ABSTRACT

Title Of Dissertation: UNDERSTANDING AND OPTIMIZING
HIGH-SPEED SERIAL MEMORY SYSTEM ARCHITECTURES

Brinda Ganesh, Doctor of Philosophy, 2007

Dissertation Directed by: Professor Bruce Jacob
Department of Electrical and Computer Engineering

Performance improvements in memory systems have traditionally been obtained by scaling data
bus width and speed. Maintaining this trend while continuing to satisfy memory capacity demands
of server systems is challenging due to the electrical constraints posed by high-speed parallel
buses. To satisfy the dual needs of memory bandwidth and memory system capacity, new mem-
ory system protocols have been proposed by the leaders in the memory system industry. These
protocols replace the conventional memory bus interface between the memory controller and the
memory modules with narrow, high-speed, uni-directional point-to point interfaces. The memory
controller communicates with the memory modules using a packet-based protocol, which is trans-
lated to the conventional DRAM commands at the memory modules.

Memory latency has been widely accepted as one of the key performance bottlenecks in computer
architecture. Hence, any changes to memory sub-system architecture and protocol can have a
significant impact on overall system performance. In the first part of this dissertation, we did an
extensive study and analysis of how the behavior of newly proposed memory architecture to iden-
tify clearly how it impacts memory sub-system performance and what the key performance limiters
are. We then went on to use the insights we gained from this analysis to propose two optimization

techniques focussed on improving the performance of the memory system.



We first evaluated the performance of the current de facto serial memory system standard,
FBDIMM (Fully Buffered DIMM) with respect to the conventional wide-bus architectures that have
been in use for decades. We found that the relative performance of a FBDIMM system with
respect to a conventional DDRx system was a strong function of the bandwidth utilization, with
FBDIMM systems doing worse in low utilization systems and often out-performing DDRx systems
at higher system utilizations. More interestingly, we found that many of the memory controller poli-
cies that have been in use in DDRx systems performed similarly on a FBDIMM system.

Memory latency typically has a significant impact on overall system performance. FBDIMM sys-
tems, by using daisy chaining and serialization, increase the default latency cost of a memory
transaction. In a longer memory channel, i.e. a channel with 8 DIMMs of memory, inefficient link
utilization and memory controller scheduling policies can contribute to a further reduction in sys-
tem performance. We propose two main optimization techniques to tackle these inefficiencies -
reordering data on the return link and buffering at the memory module. Both these policies lower

read latency by 10-20% and improve application performance by 2-25%.
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Chapter 1: Introduction

The growing size of application working sets, the popularity of software-based multimedia
and graphics workloads, and the increased use of speculative techniques have contributed
to the rise in bandwidth and capacity requirements of computer memory sub-systems.
Capacity needs have been met by building increasingly dense DRAM chips and bandwidth
needs have been met by scaling front-side bus data rates and using wide, parallel buses.
However, traditional bus topologies have reached a point where they fail to scale well into
the future.

The electrical constraints of high-speed parallel buses complicate bus scaling in
terms of loads, speeds, and widths [1]. Consequently the maximum number of DIMMSs per
channel in successive DRAM generations has been decreasing. SDRAM channels have
supported up to 8 DIMMs of memory, some types of DDR channels support only 4
DIMMs, DDR2 channels have but 2 DIMMs, and DDR3 channels are expected to support
only asingle DIMM. In addition, the serpentine routing required for electrical path-length
matching of the data wires becomes challenging as bus widths increase. For the bus widths
of today, the motherboard area occupied by asingle channel is significant, complicating the
task of adding capacity by increasing the number of channels. To address these scalability
issues, an alternate DRAM technology, the Fully Buffered Dual Inline Memory Module
(FBDIMM) [3] has been introduced.

The FBDIMM memory architecture replaces the shared parallel interface between
the memory controller and DRAM chips with a point-to-point serial interface between the
memory controller and an intermediate buffer, the Advanced Memory Buffer (AMB). The

on-DIMM interface between the AMB and the DRAM modulesisidentical to that seenin



DDR2 or DDR3 systems, which we shall refer to as DDRx systems. The serial interfaceis
split into two uni-directional buses, one for read traffic (northbound channel) and another
for write and command traffic (southbound channel), as shown in Fig 1.1. FBDIMMs
adopts a packet-based protocol that bundles commands and data into frames that are trans-

mitted on the channel and then converted to the DDRXx protocol by the AMB.

Understanding FBDIMM. The FBDIMMS' unique interface rai ses questions on whether
existing memory controller policies will continue to be relevant to future memory architec-
tures. In particular in thefirst part of the dissertation we ask the following questions:
= How do DDRx and FBDIMM systems compare with respect to latency and bandwidth?
= What isthe most important factor that impacts the performance of FBDIMM systems?
= How do FBDIMM systems respond to the values of parameters like row buffer man-
agement policy, scheduling policy and topology?

To answer these questions, we did an evaluation of the performance of FBDIMM

systems and DDRx systems using memory inputs from the SPEC 2000[ 2] workload suite.

Memory Controller

Northbound Channel Southbound Channel

DN =00EE
AN

DDRx SDRAM device | up to 8 Modules
Y/ |

JO0EMOEEE

Figurel.1. FBDIMM Memory System. In the FBDIMM organization, there are no multi-drop busses;
DIMM-to-DIMM connections are point-to-point. The memory controller is connected to the nearest
AMB, viatwo uni-directional links. The AMB isin turn connected to its southern neighbor via the same
two links.



Our study showed that the relative performance of aFBDIMM system and a DDRXx system
was a strong function of the bandwidth utilization of the input streams. Overall, the
FBDIMM system had a 27% average higher latency, which were mainly due to workloads
with bandwidth utilizations of less than 50% total DDRx DRAM bandwidth. This latency
degradation becomes alatency improvement of nearly 10% for FBD-DDRS3 systems asthe
application bandwidth utilization increased past 75% due to the ability of the FBD memory
controller to usethe additional DRAM level parallelism, split busarchitecture and ability to
send multiple DRAM commands in the same clock cycle. However, the additional system
bandwidth available in a FBDIMM system resulted in an average of approximately 10%
improvement in overall bandwidth with most of the benefits coming again for workloads
with higher bandwidth utilization.

More interestingly, we found that the scheduling policies and row buffer manage-
ment policies used in DDRx systems continued to perform comparably in FBDIMM sys-
tems. In both cases, ascheduling policy that prioritizesread traffic over writetraffic had the
best latency characteristics for both open page and closed page systems. A scheduling pol-
icy that prioritized traffic to currently open banks in the system had the best bandwidth
characteristics while agreedy approach did very well in closed page systems.

One difference that we found with regard to FBDIMM and DDRXx system behavior
was their response to the use of posted CAS, a DRAM protocol feature which simplifies
memory controller design by allowing the memory controller to bundle arow activation
and read/write command in back-to-back command cycles. Unlike DDRx systems,
FBDIMM systems using posted CAS had worse latency and bandwidth characteristics than

systems which did not use this. This difference arose from the organization and use of the



FBDIMM command frame and the sharing of the FBDIMM southbound bus by commands
and write data.

Detailed measurements of the contributors to the read latency of a transaction
revealed that a significant factor contributing to the overall latency was delays associated
with the unavailability of memory system resources, such as southbound channel, north-
bound channel and DRAM. Scaling the memory system configuration, by adding more
ranks or channels, resulted in the unavailability of each of these factors varying in adiffer-
ent fashion and interacting in different waysto impact the observed latency. In general, we
observed that short channel FBDIMM systems are limited by DRAM availability, while
long channel FBDIMM systems are bound by channel bandwidth. This problem is exacer-
bated in variable latency mode configurations where significant latency and bandwidth

degradation occur due to inefficient usage of the northbound FBDIMM channel.

Optimizing FBDIMM Read L atency. The use of serialization and a multi-hop topology
in FBDIMM systems has led to increases in the default cost of aread transaction. The
FBDIMM protocol allows the channel to be configured in one of two modes, a fixed
latency mode where the round-trip latency for atransaction isidentical for all DIMMs and
IS set to the round-trip latency of the last DIMM in the chain. This mode imposes a higher
default latency cost which is not desirable. The alternate mode, known as the variable
latency mode, has been provided to target thislatency cost. In this mode the channel is con-
figured such that the round-trip latency of atransaction is afunction of the distance of the
DIMM from the memory controller. By allowing this, the FBDIMM protocol hopes to

lower overall read latency.



Although the variable latency mode is able to reduce the average read latency for
many of the workloads studied, this was not always true for applications executing in
longer FBDIMM channels where the latency reductions were most needed. This problem
was due to two reasons, one the inefficient utilization of the north link and the second that
transactionsto closer DIMMs haveto often wait for read datafrom further DIMMsto com-
plete using the north link although the DRAM isready.

We studied two techniques to improve the latency of an FBDIMM channel using the
following techniques
= Out of order return of read data or allowing read datato return out of order,
= Buffers at the AMB for north link data to permit transactions to nearer DIMMSs being
issued in advance

Like previously defined memory protocols, the FBDIMM specification assumes an
omniscient memory controller that manages all system resources, including the DRAM,
on-DIMM busesi.e. command and data bus, and on-board linksi.e. the south and north
links. The memory controller hasto guarantee that there are no violations of DRAM timing
parameters or any conflicts on any of the various system buses. The default implementation
of the protocol assumes that read data returns in the order that it was scheduled. Conse-
guently, the scheduler is unable to take advantage of idle time on the north links which
occur prior to the use of thelink by apreviously scheduled read transaction.

Thefirst optimization that we looked at wasto improve latency and bus utilization by
relaxing the need for datato return in the same order as the commands. We propose atech-
nigue to permit re-ordering of returning read data that can be implemented without modify-

ing the existing FBDIMM memory protocol. Permitting reordering of read data improves



the maximum sustainable bandwidth of the system by 1-2 GBps. Application latency
improvesin a4-8 DIMM deep system by an average of 5-25% while bandwidth utilization
increased by 5-10%. Multi-program workload runs on afull system simulator demonstrate
that this technique improves overall IPC by an average of 5-15%, with the most benefits
being seen in asystem with longer channels.

The second technique that we explored was focussed on de coupling DIMM avail-
ability from north link availability. We proposed using buffers on the northbound channel
pat that hold read data frames. Buffering enables the memory controller to read data out of
the DRAM rows without having to wait for the north link to become available. We exam-
ined several buffering policies including Source Buffering, Global Variable Buffering and
Global Binary Buffering. These policies are distinguished by where buffering is permitted,
i.e. at the DIMM supplying the data or at any DIMM on the path from the DIMM to the
memory controller, and the buffering duration specified, a pre-defined fixed duration or a
dynamically determined value. Buffering is managed by the memory controller and all
buffering durations are specified by the memory controller in the command frames.

We found that buffering resultsin aspeed-up of 2 to 25% for memory system topolo-
gieswith 4 and 8 DIMMSs per channel. Again, most of these benefits arose from increasing
the ability of the memory controller to move data out of the closest DIMM earlier. A mem-
ory controller that uses buffering and re-ordering of data returns further reduces memory
latency by an additional 10%. The overall speed-up by using both optimizations is on the
order of 2-25%, over the baseline system which only allowsin order return of dataand does

not support buffering.



This dissertation is organized as follows. Chapter 2 describes the past work donein
the memory system area both in academia and industry. Chapter 3 describes the evolution
of memory architectures and describes in detail the FBDIMM memory architecture and
protocol. Chapter 4 has a comparison of the characteristics of DDRx and FBDIMM sys-
tems. It a'so has detailed results and analysis of the behavior of FBDIMM memory systems
as system configurations are scaled. Chapter 6 describes the optimizations that we explored
to improve the average read latency of aFBDIMM memory system. Chapter 7 summarizes

thefinal conclusions of this dissertation.



Chapter 2: Related Work

Microprocessor speeds have tracked Moore' s law [1], doubling every eighteen months,
while DRAM speeds have increased at a more moderate rate of roughly 7% [2], doubling
only every 10 years. The resulting gap, also termed the memory wall, increases at 50%
every year. The chief consequence of this has been the devel opment of techniquesto reduce
or hide memory latency.

At the architectural level these techniques including lock-up free caches [3], hard-
ware and software pre-fetching [4, 5], speculative execution and multi-threading focus on
tolerating memory latency. Burger et al. [6] demonstrated that the majority of these tech-
niques lowered latency by increasing bandwidth demands. A later study which examined
different DRAM architectures by Cuppu et al. [7] demonstrated that memory manufactur-
ers were able to meet bandwidth demands but had not been able to tackle latency effec-
tively.

2.1. Performance Optimizationsfor the Memory Sub-System

There have been several studies at the controller level which examine how to lower
latency while simultaneously increasing bandwidth utilization. The focusses of these tech-
niques have been lowering row-buffer miss rates by employing address mapping, memory
request access reordering or split-transaction scheduling. Row-buffer misses are expensive,
because conflicts can be resolved only after a precharge-activate sequence. Zhang et al [8]
studied how address mapping can be used to lower row-buffer conflicts are reduced. The
scheme attempts to distribute blocks that occupy the same cache set across multiple banks

in the system, by xoring the lower page-id bits with the bank-index bits. Rixner et al [9]



studied how re-ordering accesses at the controller to increase row buffer hits can be used to
lower latency and improve bandwidth for media processing streams. They studied several
policies that re-ordered requests based on age, arrival order, typei.e. loads over stores and
ratio of column to row accesses. [10] studied how such re-ordering benefitted from the
presence of SRAM cacheson the DRAM aka Virtual-Channel DRAM for web servers Tak-
izawa et al.[11] proposed a memory arbiter that increased the bandwidth utilization by
reducing bank conflicts and bus turnarounds in a multi-core environment. The arbiter
reduces bank conflicts by reducing the priority of DRAM accessesthat are to the same bank
asthe previously issued access or if the access direction (read or write) isdifferent from that
of the previously issued access.

Natargjan et a [12] studied how memory controller policies for row buffer manage-
ment policies, including open page, closed page and delayed closed page policies and com-
mand scheduling impacts latency and sustained bandwidth. They show that access re-
ordering with aclosed page policy providesthe best bandwidth and latency for DDR/DDR2
based systems. They also demonstrate in DDR/DDR2 that intelligent read-write switching
isinfluential in reducing businefficiencies.

Wang [13] proposed a memory request re-ordering algorithm which focussed on
increasing bandwidth utilization. The algorithm attempted to get around bus constraints
like bus turnaround time, and DRAM constraints like row-activation windows. Shao et al
[14] propose a burst reordering scheduling scheme to improve the system memory bus uti-
lization. The scheme reorders memory requests, such that read accesses, that are addressed
to the same row of the same bank are clustered together. Writes are typically delayed until

the write queue is either full or hits a particular threshold size. When the latter occurs, the



scheduler piggybacks write transactions onto the ongoing burst by issuing a write transac-
tion which is addressed to the currently open row. When the write queue is full, the sched-
uler issues the oldest write transaction in the system.

Linet al [15] studied how memory controller based pre-fetching can lower the system
latency in a system with an on-chip memory controller. Zhu et a [16], on the other hand
studied how awareness of resource usage of threadsin an SMT could be used to prioritize
memory requests.

Cuppu et a [17] demonstrated that concurrency isimportant even in a uni-processor
system, but split-transaction support would lower latency of individual operations. [18]
studied how split-transaction scheduling in a multi-channel environment could be used to
lower latency.

Intelligent static address mapping techniques [15] [8] have been used to lower mem-
ory latency by increasing row-buffer hits. The Impulse group at University of Utah [19]
proposed adding an additional layer of address mapping in the memory controller. This
mapping technique reduced memory latency by mapping non-adjacent data to the same
cacheline and thus increasing cacheline sub-block usage. The mapping is handled by the
memory controller with information from the operating system. They used this mapping in
conjunction with a parallel vector access unit [20], which enabled the memory controller to
encode multiple requestsin asingle command to improve bus utilization.

Shao et al. [21] proposed a bit-reversal address mapping scheme for SDRAM sys-
tems. The scheme reversesthe ‘v’ highest address bits and uses these to map the rank bits,

bank bits and part of the row address bits. They demonstrate that this schemeimproves exe-
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cution time by mapping the most likely changing bits to the column, rank and bank bits and
by redistributing memory accesses to be equally distributed across all banks.

Mitra et al.[22] characterized the behavior of 3D graphics workloads to understand
the architectural requirements for these applications. They explored the impact of using
architectural optimizations such as active texture memory management, speculative render-
ing and dynamic tiling on the performance of graphics applications. In addition they char-
acterized the memory bandwidth requirements for these applications.

Embedded system controllers used in media systems have to provide high bandwidth
utilization for the media and signal processing workloads while simultaneously providing
low latency service to on-chip processing elements. Harmsze et al [23] proposed a solution
to this problem in which they allocate fixed scheduling interval s to continuous streams and
any additional slack time at a higher priority to CPUs and peripherals. This scheme was
used in conjunction with on-chip buffering to provide compile-time guarantees of perfor-
mance. This scheme does not take into account the state of the underlying DRAM. Leeet al.
[24, 25] proposed a memory controller design that used alayered architecture, with alayer
dedicated to DRAM management, QoS scheduling and address generation for continuos
streams requestorsto solve the same problem. The DRAM management layer generated the
DRAM command stream required to process an actual request. Asin earlier work, the
DRAM layer designed a schedul e that takes into account bank conflicts, bus turnaround
times etc. In addition, the Quality of Service Access layer provided the DRAM layer with
information regarding the priority of agiven request which istaken into account to build the
schedule. The QoS Access layer sendsthe DRAM layer information whether agiven access

is latency-sensitive, bandwidth sensitive or neither. Like Harmsze et al, they provide fixed
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bandwidth to a bandwidth sensitive stream, but unlike them they build in pre-emptive
mechanisms which allows the scheduler to pre-empt a bandwidth-sensitive stream when a
latency sensitive requestor makes arequest.

Neshit et al.[26] proposed afair queueing memory controller scheduling algorithm
targeted for CMP systems. The controller allocates memory bandwidth to each thread
based on the threads memory utilization. Excess bandwidth is then distributed across
threads that have consumed |ess bandwidth in the past cycle. This guarantees that any mali-

ciousthread does not succeed in adenia of service attack on the machine.
2.2. Power Management

System growth in combination with device trends together have led to more and more
devices being squeezed together on smaller and smaller areas[1]. This, in combination with
speeds of operation etc., has resulted in growing power consumption. To effectively tackle
this power consumption, most system components, including processors, disks and mem-
ory are capable of switching into low-power modes.

In the case of the memory system, power modes are available in nearly all DRAMs
e.g. RDRAM, SDRAM, DDR/2. In DRAMSs, alarge portion of the power isdrawn by the |/
Ocircuitry, PLLs, on-chip registers. Thelow power modes disablethiscircuitry. Inter-node
transitions take non-zero time, with the transition from low power modes to high power
modes taking longer than transitions from high power modes to low power ones.

Rambus RDRAM, for instance, supports four operating modes, in order of decreas-
ing power consumption, active, standby, nap and idle. The granularity of control for power
isat thelevel of anindividual device or chip. The SDRAM family also offers power modes

which are activated at the rank level. DDR2 SDRAM has alow power state- power down
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that is reached by disabling the clock enable (CKE) input. Depending on whether banks are
precharged or active, the power-down savings are different. Additional power consumption
determining factors are DIMM activity, such as bank activation, read and write operations,
refresh etc.

Delaluz et al [27] also examined how to control DRAM power consumption for an
RDRAM system. They examined how the compiler could insert directivesto transition the
DRAM into the appropriate power state based on profiling information. They also exam-
ined how to reorder array accesses and how to cluster arrays with similar access patterns
together to reduce power consumption. They studied some hardware-based techniques that
were threshold monitoring or history based techniques and found that these performed bet-
ter because compiler-based techniques tended to be more pessimistic and lacked the
detailed runtime information.

In afollow-up paper [28], they examined how operating system directed power man-
agement of the memory system could be beneficial. They observed that the OS can keep
track of which pages are required by a process, and enable the associated modules prior to
its scheduling, while disabling the idle modules. Power savings using this technique did not
scale well with the number of modules, because of the uniform distribution of a process
pages across multiple modules. As the number of active threads increased, the returns also
diminished.

Lebeck et al [29] examined how software and hardware techniques can be used to
reduce power consumption in the memory system. They used both execution-driven and
trace-driven simulations to quantify the impact of both hardware-only and software/hard-

ware schemes for asystem using RDRAM memory. The hardware based schemes included
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static schemes which transition the DRAM from one state to another after certain fixed
threshold of time has passed, anddynamic schemes which examined distance between
accesses to the same device before making a transitional decision. They studied how page
allocation could be combined with the above schemes to improve energy reduction. Page
allocation was such that the entire applications’ data was allocated to one device at atime.
Based on access patterns pages were migrated to the same chip, thereby allowing more
devicesto be powered down.

Huang et al [30] studied how avirtual memory manager could be used lower DRAM
power consumption for a DRDRAM based system. They modified a virtual memory man-
ager in Linux to perform page alocation in a more power efficient manner. The page alo-
cation strategy used was similar to the sequential first-touch scheme used by Lebeck et al
[29], but is enhanced to take into account DLL loading and shared pages. Unlike the earlier
scheme, the operating system would issue instructions to the memory controller to activate
aprocess pages prior to its execution. The remainder of the DRAM sub system is kept in
Nap mode. In afollow-up paper [31], they studied the impact of using power-aware virtual
memory in a server with DDR based memory. Co-operative schemes perform marginally
better than hardware-only schemes but use significantly lower resources to track page
usage.

2.3. Commercial Memory Controllers

The 21174 memory controller[32], which was designed for the 21164 and 21164PC

Alphaworkstationg33], was an SDRAM based memory controller. This controller repre-

sented the transition from the use of asynchronous DRAM architectures to synchronous

DRAM architectures. The goals of the design were to eliminate the latency incurred due to
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overheadslike having to cross multiple chip domains. To do this, they used anovel memory
sub-system design where the CPU was directly connected to the DRAM data bus, but the
addressing and control was managed by the memory controller. The controller was
designed for an open page system, and had a built-in 4-bit predictor per bank, which was
used to determine whether the next access will be ahit or amiss. The prediction for agiven
predictor state was configured using a 16-bit software controlled register. They noted that
the performance improvement by using this predictor is substantial for afew applications.

The Intel 870[34] isamemory controller for the Itanium. It can support up to 4 chan-
nels each with 8 DDR ranks. The memory controller chip can be connected to 4 processors
simultaneously. It has an on-chip scalability port that enablesit to be connected to an addi-
tional 12 processors. The chipset supports memory access re-ordering policies which focus
on taking advantage of row locality and read/write re-ordering to avoid the impact of bus
turn around times. The chipset also has its own read caches that act as prefect buffers for
controller level pre-fetching. Being a multi-processor memory controller, it has support for
directory level cache coherence. Several chipsets can be connected via the scalability port
to form a network of 16-way processor system. Communication on this network is high-
speed seria packet based communication.

The Intel front-side bus architecture has the processor communicating to the North-
bridge chipset and cores via a fast, wide, shared bus. The northbridge chip, which was
mainly the off-chip memory controller and cache coherence controller, is connected to the
I/O controller, the AGP and the memory channels. With the trends towards increased inte-
gration, Intel first moved the graphics controller onto the chip-set[35]. More recently, the

Intel 5000 series memory controller,(code-named Blackford), that is designed for dual-core
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and quad-core chips, takes this integration process further by moving the PCI Express con-
troller onto the chipset [36]. The Blackford chipset supports 2 logical channels of
FBDIMM memory (4 physical channels), that are referred to as “branches’. The chipset
supportsinterleaving of cachelines across channels, ranks and banks. To provide increased
RAS (Reliability, Availability and Serviceability), the memory is stored with ECC and the
memory controller supports scrubbing i.e. periodically reading back memory and checking
that it is correct. Both the PCl-express and FBDIMM channel are protected by CRC due to
the higher transfer rates.

