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Economic interventions are rarely free of debate, hence it should come as no

surprise that governmental agricultural policies are usually surrounded in contro-

versy. A topic of debate in the World Trade Organization (WTO) is how to maintain

the fragile balance between two opposite objectives: the need of governments to pro-

tect their farmers and the need for a subsidy system which does not distort farmers

production decisions.

Lump-sum transfers to farmers are commonly believed to affect the production

choices of farmers in the presence of risk and uncertainty. Chapter 1 shows that if

farmers have off-farm investment and employment opportunities, production deci-

sions are decoupled from lump-sum subsidies in the presence of risk and uncertainty.

The results are reconciled with existing results by showing that previously identified

production adjustments are portfolio adjustments.

Chapter 2 contributes to the debate surrounding agricultural policy support for

farmers and the potential distortionary effects of area payments. Area payments can



affect production decisions via land allocation. I show theoretically how the timing

of these payments can weaken the link between area payments and production. The

theoretical predictions are supported by the empirical findings.

Chapter 3 explores the trade-off between health and food consumption, and

the effectiveness of health interventions such as taxing unhealthy foods. Ratio-

nal agents maximize utility over health and consumption of healthy and unhealthy

foods, while health is a function of discretionary and non discretionary calories and

nutrients. Calories are not available for purchase in the market, thus their pricing

is derived via a “household” production technology used to convert healthy and

unhealthy foods into health outcomes. Additionally, consumers face a physiological

constraint, a minimum calorie intake, which has further implications in terms of

reducing potential health benefits associated with governmental interventions, such

as taxing high-calorie foods. The future budget available to consumers depends on

the consumption of discretionary calories. The theoretical model is calibrated using

financial and consumption data reflecting farmworkers’s food consumption in the

US.
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Foreword

The first chapter of the following dissertation is a jointly authored work with

Robert G. Chambers. The Dissertation Committee acknowledges that Daniel C.

Voica made substantial contributions to the relevant aspects of the chapter. The

chapter was published in the American Journal of Agricultural Economics (2017),

99(3): 773-782 (doi:10.1093/ajae/aaw044).
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Chapter 1: “Decoupled” Farm Program Payments Are Really De-

coupled: The Theory

1.1 Motivation

The traditional wisdom was that lump-sum agricultural subsidies do not dis-

tort production incentives. On this basis, concerted efforts were made to convert

production subsidies to lump-sum payments. Just about the time that this “decou-

pling” started to occur, Hennessy (1998) showed that the presence of uncertainty

could “recouple” lump-sum payments with production incentives. Two pathways,

wealth effects and insurance effects, were identified through which recoupling might

occur. Extensions, refinements, and alternative formulations of this recoupling re-

sult have been presented in Goodwin and Mishra (2005), Sckokai and Moro (2006),

Serra et al. (2006), and Femenia, Gohin, and Carpentier (2010).

The intuitive story is that transferring income to farmers raises their initial

wealth. If production activities are chosen to maximize expected utility of terminal

wealth, wealth transfers can have several effects. First, they can change the decision

maker’s marginal utility of income. This can alter risk attitudes and, thus, affect

optimal choices. Second, raising initial wealth can relax existing credit constraints.
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Finally, changes in initial wealth might affect on-farm, off-farm labor choices.

A large body of empirical work investigates the decoupling of existing policies

and farmer decisions (among others, Burfisher, Robinson, and Thierfelder (2000);

Goodwin and Mishra (2005) Goodwin and Mishra (2006); Sckokai and Antón (2005);

Sckokai and Moro (2006); Serra et al. (2006); Femenia, Gohin, and Carpentier

(2010); Just (2011); Weber and Key (2011)). In evaluating this empirical work, one

need recognize that real-world “decoupling” takes different forms and rarely achieves

the degree associated with lump-sum transfers. Instead, real-world “decoupled”

policies often only partially sever the links between income support and production

decisions. And yet, the empirical evidence suggests that coupling “...effects when

measurable are small” (Bhaskar and Beghin (2009)).

This is familiar ground for agricultural economists. Theory suggests something

is important. But observed farmer behavior does not. Of course, explanations exist

for “decoupled” lump-sum transfers. Income effects are usually perceived as small if

not negligible. Practical data and econometric limitations then could easily inhibit

our ability to detect them even if present.

This paper adds another explanation. Under weak assumptions, lump-sum

subsidies do not carry marginal wealth and insurance effects on production and thus

are truly decoupled. Make no mistake. Our claim is not that existing policies

are decoupled. Often they are not. Avenues exist (for example, adjusting base

acres) through which program provisions affect production incentives. Rather, we

show that the uncertainty-induced marginal adjustments to lump-sum transfers, first

identified by Hennessy (1998), are portfolio adjustments and not production adjust-
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ments.

This is done in a framework that subsumes most existing analyses as special

cases. Farmers generate income through on-farm activities, off-farm employment,

and participation in competitive financial markets. Because a high percentage of

farm income is from non-farm sources and modern farmers have access to well-

organized futures markets, options markets, savings, and other non-farm investment

opportunities, this is a realistic decision environment (Mishra and Morehart (2001);

Brown and Weber (2013))

We first introduce the model. A theorem characterizing optimal farmer be-

havior is then presented. It extends the Fisher separation theorem and separation

results by Chambers and Quiggin (2009). Rational farmers, who as consumers prefer

more to less and as producers face alternatives to farming, maximize discounted prof-

its from their farming activities for state-claim prices beyond their control.1 Their

marginal production decisions are driven by these state-claim prices, their stochastic

technology, the stochastic output prices they face, and non-stochastic input prices,

not by initial wealth levels. Production decisions are thus decoupled from either

nonstochastic or stochastic lump-sum subsidies. Our analysis is then reconciled

with existing work on decoupling under uncertainty. A final section concludes.

1A state-claim is an asset that pays one unit of numeraire if a particular state of Nature occurs.
I am indebted to Professor Nerlove for encouraging me to clarify this concept.
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1.2 The Model

The general set up follows Chambers (2007) and Chambers and Quiggin (2009).

Farmers are competitive and face stochastic production and stochastic markets.

There are two periods. The first period, t, is nonstochastic, and the second, t + 1,

is stochastic. Uncertainty is represented by a finite state space S indexed with a

slight abuse of notation by {1, 2, .., S} . Random variable space is thus the real vector

space RS. Following the Savage tradition, for the random variable f ∈ RS, f (s) ∈ R

denotes its outcome (consequence, ex post realization) in state s ∈ S. The set of

probability measures is denoted by ∆ ⊂ RS+.

Farmers use a stochastic production technology to produce M stochastic out-

puts, z ∈ RS×M+ , using labor employed on farm, lf ∈ R+, and variable inputs,

x ∈ RN+ . Inputs are chosen nonstochastically in period t and are priced at w ∈ RN+ .

The stochastic outputs are also chosen in period t but realized or observed in pe-

riod t+ 1 after “Nature” makes a (unique) choice from S. Thus, if the farmer picks

z ∈ RS×M+ in period t and “Nature” chooses s ∈ S, the realized output vector in t+1

is (z1 (s) , z2 (s) , .., zM (s)) . The period t + 1 stochastic output prices are denoted

p ∈ RS×M+ . The farmer has a fixed endowment of labor, L, which can be allocated

to on-farm labor, lf , off-farm labor, lo, and leisure, l. On-farm labor, off-farm labor,

and leisure are all chosen nonstochastically in period t. The (period t) minimal vari-

able cost of producing the stochastic output, z, is denoted c (w, z, lf ) and is assumed

convex in (z, lf ) .

Off-farm labor is compensated (stochastically) in period t + 1 at the rate of
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r ∈ RS+ per unit devoted to off-farm activities.2 Off-farm employment is traditionally

viewed as a primary avenue by which farmers provide income assurance for their

uncertain on-farm production activities. Typically, off-farm employment is treated

as though its remuneration were non-stochastic. We treat the off-farm compensation

as stochastic to allow for intertemporal vagaries in compensation schedules. Thus,

a farmer engaging in off-farm employment effectively incorporates an asset with

uncertain payoffs into his period t+ 1 income portfolio.

The main restrictions on the farmer’s ex ante preferences are that the pref-

erence functional be concave3 and that the farmer strictly prefers more period t

consumption to less, more period t + 1 consumption to less, and more leisure to

less. More formally, if the farmer’s ex ante preferences over period t consumption,

qt ∈ R, period t + 1 stochastic consumption, qt+1 ∈ RS+, and leisure are denoted by

W : R+ × RS+ × R+ → R, then

q∗t > qt ⇒ W (q∗t , qt+1, l) > W (qt, qt+1, l) ,

q∗t+1 ≥ qt+1 but q∗t+1 6= qt+1 ⇒ W
(
qt, q

∗
t+1, l

)
> W (qt, qt+1, l) ,

and

l∗ > l =⇒ W (qt, qt+1, l
∗) > W (qt, qt+1, l) .

The farmer can also transform period t income into period t+ 1 consumption

2Whether off-farm labor is compensated in period t or period t + 1 does not change our
substantive results.

3Concavity of W and convexity of c are assumed to ensure the existence of global solutions to
the farmer’s problem. They are not strictly essential to our analysis and can be relaxed at the cost
of a more complicated notation and argument.
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by investing in financial markets. These markets include all financial assets available

to farmers. These markets are stochastic, and the ex ante financial security payoffs

are given by the S × J matrix A (a matrix of J random variables). The stochastic

payout on the jth financial asset is denoted Aj ∈ RS, and its period t (nonstochastic)

price is denoted vj. Thus, if state s ∈ S is realized the payout on the jth asset is

Aj (s) ∈ R. The farm’s portfolio vector, corresponding to its period t holdings of the

financial assets, is denoted h ∈ RJ . The linear sub space spanned by A is denoted

M ⊂ RS and defined by

M≡
{
y ∈ RS : y = Ah

}
.

Without any true loss of generality, A is assumed to be of full column rank, which

is assumed to be strictly less than S. Markets are incomplete, and there are risks

that cannot be priced in the market. These risks fall in the orthogonal complement

of M, which we denote by M⊥. Define

P ≡
(
A>A

)−1
A>.

The government intervenes by providing a lump-sum subsidy of gt in period t

and a lump-sum, but stochastic, subsidy of gt+1 ∈ RS in period t+ 1. The farmer’s
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period t problem, therefore, is to choose qt, qt+1, z, lo, lf , l and h to

max


W (qt, qt+1, l) : Ah+p · z + gt+1 + rlo ≥ qt+1,

ωt (gt+1) + gt ≥ qt + c (w, z, lf ) + v>h,

L ≥ lo + lf + l


, (1.1)

where ωt (gt+1) with ωt : RS → R is period t wealth, v> = (v1, ..., vJ) , p · z ∈ RS

denotes the random revenue from farm production whose ex post realization in state

s is
∑

m pm (s) zm (s) , where pm (s) is the ex post realization of the mth stochastic

output price. Period t wealth is treated as a function of gt+1 to account for the

type of wealth effects emphasized by Femenia, Gohin, and Carpentier (2010). For

simplicity, we restrict attention to interior solutions.

There are three constraints to optimization: budget constraints for periods t

and t+ 1, respectively,

ωt (gt+1) + gt ≥ qt + c (w, z, lf ) + v>h,

Ah+p · z + gt+1 + rlo ≥ qt+1,

and labor supply-demand balance

L ≥ lo + lf + l.

The period t budget constraint requires that pre-existing wealth plus the period t

lump-sum transfer from the government cover the farmer’s expenditures on period t

7



consumption, variable cost of production, and investment in financial markets. The

period t + 1 budget constraint requires that income from all sources for each state

s ∈ S be at least as large as consumption for that state.

Our model differs from previous analyses of decoupling under uncertainty

(Hennessy (1998); Goodwin and Mishra (2005); Sckokai and Moro (2006); Serra

et al. (2006); and Femenia, Gohin, and Carpentier (2010)) in several ways.4 Al-

though assumptions vary, these models are closely related. Hence, for comparison

purposes, we focus on the earliest, Hennessy (1998).

Hennessy (1998) works in a single period framework and models the farmer as

a Sandmovian expected-utility of profit maximizer.5 In a single-period framework,

period t and t+1 consumption, income, and expenses all occur simultaneously. The

parallel assumptions here are that qt+1 and qt are perfect substitutes and that qt+1 is

not subjectively discounted relative to qt. Assuming expected utility, problem (1.1)

then becomes

max
{∑
s∈S

H (s)u (qt+1 (s) + qt, l) : Ah+p · z + gt+1 + rlo ≥ qt+1, (1.2)

ωt (gt+1) + gt ≥ qt + c (w, z, lf ) + v>h, L ≥ lo + lf + l
}
,

4We thank an anonymous reviewer for suggesting a direct comparison of our model with earlier
contributions.

