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In this work, we are motivated by discriminating multivariate time-series with

an underlying graph topology. Graph signal processing has developed various tools

for the analysis of scalar signals on graphs. Here, we extend the existing techniques

to design filters for multivariate time-series that have non-trivial spatiotemporal

graph topologies. We show that such a filtering approach can discriminate signals
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how to identify spatiotemporal graph topology from signal observations. Specifi-

cally, we consider a generative model that yields a bilinear inverse problem with

an observation-dependent left multiplication. We propose two algorithms for solv-

ing the inverse problem and provide probabilistic guarantees on recovery. We apply

the technique to identify spatiotemporal graph components in electroencephalogram

(EEG) recordings. The identified components are shown to discriminate between

various cognitive task conditions in the data.
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Chapter 1: Introduction

We are interested in discriminative representations of multivariate time-series,

(x[t])t, where x[t] ∈ Rd (or Cd). We are particularly motivated by applications

of inferring functional connectivity in neuroimaging data and predicting teamwork

processes in team psychology. In each of these applications, an underlying struc-

ture exists in the data. For network neuroscience, well-characterized networks of

functional regions of the brain coordinate to achieve high-level cognitive processing.

In teams, members with unique functional roles and relationships coordinate their

activities to achieve a common goal. We want to leverage this underlying structure

to make our inference task easier. Knowing how functional regions of the brain in-

teract provides additional information about how to filter observed data. Similarly,

knowing the personal relationships of team members or how distinct functional roles

must interact to accomplish a task provides important information that we can use

to filter observed data.

Building on the work of Mallat [75] and Bruna and Mallat [24], Bruna, et

al. proposed a deep learning architecture that could encode domain-specific infor-

mation in the form of a graph [25]. Deep learning, and specifically convolutional

neural networks, hierarchically build rich representations of data by composing con-

volutional filters and element-wise nonlinearities [68]. The unrivaled success of deep
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learning in speech, image, and video application domains can be attributed to a

nonlinear filtering protocol which uniquely complements the relevant symmetries

of these tasks [76]. How then do we generalize the phenomenon of deep learning’s

success to other application domains with different symmetries? It is this question

to which Bruna, et al. propose graph convolutional neural networks [25]. Graph

convolutional neural networks encode the statistical symmetries of functions with

discrete domains by replacing traditional convolutional filters with functions of a

given graph operator such as the weighted adjacency or graph Laplacian matrix.

This has led to considerable follow-on work, e.g. [61, 62, 43, 38, 84]. For a recent

review of deep learning on graphs, see Bronstein, et al. [22].

In parallel to the development of graph convolutional neural networks, signal

processing researchers developed a conceptual framework for processing data on

networks. This framework and collection of tools is collectively known as graph

signal processing, and it combined with efforts toward generalizing convolutional

neural networks to graphs to make a more complete body of data science techniques

and theory. Graph signal processing began with the papers of Shuman, et al. [99]

and Sandryhaila and Moura [90, 92]. These seminal works proposed a generalization

of classical signal processing to data on graphs. The initial generalization included

graph frequencies, graph Fourier transforms, graph filtering, and graph wavelets.

Later work generalized a theory of graph sampling [32] and the uncertainty principle

[109]. For a recent review of this rapidly growing field, see Ortega, et al. [81].

In the following chapters, we aim to contribute new theory and techniques

for graph convolutional networks and graph signal processing of multivariate time-
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series. In Chapter 2, we provide the relevant background for subsequent chapters.

In Chapter 3, we propose a filtering framework which can encode statistical symme-

tries via an extended graph and associated graph operators. By using holomorphic

functional calculus, we can realize a large class of linear filters with relatively few

degrees of freedom. We show that our proposed approach provides a richer and

more discriminable model than alternatives. In Chapter 4, we turn our attention

to learning extended graphs and associated graph operators from observations. We

specifically address learning graph operators in the presence of additive linear pro-

cesses. This generative model leads to a linear mixture model, for which based on

dictionary learning results, we propose an alternating minimization algorithm to

solve it. We show that under suitable conditions, the algorithm converges linearly

to the true solution.

1.1 Functional and effective connectivity in the human brain

The human brain displays both localized and global processing to execute

high-level cognitive tasks. Historically, we have better understood the organizational

principles that encourage localized processing in the brain, but modern neuroimag-

ing techniques have precipitated greater understanding of how the brain executes

global processing. Karl Friston refers to our understanding of these processes as func-

tional segregation and functional integration respectively [46]. From case studies of

patients with brain lesions and controlled animal studies, we have long theorized

that our brain organizes information in functionally distinct regions. For example,
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early visual processing takes place in the occipital lobe of the brain, whereas our

sense of touch is processed in the parietal lobe. At this point, it is widely accepted

that the human brain employs localized processing as an organizing principle. How-

ever, higher-order cognitive processing requires the contribution of many distinct

functional units. It has been historically more difficult to identify the mechanisms

by which the brain integrates discrete functional units to achieve higher-order pro-

cessing. Modern neuroimaging modalities such as functional Magnetic Resonance

Imaging (fMRI) and Electroencephalography (EEG) now provide neuroscientists

with tools to observe brain activity non-invasively and in a controlled manner, fa-

cilitating hypothesis-driven experimentation.

Understanding how functionally segregated regions of the brain organize to

yield high-order processing could manifest as either descriptions or generative mod-

els. Friston refers to the former as functional connectivity, e.g. reporting of observed

dependencies of distinct regions of the brain during a cognitive task [46]. Functional

connectivity can be measured via correlations in recorded data. If region X and Y

must be functionally integrated for a cognitive task, then the observed correlation

of their data will likely exceed some hypothesis-testing threshold. Such descriptive

statistics of functional integration can be used to understand the global brain net-

work via graph-theoretic techniques [26]. Alternatively, neuroscientists can propose

a generative model for how functionally segregated regions of the brain integrate.

The model can then be fit to observations of brain activity and explained variance

indicates the likelihood that the generative model describes the underlying mecha-

nism. Friston refers to this latter approach as effective connectivity [46]. Typical
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techniques within this approach are dynamic causal modeling and autoregressive

modeling.

fMRI and EEG modalities differ in their temporal and spatial resolution as

well as the underlying physical phenomenon being measured. fMRI can reliably

provide spatial resolution on the millimeter scale, while the methods for spatial

localization of electrical activity in EEG yield far less reliability [26]. However,

EEG provides far greater temporal resolution (1-100 Hz), while fMRI requires a long

measurement cycle, resulting in sampling rates of 0.001-0.5 Hz [26]. Additionally,

fMRI and EEG measure different signatures of neuronal activation. fMRI measures

the blood oxygen level-dependent (BOLD) signal, essentially changes in magnetic

susceptibility and tissue contrast [26]. EEG measures electrical activity at the scalp.

Researchers choose the appropriate neuroimaging modality for their specific goals.

Of note, graph signal processing has been applied to fMRI data in Medaglia, et

al. [78] and Huang, et al. [55].

In either case, the observations of brain activity from fMRI and EEG comprises

discretely sampled multivariate time-series, (x[t])t. The dimension d of the vector-

valued samples x[t] ∈ Rd corresponds to either the number of sensors, sources,

or aggregated regions based on an appropriate brain atlas. Representative tasks

in which we are interested are predicting the cognitive state y ∈ Y from a com-

plete observation (x[t])t, or predicting the following observation x[T + 1] from a

partial observation (x[t])t≤T . Regardless of the task, the observations are very high-

dimensional and require statistical techniques to account for this challenge [110].

Beyond the scientific goal of understanding the function of the human brain, the
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identification of brain state via neuroimaging provides a mechanism to facilitate

integration of humans and intelligent systems [67, 112, 16, 95]

1.2 Promoting teamwork with a systems approach

In a recent paper [37], DeCostanza, et al. propose a vision for adaptive tech-

nologies which promote effective teamwork in teams of humans and intelligent

agents. By teams, we mean a collection of individuals working toward a common

goal. It is well-understood that team performance depends on more than the indi-

vidual capability of the constituent members [89, 34]. Mechanisms for dynamically

organizing effort and competencies within the team underlie effective team perfor-

mance [77, 88, 57, 27, 42, 87, 65]. Premised on this, DeCostanza, et al. argue that

the science and technology exist today to design system-level approaches to target

effective teamwork processes through the use of intelligent technology, i.e. artificial

intelligence.

We can conceptualize this vision in a dynamical systems model. We con-

sider the instantaneous team state x[t] ∈ Rd1 . The team state can represent dy-

namic properties of the team such as affect, effective communication, or shared

understanding, which evolve as a function of context, history, and goals. As these

states are not directly observable, our measurements of these states are filtered

y[t] = g(x[t]) ∈ Rd2 , where g : Rd1 → Rd2 is a possibly nonlinear measurement oper-

ator. Adaptive technologies then serve as a control input to the dynamical system,

i.e. we can design inputs u[t] ∈ Rd3 . This yields the following dynamical system
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model [18]:

x[t+ 1] = f (x[t], . . . ,x[0],u[t], . . . ,u[0]) + ns[t]

y[t] = g(x[t]) + no[t]

(1.1)

where f maps sequences of states and control inputs to a future state. Here, ns[t] ∈

Rd1 and no[t] ∈ Rd2 are additive noise in the state and observation respectively. We

can consider a linearization of this model, i.e. A = ∇x[t]f and B = ∇u[t]f , which

yields the following simplified state-space equation model:

x[t+ 1] = Ax[t] + Bu[t] + ns[t]

y[t] = g(x[t]) + no[t].

(1.2)

The proposed dynamical system model illuminates the scientific and technical

challenges to realizing the vision of DeCostanza, et al. . We must understand how

states evolve A : Rd1 → Rd1 , how control inputs manifest in the team state B :

Rd2 → Rd1 , and how to infer states from observations g−1 : Rd3 → Rd1 . This invites

a host of modeling and inference problems for multivariate time-series, e.g. :

(1) Given state sequences (x[t])t≤T , predict x[T + 1];

(2) Given observations (y[t])t, infer states (x[t])t; and

(3) Given observations (y[t])t, design controls (u[t])t.

As in Sec. 1.1, teams may exhibit both functional segregation and integration

in the performance of tasks. Implicit in the dynamical system model is the emergence

of team states from individual states. This phenomena is perhaps most clear when

we consider the observation function g : Rd1 → Rd3 and the control input function
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B : Rd2 → Rd1 . DeCostanza, et al. propose wearable sensors as a viable technology

for the non-obtrusive, continuous monitoring of teams [37]. This implies that d3

scales with the size of the team. We can monitor and infer individual states, and use

individual states to in turn predict team states. Similarly, candidate control inputs

are envisioned at the individual team member level to facilitate personalization.

This implies that d2 also scales with the size of the team. Again, we can attempt to

manipulate individual state in a deliberate way, and in turn shape the team state.

Hence, we must understand the relationship between structures within the team to

bridge the gap between individual states and emergent team states. Like functional

connectivity in the brain, these structures can be modeled via graphical methods

[60].
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Chapter 2: Background

2.1 Mathematical preliminaries

We attempt to recount in this chapter the necessary mathematical background

for the remainder of the chapters. We assume a basic understanding of analysis [101,

23], random variables [30, 52], and linear algebra [106, 48]. In the following, we will

refresh some useful definitions and results specific to this work and quickly relate

them to multivariate time-series. In any measure-theoretic statement, the measure

is assumed to be the Lebesgue measure.

Definition 1. A Banach space X is a complete, normed vector space, (X , ‖·‖X ).

Definition 2. A Hilbert space H is a Banach space for which the norm arises from

an inner product, 〈·, ·〉H, i.e. for any h ∈ H,

‖h‖H =
√
〈h, h〉H. (2.1)

We will be primarily concerned with the following vector-valued sequence

space,

`2
(
Z;Cd

)
=

{
f : Z→ Cd :

∑
t∈Z

‖f [t]‖2 <∞

}
, (2.2)

where the vector norm is the usual Euclidean norm on Cd. As the Euclidean norm

on Cd arises from an inner product, `2
(
Z;Cd

)
is a Hilbert space with inner product
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for any x = (x[t])t∈Z ,y = (y[t])t∈Z ∈ `2
(
Z;Cd

)
,

〈x,y〉 =
∑
t∈Z

〈x[t],y[t]〉 . (2.3)

We will also use various vector-valued measurable spaces,

Lp
(
[0, 1];Cd

)
=

{
f : [0, 1]→ Cd :

∫ 1

0

‖f(ω)‖p dω <∞
}
, (2.4)

where 1 ≤ p ≤ ∞ and again the norm arises from the Euclidean norm on Cd.

Definition 3. The Fourier transform on `2
(
Z;Cd

)
is defined for any x ∈ `2

(
Z;Cd

)
by the map

x 7→
∑
t∈Z

e2πiωtx[t]. (2.5)

Definition 4. The Fourier transform on L2
(
[0, 1];Cd

)
is defined for any x ∈

L2
(
[0, 1];Cd

)
by the map

x 7→
(∫ 1

0

e−2πiωtx(ω)dω

)
t∈Z

. (2.6)

Remark. The Fourier transform from `2
(
Z;Cd

)
→ L2

(
[0, 1];Cd

)
is bijective and

unitary.

We will use the following notation to denote the respective Fourier transforms:

x̂(ω) =
∑

t∈Z e
2πiωtx[t] and x̌[t] =

∫ 1

0
e−2πiωtx(ω)dω.

We use the following definition of a random variable.

Definition 5. Given a probability space (Ω,F ,P), a random variable is a function

X : Ω→ R with the property that {ω ∈ Ω : X(ω) ≤ x} ∈ F for each x ∈ R.

This definition can be extended to random variables which take values in a

Banach space X . Now, we briefly introduce matrix norms and review the spectral

theory of finite-dimensional linear operators.
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Definition 6. The p→ q-norm of a matrix A ∈ Cm×n is

‖A‖p→q := sup
x∈Cn

‖Ax‖q
‖x‖p

. (2.7)

The usual spectral norm corresponds to the 2→ 2-norm. We omit the explicit

notation 2→ 2 when it is clear from context. We also make use of mixed norms.

Definition 7. The p, q-norm of a matrix A ∈ Cm×n is

‖A‖p,q :=

 n∑
i=1

(
m∑
j=1

|Aj,i|p
)q/p

1/q

. (2.8)

The Frobenius norm corresponds to the 2, 2-norm, and we use the following

notation: ‖·‖F = ‖·‖2,2.

Definition 8. A ∈ Rn×m satisfies a s-restricted eigenvalue condition if

κs := min
J⊂{1,...,m}
|J |≤s

min
h6=0∈Rm

‖hJC‖
1
≤3‖hJ‖1

‖Ah‖2√
n ‖hJ‖2

> 0. (2.9)

We make repeated use of the following result:

Theorem 2.1 (Jordan spectral representation). Let A ∈ B
(
Cd
)
. Then, there exists

m ≤ d distinct eigenvalues (λk ∈ C)k=1,...,m, projections
(
Pk ∈ B

(
Cd
))
k=1,...,m

, and

nilpotents
(
Nk ∈ B

(
Cd
))
k=1,...,m

such that

A =
m∑
k=1

λkPk + Nk (2.10)

with the following properties:

1. PjPk = PkPj = δj,kPk;

2. PkNkPk = Nk;
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3. (Nk)
d = 0; and

4.
∑m

k=1 Pk = I.

Properties 1–4 of Theorem 2.1 imply additionally that

PkNk = NkPk = Nk (2.11)

and

PjNk = NkPj = δj,kNk. (2.12)

For a proof of Thm. 2.1, see e.g. Kato [59].

2.2 Operator Theory

In this section, we provide a brief introduction to operator theory [86, 100].

Then, we introduce the primary two operator theory results that we will use through-

out Chapter 3: the spectral theorem for Laurent operators and the holomorphic

functional calculus. We begin with basic definitions.

Definition 9. A bounded linear operator A : X → Y between two Banach spaces

is a linear map for which the operator norm,

‖A‖B(X ,Y) = sup
x∈X

‖Ax‖Y
‖x‖X

, (2.13)

is finite.

Clearly, the operator norm generalizes the p→ q-norm of Sec. 2.1. The set of

bounded linear operators, B (X ,Y), is itself a Banach space, and B (X ) = B (X ,X )
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is a Banach algebra with identity. The following results relate to B (X ) for any

Banach space X .

Definition 10. The spectrum of a bounded linear operator A ∈ B (X ) comprises

all elements λ ∈ C for which (A− λI)−1 /∈ B (X ), and it is denoted Λ (A).

The spectrum again generalizes its finite-dimensional counterpart, eigenvalues,

i.e. λ ∈ C such that (λI−A) /∈ B
(
Cd
)

for A ∈ B
(
Cd
)
.

Definition 11. The resolvent set of a bounded linear operator A ∈ B (X ) is the

complement of the spectrum, C \ Λ (A).

Definition 12. The resolvent of a bounded linear operator A ∈ B (X ) is the

operator-valued function, RA : C \ Λ (A)→ B (X ),

z 7→ (A− λI)−1 . (2.14)

Remark. The spectrum of a bounded linear operator on a Banach space is nonempty,

closed, and bounded [35].

Now, we recall a definition from complex analysis.

Definition 13. A complex-valued function f : U → C defined on an open set

U ⊂ C is said to be holomorphic if it has a well-defined derivative at each point in

U .

We can also characterize a holomorphic function f : U → C as having a

convergent power series on an open disc with a positive radius, i.e. for every z0 ∈ U ,

we can write f(z) =
∑∞

n=0 cn(z − z0)n for some (cn)n≥0 and |z − z0| < r, r > 0.
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Theorem 2.2 (Holomorphic functional calculus). For a Banach space X , let S ∈

B (X ), U ⊂ C be an open set such that Λ (S) ⊂ U , φ : U → C be holomor-

phic, and Γ ⊂ int (U) be a closed curve enclosing Λ (S). Then, we define φ(S) ∈

B
(
`2
(
Z;Cd

))
,

φ(S) :=
1

2πi

∮
Γ

φ(z)RS (z) dz. (2.15)

Moreover, Λ (φ(S)) = {φ(λ) : λ ∈ Λ (S)}, φ 7→ φ(S) is a continuous map from

supγ∈Γ |φ(γ)| to ‖·‖B(X ), and if ψ : C → C is holomorphic on U , then φ(S)ψ(S) =

(φ · ψ)(S).

For a proof of Thm. 2.2, see e.g. Davies [35] or Simon [100]. We note the

considerable enhancement of holomorphic functional calculus over the polynomial

calculus. The holomorphic functional calculus includes all polynomials. In addition,

we can consider functions which have poles outside of U . Even more powerful,

if Λ (S) can be separated, then we can define functions which manifest different

behavior on the restriction to each separable component of the spectrum. This

allows us to define projections onto connected components of the spectrum, and we

use this property in Sec. 3.4 to define bandpass filters.

We can combine Thm. 2.1 with Thm. 2.2 for the following useful result. For

A ∈ B
(
Cd
)

with Jordan spectral representation,

A =
d′∑
i=1

λiPi + Ni,

where d′ ≤ d, we can define an open set U ⊂ C such that Λ (A) ⊂ U and a

holomorphic function φ : U → C. Then, the holomorphic functional calculus has

14



the following spectral representation:

φ(A) =
d′∑
i=1

φ(λi)Pi + φ′(λi)Ni. (2.16)

We will use Laurent operators extensively in Chapter 3, and we define them

here.

Definition 14. A bounded operator A ∈ B
(
`2
(
Z;Cd

))
is said to be Laurent if

there exists a matrix symbol (K[t])t∈Z such that for every x ∈ `2
(
Z;Cd

)
,

(Ax) [t] =
∑
s∈Z

K[t− s]x[s]. (2.17)

The following spectral theorem for Laurent operators characterizes the admis-

sible matrix symbols and spectrum of Laurent operators.

Theorem 2.3 (Spectral theorem for Laurent operators). Let A ∈ B
(
`2
(
Z;Cd

))
be

Laurent with matrix symbol (K[t])t∈Z satisfying
∑

t∈Z ‖K[t]‖ <∞. Then, for every

x ∈ `2
(
Z;Cd

)
, ∑

t∈Z

e2πiωt (Ax) [t] = Â(ω) · x̂(ω), (2.18)

where

Â(ω) =
∑
t∈Z

e2πiωtK[t]. (2.19)

Additionally, Λ (A) = ∪ω∈[0,1]Λ
(
Â(ω)

)
and

‖A‖ = max
ω∈[0,1]

σmax

(
Â(ω)

)
. (2.20)

For a proof of Thm. 2.3, see e.g. [21].
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2.3 Matrix concentration inequalities

Scalar and vector concentration inequalities play an important role in learning

theory and applied probability. Matrix concentration inequalities attempt to gen-

eralize the scalar counterparts for non-commutative algebras such as matrices. We

briefly review two methods for concentrating the eigenvalues or singular values of a

random matrix. One approach builds from the matrix Laplace transform method [6,

79]. The other approach leverages scalar concentration inequalities together with

covering arguments, e.g. Vershynin [111]. We make extensive use of both in the

technical arguments of Chapter 4.

2.3.1 Matrix Laplace transform methods

We follow the exposition of Tropp [108], in which proofs for all of the following

results can be found.

Theorem 2.4 (Matrix Laplace transform method). Let Y ∈ B
(
Cd
)

be a random

self-adjoint matrix. Then, for all t ∈ R,

P ({λmax (Y) ≥ t}) ≤ inf
θ>0

e−θ·t · Etr exp (θY) . (2.21)

This yields a bound for the largest eigenvalue of a random matrix in terms

of the expectation of the matrix moment generating function. Extending this re-

sult to sums of random matrices proves impossible since the matrix exponential
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does not commute in general. However, the matrix cumulant generating function is

subadditive, and this yields the so-called master tail bound.

Theorem 2.5 (Master tail bound, Tropp [108], Theorem 3.6). Consider a finite

sequence of independent, random, self-adjoint matrices (Xk)k. For all t ∈ R,

P

({
λmax

(∑
k

Xk

)
≥ t

})
≤ inf

θ>0
e−θ·t · tr exp

(∑
k

logEeθXk

)
. (2.22)

We do not use the master tail bound directly. We instead use a corollary, the

matrix Chernoff inequality.

Corollary 2.5.1 (Matrix Chernoff, Tropp [108], Corollary 5.2). Consider a finite

sequence of independent, random, self-adjoint d-dimensional matrices (Xk)k=1,...,N

that satisfy Xk � 0 and λmax (Xk) ≤ R almost surely. Define

µmin := λmin

(
N∑
k=1

EXk

)
and µmax := λmax

(
N∑
k=1

EXk

)
.

Then, for δ ∈ [0, 1],

P

({
λmin

(
N∑
k=1

Xk

)
≤ (1− δ)µmin

})
≤ d ·

[
e−δ

(1− δ)1−δ

]µmin/R

, (2.23)

and for δ > 0,

P

({
λmax

(
N∑
k=1

Xk

)
≥ (1 + δ)µmax

})
≤ d ·

[
eδ

(1 + δ)1+δ

]µmax/R

. (2.24)

The matrix Chernoff inequality provides lower bounds on the smallest eigen-

value of a sum of random bounded matrices. This result will help us prove that a

particular operator is full-rank with high probability in Chapter 4.
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2.3.2 Covering argument methods

Covering argument methods have become the go-to method for bounding the

singular values of random matrices for compressive sensing and machine learning

applications. We follow the exposition of Vershynin [111], specifically that of random

matrices with independent rows. The main result is given below.

Theorem 2.6 (Sub-Gaussian rows). Let A ∈ RN×n be a random matrix whose

rows are independent sub-Gaussian isotropic random vectors in Rn. Then, for every

t ≥ 0, with probability at least 1− 2e−ct
2
, one has

√
N − C

√
n− t ≤ σmin (A) ≤ σmax (A) ≤

√
N + C

√
n+ t, (2.25)

where C and c depend only on the maximum sub-Gaussian norm of any row of A.

We do not use this result explicitly, but rather follow the structure of its proof.

First, we convert the problem to bounding A∗A − EA∗A. Then, we introduce a

covering of the unit sphere, {x ∈ Rn : ‖x‖ = 1}. For every x in the net, we concen-

trate |〈x, (A∗A− EA∗A) x〉| using scalar concentration inequalities. Then, we take

a union bound over all x in the net. The following lemmas are useful.

Lemma 2.7. An ε-covering of the unit sphere in Rn has cardinality less than or

equal to (1 + 2/ε)n.

Lemma 2.8. Let A ∈ Rn×n be a symmetric matrix and consider an ε-covering of

the unit sphere in Rn. Then,

‖A‖ ≤ (1− 2ε)−1 max
x∈Nε

|〈x,Ax〉| . (2.26)
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Lastly, we make use of the Hanson-Wright inequality for a concentration ar-

gument in Chapter 4. We use the result of Rudelson and Vershynin [85].

Theorem 2.9 (Hanson-Wright inequality). Let Z ∈ Rn be a random vector with

independent, centered components, and sub-Gaussian norm K. Let A ∈ Rn×n.

Then, for every t ≥ 0,

P ({|Z∗AZ − EZ∗AZ| > t}) ≤ 2 exp

(
−cmin

(
t2

K4 ‖A‖2
F

,
t

K2 ‖A‖

))
, (2.27)

where c is a global constant.

2.4 Graph signal processing

2.4.1 Graph Theory

In this section, we recount now classical results in spectral graph theory [33,

103].

Let G = (V , E) be a graph with nodes V = {1, . . . , d} such that d = |V| < ∞

and E ⊆ V × V . A weight function assigns a relationship between any two nodes

with an edge connecting them w : E → R. The function, w, defines the en-

tries of the adjacency, or weighted adjacency matrix, S ([S]j,k = w(j, k)). If

w is symmetric (i.e. w(j, k) = w(k, j)), then the graph is undirected, otherwise

it is directed. The degree of each node,
∑

j∈V w(i, j), and the degree matrix,

D = diag
(∑

j∈V w(1, j), . . . ,
∑

j∈V w(d, j)
)

, follow from the definition of S. The

Laplacian of G is L = D − S. If the weight matrix is undirected, then the Lapla-

cian is symmetric and non-negative. Other matrices of interest are the normalized
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Figure 2.1: Example graph with five nodes. Here, the presence of an edge is depicted

with an arrow. The graph has both directed and undirected edges. For example,

edge E2,3 is undirected, and edge E2,5 is directed.

Laplacian, Ln = D−1/2LD−1/2, and the random walk Laplacian, Lr = D−1L.

