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Abstract

Based on recent results for multi-armed bandit problems, we propose an adaptive sampling

algorithm that approximates the optimal value of a finite horizon Markov decision process

(MDP) with infinite state space but finite action space and bounded rewards. The algorithm

adaptively chooses which action to sample as the sampling process proceeds, and it is proven

that the estimate produced by the algorithm is asymptotically unbiased and the worst possible

bias is bounded by a quantity that converges to zero at rate O
(

H ln N
N

)
, where H is the horizon

length and N is the total number of samples that are used per state sampled in each stage. The

worst-case running-time complexity of the algorithm is O((|A|N)H), independent of the state

space size, where |A| is the size of the action space. The algorithm can be used to create an

approximate receding horizon control to solve infinite horizon MDPs.

Keywords: (adaptive) sampling, Markov decision process, multi-armed bandit problem, receding

horizon control
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1 Introduction

In this paper, we propose an “adaptive” sampling algorithm that approximates the optimal value

to break the well-known curse of dimensionality in solving finite horizon Markov decision processes

(MDPs). The algorithm is aimed at solving MDPs with a large (possibly infinite) state space

but with a finite action space and bounded rewards. The approximate value computed by the

algorithm not only converges to the true optimal value but also does so in an “efficient” way.

The algorithm adaptively chooses which action to sample as the sampling process proceeds and

the estimate produced by the algorithm is asymptotically unbiased and the worst possible bias is

bounded by a quantity that converges to zero at rate1 of O
(∑H

i=1
ln Ni
Ni

)
, where H is the length of

the horizon and Ni is the total number of samples which are used per state sampled in stage i. The

logarithmic bound in the numerator is achievable uniformly over time. Given that the action space

size is |A|, the worst-case running time-complexity of the algorithm is O
(
(|A|maxi=1,...,H Ni)H

)
,

which is independent of the state space size but is dependent on the size of the action space due to

the requirement that each action be sampled at least once at each sampled state

The idea behind the adaptive sampling algorithm is based on the expected regret analysis of

the multi-armed bandit problem developed by Lai and Robbins (1985). In particular, we exploit

the recent finite-time analysis work by Auer, Cesa-Bianchi, and Fischer (2002) that elaborated

Agrawal (1995). The goal of the multi-armed bandit problem is to play as often as possible the ma-

chine that yields the highest (expected) reward. The regret quantifies the exploration/exploitation

dilemma in the search for the true “optimal” machine, which is unknown in advance. During the

search process, we wish to explore the reward distribution of different machines while also frequently

playing the machine that is empirically best thus far. The regret is the expected loss due to not

always playing the true optimal machine. Lai and Robbins (1985) showed that for an optimal

strategy the regret grows at least logarithmically in the number of machine plays, and recently

Auer, Cesa-Bianchi, and Fischer (2002) showed that the logarithmic regret is also achievable uni-

formly over time with a simple and efficient sampling algorithm for arbitrary reward distributions

with bounded support. We incorporate their results into a sampling-based process for finding an

optimal action in a state for a single stage of an MDP by appropriately converting the definition

of regret into the difference between the true optimal value and the approximate value yielded by

the sampling process. We then extend the one-stage sampling process into multiple stages in a

recursive manner, leading to a multi-stage (sampling-based) approximation algorithm for solving

MDPs.

This paper is organized as follows. In Section 2, we give the necessary background and an

intuitive description of the adaptive sampling algorithm, present a formal description of the algo-

rithm, and discuss how to create an (approximate) receding horizon control (Hernández-Lerma and

Lasserre, 1990) via the sampling algorithm to solve MDPs in an “on-line” manner in the context
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of “planning” for infinite horizon criteria. In Section 3, we provide the proofs for the convergence

and the convergence rate of the worst-case bias, and in Section 4, we compare the algorithm with

a nonadaptive sampling algorithm. In Section 5, we conclude this paper with some remarks.

2 Adaptive Sampling Algorithm

2.1 Background

Consider a finite horizon MDP M = (X,A,P,R) with countable state space X, finite action space

A with |A| > 1, nonnegative and bounded reward function R such that R : X × A → R+, and

transition function P that maps a state and action pair to a probability distribution over X. We

denote the probability of transitioning to state y ∈ X when taking action a in state x ∈ X by

P (x, a)(y). For simplicity, we assume that every action is admissible in every state.