Theincreased integration of platform level components has resulted in the moving of
the memory controller on-chip for both IBM’s Power 5[37] and AMD Opteron processors
[38, 39]. Both these chips support a dual-channel, 16-byte memory channel interface and
reduce memory latency by eliminating a chip domain crossing. In the past, on-chip memory
controllers have been built for the Sun Sparc 5, which used asimple 1 level caching hierar-
chy and an on-chip memory controller to reduce memory access overheads. Intel is

expected to follow this trend with the Nehelam processor.
2.4. Processor-in-Memory Architectures

Traditionally complex OOO processors have been built to hide the memory latency.
These processors use sophisticated techniques such as out-of-order execution and specula-
tion to hide thislatency. One requires large memories to keep these complex OOO proces-
sors busy. Asthe memory hierarchy gets more complex, the distance between the CPU and
memory increases. Saulsbury et al.[40] proposed moving away from CPU-centric design to
reduce the impact of the memory wall. They proposed bringing the processor and memory

closer by moving the processor onto the DRAM chip.
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The Berkeley IRAM[41, 42, 43, 44] project studied how to merge the processor and
DRAM onto the same chip. They demonstrated how this could improve memory access
latency, available bandwidth to the processor, overall energy efficiency and cost savings.
Memory latency was reduced by redesigning the memory and allowing the processor to get
data from accesses to rows which are closer to the processor earlier than those which were
further away. Thisis unlike what is done in conventional DRAM chips. Energy reductions
are achieved at comparable performance due to the lower cost of a DRAM access as com-
pared to the an SRAM access. Further, due to the larger density of DRAM, the number of
off-chip accesses are reduced resulting in an additional energy savings [44]. System cost
reductions are achieved by reducing the number of chips on amother board.

Vector IRAM[45, 46, 47] is an architecture that combines vector processing and
IRAM to meet the demands of multimedia processing, with high energy efficiency. The
vector IRAM processor comprises of anin-order superscalar core with one level of cache, a
eight pipeline vector execution unit and several banks of memory. Code written for this
architecture had to be compiled by a vectorizing compiler[46, 48] which was designed to
compile code such that it took advantage of the on-chip memory bandwidth.

Another approach has been the FlexRAM architecture[49, 50] which isimplemented
on Merged Logic DRAM chips. The architecture comprises of many simpler processing
elements each with a DRAM bank. Each compute element is restricted to access its own
DRAM bank and that of its immediate neighbors. A larger processor element on the chip
manages the execution of tasks on the simpler compute elements and the communication
between non-adjacent members. The FIexRAM chip in turn can be connected onto any

commodity memory interconnect. Cache coherence is managed either by the programmer
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or by using adirectory based shared memory controller[51]. Programming for thisarchitec-
ture is made easier by the use of a special language and compiler support to automatically
layout the code across the different compute elements 52, 53].

Some of theissueswith building logic on DRAM technology [43] isthat the | atter has
been optimized for small size and low |leakage rather than speed. Further, the number of
layers availablein the two fabrication processes differ. The packaging used in DRAM chips
is designed to dissipate significantly lower power (on the order of Watts) than that used by
processors (can dissipate on the order of tens of watts). Due to the merging of logic and
DRAM on the same chip also increases testing time.

The third approach proposed has been to use active pages[54, 55, 56], a page-based
model of computation that associates simple functions with each page of memory. Active
Page architectures are different from the previous two proposals since they are used to
enhance performance of the conventional processor-memory architecture and not replace
them, making it easier to adapt. Using active pages does not require the memory interfaceto
be changed. Active Page data is modified with conventional memory reads and writes;
Active Page functions are invoked through memory-mapped writes. Synchronization is
accomplished through user-defined memory locations. Finally, Active Pages can exploit
large amounts of parallelism by being able to support simultaneous computations to each of
the pagesin memory.

An alternate approach to reduce the distance between the processor and DRAM isto
use a stacked micro-architecture. Black et al.[57] proposed a 3D die-stacked micro-archi-

tecture, where the DRAM s stacked on the CPU, thereby reducing memory latency and
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increasing bandwidth. Further, they demonstrate that thisis a more power efficient archi-

tecture since it reduces the off-chip buslengths.

2.5. Split-Transaction Buses

Shared buses used in multi-processor architectures are either single-transaction or
split-transaction buses[58]. A single-transaction bus, also known as a circuit switched bus,
permits only a single operation at a time, keeping the bus unavailable during the period
when aread request is being serviced by the memory. A split-transaction bus permits multi-
ple transactions to be outstanding by splitting each read request into two parts. First, aread
request isfollowed by arelease of the bus. Later, when the memory is prepared to return the
result, it again arbitrates for the bus, acquiring it just long enough to send the requested data
to the processor.

The split-transaction bus may be further refined by whether or not results are returned
in the same order that they are requested. An in-order split-transaction bus always requires
that read requests be completed in the same order in which they are initiated, while an out-
of-order split-transaction bus places no restriction on the ordering of read requests. Typi-
cally, split-transaction buses may have alimit on the number of concurrent outstanding
requests permitted

The HP Runaway Bus [59] was a split-transaction, time-multiplexed bus that was
used in one-way to four-way SMP systems. It significantly improved bus utilization over a
single-transaction bus. The bus supported multiple outstanding split transactions from each
bus module, predictive flow control, apipelined arbitration scheme and a snoopy coherence

protocol. The bus protocol used master IDs and transaction IDs to tag every transaction.
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These were transmitted in parallel with the address and the returning data, thereby ensuring
that tag transmission did not contribute to overall latency.

Bus protocol design is also an important area of study in system-on-chip designs.
Several protocols have been proposed to handle this problem including the AMBA bus pro-
tocol [60], the CoreConnect bus architecture [61], the Open Core protocol standard [62] by
industry and othersin academiaincluding the LOTTERY bus [63] and the SAMBA proto-
col[64]. All these protocols use split transaction buses to improve bus utilization. The
Samba protocol [64] attempts to improve fabrication delaysin a split transaction bus sys-
tem by explicitly defining request phases and response phases. The latter can be used by
any module which does not share the same bus segment as the arbitration winner.

The concepts of using a split-transaction have a so been explored in memory systems
by Cuppu et al. [17, 65]. Cuppu et al. demonstrated how interleaving read and write data on
the same bus can be used to improve bus utilization and overall system performance. Zhu et
al [18] studied how splitting amemory request into multiple DRAM requests can be used to

lower overall latency.
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Chapter 3: Background
This chapter provides an overview of the workings of the memory system hierarchy and the
operational parameters available to the designer. The chapter also delves into the main
trends prevaent in the memory system industry. It describes the evolution of DRAM archi-
tecture, from asynchronous architectures used in the early 90’ s to the current day synchro-
nous dual data-rate devices and finally ends up with a detailed description of the FBDIMM

memory architecture and protocol.
3.1. Memory Request Overview
Figure 3.1 illustrates the life of amemory request, right from itsissue at the processor core,

to its subsequent dispatch to the memory system and its completion in a uni-processor envi-

ronment. Memory requests are issued by the core to handle load or store instructions and
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igure 3.1. Abstract Illustration of Data being obtained from memory for a Load
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Device configuration 16 Meg x 16

Configuration 4 M x 16 x 4 banks
row addressing 8K (A0-A12)
bank addressing 4 (BAO, BA1)
column addressing 512 (AO- A8)

32 bit physical address (byte addressable)

]

31 29 28 27 26 14 13 12 11
nomemory rank ID row ID bank ID column ID not used

Figure 3.2. Address Mapping. The figure illustrates the address mapping scheme
employed in amemory controller using DRAMswith the configuration in the table above.
The device configuration influences how many bits are required to identify the address
location. The system has one channel (hence no bits are allocated to the channel), four
ranks of memory of the type specified in the table.

ALU instructions which use memory-based operands. If the request cannot be fulfilled
from the processor’ s caches, arequest is sent to memory controller.

Address Mapping: One of thefirst stepsin processing arequest isto do a mapping
from the physical address space to the DRAM layout. The memory controller uses a fixed
memory address mapping policy to do this mapping. An address location in DRAM is
determined by a channel ID, arank ID, abank ID, arow ID and a column ID. The address
mapping policy determineswhich bits of the physical address are used to determine the var-
ious DRAM specific IDs mentioned. Figure 3.2 illustrates how a address mapping policy
determines the location of a given addressin memory. Note, that since the system has only

one channel, no address bits are allocated to the channel ID.
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Address mapping policies are determined by the device configuration, system topol -
ogy and row buffer management policies. The device configuration determines how many
bits are allocated for the bank, row and column IDs. The system topology determines the
layout of the ranks in the system, whether the ranks all exist on asingle channel, multiple
channels or multiple physical channelswhich are ganged to behave asasinglelogical chan-
nel.

Row buffer management policies are another important factor to consider when
devising an address mapping policy. They influence which portion of the address bits to
allocateto the various I Ds. Typical row buffer management policies include the open page,
closed page and auto page. An open page policy attempts to take advantage of the locality
inaDRAM page, while a closed page policy is more common in systems where thereisa
little or no locality in the address stream. In an open page policy the row is opened and data
isretained in the sense amps even after the transaction completes. The row is closed only
when anew transaction which goes to another row in the same bank is scheduled. Thus, an
address mapping policy for an open page system would try to capture this spatial locality.
In a closed page system, the row is closed immediately upon the completion of a transac-
tion and the banks are precharged. In such a system the address mapping policy will distrib-
ute adjacent addresses to different banks and ranks.

Memory Transaction Scheduling: Once the address translation is completed, the
memory controller attempts to schedul e the request to the DRAM. The scheduling policy of
the controller and the state of the DRAM determines how long this process will take. For

instance, the memory controller can select to re-order requests to obtain the most efficient
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Closed Page Policy
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Open Page Policy - Bank Conflict

Open Page Policy - Bank Hit

IFETCH {CAS >

Figure 3.3. DRAM Commands associated with a transaction. The figure illustrates
the resulting DRAM command stream for an instruction fetch (IFETCH) memory
transaction. The commands scheduled are dependent on the state of the DRAM i.e. if
the required row is open or not and the row buffer management policy in use.

bandwidth utilization. Based on the reordering policy used, priority can be given to reads
over writes or to accesses that are mapped to an open row-buffer or to the oldest transaction
etc. Thetransaction waits in the transaction queue waiting for its turn to be scheduled.
Scheduling to the DRAM:: In this stage, the memory controller sends the associated
DRAM commandsto read or write the data. The transaction isbroken down into asequence
of DRAM commands determined by the row buffer management policy and the state of the
DRAM. Figure 3.3 demonstrates how these factors determine the exact DRAM command
sequence used by an instruction fetch (IFETCH) transaction. In the closed page scheme,
where the banks are by default precharged the memory controller has to first open the
required row using arow activate command or RAS. The controller than issues a column
access command or CAS to the DRAM which initiates a data burst from the DRAM. The
controller restores the DRAM to its default state with a precharge command. In a system

employing the open page policy, the relevant bank will be open but the open row may or
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may not be the row of interest. Depending on whether the relevant row is open (bank hit) or
another row is open (bank conflict), the command sequence changes asillustrated.
Following the receipt of the relevant data, the memory controller sends this back to

the processor, thereby compl eting the memory request.

3.2. DRAM Architecturesover time

This section goes over the various types of DRAM and their features. Performance
improvementsin DRAM have been lessinfluenced by advancesin the speed of DRAM cir-
cuitry, than by higher level structural and interface changes. Bandwidth gains have been
traditionally achieved by structural modificationsto theinterface. Recently, several DRAM
manufactures have attempted to tackle the latency problem, by proposing radical changes
to the underlying core architecture. Figure 3.4 illustrates the evolution in DRAMS, the
changes between successive generations and which performance bottleneck the modifica-
tions attempt to address [10].

Conventional DRAM: forms the basis of modern day DRAMs with the addressing
mechanism still in vogue, with minor changes. The address bus is multiplexed between
row and column components. The multiplexed address bus uses two control signals of the
row and column address strobe signals, RAS and CAS respectively which cause the
DRAM to latch the address components. The row address causes a complete row in the
memory array to propagate down the bit lines to the sense amps. The column address
selects the appropriate data subset from the sense amps and causes it to be driven to the

output pins.
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architectures from the basic DRAM to its modern day avatars. It shows the chief factors
influencing the trends.

Fast Page Mode DRAM (FPM DRAM): Fast-Page Mode DRAM implements page
mode, an improvement on conventional DRAM in which the row-address is held constant
and data from multiple columns is read from the sense amplifiers. The data held in the
sense amps form an open page that can be accessed relatively quickly. This speeds up
successive accesses to the same row of the DRAM core.

Extended Data Out DRAM (EDO DRAM): Extended Data Out DRAM, sometimes
referred to as hyper-page mode DRAM, adds a latch between the sense-amps and the
output pins of the DRAM. Thislatch holds output pin state and permits the CASto rapidly
de-assert, allowing the memory array to begin precharging sooner. In addition, the latch in
the output path also implies that the data on the outputs of the DRAM circuit remain valid

longer into the next clock phase.
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Synchronous DRAM (SDRAM) : Conventional, FPM, and EDO DRAM are
controlled asynchronously by the processor or the memory controller; the memory latency
is thus some fractional number of CPU clock cycles. An alternative is to make the DRAM
interface synchronous such that the DRAM latches information to and from the controller
based on a clock signal. SDRAM devices typically have a programmable register that to
specify the burst length. The advantages include the elimination of the timing strobes and
the availability of data from the DRAM each clock cycle. The underlying architecture of
the SDRAM coreis the same as in a conventional DRAM.

Enhanced Synchronous DRAM (ESDRAM): Enhanced Synchronous DRAM is an
incremental modification to Synchronous DRAM that parallels the differences between
FPM and EDO DRAM. First, the internal timing parameters of the ESDRAM core are
faster than SDRAM. Second, SRAM row-caches have been added at the sense-amps of
each bank. These caches provide the kind of improved intra-row performance observed
with EDO DRAM, allowing requests to the last accessed row to be satisfied even when
subsequent refreshes, precharges, or activates are taking place.

Dual Data Rate Memory (DDR): DDR has the same basic architecture as SDRAM.
To achieve higher bandwidth rates of 200 to 400 Mbyps, datais transferred at both edges of
the clock. The higher clock speeds are achieved by multi-plexing the 1/O buffers and not
increasing the core speeds. A source-synchronous signal, DQS is added to enable data
transfer. The DQS is generated by the component sending the data i.e. by the memory
controller during a write and the DIMM during aread. The DQS is edge aligned for read

data and centre aligned for write data.
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Dual Data Rate Memory (DDR2): This is the next generation DDR DRAM with a
few gsignificant differences. DDR2 achieves higher data-rates lying between 400 to 667
Mbps. The number of DRAM banks is four for all devices except those with capacities
greater than 1Gb. The uni-directional DQS signa has been replaced with a differential
data strobe. DDR2 also introduces the concept of posted-CAS i.e. the memory controller
can issue aRAS and CAS in subsequent cycles. The DRAM processes the CAS only after
a fixed programmable period also known as the additive latency. The core operating
voltage of DDR2 has been significantly lowered thereby lowering overall power
consumption. Finally DDR2 adds on-die termination (ODT) to the data I/O pins. This
feature is controlled by the ODT pin and consumes additional power when activated.
Typically, on-die termination is only enabled to terminate write data to the DRAM or to
terminate read data from a different DRAM.

Virtual Channel SDRAM (VCSDRAM): Virtual Channel SDRAM, designed by
NEC, aso contains SRAM caches. But the caches are not really buffers for the sense amps
like ESDRAM. VC SDRAM contains 16 virtual channels, or 16 1 KB SRAM caches.
Whilethe ESDRAM modul e takes care of the "caching" internally, the VC SDRAM caches
are managed by the chipset. Thisresultsin two important consequences. First, VC SDRAM
will only work properly when paired with a chipset that supportsit. Additionally, the per-
formance of VC SDRAM will depend tremendously on the quality of the chipset'simple-
mentation.

Fast CycleRAM (FCRAM) : FCRAM (Fast Cycle RAM) was developed by Fujitsu
which seeks to lower latency by changing the DRAM core. The process includes core seg-

mentation and pipeline operations. This new structure has some advantages including the
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ability to send Row and Column information at the same time, as opposed to the standard
sequential operation. FCRAM uses a standard DDR interface. FCRAM targets high-perfor-
mance network systems and other high-end applications that require high-speed large
capacity low-power memories.

3.2.1 Serial Memory Protocols

In the late 90s, Rambus released the first high-speed serial bus based memory system
protocol[7, 5]. The proposal, which wasradical for that time, waslargely an overhaul of the
conventional memory system interface. Initial Rambus Base Common I nterface replaced
the wide data bus with a bi-directional byte-wide data bus. Two additional bus control bus
signals and the data bus were used to transport command information. DRDRAM increased
the data bus interface to 16 bytes wide and added on a dedicated row and command bus.
Higher data-rates were achieved by sending data every clock edge and reflection was
reduced by using termination, both features which were seen in DDR systems. The archi-
tecture also incorporated an interesting clocking scheme, where the clock travelled from
the memory controller to the DRAM chips and then looped back and returned on a clock
return path to the memory controller. Data to the chips was synchronized with the outward
bound clock while data being sent back to the controller was synchronized with the clock
on itsreturn path.

To support the narrow, high-speed interface RDRAM chips had decoding logic,
DLLs built on. These increased both the power consumption and manufacturing costs of
the RDRAM chips. DRDRAM which was the second generation Rambus DRAM standard,
had a pipe-lined micro-architecture with different pipeline stages dedicated to row decod-

ing, command transport, data transfer and moving data into and out of a write buffer. To
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utilize the available pin bandwidth in DRDRAM devices, the DRDRAM chips typically
had at least 16 DRAM banks, each with 1 Kilobyte data pages. The number of banks are
higher than that seen in aconventional SDRAM or DDR device.

Although selected to be the memory platform for Intel’ s processors, DRDRAM never
ended up becoming the default industry standard, in part due to the larger costs associated
with manufacturing and licensing. Further, DRDRAM also were demonstrated to have
higher latency characteristics[6] aswell as higher power consumption. DRDRAM was
used in gaming systemslike the Sony Play Station 2 where high bandwidth was anecessity.

XDR isthe next generation Rambus serial memory protocol which has an octal data-
rate of 3.2 Gbps. Thisisachieved by transmitting 8 data bits every clock cycle. Unlike past
offerings from Rambus, XDR uses differential signalling, aso known as Rambus Differen-
tial Signalling, on the bus. XDR does away with path length matching by using flexphase
technology. Flexphase refers to the per bit deskewing control used in XDR. The burst
length of an XDR system,16, is significantly longer than current DDRx systems. Most
Rambus solutions described above are all part of solutions to deal with providing higher

data-rates by utilizing high-speed serial narrow buses.
3.3. Memory System Trends

The memory system over a decade has been subject to severa generic trends, higher
bandwidths achieved by using wide, fast buses, and increasing DRAM capacity per chip.
These trends have till date supported the memory requirements of both desktop and server
systems. Further scaling the conventional DRAM interface to meet the increased bandwidth
and capacity demands are less successful due to the inherent limitations placed by wide high-

speed buses. In the following section, we examine the current trends in the memory system
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industry, future growth expectations, and how the combinations has resulted in the proposal
for an aternate memory interface.
3.3.1 Bandwidth

The Von Neumann architecture [15], also known as the ‘stored-program concept’ is the
universally accepted model of computing. The separation of the CPU and the memory
contributes to what is known as the Von Neumann bottleneck, aterm coined by John Backus
in his 1977 ACM Turing award lecture. The bottleneck refers to the data transfer rate of the
bus between the CPU and the memory. This bus has a far lower capacity than the memory
connected to it, thereby becoming a bottleneck in the transfer of data from the memory to the
processor.

According to Backus:

"Surely there must be a less primitive way of making big changes in the store than by pushing
vast numbers of words back and forth through the von Neumann bottleneck. Not only isthis tube
a literal bottleneck for the data traffic of a problem, but, more importantly, it is an intellectual
bottleneck that has kept us tied to word-at-a-time thinking instead of encouraging us to think in
terms of the larger conceptual units of the task at hand. Thus programming is basically planning
and detailing the enormous traffic of words through the von Neumann bottleneck, and much of
that traffic concerns not significant data itself, but whereto find it."

This von Neumann bottleneck has been aggravated by growing CPU speeds and
increasing memory capacity. The slower memory speed which increases access time to
memory worsens this bottleneck. The latency aspect which has been the focus of computer
architecture research will be discussed later. The initial efforts to deal with this bottleneck
has been the usage of caches, which are located closer to the processor and hold the operat-
ing set.

Several factors have contributed to the increasing memory bandwidth requirement

demands. These include the system level trends like increasing processor speeds, growing
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use of speculative techniques, and increasing number of cores/threads on the die. Another
aspect driving increasing memory bandwidth requirements has been application driven
trends, shown in figure 3.5[18].

Bandwidth demands were initially met by increasing the width of the memory data-
bus, the data-rate and simultaneously the internal prefetch width. As can be seenin figure
3.6 the data bus width has increased from 8 bitsto its current day value of 64 bits, by dou-
bling nearly every 3 processor generations.

The other technique used to increase bandwidth has been to increase the speed of the
front-side bus. As can be seen in figure 3.6, the data bus speed has been doubling every 2
years. Thefigure also shows that DRAM core speed has been increasing at afar lower rate
than the increases in pin-bandwidth. The recent data-rate increases have been largely

fuelled by the use of internal pre-fetching. For example, in the SDRAM the core and the
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achieved by increasing theinternal prefetch.

bus are running at the same rate, with each output buffer releasing a bit every clock cycle.
For DDR, the core speed is half the bus speed. In this case, two bits are transferred to the
output buffer and released in a time multiplexed fashion at both the falling and rising edge
of the clock. With DDR2 and DDR3, the prefetch rate isincreased by 4 or 8, allowing the

coreto run at asignificantly lower speed than the actual interface.
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terms of the latency to DRAM in CPU cycles, and the increasing ability of the processor
to process and commit more and more instructions per cycle.

Increasing the data-rate is difficult asthe parallel bus architecture beginsto show lim-
itations at speeds touching gigabits-per-second. Noise and cross-talk at higher speeds
reduce signal integrity and make bus synchronization non-trivial. The energy required to
drive awide bus is high, exacerbating ground bounce, noise problems and increasing the
power dissipation. At higher frequencies, bus turn-around time can no longer be hidden.
Hence, after years of ever-widening bus widths, narrow serialized buses have emerged asa
natural choice.

3.3.2 Latency

The von Neumann bottleneck is further aggravated by the growing separation of
speeds between the memory and the processor. CPU speeds double roughly every 18
months, while DRAM speed i.e. speed of the core increases at a more modest rate of
roughly 7% only. This difference in speed contributes to the growing latency of a memory
request, in terms of CPU cycles (Figure 3.8) [1]. Thisresulting latency increase has been

termed the “memory wall”[17].



Techniquesto tolerate, reduce and hide thislatency have been devel oped. Thesetech-
niques include lock-up free caches[11], hardware and software pre-fetching [3, 4], specu-
lative execution and multi-threading. These techniques trade-off reducing tolerating
memory latency while increasing memory bandwidth [2]. A few alternate DRAM technol-
ogies like FCRAM, VCSDRAM have aso been proposed to tackle the latency problem.
These techniques though have been used only high-end systems where the additional costs
arejustified.

3.3.3 Capacity

The desktop requirements for RAM (based on the minimum requirements to boot a version of
Microsoft Windows) has roughly doubled every two years from around 4MB in 1993 to
256MB in 2004. The minimum requirements for Windows are at least half of what isrequired
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Figure 3.9. Server Capacity Demand. The figure shows the
trend in RAM requirements for servers and demonstrates how the
installed capacity has tracked this demand.

to run a system without frequent swapping of pagesto disk. Server DRAM requirements has
aso followed asimilar trend, as shown in the figure 3.9 [14].