If G is undirected and connected, i.e. all nodes have at least one edge, then

the minimum eigenvalue of L is 0 with multiplicity one, and it coincides with an

eigenvector of d−1/21. The second smallest eigenvalue is often known as the algebraic

connectivity, or Fiedler value, and coincides with the Fiedler vector. The Fiedler

vector can be used to solve minimum graph cut and other partitioning problems [98].

More generally, the eigenvectors of L, L = UΛU∗ with U∗U = UU∗ = I, can be

used for dimensionality reduction and manifold learning as in Laplacian eigenmaps

[11].

Another interesting feature of the Laplacian of a graph G is that it can be used

to impart physical intuition for the eigenvectors and eigenvalues. For any x ∈ Rd,

we define an energy functional based on the weight function w:

E (x) =
∑

(i,j)∈E

wi,jxixj = 〈x,Lx〉 . (2.28)

The variational characterization of the eigenvalues and eigenvectors of L coincides
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with the energy function E. That is, the eigenvectors of L are the unique orthonor-

mal set that minimize E, and the eigenvectors are the associated energy.

2.4.2 Graph Signals

We begin with a definition of graph signals. We attempt to present a version

agnostic to the directedness of the graph.

Definition 15. Let G = (V , E) be a graph. A function taking values on V , x : V →

C, is called a graph signal.

Graph signals are functions which have a domain with a topology given by a

graph. That is, the discrete domain admits possibly nontrivial spatial relationships.

We can contrast this with a finite sequence space such as `2 (Z/dZ), in which any

two elements of the domain are related only by their distance apart on the number

line. Graph signals on the other hand inherit a nontrivial spatial relationships from

the edges of the graph, E . The weight function, w : E → R, defines a metric on the

set V , and in turn, induces a topology.

We can define a function space for graph signals.

Definition 16. Let G = (V , E) be a graph and x : V → C, a graph signal. The

p-space of graph signals is given by

`p (V)

{
x : V → C :

∑
i∈V

|xi|p <∞

}

for any 1 ≤ p ≤ ∞.

As the underlying set is finite, the p-space of graph signals can be defined

21



equivalently with respect to any sequence p-norm. That is to say that, graph signals

must take finite values on all nodes V .

Remark. For a graph G = (V , E) with |V| = d, the p-space of graph signals is

isomorphic to
(
Cd, ‖·‖p

)
for any 1 ≤ p ≤ ∞.

Due to the equivalence between graph signals and a finite-dimensional vector,

we will primarily identify graph signals with their vector-valued counterparts. Sim-

ilarly, we can think of weight functions, w : E → R, as defining bounded operators

on Cd, i.e. d× d matrices.

From this point forward, we will prefer to discuss general graph operators

S ∈ B
(
Cd
)
, where d = |V|. This is to allow us to speak about the adjacency

matrix, weighted adjacency matrix, graph Laplacian, random walk Laplacian, and

normalized Laplacian. When results or claims do not generalize to all, we will

specify to which they do. The most important difference between the various graph

operators stems from directedness and the symmetry that either does or does not

follow from it. The various Laplacians yield symmetric operators on Cd. In general,

an adjacency matrix may or may not be defined to be symmetric.

2.4.3 Graph Fourier analysis

Fourier analysis provides a fundamental building block in classical signal pro-

cessing, and we can generalize this analysis for graphs with self-adjoint graph op-

erators. Other authors have proposed generalizations of graph Fourier analysis for

non-self-adjoint graph operators, e.g. [92, 97], but here we present only the graph
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Fourier analysis developed in Shuman, et al. [99]. We begin with a definition of a

graph Fourier transform by analogy.

Definition 17. Let G = (V , E) be a graph with associated self-adjoint graph oper-

ator S ∈ B
(
Cd
)
. Let S have eigendecomposition S =

∑d
i=1 λiuiu

∗
i . Then, for any

x ∈ Cd, we define the graph Fourier transform by the map

x 7→ (〈x,ui〉)i=1,...,d . (2.29)

Accordingly, we define the inverse graph Fourier transform by the map

(x̆i)i=1,...,d 7→
d∑
i=1

x̆iui. (2.30)

The graph Fourier transform expands a signal in the invariant subspaces of

a graph operator S ∈ B
(
Cd
)
. Since S is positive semi-definite, there exists an or-

thonormal set of eigenvectors (ui)i=1,...,d that define the invariant subspaces. More-

over, the eigenvalues of S, (λi)i=1,...,d are real so that they have a natural ordering:

λ1 ≤ · · · ≤ λd. We can use this ordering to impart a notion of frequency to the

graph spectral domain, i.e. the image of the graph Fourier transform. The smallest

eigenvalues of S correspond to “low frequency” eigenvectors. Then, the spectral

representation of a graph signal, x ∈ Cd, (〈x,ui〉)i=1,...,d decomposes a signal into

components of increasing frequency. Graph signals with primarily “low frequency”

spectral representations correspond to smooth, or regular, behaviors on the graph,

whereas graph signals with primarily “high frequency” spectral representations cor-

respond to nonsmooth, or irregular, behaviors.
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2.4.4 Filtering graph signals

We can apply linear filters to graph signals as in classical signal processing [90,

99, 58, 96]. Here, we want to apply a linear transformation Cd → Cd that amplifies

or attenuates desired properties of the graph signal. We will use the intuition from

Sec. 2.4.3 to construct and interpret linear filters on graph signals.

In general, any bounded linear operator on Cd defines a linear filter. However,

we restrict our attention to shift-invariant linear filters.

Definition 18. Let G = (V , E) be a graph with graph operator S ∈ B
(
Cd
)
. A

linear operator A ∈ B
(
Cd
)

is shift-invariant if for all x ∈ Cd, ASx = SAx.

Note that we consider both self-adjoint and non-self-adjoint graph operators

as opposed to Sec. 2.4.3, in which we only considered self-adjoint graph opera-

tors. This definition is inspired by linear time-invariant filters from classical signal

processing. Time-invariant linear filters can be considered as commuting with the

time-advancement operator. That is, let x ∈ `2 (Z/dZ) be a time-series signal and

(Tx)[t] = x[(t − 1) mod d]. Then, a linear filter A ∈ B (`2 (Z)) is time-invariant if

A(Tx)[t] = (TAx)[t] = Ax[(t− 1) mod d].

Remark. The discrete time-advancement operator T : `2 (Z/dZ) has a matrix rep-
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resentation as a cyclic matrix:

T =



1

1

. . .

1


.

In this way, the property of time-invariance can be understood as commuting with

T.1 This makes more clear the motivation for shift-invariance to general graph

operators. The cyclic operator T defines a very simple graph structure, whereas

graph filtering accommodates arbitrary graph operators.

Following Def. 18, we can characterize shift-invariant linear filters with the

following theorem of Sandryhaila and Moura [90]:

Theorem 2.10 (Theorem 1, Sandryhaila and Moura). Let G = (V , E) be a graph

with graph operator S ∈ B
(
Cd
)
. Assume that the characteristic and minimal poly-

nomials of S are equal. Then, a graph filter A ∈ B
(
Cd
)

is shift-invariant if and

only if there exists a d-order polynomial h : C→ C over the complex field such that

A = h(S).

This result together with the spectral theorem for finite dimensional linear

operators will help us understand filters from a spectral analysis. Polynomials on

matrices act on the eigenvalues of the matrices, and so for S =
∑d

i=1 λiuiv
∗
i and a

polynomial h : C→ C, we can understand the action of A = h(S) on a graph signal

1This observation was made in Sandryhaila and Moura [90].
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x ∈ Cd as

Ax =
d∑
i=1

h(λi) 〈x,vi〉ui. (2.31)

From the definition of the graph Fourier transform (Def. 17), we can understand

(h(λi))i=1,...,d as the transfer function of A as it acts multiplicatively on the spectral

representation of x, (〈x,vi〉)i=1,...,d.

2.5 Autoregressive processes

In this section, we review some relevant results concerning autoregressive pro-

cesses. In Chapters 3 and 4, we consider the matrix symbol associated with an

autoregressive process as the graph operator for an extended graph. We will make

these concepts clear in Sec. 3.1. Here, we consider autoregressive processes in the

abstract. For further reading on autoregressive processes, see e.g. Lütkepohl [73]

and Priestley [83].

An autoregressive process x = (x[t])t∈Z is a random process generated by the

recurrence relation:

x[t] = K[1]x[t− 1] + · · ·+ K[m]x[t−m] + n[t], (2.32)

where, m ∈ N is known as the model order and n = (n[t])t∈Z is a Gaussian process

known as the innovation.2 If x[t] ∈ Rd, then K[s] ∈ B
(
Rd
)

for all s = 1, . . . ,m.

2There are some technical considerations for defining a valid Gaussian measure on `2
(
Z;Rd

)
which exclude a true iid noise process. Some extension to this end include abstract Wiener spaces—

pioneered by Wiener himself—but we gloss over this nuance and assume that the covariance of

the noise process is bounded in Hilbert-Schmidt norm, decaying to zero safely far from where our

analysis takes place. For further reading, see Bogachev [14].
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Note that (K[s])s∈Z where K[s] = 0 for all s 6= 1, . . . ,m defines a Laurent operator.

Let A ∈ `2
(
Z;Rd

)
be the Laurent operator induced by the matrix symbol

(K[s])s∈Z. Then, (2.32) is given in moving average representation by

x[t] =
(
(I−A)−1 n

)
[t], (2.33)

and the autoregressive process of (2.32) is then centered Gaussian with covariance

function Q : `2
(
Z;Rd

)∗ × `2
(
Z;Rd

)∗ → C,

{u,v} 7→
〈
u, (I−A)−1 Σ (I−A)−∗ v

〉
`2(Z;Rd) , (2.34)

where Σ : `2
(
Z;Rd

)∗ × `2
(
Z;Rd

)∗ → C is the covariance function of the Gaussian

process n. The matrix symbol of Q, R = (R[t])t∈Z where R[r − s] = Extx
∗
t−(r−s),

is known as the autocovariance function. It is a Laurent operator which admits a

spectral representation known as the spectral density function [83],

R̂(ω) :=
∑
t∈Z

e2πiωtRt =
(
I− Â(ω)

)−1

· Σ(ω) ·
(
I− Â(ω

)−∗
. (2.35)

2.5.1 Analytical results

We review some terminology and associated results about autoregressive pro-

cesses.

Definition 19. A Laurent operator is called causal (respectively strictly causal) if

the symbol a = (a[s])s∈Z has support on N ∪ {0} (respectively N \ {0}).

Definition 20. An autoregressive process is called stable if the spectral radius of

the corresponding Laurent operator is strictly less than 1, i.e. spr (A) < 1.
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Remark. An autoregressive process is causal by construction. The stability criterion

can be understood from the moving average form (2.33). Note that (I−A)−1 =

φ (A) for φ(z) = (1−z)−1, a holomorphic function on the open unit disk. Therefore,

if spr (A) < 1, φ (A) is well-defined and bounded. That is, stability is a sufficient

condition for ‖x‖ <∞, i.e. that noise is not catastrophically amplified in the signal.

A sufficient condition is given by ‖A‖ < 1,

‖x‖ =
∥∥(I−A)−1 n

∥∥
≤
∥∥(I−A)−1

∥∥ · ‖n‖
=

1

σmin ((I−A))
· ‖n‖

≤ 1

1− ‖A‖
· ‖n‖ .

Theorem 2.11. Let A ∈ B
(
`2
(
Z;Rd

))
be a Laurent operator with matrix symbol

(K[t])t∈Z. Let x = (x[t])t∈Z be an autogregressive process defined by a Gaussian

noise process n = (n[t])t∈Z and (K[t])t∈Z. Then, the spectrum of the autocovariance

function is a subset of an annulus,

Λ (R) ⊂
{
z ∈ C :

λmin (Σ)

(1 + ‖A‖)2 ≤ |z| ≤
λmax (Σ)

(1− ‖A‖)2

}
. (2.36)

Proof. The covariance function Q of x is self-adjoint, which allows us to introduce

the first set of inequalities. For all v ∈ `2
(
Z;Rd

)
,

λmin (Σ) ·
∥∥(I−A)−∗ v

∥∥2 ≤
〈
(I−A)−∗ v,Σ (I−A)−∗ v

〉
≤ λmax (Σ) ·

∥∥(I−A)−∗ v
∥∥2
.
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Now, we can further bound the inequalities in terms of the norm of A,

∥∥(I−A)−∗ v
∥∥ ≤ 1

σmin ((I−A)∗)
· ‖v‖ ≤ 1

1− ‖A∗‖
· ‖v‖ =

1

1− ‖A‖
· ‖v‖ .

For a lower bound,

∥∥(I−A)−∗ v
∥∥ ≥ σmin

(
(I−A)−∗

)
· ‖v‖

=
1

‖I−A∗‖
· ‖v‖

≥ 1

1 + ‖A∗‖
· ‖v‖

≥ 1

1 + ‖A‖
· ‖v‖ .

2.5.2 Parameter estimation

We derive a simple maximum likelihood estimator (MLE) as a method to fit

autoregressive models to data.3 Maximum a posteriori (MAP) estimators can be

derived by assuming prior beliefs on the distribution of matrix symbols, or graph

operators.

Suppose that we observe a finite length subset (x[t])t=1,...,T+m, generated by Eq.

(2.32). We we want to find (K[s])s=1,...,m. Since x∗[t] =
∑m

s=1 x
∗[t− s]K∗[s] + n∗[t],

3The proposed estimator is more appropriately a quasi-MLE, as we make implicit assumptions

about the initial observations for analytical expediency.
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we can express the observed data in the following matrix-vector form:


x∗[1 +m]

...

x∗[T +m]


︸ ︷︷ ︸

Y∈RT×d

=



x∗[m] · · · x∗[1]

. . .
...

... x∗[m]

. . .

x∗[T ]
...

...
. . .

x∗[T +m− 1] · · · x∗[T ]


︸ ︷︷ ︸

X∈RT×(d·m)


K∗[1]

...

K∗[m]


︸ ︷︷ ︸
A∈R(d·m)×d

+


n∗[1 +m]

...

n∗[T +m]


︸ ︷︷ ︸

N∈RT×d

. (2.37)

In this set-up, we can minimize the mean squared error,

arg min
A∈R(d·m)×d

‖Y −XA‖2
F , (2.38)

with the ordinary least squares estimator:

A = (X∗X)−1 X∗Y. (2.39)

This estimator coincides with the MLE for which we use the conditional distri-

bution of Xt|Xt−1, · · · ,Xt−m for t = m + 1, . . . , T + m and assume a uniform

prior over X1, . . . ,Xm. We also note that this gives us a column-wise estimator:

Ai =
(

1
T
X∗X

)−1
X∗Yi for i = 1, . . . , d.

2.6 Dictionary learning

Dictionary learning has a rich history in signal processing [80, 44, 4, 74, 113].

At its core is a generative model for observed signals, (yi)i=1,...,N ,

yi =
r∑
j=1

cj,idj, (2.40)
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where yi,dj ∈ Rd and cj,i ∈ R for all i = 1, . . . , N and j = 1, . . . , r. That is, yi

is a linear expansion in terms of a “dictionary” of vectors (dj)j=1,...,r. Importantly,

it is assumed that yi admits a sparse expansion, i.e. for all i = 1, . . . , N , very few

coefficients (cj,i)j=1,...,r are nonzero. Let s = |{cj,i 6= 0 : j = 1, . . . , r}|, then very few

means s� r. This sparsity condition lends it the alternative name “sparse coding.”

Dictionary learning is cast as the complement to basis pursuit [31]: if the “right”

dictionary is not given, how do we learn it from observations?

This introduces the computational challenge of the dictionary learning prob-

lem. We observe only (yi)i=1,...,N , and we want to simultaneously learn the dictionary

(dj)j=1,...,r and coefficients of the expansion (cj,i)i=1,...,N,j=1,...,r. Minimizing the mean

squared error of the expansion yields the following optimization problem:

arg min
D∈Rd×r,C∈Rr×N

‖Y −DC‖2
F . (2.41)

Here, we have aligned the observations Y = [y1 · · ·yN ], coefficients Ci,j = cj,i, and

dictionary atoms D = [d1 · · ·dr] into matrices. This is a bi-convex problem in C and

D. It has no unique global minimizer. In fact, any solution C?,D? is only unique

up to any unitary transformation U, UC?,D?U∗. To this point, we have not used

the sparsity condition, which we can impose with a sparsity-inducing penalty, e.g.

arg min
D∈Rd×r,C∈Rr×N

‖Y −DC‖2
F + µ ‖C‖1,1 . (2.42)

If we further fix ‖dj‖ = 1 for all j = 1, . . . , r, then we can remove all but the sign

and permutation ambiguity of a candidate solution. However, we have introduced

a nonconvex feasible set along with the nonconvex objective.
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Due to this sign and permutation ambiguity, we define the following pseudo-

metric.

Definition 21. The dictionary metric for any dictionaries D1,D2 ∈ Rd×r is given

by

d(D1,D2) := min
P∈Π,Z∈diag(±1)

‖D1 −D2PZ‖F , (2.43)

where, Π is the set of all r-dimensional permutation matrices, and diag (±1) is the

set of all r-dimensional diagonal matrices with entries ±1.

For shorthand, we will at times use d(D1,D2) = ‖D1 −D2P‖F , where P is

taken to be the signed permutation matrix that minimizes the norm.

Following the publication and empirical success of the K-SVD algorithm of

Aharon, et al. for solving the dictionary learning problem [4], it took six years

for publication of the first provably convergent dictionary learning algorithm in

Spielman, et al. [104]. However, this result only worked for D nonsingular (r = n).

Soon afterward, these results were extended to the overcomplete setting (r > n)

in Arora, et al. [9] and Agarwal, et al. [2, 1]. All of these approaches follow a

similar two-stage approach. The first stage estimates an initial dictionary D, and

the second stage refines that estimate by alternately estimating the coefficients C

and dictionary D.

In the first stage, we build a graph G with vertices corresponding to the ob-

servations, i.e. |V| = N . Then, add edges based on the cross-correlation of the
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observations,

Ei,j =


1 |〈yi,yj〉| > τ

0 o.w.

, (2.44)

where τ > 0 is a threshold depending on the generative model for X. Given G, then

we can use an overlapping clustering algorithm in which we identify clusters which

all share a single common atom. For example, if cj,i 6= 0 for i = 1, 2, 3 and some

j = 1, . . . , r, then y1,y2,y3 should belong to a common cluster. From here, we can

estimate the dictionary atom common to all cluster members using e.g. principal

component analysis.

In the second stage, we iteratively refine the dictionary estimate and update

the coefficient estimate. To update the coefficient estimate, we can fix D and solve

Eq. (2.42) for C. Then, we can fix C with this updated estimate and solve Eq.

(2.42) for D. This is rightly interpreted as an expectation-maximization scheme

[39]. There is considerable flexibility in how to implement each of these respective

steps. Variants of LASSO and basis pursuit, or their nonconvex corollaries can be

used for the coefficient update provided that they can yield high-probability error

bounds, e.g. [29, 40, 107]. The dictionary can be updated via least squares or a

principal component analysis-type approach as in the K-SVD algorithm [5].

We recount the following representative result from which we will begin our

analysis in Chapter 4. Let us first begin with a definition.

Definition 22. A random vector X = (X1, . . . , Xd) ∈ Rd has bounded `-wise

moments if the probability that X is nonzero in any subset S ⊂ 1, . . . , d such that
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|S| = ` is at most c`
∏

i∈S P (Xi 6= 0) for some c ∼ O (1).

Theorem 2.12 (Theorem 4 (with noise), Arora, et al. [9]). Suppose we observe the

following sequence of observations (D?ci + ni)i=1,...,N . Assume

(1) The dictionary D? ∈ Rd×r has columns of unit norm and satisfies |〈di,dj〉| <

µ/
√
d for all {i 6= j : i, j = 1, . . . , r} and some µ ∼ O (log d);

(2) ci ∈ Rr are iid random vectors with random support of size s; the nonzero

coefficients are drawn independently from a centered distribution with support

[−C, 1] ∪ [1, C] for some C ∼ O (1); the distribution of ci has bounded 3-wise

moments;

(3) s ≤ c ·min
(
r2/5,

√
d/(µ log d)

)
for some c > 0; and

(4) ni ∼iid N (0, σ2I) with σ ∼ o
(√

d
)

.

Then, if N ∼ Ω (σ2/ε2 · [(r2/s2) log r + rs2 log r + r log r log(1/ε)]), there exists a

polynomial time algorithm such that with high probability, the algorithm will return

a dictionary estimate D0 that satisfies d(D?,D0) ≤ ε.
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Chapter 3: Filtering stochastic processes on graphs

3.1 Stochastic processes on graphs

In Section 2.4.2, we defined graph signals and related them to complex vectors.

In this section, we extend scalar graph signals to time-indexed graph signals. Then,

we relate these stochastic processes on graphs to vector-valued sequences.

Before we can define time-varying graph signals, we must introduce the notion

of an extended graph. Ultimately, we want to define graph signals that are indexed

in time, and in so doing, we want to accommodate more general graph topologies.

Consider a set of nodes V on which we observe a graph signal over time t ∈ Z.

We could of course interpret this observation as different graph signals on the same

graph. Another interpretation is that we observe a single graph signal taking values

over a much larger graph. That is, the graph extends in time to support the signal.

We define an extended graph according to this latter perspective.

Definition 23. Let V be a set of nodes |V| < ∞, and let time be indexed by

Z. Then, an extended graph G is defined by a node set Z × V and edge set E ⊆

(Z× V)× (Z× V).

In the definition of the extended graph, note that we can accommodate edges
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t

t-1

t-2

t-3

Figure 3.1: Example extended graph. Nodes are indexed by both time and space.

The extended graph allows edges between any two nodes in time and space.

that span time so that nodes can interact at multiple time scales. See Fig. 3.1 for

an example.

We also introduce a notion of stationarity for extended graphs.

Definition 24. An extended graph is said to be stationary if the existence of an

edge for v1, v2 ∈ V and t1, t2 ∈ Z implies the existence of an edge for v1, v2 at

t1 +m, t2 +m for all m ∈ Z.

Stationarity of an extended graph means that the relationship of nodes is a

function of their distance apart in time and not an arbitrary function of time, similar

to stationarity in a random process. See Fig. 3.2 for an example.

Now, we define time-varying graph signals.

Definition 25. Let G = (V , E) be an extended graph with time indexed by Z.

Then, a time-varying graph signal is a function x : Z× V → C.

Remark. A random time-varying graph signal is called a stochastic process on a

graph.
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t-1

t-2

t-3

Figure 3.2: Example stationary graph. The edges present between nodes are a

function of distance in time.

As in Sec. 2.4.2, we can define an appropriate function space for time-varying

graph signals.

Definition 26. Let G = (V , E) be an extended graph with time indexed by Z and

x : Z×V → C be a time-varying graph signal. The p, q-space of time-varying graph

signals is given by

`p,q (Z;V) =

x : Z× V → C :
∑
t∈Z

(∑
i∈V

|xt,i|p
)q/p

<∞

 (3.1)

for any 1 ≤ p, q ≤ ∞.

As in the graph signal case, the p, q-space of time-varying graph signals is

isomorphic to a Euclidean space, `q
(
Z;Cd

)
. For the remainder of the chapter, we

concern ourselves with `2,2 (Z;V), which is isomorphic to `2
(
Z;Cd

)
, a Hilbert space.

We also restrict our attention to stationary extended graphs. This excludes general

time-varying graphs.

We can again understand weight functions of extended graphs w : E → C as

defining bounded linear operators on `2
(
Z;Cd

)
. We require that graph operators
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exhibit the same stationarity as the underlying extended graph. That is, if G is a

stationary graph, then only Laurent operators are admissible graph operators.

3.2 Linear, Time-invariant Filtering

In this section, we use time-invariant filtering on `2
(
Z;Cd

)
to preview our ap-

proach to filtering stochastic processes on graphs. We define an appropriate notion

of time-invariance that maintains consistency with classical linear time-invariant sig-

nal processing, characterize filters which exhibit time-invariance, and then propose

constructive approaches to realize time-invariant filters.

Let time-evolution of a discrete signal (x[t])t∈Z ∈ `2 (Z) be associated with the

time-shift operator, T ∈ B (`2 (Z)),

(Tx) [t] = x[t− 1]. (3.2)

An operator A ∈ B (`2 (Z)) is said time-invariant if for any (x[t])t∈Z ∈ `2 (Z),

(TAx) [t] = (ATx) [t]. (3.3)

The time-shift operator T is a Laurent operator with scalar symbol (δ[t+ 1])t∈Z.

We can generalize this definition to a time-shift operator defined by the matrix

symbol (δ[t+ 1]I)t∈Z, where I ∈ B
(
Cd
)
. Thus, the time-shift operator advances a

vector-valued signal (x[t])t∈Z ∈ `2
(
Z;Cd

)
, in whole, one step in time:

(Tx) [t] = x[t− 1]. (3.4)

The definition of time-invariance extends immediately, and we formalize it in the

following definition:
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Definition 27. A ∈ B
(
`2
(
Z;Cd

))
is called time-invariant if A is in the commutant

of T = 〈T〉,
{
A ∈ B

(
`2
(
Z;Cd

))
: AT = TA

}
.

Next, recalling the definition of a Laurent operator (Def. 14) we prove an

important relationship about Laurent operators and time-invariance.

Theorem 3.1. A ∈ B
(
`2
(
Z;Cd

))
is time-invariant if and only if A is Laurent.

Proof. ⇐ Let A be Laurent with matrix symbol (K[t])t∈Z. We want to show that

ATm = TmA for any m ∈ Z.

(ATmx) [t] = lim
N→∞

N∑
s=−N

K[t− s] (Tmx) [s]

= lim
N→∞

N∑
s=−N

K[t− s]x[s−m]

= lim
N→∞

N∑
s′=−N

K[t− (s′ +m)]x[s′]

= Tm

(
lim
N→∞

N∑
s′=−N

K[t− s′]x[s′]

)

= (TmAx) [t]

⇒ Let A be time-invariant. Since A ∈ B
(
`2
(
Z;Cd

))
, there exists a kernel

function K : Z× Z→ B
(
Cd
)

such that for every x ∈ `2
(
Z;Cd

)
,

(Ax) [t] =
∑
s∈Z

K[t, s]x[s].

By Def. 27, A commutes with T . Without loss of generality, choose Tm ∈ T for
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some m ∈ Z. It is necessary to show that K[t, s] = K[t+m, s+m].