Let Π be the set of all possible nonstationary Markovian policies π = {πt|πt : X → A, t ≥ 0}.
Our goal is to estimate the optimal discounted total reward (thereby obtaining an (approximate)

optimal policy) for horizon length H, discount factor γ, and initial state x0. Defining the optimal

reward-to-go value function for state x in stage i by

V ∗
i (x) = sup

π∈Π
E

[
H−1∑
t=i

γtR(xt, πt(xt))
∣∣∣∣xi = x

]
, x ∈ X, 0 < γ ≤ 1, i = 0, ...,H − 1,

with V ∗
H(x) = 0 for all x ∈ X and xt a random variable denoting the state at time t following

policy π, we wish to estimate V ∗
0 (x0). Throughout the paper, we assume that γ is fixed. It is

well-known (see, e.g., Bertsekas 1995) that V ∗
i can be written recursively as follows: for all x ∈ X

and i = 0, ...,H − 1,

V ∗
i (x) = max

a∈A
(Q∗

i (x, a)), where

Q∗
i (x, a) = R(x, a) + γ

∑
y∈X

P (x, a)(y)V ∗
i+1(y) with V ∗

H(x) = 0, x ∈ X.

We remark that the work here can be extended to Borel state space with appropriate measure-

theoretic arguments, and the assumption that we have the zero terminal reward function (for

simplicity) can be relaxed with an arbitrary (bounded) terminal reward function.

Suppose we estimate Q∗
i (x, a) by a sample mean Q̂i(x, a) for each action a ∈ A, where

Q̂i(x, a) = R(x, a) + γ
1

Nx
a,i

∑
y∈Sx

a

V̂
Ni+1

i+1 (y), (1)

where Sx
a is the multiset of (independently) sampled next states according to the distribution

P (x, a), and |Sx
a | = Nx

a,i ≥ 1 for all x ∈ X and such that
∑

a∈A Nx
a,i = Ni for a fixed Ni ≥ |A| for all

x ∈ X, and V̂
Ni+1

i+1 (y) is an estimate of the unknown V ∗
i+1(y). Note that the number of next state
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samples depends on the state x, action a, and stage i. Suppose also that we estimate the optimal

value of V ∗
i (x) by

V̂ Ni
i (x) =

∑
a∈A

Nx
a,i

Ni
Q̂i(x, a).

This leads to the following recursion:

V̂ Ni
i (x) :=

∑
a∈A

Nx
a,i

Ni


R(x, a) + γ

1
Nx

a,i

∑
y∈Sx

a

V̂
Ni+1

i+1 (y)


 , i = 0, ...,H − 1,

with V̂ NH
H (x) = 0 for all x ∈ X and any NH > 0.

In the above definition, the total number of sampled (next) states is O(NH) with N =

maxi=0,...,H−1 Ni, which is independent of the state space size. One approach is to select “op-

timal” values of Nx′
a,i for i = 0, ...,H − 1, a ∈ A, and x′ ∈ X, such that the expected error between

the values of V̂ N0
0 (x) and V ∗

0 (x) is minimized, but this problem would be difficult to solve. So

instead we seek the values of Nx′
a,i for i = 0, ...,H − 1, a ∈ A, and x′ ∈ X such that the expected

difference is bounded as a function of Nx′
a,i and Ni, i = 0, ...,H − 1, and that the bound (from above

and from below) goes to zero as Ni, i = 0, ...,H − 1, go to infinity. We propose an “adaptive”

allocation rule (sampling algorithm) that adaptively chooses which action to sample, updating the

value of Nx′
a,i as the sampling process proceeds, and achieves convergence such that as Ni → ∞ for

all i = 0, ..,H − 1, E[V̂ N0
0 (x)] → V ∗

0 (x), and is efficient in the sense that the worst possible bias

is bounded by a quantity that converges to zero at rate O(
∑

i
ln Ni
Ni

) and the logarithmic bound in

the numerator is achievable uniformly over time.

As mentioned before, the main idea behind the adaptive allocation rule is based on a simple

interpretation of the regret analysis of the multi-armed bandit problem, a well-known model that

captures the exploitation/exploration trade-off. An M -armed bandit problem is defined by random

variables Ki,n for 1 ≤ i ≤ M and n ≥ 1, where successive plays of machine i yield “rewards”

Ki,1,Ki,2,... which are independent and identically distributed according to an unknown but fixed

distribution δi with unknown expectation µi. The rewards across machines are also independently

generated. Let Ti(n) be the number of times machine i has been played by an algorithm during

the first n plays. Define the expected regret ρ(n) of an algorithm after n plays by

ρ(n) = µ∗n −
M∑
i=1

µiE[Ti(n)] where µ∗ := max
i

µi.

Lai and Robbins (1985) characterized an “optimal” algorithm such that the best machine, which

is associated with µ∗, is played exponentially more often than any other machine, at least asymp-

totically. That is, they showed that playing machines according to an (asymptotically) optimal

algorithm leads to ρ(n) = Θ(ln n) as n → ∞ under mild assumptions on the reward distributions.

