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The focus of this dissertation is on incorporating rate-independent linear damping 

(RILD) in low-frequency dynamic systems such as base-isolated structures, inter-

story isolated buildings, and vehicle suspension systems. RILD is a promising 

damping model for low-frequency structures because it provides direct control over 

displacement. Because the control force generated by RILD is proportional to 

displacement (advanced in phase by π/2 radians) and independent of frequency, it 

performs well under both low-frequency and high-frequency excitations (relative to 

the structure’s fundamental natural frequency). The π/2 radians phase advance makes 

RILD non-causal, which has hindered its practical applications. This dissertation 

proposes causal semi-active controllers and passive mechanical systems to 

approximate RILD in different areas of vibration control engineering. Numerical 

simulations, shake table tests, and real-time hybrid simulation (RTHS) tests are 



  

conducted to demonstrate the performance of the proposed causal approaches. The 

results compare well to non-causal simulations in both the achieved forces and system 

responses. Through the proposed algorithms and devices, RILD is shown to be an 

attractive and practical damping alternative for the vibration mitigation of low-

frequency structures.   
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Chapter 1: Introduction and Motivation 

The 2011 Great East Japan Earthquake produced devastating low-frequency ground 

motions that led to large displacements in low-frequency structures previously 

thought to be safe, including base-isolated structures. Base-isolated structures are 

particularly vulnerable because large displacements at the isolation layer can cause 

permanent damage to the isolators or the surrounding moat wall. Base isolation is 

often supplemented with viscous or hysteretic damping devices at the isolation layer 

(i.e., hybrid isolation, see Fig. 1.1) to reduce these displacements. 

 

Fig. 1.1. Hybrid base-isolation system on campus of Tohoku University. 

Traditional supplemental damping has some notable shortcomings when 

applied to protect low-frequency structures. Nonlinear hysteretic dampers such as 

steel yielding dampers work well for moderate displacements, however produce low 

equivalent damping ratios for small and large displacements. Viscous dampers can be 

tuned to provide the desired energy dissipation for a target frequency range. However, 

viscous dampers will then provide inadequate damping at lower frequencies and 

excessive damping (and accelerations) at higher frequencies.  A robust hybrid 

isolation solution must provide seismic protection under a wide range of response 
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amplitudes and frequency content [1]. Fig. 1.2 provides a qualitative illustration of 

this behavior. Improvements to hybrid isolation systems for low-frequency ground 

motions must be tempered with the likelihood that higher-frequency ground motions 

(relative to the structure’s fundamental natural frequency) can still occur.  

 

Fig. 1.2. RILD versus other damping types. 

Rate-independent linear damping (RILD), also known as linear hysteretic 

damping, complex-value stiffness, structural damping, and solid damping [2-4] 

provides an attractive control alternative for low-frequency structures through direct 

control over displacement. Because the force is proportional to displacement 

(advanced in phase π/2 radians) and independent of frequency, RILD performs well 

under both low-frequency ground motions and more common higher frequency 

ground motions (see Fig. 1.2). If designed to provide a similar level of displacement 

reduction as other damping types, RILD can do so with a significantly lower restoring 

force and acceleration response. This benefit is most clearly seen when the excitation 

has frequency components higher than the fundamental natural frequency of the 

structure, typical of low-frequency structures under earthquake ground motions [1]. 

This research is motivated by a need for the displacement reduction of low 

frequency structures (fundamental natural frequency of approximately 0.1 to 1 Hz) 
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without compromising acceleration responses or requiring larger restoring forces. 

This research initially focuses on base-isolated structures. Additional applications are 

explored for inter-story isolated structures and vehicle suspension systems. Common 

to all applications, the systems are low-frequency relative to a majority of the 

expected range of excitation frequencies.  

Ideal RILD is noncausal, limiting the practical applications to date. This 

dissertation investigates causal methods to mimic RILD for practical application. This 

dissertation proposes numerical approaches to approximate RILD which can later be 

tracked by semi-active or active control devices. Additionally, this dissertation 

investigates mechanisms to mimic RILD as a passive control system. This 

dissertation uses shake table and real-time hybrid simulation for experimental 

validation of the proposed control approaches. 
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Chapter 2: Literature Review 

This chapter presents a literature review of relevant research across different areas of 

engineering. At first, the concept and benefits of RILD is discussed followed by brief 

review of vibration control systems. Then, existing problems in vibration control of 

various dynamic systems are reviewed, as they are primary motivations of this study. 

Finally, RILD is presented as a possible solution to improve the vibration 

performance of the dynamic systems.  

