and

2

topology are the lowest levels of data abstraction, and remain invariant across applications.
Algorithms for creating and manipulating instances of these geometric representations fall

into the general area of solid modeling.

SOLID MODELING

Solid modeling is the process of building and analyzing geometrically complete repre-
sentations of points, lines, polygons, and three-dimensional solid objects. In a functional
sense, a model is said to be geometrically complete if it 1s possible to answer questions about
the geometry of an object (e.g., what is the area of a polygon), or perhaps the relationship
among various objects (e.g., compute the intersection of a plane and three-dimensional
solid), with algorithmic operations that act on the underlying data representation. and
without taxing the inferential capabilities and pattern recognition skills of the human user.
For this to be possible, objects must be closed, orientable, non-self-intersecting, bound-
ing, and connected. Each of these conditions may be mathematically stated in terms of the
topological sufficiency of the object; for a detailed discussion, see Weiler (1986) or Requicha
(1980). It is regretable that the data representations of many engineering objects, includ-
ing engineering drawings and wireframe models, fail to satisfy the conditions of geometric

completeness.

OBJECTIVES AND SCOPE

The long term goals of this research are to use ideas founded in solid modeling as a
basis for constructing new algorithms, and developing interactive software for the design and
analysis of reinforced concrete structures. The work is motivated by potential applications

to the design of reinforced beam structures, concrete frame structures, prestressed concrete

3

beams and frames, and structures assembled from precast components.

From the beginning, it was evident the preliminary research could be approached in

one of two ways. The first possibility was to focus on the formulation of a conceptual

methodology for the use of solid modeling in structural assemblies; this problem has been

investigated by Powell and Martini (1990), and Zamanian et al. (1991). The interests

of the writers focused instead on how solid modeling techniques would work in practice.

This led to a second strategy of actually implementing a small-scale software system using

techniques from solid modeling.

The problem selected for the prototype implementation was analysis and design of a

reinforced concrete beam structure. The authors felt that the design specifications for the

prototype system should address four features, namely:

[1]

To provide for the interactive generation of solid models of the beams, with arbitrarily
shaped cross-sections, possibly containing holes. This was to be implemented by means
of interactive drawing and sweeping algorithms.

Create an editing environment that allows for the placement of reinforcing bars both
within the beam at a three-dimensional level, and within cross-sections at a two-
dimensional level. Practical design considerations dictate that reinforcing bars be
contained completely inside the concrete solid. The checking of these geometric con-
straints must be enforceable at both the two- and three-dimensional levels.

Develop interactive software tools that allow the user to freely move between a two-
dimensional design and analysis environment where cross-sections are the highest level
of objects, and a three-dimensional environment where work is done on complete

beams.

TN

VErieN-verisx vertzx—2CCos

() (9)

FIG. 1. - Examples of Adjacency Relations

[4] Provide analytical tools to determine the ultimate flexural strength of the beam along

its length.

The purpose of this paper is to describe the underlying data structures and algorithms
formulated for the prototype system. Details of the software development, and a design

example are presented in the companion paper (Preston 1992).

BOUNDARY REPRESENTATIONS AND ADJACENCY RELATIONS
Boundary models represent solids by a set of boundary surface faces, which in turn,
are bounded by sets of edges. The information in the boundary represenation is stored
as a hierarchical data structure. It links points together to form edges, and then groups
edges to form the bounding faces of the solid. The entire organization of the data structure
serves to maintain the topological connectivity and coherence of these points; the only true

geometric data is the point coordinates.

An important concept in boundary representation models is that of adjacency rela-

5]

tions. Adjacency relations are the conceptual links among the different levels of the model
hierarchy, and between neighboring elements at the same level. For example, each edge
is adjacent to two faces upward in the hierarchy, to two vertices downward in the hierar-
chy, and to some number of other edges at the same level. Nine adjacency relationships
for boundary models have been identified; they are vertex-vertex, vertex-edge, vertex-face,
edge-vertex, edge-edge, edge-face, face-vertex, face-edge, and face-face. For example, the
vertex-vertex adjacency relationship - see Fig. 1a - refers to all of the the vertices separated
by one edge from a given vertex. Similarly, vertex-edge relationships - see Fig. 1b - refer
to the ring of edges that surround a given vertex. Weiler (1986) states “If a topological
representation contains enough information to recreate all nine of these adjacency relations
without error or ambiguity, it can be considered a sufficient adjacency topology represen-
tation.” In other words, a data representation must provide for the determination of all of

the adjacency relations in order to be geometrically complete.

HALF-EDGE DATA STRUCTURE AND HIERARCHY

The backbone of our solid modeling system is the complex three dimensional assembly
called the halfedge data structure (Mantyla 1988). This section describes the halfedge data

structure, and how we have modified it for the representation of concrete beams.

The name halfedge stems from the way the edge between two intersecting faces is
stored. Instead of representing the edge with a single line segment going from one point
to another, two halfedges are linked together to form a complete edge, as shown in Fig.
2. The edge link positioned between the two halfedges allows neighboring faces to access
information on each other. Matching halfedges are oriented in opposite directions. This

provides a means of orienting the faces of the solid, so that notions of the inside and outside

6

hel eage he?

N

FIG. 2. The Basic Halfedge and Edge

of the solid are clearly defined.

The modified halfedge hierarchy is shown in Fig. 3. It employs eight types of cﬁta
nodes for the geometrically complete representation of general polyhedral solids. They are
solid, face, loop, halfedge, edge, vertex, point and loneface. The hierarchy allows
for the rapid and unambiguous determination of all nine adjacency relations by means of
the parent-child information stored at every level of the data structure, and by means of

the edge link between corresponding halfedges.

The solid node is the root node of the data structure hierarchy; access to all of the

geometric information of the model is available through a pointer to the solid node. The

7

sgiic

—

e el T LT A

0)
O
o

wm
0
()
15
m
(1
()
M

FIG. 3. - Halfedge and Loneface Hierarchy

fundamental data fields of the solid node are the list of faces that bound the solid, and the
unordered list of vertices that are boundaries of the edges of the solid. The same vertex

nodes are also accessible through the face hierarchy. Each face contains a complete list

8

struct vertex{ /* vertex data structure */
short vertexno; /* ID number for the vertex */
struct halfedge #*vedge; /+* Halfedges emanating from vertex */
struct point xydata; /* Coordinate data */
struct vertex *nextv; /* The next vertex of the sverts %/
struct vertex *prevv; /* The previous vertex */
};

struct point{ /* point data structure */
float x, y, z, w; /* x,y,z and v coordinates */
};

Table 1. - Vertex and Point Data Strﬁctures

of loops that bound it, pointers to the parent solid and unique outer loop, the next and
previous faces in the list, and a point data structure defining the equation of the face plane.
While the halfedges of the outer loop form a clockwise ring, all inner loops on the face are
ordered counterclockwise. This orientation convention is used to indicate the outside of
the model. The loop intermediary positioned between the halfedge and the face allows for

the easy representation and manipulation of objects that have faces containing holes.

Table 1 gives the C definition of the vertex data structure. Each vertex node contains
a pointer to its parent hzﬂfedge, pointers to the previous and next vertices in the list, an
identification number, and a pointer to a point structure which holds the actual coordinate
data stored in the form of four-dimensional homogeneous coordinates. The homogeneous
coordinate system stores the (x,y,z) coordinates of a point in R?, plus a fourth coordinate
w; it is a scaling factor, usually equal to one when the data represents an actual point. There
are three important reasons for using homogeneous coordinates. First, they provide for
more compact graphical display and manipulation of geometric data than is possible using
a purely three-dimensional approach. This advantage stems from ability of homogeneous

coordinates to represent all coordinate transformations as the matrix product of individual

9

four-by-four translation, rotation, and scaling matrices.: Second, the homogeneous point
structure may be used to store the equation of a plane. While the first three coordinates
store a unit vector normal to the plane, the fourth coordinate stores the distance from
the plane to the origin measured along the normal vector. Third, the signed distance of a
point to the plane is simply given by the four-dimensional dot product between the point
and the face equation. This feature is used extensively in our algorithm for extracting
the cross-sections from beams, and ensuring that reinforcing bars remain within the beam

solid.