5Hennessy (1998) treats uncertainty in the form of a continuous random variable, ε, with pos-
itive support on the interval [a, b] and predetermined and probability distribution, H (ε). The
finite-state space framework, used here, can be converted to an infinite space framework by in-
troducing the concepts of a σ−algebra of S, an appropriate measure, and random variables as
measurable functions of S. Similarly, the notion of an inner product, x>y, of random variables
x and y must be redefined to accommodate the chosen measure. That also necessitates a change
in the derivative concept used with random variables. So, for example, the partial derivatives of
c (w, z, lf ) that appear below need to be converted to a more general derivative concept such as
either a Gateaux or Fréchet derivative. Chambers (2007) contains a discussion of such issues.
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where H ∈ ∆ is a subjective probability measure and u : R2 → R is a strictly

increasing utility function.

To convert (1.2) to expected-utility of profit terms, assume that qt, qt+1, and

l exhaust, respectively, the t and t+ 1 budget constraints and labor-supply demand

balance. Then

qt+1 (s) + qt = ωt (gt+1) + gt + gt+1 (s) + r (s) (L− l) +
∑
m

pm (s) zm (s) (1.3)

− c (w, z, lf )− r (s) lf + Ah (s)− v>h,

where Ah (s) is the sth realization of Ah ∈ RS. The right-hand side of (1.3) is

the sum of exogenously determined wealth, ωt (gt+1) + gt + gt+1 (s) , and the sth

realization of the stochastic ”profit”,

r (s) (L− l) +
∑
m

pm (s) zm (s)− c (w, z, lf )− r (s) lf + Ah (s)− v>h. (1.4)

Expression (1.2), after substituting from (1.3), parallels Hennessy (1998).6 The key

difference is that Hennessy (1998) represents (1.4) in reduced form as a function,

π : S×R→ R, of the realized s and a choice variable, α so that (1.3) is replaced by

qt+1 (s) + qt = ωt (gt+1) + gt + gt+1 (s) + π (α, s) . (1.5)

6See his expression (1) and the surrounding discussion.
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1.3 Equilibrium Behavior and The Result

Our main result extends Chambers and Quiggin’s (2009, Theorem 6) separa-

tion results to the current setting:

An interior optimal solution to (1.1) satisfies

max
qt+1,l
{W (ωt(gt+1) + gt + v>Pgt+1 + v>P (r(L− l)− qt+1)

+ Γ(p, w, r; v>P ), qt+1, l)},

where

Γ
(
p, w, r; v>P

)
≡ max

z,lf

{
v>P (p · z − rlf )− c (w, z, lf )

}
.

See Appendix A.

Farmers have three ways to transfer wealth, and thus consumption, between

periods t and t+ 1. One is to invest period t resources to finance production. That

generates a stochastic period t+ 1 revenue of p · z. Another is to invest in financial

markets to create a period t + 1 stochastic asset, Ah. Finally, off-farm work yields

stochastic wage earnings rlo.

For the purposes of consumption, whether period t + 1 income comes from

10



production, investment, or wage earnings is irrelevant. Income from all three sources

is equally useful in covering qt+1. Therefore, once a particular qt+1 is targeted, the

remaining task is to generate it as cheaply as possible. That ensures maximal

residual buying power for period t consumption. The problem is akin to that of a

multiplant producer, who must allocate output production across plants for ultimate

sale at a common market price. Instead of choosing output allocations, our farmer

chooses an optimal mix of activities for generating period t+ 1 income.

Because W is strictly monotonic in qt+1, qt, and l, the farmer never foregoes

a chance to raise any of the three. Thus, all available period t+ 1 income, period t

income, and available leisure must be consumed. Formally, that requires

qt+1 = p · z + Ah+ gt+1 + rlo,

qt = ωt (gt+1) + gt − c (w, z, lf )− v>h, and

l = L− lf − lo. (1.6)

Rewriting the first equality in (1.6) as

Ah = qt+1 − p · z − gt+1 − rlo

shows that Ah must exactly cover the difference between qt+1 and income from

production, off-farm work, or government transfers. That means that qt+1 − p · z −

gt+1 − rlo must fall in M.

If (qt+1, z, lo) are fixed at their optimal levels, the farmer necessarily chooses

11



optimal h to solve

min
{
v>h : Ah = qt+1 − p · z − gt+1 − rlo

}
.

If the farmer chose h otherwise, an unexploited opportunity to increase consumption

in period 0 without altering qt+1 or leisure would exist. A rational farmer would

never fail to exploit such an arbitrage opportunity. The unique solution to this

portfolio minimization problem is7

h = P (qt+1 − p · z − gt+1 − rlo) . (1.7)

Thus, the farmer’s period t marginal valuation of qt+1−p ·z−gt+1−rlo is v>P (qt+1−

p · z − gt+1 − rlo). The valuation operator converting period t+ 1 units into period

7Premultiply both sides of the constraint equality by A> to obtain

A>Ah = A> (qt+1 − p · z − gt+1 − rlo) .

Solving gives

h =
(
A>A

)−1
A> (qt+1 − p · z − gt+1 − rlo) .

The assumption that A is of full column rank ensures that A provides a basis for M, and thus

that
(
A>A

)−1
is invertible.

Here an analogy with the ordinary linear regression model may be useful. If one were to write
that model as

y = Ah+ ε

where ε ∈ RS is a random variable orthogonal to A, the least squares estimator of y would be

ŷ = A
(
A>A

)−1
A>y,

which is the orthogonal projection of y onto the subspace spanned by A, ourM. The least squares
estimator of h, in turn, would be

ĥ =
(
A>A

)−1
A>y,

which gives the portfolio that yields the element of M that is closest (in the sense of the usual
Euclidean metric) to y.

In the case at hand, y corresponds to qt+1 − p · z − gt+1 − rlo, and because it belongs to M, ε
is now 0 which is naturally orthogonal to A.
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t units is the ideal stochastic discount factor (pricing kernel) v>P ∈M, which is

obviously linear.8

Using the labor supply-demand balance condition to solve for lo and substi-

tuting into (1.7) gives

h = P (qt+1 − p · z − gt+1 − r (L− lf − l)) ,

and finally substitution in the period t budget constraint yields after rerranging

qt = ωt (gt+1)+gt+v
>P (gt+1 − qt+1)+(L− l) v>Pr+

[
v>P (p · z − rlf )− c (w, z, lf )

]
.

(1.8)

The right-hand side of (1.8) gives period t resources available for period t consump-

tion. There are three sources: pre-existing wealth plus the period t subsidy and the

stochastically discounted difference between the period t+ 1 subsidy and qt+1,

ωt (gt+1) + gt + v>P (gt+1 − qt+1) ;

stochastically discounted income from working, (L− l) v>Pr; and stochastically dis-

counted profit from farming,
[
v>P (p · z − rlf )− c (w, z, lf )

]
.

Preferences do not depend directly upon either z or lf . They only depend

directly upon qt, qt+1, and l. Thus, all else equal, the farmer chooses z and lf to ensure

8Note that 0 ∈M for 0 ∈ RS . Thus, even if a rational farmer chooses

qt+1 = p · z + gt+1 + rlo,

her excess demand falls in the market span and is properly priced there.
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as much qt as possible. This requires maximizing v>P (p · z − rlf )−c (w, z, lf ), which

is Theorem 1.3.

Treating the special case where W and c are nicely smooth may help clarify.

For the concentrated objective function,

max
qt+1,l,lf ,z

{W (ωt(gt+1) + gt − c(w, z, lf )− v>P (qt+1 − p · z − gt+1−

r(L− l − lf )), qt+1, l)},

the first-order necessary conditions for an interior solution are:

∂W

∂qt

(
v>P (s) pm (s)− ∂c (w, z, lf )

∂zm (s)

)
= 0, m = 1, ...,M, s ∈ S,

∂W

∂qt

(
−v>Pr − ∂c (w, z, lf )

∂lf

)
= 0,

∂W

∂qt+1 (s)
− ∂W

∂qt
v>P (s) = 0, s ∈ S,

∂W

∂l
− ∂W

∂qt
v>Pr = 0.

Strict monotonicity in qt ensures that these are equivalent to

v>P (s) pm (s)− ∂c (w, z, lf )

∂zm (s)
= 0, m = 1, ...,M, s ∈ S,

−v>Pr − ∂c (w, z, lf )

∂lf
= 0,

∂W

∂qt+1 (s)
�
∂W

∂qt
− v>P (s) = 0, s ∈ S,

∂W

∂l
/
∂W

∂qt
− v>Pr = 0. (1.9)

The first S ×M + 1 conditions in (1.9) are the first-order conditions for a profit
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maximizer facing prices v>P (s) pm (s) for zm (s), input prices w for the variable

inputs, and an opportunity cost of v>Pr for on-farm employment. The last S + 1

conditions in (1.9) are the first-order conditions for an individual solving his or her

portfolio problem and facing Arrow state-claim prices given by v>P (s) , s ∈ S and

off-farm employment rewarded at v>Pr.9,10

Because the first S ×M + 1 conditions are independent of qt+1, ωt (gt+1) , gt, l,

and gt+1, the system can be solved recursively. First, equate the marginal costs of

each state-contingent output to its respective v>P (s) pm (s) and the shadow price of

on-farm labor to −v>Pr to determine optimal z and lf . Then, use the parametrically

determined v>P and −v>Pr, along with Γ
(
p, w, r; v>P

)
to solve the consumption

problem. Because the farmer reacts to v>P as both a producer and a consumer, the

financial market acts as an intermediary to separate the production decision from

the consumption decision. The consumption decision depends upon risk preferences,

as captured by ∂W
∂qt+1(s)

�∂W
∂qt

and ∂W
∂l
/∂W
∂qt

. The production decision does not.

That agricultural production decisions, z, do not respond to marginal changes

in (gt, gt+1) now follows. Theorem 1.3 actually establishes a stronger result. Not

only are agricultural production decisions decoupled at the margin from (gt, gt+1) ,

they are also invariant to marginal changes in initial wealth ωt (gt+1).

9Because v>P is a stochastic discount factor, the first S ×M + 1 conditions in (1.9), after
manipulation, can also be interpreted as the first-order conditions for maximizing expected profit
for a probability measure determined by v>P.

10An Arrow state price is the price of a state-claim. I am indebted to Professor Nerlove for
encouraging me to clarify this concept.
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1.4 Reconciliation and Generalization

To reconcile earlier analyses in an expected-utility framework with ours, note

that strict monotonicity of u ensures that (1.8) holds. Completely parallel arguments

then reveal that interior solutions to the expected-utility maximizer’s problem must

satisfy:

max
l,qt+1

{∑
s∈S

H(s)u(qt+1(s)− v>Pqt+1 + (L− l)v>Pr + ωt(gt+1) + gt+ (1.10)

v>Pgt+1 + Γ(p, w, r; v>P ), l)
}
,

which requires choosing l and qt+1 to maximize the expected utility of stochastic

profit.11 “Stochastic profit” consists of three components: the realized value of qt+1

less its period t valuation, qt+1(s) − v>Pqt+1; the period t valuation of labor not

devoted to leisure, (L− l) v>Pr; and ωt (gt+1) + gt + v>Pgt+1 + Γ
(
p, w, r; v>P

)
,

period t discounted profit, government subsidies, and pre-existing wealth. The first

and the second terms depend upon qt+1 and l, respectively. The final does not.

Now compare (1.10) with (1.5). Hennessy’s (1998) core “decoupling” result is

that the optimal choice of α for π (α, s) typically depends upon gt+v>Pgt+1.
12 This

11Residual is likely more apt than profit, but our expositional purposes are best served by the
latter terminology.

12By invoking basic supermodularity theory, Hennessy (1998) also signs the direction of the
effect. Once the direction of change for α is determined, the model specification determines whether
the result is a first-order stochastic dominant shift in stochastic profit.

While important, these results are not germane to the point at issue. But such results are
readily available for (qt+1, qt, l) in our model by imposing proper supermodularity conditions on
W (qt+1, qt, l) .
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is undoubtedly correct. It manifests the well-known result that wealth endowments

affect optimal portfolio choices (Arrow 1965).

The fly-in-the-ointment is the inference drawn from this observation. Because

α′s optimal value depends upon gt+v>Pgt+1, the presumption was that production

choices must as well. But Theorem 1.3 as well as (1.10) confirm that optimal z

are characterized by Γ
(
p, w, r; v>P

)
, which is independent of gt + v>Pgt+1. As the

last two expressions in (1.9) show, what are not decoupled from lump-sum income-

support are the decisions for qt+1 and l. Farmers derive no direct value from z.