(ATmx) [t+m] = (TmAx) [t+m]

lim
N→∞

N∑
s=−N

K[t+m, s] (Tmx) [s] = Tm

(
lim
N→∞

N∑
s=−N

K[t+m, s]x[s]

)

lim
N→∞

N∑
s=−N

K[t+m, s]x[s−m] = lim
N→∞

N∑
s=−N

K[t, s]x[s]

lim
N→∞

N∑
s′=−N

K[t+m, s′ +m]x[s′] = lim
N→∞

N∑
s=−N

K[t, s]x[s]

By the uniqueness of K, A is Laurent.

By Thm. 2.3, we know that Laurent operators on `2
(
Z;Cd

)
are defined by es-

sentially bounded matrix symbols,
∑

t∈Z e
2πiωtK[t] ∈ L∞

(
[0, 1];B

(
Cd
))

. We can ex-

tend these results to the further claim that linear, time-invariant filters on `2
(
Z;Cd

)
can be realized by the independent choice of d × d essentially bounded functions,{
k̂i,j ∈ L∞ ([0, 1]) : i, j = 1, . . . , d

}
.

Corollary 3.1.1. Let
{
k̂i,j ∈ L∞ ([0, 1]) : i, j = 1, . . . , d

}
define a Laurent operator

A. That is, let A have matrix symbol (K[t])t∈Z,

Ki,j[t] =

∫ 1

0

e−2πiωtki,j(ω)dω

for all i, j = 1, . . . , d. Then, A ∈ B
(
`2
(
Z;Cd

))
is time-invariant. Moreover,

‖A‖ = ess supω∈[0,1]

∥∥∥Â(ω)
∥∥∥.

Proof. Consider a fiber ω ∈ [0, 1] of Â(ω). Â(ω) ∈ Cd×d comprises d × d finite

entries. Because of the equivalence of all matrix norms in finite dimensions, Â(ω) ∈
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B
(
Cd
)
. This is simultaneously true of all fibers ω ∈ [0, 1], and by Thm. 2.3,

A ∈ B
(
`2
(
Z;Cd

))
.1

The significance of Corollary 3.1.1 is that it provides a constructive means of

designing time-invariant filters on `2
(
Z;Cd

)
. There are O (d2) degrees of freedom,

the d2 essentially bounded functions
{
k̂i,j : [0, 1]→ C

}
We can visualize the action of a time-invariant operator in the spectral do-

main and time domain. Let A ∈ `2
(
Z;Cd

)
be defined as in Corollary 3.1.1 by{

k̂i,j ∈ L∞ ([0, 1]) : i, j = 1, . . . , d
}

. Then, for any x ∈ `2
(
Z;Cd

)
,

∑
t∈Z

e2πiωt (Ax) [t] =


k̂1,1(ω) · · · k̂1,d(ω)

...
. . .

...

k̂d,1(ω) · · · k̂d,d(ω)

 ·

x̂1(ω)

...

x̂d(ω)

 . (3.5)

Here, the matrix symbol is in fact the transfer function of the filter. Likewise,

(Ax) [t]

=
∑
s∈Z


∫ 1

0
e−2πiωsk̂1,1(ω)dω · · ·

∫ 1

0
e−2πiωsk̂1,d(ω)dω

...
. . .

...∫ 1

0
e−2πiωsk̂d,1(ω)dω · · ·

∫ 1

0
e−2πiωsk̂d,d(ω)dω

 ·

x1[t− s]

...

xd[t− s]

 ,
(3.6)

where the matrix symbol is the impulse-response function of the filter.

1To be rigorous, we consider a fiber ω ∈ [0, 1]\U0, where U0 ⊂ [0, 1] is a set of Lebesque measure

zero where k̂i,j can be unbounded. Hence, the essential supremum is unaffected by the partition.
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3.3 Linear, Shift-invariant Filtering

Our ultimate objective is to leverage the graph structure in our filtering ap-

proach. Therefore, we want to define a class of filters which respect the graph

structure as Laurent operators respect time. This work follows the developments of

Bohannon, et al. [15, 19] Motivated by Def. 27, we define shift-invariance.

Definition 28. A ∈ B
(
`2
(
Z;Cd

))
is called shift-invariant to an extended graph G

with an associated graph operator S ∈ B
(
`2
(
Z;Cd

))
if A is in the commutant of

S = 〈S〉, {
A ∈ B

(
`2
(
Z;Cd

))
: AS = SA

}
.

This definition leads to our first characterization of shift-invariant filters, which

specializes a more general result about commuting operators. Recall that stationary

graphs admit only Laurent graph operators so that if G is stationary, then S ∈

B
(
`2
(
Z;Cd

))
must be Laurent by Def. 28.

Theorem 3.2. Let G be a stationary extended graph with associated Laurent graph

operator S ∈ B
(
`2
(
Z;Cd

))
, and consider a Laurent operator A ∈ B

(
`2
(
Z;Cd

))
.

Suppose S and A admit Jordan spectral representations given pointwise for ω ∈ [0, 1]

by

Ŝ(ω) =

m(ω)∑
k=1

λk(ω)Pk(ω) + Nk(ω) (3.7)

and

Â(ω) =

p(ω)∑
j=1

νj(ω)Qj(ω) + Mj(ω) (3.8)
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respectively. Then, A is shift-invariant to G if and only if

Pk(ω)Qj(ω) = Qj(ω)Pk(ω) (3.9)

Pk(ω)Mj(ω) = Mj(ω)Pk(ω) (3.10)

Nk(ω)Qj(ω) = Qj(ω)Nk(ω) (3.11)

Nk(ω)Mj(ω) = Mj(ω)Nk(ω) (3.12)

for all k ∈ {1, . . . ,m(ω)}, j ∈ {1, . . . , p(ω)}, and ω ∈ [0, 1] a.e.

Before proving Thm. 3.2, it will help to establish an intermediate result.

Lemma 3.3. Let A,S ∈ B
(
`2
(
Z;Cd

))
be time-invariant. Then A commutes with

S if and only if

Â(ω) · Ŝ(ω) = Ŝ(ω) · Â(ω) (3.13)

almost everywhere for ω ∈ [0, 1].

Proof. ⇐ Assume that Eq. (3.13) is true for ω ∈ [0, 1] a.e. Then,

Â(ω) · Ŝ(ω) · x̂(ω) = Ŝ(ω) · Â(ω) · x̂(ω)∫ 1

0

e−2πiωtÂ(ω) · Ŝ(ω) · x̂(ω)dω =

∫ 1

0

Ŝ(ω) · Â(ω) · x̂(ω)dω

(ASx) [t] = (SAx) [t].

A similar argument holds for Â(ω) · Sm(ω) = Sm(ω) · Â(ω) for any m ∈ Z.

⇒ Assume that A commutes with any Sm ∈ S.

(ASmx) [t] = (SmAx) [t]∑
t∈Z

e2πiωt (ASmx) [t] =
∑
t∈Z

e2πiωt (SmAx) [t]

Â(ω) · Ŝm(ω) · x̂(ω) = Ŝm(ω) · Â(ω) · x̂(ω)
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With this result, we prove Thm. 3.2.

Proof of Thm. 3.2. We want to show that Â(ω) commutes with Ŝ(ω) almost every-

where on ω ∈ [0, 1] if and only if Eqs. (3.9), (3.10), (3.11), and (3.12) hold for all

k ∈ {1, . . . ,m(ω)}, j ∈ {1, . . . , p(ω)}, and ω ∈ [0, 1] a.e. Then, we can use Lemma

3.3 to complete the argument.

⇐ Assume that the respective projections and nilpotents commute. To make

it more readable, the dependence on ω is dropped, but it is to be understood that

this condition must hold pointwise for ω ∈ [0, 1] a.e.

Â · Ŝ =

(
p∑
j=1

νjQj + Mj

)
·

(
m∑
k=1

λkPk + Nk

)

=

p∑
j=1

m∑
k=1

νjλkQjPk + νjQjNk + λkMjPk + MjNk

=

p∑
j=1

m∑
k=1

νjλkPkQj + νjNkQj + λkPkMj + NkMj

=

(
m∑
k=1

λkPk + Nk

)
·

(
p∑
j=1

νjQj + Mj

)

= Ŝ · Â

We have used that the projections and nilpotents commute in the third equality.

⇒

Now, assume that Â(ω) and Ŝ(ω) commute almost everywhere on ω ∈ [0, 1].

We will first show that this implies that the resolvents commute. Let z1 ∈ C \
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Λ
(
Â(ω

)
and z2 ∈ C \ Λ

(
Ŝ(ω)

)
.

(
Â(ω)− z1I

)
·
(
Ŝ(ω)− z2I

)
= Â(ω) · Ŝ(ω)− z2Â(ω)− z1Ŝ(ω) + z1z2I

= Ŝ(ω)Â(ω)− z2Â(ω)− z1Ŝ(ω) + z1z2I

=
(
Ŝ(ω)− z2I

)
·
(
Â(ω)− z1I

)
Now, by taking the inverse of both sides, the intermediate claim follows.

[(
Â(ω)− z1I

)
·
(
Ŝ(ω)− z2I

)]−1

=
[(

Ŝ(ω)− z2I
)
·
(
Â(ω)− z1I

)]−1

(
Ŝ(ω)− z2I

)−1

·
(
Â(ω)− z1I

)−1

=
(
Â(ω)− z1I

)−1

·
(
Ŝ(ω)− z2I

)−1

RŜ (z2, ω) · RÂ (z1, ω) = RÂ (z1, ω) · RŜ (z2, ω)

Let γ1 ⊂ C \ Λ
(
Â(ω)

)
be a closed curve that encloses only νj(ω) and γ2 ⊂ C \

Λ
(
Ŝ(ω)

)
be a closed curve that encloses only λk(ω). Let f1(z1) and f2(z2) be

two holomorphic functions on an open set which includes the curves γ1 and γ2

respectively. Then(
− 1

2πi

)2 ∮
γ1

∮
γ2

f1(z1)f2(z2)RŜ (z2, ω) · RÂ (z1, ω) dz1dz2

=

(
− 1

2πi

)2 ∮
γ1

∮
γ2

f1(z1)f2(z2)RÂ (z1, ω) · RŜ (z2, ω) dz1dz2

The order of integration can be interchanged by Fubini’s theorem since the resolvent

is an analytic function on the resolvent set [41], which means that the integrals are

bounded on γ1 and γ2. This allows the integrals to factor,(
− 1

2πi

∮
γ2

f2(z2)RŜ (z2, ω) dz2

)
·
(
− 1

2πi

∮
γ1

f1(z1)RÂ (z1, ω) dz1

)
=

(
− 1

2πi

∮
γ1

f1(z1)RÂ (z1, ω) dz1

)
·
(
− 1

2πi

∮
γ2

f2(z2)RŜ (z2, ω) dz2

)
.

(3.14)
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We use the functional definition of the projection associated with the eigenvalue

λk(ω),

Pk(ω) = − 1

2πi

∮
γk

RS (z, ω) dz, (3.15)

and of the nilpotent,

Nk(ω) = − 1

2πi

∮
γk

(z − λk(ω))RS (z, ω) dz, (3.16)

where γk is a closed curve around λk(ω) [59].

For f1 = f2 = 1, Eq. (3.14) produces Pk ·Qj = Qj · Pk, i.e. Eq. (3.9). For

f1(z1) = z1−νj(ω), f2 = 1, Eq. (3.14) yields Pk ·Mj = Mj ·Pk, i.e. (3.10). Similarly,

the choice f1 = 1 and f2(z2) = z2− λk(ω) turns Eq. (3.14) into Eq. (3.11), whereas

the choice f1(z1) = z1 − νj(ω) and f2(z2) = z2 − λk(ω) turns Eq. (3.14) into Eq.

(3.12).

Theorem 3.2 is neither constructive nor particularly illuminating, and so, the

following corollary provides a more intuitive characterization of shift-invariant filters.

Corollary 3.3.1. Let G be a stationary extended graph with associated Laurent

graph operator S ∈ B
(
`2
(
Z;Cd

))
. Let S have a Jordan spectral representation

given pointwise almost everywhere for ω ∈ [0, 1] by

Ŝ(ω) =

m(ω)∑
k=1

λk(ω)Pk(ω) + Nk(ω). (3.17)

Then, for any ∪ω∈[0,1] {νk(ω) <∞ : k = 0, . . . ,m(ω)}, A ∈ B
(
`2
(
Z;Cd

))
defined by

its corresponding spectral representation,

Â(ω) =

m(ω)∑
k=1

νk(ω)Pk(ω) + Nk(ω), (3.18)

is shift-invariant to G.
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Proof. The result follows immediately from Thm. 2.1 by noting that Pk and Nk

satisfy Eqs. (3.9), (3.10), (3.11), and (3.12) by the definition of the Jordan spectral

decomposition. We show that A ∈ B
(
`2
(
Z;Cd

))
using first Plancherel’s theorem

and then the inclusion of L∞
(
[0, 1];Cd

)
⊂ L2

(
[0, 1];Cd

)
.

‖A‖ =
∥∥∥Â∥∥∥

L2([0,1];Cd)
≤
∥∥∥Â∥∥∥

L∞([0,1];Cd)
<∞.

The last inequality follows from the essential boundedness of νk for all k = 1, . . . ,m.

Corollary 3.3.1 provides a constructive means to design shift-invariant filters

on `2
(
Z;Cd

)
. There are O (d) degrees of freedom,

∪ω∈[0,1] {νk(ω) <∞ : k = 0, . . . ,m(ω)}. As opposed to Corollary 3.1.1, the filters are

constructed pointwise instead of by essentially bounded functions. This alludes to a

more significant problem in the construction of shift-invariant filters: the pointwise

nature of the spectral theory for Laurent operators. In general, the spectrum, pro-

jections, and nilpotents are not continuous and thus cannot be defined in any unique

way as functions of ω. The rank can abruptly change as a function of ω. A more

thorough discussion of this phenomenon can be found in Kato [59]. See Fig. 3.3

for an example. This motivates consideration of graph operators with matrix sym-

bols that decay exponentially fast. For such operators, the spectral theory admits

a holomorphic parameterization of the spectrum, projections, and nilpotents.

Theorem 3.4. Let G be a graph with associated Laurent graph operator

S ∈ B
(
`2
(
Z;Cd

))
. Let S have matrix symbol (K[t])t∈Z such that for ε > 0 there
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Figure 3.3: Pointwise spectrum of a Laurent operator S ∈ B (`2 (Z;C2)). The

figure was created by uniformly sampling ω ∈ [0, 1] and numerically computing an

eigendecomposition. That is, each sample yields two points of the scatter plot. Even

for this relatively well-behaved operator, unique components cannot be identified.

exist constants c1, c2 > 0 such that for all t > 0,

‖K[t]‖ ≤ c1

(1 + ε)t
, (3.19)

and for all t < 0,

‖K[t]‖ ≤ c2(1− ε)t. (3.20)

Then, the analytic continuation of Ŝ,

ˆ̂
S(z) =

∑
t∈Z

ztK[t], (3.21)

is a holomorphic matrix-valued function on U = {z ∈ C : 1− ε < |z| < 1 + ε}.

Moreover, there are d holomorphic functions {λk : U → C : k = 1, . . . , d} with at

most algebraic singularities such that

det
(

ˆ̂
S(z)− λk(z)I

)
= 0 (3.22)
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for all z ∈ U .

Proof. That the analytic continuation of Ŝ converges to a holomorphic function

on an annulus z ∈ {z ∈ C : 1− ε < |z| < 1 + ε} follows from the exponential norm

decay of the matrix symbol [23]. The holomorphicity of the spectrum and nature

of the singularities follows from Eq. (3.22). This is an algebraic equation for which

the solutions vary analytically as a function of the elements of
ˆ̂
S [63], which are

holomorphic on account of the equivalence of all norms on Cd×d [48].

Re[z]

Im
[z
]

Figure 3.4: λ-group. The connected components of the spectrum compose a group,

called a λ-group in Kato [59]. In this example, the connected components correspond

to periodic functions with period greater than one.

That is to say that Ŝ(ω) =
ˆ̂
S (e2πiω) is a holomorphic function of ω ∈ [0, 1].

For analytic perturbations of finite-dimensional linear operators, the eigenvalue func-

tions form groups, the multi-valued complex functions in the spectrum. See Fig. 3.4

for an example. Each group, along with any other group it intersects in the com-

plex plane, has an associated total projection. The total projection follows from

49



the functional definition of a projection with the curve drawn so as to include the

entire group and any other intersecting group. The total projection is bounded and

holomorphic on the annulus of holomorphy to include exceptional points. These

results can be found in [59]. A simple but useful corollary follows immediately.

Corollary 3.4.1. Let G be a stationary extended graph with associated Laurent

graph operator S ∈ B
(
`2
(
Z;Cd

))
. Let S have matrix symbol (K[t])t∈Z such that for

some 0 < N <∞, ‖K[t]‖ = 0 for all |t| > N . Then, the analytic continuation of Ŝ,

ˆ̂
S(z) =

∑
t∈Z

ztK[t], (3.23)

is a holomorphic matrix-valued function on U = C\{0}. Moreover, there are d holo-

morphic functions {λk : U → C : k = 1, . . . , d} with at most algebraic singularities

such that

det
(

ˆ̂
S(z)− λk(z)I

)
= 0 (3.24)

for all z ∈ U .

That is, for finitely supported matrix symbols, the spectral theory admits

an almost everywhere holomorphic decomposition. This is significant because in

applications, we will likely model extended graphs as supporting edges only over

finite distances. Then, the graph operators associated with those extended graphs

will have spectra and projections composed of smooth functions.

As in the time-invariant case, we can visualize the transfer function and

impulse-response function of a shift-invariant filter. Let A ∈ B
(
`2
(
Z;Cd

))
be

defined as in Corollary 3.3.1 by ∪ω∈[0,1] {νk(ω) <∞ : k = 1, . . . ,m(ω)} to be shift-

invariant to a stationary extended graph G with Laurent graph operator S. We can
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also suppose that S ∈ B
(
`2
(
Z;Cd

))
admits an analytic extension on the torus in

the spectral domain, which implies that m(ω) = m a.e. Then, for any x ∈ `2
(
Z;Cd

)
,

∑
t∈Z

e2πiωt (Ax) [t] =
m∑
k=1

νk(ω) ·Pk(ω) · x̂(ω) + Nk(ω) · x̂(ω) (3.25)

and

(Ax) [t] =
m∑
k=1

(((
ν̌k ∗ P̌k

)
+ Ňk

)
∗ x
)

[t]. (3.26)

3.3.0.1 Filtering with holomorphic functional calculus

This brings us to the pinnacle of our filtering approach. Designing filters

through the use of holomorphic functional calculus as in Thm. 2.2 offers a clever

means to avoid the challenges of disambiguating pointwise spectral decompositions.

Theorem 3.5. Let G be a stationary extended graph with associated Laurent graph

operator S ∈ B
(
`2
(
Z;Cd

))
. Define an open set, U ⊂ C, such that Λ (S) ⊂ U .

Then, for any φ : U → C, a holomorphic function, A = φ(S) ∈ B
(
`2
(
Z;Cd

))
is

shift-invariant to G.

Proof. Shift-invariance follows from the algebra homomorphism property. Note that

S = 1(S) where 1(z) = z is the identity mapping. Then,

AS = φ (S) 1 (S) = (φ · 1) (S) = (1 · φ) (S) = 1 (S)φ (S) = SA.

Theorem 3.5 says that we can specify a single degree of freedom φ : U → C to

design a shift-invariant filter. That encompasses a large class of functions without
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concerns about the projections and nilpotents of S. The holomorphic functional

calculus encompasses more than entire functions, since it only requires that φ admit

a power series representation at each point in U . Moreover, as discussed in Sec. 2.1,

U can be the union of disjoint sets. This means that φ can be different holomorphic

functions on each disjoint set enclosing a connected component of the spectrum. We

will employ this technique in Sec. 3.4 to design ideal bandpass filters.

We can give a spectral representation to the action of a linear filter defined via

holomorphic functional calculus. That is, we can characterize the transfer function.

Corollary 3.5.1. Let G be a stationary extended graph with associated Laurent graph

operator S ∈ B
(
`2
(
Z;Cd

))
with Λ (S) ⊂ U for an open set, U ⊂ C. Further, let S

have Jordan spectral representation given pointwise almost everywhere for ω ∈ [0, 1]

by

Ŝ(ω) =

m(ω)∑
k=1

λk(ω)Pk(ω) + Nk(ω). (3.27)

Then, for any holomorphic function φ : U → C, the action of A = φ(S) ∈

B
(
`2
(
Z;Cd

))
is given by

(Ax) [t] =

∫ 1

0

e−2πiωt

m(ω)∑
k=1

φ (λk(ω)) Pk(ω) + φ′ (λk(ω)) Nk(ω)

 · x̂(ω)dω (3.28)

Proof. To begin the proof, we note that φ
(
Ŝ(ω)

)
is given by

m(ω)∑
k=1

φ (λk(ω)) Pk(ω) + φ′ (λk(ω)) Nk(ω).

This follows from a remark in Sec. 2.1 relating the holomorphic functional calculus

with the Jordan spectral representation. Therefore, we want to show that

(Ax) [t] =

∫ 1

0

e−2πiωtφ
(
Ŝ(ω)

)
· x̂(ω)dω.
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Using the definition of the holomorphic functional calculus, we have

(Ax) [t] =

∫ 1

0

e−2πiωt

[
1

2πi

∮
γ

φ(z)RŜ (z, w) dz

]
· x̂(ω)dω.

for Λ (S) ⊂ γ ⊂ int (U). By Fubini’s theorem,

(Ax) [t] =
1

2πi

∮
γ

φ(z)

[∫ 1

0

e−2πiωtRŜ (z, w) · x̂(ω)dω

]
dz

=
1

2πi

∮
γ

φ(z)

[∑
s∈Z

(∫ 1

0

e−2πiω(t−s)RŜ (z, w) dω

)
x[s]

]
dz.

By Fubini’s theorem again,

(Ax) [t] =
∑
s∈Z

[
1

2πi

∮
γ

φ(z)

(∫ 1

0

e−2πiω(t−s)RŜ (z, w) dω

)
dz

]
x[s].

If we can show that RS (z) =
∫ 1

0
e−2πiω(t−s)RŜ (z, w) dω, then, we have completed

the argument since

φ(S) =
1

2πi

∮
γ

φ(z)RS (z) dz,

and we know that φ(S) is Laurent so that it has a matrix symbol (K[t])t∈Z. To

prove that RS (z) =
∫ 1

0
e−2πiω(t−s)RŜ (z, w) dω, note that z ∈ γ satisfies z > ‖S‖,

and so we can use the Neumann series

RS (z) = z−1

∞∑
n=1

z−nSn.

Since S is Laurent, Sn = K ∗ · · · ∗K︸ ︷︷ ︸
n

. With this in mind, we return to∫ 1

0
e−2πiω(t−s)RŜ (z, w) dω:

∫ 1

0

e−2πiω(t−s)RŜ (z, w) dω =

∫ 1

0

e−2πiω(t−s)

[
z−1

∞∑
n=1

z−n
(
Ŝ(ω)

)n]
dω

= z−1

∞∑
n=1

z−n
[∫ 1

0

e−2πiω(t−s)
(
Ŝ(ω)

)n
dω

]
.
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As Ŝ(ω) =
∑

t∈Z e
2πiωtK[t], we can eventually show that

∫ 1

0

e−2πiω(t−s)RŜ (z, w) dω = z−1

∞∑
n=1

z−n K ∗ · · · ∗K︸ ︷︷ ︸
n

,

completing the argument.

3.4 Applications of shift-invariant filtering

Linear filtering is an important tool in signal processing and accordingly an

important extension to graph signal processing. Here, we use our developed filtering

techniques to first design ideal bandpass filters for the purpose of discriminating

components of a signal and second to build discriminative representations.

3.4.1 Bandpass filtering

Our proposed filtering technique is distinguishable from existing literature in

two ways: it accommodates non-self-adjoint graph operators, and it supports edges

across time. We attempt to highlight what is gained by these two features by com-

posing an example signal as the combination of two pure frequency components and

designing a bandpass filter to discriminate the two components. Existing proposals

for filtering time-varying graph signals consider product graph models instead of

the extended graph, e.g. [91, 72, 49]. These models lack the ability to model more

general time-dependent structure between nodes. This manifests as trivial struc-

ture in the spectrum of product graph operators and an inability to discriminate

the components of our example signal. Although there are considerable computa-

tional and analytical advantages to using self-adjoint graph operators, we show that
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a symmetrized version of the graph operator cannot discriminate the pure frequency

components of the example signal.

3.4.1.1 Bandpass filtering with the proposed approach

t t-3t-2t-1

ν1

ν2

Figure 3.5: Extended graph of G. Note the presence of edges both within time and

across time. This allows nodes to interact in time and space, which leads to defining

a richer class of graph operators.

Consider an extended graph G, depicted in Fig. 3.5, with Laurent graph

operator S ∈ B
(
`2
(
Z;Cd

))
and matrix symbol

K[0] =

0 −1

1 0

 K[1] =

0 −4
5

0 0


K[2] =

1
5

0

0 2
5

 K[3] =

0 0

3
5

0


(3.29)

and K[t] = 0 otherwise. S has the following spectral representation:

Ŝ(ω) =

 1
5
e4πiω −1− 4

5
e2πiω

1 + 3
5
e6πiω 2

5
e4πiω

 . (3.30)

In accordance with Corollary 3.4.1, the spectral representation is a holomorphic

matrix-valued function of ω ∈ [0, 1], and we can compute a pointwise eigendecom-
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position with eigenvalues,

λ±(ω) =
1

10

(
3e4πiω ±

√
−100− 80e2πiω − 60e6πiω + 47e8πiω

)
, (3.31)

and right (unnormalized) eigenvectors,

u±(ω) =

e4πiω ±
√
−100 + 80e2πiω − 60e6πiω + 47e8πiω

10 + 6e6πiω

 . (3.32)

The spectrum, Λ (S) = ∪ω∈[0,1] {λ±(ω)} is plotted in Fig. 3.6.

Re[z]

Im
[z
]

Figure 3.6: Spectrum of S. The spectrum comprises smooth curves due to the

holomorphicity of Ŝ. However, due to the square root, we observe coherent λ-

groups, not coherence of ∪ω∈[0,1]λ−(ω) or ∪ω∈[0,1]λ+(ω). Note that the spectrum

admits separation by disjoint open sets.