Unfortunately, obtaining an optimal algorithm (proposed by Lai and Robbins) can sometimes be
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very difficult, so Agrawal (1995) derived a set of simple algorithms that achieve the asymptotic log-

arithmic regret behavior, using a form of upper confidence bounds. During the plays, we are temped

to take the machine with the maximum current sample mean — exploitation. But the sample mean

µ̂i(n̄) for the machine i is just an estimate that contains uncertainty, where n̄ is the number of overall

plays so far. To account for this, we add a function σi(n̄) such that µ̂i(n̄)−σi(n̄) ≤ µi < µ̂i(n̄)+σi(n̄)

with high probability, where µ̂i(n̄) + σi(n̄) is the upper confidence bound (see Agrawal, 1995 for

a substantial discussion). Then the width of the confidence bound gives us guidance for explo-

ration. Indeed, the use of the upper confidence bound leads us to trade-off between exploitation

and exploration, giving a criterion of which of the two between exploitation and exploration to be

selected. Agrawal’s algorithm is to choose the machine with the highest upper confidence bound at

each play over time. For bounded rewards, Auer, Cesa-Bianchi, and Fischer (2002) propose simple

upper confidence-bound based algorithms that achieve the logarithmic regret uniformly over time,

rather than only asymptotically, and our sampling algorithm primarily builds on their results.

For an intuitive description of the allocation rule, consider first only the one-stage approxima-

tion. That is, we assume for now that we know V ∗
1 (x) for all x ∈ X. To estimate V ∗

0 (x), obviously

we need to estimate Q∗
0(x, a∗), where a∗ ∈ arg maxa∈A(Q∗

0(x, a)). The search for a∗ corresponds to

the search for the best machine in the multi-armed bandit problem. We start by sampling each

possible action once at x, which leads to the next state according to P (x, a) and reward R(x, a). We

then iterate as follows (see Loop in Figure 1). The next action to sample is the one that achieves

the maximum among the current estimates of Q∗
0(x, a) plus its current upper confidence bound (see

Equation (3)), where the estimate Q̂0(x, a) is given by the immediate reward plus the sample mean

of V ∗
1 -values at the sampled next states that have been sampled so far (see Equation (4)).

Among the N0 samples for state x, Nx
a,0 denotes the number of samples at action a. If the

sampling is done appropriately, we might expect that
Nx

a,0

N0
provides a good estimate of the prob-

ability that action a is optimal in state x. In the limit as N0 → ∞, we would expect
Nx

a,0

N0
→ 1.

Therefore, we use a weighted (by
Nx

a,0

N0
) sum of the currently estimated value of Q∗

0(x, a) over A to

approximate V ∗
0 (x) (see Equation (5)). Ensuring that the weighted sum concentrates on a∗ as the

sampling proceeds will ensure that in the limit the estimate of V ∗
0 (x) converge to V ∗

0 (x).

2.2 Algorithm description

We now provide a high-level description of the adaptive multi-stage sampling (AMS) algorithm to

estimate V ∗
0 (x) for a given state x in Figure 1. The inputs to AMS are a state x ∈ X, Ni ≥ |A|, and

stage i, and the output of AMS is V̂ Ni
i (x), the estimate of V ∗

i (x). Whenever we encounter V̂ Nk
k (y)

for a state y ∈ X and stage k in the Initialization and Loop portions of the AMS algorithm,

we need to call AMS recursively (at Equation (2) and (5)). The initial call to AMS is done with

i = 0, the initial state x, and N0 and every sampling is done independently of the previously
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done samplings. To help understand how the recursive calls are made sequentially, in Figure 2,

we graphically illustrate the sequence of calls with two actions and H = 3 for the Initialization

portion.

The AMS algorithm is a recursive extension of the UCB1 algorithm given in Auer, Cesa-Bianchi,

and Fischer (2002) in the context of the MDP framework. It is based on the index-based policy of

Agrawal (1995), where the index for an action is given by the sum of the current estimate of the

true Q-value for the action plus a term that relates the size of the upper confidence bound.

Adaptive Multi-stage Sampling (AMS)

• Input: a state x ∈ X, Ni ≥ |A|, and stage i. Output: V̂ Ni
i (x).

• Initialization: Sample each action a ∈ A sequentially once at state x and set

Q̂i(x, a) =

{
0 if i = H and go to Exit

R(x, a) + γV̂
Ni+1

i+1 (y) if i �= H,
(2)

where y is the sampled next state with respect to P (x, a), and set n̄ = |A|.
• Loop: Sample sequentially each action a∗ that achieves

max
a∈A

(
Q̂i(x, a) +

√
2 ln n̄

Nx
a,i

)
, (3)

where Nx
a,i is the number of times action a has been sampled so far, and n̄ is the

overall number of samples done so far for this stage, and Q̂i is defined by

Q̂i(x, a) = R(x, a) + γ
1

Nx
a,i

∑
y∈Sx

a

V̂
Ni+1

i+1 (y), (4)

where Sx
a is the set of sampled next states so far with |Sx

a | = Nx
a,i with respect to

the distribution P (x, a).