The DRAM chip density growth has slowed down from roughly 4X every 3 yearsto
roughly 2X every three years (figure 3.10) [9]. The most recent introduction has been the

1Gb chip on 90 nanometer technology by Samsung. DRAM chips are combined to dual-
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inline memory modules (DIMMs). DIMM capacity is afunction of both the number of
DRAM chips used and the capacity of the chips. Dimms that feature 36 Drams, also called
“high density” or stacked DIMMs are used in server systems.

The capacity per DIMM has been increasing due to improved DRAM density over
time, unfortunately, total capacity per channel (the number of DIMMs per channel multi-
plied by the capacity per DIMM) has stayed flat at best and has even decreased in certain
instances. The multi-drop bus in vogue today has each DIMM directly connected to the
channel. To reduce the impedance mismatches, the number of DIMMS in a channel are
limited, thereby limiting the DRAM capacity of a system. The number of loads/channel has
been decreasing from SDRAM/DDR,8, to DDR2,4 and further to DDR3i.e. 1-2 (figure
3.11).

An alternate solution to increasing capacity would be to increase the number of chan-
nels. Thisis not possible, because of the width of the channel. The 240-pin wide interface

makes routing already a complex and expensive task due to path-length matching con-

DRAM Capacity Trends

10000 Figure 3.10. DRAM
1000 | Capacity Trends. The
£ 400 graph showsthe increasein
g DRAM bit density over the
S 10 1 years. The initial trend of
S 11 roughly 4X every 4 years
© 01 has dowed down to 2X
S every 4 years
o ™ © (o2} AN Lo o Te} [ee]
F & 38 8 & 38 8 8
— i i i i i N N N

Year

36



_ #DIMMs/Channel o
c >
% 1 Gb* 4 Gb* E
£ 4 = 7323
~ 256 Mb* ©
%) f O
= 2 ) T 16 —
% Channel Capacity e
c

* 1 L -1 8 E
I A A A SR B O

200 400 600 800 1000

DRAM Data Rate (Mbps)
*DRAM Chip Bit Density

Figure3.11. DIMM Capacity/Channel with increasing data-rates. The  figure
shows how the number of DIMMSs/channel has been steadily decreasing with
increasing datarate. Source [8].

straints. The resulting serpentine routing also occupies significant board area. Increasing
the number of channels, would significantly increase the cost of the motherboard aswell as

the complexity of itsdesign.

3.4. FBDIMM Overview

As DRAM technology has advanced, the channel speed has improved at the expense of
channel capacity; consequently channel capacity has dropped from 8 DIMMsto asingle
DIMM per channel. Thisis asignificant limitation—for a server designer, it iscritical, as
servers typically depend on memory capacity for their performance. There is an obvious
dilemma: future designers would like both increased channel capacity and increased data
rates—but how can one provide both?

Thetrend is clear: to improve bandwidth, one must reduce the number of impedance
discontinuities on the bus. Graphics subsystem designers have known thisfor along time—

for every DRAM generation, graphics cards use the same DRAM technology asisfound in
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commodity DIMMs, but operate their DRAMSs at significantly higher speeds by avoiding
multi-drop connections.

The relation between a modular organization and the graphics-card organization is
shown in Figure 3.12, which depicts a multi-drop DRAM bus next to a DRAM bus organi-
zation typical of graphics cards. The graphics card uses the same DRAM technology asin
the multi-drop organization, but it uses point-to-point soldered connections between the
DRAM and memory controller to achieve higher speeds. How can one exploit this to
increase data rates without sacrificing channel capacity? One solution isto redefine one's
terms—to call the graphic-card arrangement a“DIMM?” in one’ s future system. Thisis
shown on the right-hand side of figure 3.12 and is precisely what is happening in FB-
DIMM: aslave memory controller has been added onto each DIMM, and all connectionsin
the system are point-to-point. The channel connecting the master memory controller to the
DIMM-level memory controllers (called Advanced Memory Buffers, or AMBS) is very nar-
row and very fast. Because each DIMM-to-DIMM connection is a point-to-point connec-
tion, a channel becomes a de facto multi-hop store & forward network. The FB-DIMM
architecture limits the channel length to 8 DIMMs, and the width of the inter-module busis
narrow enough to require roughly onethird the pins as atraditional organization. The result
isthat an FB-DIMM organi zation can handle roughly 24 times the storage capacity asasin-
gle-DIMM DDR3-based system, without sacrificing any bandwidth and even |eaving head-
room for increased intra-modul e bandwidth.

The AMB behaves like a pass-through switch, directly forwarding requests it

receives from the controller to successive DIMMs and forwarding frames from southerly
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Figure 3.12. Motivation for the design of FBDIMM. The first two organizations
compare a modular wide-bus and memory organization of a graphics card. Above each
design is its side-profile, indicating potential impedance mismatches (sources of
reflections). The organization on the far right shows how the FB-DIMM takes the
graphics-card organization as its de facto DIMM. In the FB-DIMM organization, there
are no multi-drop busses; DIMM-to-DIMM connections are point-to-point. The
memory controller is connected to the nearest AMB, viatwo uni-directional links. The
AMB isin turn connected to its southern neighbor via the same two links.
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DIMMs to northerly DIMMs or the controller. All frames are processed to determine
whether the dataand commands are for the local DIMM.

3.4.1 FBDIMM protocol

The FBDIMM system uses a serial packet-based protocol to communicate between the
memory controller and the DIMMs. Frames may contain data and/or commands. Com-
mands include DRAM commands such as row activate (RAS), column read (CAS), refresh
(REF) and so on, as well as channel commands such as write to configuration registers,
synchronization commands etc. Frame scheduling is performed by the memory controller.
The AMB only convertsthe serial protocol to DDRx based commands without implement-
ing any scheduling functionality.

The AMB is connected to the memory controller and/or adjacent DIMMs via serial
uni-directional links - the southbound channel which transmits both data and commands
and the northbound channel which transmits data and status information. The southbound
and northbound data paths are respectively 10 bits and 14 bits wide. The channel is dual-
edge clocked i.e. transmission of datais done on both clock edges. The different bus widths
for the northbound and southbound channel ensure that a FBDIMM system has twice the
read bandwidth. The read bandwidth of a FBDIMM system matches the bandwidth of a
DDRx system while the write bandwidth available is one half of a DDRx system making
the total bandwidth available 1.5 timesthat in a DDRx system.

The FBDIMM channel clock operates at 6 timesthe speed of the DIMM clock i.e. the
link speed is 4.2 Gbpsfor aDDRXx system operating at 667 Mbps. Frames on the north and

south bound channel require 12 transfers (6 FBDIMM channel clock cycles) for transmis-
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Figure3.13. FBDIMM Frames. The figure illustrates the various types of
FBDIMM frames which are used to transfer commands and data in the FBDIMM
system.

sion. This 6:1 ratio ensures that the FBDIMM frame rate matches the DRAM command
clock rate.

Southbound frames comprise both data and commands and are 120 bits long; data-
only northbound frames are 168 bits long. In addition to the data and command informa-
tion, the frames carry header information and frame CRC checksum used to check for
transmission errors.

Thetypes of frames defined by the protocol are[12] and illustrated in the figure 3.13

Command Frame: comprises up to three commands (figure 3.13a). These are sent to
separate DIMMs on the southbound channel. In the absence of available commands to
occupy acomplete frame, no-ops are used to pad the frame. Frames are protected by 22-bit
CRC when the channél is fully operation or 14 bit-CRC when the channel experiences a
single bit lane failure.

Command + Write Data Frame: carries 72 bits of write data and one command on

the southbound channel (figure 3.13b). Multiple such frames are required to transmit an
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entire data block to the DIMM. The AMB of the addressed DIMM buffers the write data as
required.

Data frame: comprises 144 bits of data or 16 bytes of data and 2 bytes of ECC
information (figure 3.13c). Each frame is filled by the data transferred from the DRAM in
two beats or asingle DIMM clock cycle. Thisisanorthbound frame and is used to transfer
read data.

The FBDIMM has two operational modes, the fixed latency mode and the variable
latency mode. In fixed latency mode, the round-trip latency of framesis set to that of the
furthest DIMM. Hence, systems with deeper channels have larger average latencies. In the
variable latency mode, the round-trip latency from each DIMM is dependent on its distance
from the memory controller.

Figure 3.14 shows the processing of aread transaction in an FBDIMM system. Ini-
tially acommand frame is used to transmit a command that will perform row activation.
The AMB trandates the request and relays it to the DIMM. The memory controller sched-
ulesthe CAS command in a following frame. The AMB relays the CAS command to the
DRAM deviceswhich burst the data back to the AMB. The AMB bundles two consecutive
bursts of a data into a single northbound frame and transmits it to the memory controller.
The AMB releases the data on the northbound link In this example, we assume a burst
length of 4 corresponding to 2 FBDIMM data frames. Note that although the figures do not
identify parametersliket CAS,t RCD andt_CWD [16, 13] the memory controller must

ensure that they are met.
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Figure 3.14. Read Transaction in FBDIMM system. The figure shows how a read
transaction is performed in a FBDIMM system. The FBDIMM serial buses are
clocked at 6 times the DIMM buses. Each FBDIMM frame on the southbound bus
takes6 FBDIMM clock periodsto transmit. On the northbound bus a frame comprises
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Figure 3.15 shows the processing of a memory write transaction in a FBDIMM sys-
tem. Due to the reduced south link bandwidth the write data requires double the number of
frames than the read data. All read and write data are buffered in the AMB before being
relayed on, indicated by the staggered timing of data on the respective buses. The CAS

command is transmitted along with the last chunk of data



FBDIMM

ook WUTTUUTTUUTUTUU Uiyt

Sautbound o OB (N D
Bus ' ' . . .
DIMM [ |

clock

DIMM | ,
Command -+ — — =
Bus

DIMM

Data Bus E____E___E___E___E_——I(DOXDOXD(JXDO?____E

Notthbound b — — L
Bus : : : : . . , ,

igure 3.15. Write Transaction in FBDIMM system. The figure shows how a write
ansaction is performed in aFBDIMM system. The FBDIMM serial buses are clocked at 6
mes the DIMM buses. Each FBDIMM frame on the southbound bus takes 6 FBDIMM
ock periodsto transmit. A 32 byte cacheline takes 8 framesto be transmitted to the DIMM.



Chapter 4: Performance Evaluation
In this chapter, we study how the performance of an FBDIMM system varies with system
configuration parameters. We also study how the performance of an FBDIMM system
compares with its corresponding DDRXx system. Our studies show that the relative perfor-
mance of a FBDIMM system as compared to a DDRx system is a strong function of the
bandwidth utilization of the workload. We found that memory controller optimizations
employed in conventional memory systems are still relevant in FBDIMM systems.
FBDIMM systems are limited by mainly the efficient utilization of the channel bandwidth

available.
4.1. Methodology

This study uses DRAMsim [9], a stand-alone memory system simulator. DRAMsimisa
detailed execution-driven simulator that models a number of memory protocols including
DDRx systems and their corresponding FBDIMM systems. The simulator supports the
variation of memory system parameters of interest including scheduling policies, memory
configuration i.e. number of ranks and channels, address mapping policy etc.
4.1.1 Memory Controller Model

Figure 4.1 depicts the architecture of the memory controller simulated for our study
and the mechanism used to drive the simulator for this study. The memory controller com-
prises of two equally sized transaction queues - the read transaction queue and write trans-
action queue, from which command and data frames are scheduled to the channel. Read
transactions are moved to the Read Response Queue, once the associated DRAM com-

mands are scheduled, where they wait for the read data to return. The memory controller
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Figure4.1. Memory Controller Architecture. .The figure shows the basic architecture of th
memory controller modelled in DRAMsim and used fro these experiments. The figure al'so shows th
methodology used to input transactions into the simulator. Memory requests are fed from either afil
created by a random address generator or from a memory request trace file obtained from CP
simulation infrastructures.

guarantees that read and write requests to identical DRAM locations are serialized. However, we do not
model any additional constraintsimposed by the use of particular consistency and coherency protocols.
We studied four different DRAM types: a conventional DDR2 system with a data-rate of
667Mbps, a DDR3 system with a data rate of 1333Mbps and their corresponding FBDIMM systems:
an FBDIMM organization with DDR2 on the DIMM and another with DDR3 on the DIMM.
FBDIMM modules are modelled using the parameters available for a4GB module [5]; DDR2 device
are modelled as 1Gb parts with 8 banks of memory [6]; DDR3 parameters were based on the proposed
JEDEC standard[4]. The ratio of the CPU frequency to the corresponding DDRXx data-rate was set to

3:1. Thetiming parameters used in this study are givenin thetable 4.1.
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TABLE 4.1. Memory System Parameters

Par ameter DDR2 DDR3
Data-rate (Mbps) 667 1334
tras (NS) 45 36
trp (NS) 15 12
trc(ns) 60 48
trcp (clock cycles) 5 8
tcas (clock cycles) 5 8
trrc(NS) 127.5 110
teaw(NS) 375 30
trrp(NS) 7.5 6
trTp(N9) 7.5 7.5
Transaction Queue Delay (ns) 16 16

Multi-programming workloads were generated by combining several SPEC 2000
benchmarks [3]. The workloads were combined to generate two main types of combina-
tions, amemory intensive (MEM) and amix of memory intensive and ILP intensive appli-
cations (M1X). The methodology used to identify whether a given SPEC benchmark is
memory intensive or not and to create the workload mixesis based on those proposed in
earlier SMT studies[1, 8]. SPEC benchmark traces were gathered using Alpha 21264 sim-
ulator sim-alpha[ 2], with a1l MB last-level cache and an out-of-order core. The memory
address traces collected have the time-stamp associated with every memory request. The
BIU interface is setup such that requests are placed into the BIU at the time they arrive, as
determined by the trace. The changesin timing introduced by the use of adifferent memory

system configurations are incorporated into the trace timing behavior aswell.
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TABLE 4.2. Multi-programming Wor kloads

Workload Benchmarks Type
MIX-2a mcf, gzip MIX
MIX-2b applu, wupwise MIX
MEM-2a mcf, gcc MEM
MEM-2b swim, art MEM
MIX-4a applu, wupwise, mgrid, ammp MIX
MIX-4b Swim-gzip-art-vortex MIX
MEM-4a swim-lucas-mcf-applu MEM
MEM-4b mcf-applu-mgrid-art MEM
MIX-8a swim-gzip-lucas-vortex-applu-wupwise-mgrid-ammp | MIX
MIX-8b swim-gzip-lucas-vortex, mcf, gcc, applu, gzip MIX
MEM-8a mcf-applu-mgrid-art-swim-lucas-swim-lucas MEM
MEM-8b mcf-applu-mgrid-art-swim-lucas-mcf-applu MEM

Severa configuration parametersthat were varied in this study include:

Number of ranks and their configuration. FBDIMM systems support six channels of
memory, each with up to eight DIMMSs. This study expands that dlightly, investigating a
configuration space of 1-32 ranks, with ranks organized in 1-4 channels of 1-8 DIMMs
each. Though many of these configurations are not relevant for DDRx systems, we study
them to see the impact of a different bus topology on performance We study
configurations with one rank per DIMM. Hence, the phrase rank and DIMM

interchangeably throughout this dissertation.

Row-buffer management policies. We study both open-page and closed-page systems.

Note that the address mapping policy is selected so as to reduce bank conflicts in the



system. The address mapping policies “sdram close page map” and “sdram hiperf map”

[9] provide the required mapping for closed page and open page systems respectively.

Scheduling policies . Severa DDRx DRAM command scheduling policies were studied.
Theseinclude
= Greedy The memory controller issues a command as soon as it is ready to go. Priority
isgiven to DRAM commands associated with older transactions.
= Open Bank First (OBF) is used only for open-page systems. Here priority is given to
al transactions which are issued to a currently open bank.
= Most pending isthe “most pending” scheduling policy proposed by Rixner [7], where
priority is given to DRAM commands to banks which have the maximum number of trans-
actions.
e Least pending isthe “least pending” scheduling policy proposed by Rixner [7]. Com-
mands to transactions to banks with the least number of outstanding transactions are given
priority.
e Read-Instruction-Fetch-First (RIFF) prioritizes memory read transactions (data and
instruction fetch) over memory write transactions.

Note that we only study the scheduling policies OBF, least pending and most pend-
ing in the case of open page systems since these policies attempt to improve latency charac-
teristics by exploiting row locality.

4.2. FBD vs. DDRx

In this section, we describe how the performance characteristics of the various work-

loads varied with a number memory controller configuration parameters. We also examine
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how memory sub-system performancei.e. latency and bandwidth changed when replacing
aconventional DDRx system with its FBDIMM counterpart.
4.2.1 Application Latency and Bandwidth Characteristics

Figure 4.2 and 4.3 show the variation in average read latency with system configura-
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Figure4.3. Read Latency Characteristicsin an Open Page System. The  graphs
show the variation in average read latency for a given configuration for the different
dram types studied. All data is for a system which uses the open page row buffer
management policy, does not use posted CAS and uses a burst length of 8. Each graph
plots the average read latency in nano-seconds on the y-axis and the memory system
configuration on the x-axis. On the x-axis the system configurations are grouped by the
number of channels. Within each channél group, the number of ranks increases as you
go from left to right.Note that the y-axis scales for the graphs are different.

tion for all the workloads executing in a closed page system and in an open page system,
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Figure4.2. Read Latency Characteristicsin a Closed Page System. The graphs
show the variation in average read latency for the different dram types studied. All
datais for a system which uses the closed page row buffer management policy, does
not use posted CAS and uses a burst length of 8. Each graph plots the average read
latency in nano-seconds on the y-axis and the memory system configuration on the x-
axis. On the x-axis the system configurations are grouped by the number of channels.
Within each channel group, the number of ranksincreases as you go from left to right.
Note that the y-axis scalesfor the graphs are different.
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respectively. Note that the average read latency shown in the figuresis the average of read
latency values observed for al runsfor a given benchmark in aparticular configuration. In
the graphs, systems with identical number of channels are grouped together on the x-axis.
Within a group, the points on the left represent topol ogies with fewer ranks and as one
moves from left to right, the number of ranksincreases.

Irrespective of dram type, for all the workloads we found that the average read
latency typically decreases as more ranks are added in the channel, largely due to the reduc-
tion in DRAM level resource conflicts (Figure 4.2 and 4.3). However, FBDIMM systems
may see some increase in read latency when going from a 4 deep to an 8 deep channel due
to the additional costs of a multi-hop network (Figures 4.2 (c, d) and 4.3 (c, d)). For DDRx
systemstheincreasein ranks essentially comesfor free because the DDRXx protocols do not
provide for arbitrary-length turnaround times.

Latency trends for applications in an open page system (figure 4.3) exhibit greater
degrees of non-linearity due to the non-linear variation in the number of DRAM page hits
as the number of DRAM resources are increased. Open page FBDIMM systems incur a
higher latency cost in comparison to their corresponding DDRXx system, then a closed page
FBDIMM system and its corresponding DDRx system. Thisis mainly because due to the
reduced cost of a DRAM operation in an open page system, the additional costs of an
FBDIMM system are more significant.

The FBDIMM channel by design is associated with higher latency costs due to seri-
alization and the daisy-chaining of DIMMSs. For some workloads, asthe number of ranksin
the channel isincreased, FBDIMM systems are able to offset these additional costs by

being able to simultaneously schedule transactionsto different DIMMs and transmit datato
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Figure4.4. FBD vs. DDRx: Latency Improvements as a function of bandwidth
utilization. The figure shows the average read latency of an FBD system normalized
against the average read latency of its corresponding DDRx system. The latency values
are normalized as a function of workload bandwidth utilization. The bandwidth
utilization classification is done using the observed bandwidth for the corresponding
DDRx system. The normalized average latency is across al workloads and all
configurations run.

and from the memory controller. Further, moving the parallel bus off the motherboard and
onto the DIMM hel ps hide the overhead of busturn-around time. In the case of morelightly
loaded systems like some of the multi-channel configurations, due to the lower number of
in-flight transactions in a given channel, we find that FBDIMMs are unable to hide the
increased transmission costs.

Although, overall FBDIMM systems have 15 to 30% higher latency than its corre-
sponding DDRx system, the relative performance of a FBDIMM system with respect to its
DDRx counterpart is a strong function on the system utilization (figure 4.4). System utili-

zation or bandwidth utilization is defined using the equation given below.

Observed Bandwidth

B Ut o <
andwidthUtilization = s aole Bandwidth
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For the purposes of classification based on bandwidth utilization, we used the
observed bandwidth values for the workload on a given system configuration on the DDRx
system. Each application was placed into a different utilization bin depending on the range
within which its bandwidth utilization fell.

Asseeninfigure4.4, at low system utilizations the additional serialization cost of an
FBDIMM system is exposed, leading to arelatively higher latency values than in a DDRX
system. As system utilization is increased, we find that the difference between the latency
of aFBDIMM system and its corresponding DDRx system drops rapidly. In the case of
DDRS3 based systems, at bus utilizations greater than 75%, the FBDIMM system has lower
latency than the conventional system. Thisis because an FBDIMM system can sustain
higher bandwidth utilizations than the DDRx system by effectively utilizing the split-bus
architecture. Further, aFBDIMM memory controller isableto exploit the DIMM level par-
allelism more effectively than a DDRx memory controller because of the separation of the
each individual DIMM’s DRAM interface from the common interface it shares with the
other DIMMs to communicate with the memory controller. These factors at higher system
utilizations lead to better latency characteristics.

Unlike the read latency, we found that the total sustained bandwidth did not vary sig-
nificantly with changes in the number of ranksin the system (figures 4.5 and 4.6). Sus-
tained bandwidth increases were more pronounced when additional channels were added
for workload combinations which could take advantage of the additional available band-
width e.g. multi-programming workloads with more than 4 programs.

Again asin the case of read latency, we find that the improvement in system band-

width achieved by using an FBDIMM system is afunction of the workloads bandwidth uti-
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Figure 4.5. Sustained Bandwidth Characteristicsin a Closed Page System. The
graphs show the variation in average sustained bandwidth for a given configuration for
the different dram types studied. All dataisfor a system which uses the closed page row
buffer management policy, does not use posted CAS and uses a burst length of 8. Each
graph plots the average bandwidth in Gbps on the y-axis and the memory system
configuration on the x-axis. On the x-axis the system configurations are grouped by the
number of channels. Within each channel group, the number of ranks increases asyou go
from left to right. Note that the y-axis scales for the graphs are different.
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Figure 4.6. Sustained Bandwidth Characteristicsin an Open Page System. The
graphs show the variation in average sustained bandwidth for a given configuration for
the different dram types studied. All dataisfor a system which uses the open page row
buffer management policy, does not use posted CAS and uses a burst length of 8. Each
graph plots the average bandwidth in Gbps on the y-axis and the memory system
configuration on the x-axis. On the x-axis the system configurations are grouped by
the number of channels. Within each channel group, the number of ranks increases as
you go from left to right. Note that the y-axis scales for the graphs are different.
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Figure4.7. FBD vs. DDRx: Bandwidth Improvements as a function of
Bandwidth Utilization. The figure shows the overall percentage improvement in
bandwidth achieved by a FBD system over its corresponding DDRx system as a
function of workload bandwidth utilization. The bandwidth utilization classification is
done using the observed bandwidth for the corresponding DDRx system. Note that the
latency improvements are calculated for al workloads studied and all configurations
run.

lization (Fig 4.7). We found that unlike the latency characteristics, at lower system
utilizationsi.e. less than 25% for DDR2 based systems and 50% for DDR3 based systems,
that the bandwidth seeninaFBDIMM system is nearly similar that seen in its correspond-
ing DDRXx system. As system utilization demand increases, we found that by utilizing the
additional system bandwidth available in an FBDIMM system, the workloads experience
better bandwidth characteristics on a FBDIMM system than on its corresponding DDRx
based system. Busier workloads tend to use both FBD channels simultaneously, whereas
the reads and writes have to take turns in a DDRx system. Bandwidth utilization drops as
the number of channelsin the system are increased. Consequently as the number of chan-

nelsincreased, the gains in bandwidth diminish till they vanish completely.
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4.2.2 Latency Contributors

In this section, we look at the trends in latency, and the factors impacting them, in
further detail. The overall behavior of the contributorsto the read latency are characteristic
of the system topology and are not particular to a given scheduling policy or row buffer
management policy. Hence, we use a particular row buffer management policy, RIFFinthe
case of closed page systems and OBF in case of open page systems for the discussion.