Finally, the design specifications of our system required that users be provided with
mechanisms to freely switch between three-dimensional operations on complete beam mod-
els, and two-dimensional operations on cross-sections. In principle, the halfedge data struc-
ture could be used for two-dimensional figures. Each figure would be modeled as a laminar
solid of zero thickness, and with a front and a back face. The disadvantage of this approach
is that all operations performed on the geometry of the cross-section would need to take
account of these geometri_? features. In an effort to reduce the complication burden, a new
loneface was added to the halfedge data hierarchy. It provides an alternative root node
for accessing vertices, loops, and halfedges. The loneface is similar to the face node of
the original data structure. However, because it stands alone without a parent solid, it has
its own list of vertices to store the coordinates of the points of the face. It does not have
an edge because all of the geometric information and adjacency relationships are available
directly from the loops and halfedges. The remainder of the loop-halfedge-vertex hierarchy

remains the same for a loneface as for a complete solid.

10

Key to the Naming of Euler Operators
M make K kill
J join S split
A% vertex E edge
R ring H hole
F face S solid

Table 2 - Key to the Naming of Euler Operators

THE EULER OPERATORS

Boundary models are constructed using a set of powerful, low-level operators known
as the Euler operators. They were originally introduced by Baumgart (1972) as a means of
providing for a complete and general method of assembling geometrically complete poly-
hedral boundary models of arbitrary complexity. By convention, the Euler operators are
referred to by mnemonic names based on their functionality. A list of operator components
is given in Table 2. The 5 primary operators and their acronyms are: (a) Make Vertex
‘Face Solid (MVFS), (b) Make Edge Vertex (MEV), (c) Make Edge Face (MEF), (d) Kill
Edge Make Ring (KEMR), and (e) Kill Face Make Ring Hole (KFMRH). It is important
to note that in Baumgart’s naming convention, what has heretofore been referred to as a
loop will be referred to as a ring in the naming of the Euler operators. Moreover, for each
of M operator there exists a corresponding K operator to perform the inverse operation; for

example, the KEV operator kills an edge, its corresponding halfedges, and a vertex.

11

(g

FIG. 4. - Generating a T-Beam using Euler Operators

4 mer's
(k)

Jucsr loao
inner laao

FIG. 4. - Generating a T-Beam using Euler Operators (cont.)

13

EXAMPLE : GENERATION OF A SIMPLE T-SHAPED BOX GIRDER

The functionality of the Euler Operators is demonstrated by working through the step-

by-step process of generating the simple Tee-Shaped Box Girder shown in Figs. 4(a-1).

[a] The first step is to generate a primitive one-vertex solid with the MVF'S operator, as
shown in Fig. 4a. The result is a solid with only one face and one vertex. It has no
volume, no edges, and no surface area, and as such serves as a primitive instance of
the boundary model, with the hierarchy in place to be extended by other operators.

[b] The MEV operator adds an edge and a vertex to an existing model. Fig. 4b shows
the result of seven successive MEV’s to generate all of the vertices of the initial face
and all but one of its bounding edges. At this point, the solid still has only one face
with zero area.

[c] The MEF operator adds a new edge and a new face to the model. The first and last
vertices of the face are connected with an MEF operator (see Fig. 4c). This turns the
solid with one face into a laminar solid with two faces but no thickness.

[d] The model is extendéd into the third dimension by performing a MEV operation at
each vertex of the new face. The result is shown in Fig. 4d.

[e] The model becomes a fully bounded solid after the application of eight MEF operators
to form the side, top, and bottom faces; see the T-beam in Fig. 4e.

[f] A hole is cut through the beam by first generating a hole in one of the end faces. The
end face hole is formed by extending an edge into the face with an MEV operation
(see Fig. 4f).

{g] The KEMR operator eliminates temporary artifact edges that occur during the gen-

eration of the hole in the beam end face. The KEMR operation forms a primitive

14

one-vertex inner loop on the face (see Fig. 4g).

[h] The sides of the new loop are created with three MEV operations (see Fig. 4h).

[i] Next, the new loop is closed, and a new face is formed on the other side of it with an
MEF operation (see Fig. 4i).

[j] The new loop is extended along the length of the beam with four MEV operations, in
just the same way the original face was extended (see Fig. 4j).

[k] The new edges are closed off. New interior faces are created with four MEF operations,
as shown in Fig. 4k.

[[] The KFMRH operator turns the “back” face of the hole into an inner loop of the back
face of the beam, leaving the complete model of the T-shaped box-girder shown in

Figure 41.

It is important to note that the combined effect of steps (d) and (e) is to sweep out a plane
figure along its normal axis to form a three-dimensional solid. This is the conceptual basis
behind the sweeping operation used extensively in our system to generate solid models of

beams from cross-sections.

DATA STRUCTURES FOR REINFORCING BARS

The implementation and modeling of three-dimensional reinforcing bar trajectories
proved to be more difficult than initially expected. While it is desirable to create a pro-
totype system that provides for the specification of almost arbitrarily shaped reinforcing
bar trajectories, in practice, the complexity of required editing operations rapidly increases
with system flexibility. Since the purpose of implementing the prototype system was to
demonstrate the feasibility of a design methodology, a compromise solution was adopted.

The compromise restricts each individual bar to lie in either a vertical or horizontal plane

15

FIG. 5. - The 3-D-Bar Data Structure

parallel to the longitudinal axis of the beam. This allowed us to provide relatively simple

point-and-click editing operations for the generation of straight and bent bar segments.

Reinforcing bar trajectories are described with the two-level data structure hierarchy
shown in Fig. 5. The top level is the three_d_bar data structure containing parametric
information about the bar, such as its size, pointers to the starting and finishing coordinate

locations, and a flag indicating whether the bar lies in a vertical or horizontal plane. It

16

struct cross_section {

struct loneface #*geom; ./* geometry of oriented section */
struct two_d_bar *bar_list; /* bars in the cross-section */
float top_block, bot_block; /* location of top,bottom stress blocks */
float cx, cy; /* location of section centroid */
struct track **tracks; /* data structure to modify cross-section */
int num_tracks; /* number of tracks */
struct cross_section *next_sect; /* next cross-section in the list */
3
struct two_d_bar{
int num; /* bar number */
float rad; /* radius of the bar */
struct point cent; /* location of the center */
float fy; /* yield strength of the bar */
float sig; /* theoretical stress */
float developed; /* development length factor */
struct two_d_bar *nextb; /* next bar in the list */

Table 3. - Cross Section and Two-Dimensional Data Structures

also contains a pointer to the second level of the bar trajectory data structure, which is
a linked list of simple straight or curved bar segments defining the complete path of the
bar inside the beam. Each element in the trajectory list contains the starting and ending
points of the trajectory and a flag indicating whether the trajectory is a curved or straight

segment.

CROSS-SECTION DATA STRUCTURE

Solid modeling approaches to engineering analysis begin with the extraction of appro-
priate details for each design task from a more general model, and then create a temporary
model for analysis purposes. For the prototype implementation of the RC modeler, a
fast algorithm was needed for the user, or program itself, to slice the beam and extract

cross-sections at any point along the longitudinal axis of the beam.