It is produced to be sold to finance consumption of qt+1. As (1.10) shows, that

decision is captured by Γ
(
p, w, r; v>P

)
. The wealth and insurance effects identified

by Hennessy (1998) are real. But they occur for qt, qt+1, and l, and not z.

Working in a nonstochastic, two-period framework with perfect foresight using

an extension of the life-cycle model of consumption adapted to accommodate agri-

cultural production, Phimester (1995) has suggested that direct payments can affect

production incentives by relaxing credit constraints.13 His setting is different from

ours and that studied by Hennessy (1998), Goodwin and Mishra (2005), Sckokai and

Moro (2006), and Serra et al. (2006). To investigate the effects of credit constraints

in the latter, we must first establish the mechanism via which they might occur.

There are two budget constraints. The one relevant to credit constraints is that for

period t :

ωt (gt+1) + gt ≥ qt + c (w, z, lf ) + v>h.

13We thank an anonymous reviewer for drawing our attention to this paper.
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At present, no domain restrictions have been placed on either A or h. Thus, for

example, if all Aj were restricted to RS+, borrowing today against future income

would be associated with choosing elements of h to be negative (short selling). Thus,

our analysis clearly permits borrowing to finance period t production expenses, and

no constraints (beyond budgetary) have been placed on access to credit.

To ensure credit constraints have maximal bite, we investigate the polar case

where current-period borrowing against future income is prohibited. To that end,

assume that A ∈ RS×J+ and h ∈ RJ+. The first ensures that only positive payouts

are permissible in t + 1 from investment activities. The second (no short selling)

ensures that the decision maker cannot effectively borrow by selling a claim against

future income. Together the assumptions guarantee two things: credit constraints

for financing agricultural production exist, and increasing direct payments relaxes

those constraints.

The reformulated version of our model is now.

max



W (qt, qt+1, l) : Ah+p · z + gt+1 + rlo ≥ qt+1,

ωt (gt+1) + gt ≥ qt + c (w, z, lf ) + v>h,

L ≥ lo + lf + l,

h ∈ RJ+.


, (1.11)

Now suppose that h has been chosen optimally for (1.11). Because the farmer’s

preferences are strictly increasing in qt+1, it must remain true that qt+1 consumes
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all income generated regardless of which s ∈ S is realized. That is,

qt+1 = Ah+p · z + gt+1 + rlo,

but for an interior solution this requires as before

Ah = qt+1−p · z − gt+1 − rlo,

so that, despite the domain restriction on h, qt+1−p · z − gt+1 − rlo still must fall in

M and be price there. The argument proceeds as before.

The essential point is that requiring h ∈ RJ+ does not prevent the farmer

from interacting with the market. Rather it restricts the form that interaction

can take. So, for example, the farmer can still deposit some of ωt (gt+1) + gt in a

savings account to earn interest to finance qt+1. Stocks could be purchased. Before

qt+1−p · z − gt+1 − rlo could fall anywhere within M. Now it must fall in

M+ =
{
z : z = Ah, h ∈ RJ+

}
.

But, clearly, M+ ⊂M so that qt+1−p · z − gt+1 − rlo still remains in M and thus

must be accurately priced there.
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1.5 Concluding Remarks

This paper reconsiders whether lump-sum income support policies are, in fact,

decoupled from production decisions under uncertainty. We find that they are. This

contrasts markedly with received wisdom. Naturally, our analysis depends crucially

upon our maintained assumptions. As is usual in economic analysis, we operate in a

stylized setting and to the extent that stylized setting departs from reality, so may

real-world results. But that criticism necessarily applies to all previous studies.

We model a farmer operating a sole-owner operation who, in the absence of

government subsidies, generates consumption income via three sources: stochastic

production activities, stochastic investment opportunities, and participation in a la-

bor market with uncertain rewards. This farmer’s preferences are strictly monotonic

in non-stochastic current period consumption, stochastic future consumption, and

leisure consumed. The key assumption is that of a single residual claimant with

strictly monotonic preferences with access to off-farm income opportunities.

Virtually all the conceptual studies cited maintain a single residual claimant

with monotonic increasing preferences facing stochastic production. Thus, the fun-

damental departure from existing work is the presence of off-farm income opportu-

nities. Existing studies have either ignored these opportunities or embedded them

in reduced-form models. Adding structure identifies a previously overlooked avenue

for market valuation of income opportunities. The added structure is very plausi-

ble. Indeed, it is hard to envision a farmer in the developed world who does not

participate in financial markets or receive income from nonfarm sources. For exam-
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ple, Pope, LaFrance, and Just (2011) explore the application of portfolio theory to

the estimation of risk preferences in agriculture. A vast literature investigates how

farmers can properly exploit opportunities in futures and off-farm labor markets.

But if a rational farmer exploits these opportunities, the farmer is also bound by

their accompanying market disciplines (for example, the law of one price (LeRoy

and Werner 2001)). And these market disciplines ensure, at the margin, that the

farmer faces parametrically determined state-claim prices for on-farm labor and pro-

duction. On the other hand, if these opportunities do not exist, farmers do not face

parametrically determined state-claim prices and production decisions will not be

decoupled from lump-sum transfers.

The analysis does not imply that lump-sum subsidies are non-distortionary

under uncertainty. As noted, the effects isolated by Hennessy (1998) are real. But

marginal consumption and leisure choices are the ones affected and not marginal

production choices. In a general-equilibrium setting, those consumption and leisure

effects can impinge upon other economic choices and thus upon the givens of our

model (p, w,A, v, r). That, in turn, could induce changes in z. But because such

effects are second-order, econometric attempts to measure their marginal impact on

production may well fail.
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Chapter 2: The Effect of the Single Farm Payment Timing on Pro-

duction Incentives

2.1 Motivation

In 2003, the European Union (EU) introduced the Single Farm Payment (SFP)

scheme, a per hectare subsidy that is independent of production level and crop

planted. The SFP was primarily motivated as a means to decrease distorted pro-

duction incentives. The new area payments were expected to fulfill two previously

mutually exclusive roles. First, it would continue to augment farmers’ income, which

is acknowledged as a political dictate. Second, production distortions induced by

previous interventions would be reduced, if not eliminated.

If land supply is perfectly inelastic, area payments act as lump-sum transfers

to landowners with no distortionary effects (Just, Hueth, and Schmitz (2004)). This

remains true even in the presence of uncertainty (Chambers and Voica (2016)). But

land supply, although typically inelastic, is not perfectly inelastic. Area payments

encourage land use and likely result in increased acreage.

Previous empirical work has found that although area payments are distor-

tionary, the impact is small. Acreage tends to be affected more than the output (see
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among others, (Goodwin and Mishra, 2005), Sckokai and Antón (2005), Sckokai and

Moro (2006), Bhaskar and Beghin (2009), Weber and Key (2011)). This suggests

that the “coupling” link between area payments and production, while present, is

small as well.

One possible explanation is that area payments are thoroughly capitalized into

land values, benefiting landowners rather than producers. While plausible, previous

empirical works suggest that the incidence of subsidy payments favor tenants rather

landowners. For example, Kirwan (2009) reports that tenants capture 75% of the

subsidy in the US.

Another potential explanation relates to the timing of the area payments. The

SFP scheme stipulates that area payments are to be made to farmers between De-

cember 1st of the current calendar year and June 30th of the following year (Europe,

2011). That means that farmers receive the payments after all, or at least part,

of their production decisions are made. The timing adds an additional intertem-

poral component to the decision environment producers face. Unless there is no

intertemporal discounting and consumption today and consumption tomorrow are

perfect substitutes, the timing of the payments may affect production decisions.

Area payments create new production incentives. But the timing of those payments

could temper those incentives especially if producers have limited ability to transfer

income between time periods.

Attempts to measure time preferences have revealed that farmers have average

discount rates as high as 34% Duquette, Higgins, and Horowitz (2011), which is

consistent with discount rates estimates found in other studies (Coller and Williams
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(1999), Warner and Pleeter (2001), Harrison, Lau, and Williams (2001)). This

suggests that delayed area payments may be heavily discounted by producers.

This paper examines theoretically and empirically how the timing of the SFPs

affect agricultural production incentives. It is organized as follows. First, a theory of

how timing affects the coupling between area payments and production is presented.

Then the timing effect is estimated using several years of data from Romanian EU

Farm Accountancy Data Network (FADN). A final section concludes.

2.2 Theoretical Model

There are three time periods. The first period (the decision period), 0, in-

volves no uncertainty. The second and the third periods, 1 and 2, are uncertain.

Uncertainty is modeled by a finite state space, described by a finite set, Ω, where

each element of Ω, referred to as a state, is a complete and mutually exclusive de-

scription of the world. 1 For example, in a two-states representation of the world,

a state could be “rain” and another could be “no rain”. Uncertainty is resolved by

Nature, choosing from Ω. That choice, however, is only revealed to the farmer after

the farmer’s choices have been made in period 0. 2

Farmers are competitive and take input and state-contingent output prices as

1The theoretical framework used here is the state-contingent approach to uncertainty. Although
most treatments within this framework assume that agents with subjective probability beliefs
and Von Neumann-Morgenstern preferences maximize expected utility, additive separability is
unnecessary in my application and in many others. Indeed, the classical treatment due to Debreu
(1959) makes no use of the expected utility hypothesis and subjective probability. As in my case,
an agents preferences are defined over the vector of dated, state-contingent consumptions. An
accessible treatment to the state-contingent approach is Chambers and Quiggin (2000).

2To interpret later results in terms of expectations, I assume that agents have well defined
subjective probability vectors over the realization of the states of the Nature.
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given. Preferences over consumption in the three periods, k0 ∈ R+, k1 ∈ R2
+, and

k2 ∈ R2S
+ are continuous and strictly increasing in each argument, and represented by

W (k0, k1, k2).3 4 5 The initial wealth endowment, ω > 0, is nonstochastic. In period

0, the farmer can undertake production and financial activities that generate state-

contingent income in periods 1 and 2. Production is characterized by a stochastic

technology. In period 0, the farmer chooses the level of state-contingent period 2

output z ∈ RS+ and the amount of land devoted to farming, l. The associated variable

cost is c(w, z; l) where w ∈ RN++ is the vector of variable input prices in period 0.6

Cost is assumed to be convex in both z and l. There is a rental market for farm

land which pays in period 0 the rental rate r. The farmer is endowed with L units

of land.

The farmer can also buy and sell assets in financial markets. In period 0, the

farmer can purchase two types of financial assets, one that pays off in period 1 and

J that pay off in period 2. The asset paying off in period 1 sells for a period 0 price

of v1 > 0 and pays off A ∈ R++ for each unit of the asset purchased. The number

of units of this asset purchased in period 0 is denoted h1. Since the payoff from this

asset will be the consumers only source of income in period 1 whenever the subsidy

happens to be delayed, he cannot sell this asset (borrow short term) in period 0 and

repay the loan in period 1 since he will lack the wherewithal to pay. Hence, h1 ≥ 0.7

3Readers are free to specialize W to additively separable (following Von Neumann-
Morgenstern) scaling functions weighted by subjective probabilities. They can further restrict
the scaling functions to concave functions reflecting risk aversion; but such assumptions are un-
necessary for my results.

4S is a subset of Ω. As such, S represents uncertainty corresponding to period 2, while Ω
represents uncertainty corresponding to periods 1 and 2.

5I assume Inada conditions hold.
6For an axiomatic study of cost functions see Chambers and Quiggin (2000).
7To preserve simplicity, I model the period 1 financial market as riskless. A more complex
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The period 2 payoffs for the J assets are given by the payoff matrix D ∈ RS×J

and the period 0 price of the jth asset is denoted v2j. The portfolio vector for the

assets paying off in period 2 is denoted h2 ∈ RJ . The agent can sell asset j in period

0 in exchange for his making state-contingent payments in period 2. It is assumed

that D is of full column rank and that J < S.

The government pays the farmer a fixed subsidy a per unit of land l either

in the second period, or in the third period, but not in both. The timing of this

payment is only revealed to the farmer in the second period, after the farmer has

made the land-allocation decision. Thus, from the farmer’s perspective in period 0

its timing is stochastic.

Figure 2.1 - inserted here.

In the second period, the farmer receives the payoff Ah1 plus the subsidy al, if

the subsidy is paid in period 1 and Ah1 if the subsidy is paid in period 2. Thus, the

farmer state-contingent consumption is either k1E = Ah1 + al or k1L = Ah1, where

subscript E denotes an “early” subsidy payoff and L a “late” subsidy payoff.

In the third period, the farmer receives the revenue from farming pszs, where ps

is the output price in state s ∈ S, the revenue from financial markets participation,

Dsh2, where Ds ∈ RJ is the vector of assets payoffs in state s, and the subsidy al if

the subsidy was not paid in period 1.8

Because there are S possible realizations of the output z (i.e. zs ∈ R++, s ∈

financial market for period 1 could be modeled, but this would bring notational clutter without
substantially changing results.