(a) MIX-2b-DDR2-CP (b) MEM-2b-DDR2-CP

Figures 4.8 to 4.15, showsthe average read latency divided into queueing delay over-
head and the transaction processing overhead. The queueing delay component refersto the
duration the transaction waited in the queue for one or more resources to become available.
For FBDIMM systems, the causes for queueing delay include memory controller request
gueue availability, south link availability, DIMM availability (including on-DIMM com-
mand and data buses and bank conflicts), and north link %/)ajl\l/laltz)illjlt}lzitl) n E;[BeRcéa_sg Ig))f DDRXx
systems, the cal(JCs)&yflo)r(qﬁ%ugggR gelcas include memory controller request queue availabil-
ity, command bus availability, data bus availability and DIMM availability (in this case,
mainly bank availability). Note that the overlap of queueing delay is monitored for all com-
ponents except the memory controller request queue factor. The default latency cost is the
cost associated with making aread request in an unloaded channel.

The qu%el\w)geé%/ B)fﬂsréee@ by aread transacti o&i m’grﬁy é%l%tB a@/ Cs{ilggl efac-
tor, but usually due to acombination of factors. Changing the system configuration, beit by
adding more ranksin the channel or increasing the number of channelsin the system, result
inachangeintheavailability of all the resourcesto adifferent degree. Thus, we seethat the

latency trends due to changes in a configuration are affected by how exactly these individ-

ual gqueueing delays change.
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Typically, single-rank configurations have higher latencies due to insufficient num-
ber of memory banks to distribute requests to. In such systems the DIMM is the dominant
system bottleneck and can contribute as much as 50% of the overall transaction queueing
delay. Adding more ranks in these system can help reduce the DIMM-based queueing
delays. The reductions are 20-60%, when going from aone rank to atwo-rank channel. For
4-8 rank channel, the DIMM-based queueing delay istypically only 10% of that in the sin-
gle-rank channel. However, in aDDRXx system the latter is not always true and we see that
inFig4.8 (b, d, e ) 4.10(d, g, f), for asingle channel case that the DIMM related overheads
do not reduce significantly as the channel is made longer. Thisis because although there
are multiple DIMMs available, the memory controller is not able to take advantage of the
DIMM level parallelism like a FBDIMM controller can. In an FBDIMM system, the
DRAM interface is isolated from the interface between the memory controller and the
DIMMs. Further the use of a split data bus architecture and the ability of the memory con-
troller to schedule multiple commands simultaneously in the same DRAM command clock
cycle, enables the memory controller to effectively exploit the DIMM-level parallelism.
Hence we see that although there are significant reductionsin DIMM associated queueing
delay in an FBDIMM channel, thisis not the case of a DDRx system. Increasing the num-
ber of ranks while simultaneously increasing the number of channels reduces the DIMM
associated queueing delay by enabling the DDRx controller to use the channel level paral-
lelism to take advantage of the DIMM level parallelism.

The interaction of the increase in processing overhead, number of in-flight transac-
tions using the channel, the type of these transactions and the lowering of DIMM-level con-

flictsresult in two prominent latency trends namely either alinear increasein latency with
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increased channel lengths or a more U-shaped latency trend i.e. an initial drop in latency
followed by an increase. Thisis unlike a DDRx system where the increase in the channel
depth usually resultsin adecrease in latency.

Inan FBDIMM system, increasing the channel depth rai sesthe transmission costsfor
frames on the channel. Thisresultsin an increase in the read latency with increasing chan-
nel depth for the M1X-2 and M1X-4 workloads at larger channel widths when the utiliza-
tionislow (Fig 4.9(a, ), Fig 4.11(a, c), Fig 4.13(a, c) and Fig 4.15 (&, ¢)). Interestingly, in
asingle channel case, the additional DRAM-level paralelism availablein adeeper channel
can counter the rise in frame transmission costs sufficiently to reduce overall latency (e.g
Fig. 4.9 (d)). The gainsin parallelism are especially apparent when going from a single-
rank to atwo-rank channel. These gains gradually taper off for further increasesin channel
depth.

With deeper channels, the increased number of in-flight transactions results in an
increase in the queueing delay due to the link-unavailability. This is attributable to the
heightened competition for the bus due to the additional number of in-flight transactions.
This increase can combine with the increase in processing cost to offset the gains due to
increased DIMM-level parallelism. Thus, we see that for nearly all the workloadsin asin-
gle channel configuration, that the latency increases in a single channel system when the
channel depth isincreased from 4 to 8 (Fig. 4.9 (a-f) and Fig. 4.11 (&f)).

As expected increasing the number of channels results in the reduction in latency by
increasing the amount of channel bandwidth available. We find that for the workloads with
higher bandwidth requirementslike MEM-8 and M1X-8 workloads, that doubling the num-

ber of channels can result in an increase in read latency (Fig 4.9(e, f), Fig. 4.11(e, f). These
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increases are mainly due to increases in queueing delay due to the transaction queue being
unavailable. The memory architecture modelled has a common shared BIU which has as
many slots as the combined total of the number of transaction queue slots across all the
channels. Consequently, when a particular channel’ s transaction queue fills up and there
are unissued requests waiting in the BIU for that channel, the BIU quickly fillsup and these
reguests experience significant queueing delay waiting for the transaction queue to become
available.

The main difference between open page systems and closed page systems (compare
Figures 4.9 and 4.13, Figures 4.8 and 4.12, Figures 4.10 and 4.14 and Figures 4.11 and
4.15), is that open page configurations experience higher queueing delay due to the
unavailability of multiple resources e.g. DIMM and return datalink, as compared to closed
page systems which experience higher queueing delay due to the unavailability of mainly a
single resource.

4.2.3 Impact of Scheduling Palicy

We found that the RIFF scheduling policy had the best latency characteristics over-
al. In an open page system, the OBF scheduling policy did pretty well too (figure 4.20).
With regards to bandwidth utilization, we found that the differences between the perfor-
mance of the various scheduling policies less obvious. In an open page system, the OBF
scheduler had the highest overall bandwidth, while in a closed page system it was the
greedy scheduler (figure 4.22). Overal FBDIMM systems and DDR systems had the same
scheduling policies perform better, although discrepancies existed for what performed best

inaparticular configuration.
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Figures 4.16, 4.17 and 4.18 provide a pictorial representation of the scheduling pol-
icy having the lowest latency for different system topologies for the workloads studied.
Note that only scheduling policies which are more than 2.5% of the average across all
scheduling policies are shown in the figure. A histogram of how often a particular schedul -
ing policy had the lowest latency possible, irrespective of how much lower, isshowninfig-
ure 4.19. From the two different representations, we can see that the RIFF policy, which
prioritizes read requests over write requests, performs the best for most of the cases. In an
open page system the RIFF scheduling policy also does better than a scheduling policy like
OBF, which attempts to reduce read latency by exploiting DRAM locality. The OBF
scheduler can delay servicing aread request to handle an earlier issued write command
which experiences a page hit. The RIFF scheduler on the other hand prioritizes the read
traffic, thereby improving the latency of aread transaction, which iswhat we focus on.

It was interesting that the RIFF scheduling policy performed better than the other
scheduling policiesin aFBDIMM system despite the separation of the read and write data
paths which reduces the competition between read and write traffic for the channel data-
bus. However, since the command bus and write-data bus are shared in FBDIMM systems,
read transactions compete with write transactions for command bandwidth. Read transac-
tions also compete with write transactions that are destined for the same rank or DIMM.
Hence, despite the separation of the read and write data paths, these two factors make prior-
Itizing read transactions still an effective policy in FBDIMM systems.

In the case of bandwidth characteristics, we found that additional channelsin the sys-

tem had a more pronounced impact on bandwidth than any other parameter. The OBF and
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Figure4.23. FBD vs. DDRx: Latency mprovementsfor different row buffer
management policies. The figure shows the change in read latency achieved by a
FBD system over its corresponding DDRx system as a function of workload
bandwidth utilization for different row buffer management policies. The
bandwidth utilization classification is done using the observed bandwidth for the
corresponding DDRx system. Note that the latency improvements are plotted as
normalized against the latency of a DDRx system. Latency averages are cal culated
for al workloads studied and all configurations run.
greedy scheduling policy had better bandwidth characteristics, while the RIFF scheduling
policy which has very good latency characteristics was within 2% of the overall average
bandwidth observed across all configurations whilein open page systemsit was within 4%
of the overall average bandwidth.
4.2.4 Impact of Row buffer Management Policy
Typically FBDIMM configurations experienced higher average read latency than the
corresponding DDRx configurations, but this effect was more pronounced in open page
systems than in closed page systems. On the other hand, FBDIMM systems sustained as
good or higher bandwidth than the DDRx system. Figures 4.23 and 4.24 show the improve-
ment in latency and bandwidth respectively seen by using an FBDIMM system over using

aDDRx system. Note that the data is plotted as a function of the bandwidth utilization of
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the workload. In an open page system, the access latency is reduced by taking advantage of
locality in DRAM pages. Inan FBDIMM open page system aside effect in the reduction of
the access |atency associated with DRAM row cycletimesisthat now the additional cost of
serialization and daisy-chaining dominate the latency costs. Consequently, open page
DDRx systems have significantly better latency values than their FBDIMM counterparts.
Another interesting phenomenon was that despite the heterogeneous nature of the
workloads studied, there was significant row locality in the system (as seen in figure 4.25).
As expected the bank hit rate i.e. the proportion of access that access a currently open
DRAM row, drops as the number of threads in the workload increased. Thus, we see that a
multi-threaded workload with 2 threads has more than double the row locality of the 8

threaded workloads.

FBD-DDR3 vs DDR3-OP FBD-DDR3 vs DDR3-CP FBD-DDR2 vs DDR2-OP FBD-DDR2 vs DDR2-CP

[m0-25 W25-50 O50-75 £75-100 |

Figure 4.24. FBD vs. DDRx: Bandwidth Improvementsfor different row buffer
management policies. The figure shows the improvement in bandwidth achieved by a
FBD system over its corresponding DDRx system as a function of workload bandwidth
utilization for open page and closed page systems. The bandwidth utilization
classification is done using the observed bandwidth for the corresponding DDRXx
system. Note that the bandwidth improvements are calculated for all workloads studied
and all configurations run and are shown normalized against the values seen for a
DDRX system.
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Figure 4.25. Average Bank Hit Ratios for various workloads. The graphs show the
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dram types studied. All data is for a system which uses the open page row buffer
management policy, does not use posted CAS and uses a burst length of 8. Each graph
plots the average bandwidth in Gbps on the y-axis and the memory system
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4.2.5 Impact of Variable Latency Mode

Therelative improvement in latency and bandwidth characteristics of asystem using
the variable latency mode setting over the fixed latency mode setting is a function of both
the number of ranksin the channel and the channel utilization. Variable latency mode had
better performance characteristics for light - moderately |loaded systems, while the fixed
latency mode did better in busier systems with longer channels. The latter was seen mainly
in FBD-DDR3 system.

Variable latency mode is effective in lowering the average read latency experienced
by atransaction in most system configurations (Fig 4.26). For nearly all cases, theimprove-
ments drop as the bandwidth utilization of the workload increases. In the case of some con-
figurations with 8 rank deep channels, there is a latency degradation suffered when
bandwidth utilization is more than 75%. Note that none of the workloads we studied, had
greater than 75% bandwidth utilization in a4 channel configuration. Thislatency degrada-
tion istypically seen in FBD-DDRS3 systems, where the overheads of transmission i.e. the
flight time of the packet down the channel, are larger than in FBD-DDR2 systems. The
flight time of a packet isindependent of the channel’ s operation frequency and increasing
the channel frequency only increases the number of channel cycles it takes. Latency
improvements seen by using variable latency mode are larger in open page systemsthan in
closed page systems (Fig 4.27).

Figure 4.28 shows the improvements in total system bandwidth achieved by using
the variable latency mode. Using the variable latency mode, especially at higher bandwidth

utilizations ends up lowering the overall bandwidth in the system. Thisis because variable
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Figure 4.26. Improvementsin read latency from using Variable L atency Mode.

The graphs show the improvements in average read latency of using variable latency
mode over using fixed latency configuration for different memory system topologies.
On the x-axis, the system configurations are grouped by the configuration, specified
by the number of channels x number of ranks. Within each channel group, the
percentage of bandwidth utilization increases as you go from left to right, with the
rightmost bar representing the overall average latency improvement. Note that we plot

the average improvement at a given system topology across al configurations run for
the particular topology point.
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Figure 4.27. Improvementsin read latency from using Variable L atency

M ode as a function of row buffer management policy. The graphs show the
improvements in average read latency of using variable latency mode over using
fixed latency configuration for different memory system topologies. On the x-axis,
the system configurations are grouped by the configuration, specified by the number
of channels x number of ranks. Within each channel group, the percentage of
bandwidth utilization increases as you go from left to right, with the right-most bar
representing the overall average latency improvement. Note that we plot the average
improvement at a given system topology across al configurations run for the
particular topology point.
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Figure 4.28. Improvementsin bandwidth from using Variable Latency M ode.

The graphs show the improvements in bandwidth of using variable latency mode over
using fixed latency configuration for different memory system topologies. On the x-
axis, the system configurations are grouped by the configuration, specified by the
number of channels x number of ranks. Within each channel group, the percentage of
bandwidth utilization increases as you go from left to right, with the right-most bar
representing the overal average bandwidth improvement. Note that we plot the

average improvement at a given system topology across all configurations run for the
particular topology point.



latency mode reduces the ability of the memory controller to pack the return data channel
tightly. At lower utilizations, the reduction in latency contributes to the ability of the mem-
ory controller to handle transactions more quickly, and consequently aslight increasein
bandwidth is possible.

Figure 4.29 shows the average percentage improvement in latency obtained by oper-
ating the system in variable latency mode for different workloads. All numbers are given
for a closed page system, but similar behavior was observed in an open page system as
well. The variable latency mode was effective in most cases in lowering the average read
latency. As expected, the variable latency mode is more effective for systems with deeper
channels.

On the other hand in a heavily loaded system, using variable latency mode increases
the average read latency. In variable latency mode, the read data latency for atransaction is
dependent on the distance of the rank from the memory controller. Consequently using this
mode lowers the effective utilization of the north link by introducing idle slots between
read data returns from different ranks. Asthe channel depth increases, the duration of the
idle gaps increases, making the latency characteristics worse (Figure 4.29 (c, e, f, i, |, m)).
In variable latency mode, the round trip latency of aread isafunction of the distance of the
addressed DIMM from the memory controller. Consequently, arequest to afurther DIMM
can be scheduled earlier than aread request to a DIMM closer to the memory controller.
The latter request can consequently experience higher queueing delays waiting for the

north link to become available. Thistoo contributesto an overall deterioration in latency as
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Figure 4.29. Improvementsin read latency from using Variable L atency Mode. The
graphs show the improvements in average read latency of using variable latency mode
over using fixed latency configuration for different memory system topologies. On the x-
axis, the system configurations are grouped by the number of channels. Within each
channel group, the number of ranks increases as you go from left to right. Note that we
plot the average improvement at a given system topology across al scheduling policiesin
a closed page system and do not use posted CAS. Graphs are for FBDIMM-DDR?2 system
while are for FBDIMM-DDR3 systems.
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the improvement in latency by using posted CAS. The graph plots the normalized

average latency on the y-axis and the dram type on the x-axis. The latency is

normalized against the average latency (across al runs, configurations and

workloads) for a system that does not use posted CAS.
the length of the memory channel increases and the number of outstanding requests
increases.
4.2.6 Impact of posted CAS

Posted CAS is a phenomenon where the memory controller can send aRAS and a

CAS command to the DRAM in consecutive cycles. The DRAM devices delay the process-
ing of the CAS command till a pre-specified additional delay time has been past. Posted
CASistypically used in closed page systems, where the DRAM command set per transac-
tion isfixed and using posted CAS makes memory controller design simpler. To support
posted CASinaFBDIMM system, memory controllerstypically send the RASand CASin
the same command packet. The RAS isissued to the DRAM in the first DRAM command

clock cyclewhilethe CAS command is released to the DRAM in the next command cycle.

The FBDIMM protocol supports this by design, since the command occupying the first
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command slot isissued to the DRAM in cycle n, while the commands occupying the other
slotsare released to the DRAM incyclen+1.

The use of posted CAS results in a degradation of latency in a FBDIMM system,
unlike in a DDRx system as compared to a system which does not use posted CAS. The
reduction in the available southbound channel bandwidth for a FBDIMM system using
posted CAS resultsin thisincrease in the overall read latency. By contrast, in aDDRX sys-
tem, the use of posted CA'S has no impact on the command bus utilization, and we see that
the latency characteristics are better when using posted CAS. Sending the CAS separately
from the RAS, introduces an arbitrary delay between the opening of the row and the data
being sent back to the memory controller. This arbitrary delay contributes to an increasein
the read latency of atransaction in a system not using posted CAS as opposed to one using
posted CAS. In the case of FBDIMM systems, the unavailability of the southbound link in
asystem using posted CAS outweighs any delays introduced to the memory controller in a
system which does not use posted CAS.

4.2.7 Southbound link utilization

The FBDIMM south link is shared by both commands and write data. The graphsin
figure 4.32 provide the distribution of bandwidth utilization of the different types of
FBDIMM frames. A command frame can carry up to three commands while a command-
dataframe carries 9 bytes of data (8-bytes of data and 1 ECC-byte) and one command. In
thefigure, command frames are further distinguished by the number of occupied command

slots. The system does not send a data frame unless data is present thus there are no zero-

89



100 100 100

80 -1 80 - 80f -
8 8 8
5 5 §
T T T
;—E 60~ - % 60 - % 60 -
5 5 — 5
£ £ ] £
k<! k<! 3
§ a0} B é 4o ] é 4or 7]
8T H 8 [

]DD o=
20 -1 20 -1 20 .- -1
| 0000
0 0 0
1 2 4 1 2 4 1 2 4
Number of Channels Number of Channels Number of Channels
(a) mix-2b-CP (b) mix-4a-CP (c) mix-8b-CP

-
1)
S
=
1)
S
=
=)
3

@
S
T
1
@
S
T
1
@
3
T
1

5 5 s
£ g 2
S g0 4 =& 6o} 1 £ eF M E
5 5 =
= < — <
3 3 — -;
H 5 ——
2 40 E 2 40 4 2 af i -
& o @ = [ ]—

20 Bm ] 20 ] 20f N

000 oo R
0 2
4 4

o

1 2

Number of Channels Number of Channels

Number of Channels

(d) mix-2b-OP (€) mix-4a-OP (f) mix-8b-OP

100

.
1)
S

80 -

@
3
T

60 -

i HHH nnilee

Number of Channels Number of Channels

(g) mix-4a-CP-Posted CAS (g) mix-8b-CP-Posted CAS

@
3
T
1

CMD_1_DATA 0
CMD_2_DATA 0
CMD_0_DATA 2
CMD_3_DATA_0
CMD_1_DATA 2

Bandwidth Utilization %
Bandwidth Utilization %

IS
S
T

m

1 2 4

~
S
T

\OROR0

=)

Figure 4.32. Southbound bus utilization. The graphs show the utilization of the
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dataframes. In the figure, graphs are shown only for afraction of the workloads we stud-
ied, but we observed similar behavior for the other workloads as well.

As expected southbound bus utilization is a strong function of the number of threads
in the workload with the 2 program workloads using around 30-40% of the southbound
bandwidth and the 8 program workloads using as much as 80% of the south link band-
width. For workloads with 2 or 4 programs, Fig 4.32(a, b), increasing the number of chan-
nelsresulted in alinear decrease in southbound utilization, while for 8 program workloads
which typically have larger bandwidth requirements, this decrease was observed only
when the number of channels was doubled from 4 to 8, Fig 4.32(c).

Despite the ability to send multiple commands in aframe, the opportunities to do so
are more limited in a system which does not use posted CAS. Across all benchmarks, we
found that the memory controller ismorelikely to schedule acommand by itself. For work-
loads with lower bandwidth utilization like mix-2a (Fig 4.32 a), the most commonly trans-
mitted frame is the command frame with one DRAM command and padded with 2 NO-
OPS. For workloads with larger write-traffic like mix-8a (Fig 4.32 (c)), the DRAM com-
mand is sent typically with a data payload. With increases in channel depth, the workloads
see a slight increase in the number of command frames that have 2 valid commands.
Regardless of the channel depth, |ess than 5% of the frames sent have 3 commands in them
and less than 10% of the frames have 2 or more commands.

The command bandwidth used by an open page system is a function of the bank hit
rate. A transaction in an open page system uses only one DRAM command when thereisa
hit to an open row and at least three commands (RAS, CAS and PRECHARGE) when there

iIsabank conflict. A closed page system on the other hand uses two commands, RAS and
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CAS with implicit precharge for each operation. Any open page system that has less than
50% bank hit ratio will have a higher command utilization. Hence, we see for the mix-2b
and mix-4aworkloads which have bank hit rates of around 80% and 60% respectively that
the southbound bus utilization is 2-10% lower in an open page system than in the closed
page configuration (comparing Fig 4.32 (a) and Fig 4.32 (d), and Fig 4.32 (b) and Fig 4.32
(). In the case of the mix-8aworkloads, the bank hit ratio increases from 40% in a 1- rank
configuration to around 60% in a 8 rank deep configuration. We see that for the mix-8a
workload, by comparing figures 4.32 (c, f), that the southbound bus utilization in the closed
page configuration gradually increases as compared to that in the open page configuration,
as you increase the number of ranksin the channel. In this case, the higher hit ratein the 8
rank deep configuration resultsin slightly lower command bandwidth requirements for the
open page case.

Another memory controller parameter which hasimpact on the southbound bus utili-
zation isthe use of posted CAS. The use of posted CA S increases the southbound bus utili-
zation by 10 to 20% (Fig 4.32 (g.h)) over the same configuration that does not use posted
CAS(Fig4.32 (b, c)). The effect of using posted CASis seen in channels which have more
than one rank because it reduces the ability of the memory controller to pack commands
with data packets. Nearly all frames transmitted in a system which uses posted CAS carry

at least one no-op.
4.3. Summary of Results

Our study indicates that an FBDIMM system provides significant capacity increases
over aDDRx system at comparable performance. Although an FBDIMM system experi-

ences an overall average latency increase compared to the corresponding DDRXx system,
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wefound that by efficiently exploiting the extraDIMM-level parallelismin abusier system
the latency costs can be significantly lowered and even eliminated. The split-bus architec-
ture makes the performance of the system sensitive to the ratio of read to write traffic. For
instance, it enables workloads with both read and write traffic to sustain higher bandwidths
than in a DDRx system. Workloads that use the system heavily tend to record higher gains
because they tend to use both channels simultaneously.

Overall FBDIMM system had an average of 27% higher latency which were mainly
contributed by workloads with bandwidth utilizations of lessthan 50% total DDRx DRAM
bandwidth. This latency degradation become a latency improvement of nearly 10% for
FBD-DDRS3 systems as the application bandwidth utilization increased past 75% due to the
ability of the FBD memory controller to use the additional DRAM level parallelism, split
bus architecture and ability to send multiple DRAM commands in the same clock cycle.
However, the additional system bandwidth availablein a FBDIMM system resulted in an
average of approximately 10% improvement in overall bandwidth with most of the benefits
coming again for workloads with higher bandwidth utilization.