Suppose that we observe a time-varying graph signal,

x[t] = e−2πiω1tu−(ω1) + e−2πiω2tu+(ω2),

where ω1, ω2 ∈ [0, 1]. We want to define a shift-invariant filter via holomorphic

functional calculus as in Thm. 3.5 to discriminate the pure frequency components
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of the signal. We define an open set U = U1 ∪ U2 and Jordan curve Γ = γ1 ∪ γ2

according to Fig. 3.7. Then, provided that λ−(ω1) ∈ U1 and λ+(ω2) ∈ U2, we can

define a holomorphic function φ : U → C such that φ(z) = 1
∣∣
z∈U1

and φ(z) = 0
∣∣
z∈U2

so that by Cor. 3.5.1:

(Ax) [t] =

∫ 1

0

e−2πiωtφ
(
Ŝ(ω)

)
· x̂(ω)dω

=

∫ 1

0

e−2πiωt [φ(λ−(ω))P−(ω) + φ(λ+(ω))P+(ω)]

· [δ(ω − ω1)u−(ω1) + δ(ω − ω2)u+(ω1)] dω

= e−2πiω1φ(λ−(ω1))P−(ω1)u−(ω1) + e−2πiω1φ(λ+(ω1))P+(ω1)u−(ω1)

+ e−2πiω2φ(λ−(ω2))P−(ω2)u+(ω2) + e−2πiω2φ(λ+(ω2))P+(ω2)u+(ω2).

The cross-products will disappear since P−(ω)u+(ω) = 0 and P−(ω)u+(ω) for all

ω ∈ [0, 1]. Then, we need only make sure that λ−(ω1) ∈ U1 and λ+(ω2) ∈ U2 to

yield

(Ax) [t] = e−2πiω1u−(ω1). (3.33)

In summary, it is the separability of the spectrum that allows us to design a filter

that discriminates the pure frequency components of the signal.

3.4.1.2 Bandpass filtering with product graph model

Now, we restrict our model to using only product graphs. That is, we want to

express the extended graph G in terms of product graphs as is done in Sandryhaila

and Moura [91]. In this formulation, two graphs G1 = (V1, E1) and G2 = (V2, E2)

with respective graph operators S1 and S2 are combined, i.e. G = G1 × G2, to yield
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�1

�2

U1

U2

�1:�-(�1)

�2:�+(�2)

Figure 3.7: Open sets containing the spectrum of S. We can define U = U1 ∪ U2

such that Λ (S) ⊂ U and U1 ∩ U2 = ∅. For defining φ(S), we illustrate γ1 and

γ2, Jordan curves enclosing the connected components of the spectrum. We also

identify λ−(ω − 1) and λ+(ω2).

a resultant graph operator according to one of three product rules:

(1) Kronecker product: S = S1 ⊗ S2;

(2) Cartesian product: S = S1 ⊗ I + I⊗ S2; or

(3) strong product: S = S1 ⊗ S2 + S1 ⊗ I + I⊗ S2.

In Sandryhaila and Moura [91], the authors propose to filter time-varying graph

signals using a product graph of S and T, where S ∈ B
(
Cd
)

is the graph operator

for the d-node graph and T : `2 (Z) → `2 (Z) is the scalar time-advancement oper-

ator (3.2). To implement the factor graph approach, we interpret K[0], . . . ,K[3] of

Eq. (3.29) as each a graph operator on a d-node graph. For each product graph,

the spectrum is not separable, and so we cannot implement a bandpass filter to

discriminate the pure frequency components (see Fig. 3.8).
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(b) Cartesian product
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(c) Strong product

Figure 3.8: Spectrum of the product graph operators. In all cases, the spectrum

does not admit a separable projection. Note that the spectrum overlaps completely

in the Kronecker product graph.

(1) Kronecker product graph For the extended graph with graph operator given

by Eq. (3.29), the Kronecker product graph is given by

SK =
3∑
t=0

T⊗K[t] = T⊗

(
3∑
t=0

K[t]

)
. (3.34)

It has a spectral representation,

ŜK(ω) = e2πiω

1/5 −9/5

8/5 2/5

 , (3.35)

and spectrum,

Λ (SK) =
⋃

ω∈[0,1]

{
3± i

√
287

10
e2πiω

}
. (3.36)

Surprisingly, there is almost no spectral information shared between the Kro-

necker product graph operator and the graph operator of the proposed approach.

The spectrum is plotted in Fig. 3.8a, in which we observe that it is not separated.

Any filter defined by a holomorphic function φ will have to apply uniformly to the

entire spectrum, and so we cannot bandpass the signal for a generic signal. For
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special cases, we may be able to define a holomorphic function φ : U → C such that

φ (λ−(ω1)) = 1 and φ (λ−(ω2)) = 0, but this will be the exception and not the rule.

(2) Cartesian product graph The Cartesian product graph for the graph operator

given by Eq. (3.29) is given by

SC =
3∑
t=0

T⊗ I + I⊗K[t] = T⊗ I + I⊗

(
3∑
t=0

K[t]

)
. (3.37)

It has a spectral representation

ŜC(ω) = e2πiωI +

1/5 −9/5

8/5 2/5

 , (3.38)

and spectrum

Λ (S) =
⋃

ω∈[0,1]

{
1

10

(
3±
√

33 + 10e2πiω
)}

. (3.39)

We find a similar result in which the spectral information of the two graph op-

erators share almost no information. The spectrum is plotted in Fig. 3.8b. Although

the spectrum is not completely overlapping as in the Kronecker product graph, the

spectrum is not separable. For the same reasons as in the Kronecker product graph,

the Cartesian product graph does not allow us to implement a general bandpass

filter.

(3) Strong product graph The strong product graph for our problem is given by

SS = T⊗

(
3∑
t=0

K[t]

)
+ T⊗ I + I⊗

(
3∑
t=0

K[t]

)

= T⊗

(
I +

3∑
t=0

K[t]

)
+ I⊗

(
3∑
t=0

K[t]

) (3.40)
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It has a spectral representation

ŜS(ω) = e2πiω

 6/5 −4/5

−8/5 7/5

+

1/5 −9/5

8/5 2/5

 , (3.41)

and spectrum

Λ (SC) =
⋃

ω∈[0,1]

{
1

10

(
3 + 13e2πiω ± i

√
287

(
1 + e2πiω

))}
. (3.42)

Again the spectrum is not separable, and we cannot implement the desired

bandpass filter using the strong product graph either. See Fig. 3.8c for the plot.

3.4.1.3 Bandpass filtering with a self-adjoint graph operator

Re[z]

Im
[z
]

Figure 3.9: Spectrum of self-adjoint graph operator. In this case, the spectrum is

restricted to the real line and overlaps.

Here, we use a symmetrization of S, i.e. Ssym = 1
2

(S + S∗). Ssym has a spectral

representation

Ŝ(ω) =

 1
10

cos 4πω − 4
10
e2πiω + 3

10
e−6πiω

− 4
10
e−2πiω + 3

10
e6πiω 2

10
cos 4πω,

 (3.43)
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and a pointwise eigendecomposition

λ±(ω) =
1

20

(
6 cos 4πω ±

√
102− 94 cos 8πω

)
(3.44)

and

u±(ω) =

2 cos 4πω ±
√

102− 94 cos 8πω

8e−2πiω − 6e6πiω

 . (3.45)

The spectrum is plotted in Fig. 3.9. Note that the spectrum ∪ω∈[0,1] {λ±(ω)} is the

real projection of Λ (S).

Clearly, Λ (Ssym) is not separable, but that does not definitively mean that

we cannot discriminate the pure frequency components of the candidate signal.

Self-adjoint operators accommodate an ever larger class of functions via functional

calculus, namely all Borel measurable functions on Λ (Ssym) (see e.g. [86]). Accord-

ingly, we could define a bump function h : U → C, the indicator of any Borel subset

B ⊂ Λ (Ssym),

h(z) =


1 z ∈ B

0 o.w.

. (3.46)

This means that it may still be possible to discriminate the pure frequency compo-

nents of the signal x.

However, we can choose a signal so as to make it impossible for a filter defined

via the Borel functional calculus on Ssym to discriminate the pure frequency com-

ponents of x. To do this, we must find ω1, ω2 such that λ−(ω1) = λ+(ω2). Then,

for any h : R→ {0, 1} such that h(λ−(ω1)) = 1, h(λ+(ω2)) = 1 as well. Consider h
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such that h(λ+(ω1)) = h(λ−(ω1)) = 1 and h(λ−(ω2)), then we have

(h(Ssym)x) [t] =

∫ 1

0

e−2πiωt [h(λ−(ω))P−(ω) + h(λ+(ω))P+(ω)]

· [δ(ω − ω1)u−(ω1) + δ(ω − ω2)u+(ω1)] dω

= e−2πiω1h(λ−(ω1))P−(ω1)u−(ω1) + e−2πiω1h(λ+(ω1))P+(ω1)u−(ω1)

+ e−2πiω2h(λ−(ω2))P−(ω2)u+(ω2) + e−2πiω2h(λ+(ω2))P+(ω2)u+(ω2)

= e−2πiω1u−(ω1) + e−2πiω2P+(ω2)u+(ω2).

As the λ−(ω) = λ+(ω) on a measurable subset of Λ (Ssym) (see Fig. 3.9), we can

find such a ω1, ω2 ∈ [0, 1] as is the case for ω1, ω2 in Fig. 3.7.

3.4.2 Discriminative representations

In this section, we apply shift-invariant filtering for the purpose of building

invariant representations. This application is loosely inspired by the scattering trans-

form of Mallat [75] and recently extended to the graph domain by Zou and Lerman

[114] and Gama, et al. [47]. We begin with a few definitions.

Definition 29. Random variables X, Y taking values in a Banach space X are called

separable if there exists a continuous function f : X → [0, 1] such that f(X) 6=

f(Y ) almost surely. They are called strongly separable if there exists a Lipschitz

continuous function f : X → [0, 1] such that f(X) 6= f(Y ) almost surely. They are

called linearly separable if there exists a f ∈ X ∗ such that f(X) 6= f(Y ) almost

surely.

Definition 30. Let f : X → Y be a function between two Banach spaces, and let
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G = {gi : X → X} be a collection of functions on X . G is said to be a symmetry of

f if for every x ∈ X and every gi ∈ G, (f ◦ gi) (x) = f(x).

Definition 31. Let X be a Banach space and G = {gi : X → X} be a collection of

functions on X . A map h : X → Y to a Banach space Y is said to linearize G if

there exists a C > 0 such that for all x ∈ X and gi ∈ G,

‖(h ◦ gi)(x)− h(x)‖Y ≤ C · |gi|G · ‖x‖X , (3.47)

where |gi|G is a metric measuring the difference of gi from I.

Finally, we introduce new notation: For an open set U ⊂ C, we denote the set

of holomorphic functions f : U → C, H(U) and the set of holomorphic functions

with a multiplicative inverse, (f · f−1)(z) = z for all z ∈ U , L(U) ⊂ H(U). Now,

we can state our main result.

Theorem 3.6. Let W1,W2 ∈ `2
(
Z;Cd

)
be random variables strongly separated by

a function f : `2
(
Z;Cd

)
→ [0, 1] and S ∈ B

(
`2
(
Z;Cd

))
such that Λ (S) ⊂ U for an

open set U ⊂ C. Then, for every ε > 0, there exists a δ > 0 such that for every finite

subset
{
ψi ∈ L(U) : |ψi|L(U) < δ, i ∈ I

}
⊂ L(U), there exists a Lipschitz continuous

function Φ : `2
(
Z;Cd

)
→ `2 (I) and a positive constant C > 0 such that

inf
ψj ,ψk∈{ψi∈L(U):i∈I}

E
‖Φ (ψj (S)W1)− Φ (ψk (S)W2)‖

1
2

∑
`=1,2 ‖Φ (ψj (S)W`)− Φ (ψk (S)W ′

`)‖

≥ C · E |f (W1)− f (W2)|
1
2

∑
`=1,2 ‖W` −W ′

`‖
− ε.

(3.48)

Our result is motivated by the following problem set-up. Suppose that there

exists a classification function c : `2
(
Z;Cd

)
→ {0, 1} and strongly separable ran-

dom variables W1,W2 ∈ `2
(
Z;Cd

)
. The classification function classifies W1 and
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W2, i.e. c(W1) = 0 and c(W2) = 1 almost surely. Further, there exists a collec-

tion of bounded linear operators, {ψi (S) : ψi ∈ L(U), i ∈ I}, that are a symme-

try of c, i.e. c(ψi(S)W1) = 0 and c(ψj(S)W2) = 1 almost surely for all i, j ∈ I.

Can we approximate c? Figure 3.10 depicts the challenge of the problem. In

the result, we show that Φ approximately recovers the discriminability of W1,W2,

which are strongly separable prior to arbitrary linear transformation from the group,

{ψi (S) : ψi ∈ L(U), i ∈ I}.

ℓ2( ℂd)

Figure 3.10: Depiction of Thm. 3.6. Let Ω1 = supp (W1) and Ω2 = supp (W2) Then,

ψj(S)W1 and ψk(S)W2 stretch and rotate the support. Thus, the function which

originally separated W1 and W2 may no longer.

Before continuing with the proof of Thm. 3.6, we will propose a candidate Φ

and also a metric on L(U). Since W1 and W2 are strongly separable, there exists

a Lipschitz continuous function f : `2
(
Z;Cd

)
→ [0, 1] such that f(W1) 6= f(W2)

almost surely. Let us define Φ : `2
(
Z;Cd

)
→ `2 (I) by the map

w 7→ (f (φi (S) w))i∈I , (3.49)

where φi : U → C come from the set {φi ∈ H(U) : (φi · ψi) (z) = z, ∀z ∈ U}. See
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Fig. 3.11 for a visualization of Φ. We define the following metric on (L(U),S):

|ψ|L(U) := ‖ψ (S)− I‖ . (3.50)

ϕ1(S) f

ϕ2(S) f

ϕ|I|(S) f

Figure 3.11: Visualization of Φ : `2
(
Z;Cd

)
→ `2 (I). From this visualization,

we see that Φ is a parallel array of linear filters, (φi(S))i=1,...,|I|. Then, we apply

f : `2
(
Z;Cd

)
→ [0, 1] to all paths of the filtered signal.

We will also make use of the following intermediate results.

Lemma 3.7 (Lipschitz). Let S ∈ B
(
`2
(
Z;Cd

))
such that Λ (S) ⊂ U for an open

set U ⊂ C. For a Lipschitz continuous function f : `2
(
Z;Cd

)
→ [0, 1] and any finite

set of holomorphic functions {φi : U → C : i ∈ I}, the map Φ : `2
(
Z;Cd

)
→ `2 (I),

w 7→ (f (φi (S) w))i∈I ,

is Lipschitz continuous.
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Proof of Lem. 3.7. To show that Φ is Lipschitz, note that for any w,w′ ∈ `2
(
Z;Cd

)
,

‖Φ(w)− Φ(w′)‖ =

(∑
i∈I

|f (φi (S) w)− f (φi (S) w′)|2
)1/2

≤ ‖f‖L ·

(∑
i∈I

‖φi (S) w − φi (S) w′‖2

)1/2

≤ ‖f‖L ·

(∑
i∈I

‖φi (S)‖2

)1/2

· ‖w −w′‖ .

The first inequality follows from the Lipschitz continuity of f . The second inequality

follows from φi(S) defining a bounded linear operator. By the spectral mapping

theorem, ‖φi(S)‖ = max |φi(Λ (S))|. Since |I| < ∞,
(∑

i∈I ‖φi (S)‖2)1/2
< ∞.

Therefore,

‖Φ‖L = ‖f‖L ·

(∑
i∈I

‖φi (S)‖2

)1/2

. (3.51)

Lemma 3.8 (Linearization). Let S ∈ B
(
`2
(
Z;Cd

))
such that Λ (S) ⊂ U for an

open set U ⊂ C. Consider a finite subset Ψ = {ψi ∈ L(U) : i ∈ I} ⊂ L(U). Then,

Ψ is linearized by Φ : `2
(
Z;Cd

)
→ `2 (I) as defined in Eq. (3.49).

Proof of Lem. 3.8. Fix a ψj ∈ Ψ. For any w ∈ `2
(
Z;Cd

)
,

‖Φ (ψj (S) w)− Φ (w)‖ ≤ ‖Φ‖L · ‖ψj(S)w −w‖ ≤ ‖Φ‖L · ‖ψj (S)− I‖ · ‖w‖ .

The first inequality follows from Lemma 3.7, and the second inequality follows from

ψj (S) − I defining a bounded linear operator. We can simplify this notation by

using the metric defined in Eq. (3.50),

‖Φ (ψj (S) w)− Φ (w)‖ ≤ |ψj|L(U) · ‖Φ‖L · ‖w‖ .

As the choice of ψj was arbitrary, the result holds for all ψj ∈ Ψ.
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Lemma 3.9. For a, b > 0,

a− x
b+ x

≥ a

b
− x · a+ b

b2
,

for all x > −b.

Proof. To prove the statement, note that a−x
b+x

∣∣
x>−b is a convex function. To get the

desired result, we take a tangent line at x = 0.

Now, we proceed with the proof of Thm. 3.6.

Proof of Thm. 3.6. Since we want to find a lower bound, we can lower bound the

numerator and upper bound the denominator. We begin with the denominator.

(Denominator) Fix ψj, ψk ∈ {ψi ∈ L(U) : i ∈ I}. We can upper bound the de-

nominator with a telescoping argument:

1

2

∑
`=1,2

‖Φ (ψj (S)W`)− Φ (ψk (S)W ′
`)‖

=
1

2

∑
`=1,2

‖Φ (ψj (S)W`)− Φ (ψj (S)W ′
`) + Φ (ψj (S)W ′

`)− Φ (ψk (S)W ′
`)‖

≤ 1

2

∑
`=1,2

‖Φ (ψj (S)W`)− Φ (ψj (S)W ′
`)‖︸ ︷︷ ︸

(a)

+
1

2

∑
`=1,2

‖Φ (ψj (S)W ′
`)− Φ (ψk (S)W ′

`)‖︸ ︷︷ ︸
(b)

.

We have used the triangle inequality for the inequality. Now, we separately upper

bound terms (a) and (b).
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For term (a), we have

1

2

∑
`=1,2

‖Φ (ψj (S)W`)− Φ (ψj (S)W ′
`)‖ ≤ ‖Φ‖L ·

1

2

∑
`=1,2

‖ψj (S)W` − ψj (S)W ′
`‖

≤ ‖Φ‖L · ‖ψj(S)‖ · 1

2

∑
`=1,2

‖W` −W ′
`‖ .

The first equality follows from Lemma 3.7, and the second inequality follows from

ψj (S) defining a bounded linear operator on `2
(
Z;Cd

)
. Note that we have our

desired denominator multiplied by a constant, C1 = ‖Φ‖L · ‖ψj(S)‖.

Now, for term (b), we have

1

2

∑
`=1,2

‖Φ (ψj (S)W ′
`)− Φ (ψk (S)W ′

`)‖ ≤ ‖Φ‖L ·
1

2

∑
`=1,2

‖ψj (S)W ′
` − ψk (S)W ′

`‖

≤ ‖Φ‖L · ‖ψj (S)− ψk (S)‖ · 1

2

∑
`=1,2

‖W ′
`‖ .

The first inequlity follows from Lemma 3.7. The second equality follows from the

algebra homomorphism property of the holomorphic functional calculus so that

(ψj − ψk) (S) defines a bounded linear operator on `2
(
Z;Cd

)
. We can further bound

this using the following observation:

‖(ψj − ψk) (S)‖ = ‖(ψj − 1 + 1− ψk) (S)‖

≤ ‖ψj (S)− I‖+ ‖ψk (S)− I‖

≤ 2 ·max
(
|ψj|L(U) , |ψk|L(U)

)
.

Putting this together, we have

1

2

∑
`=1,2

‖Φ (ψj (S)W`)− Φ (ψk (S)W ′
`)‖

≤ C1 ·
1

2

∑
`=1,2

‖W` −W ′
`‖+ 2 · ‖Φ‖L ·max

(
|ψj|L(U) , |ψk|L(U)

)
· 1

2

∑
`=1,2

‖W ′
`‖ .
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(Numerator) With the same ψj, ψk ∈ {ψi ∈ L(U) : i ∈ I}, we consider the numer-

ator. We can derive a lower bound with a telescoping argument:

‖Φ (ψj (S)W1)− Φ (ψk (S)W2)‖

= ‖Φ (ψj (S)W1)− Φ (ψj (S)W2) + Φ (ψj (S)W2)− Φ (ψk (S)W2)‖

≥ ‖Φ (ψj (S)W1)− Φ (ψj (S)W2)‖︸ ︷︷ ︸
(c)

−‖Φ (ψj (S)W2)− Φ (ψk (S)W2)‖︸ ︷︷ ︸
(d)

.

We can now proceed with bounding terms (c) and (d) independently.

For term (c), using the finite-dimensional norm relationship ‖·‖2 ≥ ‖·‖∞, we

have

‖Φ (ψj (S)W1)− Φ (ψj (S)W2)‖

=

(∑
i∈I

|f (φi (S)ψj (S)W1)− f (φi (S)ψj (S)W2)|2
)1/2

=

(∑
i∈I

|f ((φi · ψj) (S)W1)− f ((φi · ψj) (S)W2)|2
)1/2

≥ max
i∈I
|f ((φi · ψj) (S)W1)− f ((φi · ψj) (S)W2)| .

Since ψj ∈ L(U), by the construction of Φ, there is a φi, i ∈ I, such that

(φi · ψj) (z) = z. Therefore,

max
i∈I
|f ((φi · ψj) (S)W1)− f ((φi · ψj) (S)W2)| ≥ |f (W1)− f (W2)| .

For term (d), we have a similar result as from term (b) in the denominator:

‖Φ (ψj (S)W2)− Φ (ψk (S)W2)‖ ≤ 2 · ‖Φ‖L ·max
(
|ψj|L(U) , |ψk|L(U)

)
· ‖W2‖ .

We note that the choice to bound W2 in term (d) was arbitrary, so we can choose

to bound arg min (‖W1‖ , ‖W2‖). Then, using min (‖W1‖ , ‖W2‖) ≤ 1
2

∑
`=1,2 ‖W`‖,
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we have that

‖Φ (ψj (S)W1)− Φ (ψk (S)W2)‖

≥ |f (W1)− f (W2)| − 2 · ‖Φ‖L ·max
(
|ψj|L(U) , |ψk|L(U)

)
· 1

2

∑
`=1,2

‖W ′
`‖ .

(Combined) Putting together the respective results from the numerator and de-

nominator, we have for a fixed ψj, ψk ∈ {ψi ∈ L(U) : i ∈ I},

inf
ψj ,ψk∈{ψi∈L(U):i∈I}

E
‖Φ (ψj (S)W1)− Φ (ψk (S)W2)‖

1
2

∑
`=1,2 ‖Φ (ψj (S)W`)− Φ (ψk (S)W ′

`)‖

≥ E
|f (W1)− f (W2)| − 2 · ‖Φ‖L ·max

(
|ψj|L(U) , |ψk|L(U)

)
· 1

2

∑
`=1,2 ‖W ′

`‖

C1 · 1
2

∑
`=1,2 ‖W` −W ′

`‖+ 2 · ‖Φ‖L ·max
(
|ψj|L(U) , |ψk|L(U)

)
· 1

2

∑
`=1,2 ‖W ′

`‖
.

Note that the second term in the numerator and denominator are equal and linear

in max
(
|ψj|L(U) , |ψk|L(U)

)
. Using Lemma 3.9, we have

E
|f (W1)− f (W2)| − 2 · ‖Φ‖L ·max

(
|ψj|L(U) , |ψk|L(U)

)
· 1

2

∑
`=1,2 ‖W ′

`‖

C1 · 1
2

∑
`=1,2 ‖W` −W ′

`‖+ 2 · ‖Φ‖L ·max
(
|ψj|L(U) , |ψk|L(U)

)
· 1

2

∑
`=1,2 ‖W ′

`‖

≥ E
|f (W1)− f (W2)|

C1 · 1
2

∑
`=1,2 ‖W` −W ′

`‖

− 2 · ‖Φ‖L ·max
(
|ψj|L(U) , |ψk|L(U)

)
· E

(
1

2

∑
`=1,2

‖W ′
`‖

)

·
|f (W1)− f (W2)|+ C1 · 1

2

∑
`=1,2 ‖W` −W ′

`‖(
C1 · 1

2

∑
`=1,2 ‖W` −W ′

`‖
)2 .

By the statement of the lemma, max
(
|ψj|L(U) , |ψk|L(U)

)
< δ, and so we can choose

δ > 0 small enough to make the second term less than ε.

To finish the argument, we note that the choice of ψj, ψk ∈ {ψi ∈ L(U) : i ∈ I}

was arbitrary, so the argument holds for all ψj, ψk ∈ {ψi ∈ L(U) : i ∈ I}.
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We have shown that we can use shift-invariant filtering to construct represen-

tations that retain the underlying discriminability of the signal for a large class of

linear symmetries.

72



Chapter 4: Learning the graph structure of stochastic processes

4.1 Introduction

In Chapter 3, we developed filters for time-varying graph signals in `2
(
Z;Cd

)
where the graph operator S ∈ B

(
`2
(
Z;Cd

))
was known a priori . In practice,

we may need to estimate the underlying extended graph G and graph operator S

from observations. For this reason, we consider finite observations, for which we will

want to estimate graph operators. Estimating the graph operator can be posed as

a parameter estimation problem as in the following example.

Example 1 (Instantaneous covariance). Suppose that we observe a vector-valued

sequence x = (x[t])t=1,...,T with x[t] ∈ Rd for all t = 1, . . . , T , in which observa-

tions have no temporal dependence. Therefore, the time-series can be treated as

independent and identically distributed observations. If x[t] ∼iid N (0,K), where

K ∈ Rd×d is unknown, then we can estimate K from the observations. K captures

the spatial dependence of the observations and is thus a viable graph operator on

V = {1, . . . , d}. We can infer the underlying graph by assigning an edge between

nodes i and j if |Ki,j| > τ for some threshold τ > 0. The MLE for this model is
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given by

arg min
K∈Rd×d

−1

2
log det (K) +

1

2T

T∑
t=1

〈
x[t],K−1x[t]

〉
, (4.1)

and the minimizer is K = 1
T

∑T
t=1 x[t]x∗[t]. We could then extend K to a graph

operator on a time-varying graph signal using a product graph formulation as we

did in Sec. 3.4.