8The row vector Ds = (Ds1, Ds2, . . . , DsJ)T , where Dsj is the payoff of j-th asset in state s.
Later, I introduce the column payoffs vector Dj ∈ RS , the payoffs vector of the j-th asset, where
Dj = (D1j , D2j , . . . , Dsj).

26



{1, . . . , S}), and two possible realizations of subsidy payments (i.e. late or early),

the total number of states of Nature in the third period is 2S (i.e. the dimension of

Ω is 2S). 9 For example, k2sE = pszs +Dsh2 is the consumption in state s given the

subsidy is paid in the second period, and k22L = pszs +Dsh2 + al is the consumption

in state s given the subsidy is paid in the third period. Figure 2, illustrates the

timing of the subsidy payments to the farmer.

Figure 2.2 - inserted here.

The farmer’s period 0 problem is to choose k0 ∈ R++, k1 = (k1E, k
1
L) ∈ R2

++,

k2 = (k21E, . . . , k
2
SE, k

2
1L, . . . , k

2
SL) ∈ R2S

++, z ∈ RS+, l ∈ R++, h1 ∈ R2
++ and h2 ∈ RJ

to

max
{
W
(
k0,k1, k2

)
: (2.1)

k0 ≤ ω − c(w, z; l) + r(L− l)− v1h1 − vT2 h2,

k1E ≤ Ah1 + al, k1L ≤ Ah1,

k2E ≤ pz +Dh2 and k2L ≤ pz +Dh2 + al1S
}

where v>2 = (v21, . . . , v2J) and 1S is a S dimensional vector with each entry equal to

1.

The farmer faces three sets of budget constraints. Period 0 consumption can

be no larger than the difference between initial wealth ω plus the income from

renting out farm land r(L− l) and the costs of production and operating in financial

9With a slight abuse of notation S is used to denote both the set of states of nature associated
with the production uncertainty, but also the state S. As such, S = {s : 1 ≤ s ≤ S}.
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markets, c(w, z; l), v1h1, and vT2 h2, respectively. The consumption in period 1 is

bounded by the revenue generated in the financial market, Ah1, plus the subsidy,

al, if the subsidy is paid on time. While period 2 consumption in the state of nature

s, conditional on the subsidy payment being made late, can be no larger than the

agricultural revenue in that state, pszs, plus the return in the financial markets,

Dsh2, and the subsidy al.

Strict monotonicity of W ensures that at the optimum:

k0 = ω − c(w, z; l) + r(L− l)− v1h1 − vT2 h2 (2.2)

Ah1 = k1E − al, Ah1 = k1L (2.3)

Dh2 = k2E − pz andDh2 = k2L − pz − al1S (2.4)

For any given level of consumption, the budget constraints (2.3) and (2.4) ensure

there exist unique portfolios h1 and h2 such that

h1 =
k1E + k1L − al

2A

and

h2 = (DTD)−1DT
(k2E + k2L

2
− pz − al1S

2

)
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Substituting out of the portfolios h1 and h2, the period 0 budget constraint yields:

max
k1E ,k

1
L,k

2
E ,k

2
L,z,l

W
(
ω − c(w, z; l) + r(L− l)− v1

2A
(k1E + k1L − al) (2.5)

− vT2 (DTD)−1DT
(k2E + k2L

2
− pz − al1S

2

)
, k1E, k

1
L, k

2
E, k

2
L

)

Note in (2.5) that (a) z and l appear only in the first argument of this uncon-

strained maximization problem and that (b) although first and second-period state-

contingent consumptions do appear in the first argument, the optimal choice of z, l

does not depend on them since they appear as additive constants.

Intuitively, the farmer is indifferent between consumption that is produced via

the agricultural technology and consumption produced via the financial markets.

Assuming strictly increasing preferences, at the margin, the farmer will price the

consumption produced with the agricultural technology using the opportunity cost

of assembling the same consumption via the financial markets. Hence, this implies

separability between consumption and production decisions. 10

Π(p, w, r, v1/A,v
T
2 (DTD)−1DT ) = max

z,l

{
vT2 (DTD)−1DTpz

− c(w, z; l)−
[
r − a

2

(v1
A

+ vT2 (DTD)−1DT1S
)]
l
}

The state-contingent output level, z, is determined independent of consump-

tion or farmer’s preferences for risk.

10Chambers and Voica (2016) contains a detailed discussion of this result.
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Result 1. An interior solution to (2.1) satisfies 11

max
k1E ,k

1
L,k

2
E ,k

2
L

W
(
ω + rL− v1

2A
(k1E + k1L)− vT2 (DTD)−1DT

(k2E + k2L
2

)
+ Π(p, w, r, v1/2A, v

T
2 (DTD)−1DT ), k1E, k

1
L, k

2
E, k

2
L

)

where

Π(p, w, r, v1/A,v
T
2 (DTD)−1DT ) = max

z,l

{
vT2 (DTD)−1DTpz

− c(w, z; l)−
[
r − a

2

(v1
A

+ vT2 (DTD)−1DT1S
)]
l
}

Assuming c(w, z; l) is differentiable, the first order conditions for determining

the optimal output z require

∇zc(w, z; l)

p
Dj = v2j, j = 1, . . . , J (2.6)

where ∇zc(w, z; l)/p ∈ RS and its s-th entry equals (∂c(w, z; l)/∂zs)/ps, Dj =

(D1j, D2j, . . . , Dsj)
T is the payoffs vector of the j-th asset, Dsj is the payoff of

asset j in state s, and v2j is the price of the asset j in period 0. For the subjective

probability measure, π = (π1, . . . , πs) (2.6) can be written in expectation form as

E
[∇zc(w, z; l)

p
D̃j

]
= v2j, j = 1, . . . , J (2.7)

11This result extends Theorem 1 of Chambers and Voica (2016) to the present context. The
strand of literature on which this result is based can be traced to Chambers and Quiggin (2009).
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where expectation is take over the discrete subjective probability measure π and

D̃j = Dj/π.12 Expressions (2.6) and (2.7) show that ∇zc(w, z; l)/p ∈ RS can be

interpreted as a stochastic discount factor that ensures that the discounted return

on period 2 payouts for each asset equals its period 0 acquisition cost.

Similarly, the first order condition for using farm on land requires

∂c(w, z; l)

∂l
+ r = a

v1
2A

[
1 +

A

v1
v2(D

TD)−1DT1S
]

(2.8)

= a
v1
2A

[
1 +

A

v1
P1S

]
= a

v1
2A

[
1 +

A

v1
E[P̃1S]

]

where P = v2(D
TD)−1DT , P̃ = P/π. Expression (2.8) demonstrates how the

acreage allocation decision depends upon the timing of the SFP payment.

If the subsidy is paid in the first period with certainty, the optimal amount of

farmland, la, is the implicit solution to

∂c(w, z; l)

∂l
+ r = a (2.9)

For given z, the convexity of c in l ensures that la will be greater than the optimal

amount farmed, la=0, in the absence of a subsidy determined as the implicit solution

to

∂c(w, z; l)

∂l
+ r = 0 (2.10)

The difference between the two optimal choices of farmland reflects the change in

12For the complete derivation please see the Appendix B.
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the opportunity cost of diverting land from the rental market to farming caused by

the area payment.

Delaying the subsidy payment, however, weakens this effect because an area

payment of a paid in period 2 is valued less by a farmer who intertemporally dis-

counts consumption than an area payment of a paid in period 1. So long as farmers

have positive intertemporal discount factors delaying the subsidy mitigates its dis-

tortionary effect on production.

This can be seen as follows. If the subsidy is paid in period 1 with certainty,

its period 0 discounted value equals av1/2A. If the subsidy is paid in period 2 with

certainty, its period 0 discounted value is aE[P̃1S]/2. Thus, so long as v1/A >

E[P̃1S], the delay decreases the distortionary impact of the subsidy. But this latter

condition is always satisfied if farmers have positive intertemporal discount factors.

2.3 Estimation

Data limitations do not allow to discriminate between consumption activities

that occur within a given agricultural production cycle. For empirical work, the

three-period model was collapsed into a two period model. The formal justification

that would permit this is to assume A/v1 = 1. Then period 0 and period 1 are

perfect substitutes in consumption and there is no discounting between period 0

and period 1. In short, the new first period includes the old first and second periods

and the second period is previous third period. This also changes the cardinality

of the state space Ω from 2S to S. Optimal output, z, and farmland, l, values are
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determined by solving the profit maximization problem:

Π(p, w, r, 1,P ) = max
z,l

{
Ppz

− c(w, z; l)−
[
r − a

2

(
1 + P1S

)]
l
}

Hence, the new first order conditions for the profit maximization now require:

E
[∇zc(w, z; l)

p
D̃
]

= v2 (2.11)

∂c(w, z; l)

∂l
+ r =

a

2

[
1 + E[P̃1S]

]
(2.12)

If the theory is descriptive of farmer behavior, the system of equations (3.1)

and (3.9) should permit estimation a parametric specification of c (w, z, l) while

allowing one to determine the effect of delaying subsidy payments on production

and farmland. It proves convenient to rewrite them in terms financial returns.

Letting Rj = D̃j/v2j, Rj ∈ RS for all j expression (3.1) becomes:

E
[∇zc(w, z; l)

p̃
Rj

]
− 1 = 0. (2.13)

If R1 is assumed to be the return on the riskless (that is, 1$ today returns 1 + i$

tomorrow), R1 = 1 + i, and (2.13) becomes

E
[∇zc(w, z; l)

p̃

]
=

1

1 + i
(2.14)
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Using this result in equation (3.9) gives

∂c(w, z; l)

∂l
+ r =

a

2

[
1 +

1

1 + i

]
(2.15)

Or in expectation format, equation (3.9) becomes

E
[(∂c(w, z; l)

∂l
+ r
)2(1 + i)

a(2 + i)

]
− 1 = 0 (2.16)

The econometric strategy is to use the generalized method of moments (GMM)

to estimate a parametric representation of these equilibrium relationships (Hansen

and Singleton (1982), Cochrane (2001), Chambers (2007), Pope, LaFrance, and Just

(2011)). The analysis focuses on Romanian wheat production. This crop has an

important share of the agricultural farmland area in Romania and is planted in the

fall. As such, it is a good candidate for testing the timing effect. The cost function

c(w, z; l) for producing wheat is assumed to take the general form:

ct(wt, zt+1; lt) = τ(wt) + φ(wt)
[
αzEt(zt+1 − zt) +

βz
2
Et[(zt+1 − zt)2]+

+ ηzEt(zt+1 − zt)l + γzEt[(zt+1 − zt)(yt+1 − yt)] + αllt +
βl
2
l2t

]
(2.17)

where z now represents wheat output and y is an output index corresponding to all

crops output. While simple, this cost structure is sufficiently flexible to capture the

effects of mean and dispersion shifts in z on the production cost c(w, z; l), the effect

of the covariance between z and other crops on the cost, as well as, the interaction
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between land and output.

The parameters αz measure the change in the cost due to a change in the

mean output by the farmer, βz measure the effect on the cost of a change in the

output dispersion as captured by the second moment, γz measures the change in

the cost due to a change in the covariance between z and y, while ηz measures the

interaction between land and the output. The land parameters αl and βl measure

the effect on the cost of a change in the amount of land used. Given the subsidy a is

paid per unit of land l, αl and βl can also be interpreted as measuring the effects of

a change in the amount of subsidy a over the marginal cost of producing output z.

Because the timing of the subsidy payments influence the subsidy amount received,

when discounted to the first period, a change in αl and βl measure the effect of the

payments timing on the coupling between subsidy and production decisions.

Given this representation of the production cost function,

∇zct(wt, zt+1; lt)

pt+1

=
φ(wt)

pt+1

[
αz + βz(zt+1 − zt) + γz(yt+1 − yt) + ηzlt)

]
(2.18)

and

∂ct(wt, zt+1, yt+1; lt)

∂lt
= φ(wt)

[
αl + βllt + ηzE(zt+1 − zt)

]
(2.19)

Using suitable instruments ensures that the number of moment conditions is

at least as large as the number of parameters to be estimated and helps identify

those parameters. If conditional on information available at time t (2.13) and (2.16)

hold as identities, then for any set of instruments Zt predetermined at time t, the
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law of iterated expectations requires

g(dt, θ) = E

[
ZT
t

(∇zc(wt, zt+1, lt; θ)

p̃t+1

Rjt+1 − 1
)]

= 0 (2.20)

where dt = (wt, zt+1, l, pt+1, Rt+1), θ = (αz, βz, γz, αl, βl) is the vector of parameters

to be estimated, and

h(dt, θ) = E

[
ZT
t

(
a
(

1 +
1

1 + i

)
− ∂c(w, zt+1, l; θ)

∂l
− r

)]
= 0 (2.21)

The GMM procedure estimates θ as the solution to the minimization problem

JT (θ) = [g(dt, θ), h(dt, θ)]
′
W [g(dt, θ), h(dt, θ)] (2.22)

where W is a positive definite weighting matrix.