2.1 Rate Independent Linear Damping 

In RILD, the restoring force is proportional to the displacement advanced in phase by 

π/2 radians (90°), leading to its noncausality. Reid [4] first proposed a time-domain 

representation for causal rate-independent damping to solve the free vibration of a 

single degree-of-freedom (SDOF) system, though this model was later found to be 

nonlinear [5]. A linear visco-elastic model for RILD was presented by Biot [6]. This 

model consists of a linear spring in parallel with an infinite number of Maxwell 

elements (spring-dashpot links). Crandall [7] first noted that ideal RILD is noncausal. 

Crandall [8] further investigated the performance of different damping devices using 

transfer functions in the frequency domain and impulse response functions in the time 

domain, concluding that a damper with frequency independent energy dissipation 

violates causality requirements. Makris [9] proposed a causal hysteretic element that 

generates frequency independent energy dissipation. In this approach, an adjustable 
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term is added to ideal RILD to satisfy causality. The model was shown to be the 

limiting case of the linear visco-elastic model proposed by Biot [6]. Both the Biot and 

Makris models are considered in this study as a comparison to the proposed approach 

for a causal realization of RILD. 

2.2 Vibration Control Systems 

Vibration control can be classified in three major categories, passive, active, and 

semi-active. Passive control is practical and cost effective; however, the performance 

is fixed and tuned for a particular frequency range or amplitude. Passive systems have 

inherent limitations in achieving broad performance objectives. On the other hand, 

active systems can be programmed to perform well under a variety of scenarios, but 

they are more expensive, require a constant power source, and can potentially 

destabilize a system. As a result of the noted limitations of both type of systems, 

semi-active vibration isolation was introduced by Crosby and Karnopp [10, 11]. 

These systems have the adaptable control performance of active systems coupled with 

the ruggedness of passive systems. 

To achieve semi-active control, various types of controllable dampers can be 

used. Among those, magnetorheological dampers (MR) are popular devices since the 

damping force generated by these dampers can be quickly changed with a change in 

magnetic field. Other examples include electro-rheological dampers (ER), variable 

orifice dampers, and controllable fluid dampers [12]. 
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2.3 Base Isolation 

Isolation, in particular base isolation, is a widely popular passive control strategy for 

seismic protection. Isolation systems introduce a layer of reduced horizontal stiffness 

into a structure, largely decoupling higher frequency motion above and below the 

isolation layer. Base-isolated structures in which the isolation layer is installed at the 

foundation have been designed and used extensively over the past two decades [13, 

14]. Base isolation decreases the fundamental natural frequency of the structure, 

reducing the acceleration of the superstructure and concentrating most of the inter-

story drift in the isolation layer. 

The isolation layer may go through large displacements, especially for near-

fault ground motions. To suppress these large displacements, the isolation layer is 

often equipped with passive, active, or semi-active supplemental damping, creating a 

hybrid isolation system. As discussed in Section 2.1, although common viscous 

dampers can suppress the deformation of the isolation bearings, they will result in 

increased responses in the superstructure due to the large damper forces at the 

isolation layer [15, 16]. Additionally, active systems are not generally accepted by 

engineers due to their uncertain performance under extreme loads. Semi-active 

devices, on the other hand, have received considerable attention by the researchers 

over the past decade to reduce isolation layer deformations without increasing super-

structure responses. Nagarajaiah and Sahasrabudhe [17] proposed a semi-active 

variable stiffness device to be installed in an isolation layer and showed the 

effectiveness through numerical simulations and experimental tests. Yoshioka, et al. 

[18] demonstrated the performance of an MR damper in improving seismic 
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performance of  base-isolated structures is shown by. Ozbulut, et al. [19]  investigated 

the effectiveness of two adaptive control strategies to control variable friction 

dampers (VFDs) for the seismic protection of base-isolated buildings. Hybrid 

isolation systems remain a vibrant area of research for the protection of base-isolated 

structures. RILD is an attractive solution through its simple formulation and broad 

frequency range of favorable performance. The application of RILD to base-isolated 

structures is a fundamental focus in this dissertation.  

2.4 Inter-story Isolation 

Although base isolation remains one of the most popular seismic control strategies, 

many buildings are not suitable for this type of isolation because of foundation 

requirements, the height of the building, or the need for a seismic gap to prevent 

collisions of the isolated layer. In particular, it is difficult to install base isolation in 

the retrofit of existing buildings [20] When base isolation is not possible or practical, 

inter-story isolation is a viable design alternative. Ogura, et al. [21] discusses the 

benefits of incorporating inter-story isolation in the reduction of seismic responses of 

superstructure. Huang, et al. [22] discusses the benefits of inter-story isolation to both 

the superstructure (above isolation layer) and the substructure (below isolation layer). 

Inter-story isolation appears in a number of practical engineering designs 

worldwide. In Japan,  Murakami, et al. [23] describe the design procedure of the 

Iidabashi First Building (IFB) located in Tokyo, a multi-purpose 14-story building 

with an isolation layer between the 9th and 10th floor. In this building, offices are 

located on 2nd to 9th floor and apartments are located on 10th to 14th floor. 