Even more interestingly the behavior of an application in the conventional memory
architecture and the newer one are similar. The scheduling policies and row buffer manage-
ment policies used in DDRx systems continued to perform comparably in FBDIMM sys-
tems. In both cases, ascheduling policy that prioritizesread traffic over writetraffic had the
best latency characteristics for both open page and closed page systems. A scheduling pol-
icy that prioritized traffic to currently open banks in the system had the best bandwidth
characteristics while a greedy approach did very well in closed page systems. The perfor-

mance of open page systems was sensitive to the distance between accesses to the same
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DRAM row and the types of the requests. Many of the scheduling policies, such as open
bank first, most pending etc., attempt to exploit locality in the DRAM rows to lower
latency. We found that in addition to all these factors, a controller policy that prioritizes
reads over writes is more effective. A designer who implements such a policy should take
care to give higher priority to outstanding write transactions that delay read transactions to
the same bank and to periodically drain write requests to prevent the memory transaction
queue from filling up.

One difference that we found with regard to FBDIMM and DDRx system behavior
was there response to the use of posted CAS, a DRAM protocol feature which simplifies
memory controller design by allowing the memory controller to bundle arow activation
and read/write command in back-to-back command cycles. Unlike DDRx systems,
FBDIMM systems using posted CAS had worse latency and bandwidth characteristicsthan
systems which did not use this. This difference arose from the organization and use of the
FBDIMM command frame and the sharing of the FBDIMM southbound bus by commands
and write data.

Detailed measurements of the contributors to the read latency of a transaction
revealed that a significant contributor was delays associated with the unavailability of
memory system resources like the southbound channel, northbound channel and DRAM.
Scaling the memory system configuration, by adding more ranks or channels, resulted in
the unavailability of each of these factors varying in adifferent fashion and interacting in
different ways to impact the observed latency. In general we observed that short channel
FBDIMM systems are limited by DRAM availability, while long channel FBDIMM sys-

tems are bound by channel bandwidth. This problem is exacerbated in variable latency
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mode configurations where significant latency and bandwidth degradation occur due to
inefficient usage of the northbound FBDIMM channel.

Whilethe variablelatency modeiseffectivein lowering the latency of aread transac-
tion in a system by 2.5-20% in lightly loaded systems, the exact opposite effect was
observed at higher utilizations. This suggests that a controller that dynamically switches
the mode of operation in response to changes in system utilization would see less perfor-

mance degradation.
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Chapter 5. Optimizationsfor Variable Latency M ode
In the earlier chapter, we demonstrated that the average read latency of the FBDIMM chan-
nel can be improved by operating the channel in the variable latency mode in some cases.
In this chapter, we further examine how to improve the performance of the variable latency
mode, especialy in cases where its use resulted in a deterioration in latency over the fixed
latency mode. Two main techniques to improve the channel usage are studied in detail, the
firstisto allow read datato returnin adifferent order than it wasissued in and the second to
allow read data frames to be buffered at the AMB before being burst back to the memory

controller.
5.1. Performance Characteristicsof Variable Latency M ode Systems

5.1.1 Limit Study

One of the commonly used approaches to gauge the performance of a memory sys-
tem protocol isto conduct alimit study using random-address traces as input. The latency
and bandwidth values are measured for a random address trace whose input arrival rateis
varied. The latency typically gradually increases till a particular bandwidth value after
which it dramatically increases. This point on the latency-bandwidth curve represents the
maximum sustai nable bandwidth of the system prior to its getting overloaded. Memory
controller design is focussed on moving this latency-bandwidth curve to theright i.e.
improving the read latency values at higher bandwidth values.

For this study, we use the memory system parameters specified in table 5.1. Note that
the memory controller model used is similar to that one used described in 4.1.1. The main

differences are that in this section, we assume an infinitely large BIU i.e. transactions are
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TABLE 5.1. Memory System Parameters

Parameter Value

DRAM Technology FBDIMM - DDR3-1333-8-8-8
Queue Size 16 Read/16 Write
Paging Policy Closed Page
DIMMSDIMM 1

#DIMMs 24,8

# Channels 1 Logical Channel
# Banks 8

Burst Length 4.8

Posted CAS Enabled

Refresh Disabled

placed in the BIU as soon as they are available and scheduled to the memory controller
only when a spot in the transaction queue is available. The system uses split transaction

gueuesi.e. transaction queues which are split based on the type of transaction.

Random Address Traces. Theseinput traces are generated using arandom number gener-
ator. The input address stream is modelled as a poisson arrival process where each request
isindependent of the previous request. Each random address stream isidentified using the
following parameters

= Average issue bandwidth is the average arrival rate for the poisson process used to
model the trace.

= Number of DIMMsin the system

= Proportion of read traffic, and
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= Spatia Locality. The spatial locality is used to build input traces with and without hot-
spots.

5.1.1.1 Latency-Bandwidth Characteristics

This section first gives an overview of how the performance of a FBDIMM system
varies with system configuration parameters such as channel depth and burst length. The
maximum sustai nable bandwidth obtained from a system islimited for systems with fewer
DIMMs by conflicts for the sasme DRAM resources and for systems with deeper channels,
i.e. more DIMMsin the channel, by inefficiencies in north link usage. The in-order return
of read data prevents the scheduler from taking advantages of any idle gaps on the north
link which may be present prior to the return of any previously scheduled read data. This
can make the peak sustainable bandwidth of a8-DIMM deep system lower than that of a 2-
DIMM deep system. Burst length 8 systems are able to achieve greater maximum band-
widths due to the larger size of datatransferred per request.

Figure 5.1 shows how the latency-bandwidth characteristics of the system vary with
burst-length and channel depth i.e. numbers of DIMMs in the channel. Note that in all
cases, the latency of aread transaction increases gradually with system throughput. This
latency trend holds till a certain throughput value at which point the latency increases dra-
matically. This dramatic increase in latency occurs when one or more of the various
required resourcesi.e. DIMM, links become a bottleneck. The system throughput at this
point, also referred to as the knee of the latency-bandwidth curve, is the maximum sustain-

able bandwidth for the particular system.
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Figure5.1. Latency-Bandwidth Characteristicsfor base-line FBDIMM
system. The latency-bandwidth characteristics are shown for different channel
depths - 2, 4 and 8 deep channels, and different burst lengths - 4 and 8. The input
for these curves is a random-generated address trace which is equally likely to be
addressed to any DIMM in the channel. The input comprises of 66% read traffic.
The x-axis plots the sustained bandwidth in Gbps while the y-axis plots the read
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Increasing the number of DIMMsin the channel increasesthe DIMM-level resources
in the system, thereby lowering the queueing delay due to the unavailability of the DIMM.
Simultaneously more DIMMs in the channel increases the default read latency due to the
additional serialization. Latency also increases due to the increased unavailability of the
link dueto theinefficienciesin link utilization. These inefficiencies arise because the mem-
ory controller scheduling algorithm is unable to effectively schedule the return link. In
order return constrains transactions to return read data in exactly the order that it was
scheduled in. This means that upstream DIMMs must forgo opportunities to utilize idle
slotsin the channel when atransaction to adownstream DIMM isin progress. Thiseffectis
more pronounced in longer channels because of the larger disparity between the round trip
timefor transactions going to thefirst and last DIMM in the system. Thislowersthe perfor-
mance of the system as more DIMMs are added to the channel. The interaction of these
three different factors determine how the performance characteristics of the system
changes with the addition of DIMMSsin the system.

The DRAM isthe main bottleneck for systems with fewer DIMMs. Adding more
DIMMs helps aleviate this bottleneck. When going from a2-DIMM deep channel to a 4-
DIMM deep channel, the gains due to DIMM-level parallelism can successfully offset the
increased cost of serialization such that there is an improvement in the latency-bandwidth
characteristics of the system as seen in Fig 5.1. On the other hand, further increases in the
length of the channel, i.e. going from a4-DIMM to an 8-DIMM channel, resultsin alower-
ing of system performance. Thisis because the costs of increased serialization and the inef-

ficiencies of link utilization outweigh the gains due to additional DRAMs in the system.
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The additional DIMM level parallelism resultsin an increased competition for the links as
well further worsening the queueing delay waiting for the links to become available.

Burst length 8 systems sustain higher bandwidths than burst length 4 systems for a
given channel configuration (figures 5.1(a) and 5.1(b)). A burst length 4 system require
twice the number of transactionsto achieve the same bandwidth as aburst length 8 system.
This makes burst length 4 systems more sensitive to DIMM-level constraints such as row-
to-row activation time, row cycle time and the four-bank-activation window.

Fig 5.2 shows how the chief contributors to latency for aFBDIMM system vary as
the arrival rate of transactions given in terms of a percentage of the total data bandwidth in
the system isincreased. The average read latency is divided into two main components the
queueing delay overhead and the transaction processing overhead. The queueing delay
component refers to the duration the transaction waited in the queue for various resources
to become available. These resources include the memory controller request queue, the
south link, the DIMM (including on-DIMM command and data buses and bank conflicts),
and the north link. Multiple resource unavailability are also monitored and reported. Note
that if the memory controller transaction queue is unavailable, then we do not take into
account its overlap with any other queueing delay component. The processing component
isthe default transaction processing cost. In general we observed that at the point when the
latency of the system increases rapidly the queueing delay associated with unavailability of
the memory controller queues becomes a substantial portion of the overall latency. The

chief contributor to the queueing delay at this point isthe main bottleneck of that particular
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configuration. Note that the latency values are al normalized to 100%. Note that unavail-
ability ismeasured every channel clock cycle and not every scheduling cycle.

From figures 5.2 (a) and 5.2 (b) we can see that in a2-DIMM system, the DIMM-
unavailability contributes to the bulk of the queueing delay. Adding additional DIMMS,
reduces the DIMM -associated bottleneck but the links start emerging as a bottleneck. For a
8-DIMM system, both burst length-4 and 8, figures 5.2 (c, d), it can be see that the queue-
ing delay for atransaction islargely due to unavailability of both the links. The link
unavailability increases due to increased usage and the north link unavailability increases

mainly dueto the inefficient usage of the link described earlier.

Impact of spatial locality . The impact of spatial locality in the input stream is afunction
of the intensity of the hot-spot, the DIMM which is the hot-spot, the number of DIMMSsin
the channel and the burst length. For systems with 4 or less DIMMSs, hot-spotting lowers
the maximum sustainable throughput of the system due to increased pressure on the
DRAM. Thisistruein a8 DIMM deep channel when lower proportion of the transactions
are destined to a particular DIMM. As the proportion of traffic isincreased the opposite
effect is observed i.e. the maximum sustai nable bandwidth obtained from a stream with
spatial locality is better than one without. This occurs when the locality in the stream helps
improve the link utilization sufficiently so that the gains due to better use of the link offset
any reductionsin performance due to DRAM resource unavailability. Inputs with hot-spots
at the first and last DIMM have lower maximum sustai nable bandwidth than those with

hot-spots located at other DIMMSs.
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The graphsin Fig 5.3, show how the |atency-bandwidth characteristics of the system
areimpacted by spatial locality in the input stream. Hot-spotting is achieved by shaping the
randomly generated input trace appropriately. Each input traffic pattern is labelled using a
sequence of numbers (one for each DIMM in the system)? and each number represents the
proportion of traffic addressed to the particular DIMM. The per-DIMM traffic proportion
sequence is ordered from the closest DIMM to the furtherers DIMM.

The exact impact of hot-spotting on system performance is a function of the degree
of hot-spotting i.e. the proportion of transactions, the location of the hot-spot i.e. which

DIMM in the chain, the number of DIMMs in the channel aswell as the burst length. For a
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Figure 5.3. Impact of hot-spotting on latency-bandwidth. The figures show the
impact of hot-spots in the input on the latency-bandwidth characteristics of the
system. Each line in the graph represents input traffic with a different distribution
across the DIMMSs. The x-axis plots the sustained bandwidth in Gbps while the y-axis
plots the read latency in ns. The input distribution is labelled by the proportion of
traffic targeted at each individual DIMM in the system. For instance an input which
has 4 times the traffic to the 2nd DIMM and equal proportions to other is labelled as
1411

1. The spatial distribution is specified by the following nomenclature - < proportion of
transactions to DIMM 0>_ < proportion of transactionsto DIMM 1>. < proportion of
transaction to DIMM n>. The DIMMs are ordered from O to n, where nisthetotal DIMMs
in the systems minus one and DIMM 0 isthe DIMM closest DIMM to the memory con-
troller and DIMM n-1 isthe DIMM furthermost from the memory controller. This propor-
tion is used to determine the probability of a given transaction addressing the particular
DIMM in question.
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system with 2 and 4 DIMM deep channels, we found that the latency-bandwidth character-
Istics of the various distributions were all bounded by that of an input pattern which was
equally likely to address any DIMM in the chain. Hot-spots lowered the maximum
throughput possible for a given configuration by increasing the number of transactionsin a
stream which are delayed by DIMM-level constraints. Increasing the degree of hot-spot-
ting i.e. sending more transactionsto a particular DIMM further reduced the maximum sus-
tai nable bandwidth.

Hot-spots at the first and last DIMM in the chain have lower maximum sustainable
bandwidth than traces with hot-spots at any other DIMM in the chain. Transactions which
are addressed to the first DIMM in the chain experience the highest queueing delay due to
link unavailability. Thisis because they are impacted by the link usage of all scheduled
transactions. On the other hand, transactions which are destined for the last DIMM in the
chain, delay the completion of transactions to every other DIMM in the chain. Conse-
quently hot-spots to these locations end up lowering the achievable bandwidth in the sys-
tem.

Fig 5.3 (b) showsthat in an eight DIMM deep channel, when the degree of hot-spot-
ting increases sufficiently that the latency-bandwidth curves are better than those seen in
the case of an input stream with no hot-spots. Although spatial locality increases the con-
flictsfor DIMM-level resources, it improves the overal efficiency of the northbound link.
This latter phenomenais sufficient in an eight-DIMM deep channel to cause the latency-
bandwidth curves of inputs with some degree of hot-spots to be better than a distribution

that isequally distributed across all DIMMSs.
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Figure5.4. Impact of proportion of read-traffic on latency-bandwidth. The
figure shows how the latency bandwidth curve varies as the proportion of read trafficis
varied. The x-axis plots the sustained bandwidth in GBps for different read-write ratios
and y-axis shows read latency in nano-seconds.

Impact of varying proportion of read-traffic. A consequence of the split-bus architec-
ture is that the performance of the system is sensitive to the ratio of read to write traffic in
the input stream. The FBDIMM bandwidth is divided so that it provides as much read
bandwidth and half the write bandwidth asa DDRx system. For input streams with smaller
proportion of read traffic, the competition between write-data and commands resultsin the
south link being a bottleneck resulting in a degradation in system performance. Asthe per-
centage of read traffic, we see that this bottleneck eases and the latency-bandwidth charac-
teristics improve. For the systems with a significant proportion of read traffic, the north
link is abottleneck and this degrades system performance.

In general the best bandwidth can be obtained from a system with aread to write traf-
fic ratio which matches the read to write bandwidth ratio. The only exception to thiscaseis
a system with 8 DIMM deep channel and a burst length of 4 (Fig 5.4 (b)). In this case the

stream with 50% read traffic out-performs a system with 66% read traffic. In this particular
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case the inability to efficiently use the north link resultsin an input stream with 66% read
traffic having alower peak bandwidth than that of an input stream with 50% read traffic.
5.1.2 Application Performance Characteristics

In this section, we look at how the latency and bandwidth characteristics varied for
variousworkload traces. Wefound that asin the case of the random address traces, applica-
tions benefit from the addition of DIMMsin the channel due to the reduction in contention
of DRAM resources. This benefit lowers latency for applications when it outweighs the
delaysdueto theincreasesin latency dueto daisy-chaining and inefficienciesin link usage.
The application input stream is bursty in nature and has more bank level locality than aran-
dom input stream. Thisresultsin significantly higher latencies for the applications than for
the random input streams at the same system throughput.
5.1.2.1 Latency Characteristics

The variation of application read latency with the number of DIMMs in the channel
and burst length are shown in figures 5.5 and 5.6 for FBD-DDR3 systems and figures 5.7
and for FBD-DDR2 systems. The read latency of the transaction is divided into queueing
delay overhead and the transaction processing overhead. The queueing delay component
refers to the duration the transaction waited in the queue for one or more resources to
become available. Note that the overlap of queueing delay is monitored for all components
except the memory controller request queue factor. The default latency cost is the cost
associated with making aread request in an unloaded channel.

As seen earlier, increasing the channel depth resultsin areduction in queueing delay
due to DIMM unavailability, and a simultaneousincrease in queueing delay dueto the link

being unavailable and the increased serialization cost. The queueing delay due to the north
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link being unavailable becomeslarger inthe a8-DIMM deep channel. In an open page sys-
tem, DIMM unavailability isasignificant factor even for longer channels. Queueing delay
due to the north link being unavailable contributes to under 10% to over athird of the
observed read latency. The applications which experience the largest amounts of queueing
delay arethose with the largest bandwidth requirements. Burst length 8 systems experience
larger queueing delays than burst length 4 systems because of the larger data transfers. For
both burst length 4 and burst length 8 systems we look at identical cacheline sizes of 64
bytes. A single cachelinefill is satisfied in burst length 4 systems by 2 physical FBDIMM
channels and in burst length 8 systems by one physical FBDIMM channel. In the former
case the two physical FBDIMM channels are operated in lock-step.
5.1.2.2 Per-DIMM Latency Characteristics

Unexpectedly, read transactions that are addressed to the DIMM closest to the mem-
ory controller experience significantly higher read latency than transactions to other
DIMMsin the system. This latency behavior was more prominent in systems with more
DIMMs per channel and longer burst lengths. Figures 5.9, 5.10, 5.11 and 5.12, show the
average read latency for atransaction to a particular DIMM in the system for FBD-DDR3
and FBD-DDR2 systemsin both open page and closed page configurations. Note that open
page configurations use the OBF scheduling policy while the closed page configurations
use the RIFF scheduling policy and posted CAS. The DIMMs are numbered in increasing
order starting with the DIMM adjacent to the memory controller. In addition to the average
read latency for agiven DIMM, the overall average read latency for the system is plotted as

well.

112



400~

300

Latency

200 —

100 —

C 1
0 L 0 1 2 3 Average
0 1 Average DIMM ID

(b) 4 DIMMs - Burst Length 4

800(—

ok IO 1 2 3 4 5 6 7 Average 0 1 Average
(c) 8DIMMs - Burst Length 4 (d) 2 DIMMs - Burst Length 8

1000 T 2000

800~

1500

600 N\

Latency
Latency

400~

2001~

0 1 2 3 Average 0 1 2 3 4 5 6 7 Average
DIMM ID
(e) 4 DIMMs - Burst Length 8 (f) 8 DIMMs - Burst Length 8
LB mix-2b B W@ mem-2a AA mem-4b
o-0 mix-2a @® mem-2b mem-4a

A A mix-4b < <€ mix-8b <+ < mem-8b
Figure 5.10. RereDI MM, Arer age Read Jatggcy for FBD-DDR2 glosed page
systems. The graphs show the average read latency for a transaction addressed to a
particular DIMM in the system. The DIMMs are ordered such that the DIMM closest to
the memory controller has the lowest number. The last point on all the graphs is the
overall average read latency

113



300 T 500

400 —

Latency

200

C ] L
0 . 0 1 2 3 Average

0] 1 Average
DIMM ID DIMM ID
(8) 2DIMMs - Burst Length 4 (b) 4 DIMMs - Burst Length 4

800— 700
600
600~

500

400F

Latency

300{

r 2001
200\ -

100f TSt - -m- - - -

0- c: (I) 1 Average
DIMM ID DIMM ID
(c) 8DIMMs - Burst Length 4 (d) 2DIMMs - Burst Length 8

2000 T

800 —

1500

1000 —

Latency

200 500 _—

0 0 1 2 3 Average 0
DIMM ID DIMM ID
(6) 4 DIMMs - Burst Length 8 (f) 8 DIMMs - Burst Length 8
L mix-2b W @ mem-2a A A mem-4b
®@® nix2a OO mem-2b mem-4a
A A nmix-4b < <4 mix-8b <4+ < mem-8b
mix-4a < < mix-8a X mem-8a

Figure5.11. Per DIMM Average Read L atency for FBD-DDR2 open page
systems. The graphs show the average read latency for a transaction addressed to a
particular DIMM/DIMM in the system. The DIMMs are ordered such that the DIMM
closest to the memory controller has the lowest number. The last point on all the graphsis
the overall average read latency.

114



Latency

200

150—

50—

oI 1 Average 0 1 2 3 Average
DIMM ID DIMM ID
(@) 2 DIMMs - Burst Length 4 (b) 4 DIMMs - Burst Length 4

250
200

150

Latency

100

50

0 . |
o1 2 3 4 5 6 7 Average 0 1 Average

() 8DIMMs - Burst Length 4 (d) 2 DIMMs- Burst Length 8

400 T

300

Latency

100

I 0 1 2 3 Average 0 1 2 3 4 5 6 7  Average
DIMM ID
(6) 4 DIMMs - Burst Length 8 (f) 8 DIMMs - Burst Length 8
H-N mix-2b BH® mem-2a AA mem-4b
oo mix-2a @@® mem-2b mem-4a
A-A mix-4b € € mix-8b <4< mem-8b
mix-4a X~ mix-8a x—X mem-8a

Figure5.12. Per DIMM Average Read L atency for FBD-DDR3 closed page

systems. The graphs show the average read latency for a transaction addressed to a
particular DIMM in the system. The DIMMs are ordered such that the DIMM closest to
the memory controller has the lowest number. The last point on al the graphs is the

overall average read latency

115



150 -

50

Latency
T
SCC——— T
]| |
(Y| I
w | |

I
(Y
N ||

Latency
=
N |
[

[N —
w— T

N 11
|
w:_
FN/ |
m:I]
o1
S
o

4 12
DIMM ID DIMM ID
(a) mix-2a (b) mem-2a

200 700

b 650

600

550

500

I 450

g 400

o100 350
< |
50

12 1

ﬂﬂ ﬂﬂﬂﬂ | “éé s ! A !!Hnnnnu

Latency

4 1234 12345678
DIMM ID DIMM ID
(c) mix-4a (d) mem-4a
700 900

650
600
550
500

450
>

LR R LA RN R L LR R LN RN LA LA
| I PP PP PO PP PP P PP P P I |
e
&

@
=)
T T T

ilalnlnln !!Eunmnm
2 234 2345678

= [T |
[ |

G400 9500
g3%0 T400
©
5300 —350
250 300
200 250
200
150 150
100 100
0 D A000 %
0 0
2

12345678

DIMM ID DIMM ID
(e) mix-8a (f) mem-8a
B South Link and DIMM Bl Northlink
1 South Link B DIMM, North Link
Bl South Link, DIMM, North Link L1 DIMM
South Link h Link 1 Default Latency
1 South Link, North Lin 3 Transaction Queue

Figure5.13. Per DIMM Average Read Latency Contributorsfor FBD-DDR3

closed page systemswith burst length 8. The graphs show the contributors to
average read latency for atransaction addressed to a particular DIMM in the system for
different applications. The DIMMs are ordered such that the DIMM closest to the
memory controller has the lowest number. The configurations are grouped on the x-
axis such that the left-most group his a channel with 2 DIMMs while the right-most has

116



Latency

400

300
200

100

D|M1M D pase DIMM ID e
(8 2 DIMMs - Burst Length 4 (b) 4 DIMMs - Burst Length 4

600

400

300

Latency

100

s00 Ay

400

300

100—

(c) 8DIMMs - Burst Length 4

7 Average

Average

800

200~

Average 1 2 3 4 5 6 7 Avere
(€) 4 DIMMS - Burst Length 8 () 8 DIMMs - Burst Length 8
B E gphix2b ®® mem-2a A A mem-4b
®@® nmix2a OO mem-2b mem-4a
A A mix4b < < mix-8b <4+ < mem-8b
mix-4a < < mix-8a X mem-8a

Figure5.9. Per DIMM Average Read Latency for FBD-DDR3 open page

systems. The graphs show the average read latency for a transaction addressed to a
particular DIMM in the system. The DIMMs are ordered such that the DIMM closest
to the memory controller has the lowest number. The last point on all the graphsis
the overall average read latency

117



1
[
1

LW

4 12345678 4 123
DIMM 1D DIMM ID
(8) mix-2a (b) mem-2a
200 500
450 ]
150 b 400p ]
350 1
;‘:>" 1 73001 b
%100 ‘ %250 F B
| —1200 B
ol i 150F ,
J 100 1
I I s B i
12 1 4 12345678 12 1234 12345678
DIMM ID DIMM ID
(c) mix-4a (d) mem-4a
600 700

550
500
450
400

5850

300

S50
200
150
100

50

650
600
550
500
450

3100

T350

©300
250
200
150

i !Hﬁi iR

il B

1234 12345678 12 12345678
DIMM ID DIMM D
(e) mix-8a (f) mem-2a
B South Link and DIMM Bl NorthLink
] South Link B DIMM, North Link
i ; 1 DIMM
| Soutrr: tlnl; RIMIP\:I,L!\Iokrth Link [ Default Latency
(= South Link, North Lin 1 Transaction Queue

Figure5.14. Per DIMM Average Read L atency Contributorsfor FBD-DDR3 closed
page systemswith burst length 4. The graphs show the contributors to average read
latency for a transaction addressed to a particular DIMM in the system for different
applications. The ranks are ordered such that the DIMM closest to the memory controller
has the lowest number. The configurations are grouped on the x-axis such that the leftmost
group his a channel with 2 ranks while the rightmost has 8 ranks.