2.3.1 Data and Empirical Strategy

The data for this paper come from the Romanian EU Farm Accountancy Data

Network (FADN). These data are part of a short unbalanced panel which covers

the period 2007 to 2010, and includes data on agricultural production, prices, land

use, subsidy amount, labor, farm financial assets. The number of farmers sampled

in this survey has increased yearly from approximately 1,000 farmers in 2007 to

around 6,000 in 2010. In order to create a balanced panel, the data were aggregated

to the county level. To account for differences between micro and aggregate levels,

I use county level fixed effects. Pope, LaFrance, and Just (2011) provide a detailed
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explanation of the potential gains and losses from data aggregation.

A second issue is the lack of description regarding the sequence of decisions.

The approach used here is to assume that the first period stochastic discount factor

equals 1. Hence, periods one and two are perfect substitutes in consumption. While

restrictive, this assumption allows testing for the timing effects on subsidy.

The data used in the estimation of the equations above are as follows. φ(wt)

corresponds to an index of agricultural input prices for Romania obtained from the

Eurostat. Output and output prices for period are available from the FADN. For

the first year, zt is taken as the national county average. The instruments used are

the unemployment rates, lagged observed output prices and the county fixed effects.

The financial assets used are Romanian Stock Exchange return and the national

interest rates obtained from the Romanian National Bank.

Table 2.1: Summary Statistics

Variable Mean Std. Dev. Min Max

Subsidy (RON/ha) 267.51 162.65 137.26 2133.93
Input Price Index 132.23 7.34 121.90 141.30
Wheat Price (RON/tonne)1 649.66 229.70 271.33 1267.00
Wheat Production (tonnes) 256.00 338.07 0.21 1539.62
Land Rent (RON/ha) 8891.64 34004.37 456.75 332462.60
Area (ha) 233.47 270.38 2.86 1736.10
Interest Rate - national 1.09 0.02 1.07 1.12
Romanian Stock Exchange Return 0.99 0.41 0.55 1.53
Unemployment 6.60 0.57 5.80 7.30
1 Tonne, also referred to as the metric ton, is a metric unit of mass equal to
1, 000 kilograms. I am indebted to Professor Nerlove for encouraging me
to clarify this concept.
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2.3.2 Empirical Results and Discussion

Table 2.2: Estimated Pricing Kernel and Subsidy Delay Effect for County Level with
Fixed Effects and Panel Newey-West Standard errors

Arbitrage Wheat
Parameter αz βz γz

Estimate 14289.31 -770.99 1484.86
t 2.40 -5.82 2.27

Timing Effect
αl βl ηz

Estimate -67.19 0.35 -0.08
t -67.1958 -0.43
TJt 66.01
p-value 0.91
Observation 164

Table 2 summarizes the results of the GMM estimation. The estimated value of

the J statistics suggests that this cost function specification reasonably approximates

the underlying data.

The estimated value of αz is positive and significant. The positive sign sug-

gests that keeping other moments constant, the cost of producing wheat increases

as the expected value of the crop increases. The estimated value of βz is negative

suggesting that allowing the variance of wheat to increase would decrease cost sug-

gesting that production of wheat is inherently risky in the sense of Chambers and

Quiggin (2000). Keeping other moments constant, decreasing variability as mea-

sured by second moment of the crop distribution, raises costs. Hence, eliminating

production risk is costly. The estimate of γz is also positive suggesting that the

cost of producing wheat increases as the covariance between wheat production and
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other crop production increases. Keeping other moments constant, increasing y will

determine a reduction in the optimal level of z, hence z and y are substitutes in

production. The estimate of ηz is negative and insignificant.

The estimated land coefficients, αl and βl, imply that the cost of producing

wheat is indeed convex in land farmed and will be decreasing in the amount of land

farmed over an appropriate interval of the data. Convexity is particularly important

because it implies that, holding z constant, land use will be increasing in the SFP

subsidy.

To illustrate, suppose that the estimated cost function is realistic for the repre-

sentative Romanian farmer. If there is no delay in the subsidy payments the optimal

choice of land, la=r,ND, satisfies

φ(wt)(−67.19 + 0.35la=r,ND − 0.08E(zt+1 − zt)) = a− r (2.23)

which can be compared to the optimal amount of land in the absence of any area

subsidy, la=0, which solves

φ(wt)(−67.19 + 0.35la=0 − 0.08E(zt+1 − zt)) = −r. (2.24)

Convexity ensures that the amount of land will depend upon both the magnitude

and timing of the subsidy payments, because in the presence of delays the optimal
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amount of land, la=r,D is

φ(wt)(−67.19 + 0.35la=r,D − 0.08E(zt+1 − zt)) = a
1

1 + i
− r (2.25)

from where it is clear that la=0 < la=r,D < la=r,ND, hence the coupling effect between

production and subsidy decreases with the delay in the payments of the subsidy.

The estimated elasticity of land with respect to land rent, calculated at sample

means, in the absence of a subsidy is −0.823, which compares with an estimated

elasticity of land with respect to the land rent when the subsidy is paid on time is

−0.798. The mean of the subsidy is approximately 3% of the average rental rate of

land. Thus, holding z constant, one would expect that a subsidy paid on time would

result in a 2.5% increase in land utilization by the representative farmer. Delaying

the payment of the subsidy, given existing interest rates, by one period is equivalent

to reducing the subsidy by approximately 10% which translates into about a .25%

change in land utilization by the farmer. For example, for our sample, delaying the

subsidy by one period at a 10% discount rate translates into a change of 0.58 ha for

the average farmed area, 0.007 ha for the minimum farmed area and 4.34 ha for the

maximum farmed area. 13

The estimated yield effects associated with the SFP subsidy are legibly small.

The estimated elasticity of expected output with respect to the land rent is insignif-

icantly different of the elasticity of expected output in the presence of the subsidy.

Hence the change in the expected output due to the subsidy delay is negligible and

13I am indebted to Professor Olson for encouraging me to illustrate the timing effect.
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insignificant.

2.4 Conclusions

This paper contributes to the debate surrounding agricultural policy support

for farmers and the potential distortionary effects of area payments. It shows how

the timing of subsidy payments decreases the intensity of the distortionary effect

associated with subsidies. Measured at current levels, the area based SFP causes the

representative Romania wheat farmer to increase acreage by approximately 2.5%.

Delaying the subsidy has negligible yield effects but reduces acreage by approxi-

mately .25%.

Following Chambers and Voica (2016), the paper also shows that the produc-

tion distortion associated with area payments is independent of the farmer’s risk

preferences. In the presence of off-farm opportunities, which are exogenous to the

government intervention, separation between farmers consumption and production

decisions occurs. However, area payments can affect production via land allocation.

I show that the timing of subsidy payments can weaken the link between area pay-

ments and production decisions. The theoretical predictions are supported by the

empirical analysis. The results of the paper provide an alternative explanation to

why previous empirical studies have found little evidence of coupling between area

payments and agriculture production.
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Figure 2.3: Subsidy Timing Effect
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Chapter 3: Are We Spending or Wasting Health When Eating?

The World Health Organization defines health as a “resource”. In its words,

“Health is, therefore, seen as a resource for everyday life, not the objective of liv-

ing. Health is a positive concept emphasizing social and personal resources, as well

as physical capacities.”(WHO, 2017a). This definition is consistent with observed

behaviour. People trade health for consumption in a way that resembles any other

resource. For example, immigrant farmworkers in the US often find themselves in

poor health despite harvesting healthy products (Fuller, 2016). The main reason is

budgetary constraints, that prevent purchasing healthy foods, thus effectively induc-

ing a trade off between health and current consumption. On the other hand, there

are plenty of examples when budget constraints are not binding, but consumers

prefer to overindulge (Rashad, 2006).

This issue is naturally linked to the problem of obesity, a major health issue,

that is pervasive in today’s world. Since 1980 obesity has doubled, with more than

1.9 billion adults, 18 years and older being overweight in 2014, while almost a third

of these were obese (WHO, 2017b). In the US alone the prevalence of obesity

was over 36% in adults and 17% in youth between 2011 − 2014 (Ogden et al.,

2015), while in Europe, obesity was responsible for more than 1 million deaths
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and 12 million life-years of health reduction in 2010 (Cuschieri and Mamo, 2016).

Attempts to reduce the obesity epidemic and to improve the health outcomes of

the population, have prompted governmental interventions, such as taxes on high-

calorie foods (Jacobson and Brownell, 2000).1 Proponents of these interventions

argued that taxes will change the relative prices of healthy and unhealthy foods,

inducing rational consumers to substitutes towards a healthier diet while improving

the health outcomes.

The effectiveness of these interventions has been debated in literature, where

potential factors that could reduce the health benefits of these interventions were

proposed. Among them, the substitution between taxed and non-taxed high-calorie

foods (Schroeter, Lusk, and Tyner, 2008; Fletcher, Frisvold, and Tefft, 2010), an

inverse relation between healthier foods consumption and physical exercise (Yaniv,

Rosin, and Tobol, 2009), taste and inventory decisions (Wang, 2015), or addiction

(Becker and Murphy, 1988; Becker, Grossman, and Murphy, 1991; Richards, Pat-

terson, and Tegene, 2007).

In order to explore the trade-off between health and consumption and the

effectiveness of health interventions such as taxing unhealthy foods, this paper pro-

poses a theoretical model where rational agents maximize utility over health and

consumption of healthy and unhealthy foods, while health is a function of discre-

tionary and non discretionary calories and nutrients. Calories are not available for

purchase in the market, thus their pricing is derived via a “household” produc-

1A calorie is the amount of heat required at a pressure of one atmosphere to raise the temper-
ature of one gram of water one degree Celsius (Merriam-Webster).
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tion technology used to convert healthy and unhealthy foods into health outcomes.2

Additionally, consumers face a physiological constraint, a minimum calorie intake,

which has further implications in terms of reducing potential health benefits as-

sociated with governmental interventions, such as taxing high-calorie foods. We

model the future budget of consumers as depending directly on the consumption of

discretionary calories.

The structure of the paper is as follows. The next section places the paper

in the literature, while the third section presents the theoretical model. The fourth

section reports empirical results from a calibrated version of the theoretical model.

The final section concludes.

3.1 Comparison with the Literature

The observation that rational economic agents trade health for the consump-

tion of other goods is not new. For example, addiction (reinforcement and tolerance)

was investigated by Becker and Murphy (1988) and Becker, Grossman, and Murphy

(1991), counter cyclical consumption effects on health were examined by Dockner

and Feichtinger (1993). The economics of consumption of foods with negative effects

on health were investigated, among others, by Grossman (1972a), Forster (2001),

Chavas (2013) and Bolin and Lindgren (2016), while Chavas (2015) provides a ben-

efit function treatment.

Furthermore, the health economics literature, in particular the economic liter-

2The “household” production was popularized by Deaton and Muellbauer (1993), while Cham-
bers (2017) provides a set-theoretical approach.
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ature concerning the health effects of food consumption, has investigated theoreti-

cally and empirically the effects of various government interventions, such as taxing

calorie-rich foods, on the rational agents’s food choices and health outcomes. While

not always in agreement, the general consensus is that governmental interventions

targeting improvements in health outcomes are rarely fully successful. For exam-

ple, with some exceptions (Richards, Patterson, and Tegene, 2007), the attempts to

improve the health outcomes of consumers by taxing high-calorie foods had mixed

results, and the taxes proved to be regressive. Ignoring consumers’ inventory be-

haviors and the persistence of their tastes overestimates the benefits of soda taxes

(Wang, 2015), in addition to offsetting some of the benefits due to the substitu-

tion between various types of high-calorie foods (Schroeter, Lusk, and Tyner, 2008;

Fletcher, Frisvold, and Tefft, 2010). Assuming a Leontief technology for the pro-

duction of healthy foods and perfect substitution in consumption between healthy

and unhealthy foods, Yaniv, Rosin, and Tobol (2009) show that a “fat” tax can

decrease the health outcomes of consumers, if the reduction in the unhealthy food

due to the tax is not enough to compensate the reduction in time allocation to

physical exercise, now needed for cooking the healthy food. Alternatively, taxing

or subsidizing calories rather than foods avoids potential substitution effects be-

tween similarly perceived items increasing the health benefits of the interventions

(Richards, Patterson, and Tegene, 2007; Okrent and Alston, 2012).