We can employ a similar method for estimating autoregressive graph operators

using the estimator in Sec. 2.5. However, the graph estimation problem can be

complicated by confounding processes. We use another example to illustrate this

point.1

Example 2 (Confounding autoregressive processes). Suppose that we observe a

time-series (x[t])t=1,...,T , x[t] ∈ Rd. If we partition {1, . . . , T} into r sets, {1, . . . , T1},

{T1 + 1, . . . , T2}, . . . , {Tr−1 + 1, . . . , T}, where T1 < T2 < . . . < Tr−1 < T , then x[t]

for t ∈ {Tj−1 + 1, . . . , Tj} is generated according to the recurrence relation,

x[t] = (K0[1] + Kj[1]) x[t− 1] + · · ·+ (K0[m] + Kj[m]) x[t−m] + n[t],

with n[t] ∼iid N (0, I) for each j = 1, . . . , r with Kj[s] ∈ B
(
Rd
)

for all j = 0, . . . , r

and s = 1, . . . ,m. That is to say that there is one persistent autoregressive pro-

cess given by the matrix symbol (K0[t])t=1,...,m and a different confounding process

(Kj[t])t=1,...,m present in each observation window {Tj−1 + 1, . . . , Tj}.

Estimating the parameters of the model in Example 2 could be a difficult com-

putational problem without considerable a priori knowledge of

1This work grew out of an observation made in a workshop presentation about learning graph

operators [17].
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{
(Kj[t])t : j = 0, . . . , r

}
. More practically, these confounding processes may be in-

cidental so that we want to estimate (K0[t])t in a robust way. This is a viable model

for observed network activity in the brain and team interaction as presented in Secs.

1.1 and 1.2. Multiple causal processes may be operating in parallel. Two regions of

the brain may be interacting for a visual processing task, while different regions of

the brain are coordinating movement, and the resultant activity would reflect both

processes. In teams, this may correspond to a sub-team planning future actions and

another sub-team rehearsing tasks, and the observed activity may appear to be a

single coordinated action, when it really reflects incidental processes.

If we want to detect the presence of a particularly important causal process,

then the confounding processes should be a symmetry for the detection function.

To make this more precise, let d be a detection function, (x[t])t 7→ {0, 1}, where

d((x[t])t) = 1 if (x[t])t is causally generated by (K0[t])t and 0 otherwise. By a

symmetry, we mean d((x[t])t) = 1 if (x[t])t is causally generated by (K0[t] + Kj[t])t

for any j = 1, . . . , r (and 0 otherwise). This has implications for how to design

filters in accordance with Chapter 3, but here we address how we should estimate

the graph operators in the presence of confounding processes.

Let us modify the generative model of Example 2. Let β1, . . . , βr ∈ R be

random variables and (x[t])t with x[t] ∈ Rd be causally generated by

x[t] =

(
r∑
j=0

βjKj[1]

)
x[t− 1] + · · ·+

(
r∑
j=0

βjKj[m]

)
x[t−m] + n[t], (4.2)
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with n[t] ∼iid N (0, I). If we use the matrix-vector form of Eq. (2.37), then we have

Y =
r∑
j=0

βjX


K∗j [1]

...

K∗j [m]

+ N. (4.3)

Equation (4.3) begins to look like a sparse coding problem, especially if we suppose

that
∣∣∣supp

(
(βj)j=1,...,r

)∣∣∣ = s� r. It is this observation that inspires our work.

We propose to learn atomic autoregressive processes from multiple indepen-

dent observations. We consider two methods for estimating the atomic autoregres-

sive components. One is based on a two-stage process in which we estimate the

autoregressive coefficients of each independent observation using Eq. (2.39) and

then use existing dictionary learning results recounted in Sec. 2.6 to disambiguate

the atomic components. The second attempts to directly solve for the atomic com-

ponents using an alternating minimization algorithm, an approach similar in spirit

to the dictionary refinement of Arora, et al. [9] and Agarwal, et al. [2].

This problem shares common elements with any model that depends on a sig-

nal decomposition with a common decomposition across subjects or modalities. This

problem has instigated considerable research in neuroimaging due to a reliance on

analyses of independent components [28], where the goal is to find common indepen-

dent components across subjects or imaging modalities. Joint signal representation

also arises in multiview clustering in which multiple images of an object are encoded

in a hopefully common subspace via simultaneous nonnegative matrix factorization

[8, 66, 71]. Notably, the problem shares a similar time-based bilinear structure with

compressve sensing of video [93, 94], in which the linear dynamics and sequential
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states of video can be estimated from compressive measurements. It differs from

recent efforts to solve bi-convex problems via lifting, e.g. [7, 69, 70], as we attempt to

solve the problem in its natural domain, as in Aghasi, et al. [3] and Sun, et al. [105].

4.1.1 Problem

Recall the m-order autoregressive model of Section 2.5 for a sequence

(x[t])t=1,...,T+m in matrix-vector form:


x∗[1 +m]

...

x∗[T +m]


︸ ︷︷ ︸

Y∈RT×d

=



x∗[m] · · · x∗[1]

. . .
...

... x∗[m]

. . .

x∗[T ]
...

...
. . .

x∗[T +m− 1] · · · x∗[T ]


︸ ︷︷ ︸

X∈RT×(m·d)


K∗[1]

...

K∗[m]


︸ ︷︷ ︸
A∈R(m·d)×d

+


n∗[1 +m]

...

n∗[T +m]


︸ ︷︷ ︸

N∈RT×d

. (4.4)

We want to find a sparse encoding of the columns
{
Ai ∈ R(m·d) : i = 1, . . . , d

}
. That

is,

A =

[
d1 · · · dr

]
︸ ︷︷ ︸

D∈R(m·d)×r


c1,1 · · · c1,d

...
. . .

...

cr,1 · · · cr,d


︸ ︷︷ ︸

C∈Rr×d

. (4.5)

Here, dj ∈ R(m·d) for j = 1, . . . , r are the dictionary atoms.

A single time-series is not sufficient to learn a sparse encoding, and so we
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consider repeated independent observations of time-series,

Y(k) = X(k)D
?C?

(k) + N(k), (4.6)

k = 1, . . . , N , for which we want to estimate D? and C?
(k).

One might ask why we choose to model the columns of A as independent.

From Sec. 2.6, we know that provable guarantees for dictionary learning require

O (r log r) observations, where r scales like the dimension of the vector space for the

observed signals. In our case, the autoregressive coefficients would be in a m · d2-

dimensional vector space. By modeling the columns as independent, we can reduce

the sampling burden since r ∼ O (m · d).

4.2 Two-stage approach

In this section, we will analyze a two-stage procedure in which we first esti-

mate the autoregressive coefficients of each observation independently. This yields a

noisy dictionary learning problem, for which we can apply the theoretical results of

Thm. 2.12. This will yield a probabilistic statement on the recovery of autoregres-

sive atoms. Formally, we analyze Algorithm 1. The functions OverlappingCluster,

OverlappingSVD, and IterativeAverage are described in general terms in Sec. 2.6,

and details for these sub-routines can be found in Arora, et al. [9]. Before proceeding

with our analysis, we give the generative model for our observations.

Model 1. We observe N independent and identical observations of vector-valued

time-series
(
x(k)[t]

)
t=1,...,T+m

, k = 1, . . . , N , generated as follows:

1. Dictionary, D?:
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(a) The columns of D? ∈ R(m·d)×r are unit norm (‖·‖2)

(b)
〈
D?
i ,D

?
j

〉
≤ µ/

√
m · d for all i 6= j and for some µ ∼ O (log(m · d))

2. Coefficients,
(
C?

(k)

)
k=1,...,N

:

(a) Columns are drawn independently and identically

(b) The support for a column is chosen uniformly at random from

{U ⊂ {1, . . . , r} : |U | = s}

(c) The non-zero coefficients are drawn independently and identically from

a centered distribution with support on [−C,−c] ∪ [c, C]

3. Innovation,
(
N(k)

)
k=1,...,N

:

(a) Entries are drawn independently and identically from N (0, ν2) with ν ∼

O
(√

d
)

4.2.1 Estimation of the autoregressive coefficients

In this section, we analyze the error of the estimator of Eq. (2.39),

A = (X∗X)−1 X∗Y. (4.7)

This estimator seeds the dictionary learning algorithm. Lemma 4.1 provides a proba-

bilistic bound on the error of the estimator. For large N , and T larger, the estimator

is well-behaved. The result yields an asymptotic characterization of the estimator,

i.e. as T,N →∞, for T ∼ Ω (Np) for p > 1, the estimator is consistent.
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Algorithm 1: Two-stage approach

Data:
(
Y(k)

)
k=1,...,N

,
(
X(k)

)
k=1,...,N

Result: D̂ ∈ R(m·d)×r

for k = 1, . . . , N do

Â(k) = arg min
A∈R(m·d)×d

1

2(T · d)

∥∥Y(k) −X(k)A
∥∥2

F
;

end

(Cj)j=1,...,r = OverlappingCluster

((
Â(k)

)
k=1,...,N

)
;

D̂ = OverlappingSVD
(

(Cj)j=1,...,r

)
;

while not converged do

D̂ = IterativeAverage
((

Y(k)

)
k=1,...,N

, D̂
)

;

end

Lemma 4.1. Let D?,
(
C?

(k)

)
k=1,...,N

, and
(
N(k)

)
k=1,...,N

be generated according to

Model 1. Then for any ε > 0 and δ1 ∈ (0, 1), with probability at least 1− N ·m·d
T ·(1−δ1)2·ε2 ·

(1+
√
d·s·C)

4

(1−
√
d·s·C)

2 −C1 ·N · exp

(
−c1 · T/m ·min

([
δ1·ν4

2K1·(1−d·s2·C2)2

]2

, δ1·ν4
2K1·(1−d·s2·C2)2

))
, the

estimates of Eq. (2.39)
(
A(k)

)
k=1,...,N

will satisfy

∥∥D?C?
(k) −A(k)

∥∥
2,∞
≤ ε (4.8)

for all k = 1, . . . , N , where C1 = 2 · m · 9(m·d), c1 > 0 is a global constant, and

K1 ∼ O (1).

Proof. We will prove the statement in two parts: (1) for a fixed k and appropriate

assumptions, we will bound the error of the estimate; and (2) we will compute the

probability that the assumptions hold and extend it for all k = 1, . . . , N using a
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union bound.

(1) To begin, we fix k ∈ {1, . . . , N} and assume

(i)
∥∥ 1
T
X∗X−R

∥∥ ≤ δ1 ·
(

ν
1+
√
d·s·C

)2

and

(ii)
∥∥ 1
T
X∗N

∥∥
2,∞ ≤ (1− δ1) ·

(
ν

1+
√
d·s·C

)2

· ε.

Since A is a minimizer with respect to each column i = 1, . . . , d,

‖Yi −XAi‖2 ≤ ‖Yi −X (D?C?)i‖
2 .

Substituting Y = XD?C? + N yields

‖X (D?C?)i + Ni −XAi‖2 ≤ ‖X (D?C?)i + Ni −X (D?C?)i‖
2 = ‖Ni‖2 .

Expanding the square on the left-hand side gives us

‖X [(D?C?)i −Ai]‖2 + 〈X [(D?C?)i −Ai] ,Ni〉+ ‖Ni‖2 ≤ ‖Ni‖2 .

Some straightforward manipulations to include moving X to the other side of the

inner product and applying the Cauchy-Schwarz inequality yield

‖X [(D?C?)i −Ai]‖2 ≤ ‖(D?C?)i −Ai‖ · ‖X∗Ni‖ .

Multiplying both sides by 1/T , we can lower bound the left-hand side as

λmin

(
1

T
X∗X

)
· ‖(D?C?)i −Ai‖2 ≤ ‖(D?C?)i −Ai‖ ·

∥∥∥∥ 1

T
X∗Ni

∥∥∥∥ .
This yields the following error bound:

‖(D?C?)i −Ai‖ ≤
[
λmin

(
1

T
X∗X

)]−1

·
∥∥∥∥ 1

T
X∗Ni

∥∥∥∥ .
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By our assumptions, we have a bound on
∥∥ 1
T
X∗Ni

∥∥ uniform for i = 1, . . . , d, and

λmin

(
1

T
X∗X

)
≥ λmin (R)−

∥∥∥∥ 1

T
X∗X−R

∥∥∥∥ ≥ (1− δ1) ·
(

ν

1 +
√
d · s · C

)2

,

where we have used Thm. 2.11 to get

λmin (R) ≥
(

ν

1 + ‖D?C?‖

)2

≥
(

ν

1 + ‖D?C?‖F

)2

≥

(
ν

1 + ‖C?‖1,2

)2

≥
(

ν

1 +
√
d · s · C

)2

.

Therefore, ‖(D?C?)i −Ai‖ ≤ ε for all i = 1, . . . , d, and we note that the bound is

independent of the realization of C?.

(2) We can compute the probabilities of

{∥∥ 1
T
X∗X−R

∥∥ ≤ δ1 ·
(

ν
1+
√
d·s·C

)2
}

and∥∥ 1
T
X∗N

∥∥
2,∞ ≤ (1 − δ1) ·

(
ν

1+
√
d·s·C

)2

· ε using Lemmas 4.10 and 4.11 respectively.

Note that these sets do not depend on the realization of C?. Thus, we can use a

simple union bound to compute

P

(
N⋂
k=1

{∥∥D?C?
(k) −A(k)

∥∥
2,∞
≤ ε
})

≥ 1−
N∑
k=1

P

({∥∥∥∥ 1

T
X∗(k)X(k) −R(k)

∥∥∥∥ > δ1 ·
(

ν

1 +
√
d · s · C

)2
})

−
N∑
k=1

P

(∥∥∥∥ 1

T
X∗(k)N(k)

∥∥∥∥
2,∞

> (1− δ1) ·
(

ν

1 +
√
d · s · C

)2

· ε

)
.

Lemma 4.1 tells us that for large T , we will have observations k = 1, . . . , N ,

A(k) = D?C?
(k) + W(k), (4.9)
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Figure 4.1: Sample mean (left) and standard deviation (right) of∥∥∥∥( 1
T
X∗(k)X(k)

)−1
1
T
X∗(k)N(k)

∥∥∥∥. Simulations under Model 1 reveal the expected

decay of cross-correlation.

where W(k) is random but uniformly bounded, i.e.
∥∥W(k)

∥∥
2,∞ ≤ δ. We would like

to say more, e.g. the columns of W(k) are normally distributed. We have

(X∗X)−1 X∗Y = (X∗X)−1 X∗ (XD?C? + N) = D?C? +

(
1

T
X∗X

)−1
1

T
X∗N.

Conditioning on the coefficient matrix C?, we have
(

1
T
X∗X

)−1 ∣∣C? p→ R and

1
T
X∗N

∣∣C? p→ 0. By Slutsky’s theorem and the continuous mapping theorem [52],

we get

(X∗X)−1 X∗N
p→ 0.

This gives us asymptotic consistency, and numerical experiments bear this out as

shown in Fig. 4.1.

4.2.2 Finding the autoregressive dictionary atoms

Given this estimate of the autoregressive coefficients of each observation

A(k) = D?C?
(k) + W(k), (4.10)
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we can use Thm. 2.12 to find D?. This result is summarized in the below theorem.

Theorem 4.2. Let D?,
(
C?

(k)

)
k=1,...,N

, and
(
N(k)

)
k=1,...,N

be generated according

to Model 1. Then, if N ∼ Ω ((r2/s2) log r + rs2 log r + r log r log(1/ε)) and T ∼

Ω (N ·m · d/ε3 + d ·m2 logm logN/(ν4 · log ε)), with high probability, Alg. 1 will

return a dictionary estimate D0 that satisfies d(D?,D0) ≤ ε, where d : R(m·d)×r ×

R(m·d)×r is the dictionary metric defined in Eq. (2.43).

Proof. This is a rather straightforward application of Thm. 2.12 to the result of

Lemma 4.1. Note that for T ∼ Ω (N ·m · d/ε3 + d ·m2 logm logN/(ν4 · log ε)),

Lemma 4.1 provides a high probability bound on the coefficient error by ε, i.e. 1−

O (ε). This means that the additive noise for our observations of D?C?
(k) has variance

bounded by ε2. That
(

1
T
X∗(k)X(k)

)−1
1
T
X∗(k)N(k)−D?C?

(k) is not spherical Gaussian

does not change any of the Ω (·) factors in the statement of the theorem (see p. 10

of Arora, et al. [9]).

4.2.3 Simulations

In this section, we report results from applying Algorithm 1 on simulated data.

The simulated data was generated according to Model 1 using d = 4, m = 2, and s =

2. We evaluated accuracy using the dictionary metric (2.43) scaled by the number

of dictionary atoms. For each condition, we ran twenty simulations and reported

statistics over those twenty experiments. The algorithm runs in polynomial time

O (rN2), the inner loops of the algorithm entail non-trivial computations polynomial

in d, m, r, and T , and the run-time grows rapidly with increasing problem size. This
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makes reaching N ∼ O (r log r log(1/ε)) for small ε difficult. As shown in Fig. 4.2,

even for small m and d, it was difficult to simulate problem sizes that revealed the

finite sample behavior of Thm. 4.2. However, we can more clearly see the effect of

increasing redundancy of the dictionary in Fig. 4.3.
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Figure 4.2: r−1/2d
(
D?, D̂

)
. We cannot discern the expected behavior of the error

as a function of N and T . Here, we use r = 9 so that we require N ∼ O (20/ε)

and T ∼ O (N/ε3) to expect ε accuracy. Likely, we cannot simulate sufficient size

problems to overcome the finite sample factors in the result.

4.3 Direct Approach

In Section 4.2, we considered an algorithm for recovering D? and C?
(k) from

observations

Y(k) = X(k)D
?C?

(k) + N(k). (4.11)

85



Observations (N)

A
to

m
s
 (
r)

D
ic

tio
n
a
ry

 e
rro

r

25 50 100 200

9

10

12

11

Figure 4.3: r−1/2d
(
D?, D̂

)
. We see linear increase in error with increases in dictio-

nary redundancy. The mixed effects are less discernible due to the implicit depen-

dence on observation length.

We implemented a two-stage approach, finding A(k) ≈ D?C?
(k), and then applying

existing results from theoretical dictionary learning. In this section, we explore a di-

rect approach to recovering D? and C?
(k) via an alternating minimization algorithm.

It is not a direct substitute for the two-stage approach since for provable recovery it

would need to be paired with an initialization procedure such as OverlappingCluster

and OverlappingSVD, but empirical results and recent theoretical results (see Sun,

et al. [105]) indicate that the loss landscape of dictionary learning contains many

equivalent solutions, and so a fixed point of an alternating minimization algorithm

is likely to be equivalent to the global minimum. The approach we now analyze

follows more closely that of Agarwal, et al. [2].
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Our analysis leads us to a largely negative result. It illustrates the challenges

of directly solving this problem without stronger assumptions than those we use. We

can give conditions under which a direct approach works with positive probability,

but those conditions are impractical even in asymptotic analysis.

Before proceeding with our analysis, we give the generative model for our

observations.

Model 2. For a fixed s ∈ {1, . . . , r}, we define the following generative model:

1. Dictionary, D?:

(a) The columns of D? ∈ R(m·d)×r are unit norm (‖·‖2)

(b) D? satisfies a s-restricted eigenvalue condition with κ?s > 4ε(0)
√

s
m·d

2. Coefficients,
(
C?

(k)

)
k=1,...,N

:

(a) Columns are drawn independently and identically

(b) The support for a column is chosen uniformly at random from

{U ⊂ {1, . . . , r} : |U | = s}

(c) The non-zero coefficients are drawn independently and identically from

a centered distribution with support on [−C,C] and variance c2

3. Innovation (
(
N(k)

)
k=1,...,N

):

(a) Entries are drawn independently and identically from N (0, ν2) with ν ∼

O
(√

d
)

87



Thus far, the primary different between Models 2 and 1 are the dictionary condi-

tion and distribution of non-zero coefficients. However, we require an additional

assumption on the growth of the moments of the autocorrelation function of the

autoregressive process:∥∥∥∥∥E
[(

1

T
X∗(k)X(k)

)2
∣∣∣∣∣C?

(k)

]∥∥∥∥∥ ∼ O
∥∥∥∥∥E

[(
1

T
X∗(k)X(k)

) ∣∣∣∣∣C?
(k)

]∥∥∥∥∥
2
 . (4.12)

We anticipate that such a condition imposes additional constraints on the higher

order moments of the non-zero coefficients C?
(k).

Our analysis will consider Algorithm 2. The algorithm features a straight-

forward application of alternating minimization. Our results refer to recovery of D?

in Model 2; however, the alternating minimization algorithm derives from minimiz-

ing the following optimization problem:

arg min
D∈R(m·d)×r,{Ck∈Rr×d}

1

N · T ·m · d
∥∥Y(k) −X(k)DC(k)

∥∥+ µ
∥∥C(k)

∥∥
1,1

s.t. ‖Dj‖ = 1, j = 1, . . . , r

(4.13)

for some µ > 0 which we are allowed to adapt at each iteration. The two steps

of the algorithm follow from fixing the dictionary with the current estimate D(`)

while updating the estimate of the coefficients
(
C

(`)
(k)

)
k=1,...,N

. Then, we fix the

coefficients with the updated estimate and update our estimate of the dictionary.

Accordingly, we refer throughout this section to the coefficient and dictionary update

steps respectively. The coefficient update encompasses the assignments to C
(`)
k for

all k = 1, . . . , N , and the dictionary update encompasses the assignment to D(`).
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Algorithm 2: Direct Approach

Data:
(
Y(k)

)
k=1,...,N

,
(
X(k)

)
k=1,...,N

,
(
µ(`)
)
`≥1

Result: D̂ ∈ R(d·m)×r

Initialize D(0);

while not converged do

for k = 1, . . . , N do

C
(`)
k = arg min

C∈Rr×d

1

T ·m · d
∥∥Yk −XkD

(`−1)C
∥∥2

F
+ 2µ(`) ‖C‖1,1;

end

D(`) = arg min
D∈R(m·d)×r

1

N · T · d

N∑
k=1

∥∥∥Yk −XkDC
(`)
k

∥∥∥2

F
s.t.

∥∥∥D(`)
j

∥∥∥ = 1,

j = 1, . . . , r;

end

In the present work, we make no claim as to whether the fixed point of the

alternating minimization algorithm coincides with the minimizer of a corresponding

optimization problem. Such questions in dictionary learning are the subject of

e.g. Gribonval and Schnass [51] and Gribonval, et al. [50].

The dictionary update of Algorithm 2 requires solving a nonconvex problem.

In our analysis, we assume that we can find a global minimum to such a problem.

This is clearly a strong assumption at its face. However, the nonconvex constraint

decouples with respect to the dictionary atoms {Dj}, which allows us to implement

atom-wise proximal algorithms such as that of Bolte, et al. [20]. This algorithm

guarantees convergence to a fixed point of the problem. Given that we are initializing

the dictionary ε-close to the true dictionary, it is perhaps not unreasonable to expect
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that our current estimate and the global minimizer lie within the same convex

region of the objective. If not, it is possible to solve the unconstrained convex

problem and then project onto the unit sphere. The analysis then requires less

elegant techniques for addressing how large this projection can be. This is done

in [2], but it is not particularly illuminating to understanding the mechanism by

which the alternating minimization algorithm—which enjoys widespread practical

application and success—works. Therefore, our analysis assumes that we can solve

the nonconvex problem

In the following, we present our main result which characterizes the conver-

gence of Algorithm 2. In the following sections, we provide the key supporting

results.

4.3.1 Main result

Our main result for the direct approach has a markedly different character

than that of the two-stage approach. Here, we require an accurate initialization of

the dictionary estimate. Then, we characterize the probability of recovering the true

dictionary to arbitrary accuracy. As mentioned in Section 4.3, the result is nega-

tive. In order to have convergence with nonzero probability, we require impractical

conditions on the model, namely vanishing variance of the non-zero coefficients and

innovation.

Theorem 4.3. Let D?,
(
C?

(k)

)
k=1,...,N

, and
(
N(k)

)
k=1,...,N

be generated according

to Model 2. Assume that d
(
D?,D(0)

)
≤ (κ?s/8) ·

√
m · d/s. Then, for any ε ∈
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(
0, (κ?s/8) ·

√
m · d/s

)
, there exists a finite nε ∼ O (log ε) and a sequence(

µ(`)
)
`=1,...,nε

such that for

• T ∼ Ω
(
N · r1/2 · ν4/(m · d · ε3) + d ·m2 logm · logN/(ν4 · log ε)

)
,

• N ∼ Ω (s · r · log(m · d · r)/ log ε), and

• c2 · ν4 ∼ O
(
m3/2 · d1/2 · r · ε/(N · s3/2 · exp (m · d · r)

)
,

with high probability, the dictionary estimate of Algorithm 2 will satisfy

d
(
D?,D(nε)

)
≤ ε.

Proof. We will begin by constructing an ε-sequence
(
ε(`)
)
`=1,...,nε

such that ε(nε) ≤ ε.

Let ε(0) = (κ?s/8) ·
√
m · d/s. Let us choose ε(`) = α · ε(`−1) for α ∈ (0, 1) so that

nε = dlogα ε/ε
(0)e. Recall that d(D?,D(0)) < ε(0) implies that there exists a signed

permutation matrix P such that
∥∥D? −D(0)P

∥∥
F
< ε(0). By Lemma 4.4, we know

that for ` = 1, if conditions (2) and (3) are satisfied, then there exists a µ(1) such

that if conditions (4) and (5) are satisfied for µ(1), then
∥∥D? −D(1)P

∥∥
F
≤ ε(1),

satisfying condition (1) for ` = 2. We can then repeat the reasoning steps for all

` = 2, . . . , nε.

The remainder of the proof will comprise assembling the probabilities of con-

ditions (2), (3), (4), and (5) from Lemma 4.4. Conditions (2) and (3) are global

conditions that we can establish independent of the µ- and ε-sequences. Conditions

(4) and (5) will require us to construct a nested sequence of events from which we

can compute a global probability.