17

Table 3 summarizes the C language definitions for the cross-section and two-
dimensional reinforcing bar data structures. The two main fields in the cross section data
structure are: (a) a pointer to a loneface data structure holding the geometric form of the
cross-section, and (b) a pointer to a linked list of two-dimensional reinforcing bars. Data
fields (location of the top and bottom stress blocks, centroid of the section, and the nomi-
nal strength of the concrete) are also provided for the real-time calculation and storage of
ultimate section capacity, graphical display, and generation of neighboring cross-sections

along the length of the beam.

CROSS-SECTIONING ALGORITHM

An algorithm formulated by Margalit (1988) is used as a basis for slicing the beam

segment and extracting a cross section for the first time. The step-by-step procedure is:

[1] Initialize a point data structure which contains the equation of a cross-sectional cut-

ting plane at the desired location.

[2] For each face of the solid model, dynamically allocate memory for a temporary working
array of vertices. Computé the intersection of all the halfedges in the solid model with
the cutting plane; this is an easy calculation because the signed distance of a point
to the cutting plane is simply given by the four-dimensional dot-product between the
vector defining each point, and the vector defining the cutting plane. For each halfedge-
cutting plane intersection, create a new vertex and place it in the working array of
vertices.

[3] When a new vertex is created at step [2], also create links to the two endpoints of

the edge upon which it lies. These links are stored in a list of special data structures

18

[7]

called tracks, and subsequently form a line upon which the vertex can ride in the

extraction of further cross sections from the beam segment. Details are given below.

Determine the direction of the intersection line between each face and the cutting
plane. This is given by the cross-product of the normal vector of each face with the
normal vector of the cutting plane. Sort the face/cutting plane intersection vertices
according to the direction criteria. All of the bounding edges of the cross-section are

now implicit within the arrays of vertices.

Starting with the temporary working vertex array for the first face, generate a primitive
loneface with one loop at the starting vertex. Add an edge linking this vertex to the
second vertex in the array, and then remove these two vertices from the array. The

starting vertex is saved so that the loop can be closed later.

Move to the vertex array corresponding to the neighboring face, and find the implicit
edge which begins at the ending location of the last edge created. Add a new edge
from this vertex to the next vertex in the new array, and remove these two vertices
from the working vertex array. New edges are added to the loop of cross section until
the next vertex is identical to the original starting vertex of the loop, whence the loop

is closed. The process is repeated to generate another loop until there are no more

implicit edges remaining.

Sort through the loops of the new cross-section to find the outer loop. If the cross
section contains only one loop, then the problem is already solved. Otherwise, the
algorithm identifies the loop contain vertices outside all of the remaining loops. The
orientation of the loops are verified so that the outer loop is oriented clockwise and

the inner loop is oriented counter-clockwise.

19

n

-

Sicz view

N
-y

tn

ar
Pz Pz

oR ——— Ph = (Pox,Foy,RPbz
Ox = Pax - (PRzZ-232)(ExX-AXY/(ZZ-AZ)
Pay = Pzy - (Poz-Pzz)®Ey-Ay)/(2Z-AZ)
Section -2

FIG. 6. Modifying an Existing Cross Section Using Tracks

[8] Compute the intersection of the three-dimensional reinforcing bars and the cutting
plane. Store each bar/plane intersection as a two-dimensional reinforcing bar in the

cross-section data structure.

The result of this algorithm is a loneface data structure containing the geometry of the

20

cross-section and a list of two-dimensional reinforcing bars. When further cross section
shapes are needed from the same beam segment, the sectioning algorithm is modified to
take advantage of the fact that the required and initial cross sections will have the same
topology. Indeed, the (x,y,z) vertex coordinates of new cross sections may be very quickly
computed via linear interpolation along the track of the longitudinal edges computed
during Step 3. Once the geometry of the new section is known, Step 8 of the sectioning

algorithm is re-executed to compute the location of two-dimensional reinforcing bars.

Geometric Properties of Cross Sections. - Geometric properties of the cross sections,
such as centroid location, moments of inertia, and section area, are computed via Green'’s
Theorem; for details, see Wylie and_Barrett (1982). For example, if R is a closed region
with external perimeter C' made up of straight line segments, then the moment of inertia
I, about the x axis is given by
1 N
fee = / iy = [ﬁ} D i —emo] - fveen +u] - [ve-n® +) (1)
c i=1
where (z;,y;) is the coordinate of the 1** vertex, and N is the total number of straight line
segments on perimeter C. When cross sections contain holes, the appropriate geometric
property is the sum of componenf properties from the outer and inner loops, with the
directioq of each loop serving to fnaintain the correct sign for the contribution of each loop.

For a complete list of functions to compute geometric properties, the interested reader is

referred to Pinto De Magalheas (1979).

21

ULTIMATE FLEXURAL STRENGTH

The prototype éystem has an algorithm for computing ultimate flexural strength of
beam cross sections where the layout of reinforcement, and the section shape, are both
symmetric about the vertical axis. External forces are restricted to uniaxial bending alone.
Together these assumptions allow the effects of torsion and a?cial forces to be neglected,

and imply that in the analysis, the neutral axis will be horizontally aligned.

Our desire to work with general section shapes meant that it was not possible to derive
closed form analytical formulae for the ultimate section strength. Instead, the analysis
uses an iterative strategy based on assumed neutral axis position, and the equations of
equilibrium to obtain a sequence of estimates for ultimate section strength. During the
formulation stages of the algorithm, it became evident that an efficient implementation
would require a fast way of computing: (a) the area of the stress block given a neutral axis
location, and (b) the neutral axis location given a required stress-block area. The adopted
solution is to start each section analysis by constructing a cumulative distribution function

(CDF) of cross section area above a given horizontal line position.

The algorithm for computing the CDF makes extensive use of the polygon intersection
algorithm developed by Margalit (1988). Figs. 7(a-d) show, for example, the initial stages
of computing the CDF for a tapered section with one hole in it. First, the section is divided
into horizontal segments separated by vertex discontinuities, as shown in Fig. Ta. A new
polygon is generated to intersect the cross-section at the desired location (see Fig. 7b).
Two lists of edges are generated, one for the set of segments making up the cross section,
and a second for the temporary intersection polygon. All of the cross section edges are

then classified as being inside, outside, or on the boundary of the intersecting polygon

22

(c) (&)

FIG. 7. Generating CDF of Section Area

(see Fig. 7c). After duplicate edges on the boundary are eliminated, a single loneface is

assembled using the Euler operators, as shown in Fig. 7d.

Given that the top edge of the example polygon function is 10 units long, the bottom
intersecting edge length is 14.8 units long, and the area of the intersecting polygon is 74.4,

it follows that the CDF for the first polygon segment is

CDF Area(y) =

[N~

- [20 + 0.8y (2)

where y is the vertical distance of the horizontal axis from the top edge. Continuing the

23

process for the remaining two sections gives the piecewise continuous quadratic function

é -y - [204+0.8y], for 0.0 <y < 6.0;
CDF Area(y) = < 744+ % -y —6]-[13.6 4+ 0.8(y — 6)], for 6.0 <y < 14.0; (3)

154.4 4+ 1 - [y —14] - [42.4 + 0.8(y — 14)], for 14.0 < y < 20.0.

Once the CDF function is computed, the flexural strength calculation proceeds in the
usual way - see Preston (1991) for step-by-step details - and makes use of the standard
assumptions; plane sections remain plane, negligible tensile strength of the concrete, and
stress-strain curve for steel is perfectly elasto-plastic. The stress distribution within the

compressive zone of the concrete at ultimate loading is modeled with equivalent rectangular

stress distribution, as described by ACI 318-83 (1983).