– Update Nx
a∗,i ← Nx

a∗,i + 1 and Sx
a∗ ← Sx

a∗ ∪ {y′}, where y′ is the newly sampled

next state by a∗.

– Update Q̂i(x, a∗) with the V̂
Ni+1

i+1 (y′) value.

– n̄← n̄ + 1. If n̄ = Ni, then exit Loop.

• Exit: Set V̂ Ni
i (x) such that

V̂ Ni
i (x) =

{ ∑
a∈A

Nx
a,i

Ni
Q̂i(x, a) if i = 0, ..., H − 1

0 if i = H.
(5)

and return V̂ Ni
i (x).

Figure 1: Adaptive multi-stage sampling algorithm (AMS) description

The running time-complexity of the AMS algorithm is O((|A|N)H ) with N = maxi Ni. To see

this, let Mi be the number of recursive calls to make to compute V̂ Ni
i at the worst case. At stage

i, AMS makes |A|Mi+1 recursive calls in Initialization and |A|NiMi+1 calls in Loop at the worst
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b

sampled subtree
from the node x

x

Figure 2: Graphical illustration of the sequence of the recursive calls made in Initialization of the

AMS algorithm. Each circle corresponds to a state and each arrow with noted action signifies a

sampling (and a recursive call). The bold-face number near each arrow is the sequence number for

the recursive calls made. For simplicity, the entire Loop process is signified by one call number.

case. Therefore, Mi = (|A| + |A|Ni)Mi+1 so that M0 = O((|A| + |A|N)H) = O((|A|N)H ). In

contrast, backward induction has O(H|A||X|2) running time-complexity (see, e.g., Blondel 2000).

Therefore, the main benefit of AMS is independence from the state space size, but this comes at

the expense of exponential (versus linear, for backwards induction) dependence on both the action

space and the horizon length.

2.3 Creating an on-line stochastic policy

Once armed with an algorithm that estimates the optimal value for finite horizon problems, we can

create a nonstationary stochastic policy in an on-line manner in the context of “planning” (see,

e.g., Kearns, Mansour, and Ng 2001). Suppose at time t ≥ 0, we are at state x ∈ X. We evaluate

each action’s utility as follows:

R(x, a) + γ
1
Nt

∑
y∈Sx

a

V̂
Nt+1

t+1 (y), a ∈ A, (6)

where we apply the AMS algorithm at the sampled next states for the stage t + 1. We simply take

the action that achieves the maximum utility. We remark that the use of common random numbers

(see, e.g., Law and Kelton 2000) across actions in the utility measures given by Equation (6) should

reduce the variance in the spirit of “differential training” in the rollout algorithm (Bertsekas 1997).

If we replace the horizon H −1 by t+H in the definition of V̂
Nt+1

t+1 (y) in the above equation (6),

the resulting stochastic policy yields an (approximate) receding H-horizon control (Hernández-

Lerma and Lasserre 1990) for the infinite horizon problem.
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3 Convergence Analysis

In this section, we prove the convergence of the AMS algorithm and show that the worst possible

bias converges to zero at rate O
(∑H−1

i=0
ln Ni
Ni

)
.

Theorem 3.1 Let Rmax = supx,a R(x, a) and assume that Rmax ≤ 1
H . Suppose AMS is run with

the input Ni for stage i = 0, ...,H − 1 and an arbitrary initial state x ∈ X. Then

lim
N0→∞

lim
N1→∞

· · · lim
NH−1→∞

E[V̂ N0
0 (x)] = V ∗

0 (x).

Proof of Theorem 3.1:

We start with a convergence result for the one-stage approximation. Consider the following

one-stage sampling algorithm (OSA) in Figure 3 with a stochastic value function U defined over X.

U(x) for x ∈ X is a nonnegative random variable with unknown distribution and bounded above

for all x ∈ X. We will denote U(x) as a (random) sample from the unknown distribution associated

with U(x). As before, every sampling is done independently and we are assuming that there is a

black box that returns U(x) once x is given to the black box. Let

Umax = sup
x,a


R(x, a) + γ

∑
y∈X

P (x, a)(y)E[U(y)]


 ,

and assume for the moment that Umax ≤ 1.

We state a key lemma that will be used to prove the convergence of the AMS algorithm.

Lemma 3.1 Given a stochastic value function U defined over X with Umax ≤ 1, suppose we run

OSA with the input n. Define for all x ∈ X,

V (x) = max
a∈A


R(x, a) + γ

∑
y∈X

P (x, a)(y)E[U(y)]


 .