Let us define events A2, A3, A4, and A5 corresponding to conditions (2), (3),
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(4), and (5) as follows:

A2 =
N⋂
k=1

{∥∥∥∥ 1

T
X∗(k)X(k) −R(k)

∥∥∥∥ ≤ δ1 ·
(

ν

1 +
√
d · s · C

)2
}

;

A3 =

{
λmin

(
1

N

N∑
k=1

(
1

d
PC?

(k)

(
PC?

(k)

)∗)⊗ ( 1

T
X∗(k)X(k)

))

≥ (1− δ2) · s · c
2

r
·
(

ν

1 +
√
d · s · C

)2
}

;

A4 =
N⋂
k=1

nε⋂
`=1

{∥∥∥∥ 1

T
X∗(k)N(k)

∥∥∥∥
2,∞
≤ m · d · µ(`)

4

}
; and

A5 =
N⋂
k=1

nε⋂
`=1

 max
D∈R(m·d)×r

∥∥∥( 1
T
X∗(k)X(k)

)
DC?

(k)

∥∥∥
2,∞

‖D‖F
≤ m · d · µ(`)

4 · ε(`−1)

 .

Let us also denote the desired event A0 =
{∥∥D? −D(nε)P

∥∥
F
≤ ε
}

. Then,

P (A0) = P
(
A3

∣∣A2

)
· P (A2) · P (A3) · P (A5)

≥ 1− P
(
AC3
∣∣A2

)
− P

(
AC2
)
− P

(
AC4
)
− P

(
AC5
)
.

We can calculate P
(
AC2
)

using Lemma 4.10 and a union bound over k =

1, . . . , N . This event will happen with vanishing probability, i.e. O (ε), if T ∼

Ω (d ·m2 logm · logN/(ν4 · log ε)).

We can compute P
(
AC3
∣∣A2

)
using Lemma 4.14. This event will happen with

vanishing probability if N ∼ Ω (s · r · log(m · d · r)/ log ε).

Computing P
(
AC4
)

requires some additional consideration. Note that in prov-

ing Lemma 4.4, we showed that
(
µ(`)
)
`=1,...,nε

is a monotonically decreasing sequence

so that{∥∥∥∥ 1

T
X∗(k)N(k)

∥∥∥∥
2,∞
≤ m · d · µ(nε)

4

}
⊆ · · · ⊆

{∥∥∥∥ 1

T
X∗(k)N(k)

∥∥∥∥
2,∞
≤ m · d · µ(1)

4

}
.
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Therefore, A4 =
⋂N
k=1

{∥∥∥ 1
T
X∗(k)N(k)

∥∥∥
2,∞
≤ m·d·µ(nε)

4

}
. Moreover, in Lemma 4.4, we

see that for small ε(`−1), µ(`) ∼ O
(
r−1/2 · ε(`−1)

)
. Using Lemma 4.11 and a union

bound over k = 1, . . . , N , we can compute a bound on P
(
AC4
)
. This event will occur

with vanishing probability for T ∼ Ω
(
N · r1/2 · ν4/(m · d · ε3

)
.

Finally, we consider A5. We note that µ(`)/ε(`−1) is a monotonically increasing

sequence in `. Thus,

A5 =

 max
D∈R(m·d)×r

∥∥∥( 1
T
X∗(k)X(k)

)
DC?

(k)

∥∥∥
2,∞

‖D‖F
≤ m · d · µ(1)

4 · ε(0)

 .

For ε(0) ∈ (ε, κ?s/4 ·
√
m · d/s), we have that µ(1)/ε(0) ∼ O

(
r−1/2 ·

(
ε(0)
)−1/2

)
. This

requires us to bound max
D∈R(m·d)×r

∥∥∥( 1
T
X∗(k)X(k)

)
DC?

(k)

∥∥∥
2,∞

‖D‖F
> C1 ·

√
m · d · s


for some C1 > 0, which we can do using Lemma 4.13 and a union bound over

all k = 1, . . . , N . From this, we see that there is vanishing probability only if

c2 · ν4 ∼ O
(
m3/2 · d1/2 · r3/2 · ε/(N · s3/2 · exp (m · d · r))

)
.

4.3.2 Results for a single iteration of the algorithm

The following result forms the crux of the convergence result for Algorithm 2.

It tells us that for an arbitrary iteration of the alternating minimization algorithm,

given that we are ε-close to recovering the true dictionary, there exists a penalty

parameter that will improve our estimate of the dictionary. This result depends on

several probabilistic events captured in the assumptions of Lemma 4.4.
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The approach is standard (c.f. [2]). From the dictionary update step, we

conclude that our estimate minimizes the objective at least as well as any other

candidate solution while simultaneously satisfying the atom-wise constraints. As

discussed previously in Sec. 4.3, we are assuming that we have access to a solver

which provides a global minimum to this nonconvex problem. From here, the ar-

gument is largely an exercise in book-keeping. The set of µ(`) which satisfy our

per-iteration goal come from a quadratic inequality, and yield a function logarith-

mic in ε(`−1), i.e. µ(`) ∼ O
(√

ε(`)
)

.2 In practice, we should use larger steps in

µ-space (decrease µ(`) more aggressively) as we achieve better accuracy in recovery

(ε(`−1) gets closer to zero).

It would be tempting to conclude from this result, that we can conclude our

main result by an induction argument. However, assumptions (4) and (5) depend

on the penalty parameter µ(`) and dictionary error ε(`−1). It is these events that we

need to show have positive probability for some sequence of dictionary estimates in

Theorem 4.3.

Lemma 4.4. Let D?,
(
C?

(k)

)
k=1,...,N

, and
(
N(k)

)
k=1,...,N

be generated according to

Model 2. Assume the following conditions for some δ1, δ2 ∈ (0, 1):

(1)
∥∥D? −D(`−1)P

∥∥
F
≤ ε(`−1);

(2)

∥∥∥∥ 1

T
X∗(k)X(k) −R(k)

∥∥∥∥ ≤ δ1 ·
(

ν

1 +
√
d · s · C

)2

for all k = 1, . . . , N ; and

(3) λmin

(
1
N

N∑
k=1

(
1
d
PC?

(k)

(
PC?

(k)

)∗)⊗ ( 1
T
X∗(k)X(k)

))
≥ (1− δ2) · s·c2

r
·
(

ν
1+
√
d·s·C

)2

.

2This statement requires that we assume that we are in an error regime where ε(`−1) �

κ?s
√
m · d/s/4.
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Then, for any α ∈ (0, 1) independent of `, there exists a µ(`) > 0 such that if the

following conditions hold:

(4)

∥∥∥∥ 1

T
X∗(k)N(k)

∥∥∥∥
2,∞
≤ m · d · µ(`)

4
for all k = 1, . . . , N and

(5) max
D∈R(m·d)×r

∥∥∥( 1
T
X∗(k)X(k)

)
DC?

(k)

∥∥∥
2,∞

‖D‖F
≤ m · d · µ(`)

4 · ε(`−1)
for all k = 1, . . . , N .

Then, d
(
D?,D(`)

)
≤ α · ε(`−1).

Proof. We will prove the statement in multiple parts. The first part will comprise

algebraic manipulations to isolate the dictionary error, i.e.

1

N · T · d

N∑
k=1

∥∥∥X(k)

(
D?P∗ −D(`)

)
C

(`)
(k)

∥∥∥2

F
≤ r.h.s.

The second part of the argument will comprise upper bounding the right-hand side

(r.h.s.) in terms of computable quantities so that it is linear in the dictionary error,∥∥D?P∗ −D(`)
∥∥
F

. The third part of the argument will lower bound the left-hand side

(l.h.s.) with respect to a quadratic term of the dictionary error, i.e.
∥∥D?P∗ −D(`)

∥∥2

F
.

The fourth part will complete the argument, showing that there exists a µ(`) > 0

such that
∥∥D?P∗ −D(`)

∥∥
F
≤ α · ε(`−1).

(1) As D(`) is a global minimizer, we have

1

N · T · d

N∑
k=1

∥∥∥Y(k) −X(k)D
(`)C

(`)
(k)

∥∥∥2

F
≤ 1

N · T · d

N∑
k=1

∥∥∥Y(k) −X(k)D
?P∗C

(`)
(k)

∥∥∥2

F
.

We substitute Y(k) = X(k)D
?P∗PC?

(k) + N(k) to yield:

1

N · T · d

N∑
k=1

∥∥∥X(k)

(
D?P∗PC?

(k) −D(`)C
(`)
(k)

)
+ N(k)

∥∥∥2

F

≤ 1

N · T · d

N∑
k=1

∥∥∥X(k)D
?P∗

(
PC?

(k) −C
(`)
(k)

)
+ N(k)

∥∥∥2

F
.
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Expanding the squares and combining like terms yields

1

N · T · d

N∑
k=1

[∥∥∥X(k)

(
D?P∗PC?

(k) −D(`)C
(`)
(k)

)∥∥∥2

F

+2
〈
X(k)

(
D?P∗PC?

(k) −D(`)C
(`)
(k)

)
,N(k)

〉
F

]
≤ 1

N · T · d

N∑
k=1

[∥∥∥X(k)D
?P∗

(
PC?

(k) −C
(`)
(k)

)∥∥∥2

F

+2
〈
X(k)D

?P∗
(
PC?

(k) −C
(`)
(k)

)
,N(k)

〉
F

]
.

We can telescope D?P∗PC?
(k) −D(`)C

(`)
(k) to yield

D?P∗PC?
(k) −D(`)C

(`)
(k)

= D?P∗PC?
(k) −D?P∗C

(`)
(k) + D?P∗C

(`)
(k) −D(`)C

(`)
(k)

= D?P∗
(
PC?

(k) −C
(`)
(k)

)
+
(
D?P∗ −D(`)

)
C

(`)
(k).

Substitution, expanding the square, and combining common terms yields

1

N · T · d

N∑
k=1

∥∥∥X(k)

(
D?P∗ −D(`)

)
C

(`)
(k)

∥∥∥2

F

≤ − 2

N · T · d

N∑
k=1

[〈
X(k)

(
D?P∗ −D(`)

)
C

(`)
(k),N(k)

〉
F

+
〈
X(k)D

?P∗
(
PC?

(k) −C
(`)
(k)

)
,X(k)

(
D?P∗ −D(`)

)
C

(`)
(k)

〉
F

]
.

Rearranging, the right-hand side yields two terms linear in the dictionary error:

1

N · T · d

N∑
k=1

∥∥∥X(k)

(
D?P∗ −D(`)

)
C

(`)
(k)

∥∥∥2

F

≤ −

〈
2

N

N∑
k=1

(
1

T
X∗(k)N(k)

)(
1

d
C

(`)
(k)

)∗
,D?P∗ −D(`)

〉
F︸ ︷︷ ︸

(a)

−

〈
2

N

N∑
k=1

(
1

T
X∗(k)X(k)

)
D?P∗

(
PC?

(k) −C
(`)
(k)

)(1

d
C

(`)
(k)

)∗
,D?P∗ −D(`)

〉
F︸ ︷︷ ︸

(b)

.
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(2) From the previous equation, we will telescope 1
d
C

(`)
(k) =

1
d
PC?

(k)−
1
d

(
PC?

(k) −C
(`)
(k)

)
to yield four total terms (a1), (a2), (b1), and (b2), where

1 refers to the PC?
(k) term and 2 refers to the PC?

(k) − C
(`)
(k) term. Our goal is to

bound each term with respect to computable quantities and so that they are linear

in the dictionary error,
∥∥D?P∗ −D(`)

∥∥
F

.

Before computing upper bounds for (a1), (a2), (b1), and (b2), we derive some

quantities that will be used repeatedly in the following bounds. That these are

uniform in k = 1, . . . , N will be important. First, using condition (2) of the lemma,

we can upper bound
∥∥∥ 1
T
X∗(k)X(k)

∥∥∥ uniformly for all k = 1, . . . , N with a deviation:

∥∥∥∥ 1

T
X∗(k)X(k)

∥∥∥∥ ≤ ∥∥R(k)

∥∥+

∥∥∥∥ 1

T
X∗(k)X(k) −R(k)

∥∥∥∥
≤
(

ν

1−
√
d · s · C

)2

+ δ1 ·
(

ν

1 +
√
d · s · C

)2

.

Also using conditions (1), (2), (4), and (5), we can use the result of Lemma 4.5 to

bound the coefficient error uniformly for all k = 1, . . . , N :

∥∥∥(PC?
(k) −C

(`)
(k)

)∥∥∥
1,∞
≤

(
1 +
√
d · s · C
ν

)2

· 48 · s · µ(`)

(1− δ1) ·
(
κ?s − 4 ·

√
s
m·d · ε(`−1)

)2 .

Lastly,
∥∥PC?

(k)

∥∥
1,2
≤
√
d · s · C uniformly for all k = 1, . . . , N by Lemma 4.7. Now,

we proceed with computing upper bounds to the right-hand side.

(a1) Although we expect this term to be small,

E

[
2

N

N∑
k=1

(
1

T
X∗(k)N(k)

)(
1

d
PC?

(k)

)∗]

= 2 · E
[
E
(

1

T
X∗(k)N(k)

)(
1

d
PC?

(k)

)∗ ∣∣∣C?
(k)

]
= 0,
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we accept a worst-case bound due to possible correlation with the dictionary error.

Applying Cauchy-Schwarz, the triangle inequality, and Hölder’s inequality yields the

following upper bound:∣∣∣∣∣
〈

2

N

N∑
k=1

(
1

T
X∗(k)N(k)

)(
1

d
PC?

(k)

)∗
,D?P∗ −D(`)

〉
F

∣∣∣∣∣
≤ 2

N

N∑
k=1

∥∥∥∥( 1

T
X∗(k)N(k)

)∥∥∥∥
2,∞
·
∥∥∥∥(1

d
PC?

(k)

)∗∥∥∥∥
1,1

·
∥∥D?P∗ −D(`)

∥∥
F

≤ C · s ·m · d · µ(`)

2
·
∥∥D?P∗ −D(`)

∥∥
F
.

(a2) In this term, we cannot avoid correlation between the noise

cross-correlation term and coefficient error since they exhibit covariance. Again, a

worst case bound follows from Cauchy-Schwarz, the triangle inequality, and Hölder’s

inequality:∣∣∣∣∣
〈

2

N

N∑
k=1

(
1

T
X∗(k)N(k)

)
1

d

(
PC?

(k) −C
(`)
(k)

)∗
,D?P∗ −D(`)

〉
F

∣∣∣∣∣
≤ 2

N

N∑
k=1

∥∥∥∥( 1

T
X∗(k)N(k)

)∥∥∥∥
2,∞
·
∥∥∥∥1

d

(
PC?

(k) −C
(`)
(k)

)∥∥∥∥
1,1

·
∥∥D?P∗ −D(`)

∥∥
F

≤

(
1 +
√
d · s · C
ν

)2

·
24 · s ·m · d ·

(
µ(`)
)2

(1− δ1) ·
(
κ?s − 4 ·

√
s
m·d · ε(`−1)

)2 ·
∥∥D?P∗ −D(`)

∥∥
F
.
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(b1) We follow a familiar strategy of Cauchy-Schwarz, the triangle inequality,

and Hölder’s inequality to yield∣∣∣∣∣
〈

2

N

N∑
k=1

(
1

T
X∗(k)X(k)

)
D?P∗

(
PC?

(k) −C
(`)
(k)

)(1

d
PC?

(k)

)∗
,D?P∗ −D(`)

〉
F

∣∣∣∣∣
≤ 2

N

N∑
k=1

∥∥∥∥ 1

T
X∗(k)X(k)

∥∥∥∥ · ∥∥∥∥1

d

(
PC?

(k) −C
(`)
(k)

)∥∥∥∥
1,2

·
∥∥PC?

(k)

∥∥
1,2
·
∥∥D?P∗ −D(`)

∥∥
F

≤

(1 +
√
d · s · C

1−
√
d · s · C

)2

+ δ1

 · 96 · C · s2 · µ(`)

(1− δ1) ·
(
κ?s − 4 ·

√
s
m·d · ε(`−1)

)2

·
∥∥D?P∗ −D(`)

∥∥
F
.

(b2) Again, the same sequence results in the following bound:∣∣∣∣∣
〈

2

N

N∑
k=1

(
1

T
X∗(k)X(k)

)
D?P∗

1

d

(
PC?

(k) −C
(`)
(k)

)(
PC?

(k) −C
(`)
(k)

)∗
,D?P∗ −D(`)

〉
F

∣∣∣∣∣
≤ 2

N

N∑
k=1

∥∥∥∥( 1

T
X∗(k)X(k)

)∥∥∥∥ · 1

d
·
∥∥∥(PC?

(k) −C
(`)
(k)

)∥∥∥2

1,2
·
∥∥D?P∗ −D(`)

∥∥
F

≤

(1 +
√
d · s · C

1−
√
d · s · C

)2

+ δ1

 ·(1 +
√
d · s · C
ν

)2

·

[
48 · s · µ(`)

(1− δ1) ·
(
κ?s − 4 ·

√
s
m·d · ε(`−1)

)2

]2

·
∥∥D?P∗ −D(`)

∥∥
F
.
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(3) A lower bound for the left-hand side follows from the conditions of the state-

ment and Lemma 4.6,

1

N · T · d

N∑
k=1

∥∥∥X(k)

(
D?P∗ −D(`)

)
C

(`)
(k)

∥∥∥2

F

≥ λmin

(
1

N

N∑
k=1

(
1

d
C

(`)
(k)

(
C

(`)
(k)

)∗)
⊗
(

1

T
X∗(k)X(k)

))
·
∥∥D?P∗ −D(`)

∥∥2

F

≥

{
(1− δ2) · s · c2

r
·
(

ν

1 +
√
d · s · C

)2

−

(
1 +
√
d · s · C
ν

)2

·
24 · s ·m · d ·

(
µ(`)
)2

(1− δ1) · ε(`−1) ·
(
κ?s − 4 ·

√
s
m·d · ε(`−1)

)2


·
∥∥D?P∗ −D(`)

∥∥2

F
.

Dividing through by
∥∥D?P∗ −D(`)

∥∥
F

will yield an upper bound on the dictionary

error in terms of computable quantities. We will make sense of the result in the

next part.

(4) At a high-level, we have for some positive constants C1, C2, C3, and C4:

∥∥D?P∗ −D(`)
∥∥
F
≤
C1 · µ(`) + C2 ·

(
µ(`)
)2

C3 − C4 · (µ(`))
2 .

This is good news because this is positive for µ(`) ∈ (0, C3/C4). Moreover, it achieves

the correct asymptotic behavior:

lim
µ(`)→0+

C1 · µ(`) + C2 ·
(
µ(`)
)2

C3 − C4 · (µ(`))
2 = 0.

Through this bound, we can drive the error to zero with µ(`).

We would like to achieve linear convergence, i.e.
∥∥D?P∗ −D(`)

∥∥
F
≤ α · ε(`−1),

where α ∈ (0, 1) is independent of `. This leads to the following quadratic equation
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in µ(`):

C · s ·m · d · µ(`)

2
+

(
1 +
√
d · s · C
ν

)2

·
24 · s ·m · d ·

(
µ(`)
)2

(1− δ1) ·
(
κ?s − 4 ·

√
s
m·d · ε(`−1)

)2

+

(1 +
√
d · s · C

1−
√
d · s · C

)2

+ δ1

 · 96 · C · s2 · µ(`)

(1− δ1) ·
(
κ?s − 4 ·

√
s
m·d · ε(`−1)

)2

+

(1 +
√
d · s · C

1−
√
d · s · C

)2

+ δ1

 ·(1 +
√
d · s · C
ν

)2

·

[
48 · s · µ(`)

(1− δ1) ·
(
κ?s − 4 ·

√
s
m·d · ε(`−1)

)2

]2

≤ α · ε(`−1) ·

{
(1− δ2) · s · c2

r
·
(

ν

1 +
√
d · s · C

)2

−

(
1 +
√
d · s · C
ν

)2

·
24 · s ·m · d ·

(
µ(`)
)2

(1− δ1) · ε(`−1) ·
(
κ?s − 4 ·

√
s
m·d · ε(`−1)

)2

 .

The solution will yield one positive real root, µ+

(
ε(`−1)

)
, and one negative real root,

µ−
(
ε(`−1)

)
, functions of ε(`−1). Since we are interested in only positive solutions,

any µ(`) ∈
(
0, µ+

(
ε(`−1)

))
will satisfy the desired result. We have

µ+

(
ε(`−1)

)
=

(1− δ1) ·B ·
(
κ?s − 4 ·

√
s
m·d · ε

(`−1)
)2

96 ·
√
r ·
(
m · d · (1 + α) · (1− δ1) ·

(
κ?s − 4 ·

√
s
m·d · ε(`−1)

)2
+ 96 ·B · s

)
[
−C ·m · d ·

√
r · (1− δ1) ·

(
κ?s − 4 ·

√
s

m · d
· ε(`−1)

)2

+

(
C2 ·m2 · d2 · r · (1− δ1)2 ·

(
κ?s − 4 ·

√
s

m · d
· ε(`−1)

)4

+ 384 · α · ε(`−1) · (1− δ2) · c2

·

(
m · d · (1− δ1) ·

(
κ?s − 4 ·

√
s

m · d
· ε(`−1)

)2

· (1 + α) + 96 ·B · s

))1/2
 ,

where B =

[(
1+
√
d·s·C

1−
√
d·s·C

)2

+ δ1

]
.
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4.3.3 Bounding the error of the coefficient estimation

In this section, we bound the error of the coefficient estimate of Algorithm

2. The proof technique in principle follows that of Bickel, et al. [12], to which we

owe the restricted eigenvalue analysis technique. The adaptation to autoregressive

models is not novel, as it has been done previously in Basu and Michalidis [10] and

Kock and Callot [64]. In fact, there is a considerable history of using `1 penalization

for autoregressive modeling [110, 102, 54, 53, 36]. Our problem introduces new

challenges due to the matrix factorization of the autoregressive parameters; however,

we retain the linear dependence on the sparsity s and penalty parameter µ(`) as in

Basu and Michalidis [10] and Kock and Callot [64]. This is important as the linear

dependence on µ(`) provides us a coercive mechanism to drive the estimate toward

zero with successive iterations.

Assumption (4) of Lemma 4.5 is unique to our problem. It can be understood

as a control on the second moment of the cross correlation of the autocovariance and

coefficients of the autoregressive process. Recall E
[

1
T
X∗(k)X(k)|C(k)

]
= R

(
C?

(k)

)
.

In this way, we are trying to bound a map

D 7→

〈
D,

(
1

T
X∗(k)X(k)

)2

DC?
(k)

(
C?

(k)

)∗〉
F

This condition represents the most difficult event to characterize analytically, and

also achieve probabilistically. The other assumptions are standard (c.f. [10, 64]).

Lemma 4.5. Let D?,
(
C?

(k)

)
k=1,...,N

, and
(
N(k)

)
k=1,...,N

be generated according to

Model 2. Assume the following conditions:
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(1)
∥∥D? −D(`−1)P

∥∥
F
≤ ε(`−1);

(2)
∥∥∥ 1
T
X∗(k)X(k) −R(k)

∥∥∥ ≤ δ1 ·
(

ν
1+
√
d·s·C

)2

for all k = 1, . . . , N ;

(3)
∥∥∥ 1
T
X∗(k)N(k)

∥∥∥
2,∞
≤ m·d·µ(`)

4
for all k = 1, . . . , N ; and

(4) max
D∈R(m·d)×r

∥∥∥( 1
T
X∗(k)X(k)

)
DC?

(k)

∥∥∥
2,∞

‖D‖F
≤ m · d · µ(`)

4 · ε(`−1)
for all k = 1, . . . , N .

Then, the coefficient update of Algorithm 2 will satisfy

∥∥∥PC?
(k) −C

(`)
(k)

∥∥∥
1,∞
≤

(
1 +
√
d · s · C
ν

)2

· 48 · s · µ(`)

(1− δ1) ·
(
κ?s − 4 ·

√
s
m·d · ε(`−1)

)2 .

(4.14)

Proof. First, note that the optimization problem decouples along the columns of the

coefficient matrix,

arg min
C∈Rr×d

1

T ·m · d
∥∥Y(k) −X(k)D

(`−1)C
∥∥2

F
+ 2µ(`) ‖C‖1,1

=

(
arg min

c∈Rr

1

T ·m · d
∥∥(Y(k)

)
i
−X(k)D

(`−1)c
∥∥2

+ 2µ(`) ‖c‖1

)
i=1,...,d

.

We will restrict our attention to a single column at this time. As
(
C

(`)
(k)

)
i

is a

minimizer, we have

1

T ·m · d

∥∥∥(Y(k)

)
i
−X(k)D

(`−1)
(
C

(`)
(k)

)
i

∥∥∥2

+ 2µ(`)
∥∥∥(C

(`)
(k)

)
i

∥∥∥
1

≤ 1

T ·m · d

∥∥∥(Y(k)

)
i
−X(k)D

(`−1)
(
PC?

(k)

)
i

∥∥∥2

+ 2µ(`)
∥∥∥(PC?

(k)

)
i

∥∥∥
1
.

where C?
(k) is the true coefficient matrix. We substitute

(
Y(k)

)
i

= X(k)D
?
(
C?

(k)

)
i
+(

N(k)

)
i

which yields

1

T ·m · d

∥∥∥X(k)

(
D?
(
C?

(k)

)
i
−D(`−1)

(
C

(`)
(k)

)
i

)
+
(
N(k)

)
i

∥∥∥2

+ 2µ(`)
∥∥∥(C

(`)
(k)

)
i

∥∥∥
1

≤ 1

T ·m · d

∥∥∥X(k)

(
D? −D(`−1)P

) (
C?

(k)

)
i
+
(
N(k)

)
i

∥∥∥2

+ 2µ(`)
∥∥∥(PC?

(k)

)
i

∥∥∥
1
.
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Expanding the norms, combining common terms, and rearranging yields

1

T ·m · d

∥∥∥X(k)

(
D?
(
C?

(k)

)
i
−D(`−1)

(
C

(`)
(k)

)
i

)∥∥∥2

≤ 1

T ·m · d

∥∥∥X(k)

(
D? −D(`−1)P

) (
C?

(k)

)
i

∥∥∥2

+
2

T ·m · d

〈
X(k)D

(`−1)
((

C
(`)
(k)

)
i
−
(
PC?

(k)

)
i

)
,
(
N(k)

)
i

〉
+ 2µ(`)

(∥∥∥(PC?
(k)

)
i

∥∥∥
1
−
∥∥∥(C

(`)
(k)

)
i

∥∥∥
1

)
.

We then substitute

D?
(
C?