CONCLUSIONS AND FUTURE WORK

This paper has focussed on the formulation of data structures and é,lgori‘thms for the
solid modeling of RC beam structures composed of three dimensional concrete solids, and
steel reinforcing bar trajectories. Future versions of the prototype system will be capable of
analysing cross sections subject to axial loads and biaxial bending. The long term research
goal is to work out the details of combining generally shaped RC components into frame

and frame-wall assemblies.

ACKNOWLEDGEMENTS

This work was supported in part by the Minta Martin Foundation, NSF’s Engineering
Research Centers Program : NSFD CDR 8803012, and NSF Research Initiation Grant NSF
BCS 8907722. This support is gratefully acknowledged. The views expressed in this paper

are those of the authors, and not necessarily those of the sponsors.

APPENDIX I. - REFERENCES

(1} ACI 318-83 : Building Code Requirements for Reinforced Concrete (1983), American
Concrete Institute, Detroit, MI.

[2] Baumgart B.G., (1972), “Winged-edge Polyhedron Representation,” STAN-CS-320.
Department of Computer Science, Stanford University, Palo Alto, CA.

[3] Mantyla M. (1988), An Introduction to Solid Modeling, Computer Science Press,
Rockville, Maryland.

[4] Margalit A. (1988), “ An Algorithm for Computing the Union, Intersection, and Dif-
ference of Two Polygons,” Center for Automation Research, Technical Report 1993,
University of Maryland, College Park, MD.

[5] Martini K., and Powell G.H. (1990), “Geometric Modeling Requirements for Structural
Design,” Engineering with Computers, Vol. 6, No. 2, pp. 95-102.

[6] Pinto de Magalhaes M. (1979), “Biaxially Loaded Concrete Sections,” Journal of the
Structural Division, ASCE, Vol. 105, No. ST12.

(7] Preston J. (1991), An Application of Solid Modeling Concepts to Design Software
for Reinforced Concrete Beams, Masters Thesis, Department of Civil Engineering,
University of Maryland, College Park, MD 20742.

[8] Preston J., and Austin M.A. (1992), “Solid Modeling Based Design of RC Beams.”
Journal of Computing in Civil Engineering, This issue.

19] Requicha A.A.G. (1990), “Representations for Rigid Solids: Theory, Methods, ans
Systems,” Computing Surveys, pp. 437-464, Vol. 12, No. 4.

[10] Subrahmanian E., Podnar G., Elm B., and Westerberg A. (1989), “Towards a
Shared Computational Support Environment for Engineering Design,” Technical Re-
port EDRC 05-41-89, Engineering Design Research Center, Carnegie Mellon Univer-
sity, Pittsburgh, PA.

[11] Weiler K. (1986), “Topological Structures for Geometrical Modeling,” Rensselaer Poly-
technical Institute, Troy, NY.

[12] Westerberg A., Grossman 1., Talukdar S., Prinz F., Fenves S., and Maher M.L. (1989),
“Applications of Al in Design Research at Carnegie Mellon University’s EDRC,” Tech-
nical Report EDRC 05-30-89, Carnegie Mellon University, Pittsburg, PA.

[13] Wylie C.R. and Barrett L.C. (1982), Advanced Engineering Mathematics,
McGraw-Hill Book Company, pp. 1103.

[14] Zamanian M.K., Fenves S.J., Thewalt C.R., and Finger S. (1991), “A Feature-Based
Approach to Structural Design,” Engineering with Computers, Vol. 7, No. 1, pp. 1-9.

26

To appear in ASCE

Journal of Computing in Civil Engineering

SOLID MODELING OF RC BEAMS

PART 2 : COMPUTATIONAL ENVIRONMENT

By J.L. Preston!, and M.A. Austin, A.M. ASCE?

ABSTRACT

This paper is the second of a two-part series describing the design and implementation of an interactive
reinforced concrete beam design environment called BeamTool. Part two focuses on issues of implementing
and testing BeamTool. This includes design of the user interface to work on two- and three-dimensional
descriptions of the design problem, techniques for specifying the geometry of the three dimensional concrete
solid and the reinforcing bar trajectories. Features of the BeamTool system are illustrated via the design of

a three-span reinforced single-cell box girder beam.

Keywords : Solid Modeling, Computer-Aided Design, Reinforced Concrete.

1 Graduate Research Assistant, Department of Civil Engineering and Systems Research Center, Univer-

sity of Maryland, College Park, MD 20742, USA.

2 Assistant Professor, Department of Civil Engineering and Systems Research Center, University of

Maryland, College Park, MD 20742, USA.

INTRODUCTION

This paper is the second in a two-part series describing the formulation and devel-

opment of a prototype system for the interactive specification, analysis, and design of

reinforced concrete (RC) beam structures. In the companion paper (Austin 1992), it was

proposed that the prototype system should satisfy the following set of criteria:

[1]

[4]

To provide for the interactive generation of solid models of the beams, with arbitrarily
shaped cross-sections, possibly containing holes. This was to be implemented by means
of interactive drawing and sweeping algorithms.

Create an editing environment that allows for the placement of reinforcing bars both
within the beam at a three-dimensional level, and within cross-sections at a two-
dimensional level. Practical design considerations dictate that reinforcing bars be
contained completely inside the concrete solid. The checking of these geometric con-
straints must be enforceable at both the two- and three-dimensional levels.

Develop interactive software tools that allow the user to freely move between a two-
dimensional design and analysis environment where cross-sections are the highest level
of objects, and a three-dimensional environment where work is done on complete
beams.

Provide analytical tools to determine the ultimate flexural strength of the beam along

its length.

This paper describes the design and functionality of the concrete beam design software

system BeamTool. BeamTool is an exploratory attempt at implementing the data structures

and algorithms described in Austin (1992). The main goal of this phase of the project was a

small prototype system, the development of which would improve our understanding of the

2

likely problems faced in implementing the solid moderling approach to large-scale software

systems.

DESIGN OF REINFORCED CONCRETE BEAMS

The design and analysis of RC beams is so complex that, in general, it is impossible
for engineers to consider all aspects of a problem at once. A common strategy for making
the design process tractable is to decompose the overall design problem into sub-problems,
and focus on the solution of sub-problems, each of which considers the remaining aspects

of the design to be at a more abstract level of detail.

Kalay (1989) points out that the levels of abstraction associated with a particular
phase of a design process can often be classified by dimensionality. In the design of RC
beams, for example, one typically moves back and forth between tentative three-dimensional
beam geometries, and the design (layout of rebar and analyses of engineering performance)
of two-dimensional cross sections. This strategy of freely switching between two- and
three-dimensional levels of abstraction is motivated in part by the principle of least
dimensionality; that is: humans find it is easier to check.containment issues on two-
dimensional representations of an object than in a three-dimensional model. The same

principle applies to the complexity of operands needed to evaluate containment issues in

an automated system.

BEAMTOOL SOFTWARE SYSTEM

BeamTool is a software system for the interactive design of RC beam structures using
abovementioned style of design. Its main components are a graphical user interface, and

software tools for RC design and geometric modeling. The software was developed for use

3

on Sun Microsystems SUN/3 :and SUN/4 workstations under the UNIX operating system.
The C programming language was used for this implementation because of the ease with
which powerful and complex data structures may be defined, and because it allowed for the
use of the SunView libraries (Sun 1988) in the development of the point-and-click graphical

user interface.