118



For nearly all applications, the read latency experienced by atransaction to the first
DIMM inthe chainishigher than that experienced by atransaction to further DIMMsinthe
chain. Thisis very unexpected because in a variable latency mode system, the default
round-trip cost for aread request to the first DIMM in the chain is lower than the default
round-trip latency cost for aread request to any other DIMM in the chain.

The memory controller’ s scheduler uses agreedy approach to schedule return dataon
the north link. This approach inherently ends up being biased towards scheduling transac-
tions that are scheduled to DIMMSs further from the memory controller than those that are
closer to the memory controller. To use a given north link slot, the memory controller
schedules aread request to aDIMM further in the chain earlier than it would have to if that
read request wasto a DIMM closer to the controller. Hence, it is more likely that the mem-
ory controller at a given scheduling instant will schedule requests to DIMMs further from
the memory controller. Figure 5.15 illustrates the phenonmenon that due to the different
latencies on the buses, aread to DIMM 0 has to be issued later than aread to DIMM 7. By
pushing the point at which the memory controller will issue atransaction to acloser DIMM
further in time, a greedy memory controller will starve requests to the first DIMM in the
chain. This delay in scheduling requests tapers off as the distance of the DIMM from the
memory controller increases. Hence, although the highest latency cost is associated with
thelast DIMM inthe chain, the first DIMM in the chain hasthe worst read latency. Figures
5.13 and 5.14 shows that the read latency for transactionsto the first DIMM is dominated
by north link unavailability and this queueing delay increases with increase in the number

of DIMMsin the channdl.
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depicts the memory controller having to make a decision as to what to schedule in the
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Figure d shows that the request to DIMM 7 can beissued in cycle 2. As expected, in cycle
3, again the read to DIMM 0 cannot be issued. However, due to the previously scheduled
read to DIMM 7, the read to DIMM 0 can be scheduled only in command cycle 5.
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However, in the case of the mixed workloads with 2-4 threads and for the memory
intensive workload with 2 threads in some configurationsthe read latency of transactionsto
thefirst DIMM in the chain is not the highest. In these systems, queueing delay due to the
north link being unavailable does not dominate because of the lower bandwidth utilization
of these applications. In these cases we see that the read latency increases with the distance

of the DIMM from the memory controller.
5.2. Re-ordering of Data Returns

In this section we describe the implementation details for memory controller struc-
tures needed to permit re-ordering of datareturns on the return channel. The FBDIMM pro-
tocol is a deterministic protocol where the memory controller is aware of when the
operation initiated by atransmitted command will complete, when the data burst will begin
at the DIMM and when it should arrive at the memory controller. In short, the memory con-
troller isaware of al system state and is by specification and design required to ensure that
all system timing requirements are met. Traditionally, memory controller design has dealt
with read requests with identical latency values and therefore guaranteed to return in the
same order as the commands were sent out. Re-ordering return data has never been
required.

The different round-trip latencies for aread in the FBDIMM channel makesit possi-
ble to have some reads return prior to previously scheduled reads in the system. Thiswould
require the memory controller not just to be ableto identify when to schedule reads but also
be able to associate the returning read data with the appropriate transaction. In this section

we first describe techniques that the memory controller can use to identify north link viola-
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bilities and finally modifications to the memory controller queue to enable it to associate
the correct read request with the returned data.
5.2.1 Mechanismstotrack North Link Usage

Current memory controller design requires the memory controller to keep track of
only the last use of the northbound link. To allow read data frames to be transmitted during
idle times between two read transmissions, the memory controller has to be able to track
multiple link uses. In the following sections, we describe two mechanisms that can be used
to track north link usage. The first approach we looked at was a status table based mecha-
nism that tracks link usage on a cycle by cycle basis and is used to identify the upper
bounds on benefits achieved by re-ordering data returns. The second approach uses n-
counters to keep track of thelast n uses of the north link.
5.2.1.1 Status Table Mechanism
In this scheme the busy duration of thelast link in the northbound channel is monitored per
channel cycle. Thisisdone using acircular buffer with ahead and atail. The head pointsto
the slot which corresponds to the time at which atransaction schedul ed to the northernmost
DIMM would require the northernmost link to transmit data. The tail points to the entry
which correspondsto the time at which aread transaction to the southernmost DIMM in the
system would compl ete data transmission.

The exact time offset for the head and tail are

Head tgys+ tpivm

where, tggisthelink transmission overhead.
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Tpoimm i1Sthe overhead for processing the transaction on the DIMM - thisincludesthe
overhead to decode the command packet, to retrieve data from the DRAM and to pack the
read datainto frames.

TeramEe ISthe duration for asingle frame to be transmitted.

NUM_FRAMESisthe total number of frames required to burst al the read data back to the
memory controller. NUM_FRAMESisafunction of the burst length and isin general burst length/2.

t ink IS the duration of asingle cycle on the link. Risthe total number of DIMMsin
the channel.

Each slot monitors the link use for asingle channel clock cycle. The statustable size
can begiven as

Buffer Sze = (Tail Time Offset - Head Time Offset) / Frame Duration.

Buffer Size = (Z*R*tBUS+ tD||\/||V| + NUM_FRAMES* tFRAME_ (tBUS+ tD||\/||V| )/

lFRAME
Buffer Sze= NUM_FRAMES+ (2R-1)*tgd t Nk

5.2.1.2 Counter-based M echanism

Fig 5.16 depicts the usage of the northernmost link in the system from the current schedul -
ing instant, represented as Now, to W1, the last instant at which atransaction that is sched-
uled Now can use the link. Filled black slots are used to identify periods when the link is
utilized by returning read data. Free slots are marked by either blank space or by grey dots.
The window of time when transactions that are scheduled Now may want to usethelink is
marked by the window Wgto W;. Wy isthe earliest that aread transaction will require this

link, while W isthe latest that atransaction to the last DIMM will require the link.
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Figure 5.16. Monitoring North Link Availability in Scheduling Windows. The
figure shows the points at which different re-ordering schemes can schedule a
transaction to return. Each figure depicts the busy and free duration of the northern most
link using a time-line starting from now i.e. the point at which the transaction is being
scheduled, to Wy, the last instant that a transaction scheduled now will use the north
link. The filled grey dots represent busy durations, where read data for a previously
scheduled transaction uses the link. The dotted grey slots represent the points at which
the scheme in question can schedule a read transaction to return. W, represents the
earliest point at which atransaction may require the north link. W1 represents the latest
point at which the north link will be required. North Link Free Counter are the counters
used by the two counter based schemes to keep track of end of alink busy point.
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The baseline scheme which does not permit re-ordering uses asingle counter to keep
track of the last use of the southernmost link in the system, shown in the Fig 5.16as North
Link Free Counter. Asseen from Fig 5.16 (), the scheduler can schedule only atransaction
that returns dataonly after the last read burst has completed. The statustable based scheme
described earlier isshown in Fig 5.16 (c). Thisschemeis able to schedule atransaction that

can return at any point in the entire window - Wyto W4, provided thelink isfree.

The counter-based mechanism is a simple scheme that extends the baseline scheme
so that it can increase the window that the scheduler may schedule aread transaction to
return datain. This scheme uses two countersinstead of oneto keep track of the busy dura-
tion of the north link. The counters keep track of the latest two uses of the north link or the
last two points at which datais returned. By using two counters, the memory controller is
able to now schedul e transactions to return read datain the idle time between the end of the
last two known uses of the busin addition to the duration after the completion of the last
transaction. Fig 5.16 (b) shows that the counter based scheme increases the window within
which aread data can be scheduled to be returned.

Using two counters allows us to schedule read data to return in two slots. Similarly
using n counterswould enable usto be able to schedule transactionsto returnin n slots. The
maximum number of counters required thus would be a function of the maximum number
of read data bursts which could be fitted into a single link scheduling window. In general,
the number of counters required would be one less than the total number of read transac-
tions that can be scheduled in a given window. The upper bound on the number of transac-

tionsthat can fit into a scheduling window is given by the following equation,
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Figure 5.17. Counter Mechanism to keep track of North Link Busy Periods. C,, to
Cp are used to keep track of the start of periods of link utilization as shown in the figure.

Upper Bound on Read Transactions = Window Size/ Duration of Single Read Oper-
ation

trRAME

= ((2R- Dtgyst NUM_FRAMES* trpapme/NUM_FRAMES* trrame

As seen in the equation above, the number of read transactions which can be used to
fill the window is a function of the transmission overhead and the number of frames

required for asingle read data burst.

N-Counter I mplementation. In this section we describe how to implement a scalable n-

counter solution to monitor north link utilization. Each of the n counters, Cy to C,,, keeps

track of the start of the last n busy durations of the link. Fig 5.17 illustrates how the busy

durations are tracked by a counter. The counters are sorted so that, C keeps track of earli-

est use of the north link, while C,,_; keepstrack of the last use of the north link.
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When the memory controller makes a scheduling decision it has to ensure that there
Isno collision on the data bus. The transaction is schedulable in an idle gap between data

bursts represented by counters C; and C; . 1, the following condition is satisfied,

(LSTART > Ci + tREADDATA)(LEND < Ci + 1)

Lsrart iSthetime at which thelink transmission starts,

Lenp isthe end of thelink transmission time, and

tReadData 1S the duration the read data takes to be transmitted back.

Since the link usage prior to that captured by Cg is not known, the following condi-

tion also hasto be guaranteed,

Co<LlsrtarT

After making a scheduling decision, the counters have to be updated with the link
completion time. The mechanism to implement this counter update is similar to the priority
queue implementations used in high-speed packet switch architectures[4]. Fig 5.18 shows
the implementation of a shift register based counter update mechanism.

The shift register queue has as many nodes as there are counters. In the figure, the
shift register queue is drawn so that by moving to the left in the chain one encounters
counters that monitors earlier bus use. Each node has as input the counter value and a shift

signal from the node on its right. Besides these inputs, a node also has an update signal, a
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Figure5.18. Counter Update Mechanism. The figure shows a shift-register
architecture used to update the counter values. Signal Shift; is used to determine if the
counter value is replaced by the adjacent counter value or by the new link update time.
Each node has a built in comparator which is used to generate the shift signals.
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read value signal (not shown in the figure) and the newly scheduled transaction link trans-
mission start time being input into it. Each node comprises of a mux which determines
whether to overwrite the current counter value with the input counter value or by the new
link usage time or to retain the current value. Thisis dependent on the relation of the cur-
rent counter value and itsimmediate right neighbor node’ s counter value with the new link
usage time.

The logic defining how C; should be updated is given by the following logical rela-
tions.

Cj = Ci+1, when Shift; = Cj,.1 < Lgrarr:

Ci = Lgrart, When G < Lgragt & ! Shift;

C, = C;, when C; > Lgragt & ! Shift

Since each node is modular the n-counter shift register queue can be easily scaled to
arbitrarily large sizes. Unfortunately,the scalability in implementation does not extend to
the performance of the n-counter shift register because of the necessity of broadcasting last
link utilization time to each node.This should not be an issue at lower DRAM bus speeds
where the maximum number of counters required, as seen in the previous section, istwo or
three.

The logic to determine whether to update the node' s counter value can be integrated
into the scheduling logic which determines whether the transaction’ s data burst experi-
ences any conflicts on the north link. In this case the logic in each node can be simplified

further.
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Tail Element:

Transaction ID | Data Arrival Time

Enqueue Next Element Here
4>

Head Element:
Next Element arriving at

the north link.

Figure 5.19. FIFO Response Queue. The response queue holds the transaction 1D
and data arrival time. The latter is used to determine when the data is available at the
link and by the memory controller to track data arrival.

5.2.2 Mechanism tore-order the Response Queue
Traditional memory controller design uses a FIFO read response queue which is shownin
Fig 5.19. The response queue holds the transaction ID or request ID used by the CPU or
requesting component that is used to identify the read transaction making therequest and in
some cases the expected arrival time of the data. The returning read datais associated with
the read transaction at the head of the queue. Theread transaction ID is popped from the top
of the queue and then sent with the returned read data to the processor. Memory controllers
can use the data arrival time to identify when datais arriving at the memory controller.
Arrival times are typically relative to the start of a data return of the previously scheduled
transaction. To support the re-ordering of return data, the response queue should be re-
ordered to reflect the new order in which datais returned.
5.2.2.1 Self Reordering Queue

The self-reordering queue is aread response queue which has been enhanced to allow

reordering. Like the read response queue, each queue entry holds the returning order of the
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entry, the ID of the transaction it refersto, and avalid bit. The valid bit indicates the avail-
ability of each entry.

The returning order indicates when the transaction completes. Entries are addressed
by the returning order and this order is updated dynamically. The dynamic returning order
can be maintained in the form of self-increment/self-decrement counters, shift registers,
etc. The transaction that isto complete first or at the head of the returning order is associ-
ated with the returning order zero. Each entry can be read when it reaches the head of
returning order and can be read only once.

The main operations required to access the queue and update it upon the issue of a
memory request include
= Retrieve

= Reorder

Retrieve Operation. Fig 5.20(a) shows how the retrieve operation isimplemented in hard-
ware. Retrieve is performed when read data arrives at the memory controller. The memory
controller hasto retrieve the transaction id associated with the read data and ship this back
to the memory controller with the read data.

Theretrieve signal is asserted and this initiates the comparison operation to deter-
mine which transaction ID has returning order zero. Upon a hit, the transaction id is read

out and all the returning orders have to be updated. The arrival timeisread out aswell.

Reorder Operation. Fig 5.20 (b) shows the hardware implementation of the update logic.

Reorder operations are performed when aread request is issued from the memory control-
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Figure 5.20. Self-reordering Queue Logic. The figure shows the operation of the
self-reordering queue. The queue has to be updated on a retrieve and a reorder
operation.
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Figure5.21. Impact of permitting out-of-order return on northbound link. The
figures show the latency bandwidth characteristics for systems with and without
reordering of data returns on the northbound link. The dotted lines are for the in-order
return, while the solid lines are for a system that allows reordered data return.
ler to the memory. The processor-issued transaction ID needs to be stored in the self-reor-
dering content-addressable memory with the appropriate entry ID. Further the returning
order of the other read requests will have to be updated.
The main stepsinvolved in this process are
= Determine the returning order of the issued request.
= Update the returning order of existing outstanding requests.
= Writeitstransaction ID and the corresponding returning order to an available entry.
5.2.3 Re-ordering Data Returns: Limit Study
In this section, we describe the latency and bandwidth improvements gained by per-

mitting re-ordering of datareturns. By using random address traces, we found that the max-

imum bandwidth of a8-DIMM FBDIMM channel increased by nearly 1.5 Gbps.

Latency Bandwidth Characteristics. Permitting reordering of read data returnsimproves

the average read latency by significantly reducing queueing delays associated with the
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Figure5.22. Improvementsin Read L atency by permitting reordered data
return of read data. The graphs show the improvements in read latency by
permitting reordered data return of read data. Note that the improvements are only
shown for points which are just prior to the knee of the latency-bandwidth curve.
The x-axis is given in terms of percentage of bandwidth requested by the incoming
address stream.

north link being unavailable. This reduction varies from 5-100% and contributes to an
increase in the maximum bandwidth of nearly 1-2 GBps. The benefits are more apparent in
systems with deeper channels.

Infigures’5.21 and 5.22, the impact of allowing reordered data return of read data can
be seen. Datafor all graphsin this section unless specified are for the statustable . Reorder-
ing read data return is most effective for systems with deeper channels. To effectively use
thistechnique, the memory controller hasto find anidle gap in north link usewhichislarge
enough to carry an entire read data burst. For a system with burst length 4, thisis 2 read-
data frame periods and for a burst length 8 system thisis 4 read-data frame period.This
makes the improvements from using this approach sensitive to the channel depth.

Fig 5.22 shows the improvementsin read latency for different DIMM configurations

for a system with 66% read traffic. Improvementsin read latency are only shown for the
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operating region which is prior to the knee of the latency-bandwidth curve. Out of order
return is effective in lowering read latency by 10-100%. The reductionsin latency are sig-
nificant when approaching the knee of the latency bandwidth curve. The efficacy of the
scheme is a function of both the burst length and channel depth. Hence, we see that burst
length 4 systems benefit from the scheme for channels with 4 or more DIMMs, while burst
length 8 systems see benefits mainly in 8 DIMM deep channels.

Fig 5.23 shows how input streams with different proportions of read traffic benefit
from reordering of transactions on the return bus. As can be seen in the figure input streams
with asmall proportion of read traffic e.g. 20% in the graphs do not benefit from the out-of -
order return. Thisis because these streams are constrained by the availability of south link
bandwidth and not by the availability of north link bandwidth. As the proportion of read
traffic isincreased in the input stream, the use of out-of-order return improves. Thisis
because the amount of north link utilization increases as well. Thus we see that for streams

with 50-75% read traffic thereisaround a 1-2 GBps by doing away with in order return. At
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Figure5.23. Impact of permitting out-of-order return with different ratio of
read traffic. The graphs show the improvements in read latency by permitting
reordered data return of read data. Note that the improvements are only shown for
points which are just prior to the knee of the latency-bandwidth curve. The x-axis
is given in terms of percentage of bandwidth requested by the incoming address
Stream.
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higher read traffic proportions (100% in this case), the benefit are less, because the larger

use of the north link. All datais shown for a8 DIMM deep channel. As observed earlier,

the benefits diminish when growing to smaller channel depths. Hence the graphs for sys-

tems with lesser number of channelsis not shown.

Fig 5.24 shows what the chief contributors to latency are for a system using out-of-

order return. By comparing figures 5.24 (a) and (b) with figures 5.24 (e) and (f) respec-

tively, we can see that the queueing delay due to the north link being unavailable has been

reduced but not &liminated.

Out of order methodologies. The performance improvement obtained by using a counter

based scheme with 2 or more counters is comparable to that of the scheme using status
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table . Theimprovementsin sustainable bandwidth by increasing the countersfrom2to 3is
marginal and nearly non-existent for further increases in the number of counters.

Fig 5.25 shows how using the counter based reordering scheme improves the latency
bandwidth characteristics of a FBDIMM channel. The improvements by using a counter
based reordering scheme are identical to those with using a status table for burst length 4
systems. In the case of burst length 8 systems the latency bandwidth curves are very close.
The improvements in using additional countersis not apparent in any configuration and

only marginally in the 8 DIMM deep system which uses a burst length of 8. Although the
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Figure 5.25. Impact of different reordering schemes on Latency bandwidth
characteristics. The figures show how the latency - bandwidth characteristics of the
system for the counter-based reordering schemes compare with the baseline system
and the status table.
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maximum number of counters which are required to track the link usage are three, we find
that the opportunities to do so arerare. Thisis because the scheduling policy is greedy and
does not attempt to reorder transactions such that the return link is 100% utilized.

5.2.4 Re-ordering Data Returns: Application Performance | mpact

As expected permitting reordered data return of read data increases with the number
of DIMMs in the channel. The average improvement in read latency is around 20-35% for
systemswith 8 DIMM deep channels, 10-20% for 4 DIMM deep channels and 0-5% for 2
DIMM deep channels. Improvementsin latency are afunction of the burst length and chan-
nel depth, with the improvements decreasing as we go to longer burst lengths and shorter
channel lengths. The improvements decrease in a system with more bandwidth, but are
independent of the row buffer management policy. FBD-DDRS3 systems benefit more than
FBD-DDR2 systems because reordering is able to mask their higher transmission costs.

Figure 5.26 and 5.27 show the improvementsin read latency by permitting transac-
tionsto returned in adifferent order from which they were issued in for FBD-DDR3 sys-
tems using a closed page policy and with one and two channels of memory respectively.
Figure 5.28 shows the improvements for single channel open page FBD-DDR3 systems,
while figure 5.29plots the same for closed page FBD-DDR2 systems.

By keeping track of link usage on a per-cycle basis, the status table has the most
information of al the schemeson link usage. Hence, status table based reordering represent
the upper bounds in improvement for a greedy re-ordering scheduling policy. On the other
hand, the counter-based mechanism represents aless complex and simpler solution to track

link usage and is sufficient to extract all the performance improvements available by per-
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Figure 5.26. Improvementsin Latency by per mitting out-of-order return in
FBD-DDR3 system using closed page single channel. The figure shows the
improvements in permitting read data to return out of order for different applications
at different channel depths. On the x-axis the data for each application is provided.
Each application’ s data comprises of 4 bars each for a different re-ordering scheme
implementations.
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Figure5.27. Improvementsin Latency by per mitting out-of-order return in
FBD-DDR3 system using closed page in atwo channel system. The figure shows
the improvements in permitting read data to return out of order for different
applications at different channel depths. On the x-axis the data for each application is
provided. Each application’s data comprises of 4 bars each for a different re-ordering
scheme implementations.
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Figure 5.28. Improvementsin Latency by per mitting out-of-order returnin
FBD-DDR3 system using open page in a single channel system. The figure shows
the improvements in permitting read data to return out of order for different
applications at different channel depths. On the x-axis the data for each application is
provided. Each application’s data comprises of 4 bars each for a different re-ordering
scheme implementations. Note that the y-axis on each of the graphsis different.
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Figure 5.29. Improvementsin Latency by per mitting out-of-order return in
FBD-DDR2 system using closed page in a single channel system. The figure
shows the improvements in permitting read data to return out of order for different
applications at different channel depths. On the x-axis the data for each application is
provided. Each application’s data comprises of 4 bars each for a different re-ordering
scheme implementations. Note that the y-axis on each of the graphsis different.

mitting re-ordering. By tracking the last two north link usage times latency reductions
which are within 50-100% of that achieved by using astatustable. In 2 and 4 deep channel
systems (Fig 5.26 (a- ¢)), tracking the last two link use timesis sufficient to capture all the
possible re-ordering possible. However, inan 8 DIMM deep channel (Fig 5.26 (d, €)) track-
ing the last three link usesis sufficient to achieve al the latency reductions possible and
using two counters results in 50-70% of the maximum possible gain.