(k)

)
i
−D(`−1)

(
C

(`)
(k)

)
i

=
(
D? −D(`−1)P

) (
C?

(k)

)
i
−D(`−1)

((
C

(`)
(k)

)
i
−
(
PC?

(k)

)
i

)
,

expand the norm, combine common terms, and rearrange to yield

1

T ·m · d

∥∥∥X(k)D
(`−1)

((
C

(`)
(k)

)
i
−
(
PC?

(k)

)
i

)∥∥∥2

≤ 2

T ·m · d

〈
X(k)

(
D? −D(`−1)P

) (
C?

(k)

)
i
,X(k)D

(`−1)
((

C
(`)
(k)

)
i
−
(
PC?

(k)

)
i

)〉
+

2

T ·m · d

〈
X(k)D

(`−1)
((

C
(`)
(k)

)
i
−
(
PC?

(k)

)
i

)
,
(
N(k)

)
i

〉
+ 2µ(`)

(∥∥∥(PC?
(k)

)
i

∥∥∥
1
−
∥∥∥(C

(`)
(k)

)
i

∥∥∥
1

)
.

We would like to upper bound the first and second terms on the right hand
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side with respect to
∥∥∥(C

(`)
(k)

)
i
−
(
PC?

(k)

)
i

∥∥∥
1

and µ(`). Consider the first term:

2

T ·m · d

〈
X(k)

(
D? −D(`−1)P

) (
C?

(k)

)
i
,X(k)D

(`−1)
((

C
(`)
(k)

)
i
−
(
PC?

(k)

)
i

)〉
=

2

m · d

〈(
D(`−1)

)∗( 1

T
X∗(k)X(k)

)(
D? −D(`−1)P

) (
C?

(k)

)
i
,
(
C

(`)
(k)

)
i
−
(
PC?

(k)

)
i

〉
≤ 2

m · d

∥∥∥∥(D(`−1)
)∗( 1

T
X∗(k)X(k)

)(
D? −D(`−1)P

) (
C?

(k)

)
i

∥∥∥∥
∞

·
∥∥∥(C

(`)
(k)

)
i
−
(
PC?

(k)

)
i

∥∥∥
1

≤ 2

m · d

∥∥∥∥( 1

T
X∗(k)X(k)

)(
D? −D(`−1)P

) (
C?

(k)

)
i

∥∥∥∥ · ∥∥∥(C
(`)
(k)

)
i
−
(
PC?

(k)

)
i

∥∥∥
1
.

Now, using conditions (1) and (4) of the lemma, we have:

2

m · d
·
∥∥∥∥( 1

T
X∗(k)X(k)

)(
D? −D(`−1)P

) (
C?

(k)

)
i

∥∥∥∥
≤ 2

m · d
· m · d · µ

(`)

4 · ε(`−1)
·
∥∥D? −D(`−1)P

∥∥
F

≤ µ(`)

2
.

Now, consider the second term:

2

T ·m · d
·
〈
X(k)D

(`−1)
((

C
(`)
(k)

)
i
−
(
PC?

(k)

)
i

)
,
(
N(k)

)
i

〉
=

2

m · d
·
〈(

C
(`)
(k)

)
i
−
(
PC?

(k)

)
i
,

1

T

(
D(`−1)

)∗
X∗(k)

(
N(k)

)
i

〉
≤ 2

m · d
·
∥∥∥∥ 1

T

(
D(`−1)

)∗
X∗(k)

(
N(k)

)
i

∥∥∥∥
∞
·
∥∥∥(C

(`)
(k)

)
i
−
(
PC?

(k)

)
i

∥∥∥
1

≤ 2

m · d
·
∥∥∥∥ 1

T
X∗(k)

(
N(k)

)
i

∥∥∥∥ · ∥∥∥(C
(`)
(k)

)
i
−
(
PC?

(k)

)
i

∥∥∥
1
.

By the conditions of the lemma, 2/(m · d) ·
∥∥∥ 1
T
X∗(k)

(
N(k)

)
i

∥∥∥ ≤ µ(`)/2.

Now, we have the following upper for the left-hand side:

1

T ·m · d

∥∥∥X(k)D
(`−1)

((
C

(`)
(k)

)
i
−
(
PC?

(k)

)
i

)∥∥∥2

≤ µ(`)
∥∥∥(C

(`)
(k)

)
i
−
(
PC?

(k)

)
i

∥∥∥
1

+ 2µ(`)
(∥∥∥(PC?

(k)

)
i

∥∥∥
1
−
∥∥∥(C

(`)
(k)

)
i

∥∥∥
1

)
.
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Let J = supp
((

PC?
(k)

)
i

)
and define h =

(
C

(`)
(k)

)
i
−
(
PC?

(k)

)
i
. We can upper bound

1/(T ·m · d)
∥∥X(k)D

(`−1)h
∥∥2

using
∥∥∥(PC?

(k)

)
i

∥∥∥
1
−
∥∥∥(C

(`)
(k)

)
i

∥∥∥
1
≤ ‖h‖1,

1

T ·m · d
∥∥X(k)D

(`−1)h
∥∥2 ≤ 3 · µ(`) · ‖h‖1 .

Before proceeding, we note from 1/(T ·m · d)
∥∥X(k)D

(`−1)h
∥∥2 ≥ 0 that

0 ≤ µ(`) ‖hJ‖1 + µ(`) ‖hJC‖1 + 2µ(`)
(∥∥∥(PC?

(k)

)
i

∥∥∥
1
−
∥∥∥hJ +

(
PC?

(k)

)
i

∥∥∥
1
− ‖hJC‖1

)
≤ 3µ(`) ‖hJ‖1 − µ

(`) ‖hJC‖1 .

This leads to the conclusion ‖hJC‖1 ≤ 3 ‖hJ‖1, and eventually ‖h‖2
1 ≤ 16 · s · ‖hJ‖2.

We will require these relationships to complete the proof.

Now, we begin lower bounding 1/(T ·m · d)
∥∥X(k)D

(`−1)h
∥∥2

F
. By the assump-

tions of the proposition,

σmin

(
1

T
X∗(k)X(k)

)
≥ σmin

(
R(k)

)
−
∥∥∥∥ 1

T
X∗(k)X(k) −R(k)

∥∥∥∥
≥ (1− δ1) ·

(
ν

1 +
√
d · s · C

)2

.

Therefore,

1

T ·m · d
∥∥X(k)D

(`−1)h
∥∥2 ≥ (1− δ1) ·

(
ν

1 +
√
d · s · C

)2

· 1

m · d
∥∥D(`−1)h

∥∥2
.

By Lemma 4.12,

1

m · d
∥∥D(`−1)h

∥∥2
=

(∥∥D(`−1)h
∥∥

√
m · d

)2

≥
(
κ?s − 4 ·

√
s

m · d
· ε(`−1)

)2

· ‖hJ‖2 .

We now have

(1− δ1) ·
(

ν

1 +
√
d · s · C

)2

·
(
κ?s − 4 ·

√
s

m · d
· ε(`−1)

)2

· ‖hJ‖2 ≤ 3µ(`) ‖h‖1 .
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Using ‖h‖2
1 ≤ 16 · s · ‖hJ‖2 yields

‖h‖1 ≤

(
1 +
√
d · s · C
ν

)2

· 48 · s · µ(`)

(1− δ1) ·
(
κ?s − 4 ·

√
s
m·d · ε(`−1)

)2 .

Although we have only calculated a bound for the coefficient error of a single

column, the bound is uniform across the columns i = 1, . . . , d by the assumptions

of the Lemma. This completes the argument.

4.3.4 Deriving a lower bound to isolate the dictionary error

This result is unique to this atomic decomposition of autoregressive processes.

In Lemma 4.4, we end-up with an expression,

1

N · T · d

N∑
k=1

∥∥∥Xk

(
D?P∗ −D(`)

)
C

(`)
k

∥∥∥2

F
≤ r.h.s.

We want to lower bound this quantity with respect to the dictionary error, and so

we require a bound on the smallest eigenvalue of the non-negative map

D 7→

〈
D,

1

N

N∑
k=1

(
1

T
X∗(k)X(k)

)
D

(
1

d
C

(`)
(k)

(
C

(`)
(k)

)∗)〉
F

.

We prove Lemma 4.6 using a straightforward deviation to separate the purely ran-

dom part of this operator from that which depends on Algorithm 2. This allows us

to bound the smallest eigenvalue of the purely random operator,

,D 7→

〈
D,

1

N

N∑
k=1

(
1

T
X∗(k)X(k)

)
D

(
1

d
C?

(k)

(
C?

(k)

)∗)〉
F

using Corollary 2.5.1, a matrix concentration inequality of Tropp [108]. This result

is captured in condition (4) of Lemma 4.6.

107



Lemma 4.6. Let D?,
(
C?

(k)

)
k=1,...,N

, and
(
N(k)

)
k=1,...,N

be generated according to

Model 2. Assume the following conditions:

(1)
∥∥D? −D(`−1)P

∥∥
F
≤ ε(`−1);

(2)

∥∥∥∥ 1

T
X∗(k)X(k) −R(k)

∥∥∥∥ ≤ δ1 ·
(

ν

1 +
√
d · s · C

)2

for all k = 1, . . . , N ;

(3)

∥∥∥∥ 1

T
X∗(k)N(k)

∥∥∥∥
2,∞
≤ m · d · µ(`)

4
for all k = 1, . . . , N ;

(4) λmin

(
1
N

N∑
k=1

(
1
d
PC?

(k)

(
PC?

(k)

)∗)⊗ ( 1
T
X∗(k)X(k)

))
≥ (1− δ2) · s·c2

r
·
(

ν
1+
√
d·s·C

)2

;

and

(5) max
D∈R(m·d)×r

∥∥∥( 1
T
X∗(k)X(k)

)
DC?

(k)

∥∥∥
2,∞

‖D‖F
≤ m · d · µ(`)

4 · ε(`−1)
for all k = 1, . . . , N .

Then, the coefficient estimates of Algorithm 2 will satisfy

λmin

(
1

N

N∑
k=1

(
1

d
C

(`)
(k)

(
C

(`)
(k)

)∗)
⊗
(

1

T
X∗(k)X(k)

))

≥ (1− δ2) · s · c2 · ν2

r ·
(

1 +
√
d · s · C

)2 −

(
1 +
√
d · s · C
ν

)2

·
24 · s ·m · d ·

(
µ(`)
)2

(1− δ1) · ε(`−1) ·
(
κ?s − 4 ·

√
s
m·d · ε(`−1)

)2 .

(4.15)
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Proof. We begin with telescoping

1

d
C

(`)
(k)

(
C

(`)
(k)

)∗
=

1

d
PC?

(k)

(
PC?

(k)

)∗ − (1

d
PC?

(k)

(
PC?

(k)

)∗ − 1

d
C

(`)
(k)

(
C

(`)
(k)

)∗)
=

1

d
PC?

(k)

(
PC?

(k)

)∗ − 1

d
PC?

(k)

(
PC?

(k) −C
(`)
(k)

)∗
− 1

d

(
PC?

(k) −C
(`)
(k)

)(
C

(`)
(k)

)∗
=

1

d
PC?

(k)

(
PC?

(k)

)∗ − 1

d
PC?

(k)

(
PC?

(k) −C
(`)
(k)

)∗
− 1

d

(
PC?

(k) −C
(`)
(k)

) (
PC?

(k)

)∗
+

1

d

(
PC?

(k) −C
(`)
(k)

)(
PC?

(k) −C
(`)
(k)

)∗
.

From this relationship, we can derive the following using Weyl’s inequality:

λmin

(
1

N

N∑
k=1

(
1

d
C

(`)
(k)

(
C

(`)
(k)

)∗)
⊗
(

1

T
X∗(k)X(k)

))

≥ λmin

(
1

N

N∑
k=1

(
1

d
PC?

(k)

(
PC?

(k)

)∗)⊗ ( 1

T
X∗(k)X(k)

))
︸ ︷︷ ︸

(a)

− 2 ·

∥∥∥∥∥ 1

N

N∑
k=1

(
1

d

(
PC?

(k) −C
(`)
(k)

) (
PC?

(k)

)∗)⊗ ( 1

T
X∗(k)X(k)

)∥∥∥∥∥︸ ︷︷ ︸
(b)

.

We have a lower bound for term (a) from condition (4) of the lemma, so we want

to upper bound term (b). After applying the triangle inequality, we can decouple

the norms of the respective matrices in the Kronecker product. Then, we will use
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the variational definition of a singular value:

max
D∈R(m·d)×r

∥∥∥( 1
T
X∗(k)X(k)

)
D
(

1
d

(
PC?

(k)

) (
PC?

(k) −C
(`)
(k)

)∗)∥∥∥
F

‖D‖F

≤

 max
D∈R(m·d)×r

∥∥∥( 1
T
X∗(k)X(k)

)
DPC?

(k)

∥∥∥
2,∞

‖D‖F

 · ∥∥∥∥1

d

(
PC?

(k) −C
(`)
(k)

)∥∥∥∥
1,1

=

 max
D̃∈R(m·d)×r

∥∥∥( 1
T
X∗(k)X(k)

)
D̃C?

(k)

∥∥∥
2,∞∥∥∥D̃P−1

∥∥∥
F

 · ∥∥∥∥1

d

(
PC?

(k) −C
(`)
(k)

)∥∥∥∥
1,1

=

 max
D̃∈R(m·d)×r

∥∥∥( 1
T
X∗(k)X(k)

)
D̃C?

(k)

∥∥∥
2,∞∥∥∥D̃∥∥∥

F

 · ∥∥∥∥1

d

(
PC?

(k) −C
(`)
(k)

)∥∥∥∥
1,1

.

We can upper bound the first term for all k = 1, . . . , N using condition (5) of the

lemma, and using conditions (1)-(3), and (5), we can use Lemma 4.5 to bound the

second term for all k = 1, . . . , N :

∥∥∥∥1

d

(
PC?

(k) −C
(`)
(k)

)∥∥∥∥
1,1

≤

(
1 +
√
d · s · C
ν

)2

· 48 · s · µ(`)

(1− δ1) ·
(
κ?s − 4 ·

√
s
m·d · ε(`−1)

)2 .

4.3.5 Simulations

In this section, we report results from applying Algorithm 2 to simulated

data. The simulated data was generated according to Model 2 using d = 4, m =

2, and s = 2. We evaluated accuracy using the dictionary metric scaled by the

number of dictionary atoms. For each condition, we ran twenty simulations and

reported statistics over those experiments. The inner loop of the algorithm includes

an iterative estimator for the coefficient estimate of every observation.
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Figure 4.4: r−1/2d
(
D?, D̂

)
. We cannot discern the expected behavior of the error

as a function of N and T . Here, we use r = 9. Likely, we cannot simulate sufficient

size problems to overcome the finite sample factors in the result.

4.4 Lemmata

In this section, we prove the majority of technical lemmas required for results

in Sec. 4.2 and 4.3.

4.4.1 Consequences of Models 1 and 2

Lemma 4.7. Let
(
C?

(k)

)
k=1,...,N

be generated according to Model 1 or 2. Then, for

all k = 1, . . . , N , ∥∥C?
(k)

∥∥ ≤ ∥∥C?
(k)

∥∥
1,2
≤
√
d · s · C.
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Figure 4.5: r−1/2d
(
D?, D̂

)
. We see linear increase in error with increases in dictio-

nary redundancy. The mixed effects are less discernible due to the implicit depen-

dence on observation length.

Proof. This is shown through Hölder’s inequality:

∥∥C?
(k)

∥∥ = sup
v∈Sr−1

∥∥C?
(k)v

∥∥
= sup

v∈Sr−1

(
d∑
j=1

∣∣∣〈(C?
(k)

)
j
,v
〉∣∣∣2)1/2

≤ sup
v∈Sr−1

(
d∑
j=1

∥∥∥(C?
(k)

)
j

∥∥∥2

1
· ‖v‖2

∞

)1/2

=
∥∥C?

(k)

∥∥
1,2

≤
√
d · s · C.

The final inequality follows from Model 1 and 2, in which the column support is

fixed of size s and entries bounded by C.
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Lemma 4.8. Let C?
(k), D?, and N(k) satisfy the conditions of Model 1 or 2. Then,

for all k = 1, . . . , N

(
ν

1 +
√
d · s · C

)2

≤ σmin
(
R(k)

)
≤ σmax

(
R(k)

)
≤
(

ν

1−
√
d · s · C

)2

(4.16)

almost surely.

Proof. This is a simple consequence of Thm. 2.11 and Lemma 4.7 after noting

∥∥D?C?
(k)

∥∥ ≤ ∥∥D?C?
(k)

∥∥
F

≤ ‖D?‖2,∞ ·
∥∥C?

(k)

∥∥
1,2

=
∥∥C?

(k)

∥∥
1,2
.

Here, we have used a variant of Hölder’s inequality for the Frobenius norm and that

D? has unit norm columns.

Lemma 4.9. Let
(
C?

(k)

)
k=1,...,N

be generated according to Model 2. Then,

E
1

d
C?

(k)

(
C?

(k)

)∗
=
s · c2

r
I

for all k = 1, . . . , N .

Proof. Note that 1
d
C?

(k)

(
C?

(k)

)∗
is the sample covariance:

1

d
C?

(k)

(
C?

(k)

)∗
=

1

d

d∑
i=1

(
C?

(k)

)
i

(
C?

(k)

)∗
i
.

Therefore, we first recognize that this is equivalent to the column-wise covariance.

There are two independent random experiments that determine the coefficients of a

column: the choice of support and the value of non-zero coefficients. The support

must be of size s, and it is chosen uniformly at random. Thus, the probability of
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an element being in the support is s/r, and that two elements are in the support

(s/r)2. However, the non-zero coefficients are then chosen independently from a

centered Gaussian with variance c2, which eliminates all cross-terms. This provides

the desired result.

4.4.2 Concentration of
∥∥∥ 1
TX∗(k)X(k) −R(k)

∥∥∥
Lemma 4.10. Let D?, C?

(k), and N(k) be consistent with Model 2 or Model 1. Then,

for any k = 1, . . . , N and every δ1 ∈ (0, 1),

P

({∥∥∥∥R(k) −
1

T
X∗(k)X(k)

∥∥∥∥ > δ1 ·
(

ν

1 +
√
d · s · C

)2
})
≤ 2 ·m · 9(m·d)

· exp

(
−c1 · (T/m) ·min

([
δ1 · ν4

2K1 · (1− d · s2 · C2)2

]2

,
δ1 · ν4

2K1 · (1− d · s2 · C2)2

))
,

(4.17)

where c1 > 0 is a global constant.

Proof. We will prove the statement in two parts. First, we will fix a C?
(k) and

concentrate
∥∥∥ 1
T
X∗(k)X(k) −R(k)

∥∥∥. Then, we will use this result to prove the global

bound. This proof approach is adapted from that of Thm. 2.6 of Vershynin [111].

(Fixed C?
(k)) For a fixed C?

(k) and δ > 0, we want to upper bound

P

({∥∥∥∥ 1

T
X∗(k)X(k) −R(k)

∥∥∥∥ > δ

} ∣∣∣∣∣C?
(k)

)

Fix a 1/4-net of S(m·d)−1, K1/4, so that by Lemma 2.8,

∥∥∥∥ 1

T
X∗(k)X(k) −R(k)

∥∥∥∥ ≤ 2 · max
v∈K1/4

∣∣∣∣〈( 1

T
X∗(k)X(k) −R(k)

)
v,v

〉∣∣∣∣ .
Now, we want to show that

∣∣ 1
T
‖Xv‖2

2 −
〈
R(k)v,v

〉
2

∣∣ ≤ δ/2 for all v ∈ K1/4.
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For a fixed v ∈ K1/4, we want to concentrate
∣∣∣ 1
T

∥∥X(k)v
∥∥2 −

〈
R(k)v,v

〉∣∣∣. To

do so, we want to express 1
T

∥∥X(k)v
∥∥2

2
as a quadratic function of a Gaussian random

vector. Let v∗ = [v∗1 · · ·v∗m], then,

X(k)v =

(
m∑
j=1

〈xt+j,vj〉

)
t=0,...,T−1

.

Recall that xt =
[
(I−A)−1 n

]
t

=
[
(I−A)−1 (νz)

]
t
, and note

∑m
j=1 〈xt+j,vj〉 =〈

R
1/2
(k) zt,v

〉
where R

1/2
(k) is the finite dimensional truncation of z 7→

(
I−A(k)

)−∗
(νz)

and zt ∼ N (0, I). Now, consider
〈
v, 1

T
X∗(k)X(k)v

〉
,

〈
v,

1

T
X∗(k)X(k)v

〉
=

1

T

T∑
t=1

(〈
R

1/2
(k) zt,v

〉)2

=
1

T

T∑
t=1

〈
zt,R

1/2
(k) vv∗R

1/2
(k) zt

〉
.

Since z∗t =
[
z∗t,1 · · · z∗t,m

]
is highly correlated with zt+1, . . . , zt+m−1, we note the

following (without loss of generality, assume T (modm) = 0):

〈
v,

1

T
X∗(k)X(k)v

〉
=

1

m

m∑
j=1

1

(T/m)

T/m∑
t=1

〈
zt·m+j,R

1/2
(k) vv∗R

1/2
(k) zt·m+j

〉
.

From this, we can derive the upper bound

P
({∣∣∣∣ 1

T
‖Xv‖2

2 −
〈
R(k)v,v

〉
2

∣∣∣∣ ≤ δ/2

} ∣∣∣C?
(k)

)

≤
m∑
j=1

P


∣∣∣∣∣∣ 1

T/m

T/m∑
t=1

〈
zt·m+j,R

1/2
(k) vv∗R

1/2
(k) zt·m+j

〉
−
〈
R(k)v,v

〉∣∣∣∣∣∣ ≤ δ/2


 .

Note that we now have a sum of centered random variables which will allow us to

use a Bernstein type inequality to bound the sum.

Theorem 2.9 (Hanson-Wright inequality) tells us that the summands are at
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least sub-exponential:

P
({∣∣∣〈zt·m+j,R

1/2
(k) vv∗R

1/2
(k) zt·m+j

〉
−
〈
R(k)v,v

〉∣∣∣ > ct

})
≤ 2 · exp

−c ·min

[ ct

2K2 ·
〈
v,R(k)v

〉]2

,
ct

2K2 ·
〈
v,R(k)v

〉


≤ 2 · exp

−c ·min

[ ct

2K2 ·
∥∥R(k)

∥∥
]2

,
ct

2K2 ·
∥∥R(k)

∥∥
 ,

for any ct > 0, c a global constant, and K the sub-Gaussian norm of z. The second

inequality follows from the fact that
〈
v,R(k)v

〉
≤
∥∥R(k)

∥∥ for all v ∈ K1/4. The

sub-exponential norm is K1/
∥∥R(k)

∥∥ for some K1 > 0 depending on K and c above.

Thus, by Prop. 5.16 of Vershynin [111], we have

P


∣∣∣∣∣∣ 1

T/m

T/m∑
t=1

〈
zt·m+j,R

1/2
(k) vv∗R

1/2
(k) zt·m+j

〉
−
〈
R(k)v,v

〉∣∣∣∣∣∣ ≤ δ/2




≤ 2 · exp

−c1 · (T/m) ·min

[δ · ∥∥R(k)

∥∥
2 ·K1

]2

,
δ ·
∥∥R(k)

∥∥
2 ·K1

 ,

for c1 > 0 a global constant. As this is independent of j = 1, . . . ,m,

P
({∣∣∣∣ 1

T

∥∥X(k)v
∥∥2

2
−
〈
R(k)v,v

〉
2

∣∣∣∣ ≤ δ/2

} ∣∣∣C?
(k)

)

≤ 2 ·m · exp

−c1 · (T/m) ·min

[δ · ∥∥R(k)

∥∥
2 ·K1

]2

,
δ ·
∥∥R(k)

∥∥
2 ·K1

 .

Finally, by a union bound over all v ∈ K1/4, with
∣∣K1/4

∣∣ ≤ 9(m·d) by Lemma

2.7, we have the following upper bound:

P

({∥∥∥∥ 1

T
X∗(k)X(k) −R(k)

∥∥∥∥ > δ

} ∣∣∣∣∣C?
(k)

)

≤ 2 ·m · 9(m·d) · exp

−c1 · (T/m) ·min

[δ · ∥∥R(k)

∥∥
2 ·K1

]2

,
δ ·
∥∥R(k)

∥∥
2 ·K1

 .
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(Global bound) The above result concentrates
{∥∥∥ 1

T
X∗(k)X(k) −R(k)

∥∥∥ > δ
}

in terms

of
∥∥R(k)

∥∥, a function of C?
(k). Therefore, we let δ be defined as in the statement of

the lemma and marginalize over C?
(k):

P

({∥∥∥∥ 1

T
X∗(k)X(k) −R(k)

∥∥∥∥ > δ1 ·
(

ν

1 +
√
d · s · C

)2
})

=

∫
P

({∥∥∥∥ 1

T
X∗(k)X(k) −R(k)

∥∥∥∥ > δ1 ·
(

ν

1 +
√
d · s · C

)2
}∣∣∣∣∣C?

(k)

)
P
(
C?

(k)

)
.

We can lower bound the integrand with a global bound from Lemma 4.8,
∥∥R(k)

∥∥ ≤(
ν

1−
√
d·s·C

)2

, to yield the desired result.

4.4.3 Concentration of the cross-correlation of the observations and

noise

Lemma 4.11. Let D?, C?
(k), and N(k) be consistent with Model 2 or Model 1. Then,

for any k = 1, . . . , N and every δ > 0,

P

({∥∥∥∥ 1

T
X∗(k)N(k)

∥∥∥∥
2,∞

> δ

})
≤ m · d · ν4

T ·
(

1−
√
d · s · C

)2

· δ2

. (4.18)

Proof. We will prove the statement in two parts, first concentrating{∥∥∥ 1
T
X∗(k)N(k)

∥∥∥
2,∞
≤ δ

}
for a fixed C?

(k) and then marginalizing over C?
(k).

(Fixed C?
(k)) We want to show that

P

({∥∥∥∥ 1

T
X∗(k)N(k)

∥∥∥∥
2,∞

> δ

}∣∣∣∣∣C?
(k)

)
≤ m · d · ν4

T ·
(

1−
√
d · s · C

)2

· δ2
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for every δ > 0. For the remainder of this section, we will drop the k subscript for

readability. Let us first visualize 1
T
X∗N:

1

T
X∗(k)N(k) =


1
T

∑T+m
t=m x[t]n∗[t+ 1]

...