The prototype implementation reflects a balance in competing design criteria. First,
there is the matter of having enough screen space for the edit mode buttons, and to graphi-
cally display the design. During the early stages of interface development it became evident
that three separate screens would be needed, one for each stage of the design process. Their
purposes are: (a) Definition and assembly of the solid boundary model of the concrete beam,
(b) Placement and sizing of reinforcing bars within the three-dimensional beam model, and
(c) Determination of the flexural capacity envelope. Designers are expected to progress

from screens (a)-(c) in the natural course of setting up and solving a design problem.

It 1s conceivable, however, that a designer might want to edit the three-dimensional
geometry of the beam st;ucture after the reinforcing bar trajectories have been specified.
This scenario pits the need for sophisti;;ated, yet easy-to-use, editing operations directly
against the complexity of mz;intaining geometric coherency in a design. It also raises
difficult issues as to how the BeamTool system should behave. For example, when three
dimensional reinforcing bar trajectories are being specified, practical design considerations
dictate that they be constrained to lie inside an already defined concrete solid. It does not
automatically follow that the editing of concrete solids should be constrained to remain
outside all previously defined reinforcing bars? Indeed, major modifications to the three-

dimensional geometry (and reinforcing layout) are likely to be most efficiently executed if

4

violations in design rules and geometric integrity are temporarily permitted.

The first cut of the BeamTool software does not provide for the relaxation of geometric
containment rules during the editing process. In order to limit the need for such a relaxation

of constraints, the solid model cannot be edited after is has been assembled.

DESIGN EXAMPLE

In the following sections, features of the BeamTool system are illustrated via the design
of a three-span reinforced single-cell box girder beam. The design objective is to determine
a beam geometry, and layout of steel reinforcing, which has a diagram of ultimate flexural

capacity that just covers the (factored) design moment envelope.

Design Specifications. - Fig. 1 shows the plan and elevation views of the example
footbridge. The bridge is twelve feet wide, and is made up of three equal spans of 40 feet
each. The bridge will be continuous across the interior supports, hinged at the two ends,
and symmetric in the longitudinal direction. The design load will be a factored uniform
dead load of 3.36 kips/ft. and a factored uniform live load of 5.1 kips/ft. Fig. 2. shows
the design moment envelope resulting from these loads. The maximum positive moment is
1252 kip-ft. and occurs 17 feet from the end of the bridge. The maximum negative moment
is -1490 kip-ft. at the interior support. Within the center span, the maximum positive and
negative moments are 560 kip-ft. and -268 kip-ft., respectively. Since the magnitude of
the maximum positive moment near the center of the end spans is less than the maximum
negative moment at the interior supports, it was decided to design a haunched beam with

a greater depth at the supports than in the spans.

-lo ‘.‘: 17 :‘. AN -‘-'

A
\
J
\

clan View

£ pa
40 L. 20 T 20 fL

FIG. 1. Geometry of FootBridge

1ed M = 1252 ft.kips.

M = 560 ft.kips.

M = -1490 ft.kips.

:.LL.‘.L:J..LJ—L%.LLI.L:LLL.L:.I—LL.L']x;:"nn‘

M = -268 ft.kips.

FIG. 2. The Design Moment Envelope

*
RS RN ERERRNSARRAREANNSARENSEERARAS RS SRRRNBEREN SRLA TTTT Y Iy v T[T i rrpreTsy
ro ‘ﬂ 190 l&l z‘ﬂ z‘il I 3L0 4‘.0 0‘50 sln SLI (X 1] l“ 700 7‘0 F:;

SOLID BUILDING SCREEN

The Solid Building Screen supports the operations a designer must work through
to proportion design cross-sections, and create a new three-dimensional beam solid. It
appears when the BeamTool software is first executed. The main components, as labeled
in Fig. 3, are: (a) Main Control Panel, (b) Window with Side View of Beam for Placing
Cross Sections, (¢) Upper Control Panel for Creating Solid Model of Beam, (d) Window for
Drawing and Editing Cross-Sections, (e) Lower Control Panel for Cross-Section Operations,
and (f) Information Window. The Main Control Panel is common to all three screens; it
contains buttons for global operations, such as setting the scale of the beam and choosing

which of the three design screens to work on.

Setting Scales for Design Problem Description. - The first step in the design process
1s to specify three scales that will cover the approximate width, height and length of the
beam to be designed. For the ;urrent design, the width and height scales are set to 200
inches. The scale in the longitudinal direction is set to 800 inches (66.7 ft); this reflects
the need to model only one half of a symmetric bridge design. After the design scales are
set, axes are automatically drawn on the screen in the side view and cross-sectional view

windows, as shown in Fig. 3.

BeamTool provides mouse-driven commands and grid snap facilities for the precise
specification of cross section shapes and reinforcing bar trajectories. The design grid is a
three-dimensional block of points whose granularity in each direction is governed by the
finest increment of distance a designer expects to work with. In the case of our footbridge
design example, grid spacings of 3 inches are specified in the horizontal and vertical direc-

tions. A grid spacing of 20 inches is used along the length of the beam. Once the design

7

1100.00g 9T, - "¢ ‘Ol
::_:_:_:.::_. = 2 v umots uoj100§ . _ Y i T
O NG nsnom fppp 1yim Bugyynd uojinee ayeujug) - T o R

U0 00S s5043 ojeaounh 0} uoyIng asnow oL Yyyim weoq Ing
nooaon0kz = 2 1e Hmoys 1) 33ag
SuUn g osn nppprw gype Bupyynd uo)0as ajeunjuiag
UG 56003 ajraatal o) unpng asnom 14ag yyim weaq 1ng
GIBLIG 1Y = 2 ¢ umoys uojyaag "
Ahv Suoy N asnom apppru gyim G 3 ynd unpyoas ayrujuuay
‘uu§yu0s ssous ejeavunb oy vopyng esnow 1jel Yyjjm weeq jny

¥ ,
o0a-o oy . .
CRET NI thaugg HB.\]

TON vy B8y JIpl

000°0 T
gseEE- (Fdoid wer1a95)(busais Y9a11d) y \ /
:M_\.: M T:_c._ a__.uu T:do; aUU—umw L e e J ..,._

(wor109g y1pa)(uorions 1091925} .
: ?_o: _._:& T.o:ucm :vzu ;

FAC ORI K VAT FANNEIS }3 ’
005 szyoccr :AI _ (ox0) (2=210) 302

TS S R § N
0057200590 X1 u E

SESTS1P07 11048

i Fo .
000° 121z :vaay A v :Kaoyoaara E

(ouugd (oLjno) DujKeag uog}oss TME007G0T A MY 00°0OT K

Hoy1o3g 55040

o ani—————— —

AR (v =z T i Ty v e]
U (X1} [] []
.vu.x_‘_;L. w. :.u.—:‘.‘.Lu.‘.LL‘" _m_.r-.. ._ 11 ...h-LL __. .L p:.u_.w.'.n.-.rmm.\.ulvmrrrn C‘ml._m.t.mEr.,rL-r:F_ ’
(@) -
{ nuan ..—cl:u A v =
T ﬁ -
(hub1u weon _::Jx& 1 - F
! (X1}
(h1o1 weon pusixa) -
((woysuaxg sovld) _ —— .
(1011995 uoyauayxy %21} mw:
[2 r“.~
canouagrd T. >”.:.._
S LEEENET) | poon
[Puug (oajuo) Hhuypring wmuog ‘up 00°ZL KR CUHf 00°000:Z HBTA OPTS
re] [[L) ot [[
Amv jdeus ¢} “w““w i “_“.ewu I eLeas nBuens s0g wrag
anl phan] pahs e o ooetd | | puine

grid is assembled, grid snap procedures permit lines to be drawn only from one grid point
to another. Design grids are displayed and hidden by activating the Show Grid and Hide

Grid buttons, respectively (see the Main Control Panel in Fig. 3).