Then, for all x ∈ X,

E[Ṽ n(x)] → V (x) as n → ∞.

Proof of Lemma 3.1:

Fix a state x ∈ X and index each action in |A| by numbers from 1 to |A|. Consider an |A|-armed

bandit problem where each a is a gambling machine. Successive plays of machine a yield “bandit

rewards” which are independent and identically distributed according to an unknown distribution

δa with unknown expectation

Q(x, a) = R(x, a) + γ
∑
y∈X

P (x, a)(y)E[U(y)],

and are independent across machines or actions.
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One-stage Sampling Algorithm (OSA)

• Input: a state x ∈ X and n ≥ |A|.
• Initialization: Sample each action a ∈ A once at state x and set

Q̃(x, a) = R(x, a) + γU(y),

where y is the sampled next state with respect to P (x, a), and set n̄ = |A|.
• Loop: Sample each action a∗ that achieves

max
a∈A

(
Q̃(x, a) +

√
2 ln n̄

T x
a (n̄)

)
,

where T x
a (n̄) is the number of times action a has been sampled so far

at state x, n̄ is the overall number of samples done so far, and Q̃ is

defined by

Q̃(x, a) = R(x, a) + γ
1

T x
a (n̄)

∑
y∈Λx

a

U(y),

where Λx
a is the set of sampled next states so far with |Λx

a| = T x
a (n̄) with

respect to the distribution P (x, a).

– Update T x
a∗(n̄)← T x

a∗(n̄) + 1 and Λx
a∗ ← Λx

a∗ ∪ {y′}, where y′ is the newly

sampled next state by a∗.

– Update Q̃(x, a∗) with U(y′).

– n̄← n̄ + 1. If n̄ = n, then exit Loop.

• Exit: Set Ṽ n such that

Ṽ n(x) =
∑
a∈A

T x
a (n)

n
Q̃(x, a). (7)

Figure 3: One-stage sampling algorithm (OSA) description

The term T x
a (n) signifies the number of times machine a has been played (or action a has been

sampled) by OSA during the n plays. Define the expected regret ρ(n) of OSA after n plays by

ρ(n) = V (x)n −
|A|∑
a=1

Q(x, a)E[T x
a (n)], where V (x) = max

a∈A
Q(x, a).

Applying Theorem 1 from Auer, Cesa-Bianchi, and Fischer (2002) gives the following bound on

ρ(n):

Theorem 3.2 For all |A| > 1, if OSA is run on |A|-machines having arbitrary bandit reward

distribution δ1, ..., δ|A| with Umax ≤ 1,

ρ(n) ≤
∑

a:Q(x,a)<V (x)

[
8 ln n

V (x) − Q(x, a)
+ (1 +

π2

3
)(V (x) − Q(x, a))

]
,

where Q(x, a) is the expected value of bandit rewards with respect to δa.
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See Auer, Cesa-Bianchi, and Fischer (2002) for a proof of the above theorem. Observe that

maxa(V (x) − Q(x, a)) ≤ Umax. Let φ(x) = {a|Q(x, a) < V (x), a ∈ A}, i.e., the set of nonoptimal

actions for x. Define α(x) for φ(x) �= ∅ such that

α(x) = min
a∈φ(x)

(V (x) − Q(x, a)) (8)

and note that 0 < α(x) ≤ Umax. Define

Ṽ (x) =
|A|∑
a=1

T x
a (n)
n

Q(x, a).

Applying Theorem 3.2, we have

0 ≤ V (x) − E[Ṽ (x)] =
ρ(n)
n

≤ 8(|A| − 1) ln n

nα(x)
+ (1 +

π2

3
) · (|A| − 1)Umax

n
. (9)

Note also that ρ(n) = 0 if φ(x) = ∅.

From the definition of Ṽ n(x) given by Equation (7), it follows that

V (x) − E[Ṽ n(x)] = V (x) − E[Ṽ (x) − Ṽ (x) + Ṽ n(x)]

= V (x) − E[Ṽ (x)] + E

[∑
a∈A

T x
a (n)
n

(
Q(x, a) − Q̃(x, a)

)]
. (10)

Letting n → ∞, the first term V (x) − E[Ṽ (x)] is bounded by zero from above with convergence

rate of O( lnn
n ) by Equation (9). We show now that the second expectation term is zero.

First observe that T x
a (n) for every finite n is a stopping time (see, e.g., Ross 1995, p.104) with

E[T x
a (n)] ≤ n < ∞. Let µa =

∑
y∈X P (x, a)(y)E[U(y)].