The contribution of this paper to the previous literature is as follows. First,

I account for physiological constraints imposed by biological processes. There is a

minimum calorie intake a person needs to fulfill in order to maintain the energy
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level required to engage in productive activities. 3 This intake is independent of

the nutrient density of calories consumed, however health is not. Thus, a potential

trade off dictated by budgetary constraints is apparent. Furthermore, as long as this

minimum calorie intake is binding, taxing high-calorie foods will have the opposite

effect of decreasing the nutrient density of the foods consumed, while increasing the

intake of high-calorie foods. This provides an alternative explanation to justify the

mixed results of tax interventions on improving health outcomes, especially in the

case of poor consumers.

Second, previous literature has modeled the budget available to consumers

as an increasing function of health (Grossman, 1972b; Chavas, 2013; Bolin and

Lindgren, 2016). While intuitively correct, people tend to be more productive if

they are healthy, in the short run people might find it in their best interest to push

the health “envelope” so to speak. For example, diabetes will impact a person’s

ability to generate income in the long run, but in the initial stages of the disease

the person’s ability to perform is less likely to be affected.4 On the other hand,

consumption of unhealthy foods that provide a boost in energy is more likely to

increase productivity. Consider farmworkers. Their income is contingent on how

much they harvest at a given time (i.e., piece rate payment). An unhealthy boost in

energy will increase their productivity and so their income at the expense of health.

Another example can be found in academics. Tenure track assistant professors will,

3I am indebted to Professor Holzer for pointing out the correct meaning of the physiological
constraint. A previous version of the chapter argued the constraint is the minimum level of calories
needed to survive.

4Diamond (2003) argues that changes in diets and life style can precede negative health out-
comes by as much as two decades.
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at times, find themselves in the position of trading health in order to increase the

time budget available to beat the tenure clock. In both instances, budget is a

function of unhealthy food consumption, rather than health. This avenue seems

worth exploring. Finally, I calibrate the theoretical model with data pertaining to

the US farm-workers food choices.

3.2 Theoretical Model

There are two time periods. The agent has preferences over health, h ∈ R++,

and two food products, ti ∈ R+ and si ∈ R+, where i = 1, 2 represents consumption

of food products in the first and second periods. Preferences are represented by the

utility function u : R5
+ → R++, where u is assumed to be increasing and concave

in health, si and ti. The agent can buy the food product ti for a price qi ∈ R++,

which for simplicity is assumed to be equal across periods and is normalized to 1,

and the good si for a price pi ∈ R++, which for simplicity is assumed to equal p

across periods. Health can not be purchased from the market, it is a nonmarketable

good.

However, the agent can produce health using a technology where the inputs

are calories and nutrients delivered by the two food products. Calories come in two

flavours: discretionary calories, also known as “empty calories”, cei ∈ R+, which

are produced by nutrient deficient food products, ti in this case, and full calories,

cfi ∈ R+, which are produced along side nutrients by healthy food products, si in this

case. The difference between empty and full calories is that the latter calories deliver
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energy and nutrients while the former deliver only energy.5 The health technology

is represented by the health production function H(ce1 , cf1 , ce2 , cf2), where6

H(ce1 , cf1 , ce2 , cf2) = max{h : (ce1 , cf1 , ce2 , cf2) can produce h}

The health production function H(ce1 , cf1 , ce2 , cf2) is increasing in cfi and nonin-

creasing in cei . The full calories technology is represented by the input requirement

function f(cfi), where

f(cfi) = min{si : si can produce cfi}

and the empty calories technology is represented by the input requirement function

e(cei), where

e(cei) = min{ti : ti can produce cei}

In the first period, the agent faces the budget constraint, ps1 + t1 ≤ m, and, in

the second period, the budget constraint ps2 + t2 ≤ (1 + β(ce1))m, where m is the

agent’s income and β(ce1) is a productivity bonus (i.e., agricultural workers can

harvest more products in the field if they consume ce1). I assume that β(ce1) is

concave in ce1 (i.e., β
′
(ce1) > 0, β

′′
(ce1) < 0).

Additionally, in each period, the agent must reach a minimum level of calories

5I am indebted to Professor Olson for encouraging me to clarify the distinctions between the
two types of calories.

6The health production function refers to the ability of the body to transform calories and
nutrients in health, keeping constant genetics and environment, exercise, life style, and other
contributing factors.
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consumption, c̄, in order to insure a minimum level of energy necessary to sustain

life. I assume that the income m is sufficiently large to allow the consumer to

cover the minimum calories requirement, c̄, at least from the consumption of empty

calories ce1 . Technically, this requires e(c̄) ≤ m. Similarly, the consumer will be

able to cover c̄ only from the consumption of full calories cfi if pf(c̄) ≤ m.

The consumer chooses si, ti, cfi and cei , i = 1, 2, to solve:

max
{
u1(t1, s1)+δu2(h, t2, s2) : h ≤ H(ce1 , cf1 , ce2 , cf2), si ≥ f(cfi), ti ≥ e(cei),

(3.1)

ps1 + t1 ≤ m, ps2 + t2 ≤ (1 + β(ce1))m, cei + cfi ≥ c̄, i = 1, 2
}

where δ is an intertemporal discount factor.

In words, the consumer maximizes consumption of health and food products

over two periods conditional on technology, budget and physiology constraints. The

technology constraints are the health constraint, h ≤ H(ce1 , cf1 , ce2 , cf2), and the

production of calories, si ≥ f(cfi) and ti ≥ e(cei) for i = 1, 2. The budget constraints

are ps1 + t1 ≤ m in the first period, and ps2 + t2 ≤ (1 + β(ce1))m in the second

period. Finally, the physiology constraints are cei + cfi ≥ c̄, i = 1, 2, the consumer

must achieve at least the minimum calorie intake in each period.

It is convenient to recast (3.1) exclusively in terms of health inputs, cei and

cfi . Because the agent is the residual claimant, at optimum, h = H(ce1 , cf1 , ce2 , cf2),

si = f(cfi) and ti = e(cei) for all i. Thus, the first period budget constraint becomes

pf(cf1) + e(ce1) ≤ m, and the second period budget constraint becomes pf(cf2) +
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e(ce2) ≤ (1 + β(ce1))m. Both budget constraints are binding at the optimum.

The consumer chooses cfi and cei , i = 1, 2, to solve:

max
{
u1(e(ce1), f(cf1))+δu2(H(ce1 , cf1 , ce2 , cf2), e(ce2), f(cf2)) : (3.2)

pf(cf1) + e(ce1) = m,

pf(cf2) + e(ce2) = (1 + β(ce1))m,

cei + cfi ≥ c̄, i = 1, 2
}

Figure 3.1 illustrates the optimal consumption of calories and the optimal

choice of health for one period in the calories space. For a budget m and prices

(p, 1), the maximum amount of full and empty calories available for consumption

are f−1(m/p), point B, and e−1(m), point J , respectively. The isocost connecting

B and J represents all possible combinations of full and empty calories (cfi , cei)

available for consumption given the budget m and prices (p, 1). The indifference

curve represents all possible combinations of full and empty calories (cfi , cei) that

deliver the same level of satisfaction to the consumer. The optimal consumption of

calories, point D, is given by the tangency between the indifference curve and the

isocost curve. The optimal health corresponding to point D is given by the health

isoquant at D. The minimum caloric intake is represented by the line of slope −1

(i.e. line [c̄, c̄]).
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3.2.1 Equilibrium Behavior

In order to characterize the optimal decisions of the agent in (3.2), first we

need to consider whether the minimum caloric intake constraints are binding or not.

To focus the analysis, we consider only the polar cases: both constraints are binding

and none of the constraints are binding. The mixed cases are similar.

If the minimal calories intake constraints are not binding, cei + cfi > c̄, (3.2)

can be written as:

max
{
u1(e(ce1), f(cf1))+δu2(H(ce1 , cf1 , ce2 , cf2), e(ce2), f(cf2)) (3.3)

+ γ1(m− pf(cf1)− e(ce1))

+ γ2((1 + β(ce1))m− pf(cf2) + e(ce2))

where γ1 and γ2 are shadow prices, and the optimal consumption of discretionary

and full calories, assuming interior solutions, are characterized by the first order

conditions:

∂u1
∂s1

∂f

∂cf1
+ δ

∂u2
∂H

∂H

∂cf1
− γ1p

∂f

∂cf1
= 0 (3.4)

∂u1
∂t1

∂e

∂ce1
+ δ

∂u2
∂H

∂H

∂ce1
− γ1

∂e

∂ce1
− γ2β

′
m = 0 (3.5)

∂u2
∂s2

∂f

∂cf2
+
∂u2
∂H

∂H

∂cf2
− γ2p

∂f

∂cf2
= 0 (3.6)
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∂u2
∂t2

∂e

∂ce2
+
∂u2
∂H

∂H

∂ce2
− γ2

∂e

∂ce2
= 0 (3.7)

In Figure 3.1, an example of the range of possible solutions is the isoquant map

(A,B], where A represents behaviour consistent with zero health, and B is maximum

health given the budget m and prices (p, 1). In this case, the minimum caloric

constraint is not binding, and the optimal mix between empty and full calories,

(ce, cf ) is given by the preferences over health, and the consumption of other goods.

The optimum choice is at point D, where the indifference curve is tangent to the

isocost curve.

Alternatively, if the constraints are binding, cei + cfi = c̄, the empty calories

consumed cei = c̄− cfi and the optimum consumption of full calories is determined

by the budget constraints pf(cf1) + e(c̄− cf1) = m in the first period, and pf(cf2) +

e(c̄− cf2) = (1 + β(ce1))m in the second period.

Denote the first period optimal consumption of full calories by ĉf1 , where ĉf1

represents the implicit solution for cf1 in terms of the budget constraint pf(cf1) +

e(c̄ − cf1) = m, and the second period optimal consumption of full calories by ĉf2 ,

where ĉf2 represents the implicit solution for cf2 in terms of the budget constraint

pf(cf2) + e(c̄− cf2) = (1 + β(ce1))m. Then, the first period optimal consumption of

empty calories is c̄− ĉf1 , the second period optimal consumption of empty calories is

c̄− ĉf2 and the consumer reaches the indifference curve corresponding to the utility
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level

u1(e(c̄− ĉf1), f(ĉf1)) + δu1(H(c̄− ĉf1 , ĉf1 , c̄− ĉf2 , ĉf2), e(c̄− ĉf2), f(ĉf2))

In Figure 3.1, points F and G are examples of such an optimum. These points

are the intersection between the minimum calorie intake constraint, and the corre-

sponding isocost curves and the health isoquants. Furthermore, they are consistent

with health maximization behaviour. Contingent on the minimum caloric-intake, F

and G are the highest health outcomes feasible for the budget m1 and prices (p, 1)

in the case of F , and prices (p, 1/(1 + µ)) in the case of G.

3.2.2 The Nutritionist Standard and The Health Economist

Before analyzing the agent’s optimal choices in the presence of a “fat” tax,

additional insights can be gathered from two related problems. The first problem is

that of an agent who maximizes health given the constraints imposed by the health

technology, H(ce1 , cf1 , ce2 , cf2), and the minimum calorie intake, c̄. Mnemonically,

we refer to it as the nutritionist’s standard. This is a technology driven problem,

and its solution is independent of income and prices considerations. Thus, it will

generate the highest level of health. In Figure 3.1, this corresponds to the point N .

The second problem is derived by adding the budget constraints, ps1 + t1 ≤ m

and ps2 + t2 ≤ (1 + β(ce1))m , to the nutritionist’s problem. Mnemonically, we

refer to it as the health economist’s problem because this agent maximizes health

conditional on the budget constraints, available health technology and the minimum

56



calorie intake constraints. The difference between the optimal level of health of the

nutritionist and that of the health economist is due to the income and prices pressure.

In short, the nutritionist’s standard is:

max
{
H(ce1 , cf1 , ce2 , cf2)

}
(3.8)

The nutritionist can always cover the minimum calorie intake requirement, because

her decisions are not subject to budget constraints. Considering that health is

decreasing in empty calories, the optimal level of cei is zero. 7 Let the optimal

health level of this problem be h∗, then h∗ is the highest level of health feasible

given the technology H(ce1 , cf1 , ce2 , cf2). Denote by ∗ the inputs associated with h∗.

The minimum budget required to reach the health level h? is m? and pf(c∗fi) = m∗.

For budgets m > m∗, the health level decreases independent of the type of

calories consumed (i.e., malnutrition due to overnutrition). The case where too

many nutrients are consumed is consistent with a negative health marginal product

of full calories cfi (i.e., the inverse “U” shape curve discuss by Bolin and Lindgren

(2016)).