INTERACTIVE DESIGN OF CROSS SECTIONS

BeamTool provides designers with the computational tools to interactively layout cross
section shapes, position two-dimensional reinforcing bars, and compute the ultimate flexu-

ral strength of tentative cross section designs.

Specification of Cross Section Shape. - Cross section shapes are created by drawing
with the mouse in the cross-section window. At each step of the procedure, the position of
the mouse is transformed into the user-defined coordinate scale, and mapped to functions
for generating the section model. Button events are used to enter and leave cross section
drawing modes, and snap perimeter lines to the closest design grid point. They also trigger
callbacks to functions for the diagnostic checking of cross section geometry, and incremental
assembly of the geometric. model with Euler operators. For example, the first time the left
mouse button is clicked in the section-drawing mode, a new primitive loneface structure
is generated with an adapted version of the Euler operator MVES (make vertex-face-solid).
This operator creates a new loneface with one loop, and one vertex. Further mouse clicks
are given to indicate the location of remaining vertices in the outer loop of the section. As
successive edges are added to the outer loop, the loneface is extended by means of MEV
(make edge-vertex) operators to form the bounding edges of the cross-section. The last
vertex in the cross section perimeter is specified with a single click of the middle mouse

button. The loneface is closed with a modified Euler operator similar to the MEF (make

9

edge-face) operator.

Geometric Validity Of Cross-Sections. - A proposed cross section edge is not added
to the geometric model unless it passes a series of diagnostic checks. The checks ensure
that: (a) each polygon is non-self-intersecting, and (b) all holes lie completely within the
outer boundary, and are completely outside any other inner loops. If any intersections
occur, then the proposed edge is rejected. This strategy ensures that the area bounded by
the cross-section will be one well-defined contiguous region, and thus, may be swept out

along the z-axis to form a geometrically valid solid model.

Sizing and Placement of Reinforcing Bars in Cross Section. - Computational
tools are provided for the definition, placement and editing of individual reinforcing bars,
and groups of reinforcing bars. The section drawing control panel in Fig. 4 shows, for
instance, that editing modes are available to Set and Move horizontal bar lines, which fix
the y-coordinate in the cross-section that all the bars must lie. The bar line 1s set by
selecting the Set Bar Line button in the lower control panel, moving the mouse into the
cross-sectional view window, and pressing the left mouse button with the cursor at the
desired y-coordinate. Bars are placed in the section by selecting the New Bar button (see
the Bar Placement Control Panel of Fig. 6), and then placing individual bars by pressing
the left mouse button with the cursor at the desired x-coordinate. Further editing modes
are available to Add and Select individual bars, and to Add, Move, Copy and Delete groups
of reinforcing bars. In all cases, geometric checks are performed to prohibit placement of

bars outside the section, or on top of other bars.

10

udiso(] uo1pdeg ssoID F "HIJ

[Jreatyisodsrejduexa ai1y up panes uogjoag

000°0
S19°S§T
00070
LS R9ET
18% 6
918" 9~
218 6TLYT
985" 91812
000°00b2PHOE
8897988282
. 000°652¢

:,8Y
18y
1Houn
TUR
B |
B |
‘loqs
rdols
L1
1XY

[eoayY

ov L4 g 2,4

21T :a aeg [43buaI31S AP2YD)

¥1 :oN xeq [sdoud uoj}desg)

(dnoxsp aeg Adop) (surt Jed BAOH |
(dnoas xo aeg BAOH (pur1 Jeg 3og)
(dnouan a0 aeg owoﬂwau mmumm nzOhcu

(nus uten) {teg 310o12g)
Y2a13150d :swWeUATTA E
fordwexs :Xxojoo41d E

T2ued [oajuo) Huymeag uoyldas

\Mvoa.o.....// ”

‘U 00°8I-:A ‘UF 00 80T:X WoT1998 §50JD

{H

11

Computation of Ultimate Flexural Strength. - Selecting the Check Strength button
on the lower control panel triggers the executioﬁ of a series of analysis functions to compute
the flexural strength of the cross section. First, all of the gross section properties are
calculated and displayed in the appropriate data fields on the lower control panel. The
position and orientation of the centroidal axes for the cross-section are computed and and
drawn in the cross-sectional view window. Next, the areas of the bottom and top reinforcing
bars are determined and these values are displayed in the data fields labeled 4, and 4’
respectively. The ultimate flexural strength is calculated according to ACI 318-83, and
displayed on the screen. Together these features allow designers to determine the shape
and rebar quantities of cross sections at critical locations in the beam structure, before

moving on to consider the three dimensional design as a single entity.

DESIGN OF FOOTBRIDGE CROSS SECTIONS

The footbridge design begins with the proportioning of a box-girder cross section for

the central portion of the end span; this is where the maximum positive design moment

| 1s 1252 kip-ft. The first sfep is to use the aforementioned sequence of button and mouse-
driven commands to layout the outside perimeter of the box section. The Add Hole button

is pressed to initiate the drawing (and creation) of a hole in the box-girder section. Fig. 4

shows the completed geometry of the cross-section displayed on the screen. Next, it was

decided that the reinforcing bars would be size no 11, and have a yield strength of 40 ksi.

A concrete compressive strength f; of 3 ksi was assumed. To assist in the positioning of

flexural reinforcing, the horizontal bar line was set at y = 117.0 inches, three inches from

the bottom edge of the section. Ten no 11 bars were then placed within the section, as

shown in Fig. 4. Finally, the the flexural capacity of the cross section was computed. It is

12

1365 kip-ft. in positive bending; this is adequate.

A second box-girder cross section was proportioned for the interior support, where the
section is subject to negative bending under all loading conditions. As a starting point,
the end span cross section shape was assumed, with the ten no 11 reinforcing bars moved
to the top of the section. This gave a flexural capacity for positive bending of 0.0 kip-ft,
and a negative bending capacity of -1332 kip-ft. Since the latter quantity is greater than
the required -1490 kip-ft, the section was deepened by interactively lowering the endpoints
of the bottom edge and hole by six inches. The lower half of Fig. 3 shows the new shape,
engineering properties, and flexural strength - for negative bending, it is -1618 kip-ft - of

the deepened cross section.

THREE-DIMENSIONAL SOLID MODEL FOR FOOTBRIDGE

The proposed footbridge design consists of prismatic beams over the end spans and
central portion of the center span, plus non-prismatic regions over the interior supports.
Each non-prismatic region tapers from the shallow section to the deeper section at the

support, and then tapers back up to the shallow section within the center span.

BeamTool provides designers with the computational tools to interactively position
the end span and interior support cross section shapes along the longitudinal axis of the
beam structure, and a sweeping algorithm to connect adjacent cross sections. A three-
dimensional model of the footbridge was created from left to right by working through the

following step-by-step procedure:

[1] The end span cross section (designed in the previous section) was selected and inter-

actively positioned at z = 0.0 in the side view window (see Fig. 5a). Placement of the

13

Side View Z:806.00 in. Yv:138.00 in.

N
®
»

..
>
ha DTN IT Ul BV N SN Srud AN RN W ud BN SR US|

o

23

IIXTT]‘Yr]TTTI IlflITT]T T 71T 171 T r 1T III.I!II|II|I]’I‘[I llll!|IT7]'|\'AI]TIIT]ArTTT

100 13%e¢ 269 256 30 3%5e¢ “80 ‘g. e S5 (11] (31 T 750 s8¢
FIG. 5a. Placing the Left End of the Solid
Side View 2:480.00 in. Y: 3.00 in.