Using reordering is beneficial in systems where the idle gaps between two read data
burstsislarge enough to accommodate another burst. We find that thisistrue for nearly all
channel lengths and burst lengthsin a FBD-DDR3 system except a2 DIMM deep channel
in a system operating with burst length 8. However, for an FBD-DDR2 system, Fig 5.29,

re-ordering is effective only in asystem with at least 4 DIMMs per channel. Thisis because
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the transmission costs, which are determined by the speed of transmission of the electrical
signa on thewiresand isindependent of channel speed, takesfewer clock cyclesin aFBD-
DDR2 system. Consequently FBD-DDR2 systems start seeing benefits at longer channel
lengths.

Benefits from re-ordering are higher for applications which have higher bandwidth
utilization, such as the workloads with 4 and 8 active threads. For shorter channel lengths
we find that the workloads with two threads do not benefit at all from re-ordering (Fig
5.29(a)). Thisis because requests are spaced sufficiently far apart that no requeststo earlier
DIMMs get delayed by outstanding requeststo DIMMswhich are further from the memory
controller.

Open page systems benefit from permitting out of order data returns as much as
closed page systems do (Fig 5.26 and Fig 5.28). Thisis not surprising because the benefits
come from taking re-ordering based on north link availability and not DRAM bank con-
flicts. We found that in systemswith more bandwidth (Fig 5.27) benefit lessfrom re-order-
ing than systems with lesser available channel bandwidth (Fig 5.26). This is because as
seen earlier, more channel level parallelism reduces the north link bottleneck.

Figure 5.30 shows the variation in the contributors to average read latency dueto the
re-ordering of datareturnsfor aFBD-DDR3 closed page system. The graph plots the aver-
age latency, split into its various contributors, on the y-axis for each application. On the x-
axisthe bars are grouped based on the workload being studied. Within each group, each bar
is representative of a different policy regarding re-ordering data returns on the northbound
channel. Thefirst bar represents a configuration where all datareturnsin order and the next

three are for configurations where re-ordering of datareturns are permitted each with adif-
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graphs show the contributors to average read latency for a transaction in the system for
different applications. Each graph shows data for a system configuration with a particular
channel depth, number of channels and burst length. On the x-axis of each group, the
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ferent method for tracking the north link usage information. The first in the latter set tracks
north link usage using a status table and the remaining use counters to do so.

As expected, the bulk of the reductions in latency are achieved due to areduction in
gueueing delay due to the north link being unavailable. In the case of burst length 4 sys-
tems, the north link queueing delay is eliminated for nearly all workloads by re-ordering
datareturns (Figure 5.30 a, b). However, the reductions in north link queueing delay are a
function of the northbound link usage tracking mechanism. In a8 DIMM deep channel,
tracking the northbound channels using a status table is more effective than counter based
tracking (Figure 5.30b). Although in the latter case, increasing the number of counters
results in an increased reduction in northbound link queueing delay it is not completely
eliminated for even 3 counters.

In the case of aburst length 8 system (Figure 5.30 (c, d), we found that using re-
ordering reduces northbound link associated queueing delay but does not eliminate it. The
consequence of the longer burst length is that the link utilization is higher and transactions
are delayed waiting for adata burst to complete. Adding an extrachannel (Figure5.30 €) to
the system increases the bandwidth available to the application and resultsin a further
reduction in the queueing delay due to the northbound link being unavailable.

Note than in addition to the queuing delay associated with the unavailability of the
northbound channel, additional reductionsin read latency are achieved due to a reduction
in the queueing delay associated with the transaction queue being unavailable. Thisis espe-
cially true for the mem-8 workloads (Figure 5.30 b, €). Re-ordering data returns on the

northbound channel results in transactions moving out of the transaction queue faster and
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consequently freeing up this queue for new transactions which are waiting in the BIU for a
free dot in the read transaction queue.

The reductions in overall read latency were achieved mainly by reducing the read
latency for transactions which were addressed to earlier DIMMsin the chain. Fig 5.31 plots
the improvement in average read latency experienced by atransaction being sent to a par-
ticular DIMM. The reductions in read latency vary from 10-80% for read transactions
addressed to the first DIMM in the chain to 0-10% for transactions addressed to the last
DIMM inthe chain. For al channel lengths, the reductionsin read latency were highest for
transactions to the DIMM closest to the memory controller. The performance improve-
ments drop sharply with the distance of the DIMM from the memory controller till it
reaches zero for the last DIMM in the channel (Fig 5.31 &, b, d).However, for an 8 DIMM
deep channel, we find that permitting re-ordering of data returns resultsin areductionin
latency for even transactions to the last few DIMMs in the channel (Fig 5.31 c, f). These
reductions were achieved due to the reduction in queueing delay to the transaction queue
being unavailable.

An examination of the latency contributors to the average read latency experienced
by atransaction to a particular DIMM (Fig 5.32 and 5.33) shows that the reductions in
gueueing delay for transactions to the first few DIMMs in the channel were significant.
Thisreductionin latency islargest for thefirst DIMM inthe chain. In the case of workloads
with 4 and 8 threads, we see that some of this queueing delay still remains. Fig5.32 (c, d, e
and f) and 5.33 (c, d, e and f) both show the reduction in queueing delay due to the transac-
tion queue being unavailable resulting in the reduction in read latency for transactions to

thelast DIMM inan 8 DIMM system.
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5.2.4.1 Bandwidth Improvement

Asin the case of latency, bandwidth improvements were a function of the burst
length, the number of DIMMSs in the channels and the channel utilization. We saw that the
bandwidth improvements were highest for an 8 DIMM deep channel which uses a burst
length of 4. Although average bandwidth improvements were in the same range as | atency
improvements, average of 10-40% for 2-8 DIMM deep channels, we see that some work-
loads experienced as much as and 80% improvement in bandwidth.

Fig 5.34 and 5.35 plot the improvements in bandwidth for various channel lengths
for aclosed page FBD-DDR3 with one and two channels of memory respectively. Fig 5.36
plot the improvements for an FBD-DDR3 open page system while fig 5.37 plots the
improvements for a closed page FBD-DDR2 system.

Asinthe casefor latency improvements, we found that tracking link usage by using a
status table yielded the highest improvements possible and represented the upper bound for
performance improvements possible. Unlike the case of latency improvements, we found
that using only 2 countersto track the last two uses of the northbound link resulted in typi-
cally 50% of the maximum possible improvementsin bandwidth for the 4 and 8 way appli-
cations (Fig 5.34 (c, €) and Fig 5.36 (c, €)) in achannel with 8 DIMMSs. Tracking the last
three recovered the bulk of the remaining savings and we find that the improvementsin
bandwidth saturated with further increases in the number of north link last uses tracked.

In the case of the workloads with 8 threads, which have a higher request rate, we see

that the bandwidth utilization improves by nearly 80-90% (Fig 5.34 c and Fig 5.36 ¢). This
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Figure 5.34. Improvementsin Bandwidth by per mitting out-of-order returnin
FBD-DDRS3 system using closed page in a single channel system. The figure
shows the improvements in permitting read data to return out of order for different
applications at different channel depths. On the x-axis the data for each application is
provided. Each application’s data comprises of 4 bars each for a different re-ordering
scheme implementations. Note that the y-axis on each of the graphsis different.
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Figure 5.35. Improvementsin Bandwidth by per mitting out-of-order return in
FBD-DDR3 system using closed page in a two channel system. The figure shows the
improvements in permitting read data to return out of order for different applications at
different channel depths. On the x-axis the data for each application is provided. Each
application’s data comprises of 4 bars each for a different re-ordering scheme
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152



100

80

60

40

% Bandwidth Improvement

20

b O 22 P %09,‘06&

& d\\+6\\+(®+@+@+®é\\ é(\é(\é(\@é(\

100

(a) 2 DIMMs/ Burst Length 4

% Bandwidth Improvement

100~

=
1)
S

©
S
T

@
S
T

~
S
T

=3
3
T

a
S
T

~
S

w
S

N
S

i
S

0

P X 9P DN O P q,‘O ¥
«\\*%*@*bf\\*g\)* T S o

(b) 4 DIMMs/ Burst Length4

80

60

40

% Bandwidth Improvement

20

0

ﬂ(\\+ ﬁ(\\+6\\+ 6\\*6\\* é(\é(\

100 ~

90
80
70
60
50
40
30
20
10
0

% Bandwidth Improvement

b2 &0‘5"%‘0 22 "»"N"h“%@ X (o5
S
(<\ >
(c)8 DIMMs/ Burst Length4

% Bandwidth Improvement

By WW%@%"'L@ NN R

((\\* ((\\+<<\\$ ((\\*F((\\* é‘\é(\ 606\6(\ d(\\>~

(e) 8 DIMMs/ Burst Length 8

9 £
80 F
70EF
60 £
50 £
40F
30F
20F

wz Ll ...._

0 P 2 A0 B 8O R o0 LF
PRI B T

(d) 4 DIMMs/ Burst Length 8

Re-ordering using status table
Counter-based Re-ordering - 2 counters
Counter-based Re-ordering - 3 counters

Counter-based Re-ordering - 4 counters

Counter-based Re-ordering - 5 counters

Figure 5.36. Improvementsin Bandwidth by per mitting out-of-order return in

FBD-DDR3 system using open page in a single channel system. The graphs plot the
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applications at different channel depth. Each application’s data is grouped on the x-axis
with each bar for different re-ordering scheme implementations. Note that the y-axis on
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Figure 5.37. Improvementsin bandwidth by permitting out-of-order return in
FBD-DDR2 system using closed page in a single channel system. The graphs plot
the percentage improvements for the observed bandwidth on the y-axis for the different
applications at different channel depth. Each application’ s datais grouped on the x-axis
with each bar for different re-ordering scheme implementations. Note that the y-axison
each of the graphsisdifferent.

huge improvement in bandwidth is because of the increased usage of the bus possible by

using the idle gaps present in the channel.
5.3. Bufferingonthe AMB

In this section welook at how buffering the return dataframe at the AMB can be used
to improve channel utilization and overall read latency. Buffering allows the memory con-
troller to move data out of the DRAMswithout having to wait for the north link to become

available. Buffering improves DRAM level parallelism by releasing DRAM resources ear-
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Figure 5.38. How buffering works. The top part of the figure shows the read latencices
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as you move away from the memory controller. Part (b) shows that a read to DIMM 0
cannot be scheduled till 2 command cycles later without their being a collission on the
bus. Figure ¢ shows how the memory controller can schedule aread to DIMM 0 with a
buffering delay. The AMB releases the data onto the DIMM as soon as the buffering

duration is past.
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lier especially at medium to higher bandwidth utilizations, when the north link is a signifi-
cant bottleneck.

The FBDIMM AMB specification provides for l[imited AMB buffering. The AMB
currently buffers the read data packet for a pre-specified duration determined at channel
initialization. In the case of fixed latency mode of operation, this duration is specified such
that it ensures that the round trip latency for aread transaction isidentical for each DIMM
in the system. In the variable latency mode of operation, the buffering duration istypically
set to zero, thereby allowing the AMB to return its read data burst to the memory controller
assoon asit isavailable and reduce read latency.

Figure 5.38 illustrates how buffering durations can be used to schedule requests to
DIMMs even when the northbound link is not available. The read transaction suffers a
dlight buffering overhead but no further penalty waiting for other candidate transactions to
complete, asin the case of the schedulein figure 5.15.

5.3.1 Buffering Techniques
5.3.1.1 Source Buffering

With this technigue, the memory controller specifies the duration for which the read
data should be buffered at the AMB of the DIMM supplying the data before sending it
down to the memory controller. Thisisafairly simple extension of current implementa-
tions of AMB buffering. With thistechnique, the pre-set buffering durationismodified to a
variable one, with the duration specified with the CAS command. Note that in this case

buffering is done only at the source AMB.
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Figure 5.39. FBDIMM Southbound Frame Bit Layout. The figure above shows the
layout of the two main types of FBDIMM frames. Each southbound frame requires 12
transfers and is transmitted on adata buswhich is 10 bitswide. Note that fail-over frames
are similar except that they reduce the number of CRC bits

Southbound frames are of two types:- command-write-data frame and a command-
only frame. In all casesthe frame comprises of the payload (dataor command information),
header information and CRC. A FBDIMM command-write data frame has no free bits (Fig
5.39 (b)) while a command-only frame has 24 bits that are unused. In Fig 5.39 (a), the
unused bits are clearly shown as unfilled squares.

The unused bitsin the FBDIMM command-only frame can be used to specify the
buffering duration. Since the unused bits are adjacent to the second and third command
slot, the easiest approach would be to allocate the unused bits which are adjacent to a par-
ticular slot to specify the buffering duration for acommand in that slot. This approach

would restrict buffering capability only to CAS commands that are transmitted in the par-
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ticular commands slots. The 12 bits can be used to specify a buffering duration of 0-4095
cycles. The buffering duration is specified in channel clock cycles for more fine-grained
control. The bit layout for this schemeis shown in Fig 5.40 (a). Thisframe format fits eas-
ily into the frame definitions for amemory controller that uses posted CAS. In such asys-
tem, the RAS-CAS command pair are typically issued in the same frame, with the RASin
the first command slot and the CASin the second command slot.

The alternate approach to permit would be use 2 command bits to specify the com-
mand slot associated with the buffering duration and use the remaining 22 bits to specify
the buffer durations. Figure 5.40 (b) shows the possible layout of the command frame for
such a case. The advantage of this approach would be that it would allow all CAS com-
mands in the frame to be able to buffer. The disadvantage of this approach is that only one
command in the frame would be capable of buffering.

Since there is no advantage in specifying buffering durations on the order of thou-
sands of cycles, the third frame format can use the 24 bits to specify the buffering duration
for all three commands in the system.Each command would have 8 bits to specify a buffer-
ing duration from 0-255 cycles. Note that in this case as well the decoding of the first com-
mand would take longer. Figure 5.40 (c) shows a possible layout of the FBDIMM
command frame for this approach.

Implementation of buffering at source does not require significant modification to
the AMB. Current implementations of the AMB support buffering the read dataframefor a
fixed duration of time, specified during channel initiaization, before transmitting it. This

scheme will first require modifying the decode logic to read the buffer duration. Thisinfor-
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(a) Buffering Duration for Commands 2 and 3 (b) Single Command Buffering

. CRC Bits

BUFFBER1 Header Bits
BUFFRER2 . Command Bits
BUFFERS3

(c) Buffering Duration for All Commands

Figure 5.40. Command Frame For mats with Buffer Durations Specified. The
above figures show the layouts for three different approaches to specifying buffer
duration in a southbound command frame. The buffer duration is specified using the bits
which are currently unused in a southbound command-only frame.

mation will then have to be used to program the buffering delay of the return data buffers.

Current AMB design uses asingle buffer. We examine the impact of using multiple buffers
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Figure5.41. Hardwarefor Source Buffering. The figure above shows one possible
implementation of the logic required to support buffering at source. The AMB return
data path has to be modified to interpolate read data buffers with programmable delay
counters.

which can be maintained in a FIFO queue structure. The hardware block diagram for the
AMB return data path isshownin Fig 5.41.

In terms of hardware implementation, each buffer entry comprises of avalid bit, a
delay counter, a zero comparator and a buffer to hold the read data frame. Since aread
command results in the creation of multiple return data frames, this buffer can be large
enough to hold the entire read data burst. The buffering duration and read data frames are
loaded to thetail of the FIFO queue. The read dataframe will need to be loaded over multi-
ple DRAM clock cycles. Loading the buffer duration causes the valid bit to be set and the
delay counter to be enabled. The delay countdowns every clock cycle. When the delay
value reaches zero, the frame is read out and transmitted on. To prevent data frames with

zero buffering delay from being buffered abypass path for such frames can be used.
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5.3.1.2 Global Variable Buffering

Source Buffering is afairly simple modification of the existing protocol. Its advan-
tage is that it enables the memory controller to quickly schedule transactions to earlier
DIMMsin the chain. Thistechnique can however increase the queueing delay due to north
link availability to DIMMs further south. Transactions to this DIMM may benefit from
being buffered at multiple places. Hence, we study how the ability to specify buffering
delays at multiple AMB locationswill improve the overall read latency characteristics.

The second approach that we look at isto allow read dataframesto be buffered at any
AMB on itsreturn path. Asin the Source Buffering technique, each AMB has read buffers
to store the read data frames that are to be sent back to the memory controller. Read data
frames are stored in these buffers when the northbound link connected to these hubsis
busy. The memory controller determines the duration for which aframeisdelayed at every
hub. Each buffer can hold all the framesto transmit aburst of data back to the memory con-
troller.

The format of northbound command frames can be modified to specify the buffering
duration at each link as shown in the figure. The number of bits available to specify the
buffering duration per link varies depending on the total number of DIMMSsin the channel.
The deeper the channel the fewer the number of bitsavailable, ascan be seeninfigure5.42.
Note that buffering durations are not specified for the last DIMM in the chaini.e. the
DIMM furthermost away from the memory controller because read transactions to the last
DIMM compete with only other transactions to the same DIMM for the northbound bus.
The consequence of the serialization of requests to the same DIMM isthat the last DIMM

in the chain should experience no buffering delays. Note that two bits (marked C) are used
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(@) Frame Layout for 8 DIMM channel  (b) Frame Layout for 4 DIMM channe

Figure5.42. Framesfor Global Variable Buffering. The figure shows two different
frame layouts for Global Variable Buffering. The number of bits alocated to specify the
frame duration is a function of the number of DIMMs in the channel. Note that buffering
duration is not specified for the last DIMM in the chain.

to specify which command in the frame the buffering durations are specified for. In this
study, we ignore the restrictions on the number of bits required to specify the buffering
duration for different DIMMs.

The AMB northbound data-path has to be modified to alow buffering of dataframes
both from its own DRAM as well as from its southern AMB. The AMB should be able to
associate the buffering duration provided by the memory controller with the command with
the appropriate read data frame. In a system that returns data frames in the same order that
the commands were sent in this can be implemented by keeping a FIFO queue of buffering
durations of all framesthat are to pass through the AMB. When aread data frame arrives,

the buffering duration is associated with the frame and it is delayed for the specified period
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Figure 5.43. Hardwarefor Global Variable Buffering. The figure above shows one
possible implementation of the logic required to support global variable buffering. The
AMB return data path has to be modified to interpolate read data buffers with
programmable delay counters for both frames from the AMB’s own DRAM and from
southern DIMMSs. The queues holding the buffer delays and frames are similar to those
sued in Source Buffering.
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before being relayed on. To make the design simpler, the buffers and buffering duration
queues for the two read data frame sources should be separate. The FIFO buffering queue
used for the buffering at source can be used to buffer read data frames from the host
DRAM. A similar buffering queue will be needed for the read data frames which are from
the southern AMBSs. Since the buffering delay and the read dataframe arrive at the AMB at
different times, the FIFO buffering queue for read dataframes from different AMBs should
have two different tail pointers, one for the buffer duration and the other for the read data
frame.
5.3.1.3 Global Binary Buffering

The other option that we look at is Global Binary Buffering. This can be used with
both systemswhich alow datato return in-order and out of order. In this scheme the buffer
duration for the system isfixed at initialization by the memory controller. This buffer dura-
tion is the absolute time for which a transaction can be delayed. The memory controller
uses asingle bit to indicate whether aframeisto be delayed or not. Thus, the memory con-
troller needs a maximum of 8 bits per command to indicate the buffering duration. The
remaining bits can be used to indicate to the AMB the order in which the read dataframeis
to return with respect to the previously issued requests. The frame format for this particular
approach would be as shown in figure 5.44. This scheme is a simplified implementation of
global variable buffering.
5.3.2 Buffering: Impact on Application Performance

Buffering of return data frames improved the performance characteristics for all

channel depths and burst lengths. The improvements were higher for longer channels with
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DELAY

E-ORDE
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Figure5.44. Framesfor Global Binary Buffering. The figure shows two different
frame layouts for Global Binary Buffering. The number of bits allocated to specify the
frame duration is a function of the number of DIMMs in the channel. Note that buffering
duration is not specified for the last DIMM in the chain.

average latency improvements across all workloads being 30% for an 8 DIMM deep chan-
nel, 15% for a4 DIMM deep channel and around 5% for 2 DIMM deep channel. Perfor-
mance improvements were seen for all channel depths and burst lengths but like re-
ordering we found that burst length 8 systems benefitted |ess than burst length 4 systems
from re-ordering. For channels with 4 or more DIMMs in the channel, we found that
latency improved with the incorporation of additional buffers on the AMB for buffering
return data up to a certain number of buffers, beyond which no further reductionsin latency
were observed. The buffer count beyond which no improvements were seen was afunction
with channel depth, with improvements saturating in a4 deep channel for a buffer count of
2 and in a8 deep channel for acount of 8. Thisnumber was independent of the type of buff-

ering policy employed aswell asthe burst length being used.
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Fig 5.45 shows the performance improvements achieved by using Source Buffering
for different channel lengths and burst lengths. Fig 5.46 shows the performance improve-
ments achieved by buffering at any AMB for an unbounded duration for different channel
lengths and burst lengths. Fig 5.47 shows the performance improvements achieved by buff-
ering at any AMB for afixed duration, in this case an entire burst length, for different chan-
nel lengths and burst lengths. Fig 5.49 shows the performance improvements achieved by
using the different buffering approaches for different channel lengths and burst Iengths.
Figure 5.50 shows the variation in contributors to average read latency as the number of
buffersis changed for various channel depths for a burst length of 8 while figure 5.51
showsit for aburst length of 4. Figure 5.52 and 5.53 shows how the variation in the latency
contributors for the different buffering policies used for burst length 4 and 8 systems
respectivel.

As expected, configurations with longer channels benefitted the most from using
buffering. In these systems, the north link is unavailable for longer durations because of the
longer flight time for read data frames. Buffering allows transactions to move data out of
the DRAM and holds it in the buffer till the earlier scheduled transaction is done transmit-
ting. By de-coupling the data burst out of the DRAM from the data burst on the north link,
buffering is able to schedul e transactions to earlier DIMMs in the system as soon as the
DRAM resources are available. Asin the case of re-ordering, being able to schedule
requeststo earlier DIMMSs contributes to the bulk of the latency reductions.

Buffering improves average read latency by reducing the queueing delay dueto north
link being unavailable and the transaction queue being unavailable (Figure 5.50 and 5.51).

However, buffering does not completely eliminate the queueing delay associated with the
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unavailability of the north link in burst length 4 systems (Figure 5.51) and is less effective
in the case of burst length 8 systems as well (Figure 5.50). This is because buffering does
not utilize idle gapsin the north link. Instead, buffering delays the point at which the north
link is used and thus replaces some of the north link queueing delay with a buffering delay.
Hence, we see in figures 5.50 and 5.51 that by using buffering the north link queueing
delay drops, but the buffering overheads increase. Despite the cost of buffering, we find
that the ability to schedule requests to

Figures 5.54, 5.55 and 5.56 plot the improvementsin per DIMM average read
latency for a system using Buffering at Source, Global Variable Buffering and Global
Binary Buffering with buffer duration set to one entire burst length. In the case of Source
Buffering and Global Variable Buffering (Figure5.54 and 5.55), we see that buffering
reduces the latency of transactionsto the DIMM closest to the memory controller, but typi-
cally increases the latency of transactionsto DIMMs which are further from the memory
controller. The degradation in latency is more pronounced for a system with burst length 8
(Figures.54 b, d and f and 5.55 b, d and f) and for systems using Source Buffering. Further,
the worst case latency degradation increases with the number of DIMMSsin the channel.