1
T

∑T
t=1 x[t]n∗[t+m]


︸ ︷︷ ︸

R(m·d)×d

.

1
T
X∗(k)N(k) contains the sample cross-correlations of (x[t])t=1,...,T+m and

(n[t])t=m,...,T+m+1 at lags of 1, . . . ,m. As the observed process is causally dependent

on the noise process, x[t] =
[
(I−A)−1 n

]
[t], in expectation, the blocks of 1

T
X∗N

are 0. Any observed correlation is spurious.

Now, we consider the quantity that we must bound, the maximum column

norm of 1
T
X∗N. Without loss of generality, assume that T (modm) = 0, and let

x̃[t] = [x[t]∗ · · ·x[t−m+ 1]∗]∗. Note that (x̃[t])t are identically distributed with

covariance R(k).

P

({∥∥∥∥ 1

T
X∗N

∥∥∥∥
2,∞

> δ

}∣∣∣∣∣C?
(k)

)

= P

({
max
i=1,...,d

∥∥∥∥∥ 1

T

T∑
t=1

ni[t+m]x̃[t+m− 1]

∥∥∥∥∥ > δ

}∣∣∣∣∣C?
(k)

)

= P

 max
i=1,...,d

∥∥∥∥∥∥ 1

m

m∑
j=1

1

T/m

T/m∑
t=1

ni[t ·m+m]x̃[t ·m+ j − 1]

∥∥∥∥∥∥ > δ


∣∣∣∣∣C?

(k)


≤

d∑
i=1

m∑
j=1

P


∥∥∥∥∥∥ 1

T/m

T/m∑
t=1

ni[t ·m+ j]x̃[t ·m+ j − 1]

∥∥∥∥∥∥ > δ


∣∣∣∣∣C?

(k)


We have attempted to separate the sequence into nearly iid terms,

(x[t ·m+ j − 1])t=1,...,T/m for each j = 1, . . . ,m. We can bound the probability
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using a Markov inequality:

P


∥∥∥∥∥∥ 1

T/m

T/m∑
t=1

ni[t ·m+ j]x̃[t ·m+ j − 1]

∥∥∥∥∥∥ > δ


∣∣∣∣∣C?

(k)


≤ 1

δ2
· E

∥∥∥∥∥∥ 1

T/m

T/m∑
t=1

ni[t ·m+ j]x̃[t ·m+ j − 1]

∥∥∥∥∥∥
2

≤ 1

δ2
· E
(

1

T/m

)2 T/m∑
s,t=1

ni[t ·m+ j]ni[s ·m+ j] 〈x̃[t ·m+ j − 1], x̃[s ·m+ j − 1]〉

What we would like to do at this point, is eliminate all but the diagonal terms,

s = t due to the independence of ni[t ·m+ j] and ni[s ·m+ j] for any s 6= t and all

j = 1, . . . ,m. We will observe dependence between x̃[t ·m+j−1] and ni[s ·m+j] for

all s = 1, . . . , T/m that satisfy s = t−1. However, when this happens, ni[t ·m+j] is

independent of the rest of the terms, and Eni[t ·m+ j] = 0. Thus, we can eliminate

all cross terms. Moreover, the noise terms are independent of the observations by

causality. This leads to the following conclusion:

1

δ2
· E
(

1

T/m

)2 T/m∑
s,t=1

ni[t ·m+ j]ni[s ·m+ j] 〈x̃[t ·m+ j − 1], x̃[s ·m+ j − 1]〉

≤ 1

δ2
·
(

1

T/m

)
·
(
En2

i

)
· E

 1

T/m

T/m∑
t=1

‖x̃[j ·m+ t− 1]‖2


≤ 1

δ2
·
(

1

T/m

)
·
(
En2

i

)
·
(
E ‖x̃‖2)

≤
ν2 · tr

(
R(k)

)
T/m · δ2

.
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(Global bound) Now, we marginalize over C?
(k),

P

({∥∥∥∥ 1

T
X∗(k)N(k)

∥∥∥∥
2,∞

> δ

})

=

∫
P

({∥∥∥∥ 1

T
X∗(k)N(k)

∥∥∥∥
2,∞

> δ

}∣∣∣∣∣C?
(k)

)
P
(
C?

(k)

)
≤ ν2

T/m · δ2
·
∫

tr
(
R(k)

)
P
(
C?

(k)

)
.

To complete the proof, we note that tr
(
R(k)

)
≤ d ·

∥∥R(k)

∥∥ ≤ d ·
(

ν
1−
√
d·s·C

)2

almost

surely from Lemma 4.8.

4.4.4 Restricted eigenvalue condition of the dictionary estimate

Lemma 4.12. Let D? satisfy the s-restricted eigenvalue condition with κ?s > 4 ·√
s
m·d · ε for some ε > 0. Then, for any D which satisfies

d (D,D?) ≤ ε, (4.19)

D satisfies a s-restricted eigenvalue condition with κs > 0.

Proof. We will control the s-restricted eigenvalue condition of D by considering

the magnitude of the perturbation from D?P∗, where P is the signed permutation

matrix of the dictionary metric (eq. (2.43)). This is linear in ε. Let h 6= 0 ∈ Rm,
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then

‖Dh‖2 = ‖D?P∗ − (D?P∗ −DP) h‖2

≥ ‖D?P∗h‖2 − ‖(D
?P∗ −D) h‖2

≥ ‖D?P∗h‖2 −

∥∥∥∥∥
m∑
i=1

(P∗h)i (D
? −DP)i

∥∥∥∥∥
2

≥ ‖D?P∗h‖2 −
m∑
i=1

|(P∗h)i| · ‖(D
? −DP)i‖2

≥ ‖D?P∗h‖2 − ‖D
?P∗h‖2 · ‖D

? −DP‖F

≥ ‖D?P∗h‖2 − ε · ‖D
?P∗h‖2 .

Substituting this relationship into the definition of s-restricted eigenvalue condition

gives

min
J⊂{1,...,r}
|J |≤s

min
h6=0∈Rr

‖hJC‖
1
≤3‖hJ‖1

‖Dh‖2√
m · d ‖hJ‖2

≥ min
J⊂{1,...,r}
|J |≤s

min
h6=0∈Rr

‖hJC‖
1
≤3‖hJ‖1

‖D?P∗h‖2√
n ‖(P∗h)J‖2

− ε · ‖(P∗h)‖2√
m · d ‖(P∗h)J‖2

.

Note that h̃ = P∗h satisfies
∥∥∥h̃JC

∥∥∥
1
≤ 3

∥∥∥h̃J∥∥∥
1
, and for such vectors,

∥∥∥h̃∥∥∥
2
≤
∥∥∥h̃∥∥∥

1
≤

4
∥∥∥h̃J∥∥∥

1
≤ 4
√
s
∥∥∥h̃J∥∥∥

2
. Ultimately, this yields

min
J⊂{1,...,r}
|J |≤s

min
h6=0∈Rr

‖hJC‖
1
≤3‖hJ‖1

‖Dh‖2√
m · d ‖hJ‖2

≥ κ?s − 4 ·
√

s

m · d
· ε.

This quantity is positive by the statement of the lemma.
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4.4.5 Concentration of
∥∥∥( 1

TX∗(k)X(k)

)
DC?

(k)

∥∥∥
2,∞

Lemma 4.13. Let D?,
(
C?

(k)

)
k=1,...,N

, and
(
N(k)

)
k=1,...,N

be generated according to

Model 2. Then, for any δ > 0 and all k = 1, . . . , N ,

P


 max

D∈R(m·d)×r

∥∥∥( 1
T
X∗(k)X(k)

)
DC?

(k)

∥∥∥
2,∞

‖D‖F
> δ




≤ C1 · 5m·d·r ·
d · s · c2

r · δ2
·
(

ν

1 +
√
d · s · C

)4

,

(4.20)

for some positive constant C1.

Proof. We will make use of a covering argument. Let K1/2 be a 1/2-net covering of

the unit ‖·‖F -sphere in R(m·d)×r. By Lemma 2.8, we have

max
D∈R(m·d)×r

∥∥∥( 1
T
X∗(k)X(k)

)
DC?

(k)

∥∥∥
2,∞

‖D‖F
≤ 2 · max

D∈K1/2

∥∥∥∥( 1

T
X∗(k)X(k)

)
DC?

(k)

∥∥∥∥
2,∞

,

and so we want to show that for all D ∈ K1/2,

∥∥∥∥( 1

T
X∗(k)X(k)

)
DC?

(k)

∥∥∥∥
2,∞
≤ δ/2.

Now, we want establish the probability of the complement of this event. As the

columns of C?
(k) are chosen independently,

P

({∥∥∥∥( 1

T
X∗(k)X(k)

)
DC?

(k)

∥∥∥∥
2,∞

> δ/2

})

=
d∑
i=1

P
({∥∥∥∥( 1

T
X∗(k)X(k)

)
D
(
C?

(k)

)
i

∥∥∥∥ > δ/2

})

=
d∑
i=1

P

({∥∥∥∥( 1

T
X∗(k)X(k)

)
D
(
C?

(k)

)
i

∥∥∥∥2

> δ2/4

})
.
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By Markov’s inequality,

P

({∥∥∥∥( 1

T
X∗(k)X(k)

)
D
(
C?

(k)

)
i

∥∥∥∥2

> δ2/4

})

≤ 4

δ2
· E
∥∥∥∥( 1

T
X∗(k)X(k)

)
D
(
C?

(k)

)
i

∥∥∥∥2

.

We consider the term under expectation:

E
∥∥∥∥( 1

T
X∗(k)X(k)

)
D
(
C?

(k)

)
i

∥∥∥∥2

= E
〈(

1

T
X∗(k)X(k)

)
D
(
C?

(k)

)
i
,

(
1

T
X∗(k)X(k)

)
D
(
C?

(k)

)
i

〉
= E

〈
D
(
C?

(k)

)
i
,

(
1

T
X∗(k)X(k)

)2

D
(
C?

(k)

)
i

〉

= E

[
E

[〈
D
(
C?

(k)

)
i
,

(
1

T
X∗(k)X(k)

)2

D
(
C?

(k)

)
i

〉∣∣∣∣∣C?
(k)

]]
.

Note that by the assumptions of Model 2 and Lemma 4.8, we have a bound inde-

pendent of the realization C?
(k),∥∥∥∥∥E

[(
1

T
X∗(k)X(k)

)2 ∣∣∣∣C?
(k)

]∥∥∥∥∥ ≤ C0 ·
(

ν

1 +
√
d · s · C

)4

.

for some C0. Therefore,

E
∥∥∥∥( 1

T
X∗(k)X(k)

)
D
(
C?

(k)

)
i

∥∥∥∥2

≤ C0 ·
(

ν

1 +
√
d · s · C

)4

·
〈
D
(
E
(
C?

(k)

)
i

(
C?

(k)

)∗
i

)
,D
〉

≤ C0 ·
(

ν

1 +
√
d · s · C

)4

· s · c
2

r
.

Putting this together, we have

P

({∥∥∥∥( 1

T
X∗(k)X(k)

)
DC?

(k)

∥∥∥∥
2,∞

> δ/2

})
≤ C1 ·

d · s · c2

r · δ2
·
(

ν

1 +
√
d · s · C

)4
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for some positive constant C1. This provides the probability for a fixed D ∈ K1/2.

The total probability is given by a union bound.
∣∣K1/2

∣∣ = 5m·d·r is given by Lemma

2.7. This completes the argument.

4.4.6 Smallest eigenvalue of left-hand side operator

Lemma 4.14. Let D?,
(
C?

(k)

)
k=1,...,N

, and
(
N(k)

)
k=1,...,N

be generated according

to Model 2. Assume that
∥∥∥ 1
T
X∗(k)X(k) −R(k)

∥∥∥ ≤ δ1 ·
(

ν
1+
√
d·s·C

)2

. Then, for any

δ2 ∈ (0, 1),

P

({
λmin

(
1

N

N∑
k=1

(
1

d
PC?

(k)

(
PC?

(k)

)∗)⊗ ( 1

T
X∗(k)X(k)

))

≤ (1− δ2) · s · c
2

r
·
(

ν

1 +
√
d · s · C

)2
})

≤ m · d · r ·
[

e−δ2

(1− δ2)1−δ2

]N ·(s·r·[( 1+
√
d·s·C

1−
√
d·s·C

)2
+δ1

])−1

.

(4.21)

Proof. We will apply Cor. 2.5.1. By Lemma 4.15,

µmin = N · s · c
2

r
·
(

ν

1 +
√
d · s · C

)2

.
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Therefore, we need only calculate an absolute bound R,

λmax

((
1

d
PC?

(k)

(
PC?

(k)

)∗)⊗ ( 1

T
X∗(k)X(k)

))
= sup

D∈R(m·d)×r

‖D‖F =1

〈(
1

T
X∗(k)X(k)

)
D

(
1

d
PC?

(k)

(
PC?

(k)

)∗)
,D

〉
F

= sup
D∈R(m·d)×r

‖D‖F =1

〈(
1

T
X∗(k)X(k)

)
D

(
1√
d
PC?

(k)

)
,D

(
1√
d
PC?

(k)

)〉
F

≤
∥∥∥∥ 1

T
X∗(k)X(k)

∥∥∥∥ · sup
D∈R(m·d)×r

‖D‖F =1

〈
D

(
1√
d
PC?

(k)

)
,D

(
1√
d
PC?

(k)

)〉
F

≤
∥∥∥∥ 1

T
X∗(k)X(k)

∥∥∥∥ · ∥∥∥∥ 1√
d
PC?

(k)

∥∥∥∥2

By the assumption of the lemma and Model 2, we have

λmax

((
1

d
PC?

(k)

(
PC?

(k)

)∗)⊗ ( 1

T
X∗(k)X(k)

))
≤ s2 · C2 ·

[(
ν

1−
√
d · s · C

)2

+ δ1 ·
(

ν

1−
√
d · s · C

)2
]
.

The result follows from apply Cor. 2.5.1.

Lemma 4.15. Let D?,
(
C?

(k)

)
k=1,...,N

, and
(
N(k)

)
k=1,...,N

be generated according to

Model 2. Then,

λmin

(
E
[(

1

d
PC?

(k)

(
PC?

(k)

)∗)⊗ ( 1

T
X∗(k)X(k)

)])
≥ s · c2 · ν2

r ·
(

1 +
√
d · s · C

)2 . (4.22)

Proof. We first use iterated expectation to isolate the randomness resulting from

the coefficients,

E
[(

1

d
PC?

(k)

(
PC?

(k)

)∗)⊗ ( 1

T
X∗(k)X(k)

)]
= E

[(
1

d
PC?

(k)

(
PC?

(k)

)∗)⊗ E
(

1

T
X∗(k)X(k)

) ∣∣∣C?
(k)

]
= E

[(
1

d
PC?

(k)

(
PC?

(k)

)∗)⊗R(k)

]
.
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Next, we use the variational definition of a minimum eigenvalue for linear operators

on
(
R(m·d)×r, ‖·‖F

)
,

λmin

(
E
[(

1

d
PC?

(k)

(
PC?

(k)

)∗)⊗R(k)

])
= min

‖D‖F =1

D∈R(m·d)×r

E
〈

D,R(k)D

(
1

d
PC?

(k)

(
PC?

(k)

)∗)〉
F

= min
‖D‖F =1

D∈R(m·d)×r

E
〈

D

(
1√
d
PC?

(k)

)
,R(k)D

(
1√
d
PC?

(k)

)〉
F

,

where the second line follows from the properties of 〈·, ·〉F . Now, we can introduce

a lower bound by using the uniform lower bound on the smallest eigenvalue of R(k),

min
‖D‖F =1

D∈R(m·d)×r

E
〈

D

(
1√
d
PC?

(k)

)
,R(k)D

(
1√
d
PC?

(k)

)〉
F

≥
(

ν

1 +
√
d · s · C

)2

· min
‖D‖F =1

D∈R(m·d)×r

E
〈

D

(
1√
d
PC?

(k)

)
,D

(
1√
d
PC?

(k)

)〉
F

=

(
ν

1 +
√
d · s · C

)2

· min
‖D‖F =1

D∈R(m·d)×r

〈
D,D

(
E

1

d
PC?

(k)

(
PC?

(k)

)∗)〉
F

The second equality follows again from the properties of 〈·, ·〉F . Finally, we use

Lemma 4.9 to complete the argument.

4.5 Application to EEG data

In this section, we apply Alg. 1 to neuroimaging data. Subjects completed

multiple trials of various cognitive tasks while being monitored with EEG. We learn

a dictionary of autoregressive components from the recorded data for each indi-

vidual. Then, we show that these autoregressive components carry discriminative

information of the underlying cognitive task.
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Each subject enrolled in the study reported to the laboratory every two weeks

for four months. Each of the visits corresponds to one session, and subjects returned

for eight sessions. While at the laboratory, the subject would perform three cognitive

tasks: a dot-probe task (dot), a dynamic attention task (dyn), and a visual working

memory task (vwm). Each task implicates a different network, emotion, attention,

and memory respectively. The session comprised repeated trials of the dynamic

attention task during a single session and only one trial of the dot-probe and visual

working memory tasks. For our analysis, we excluded all subjects with fewer than

50 trials.

fMRI and EEG were simultaneously recorded using commercially available

EEG hardware from Brain Products (GmbH, Germany). Trials varied from 5-12

minutes, and EEG recordings were digitally sampled at 640 Hz on a 61-channel

headset (see Fig. 4.6). Brain Products (GmbH, Germany) software was used to

remove the two major sources of MRI-related artifacts: the gradient artifacts and

the cardioballistic artifacts. Both artifacts were removed via standard procedures:

an average artifact subtraction method where a “template” EEG response to the

onset of both the gradient and the heart beat (as measured with electrocardiogram)

is subtracted from each gradient pulse or heart beat. After this standard procedure,

any residual artifact was removed with standard procedures in Matlab (Mathworks,

Inc.) as suggested by Bigdely-Shamlo, et al. [13] and included an independent

component analysis and artifact subspace removal (SD = 3). Finally, each trial

was de-meaned and bandpass filtered at 1-30 Hz using a sixth order Butterworth

bandpass filter implemented on cascaded second order sections before downsampling
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to 80 Hz. This processing was performed in SciPy using the signal processing toolbox

[45].

Front

Figure 4.6: 61-channel electrode layout for EEG recording.

In order to implement Alg. 1 on significantly higher dimensional data (d = 61,

N ∼ 50), we made several modifications to the algorithm. The most significant ob-

stacle was the computational burden of finding an overlapping clustering, for which

the run time is dominated in the high-dimensional case by a O
(
d log2 d ·N2

)
loop.

In order to reduce this complexity to O
(
d log2 d ·N logN

)
, we further randomized

the algorithm by sampling. The algorithm randomly samples pairs and looks for

potential triples over all N elements. We instead look for potential triples over a

random subset of logN elements. In addition, the convergence analysis of the algo-

rithm depends on a very specific coefficient distribution given by Model 1. In the

OverlappingCluster algorithm, we connected nodes if the inner product exceeded

two standard deviations above the mean instead of a fixed 1/2 as used for the con-

vergence analysis in Arora, et al. [9]. Instead of prescribing the number of atoms, we

implemented a pruning routine after OverlappingSVD that iteratively identified the
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most coherent pair of atoms and removed one until the coherence of the dictionary

was below 0.85.3 When fitting the autoregressive model, we used an ordinary least

squares estimator with a singular value (relative) threshold of 1 × 10−3 in order to

provide greater numerical stability.
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Figure 4.7: Wdot,Wdyn,Wvwm for an example subject. Note that the dynamic

attention task has most of the coefficients concentrated in the frontal and parietal

lobes, while the visual working memory task has most of the coefficients concentrated

in the frontal and occipital lobes.

We implemented Alg. 1 on each subject individually with m = 2 and s = 4.

These parameters were selected from a four-fold cross-validation that maximized

explained variance. This provided us with a dictionary estimate D and coefficient

estimate C(k) for each such trial. Ultimately, we wanted to determine if the autore-

gressive atoms were discriminative. To test this, we fit a logistic regression model

to each of the cognitive tasks, i.e. dot-probe, dynamic attention, and visual working

3Algorithm 1 does not explicitly enforce the desired sparsity s or desired number of dictionary

atoms r.
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Figure 4.8: Wdot,Wdyn,Wvwm for another example subject. Again, the coefficients

are heavily concentrated in the frontal and parietal lobes for the dynamic attention

task and the frontal, parietal, and occipital lobes in the visual working memory task.

memory. For each trial, we modeled whether or not the task was e.g. dot-probe as

a Bernoulli random variable βdot
(k) :

βdot
(k) |C(k) =

(
1 + exp

(
−
〈
Wdot,C(k)

〉
F

+ wdot
0

))−1
, (4.23)

where Wdot ∈ Rr×d and wdot
0 ∈ R are the parameters of the dot-probe model. We

fit such a model using an `1 penalty for each cognitive task, i.e. dot-probe, dynamic

attention, and visual working memory.4 To implement the logistic regression, we

used Scikit Learn [82]. We report our prediction accuracy on a 25% hold-out test

set within each subject in Table 4.1. For two of the three subjects, we predicted

the cognitive task better than chance for the multiclass problem. Due to a class

imbalance from the repeated trials of the the dynamic attention task, results are

reported in balanced accuracy.

4The penalty parameter was selected with a four-fold cross-validation which maximized balanced

accuracy.
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Subject Observations (N) Atoms (r) Score

1 61 42 0.42

2 63 41 0.40

3 54 67 0.33

Table 4.1: Results of logistic regression in terms of balanced accuracy (chance: 1/3).

We can also use the coefficients of the logistic regression, e.g. Wdot, to assess

the discriminative information in the dictionary atoms. By visualizing the coeffi-

cients and their magnitude, we can observe whether the same atoms are predictive

of all tasks, or if instead different atoms are important for predicting each cognitive

task. Example results are given in Figs. 4.7 and 4.8. Here, we show the learned

coefficients of Eq. (4.23) for two different subjects. The plots identify which rela-

tionships between past activity across the whole brain and current activity localized

at a single channel are predictive of the cognitive task. We grouped electrodes into

the four primary lobes: frontal, parietal, temporal, and occipital. The patterns

reveal a significant difference in predictive components between the cognitive task

conditions. Then, in Fig. 4.9, we visualize some example autoregressive atoms for

a subject.
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Figure 4.9: Representative atoms for each of the cognitive tasks for one subject.

Front is to the right as in Fig. 4.6. Each row corresponds to an atom, representing

essentially different network activity.
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Chapter 5: Conclusion

We briefly conclude with some final thoughts and ideas for future work.

Is it possible to use the filters of Chapter 3 in a learning framework? Deep learn-

ing offers not only a powerful statistical model and computational graph, but also

a learning algorithm in the form of stochastic gradient descent [68]. Considering

an architecture like that of Φ in Sec. 3.4.2, is it possible to learn the appro-

priate holomorphic functions (φi)i∈I? That is, can we minimize some functional

J :
⊕

i∈I H(U)→ R? Solving this variational problem requires a generalized deriva-

tive on H(U). We introduce first a definition and then state a minor claim.

Definition 32. Let U ⊂ X be an open subset of a locally convex space X . The

Gâteaux derivative of a function f : U → R at an element u ∈ U is

df(u;x) := lim
t→0

f(u+ tx)− f(u)

t
, (5.1)

defined for all x ∈ X .

Claim 5.1. Let U ⊂ C be an open set. The set of holomorphic functions f :

U → C is a locally convex topological vector space when equipped with the family of

seminorms (
sup
z∈Ai

|f(z)|
)
i∈I

, (5.2)
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where {Ai : i ∈ I} is the collection of compact subsets of U .

Claim 5.1, together with Def. 32, seems to offer a path towards a learning

framework. We could perhaps update (φi)i∈I iteratively using a Gâteaux derivative

of J .

Can we improve the results of Thm. 4.3? The finite sample factors and assump-

tions of the direct approach in Sec. 4.3 are unsatisfying. These results can be im-

proved along two dual paths. First, the growth of observation length T ∼ O (ε−3)

could be improved by using a Bernstein-type concentration inequality to bound∥∥∥ 1
T
X∗(k)N(k)

∥∥∥
2,∞

. Second, A5 could be eliminated from the proof of Thm. 4.3 if we

could show the following:

∥∥∥∥( 1

T
X∗(k)X(k)

)(
D? −D(`−1)P

) (
C(k)

)
i

∥∥∥∥ ≤ µ(`)

2

for all i = 1, . . . , d and ` = 1, . . . , nε. This would eliminate condition (5) from both

Lemma 4.5 and Lemma 4.6. It would be sufficient that

µ(1)

ε(0)
≥ 4 ·

√
s · C

m · d
·

[(
ν

1−
√
d · s · C

)2

+ δ1

(
ν

1 +
√
d · s · C

)2
]

for some δ1 > 0, a deterministic condition.

Component analysis of autoregressive processes? Chapter 4 introduces a linear

mixture model of autoregressive processes. We focus on the problem of finding

atomic components of autoregressive processes. Dictionary learning can be seen as

an alternative to various other blind source separation models such as independent

component analysis and principal component analysis. In this light, we can ask:
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what would it mean to consider a principal component analysis of autoregressive

processes? Let n ∈ `2
(
Z;Cd

)
be a Gaussian process and A =

(
A(k)[t]

)
t∈Z+

be the

causal matrix symbol of an autoregressive process. It seems that a reasonable path

for defining the principal component U = (U[t])t∈Z+
would be something of the

form:

U1 = arg min
U

E
1

2

∥∥[(I−U)−1 − (I−A)−1]n∥∥ s.t. rank (U) = 1. (5.3)

Then, we could define subsequent components likewise,

Uj = arg min
U

E
1

2

∥∥[(I−U)−1 − (I−A)−1]n∥∥
s.t. rank (U) = 1 and(∑

s∈Z

〈U[s],U`[t− s]〉F

)
t∈Z

= 0, ` = 1, . . . , j − 1.

(5.4)

Although these are not rigorous definitions, it offers a path towards defining an

“orthogonal” component analysis of autoregressive processes.

Further applications in neuroimaging. Section 4.5 showed promising results for

using Alg. 1 to discern autoregressive components in EEG data. These initial results

offer proof-of-concept for the method. Future work will entail collaboration with

neuroscientists to validate the results and apply the method toward understanding

the functional integration of segregated regions of the brain.
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