206

15¢

1090

se]

-

¢ {zTIIg:II‘ll';I"t:‘1121;:]7,,2:l'ls‘rriag““‘.;‘ll‘g.‘,‘Is":l‘lsk."llsl‘.",l‘.‘"'7’.;l'17g;’[1‘|”.

FIG. 5b. The First Portion of the Solid

cross section automatically triggers an operation to generate a complete laminar solid

from the cross-section geometry; the generated solid has two faces, but no length.

14

2]

[3]

[4]

Two steps are need to generate the solid model for the bridg;e end span. First, the
face of the laminar solid which is oriented outward toward the right is moved to the
location of the right end (z = 420 inches). This sweeping operation generates the
longitudinal edges of the solid shown in Fig. 5b. Second, the vertices of the right end
of the solid are moved to the (x,y) locations of the section selected for the right end.

Now the solid takes the shape that the user intended.

A tapered prismatic section is appended to the right hand side of the end span beam
segment. First, the interior sﬁpport cross section design is redisplayed by selecting the
Front/Back button in the lower control panel. Picking the Extend Beam Right button
in the upper control panel causes a new set of choices to be displayed, namely Pick
Extension Section, and Place Extension Section. These features are employed
to select and position the deeper section over the interior support at z = 480 inches.
The underlying geometric model is appended to include the tapered end span/interior

support segment.

The extension process is repeated two more times with the shallow section to complete
the left half of the bridge, which is symmetrical about the midpoint of the center span.
The side view subwindow of Fig. 3 shows the completed solid model of the beam

without any reinforcing bars.

Mapping Algorithm for Sweeping Operation. - The algorithm for generating a three-

dimensional solid from adjacent cross sections assumes that the loops and vertices of one

cross section may be matched to the second cross section with a one-to-one mapping. Such

a mapping is well defined when the left and right end sections have the same number

of loops (and vertices along the perimeter of each loop), and when the cross-sections are

15

uniformly oriented, either clockwise or coﬁnter—clockwise. If these conditions are satisfied,
then a heuristic strategy is used to establish the mapping. First, the halfedge and vertex
of each loop with the greatest y-coordinate is determined. If the vertex is not a unique,
then the vertex with the lowest x-coordinate of this group is selected. Once the vertices
for each loop are identified, the edges of eéch loop are ordered, and edges inserted between
the cross sections. This simple ordering scheme, although admittedly not robust, has been

adequate for the generation of beam models.

BAR EDITING SCREEN

The Bar Editing Screen supports the placement of reinforcing bars along the length of
the three-dimensional concrete beam, and is shown in Fig. 6. The labeled components of
the Bar Editing Screen are: (a) Main Control Panel, (b) Window with Side View of Beam,
(c) Bar Bending Dials, (d) Window with Cross-Section of Beam, (e) Information Window,
and (f) Lower Control Panel for Bar Editing Operations. Notice that both top and side
views of the three-dimensional model are shown, thereby allowing for complete control of
placing the bars within thAe solid using the mouse. ‘A cross-sectional view is also shown. Its
purpose is to allow the user to cut the beam at any given point, and evaluate the flexural

strength of the cross-section.

Specification of 3-D Reinforcement Trajectories. - Reinforcing bar trajectories are
constrained to lie in either a vertical or horizontal plane parallel to the longitudinal axis of
the beam. This constraint allowed the writers to develop point-and-click editing operations
for the placement of bars. For instance, a horizontal bar plane is set by buttoning on

Set Bar Plane, moving the cursor to the desired y-coordinate in the side view window,

16

=

1
<
@)

P:-d
1<

A,uv TUR :__ 114 ..J T | _.- 11 ..J. 18 u:_- '
7 0.4 [Dooooo-09z = z ye umoys uoj3odeg :
{(nbus3g 12212) (meou qnd) ‘uoyng asnow a{ppid Yyjpm BupyIna U yIas ajeujuiag -
— ‘uoy -
(uoubus waon) (savy_waon) 1095 55043 ejesousb 0} voyINg esnow 1§81 Y1|m weaq yng [
{Huoubag “12a) (81eu Ado)) © gotL1Y = A yyym peydses suejd Jeg B
(-) (1) “mopujn maja doy Jo epys u} sueid Jeq 1da|ag / F
puagy abuwy) sa8f1 21220 MHHHHHHHHHV/ -
— 031
(3bua1 abueyn) (saen 100105)
mgcm :ozuﬂw:a_z aeg uumu Amwv
- . 00211~k 1auelg avy
’ oy &4 1T N Jed
on ‘uy 00°bZ- U 00°SO0T -
[Purd [0X)U0) JUIMIDICLLA Jed 8
V 281
“\ $5040Y pudy .?...»EJ.HLLLl.PHLLL\...g.LLLle» N T Y .[PL. o b P _L.l-_nl—._o NEBU:ELD_LLLLUHEBLLLL-L o -
ROTLOAUIA AN3Y .
: 06- 3
i SET- §h- p)
: ‘ 3
‘ ont 0 ; I
' 51 b ﬁ
06 et

[eja [oJjuod
puag [u¥)juozjJoj

‘uy 00°SOTIX “uy 00°09Z2:Z

MayA dop

A:xg\ : —u—nvmu 1.1 —-¢-__ -.N—n- 11 4~.-‘¢a-_~-Jﬁ--. v--. vn— -.ﬂ——n.l.—n-- ..u-—- 1 —-——IJ--- 3N] —..J-nnn.b s
NOI1D3UId aNit -
o (1)
SC1- Sp- Fan
oot | —>) o f —| [
Sl 2 3
06 foec
(@)
—Q«Q AOL&COU
puayg [U3}}A24 “uyp QO BZ-:A U 00°09Z:Z W3TA DTS
' Fraeved Vi b e e PrEEa b - n u
(e) TR I SN I EMpnet AR I o | I et ™
A eyug ¢4 4 [X]] [X] a{eas
Spragttl finous it |4 ves 13 108 wBuens Baeq weog
IR TR et treee e 12843 axeld pling

17

;and buttoning the mouse again. Once the horizontal plane is fixed, the longitudinal and
horizontal coordinates of reinforcing bars may be specified in the top view window. Bars of
more than one straight segment are positioned by sequentially locating the first end of each
segment with the left mouse button, and the matching endpoint with the middle mouse

button. The use of the curved segments has yet to be implemented in the software.

PLACEMENT OF REINFORCING IN FOOTBRIDGE

The three dimensional layout of reinforcing in the box girder bridge is based on the
end span and interior support cross section designs. For example, flexural reinforcement in
the end span beam segment is positioned by recalling that the cross section design contains
ten number 11 bars in the horizontal plane y = 117 in. After the bar s'ize and material
yield strength have been input, and the horizontal plane set, the first of ten bar trajectories
is specified by selecting the New Bar button, moving the cursor to location x = 3 in., z =0
in. the top view window, pressing the left mouse button, moving the cursor to x = 3 in, z
= 420 in., and finally, pressing the middle mouse button. The first bar is drawn in the side
and top view windows, and extracted view of the bridge cross section (see Fig. 6). Because
the trajectory shape of all the lower reinforcing bars are identical, the remaining bars in

this region are created by selecting and positioning (see Select Bars and Copy Bars in

the lower control panel) copies of the first bar at the required x coordinate.

The same procedure - with horizontal bar plane y = 144 in. - is repeated to position
flexural reinforcement over the interior supports. Fig. 7 shows details of the fully reinforced

bridge.