E

[∑
a∈A

T x
a (n)
n

(
Q(x, a) − Q̃(x, a)

)]
= E


∑

a∈A

T x
a (n)
n


R(x, a) + γµa − R(x, a) − γ

1
T x

a (n)

∑
y∈Λx

a

U(y)]






=
γ

n

(∑
a∈A

E[T x
a (n)]µa

)
− γ

n
E


∑

a∈A


∑

y∈Λx
a

U(y)






=
γ

n

(∑
a∈A

E[T x
a (n)]µa

)
− γ

n

∑
a∈A

E


∑

y∈Λx
a

U(y)




= 0 by applying Wald’s equation.

Since

V (x) − E[Ṽ n(x)] = V (x) − E[Ṽ (x)],

the convergence follows directly from Equation (9).
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Therefore, because x was chosen arbitrarily, we have that for all x ∈ X,

E[Ṽ n(x)] → V (x) as n → ∞,

which concludes the proof of Lemma 3.1.

We now return to the AMS algorithm. From the definition of V̂
NH−1

H−1 ,

V̂
NH−1

H−1 (x) =
∑
a∈A

Nx
a,H−1

NH−1


R(x, a) + γ

1
Nx

a,H−1

∑
y∈Sx

a

V̂ NH
H (y)




≤
∑
a∈A

Nx
a,H−1

NH−1
(Rmax + γ · 0) = Rmax, x ∈ X.

Similarly for V̂
NH−2

H−2 , we have that

V̂
NH−2

H−2 (x) =
∑
a∈A

Nx
a,H−2

NH−2


R(x, a) + γ

1
Nx

a,H−2

∑
y∈Sx

a

V̂
NH−1

H−1 (y)




≤
∑
a∈A

Nx
a,H−2

NH−2
(Rmax + γRmax) = Rmax(1 + γ), x ∈ X.

Continuing this backwards, we have for all x ∈ X and i = 0, ...,H − 1,

V̂ Ni
i (x) ≤ Rmax

H−i−1∑
j=0

γj ≤ Rmax(H − i) ≤ 1,

where the last inequality comes from the assumption that RmaxH ≤ 1.

Therefore, from Lemma 3.1 with Umax = Rmax(H − i) ≤ 1, we have for i = 0, ...,H − 1, and for

arbitrary x ∈ X,

E[V̂ Ni
i (x)] Ni→∞−→ max

a∈A


R(x, a) + γ

∑
y∈X

P (x, a)(y)E[V̂ Ni+1

i+1 (y)]


 .

But for arbitrary x ∈ X, because V̂ NH
H (x) = V ∗

H(x) = 0, x ∈ X,

E[V̂ NH−1

H−1 (x)]
NH−1→∞−→ V ∗

H−1(x),

which in turn leads to E[V̂ NH−2

H−2 (x)] → V ∗
H−2(x) as NH−2 → ∞ for arbitrary x ∈ X, and by an

inductive argument, we have that

lim
N0→∞

lim
N1→∞

· · · lim
NH−1→∞

E[V̂ N0
0 (x)] = V ∗

0 (x) for all x ∈ X,

which concludes the proof of Theorem 3.1.
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We now argue that the worst possible bias by AMS is bounded by a quantity that converges to

zero at rate O
(∑H−1

i=0
lnNi
Ni

)
. Let B(X) be the space of real-valued bounded measurable functions

on X endowed with the supremum norm ‖Φ‖ = supx |Φ(x)| for Φ ∈ B(X). We define an operator

T : B(X) → B(X) as

T (Φ)(x) = max
a∈A


R(x, a) + γ

∑
y∈X

P (x, a)(y)Φ(y)


 ,Φ ∈ B(X), x ∈ X. (11)

Define Ψi ∈ B(X) such that Ψi(x) = E[V̂ Ni
i (x)] for all x ∈ X and i = 0, ...,H − 1 and ΨH(x) =

V ∗
H(x) = 0, x ∈ X. In the proof of Lemma 3.1 (see Equation (10)), we showed that for i =

0, ...,H − 1,

T (Ψi+1)(x) − Ψi(x) ≤ O

(
ln Ni

Ni

)
, x ∈ X.

Therefore, we have

T (Ψ1)(x) − Ψ0(x) ≤ O

(
ln N0

N0

)
, x ∈ X. (12)

and

Ψ1(x) ≥ T (Ψ2)(x) − O

(
ln N1

N1

)
, x ∈ X. (13)

Applying the T -operator to both sides of Equation (13) and using the monotonicity property of T

(see, e.g., Bertsekas 1995), we have

T (Ψ1)(x) ≥ T 2(Ψ2)(x) − O

(
ln N1

N1

)
, x ∈ X. (14)

Therefore, combining Equation (12) and (14) yields

T 2(Ψ2)(x) − Ψ0(x) ≤ O

(
ln N0

N0
+

ln N1

N1

)
, x ∈ X.