7According to the Dietary Guidelines released jointly by the U.S. Departments of Agriculture
(USDA) and Health and Human Services (HHS), a healthy diet allows for a certain proportion
of the total calories consumed to be discretionary calories. They provide energy but without
nutrients, hence inducing a nonincreasing effect on health. Without lost of generality, in this
analysis I assume that health is decreasing rather that nonincreasing in empty calories.

57



Next, consider the health economist’s problem:

max
{
H(ce1 , cf1 , ce2 , cf2) : pf(cf1)+e(ce1) ≤ m, pf(cf2) + e(ce2) (3.9)

≤ (1 + β(ce1))m, cfi + cei ≥ c̄, i = 1, 2 ≥ c̄
}

Problem (3.9) mirrors (3.8) with the addition of the budget constraints, where

m(1 + β(ce1) ≤ m∗, and the minimum calories intake constraints. For expositional

convenience, we assume β(ce1) = 0. Later, this assumption will be relaxed. De-

pending on the income, the minimum caloric intake requirement could be binding.

Hence, two cases emerge depending on whether this constraint is binding or not.

First, if pf(c̄) ≥ m, the health economist can cover the minimum caloric in-

take requirement exclusively from the consumption of full calories. The minimum

caloric intake is not binding. Hence, cei = 0, i = 1, 2, and the optimal health level is

H(0, cf1(m, p, 1, c̄), 0, cf2(m, p, 1, c̄)). For m < m?, the optimal health level in (3.9)

is lower than in (3.8), because the budget constraint forces the health economist to

consume a lower amount of full calories than the nutritionist. For a visual repre-

sentation, compare point B (i.e. health economist choice) with point N in Figure

3.1.

An observation is in order. For comparison purposes, β(ce1) was assumed to

be 0. However, for β(ce1) > 0 (i.e., the productivity of empty calories in the first

period is strictly positive), the health economist will find it optimal to consume a

strictly positive amount of empty calories in the first period, if the loss in health is

offset by the gain in health from consuming additional full calories cf2 in the second
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period. The nutritionist, however, will always choose to consume only full calories

because she does not face any budget constraints.

Second, if pf(c̄) < m, the health economist can not cover the minimum calories

intake requirement, c̄, exclusively from the consumption of full calories, cf2 . Thus,

the amount of empty calories consumed will be strictly positive, ce2 > 0. However,

because health is decreasing in the consumption of ce2 , the amount of empty calories

consumed will be just enough to cover the minimum consumption level c̄. Hence, the

minimum caloric intake constraint will be binding ce2 +cf2 = c̄. Furthermore, ĉf2 < c̄

implies that ĉf1 < c̄, thus ce1 > 0 even if β(ce1) = 0, in which case ce1 + cf1 = c̄.

Visually, these choices are represented by points such as F and G in Figure 3.1.

Because the budget does not cover the minimum calorie intake requirement

exclusively from the consumption of full calories, the amount of empty calories

consumed is strictly positive. Furthermore, the health economist has no preference

over the consumption of ce2 , hence the additional consumption of empty calories

is just enough to cover the minimum calorie intake requirement c̄. In Figure 3.1,

for the budget m1 and prices (p, 1), the health economist chooses the health level

corresponding to point F . The consumer, however, can choose anything between C

and F , the consumer’s optimum health level being decided by the preferences over

health and the consumption goods. Thus, the health economist’s optimal health

derived from problem (3.9) will serve as a higher bound for the health level derived

by the consumer in (3.1).
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3.2.3 Tax Effects on Health

Consider a tax µ > 0 on the consumption of the nutrient deficient food prod-

ucts t (i.e., sugar tax, fat tax). The tax raises the price of ti from 1 to 1+µ, changing

the relative prices of ti and si. It is expected that the tax will induce the consumers

to change the mix of calories in the favor of cfi increasing the health level.

However, this may not occur when the minimum calorie intake is binding. In

this case, the optimal consumption of full calories in the first and second periods

must satisfy the budget constraints pf(cf1)+(1+µ)e(c̄−cf1) ≤ m in the first period,

and pf(cf2) + (1 + µ)e(c̄− cf2) ≤ (1 + β(ce1))m in the second period, respectively.

By the implicit function theorem, it follows that

∂cfi
∂µ

=
e(c̄− cfi)

(1 + µ)∂e/∂cei − p∂f/∂cfi
, i = 1, 2 (3.10)

Because p∂f/∂cfi − (1 + µ)∂e/∂cei equals the inverse of the shadow price of the

budget constraint i, it follows that ∂cfi/∂µ < 0. Increasing the price of empty

calories, by imposing a tax on ti, will decrease health if the minimum calorie intake

is binding. Visually, this is equivalent to moving from a health level F, in Figure 3.1,

to a lower health level G. Clearly, a health conscious consumer will be made worse

off by the tax. If (1 + β(m))m/p < c̄, then for any level of the tax ∂cf2/∂µ < 0.
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3.3 Empirical Analysis

This section presents calibration results of the theoretical model based on data

characterizing immigrant farmworkers in the US. Beside providing a vital service

to the agriculture and food system in the U.S., immigrant farmworkers and their

families are vulnerable to health issues resulting from food insecurity (Weigel et al.,

2007; Kilanowski and Moore, 2010). Specific data used consists of farm workers

income, daily wage, daily calories needs and optimal consumption of full calories.

According to the findings of the National Agricultural Workers Survey (NAWS),

the average age of a farmworker is 38, and males comprised 72% of the hired crop

labor force in 2013 − 2014.8 Based on the Dietary Guidelines for Americans for

2015 − 2020, the estimated calorie needs per day for a physically active individual

in the age group 36 − 40 are 2, 800 for men and 2, 200 for a women.910 Thus, the

weighted average calorie needs of a farmworker is 2, 632 calories. Borre, Ertle, and

Graff (2010), surveying migrant and seasonal farmworkers families, find the median

calorie intake of food insecure farmworkers is around 1, 500, which considering the

level of physical activity is consistent to minimum intake required to sustain life.11

I use available data to characterize the optimal behaviour of a health economist

8https://www.doleta.gov/agworker/pdf/NAWS Research Report 12 Final 508 Compliant.pdf
9Active means a lifestyle that includes physical activity equivalent to walking more than 3

miles per day at 3 to 4 miles per hour, in addition to the activities of independent living.
10Jointly released by the U.S. Departments of Agriculture (USDA) and the U.S. Department of

Health and Human Services (HHS), the Dietary Guidelines for Americans is designed as a resource
for health professionals and policymakers. The calories needs are provided in Appendix 2 of the
guidelines (https://health.gov/dietaryguidelines/2015/guidelines/appendix-2/#table-a2-1)

11A low-calorie diet requires reducing daily calorie intake to 1, 200 to 1, 500 for
women, but no less than 1, 000, and 1, 500 to 1, 800 for men, but no less than 1, 200
(http://www.webmd.com/diet/lowcaloriediet).
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agent facing budget and minimum calorie intake constraints. Health is assumed to be

an increasing function of full calories consumption, with a maximum health reached

at a consumption of 2, 632 full calories, and a minimum calorie intake of at least

1, 500 calories. Health is assumed to be decreasing in the consumption of empty

calories.

Specifically health is assumed to follow the quadratic equation12

H(cf1 , ce1 , cf2 , cf2) = −c2f1 + 5, 264cf1 − ce1 + δ(−c2f2 + 5, 264cf2 − ce2) (3.11)

where δ is a discount factor equal to 95%, which is consistent with discount rates

used in other studies (Laibson, Repetto, and Tobacman, 2007) and 5, 264 is chosen to

ensure that the production function of health reaches a maximum at a consumption

of 2, 632 full calories. I assumed that the consumption of empty calories in the first

period, ce1 , increases the budget available in the second period by a factor β, where

β is the marginal effect of consuming an empty calorie in the first period on the

second period budget. For each ce1 consumed, the second period budget increases

by β× 0.00176, where 0.00176 is the price of cei (Monsivais and Drewnowski, 2007).

This is consistent with a piece rate payment (i.e. payment is contingent on the

quantity harvested) that characterized farm workers remuneration. In order to boost

their productivity, and so increase their income, farm workers can consumed energy-

dense, but nutrient poor, food products. For the analysis, different values for β are

12The functional representation of the health technology was selected because of its tractability
and simplicity. I am indebted to Professor Olson for encouraging me to justify the choice of this
functional representation.
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considered.

While health is positively correlated with the consumption of nutrient-dense

foods (i.e., whole grains, lean meats, low fat dairy products, vegetables and fruits)

and negatively correlated with the consumption of energy-dense, but nutrient poor

foods (i.e., refined grains, sweets and fats), the energy cost of foods (i.e, the price of

calories ($/kcal)) increases with the nutritional content (Drewnowski, 2010). Fur-

thermore, the energy-density of foods, measured as kilocalories per gram (kcal/g),

is negatively correlated with the nutrient content and the energy cost (Monsivais,

Mclain, and Drewnowski, 2010). Estimation based on retail food prices puts the en-

ergy cost of foods, in the lower quintile of energy density, at $1.8/100kcal compared

to $0.17/100kcal in the top quintile (Monsivais and Drewnowski, 2007). Similarly,

the average cost of foods in the top quintile of nutrient density is $2.7/100kcal com-

pared to an average of $0.33/100kcal in the lower quintile (Monsivais, Mclain, and

Drewnowski, 2010). Because these food prices correspond to bottom and top quintile

of nutrient and energy densities foods, and to insure that farmworkers can purchase

foods with a caloric content of 2, 632 full calories, the cost of healthy calories is

decreased by 30%.

According to the Farm Labor Survey of the National Agricultural Statistics

Service, the wage for a non-supervisory farm laborer was $10.80 per hour in 2012, and

according to the Bureau of Labor Statistics the average annual wage for agricultural

workers is $25, 650. Based on the The National Agricultural Workers Survey, the

average daily number of hours worked by migrant farm workers is 8 hours. While

farm workers shifts may be longer than 8 hours, the 8-hour figure is reasonable if
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we think in terms of total number of hours worked per year divided by the total

number of days available in a year.

I use available data to calibrate the optimal consumption of calories by a con-

sumer with Cobb-Douglas utility facing budget and minimum caloric intake con-

straints. Specifically, the consumer maximizes:

Acαf1c
1−α
e1
− c2f1 + 5, 264cf1 − ce1 + δ(Acαf2c

1−α
e1
− c2f2 + 5, 264cf2 − ce2) (3.12)

where A = 100 to allow utility values to be comparable with health values (i.e.

health reaches a maximum at a consumption of 2, 632 full calories). The parameter

α takes three distinct values (i.e. 0.5, 0.1 and 0.9), in order to allow for variation in

taste over consumption of full and empty calories. A higher value of α suggests a

higher taste preference for the consumption of full calories, and a lower preference

for the consumption of empty calories.

Table 1 provides estimates of the optimal consumption of calories for the health

economist agent and the consumer under different scenarios. First, β is assumed

to take four distinct values: 0, 0.5, 1, and 1.5. A value β = 0 means the con-

sumption of empty calories in the first period has no effect on the second period

budget. Anecdotal evidence suggests farmworkers, especially illegal immigrants who

are socially more vulnerable, spend most of their resources on rent, off-season sav-

ings and to support their families back home. Thus, I assumed that farmworkers

spend between 10% and 40% of their daily income on food purchases. Based on
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data available, this is equivalent to an expenditure in the range of $8.64 to $34.56

per day. This is consistent with Borre, Ertle, and Graff (2010), who find that the

minimum daily grocery spending per person by the food insecure families is $9.52

while the maximum spending by migrant farmworks is $22.86.

Calibration results suggest that health is not decreasing in β for the health

economist. As long as the minimum caloric intake constraint is binding, the health

level is increasing. The necessary consumption of empty calories in the first period

relaxes the budget constraint in the second period allowing a higher consumption

of full calories. This holds independent of the value of β.

For sufficiently large values of β, the health economist will consume additional

empty calories in the first period, reducing first period health, in order to increase

the second period consumption of full calories, and overall health. This is the case

for β = 1.5, when the consumption of empty calories increases from 0 to 570 in

the case of a 30% food expenditure allocation. For the 40% food expenditure, the

health economist already reaches the maximum health, thus β has no effect on empty

calories consumption.

For lower values of β (i.e. 0 and 0.5) and income allocation (i.e., 10% and

20%), consumer’s health choices coincide with those of the health economist inde-

pendent of the taste (i.e., value of α). Nonetheless, it suggests that information

campaigns, tailored at decreasing the weight consumers place on the utility derived

from consumption of foods versus the effect on health, could have beneficial results.

Outside these values, for a fixed level of β and income allocation, consumer’s health

is increasing in α (i.e., the taste preference for the consumption of full calories,
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cfi , i = 1, 2).