18

a8piagy podtojurdy oy, L *DIA

$5040Y pudy

(1.1

uM\-{PLyDM | I

1A%

"y

(144

1111 T I i 1.1t -I l- 11 -.Juh_ 1. 2 Al 2t 112 _. ﬂ— 1t -‘r n— 1 —. Nn | —. «-] -Q n— 2 -»’J-n 1 —.J -hhil— o-
NOT1D4HIU GN3d “....
06- — 2
Se1- k- , 3
00T 0 = = -
SEl 114 F
06 [oer
1ejg [0I1}uU0D
pusg [¥jUOZIOH ‘uy X Cuy :Z #oya dol
-—— 1——0: ’Jnn 1.1 —. - 1 " h—— 1 -. o- 1.1 ~' c- -_-.!un- 1t —.Jn— 1 -—0.- 1 —. 9- (9] —' 0— 9 | --.—ﬂ-n- —. - 1t -‘ - 11 -D¢n~ 1t -. - 11 ‘.J 1.1 hn.— .
NOI12341d aN3d m:
06~ . 3
sel- e : Fes
ot —>) o i | ._ _ .
Sl St :
06 fesz
{via ro.a1juon
puog [UI]1I94 “uy ik cuy iz

MaTA 3PIS

19

STRENGTH EVALUATION SCREEN

The Strength Evaluation Screen, shown in Fig. 8, provides a visual comparison of
the actual flexural strength of the beam structure, versus the design envelope of required
strength. Its main components are: (a) Main Control Panel, (b) Window with Side View
of" Beam, (c) Window with Graph of Flexural Strength Capacity, (d) Lower Control Panel

for Strength Evaluation Operations, and (e) Information Window.

The control panel to the right of the strength diagram is used to specify the concrete
compressive strength, and to input the name of files containing (z, M,) coordinates in the
moment envelope. The moment envelope coordinates are read and plotted for comparison
with the actual strength of the beam. For the reasons stated above, neither the solid
model, nor the reinforcing bars can be edited at this level. If the user is dissatisfied with
the flexural strength of the beam, he or she must return to the Bar Editing Screen to edit

the reinforcing bar trajectories.

Locations for Strength Evaluation. - An envelope of positive and negative flexural
strength along the length of the beam is constructed from strength evaluations of cross
sections extracted from the beam structure. Cross sections are extracted from the beam in

the following locations:

[1] At all discontinuities, i.e. where a sections are placed to build up the beam.

(2] At each end of every bar. If more than one bar ends at a given cross section location,
then the cross section is extracted and evaluated only once.

[3] At the point along each bar where it achieves its full development length. Only basic
development lengths have been used in the prototype implementation. Moreover, the

20

.. . [o P T T e ez = s s T W
1100.10GQ HOIRIHUAJ] [Jjouadly 9L - '8 "Div
-Vo—wl—‘n_\ﬂrh_-_"o—h--uo-——.H-___.n-——“-nnbbo-...no—t-—.oa»—.ﬂﬂn—.-ua.—.ﬂ.—«—__--_._-"._-._.“M_-LL.L_. :-

T T TR TS TR TS TR TS

- ~ -

1

-
o

LA PRARESARRS

A

31§§ 'DboN prol w

2{1J “80d pvoTl . "

. Hh:
Ino- Hauxew a[fJ °HoaN . |-

i (14}

jno ' sod xem :a[yJy "s50d port
[BRSINE | mm:
! peee

(r) (@)

1bus.1yg Yooy

[pued [oajuo) amuirq yYjbuaaysg LR TY AP FASS 2 Y AR 4 woxfeyq y1b6udrys yevanxaLy
wlo—m._\.»-»nu.l.lr-wuum.lrrn‘ N—L,MP.NHELL-HF‘_I“M-L P.- -. 1L n-_r. j R u n-LL e LLL-IM_LL,L\"H_L\-\"FLHL N
"

= — T }

(1)

1l

RS ‘2 WITA IPTS
I EEEERNR] [E R AR RN [EERE RN]
+ 4 detdret IRIREEE] $ott-d nH ¢ UHd|
340 (Wl MU
Aﬁv maccw“" mu_‘_cm" mstc““ 838 6 -
tppaa il Jimousiif |3 308 4) 165 wluens 4 xeog
Araerad rrrae et YRR 1394) Bield pt Ny

development length factor is employed only when the cross-section is generated by
cutting a three-dimensional beam model. Strength analyses performed on preliminary
cross section designs at the two dimensional level assume all of the bars are completely

developed.

When a user selects the Check Strength button on the Strength Evaluation Screen, these
criteria are used to construct an ordered list of locations for cross section extraction and
flexural strength evaluation. The algorithms for extracting reinforced cross sections from

the beam structure, and evaluating their flexural strength are as described in Austin (1992).

FLEXURAL CAPACITY OF FOOTBRIDGE

Fig. 8 shows the envelope of flexural capacity circumscribing the applied moment
envelope. Because the cross-sections of the beam were designed carefully for the critical
sections, we have arrived at an adequate bridge design in the first iteration. The sample

design is now complete for flexural reinforcement.

CONCLUSIONS AND FUTURE WORK

The BeamTool software system is a first cut at implementing the data structures and
algorithms described in the companion paper (Austin 1992). BeamTool works well; the
writers are satisfied that geometric modeling techniques are a sound basis for developing

interactive systems to support RC design.

Further work is needed to extend the scope of design problems BeamTool can handle.
Future versions should allow for the definition of external loads, and the placement of shear
reinforcement. Finite element analysis packages should be used to compute distributions
of bending moment and shear forces. A valid criticism of the prototype implementation is

22

that all new elements must be asserﬁbled from the section level. BeamTool should be setup
so that designer may work with combinations of customized and standard elements. In the
latter case, the topology of regularly used section shapes (e.g., rectangular beams, I-beams,
T-beam) could be defined apriori, with the geometry (or shape) of each instance of a beam
object being completely determined by the values assigned to a set of parameters that
accompany the model. For a system of this type to be implemented, however, considerable
work is needed on data structures, algorithms, and user interfaces tailored to the assembly,

editing and checking of structural assemblies. This is not a trivial step.

Future work should also focus on providing designers with the ability to control and
customize the response of the BeamTool system to editing operations, and to impose a
hierarchy of (geometric and design) rule checking. As a minimum requirement, the system
should support hard and soft rules, and allow the checking of rules to be turned on/off. A
hard rule is one that must be satisfied at all times; any editing operation that results in
hard rule violation would be immediately rejected by the system. Violations in soft rules
are less catastrophic. An appropriate system response would be to signal the error to the

user, with the expectation that it would be manually repaired at a later time.

ACKNOWLEDGEMENTS

This work was supported in part by the Minta Martin Foundation, NSF’s Engineering
Research Centers Program : NSFD CDR 8803012, and NSF Research Initiation Grant NSF
BCS 8907722. This support is gratefully acknowledged. The views expressed in this paper

are those of the authors, and not necessarily those of the sponsors.

23

APPENDIX I. - REFERENCES

[1] Austin M.A., and Preston J. (1992), “Solid Modeling Based Design of RC Beams Part
1: Data Structures and Algorithms,” Journal of Computing in Civil Engineering, This

issue.

[2] Kalay Y.E. (1989), “The Hybrid Edge : A Topological Data Structure for Vertically
Integrated Geometric Modeling,” Computer Aided Design, Vol. 21, No. 3, pp. 130-
140.

[3] Sun Microsystems (1988), “SunView 1 Programmers Guide,” Copyright 1982, 1988,

Sun Microsystems Inc.

24