Examining the contributors to latency for transactions to agiven DIMM in figures
we see that buffering significantly reduces the queueing delay experienced by transactions
to earlier DIMMSsin the system, but simultaneously increases the queueing delay dueto the
north link being unavail able experienced by transactions to DIMMswhich are further from
the memory controller. Buffering allows the memory controller to schedule transactionsto
the first DIMM in the system without having to wait for transactions to other DIMMs to

complete. By doing this, the memory controller increases the utilization of the northbound
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Figure5.54. Improvementsin Average L atency of atransaction toagiven DIMM
using Buffering at Source. The graphs in the figure shows the variation in read
latency for atransaction addressed to aparticular DIMM in the system. On the y-axisis
plotted the percentage improvement in latency for each DIMM’s transactions. The
various DIMMs are plotted on the x-axis, with the numbering starting with the DIMM
closest to the memory controller. Note the last point is the overall average read latency
improvement experienced. Graph f has adifferent y-axis.
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Figure5.55. Improvementsin Average L atency of atransaction toagiven DIMM
using Global Variable Buffering. The graphsin the figure shows the variation in read
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plotted the percentage improvement in latency for each DIMM’s transactions. The
various DIMMs are plotted on the x-axis, with the numbering starting with the DIMM
closest to the memory controller. Note the last point is the overall average read latency
improvement experienced. Graph f has a different y-axis.
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Figure5.56. Improvementsin Average L atency of atransaction to agiven DIMM
using Global Binary Buffering. The graphs in the figure shows the variation in read
latency for atransaction addressed to a particular DIMM in the system. On the y-axisis
plotted the percentage improvement in latency for each DIMM’s transactions. The
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improvement experienced. Graph f has adifferent y-axis.
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busfor transactions to this particular DIMM. Due to the latter phenomenon, transactionsto
the next couple of DIMMs have to wait longer for bursts to earlier DIMMs to complete.
Transactions that are scheduled to further DIMMs (as in the case of DIMM 5,6,7,8ina8
DIMM deep channel) are not affected, because of their longer round-trip latency.

Global variable buffering is able to alleviate some of thisincreased queueing delay
by allowing returning read data to be buffered at multiple points. This allows the memory
controller to buffer the returning read data frames at any DIMM if the link immediately
ahead of it isunavailable. Hence, in a system using Global Variable Buffering, the read
data bursts to DIMMs which are sent to DIMMs further down the channel, are able to be
scheduled without having to wait for the read data bursts from DIMM 1 to complete.
Hence, we see by comparing figures 5.54 f and 5.55 f, that transactionsto DIMM 4 experi-
ences far less latency degradation when the system uses Global Variable Buffering then
when the system uses Global Source Buffering.

The ability to buffer at multiple DIMMS useful in the case of memory intensive
workloads which have larger bandwidth demands and can result in an overall 5% higher
latency reduction for these applications by using Global Variable Buffering as compared to
Global Source Buffering (fig 5.49). These reductions are larger in a burst length 8 system
because of the longer data bus use per transaction. Figures 5.52 and 5.53 which show the
variation in contributors to read latency with different buffering policies, establish that the
queueing delay reductions for Global Variable Buffering is higher than for Globa Source
Buffering.

Thereductionsin latency due to the use of Global Binary Buffering increase with the

buffering duration permitted (fig 5.48). The buffering gainstaper out after abuffer duration

180



of 4 timesthe burst duration is used. This behavior suggeststhat it is more likely for trans-
actions to buffer for longer durations than shorter durations. Systems with 8 DIMM deep
channels continue to benefit when the buffering duration in set to 8 times a burst duration.
Figure 5.49 shows that the three buffering schemes achieve comparabl e performance
for systemswith 4 or less DIMMs. For achannel with 8 DIMMswe find that global binary
buffering yields the lowest improvements while global variable buffering did the best.
Increasing the number of buffers on each AMB typically improves the average read
latency till a certain buffer count after which no additional benefits are seen. The buffer
count at which the gains taper off is afunction of the channel length, with 2 DIMM deep
systems seeing the maximum possible benefits with one buffer, 4 DIMM deep system see-
Ing maximum possi ble benefitswith two buffersand 8 DIMM deep systems 4 buffers (Fig-
ures 5.45, 5.46 and 5.47). In the case of burst length 4 systems, the latency reductions stop
when the north link queueing delay has been eliminated and a part of it has been replaced
with the buffering delay (figure 5.51 (a, b)). In the case of burst length 8 systems, no further
reductions in queueing delay are seen by adding more buffers (figure 5.50). By examining
figure 5.58 and, we see how the contributors to average read latency experienced by a

transaction to agiven DIMM changes as more DIMMs are added in the system.

5.3.2.1 Bandwidth Improvements

Fig 5.59 shows the performance improvements achieved by using Source Buffering
for different channel lengths and burst lengths. Fig 5.60 shows the performance improve-
ments achieved by buffering at any AMB for an unbounded duration for different channel
lengths and burst length. Fig 5.61 shows the performance improvements achieved by buff-

ering at any AMB for afixed duration which is equal to an entire burst length for different
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channel lengths and burst lengths. Fig 5.68 shows the bandwidth improvements achieved
by using the different buffering approaches for different channel lengths and burst lengths
for aAMB with 4 buffers.

Asin the case of the latency improvements, we see that longer channels had the larg-
est bandwidth improvements, with 8 deep channels benefitting by an average of 25% as
compared to 5 and 10% for channel lengths of 2 and 4 DIMMs respectively. The benefits
were more pronounced for the memory intensive workloads and the mix workloads with
more threads, because they were able to utilize buffering to move more read data back to
the memory controller. Since buffering does not schedule read transactions to utilize the
gapsin the channel, the benefits of using buffering are less than that of using re-ordering.

We once again found that global variable buffering had better bandwidth improve-
ments than buffering at source, with larger improvements seen for systems with longer
channel depths, larger burst lengths and for workloads with higher bandwidth require-

ments.

5.4. Re-ordering and Buffering

We studied the impact on performance characteristics of a system that permits re-
ordering of datareturns aswell as buffering. In general we found that the latency improved
by an additional 5-8% for a2 DIMM system, 5-10% for a4 DIMM system and 5-!0% for
an 8 DIMM system over a system which only permitted re-ordering of return data. The
bandwidth improvements were on the order of 5% for a system with aburst length of 8 and
around 2% for a system with a burst length of 4. Unlike a system which allowed datato

return in-order we found that the buffering policy employed had no impact on the overall
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performance improvements, while the number of buffers used made adifference mainly in
aburst length 8 system.

Figure 5.63 shows the latency improvements achieved by using the different buffer-
ing approaches for different channel lengths and burst lengths for a AMB with 4 buffers.
Figure5.64 shows the performance improvements achieved by using Source Buffering for
different channel lengths and burst lengths. Figure and 5.66 5.67 shows the improvements
in per-DIMM latency improvements by using Source Buffering. Figure5.69 shows the
bandwidth improvements achieved by using the different buffering approaches for differ-
ent channel lengths and burst lengths for a AMB with 4 buffers. Figure5.64 shows the
bandwidth improvements achieved by using Source Buffering for different channel lengths
and burst lengths.

Using buffering with re-ordering resulted in a further reduction in latency by elimi-
nating any queueing delay associated with only the north link being available and by sub-
stantially reducing any queueing delay (fig 5.67) due to the north link and the DIMM being
unavailable (figure 5.66). In the case of burst length 4 systems (figure 5.66) we seeasingle
buffer was able to eliminate this remaining delay, while in a burst length 8 system more
buffers were required (fig 5.67). In nearly all cases only a small fraction of the queueing
delay was not translated into buffering overheads. The bulk of the overheads were con-
verted into buffering overheads. The advantages of using buffering with re-ordering
largely arise from being able to de-couple the wait for the north link from the wait for the
DRAM. Hence, the system is able to more fully utilize the available DRAM-level parallel-

ism and be only limited by the total available bandwidth.
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Figure 5.69. Impact of buffering type on bandwidth improvementsfor a system
permitting re-ordering of datareturns. The graphs plot the percentage
improvements for the average read latency on the y-axis for the different applications at
different channel depth. Each application’ s datais grouped on the x-axis with abar for a
different buffering schemes.
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Since re-ordering is able to considerably improve the northbound link utilization, we
see that a system which uses re-ordering is insensitive to the buffering policy employed.
Re-ordering improves north link utilization by being able to insert the returning of read
datain idle gaps on the channel which occur prior to the return of read datafrom aDIMM
further away from the memory controller. By doing this, read transactionsto earlier DIMM
in the channel are able to utilize idle slots which are unavailable to transactions to later
DIMMsaswell as not add to the competition for slots after the data burst. Hence, re-order-
ing does not increase the latency of atransaction to any particular DIMM while signifi-
cantly improving the read latency of transactions to the first DIMM. Hence, an ability to
buffer at multiple placesis no longer an advantage as in the case of a system using in-order
returns and we see no benefit from varying the scheduling policy.

Another artifact of the above behavior is that buffering resultsin alatency degrada-
tion for transactions to further DIMMs in a system with burst length 8. This degradation is
outweighed by the improvements in latency for transactions to mainly the first DIMM in
the chain and an overall improvement in latency is seen.

Bandwidth improvements are more apparent in burst length 8 systems, due to their
higher bus utilization. We find that using buffering not only moves data out of the DRAM
faster but also packs the bus more efficiently contributing to an increase in the overall
bandwidth of systems with higher bandwidth requirementsi.e. applications running on a
system with burst length 8 and applications with higher bandwidth requirements such as

the memory intensive workloads
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TABLE 5.2. Out of order Processor parameters

Parameter Value
Wiatn 8

Instruction Queue 64

Reorder Buffer Size 128

L oad-Store Queue 32

Brach Predictor Hybrid - 2K Local History/Return
Address Stack 16/ Branch Target Buffer
2K/ GShare Predictor

D-L1 32KB / 3 cycles/ 16 MSHRs

I-L1 32KB/ 3 cycles/16 MSHRs

L2 0.5MB per core/ 10 cycles/16 MSHRs

Operating Frequency

2.7 GHz

5.5. Full System Simulation Studies

5.5.1 Methodology

In this study, we used M5, afull system simulator developed at the University of
Michigan[1] in stand-alone mode. The memory model of M5 has been modified to use
DRAMsim. The details of the processor model are given in table 5.2. The DRAM parame-
tersare similar to what we used earlier. Note that in this case theratio of the CPU frequency

to the memory frequency islower than that used in the traces. We use a CPU frequency to

DRAM channel datarateratio of 2:1.

For this study we used combinations of SPEC 2000 [3] benchmarks. EIO traces of
the benchmarks which were collected using SIM-EIO were used in this study. The execu-
tion phase of the benchmarks are identical to those used by Choi et al[2]. The workload

combinations used in the study are given in table 5.3. The IPC values for the workloads are
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TABLE 5.3. Workload Combinations Used

Name Applications
FULL-MIX-2a applu, vortex
FULL-MIX-2b twolf,apsi
FULL-MEM-2a art, mcf
FULL-MEM-2b swim,twol f
FULL-MIX-2a art, mcf, fma3d, gcc
FULL-MIX-2b gzip, twolf, bzip2, mcf
FULL-MEM-2a swim, twolf, art, mcf
FULL-MEM-2b art, mcf, vpr, swim

givenin figure 5.70 and the initial bandwidth used in figure 5.71. The bandwidth values
were highest for the memory intensive workloads, with a bandwidth utilization of around
50-60% in the single channel case and 20-30% in a dual channel case. For nearly all the
workloads, the observed bandwidth and IPC values decreased with increases in channel
length.
5.5.2 Results

Figure 5.72 show the speed-up achieved by permitting return datato be re-ordered on
the northbound channel. Figure 5.73 shows the improvementsin | PC by using Source Buff-
ering in aFBD-DDR3 closed page system. Figure 5.74 shows the improvementsin IPC
achieved by using both re-ordering of data returns and buffering.

For all techniques studied we found the most improvement in longer channel systems
with higher bandwidth utilzations. A 2 DIMM channel saw nearly no speed-up, while a8
DIMM deep channel saw a speed-up of 10-18% for the different policies. All the improve-

ments were seen at higher bandwidth utilizations and hence were absent in systems with 2
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Figure 5.70. Default 1PC valuesfor Workloads. The default IPC values are plotted
on the x-axis for the different workloads which are represented as groups on the y-
axis.Each group is representative of a different system configuration.

or more channels. For the same reasons, the improvements were mainly seen for the mem-

ory intensive workloads and for workloads with 4 threads.

By using re-ordering of data returns alone, an average performance improvement of

10-12% for an 8 DIMM deep channel and around 5% for a4 DIMM deep channel were

seen. A maximum performance improvement of nearly 25% was seen for the FMEM-4a

and FMEM-4b workloads running in a system using burst length 8. We found that in most

cases the burst length 4 and burst length 8 systems had performance improvements which
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Figure 5.71. Default Sustained Bandwidth for Workloads. The observed bandwidth
values are plotted on the y-axis for the different workloads which are represented ba a
group of bars on the x-axis. Each group is representative of a different system
configuration. The first three bars are for a single channel configuration, while the next
three for a two channel configuration. Going from left to right, within a particular
channel group, increases the number of DIMMs/channel.
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Figure 5.72. Improvementsin | PC by using Re-ordering of Data Returns. The
figure shows the improvements in IPC achieved by permitting re-ordering of data return
and buffering for the various workloads studied, shown on the x-axis. Each set of barsis
data for a different system topology for the workload. The topologies are specified as
#channels x # DIMMs. The IPC values are normalized against the IPC values observed
for the workload running on an identical system configuration with no re-ordering or
buffering support.
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Figure 5.73. Improvementsin I PC by using Sour ce Buffering. The figure showsthe
improvementsin |PC achieved by permitting re-ordering of datareturn and buffering for
the various workloads studied, shown on the x-axis. Each set of bars is data for a
different system topology for the workload. The topologies are specified as #channels x
# DIMMs. The IPC vaues are normalized against the IPC values observed for the
workload running on an identical system configuration with no re-ordering or buffering
support.
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Figure5.74. Improvementsin | PC by using Buffering + Re-ordering of Data
Returns. The figure shows the improvementsin IPC achieved by permitting re-ordering
of datareturn and buffering for the various workloads studied, shown on the x-axis. Each
set of bars is data for a different system topology for the workload. The topologies are
specified as #channels x # DIMMs. The IPC values are normalized againgt the IPC
values observed for the workload running on an identical system configuration with no
re-ordering or buffering support.
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were within 5% of each other. The FM1X4aworkload executing on a configuration using a
burst length 4 and a bust topology with 2 channels each having 8 DIMMs saw aslight dete-
rioration in |PC when re-ordering was used. This was mainly due to a 10% increase in the
L 2 cache missrate which occurred when re-ordering was used. In nearly all the other cases,
re-ordering did not impact the L2 cache rate significantly, and hence the improvementsin
memory latency trandated into improvementsin | PC.

Buffering again was most beneficial ina8 DIMM deep channel achieving a speed-up
of 10% for an 8 DIMM deep channel and 4% for 4 DIMM deep channels. For nearly all the
workloads and configurations which showed performance improvement, buffering yielded
dightly lower gain in performance than re-ordering data returns did.

The use of buffering and re-ordering resulted inhigher speed-ups than the use of the
individual policiesin burst length 8 systems. Burst length 8 systems benefitted by an addi-
tional 8% IPC improvement in asingle channel with 8 DIMMs and 2% in asingle channel

with 4 DIMMs, for an overall improvement in IPC of 18 and 6% respectively.
5.6. Summary

Like previously defined memory protocols, the FBDIMM specification assumes an
omniscient memory controller which manages all resources in the system, including the
DRAM, on-DIMM busesi.e. command and data bus, and on-board links i.e. the south and
north links. The memory controller has to guarantee that there are no violations of DRAM
timing parameters or any conflicts on any of the various system buses. The default imple-
mentation of the protocol assumes that read data returns in the order that it was scheduled.
Consequently, the scheduler is unable to take advantage of idle time on the north links

which occur prior to the use of the link by apreviously scheduled read transaction.
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Thefirst optimization that we looked at wasto improve latency and bus utilization by
relaxing the need for data to return in the same order as the commands. We propose a tech-
nigue to permit re-ordering of returning read data that can be implemented without modify-
ing the existing FBDIMM memory protocol. Permitting reordering of read data improves
the maximum sustainable bandwidth of the system by 1-2 GBps. Application latency
improvesin a4-8 DIMM deep system by an average of 10-20%, while bandwidth utiliza-
tion increased by 5-10%. Multi-program workload runs on afull system simulator demon-
strate that this technique improves overall |PC by an average of an average of 4 to 15%.

The second technique that we explored was focussed on de coupling DIMM avail-
ability from north link availability. We proposed using buffers on the northbound channel
pat that hold read data frames. Buffering enables the memory controller to read data out of
the DRAM rows without having to wait for the north link to become available. We exam-
ined several buffering policiesincluding Source Buffering, Global Variable Buffering and
Global Binary Buffering. These policies are distinguished by where buffering is permitted,
i.e. at the DIMM supplying the data or at any DIMM on the path from the DIMM to the
memory controller, and the buffering duration specified, a pre-defined fixed duration or a
dynamically determined value. Buffering is managed by the memory controller and all
buffering durations are specified by the memory controller in the command frames.

We found that buffering improvesread latency by an average of 5 to 25% for channel
lengths of 2 to 8 respectively. Most of these benefits arose from increasing the ability of the
memory controller to move data out of the closest DIMM earlier. Buffering improved the

overall IPC by an average of 2 to 10%.
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The use of buffering with re-ordering of data returns was especially beneficial in a
longer channel with higher burst lengths. This combination yielded an additional 10%
reduction in latency and afurther speed-up gain of 8% inan 8 DIMM deep FBDIMM chan-
nel using a burst length of 8.

In this chapter, we demonstrated that the inefficiencies in along channel FBDIMM
system operating in the variable latency mode can be eliminated by permitting read data to
return in a different order than the requests were made in and by allowing the AMB to
buffer the read data frame till the northbound channel is available. These techniques do not
require significant modification of the current system design and can be easily imple-

mented to regain the lost performancein long channel systems.
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Chapter 6: Conclusions

Higher data-rates and increased DRAM capacity are often defined as the Moore’s Law of
the memory system industry. Both these have been scaled successfully over the past
decade. These scaling trends have become increasingly difficult to sustain due to the elec-
trical limitations associated with scaling high-speed wide parallel bus architectures. To
continue to meet the demand for increased memory capacity at higher bus speeds, the
DRAM industry has converged on a high-speed, serial, split bus architecture, the Fully-
Buffered DIMM (FBDIMM) standard.

In this dissertation, we first studied how this new bus architecture compared with the
conventional bus architecture in terms of memory sub-system performance. Our study
showed that the relative performance of a FBDIMM system and a DDRXx system was a
strong function of the bandwidth utilization of the input streams. Overall, the FBDIMM
system had a27% average higher latency, mainly due to workloads with bandwidth utiliza-
tions of less than 50% total DDRx DRAM bandwidth. This latency degradation becomes a
latency improvement of nearly 10% for FBD-DDR3 systems as the application bandwidth
utilization increased past 75% due to the ability of the FBD memory controller to use the
additional DRAM level parallelism, split bus architecture and ability to send multiple
DRAM commands in the same clock cycle. However, the additional system bandwidth
availableinaFBDIMM system resulted in an average of approximately 10% improvement
in overall bandwidth with most of the benefits coming again for workloads with higher
bandwidth utilization.

More interestingly, we found that the scheduling policies and row buffer manage-

ment policies used in DDRx systems continued to perform comparably in FBDIMM sys-
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tems. In both cases, ascheduling policy that prioritizesread traffic over writetraffic had the
best latency characteristics for both open page and closed page systems. A scheduling pol-
icy that prioritized traffic to currently open banks in the system had the best bandwidth
characteristics while agreedy approach did very well in closed page systems.

One difference that we found with regard to FBDIMM and DDRx system behavior
was their response to the use of posted CAS, a DRAM protocol feature which simplifies
memory controller design by allowing the memory controller to bundle arow activation
and read/write command in back-to-back command cycles. Unlike DDRx systems,
FBDIMM systems using posted CAS had worse latency and bandwidth characteristics than
systems which did not use this. This difference arose from the organization and use of the
FBDIMM command frame and the sharing of the FBDIMM southbound bus by commands
and write data.

We also performed a detailed analysis of how high-speed serial, multi-hop memory
protocols, such as the FBDIMM, scale with changes in system topology and respond to
changes in memory controller policies. Detailed measurements of the contributors to the
read latency of atransaction revealed that a significant factor contributor to overall latency
was delays associated with the unavailability of memory system resources, such as south-
bound channel, northbound channel and DRAM. Scaling the memory system
configuration, by adding more ranks or channels, resulted in the unavailability of each of
these factors varying in a different fashion and interacting in different ways to impact the
observed latency. In general, we observed that short channel FBDIMM systems are limited
by DRAM availability, while long channel FBDIMM systems are bound by channel band-

width. This problem is exacerbated in variable latency mode configurations where signifi-
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cant latency and bandwidth degradation occur due to inefficient usage of the northbound
FBDIMM channel.

The use of serialization and a multi-hop topology in FBDIMM systems has led to
increases in the default cost of aread transaction. The FBDIMM protocol allows the chan-
nel to be configured in one of two modes, a fixed latency mode where the round-trip
latency for atransactionisidentical for all DIMMsand is set to the round-trip latency of the
last DIMM in the chain. This mode imposes a higher default latency cost, which is not
desirable. The aternate mode, known as the variable latency mode, has been provided to
target this latency cost. In this mode, the channel is configured such that the round-trip
latency of atransaction is afunction of the distance of the DIMM from the memory con-
troller. By allowing this, the FBDIMM protocol hopesto lower overall read latency.

Although the variable latency mode is able to reduce the average read latency for
many of the workloads studied, this was not always true for applications executing in
longer FBDIMM channels where the latency reductions were most needed. This problem
was due to two reasons:- first, the inefficient utilization of the north link and second, the
fact that transactionsto closer DIMMs haveto often wait for read datafrom further DIMMs
to complete using the north link although the DRAM isready.

We studied two techniques to improve the latency of an FBDIMM channel using the
following techniques
= QOut of order return of read data or allowing read data to return out of order,
= Buffers at the AMB for north link data to permit transactions to nearer DIMMs being

issued in advance
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Like previously defined memory protocols, the FBDIMM specification assumes an
omniscient memory controller that manages all system resources, including the DRAM,
on-DIMM busesi.e. command and data bus, and on-board links i.e. the south and north
links. The memory controller hasto guarantee that there are no violations of DRAM timing
parameters or any conflicts on any of the various system buses. The default implementation
of the protocol assumes that read data returns in the order that it was scheduled. Conse-
guently, the scheduler is unable to take advantage of idle time on the north links which
occur prior to the use of the link by a previously scheduled read transaction.

The first optimization that we looked at relaxed the requirement for datato returnin
the same order as the commands. We proposed a technique for re-ordering the returning
read data that can be implemented without modifying the existing FBDIMM memory pro-
tocol. Permitting reordering of read data improves the maximum sustainable bandwidth of
the system by 1-2 GBps. Application latency improvesin a4-8 DIMM deep system by an
average of 5-25% while bandwidth utilization increased by 5-10%. Multi-program work-
load runs on afull system simulator demonstrate that this technique improves overall IPC
by an average of 5-15%, with the most benefits being seen in a system with longer chan-
nels.

The second technique that we explored was focussed on de coupling DIMM avail-
ability from north link availability. We proposed using buffers on the northbound channel
pat that hold read data frames. Buffering enables the memory controller to read data out of
the DRAM rows without having to wait for the north link to become available. We exam-
ined several buffering policies including Source Buffering, Global Variable Buffering and

Global Binary Buffering. These policies are distinguished by where buffering is permitted,
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i.e. at the DIMM supplying the data or at any DIMM on the path from the DIMM to the
memory controller, and the buffering duration specified, a pre-defined fixed duration or a
dynamically determined value. Buffering is managed by the memory controller and all
buffering durations are specified by the memory controller in the command frames.

We found that buffering resultsin aspeed-up of 2 to 25% for memory system topolo-
gieswith 4 and 8 DIMMs per channel. Again, most of these benefits arose from increasing
the ability of the memory controller to move data out of the closest DIMM earlier. A mem-
ory controller that uses buffering and re-ordering of data returns further reduces memory
latency by an additional 10%. The overall speed-up by using both optimizationsis on the
order of 2-25%, over the baseline system which only allowsin order return of dataand does

not support buffering.
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