Repeating this argument yields

TH(ΨH)(x) − Ψ0(x) ≤ O

(
H−1∑
i=0

ln Ni

Ni

)
, x ∈ X. (15)

Observe that TH(ΨH)(x) = V ∗
0 (x), x ∈ X. Rewriting Equation (15), we finally have

V ∗
0 (x) − E[V̂ N0

0 (x)] ≤ O

(
H−1∑
i=0

ln Ni

Ni

)
, x ∈ X,

and we know that V ∗
0 (x)−E[V̂ N0

0 (x)] ≥ 0, x ∈ X. Therefore, it implies that the worst possible bias

is bounded by the quantity that converges to zero at rate O
(∑H−1

i=0
lnNi
Ni

)
.

We remark that we can relax the assumption Rmax ≤ 1
H , by a normalization of the given reward

function. The upper bound in Theorem 3.2 for ρ(n) needs to be modified with a different bounded

constant from 1+ π2

3 , which can be achieved by the Hoeffding inequality with support in [0, RmaxH]

rather than in [0, 1]. Therefore, the assumption of the support in [0, 1] is not crucial (Cesa-Bianchi

and Fisher 1998).
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4 Comparison with a Nonadaptive Algorithm

Consider the following recursive definition: given fixed N > 0,

V̄ N
i (x) = max

a∈A


R(x, a) +

1
N

∑
y∈Ωx

a

V̄ N
i+1(y)


 , i = 0, ...,H − 1, x ∈ X,

with V̄ N
H (x) = 0 for all x ∈ X, where Ωx

a is the multiset of sampled states with respect to P (x, a)

and |Ωx
a| = N for all a ∈ A and x ∈ X.

The above recursive definition immediately suggests the following nonadaptive multi-stage sam-

pling (NMS) algorithm. NMS creates a random sample-path tree having the depth of H and

branching factor of N |A| in forward manner, where N is the fixed number of next states to be

sampled from each sampled state in the sample-path tree for each action, and then in backward

manner, the estimate value of V ∗
0 -value or V̄ N

0 -value is computed recursively (see Kearns, Man-

sour, and Ng 2001 for detailed description and a performance analysis of NMS for infinite horizon

discounted criterion). Note that the running time-complexity of NMS is O
(
(|A|N)H

)
, which is

similar to that of AMS at the worst case, and NMS is asymptotically unbiased in the sense that

as N → ∞, E[V̄ N
0 (x)] → V ∗

0 (x) simply by the law of large numbers. This motivates us to compare

the convergence rates between AMS and NMS.

Via the Hoeffding inequality, it is straightforward to establish that for all x ∈ X and ε > 0,

Pr
{|V ∗

0 (x) − V̄ N
0 (x)| > ε

} ≤ 2(N |A|)He−2Nε2/H2

with assumption that RmaxH ≤ 1. (See Lemma 3 and 4 in (Kearns, Mansour, and Ng 2001) with

appropriate modifications in the context of the discounted finite-horizon total reward criterion.)

Because application of the Hoeffding inequality to obtain the expected performance error does not

provide any useful information, we use the upper bound Markov inequality (see, e.g., Hofri 1995,

p.574): for a nonnegative bounded random variable K, for any ε > 0,

EK ≤ supK · Pr{K > ε} + ε.

It follows that with ε > 0,

E|V ∗
0 (x) − V̄ N

0 (x)| ≤ RmaxH · 2(N |A|)He−2Nε2/H2
+ ε.

Therefore, to make the expected error go to zero, we need to select an arbitrarily close to zero value

of ε with N → ∞. However, the choice of ε will make the exponential term in the denominator

almost constant even with a very large N . Therefore, we expect that the convergence rate of the

nonadaptive algorithm will be much slower than the convergence rate of AMS even with a value of

ε not that close to zero in practice (e.g., due to the exponential dependence on the horizon size in

the numerator) even though the main benefit of the NMS algorithm would be independence from

the state space like AMS.
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5 Concluding Remarks

To the best of our knowledge, this is the first work applying the theory of the multi-armed bandit

problem to derive a provably convergent algorithm for solving general finite-horizon MDPs. The

closest related work is probably that of Agrawal, Teneketzis, and Anatharam (1989), who considered

a controlled Markov chain problem with finite state and action spaces, where transition probabilities

and initial distribution are parameterized by an unknown parameter belonging to some known

finite parameter space and each Markov chain induced from each fixed parameter is irreducible and

aperiodic. Defining a loss function based on the regret of Lai and Robbins (1985), they provide an

“asymptotically efficient” adaptive but complex control scheme that works well for all parameters

such that the loss associated with the control scheme is equal to the lower bound on the loss function

asymptotically (as we apply the scheme over infinite number of time steps). The adaptiveness comes

from the use of the multi-armed bandit theory for the stationary control laws. In other words, the

arm corresponds to a particular stationary law or policy, but not a particular action in the action

space. We believe that extending the AMS algorithm within the context of Agrawal, Teneketzis,

and Anatharam (1989) is not difficult, achieving a uniform rather than asymptotic result over

time-steps.