For a fixed level of income and taste, the consumption of both type of calories

increases in β, but the consumption of empty calories increases at higher rate than

the consumption of full calories. For example, for income allocation of 30% and

α = 0.5, consumption of empty calories increases by 44% for a change in β from 1

to 1.5, while the full calories consumption increases only by 2%.

Finally, keeping constant both β and α, the consumption of full calories in-

creases at a decreasing rate in income, while the consumption of empty calories

initially decreases, but afterwards increases at an increasing rate in income. For

example, for β = 1 and α = 0.5, the consumption of full calories in the first period

increases from 499, for a 10% budget allocation, to 1, 262, for 20% budget allocation,

to 1, 912, for a 30% budget allocation, to finally 2, 358 calories, for a 40% budget

allocation. While, empty calories consumption in the first period decreases from

1, 308 to 714 between a 10% and 20% budget allocation, to increase afterwards to

913 and 2, 616 in the case of a 30% and 40% budget allocations. This provides some

evidence that budget relaxing policies (i.e., food stamps) might have an effect only

on the very poor consumers.

Table 2 provides estimates of the tax effect on the optimal consumption of full

and empty calories for the health economist and the consumer under four different

tax regimes (i.e. 0%, 5%, 10%, and 15%), and β = 0. Previous studies have

employed tax regimes of 10% (Fletcher, Frisvold, and Tefft, 2010; Wang, 2015),

while lower tax regimes were reported in other studies (Jacobson and Brownell,

2000; Schroeter, Lusk, and Tyner, 2008).
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As long as the minimum calorie intake is binding, the tax raises the consump-

tion of empty calories and decreases the consumption of full calories. This result

provides evidence that changing the relative prices of full and empty calories is not

sufficient to increase the consumption of full calories. Furthermore, this result holds

independent of the taste preferences, since even the health economist responds to

the tax regimes by increasing the consumption of empty calories, despite a decrease

in health.

Alternatively, for the case where the minimum caloric intake is not binding,

taxes decrease the consumption of empty calories, but they have a small effect on

the consumption of full calories. Part of the reason is the big gap between the price

of full calories and the price of empty calories.

3.4 Conclusion

This paper provides an alternative explanation to the observed trend of un-

healthy food consumption. To accomplish this a theoretical model of unhealthy food

consumption is provided, where the consumer maximizes utility over health and con-

sumption of food over two periods. The consumer faces a minimum caloric intake

constraint and benefits from a productivity boost derived from the consumption of

unhealthy foods. If the minimum caloric intake is binding, a tax on the unhealthy

food will have the opposite effect of decreasing the consumption of healthy foods

and increasing the consumption of unhealthy foods. Another contribution of the

paper is to allow the productivity boost (i.e. β) to be a function of empty calories,
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as compared to full calories which was the norm in previous studies. Potential ex-

tensions of the model could allow β to be a function of both empty and full calories.

13

The theoretical model predictions are calibrated with data on food consump-

tion patterns of immigrant farmworkers in the U.S. In terms of robustness, the

calibration’s results can be improved by testing alternative functional forms for the

health technology and the consumer’s utility. For example, the currently Cobb-

Douglas utility function can be replaced by a more general constant elasticity of

substitution utility. Also as mentioned above, the theoretical predictions can be

expanded by allowing β to be a function of both type of calories.14 Future direc-

tions of research could also explore in detail the effect of information and subsidy

on the optimal consumption of calories considering the above constraints imposed

by minimum calorie requirement and intertemporal productivity.

13I am indebted to Professor Olson for suggesting this extension of the model.
14I am indebted to Professor Olson for encouraging me to discuss the robustness of the results

derived in this chapter.
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Table 3.1: Full and Empty Calories Consumption for a Health Economist Agent and Consumer with Cobb-Douglas Utility

Health Economist Consumer (α = 0.5)3 Consumer (α = 0.1) Consumer (α = 0.9)

Income (%)1 10% 20% 30% 40% 10% 20% 30% 40% 10% 20% 30% 40% 10% 20% 30% 40%
Income ($)2 8.64 17.28 25.92 34.56 8.64 17.28 25.92 34.56 8.64 17.28 25.92 34.56 8.64 17.28 25.92 34.56

β = 0 4

cf1 548 1338 2,041 2,632 548 1338 2,017 2,454 548 1,338 2,040 2,324 548 1,338 2,029 2,588
ce1 952 162 0 0 952 162 168 1,925 952 162 5 2,867 952 162 83 958
cf2 548 1338 2,041 2,632 548 1338 2,017 2,454 548 1,338 2,040 2,324 548 1,338 2,029 2,588
ce2 952 162 0 0 952 162 168 1,925 952 162 5 2,867 952 162 83 958

β = 0.5

cf1 548 1,338 2,041 2632 548 1338 1,980 2,398 548 1,338 1,986 2,194 548 1,338 2,019 2,569
ce1 952 162 0 0 952 162 436 2,329 952 162 392 3,802 952 162 159 1,093
cf2 625 1,351 2,041 2632 625 1351 2,045 2,492 625 1,351 2,067 2,342 625 1,351 2,040 2,612
ce2 875 149 0 0 875 149 186 2,813 875 149 8 4,638 875 149 85 1,335

β = 1

cf1 530 1,294 2,041 2,632 499 1,262 1,912 2,358 434 1,221 1,878 2,074 524 1,290 1,981 2,560
ce1 1,086 482 0 0 1,308 714 930 2,616 1,776 1,007 1,171 4,666 1,130 506 428 1,163
cf2 723 1,416 2,041 2,632 759 1,453 2,133 2,525 834 1,500 2,190 2,359 730 1,419 2,087 2,629
ce2 777 84 0 0 741 47 265 4,033 667 0 92 7,276 770 81 95 1,827

β = 1.5

cf1 296 1,189 1,962 2,632 314 1,144 1,865 2,329 264 1,094 1,806 1,962 300 1,177 1,927 2,555
ce1 2,775 1,235 570 0 2,646 1,565 1,265 2,827 3,005 1,922 1,692 5,476 2,744 1,324 821 1,199
cf2 1,218 1,617 2,159 2,632 1,187 1,677 2,242 2,549 1,273 1,760 2,278 2,376 1,211 1,630 2,194 2,641
ce2 282 0 0 0 313 59 445 5,479 227 0 824 10,705 290 39 125 2,379
1 Percentage of the daily income spent on food purchases. 2 Daily dollar amount spent on food purchases.
3 α is utility power associated with the consumption of full calorie cfi , i = 1, 2.
4 β is the marginal effect of consuming an empty calorie in the first period on the second period budget. For each ce1 consumed
the second period budget increases by β × 0.00176, where 0.00176 is the price of ce1 .
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Table 3.2: Full and Empty Calories Consumption for a Health Economist Agent and Consumer with Cobb-Douglas Utility
under Empty Calories Taxation

Health Economist Consumer (α = 0.5)3 Consumer (α = 0.1) Consumer (α = 0.9)

Income (%)1 10% 20% 30% 40% 10% 20% 30% 40% 10% 20% 30% 40% 10% 20% 30% 40%
Income ($)2 8.64 17.28 25.92 34.56 8.64 17.28 25.92 34.56 8.64 17.28 25.92 34.56 8.64 17.28 25.92 34.56

Tax = 0%

cf1 548 1338 2,041 2,632 548 1338 2,017 2,454 548 1,338 2,040 2,324 548 1,338 2,029 2,588
ce1 952 162 0 0 952 162 168 1,925 952 162 5 2,867 952 162 83 958
cf2 548 1338 2,041 2,632 548 1338 2,017 2,454 548 1,338 2,040 2,324 548 1,338 2,029 2,588
ce2 952 162 0 0 952 162 168 1,925 952 162 5 2,867 952 162 83 958

Tax = 5%

cf1 541 1,337 2,041 2,632 541 1,337 2,018 2,457 541 1,337 2,040 2,336 541 1,337 2,029 2588.1
ce1 959 163 0 0 959 163 153 1,814 959 163 3 2,648 959 163 79 912.2
cf2 541 1,337 2,041 2,632 541 1,337 2,018 2,457 541 1,337 2,040 2,336 541 1,337 2,029 2588.1
ce2 959 163 0 0 959 163 153 1,814 959 163 3 2,648 959 163 79 912.2

Tax = 10%

cf1 533 1,335 2,041 2,632 533 1,335 2,019 2,460 533 1,335 2,040 2,347 533 1,335 2,029 2,588
ce1 967 165 0 0 967 165 140 1,714 967 165 2 2,456 967 165 75 871
cf2 533 1,335 2,041 2,632 533 1,335 2,019 2,460 533 1,335 2,040 2,347 533 1,335 2,029 2,588
ce2 967 165 0 0 967 165 140 1,714 967 165 2 2,456 967 165 75 871

Tax = 15%

cf1 525 1334 2,041 2,632 525 1,334 2,020 2,462 525 1,334 2,040 2,357 525 1,334 2,029 2,588
ce1 975 166 0 0 975 166 129 1,623 975 166 1 2,285 975 166 71 832
cf2 525 1334 2,041 2,632 525 1,334 2,020 2,462 525 1,334 2,040 2,357 525 1,334 2,029 2,588
ce2 975 166 0 0 975 166 129 1,623 975 166 1 2,285 975 166 71 832
1 Percentage of the daily income spent on food purchases. 2 Daily dollar amount spent on food purchases.
3 α is utility power associated with the consumption of full calorie cfi , i = 1, 2.
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Figure 3.1: Health Choices
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Appendix A: Proof Theorem 1.3

Theorem 1.3: By Bellman’s principle, the farmer’s problem can be written:

max
qt,qt+1,l


max
lo,lf ,h,z,


W (qt, qt+1, l) : Ah+p · z + gt+1 + rlo ≥ qt+1,

ωt (gt+1) + gt ≥ qt + c (w, z, lf ) + v>h,

L ≥ lo + lf + l




.

Because W is strictly increasing in qt, following Chambers (2007) and Chambers

and Quiggin (2009), this problem reduces to

max
qt+1,l


W

ωt(gt+1) + gt − min
lo,lf ,h,z


c(w, z, lf ) + v>h :

Ah+p · z + gt+1 + rlo ≥ qt+1,

L ≥ lo + lf + l


, qt+1, l




.

Strict monotonicity of W in qt+1 and l ensures in the optimum that

Ah = qt+1 − p · z − gt+1 − rlo (A.1)

L = lo + lf + l.
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Expression (A.1) requires that qt+1 − p · z − gt+1 − rlo ∈ M. By the Projection

Theorem (see, for example, Luenberger 1969, Theorem 3.3.2), the unique interior

portfolio solving (A.1) is

h = P (qt+1 − p · z − gt+1 − rlo) .

Using L = lo + lf + l to eliminate lo gives

h = P (qt+1 − p · z − gt+1 − r (L− l − lf )) .

Thus, the decision maker’s problem concentrates as

max
qt+1,l

{
W
(
ωt(gt+1) + gt −min

lf ,z
{c(w, z, lf )+

v>P (qt+1 − p · z − gt+1 − r(L− l − lf ))}, qt+1, l
)}
.

But

−minlf ,z


c (w, z, lf )

+v>P (qt+1 − p · z − gt+1 − r (L− l − lf ))

 =

−v>P (qt+1 − gt+1 − r (L− l)) + maxlf ,z
{
v>P (p · z − rlf )− c (w, z, lf )

}
,

which is the desired result. Concavity of W and convexity of c ensure a global

optimum.
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Appendix B: Pricing

The optimal stochastic agricultural output z can be determined as a solution

to the profit maximization problem

Π(p, w, r, v1/A,v
T
2 (DTD)−1DT ) = max

z,l

{
vT2 (DTD)−1DTpz

− c(w, z; l)−
[
r − s

2

(v1
A

+ vT2 (DTD)−1DT1S
)]
l
}

Assuming the profit function is differentiable, the first order conditions for the

output z are

(zs) :
∂c(w, z; l)

∂zs
= vT2 (DTD)−1DT

s ps, ∀s ∈ S

from where

(zs) :
∂c(w, z; l)

∂zs

1

ps
= vT2 (DTD)−1DT

s , ∀s ∈ S

or in vector notation

∇zc(w, z; l)

p
= vT2 (DTD)−1DT , ∀s ∈ S

74



post multiply by D to obtain

∇zc(w, z; l)

p
D = v2

which must hold for any asset j

∇zc(w, z; l)

p
Dj = v2j, j = 1, . . . , J

multiply and divide every states s by its associate probability πs

∇zc(w, z; l)

p

πs
πs
Dj = v2j, j = 1, . . . , J

given the expectation form

E
[∇zc(w, z; l)

p
D̃j

]
= v2j, j = 1, . . . , J
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