We assumed without loss of generality that |A| > 1, because problems for which |A| = 1,

or the number of the admissible actions for some states is one, can be solved by the following

transformation of M = (X,A,P,R) to an equivalent M ′ = (X ′, A′, R′, P ′) as follows. We augment

X with an extra state x̄ and A with an extra action ā such that X ′ = X ∪ {x̄} and A′ = A ∪ {ā}.
The state transition function P ′ is defined such that P ′(x, a)(y) = P (x, a)(y) for all x, y ∈ X and

a ∈ A, and P ′(x̄, a)(x̄) = 1 for all a ∈ A′, and for all x ∈ X, P ′(x, a)(x̄) = 1 if a = ā and 0 if

not. The reward function R′ is defined such that R′(x, a) = R(x, a) for all x ∈ X and a ∈ A, and

R′(x̄, a) = 0 for all a ∈ A′. Note that x̄ is just a sink state that is only reachable by the action ā

from all states in X and ā is always a suboptimal action at each state. It is left for the reader to

check that the transformed MDP M ′ gives the same optimal action at each state in X as M and

the same optimal value at each state in X as M .

For the actual implementation of the AMS algorithm, we can use the same value N = Ni,

i = 0, ...,H−1, and we can improve the running time-complexity of AMS in heuristic ways as follows.

Given an MDP M = (X,A,P,R), consider the transformation of M into M ′ = (X ′, A′, P ′, R′) as

discussed in the previous paragraph. Suppose that we add the following structure to M ′ on the

state transition function P ′. P ′(x, a)(x̄) is arbitrarily close to 0 (instead of 0) for all x ∈ X and

a ∈ A with a proper normalization of P (x, a)(y) for y ∈ X. That is, each state x ∈ X can reach the

sink state with close to zero probability. Then solving the newly defined MDP is almost equivalent

to the original MDP M . This speculation suggests that when we apply AMS for a state x ∈ X,

in the Initialization step, we just set Q̂i(x, a) = R(x, a) for i = 0, ...,H − 1, pretending that the
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sampled next state is the sink state, eliminating O(NH) computations. Furthermore, if γ �= 1, we

can set, e.g., N0 = n and Ni = 
γin� for i ≥ 1 heuristically, incorporating the discounting nature.

We can extend the AMS algorithm to include the case where the reward function is random.

The AMS algorithm would essentially remain identical, except that sampling would now include

both the next state and the one-stage reward. However, the convergence proof is likely to require

more technical manipulations. Furthermore, the assumption of bounded rewards can be relaxed by

using the result in Agrawal (1995). Even though the AMS algorithm will converge too in this case,

unfortunately, we lose the property of the uniform logarithmic bound so that the convergence rate

is expected to be very slow.

We can use the AMS algorithm to approximate the optimal infinite horizon discounted average

reward and the infinite horizon average reward under an ergodicity assumption by (approximately)

solving a finite-horizon MDP. Deriving an expected error bound for each case is straightforward.

Earlier work of Cesa-Bianchi and Fischer (1998) proposed several algorithms that achieve the

regret bounds of the form c1 + c2 log n + c3 log2 n, where n is the total number of plays and ci’s

are positive constants not depending on n. These algorithms might also be used to create adaptive

sampling algorithms for solving MDPs. However, those algorithms have the drawback that we need

to know the exact value of α(x) for a given state x under the assumption that not all of the actions

are optimal, which is difficult to obtain in advance. This holds also for other algorithms studied in

Auer, Cesa-Bianchi, and Fischer (2002).

The alert reader might wonder what happens if we replace the weighted sum of the Q-value

estimates in Equation (5) by the maximum of the estimates instead of the weighted sum. We expect

that the resulting algorithm will also converge to the true optimal value. However, to analyze this

we need to know how the distribution of the maximum of the estimates changes while running the

algorithm, which would be very difficult. The proof of the convergence the resulting algorithm is

an open problem.

Note 1 Throughout the paper, the notation O used in the sense that for given two functions f

and g, f(n) = O(g(n)) if limn→∞
f(n)
g(n) = c for some constant c > 0, and the notation Θ is used

in that there exist positive constants c1, c2, and n0 such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all

n ≥ n0 (Cormen, Leiserson, and Rivest 1990). The O and Θ-notations are often called asymptotic

upper bound and asymptotically tight bound, respectively for the asymptotic running time of an

algorithm.
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