Additionally, Sueoka, et al. [24] investigated a 25-story mid-story isolated building in 
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which the isolation layer was installed between the 11th floor and 12th floor. Other 

examples of mid story isolation can be found in the literature [25, 26]. Many 

simplified structural models have been proposed to analyze the seismic behavior of 

inter-story isolated systems [27-29]. 

Chey, et al. [30] introduced semi-active control algorithm for inter-story 

isolation systems to mitigate seismic damages and reduce earthquake responses. Yan 

and Chen [31] studied the effect of strong near-field pulse-like ground motion on 

inter-story isolated systems. Excessive deformation of the isolation layer due to these 

types of earthquakes may result in the overturning collapse of the superstructure. 

Therefore, they presented a protective system to reduce this excessive deformation of 

the isolation layer by soft pounding and the effectiveness of the protective system was 

validated. Another alternative to suppress the excessive deformation of the isolation 

layer is traditional viscous dampers, such as those used in the new Civil Engineering 

Research Building on the campus of National Taiwan University [32]. However, 

using viscous dampers in the isolation layer results in larger damping forces and 

higher acceleration responses of the superstructure. Therefore, additional study on 

supplemental structural control is needed to address this tradeoff. RILD can be an 

attractive solution to this problem. 

2.5 Vehicle Suspension Systems 

Semi-active controllers have been applied to vehicle suspension systems by a number 

of authors. Choi, et al. [33] used skyhook semi-active control law with an ER damper. 

The same controller was used by Yao, et al. [34] with an MR damper in the 

suspension. Different variations of skyhook controller are investigated in detail by 
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Ivers and Miller [35]. Shen, et al. [36] investigated three semi-active controllers 

including: the limited relative displacement method, the modified skyhook method, 

and the modified Rakheja-Sankar approach for use in suspension MR damper 

systems. Both numerical and experimental tests have been carried out and the 

performance of three different controllers were compared together. Khiavi, et al. [37] 

proposed a nonlinear tracking control law to track a desired skyhook damping force 

for a quarter car model with a MR damper.  

Ahmadian and Pare [38] experimentally studied three semi-active controllers 

including: skyhook, groundhook, and hybrid control policy on a quarter car vehicle 

model with MR damper. In that study it was shown that increasing the skyhook 

damping results in better vibration performance of the sprung mass of the car at the 

expense of the unsprung mass responses. The reverse holds true for groundhook 

controller; increasing groundhook damping force results in reduction of unsprung 

mass responses (i.e., displacement or acceleration) and increase in sprung mass 

responses. Therefore, the authors proposed a hybrid control algorithm which is a 

linear combination of skyhook and groundhook controllers. It is concluded that 

hybrid algorithm if adapted can better improve vehicle stability as well as ride 

comfort and have combined effect of skyhook and groundhook controller. It is worth 

noting that all variations of skyhook, groundhook, or hybrid control policy require 

measurements of absolute velocity of the sprung or unsprung mass of the vehicle. 

RILD is proposed for vehicle suspension to address the limitations of 

variations on skyhook and groundhook controllers. These limitations include clear 

tradeoffs in mitigating the vibration of one mass at the expense of the other and the 
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need for sensors that can measure (or estimate) absolute velocity. This dissertation 

will investigate the application of ideal and causal RILD for vehicle suspension 

systems. Approaches developed for base-isolated and inter-story isolated structures 

will first be considered, followed by improvements developed specific to vehicle 

systems.  
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Chapter 3: Background 

In this chapter, single degree-of-freedom (SDOF) and multi-degree-of-freedom 

(MDOF) representations of RILD are explored in detail. Then numerical analysis 

procedure used in this dissertation is discussed. Further, Section 3.4 discusses the 

various experimental testing techniques used for this dissertation. Finally, the historic 

earthquake ground motions and input road profiles that are used throughout this 

dissertation are presented. 

3.1 RILD SDOF Representation 

Rate-independent linear damping will first be explored using a second-order SDOF 

system subject to a ground acceleration: 

 𝑚𝑥̈(𝑡) + 𝑓𝐷(𝑡) + 𝑘𝑥(𝑡) = −𝑚𝑥̈𝑔(𝑡)     (3.1) 

 

where 𝑡 denotes time, 𝑚 is the mass, 𝑘 is the stiffness, 𝑓𝐷is the damping force, 𝑥̈𝑔(𝑡) 

is the input ground acceleration, 𝑥(𝑡) represents the displacement relative to the 

ground, and dots represent derivatives with respect to time.  

In deriving RILD, it is useful to first examine viscous damping. Viscous 

damping has been successfully employed in many civil engineering structures in the 

form of traditional oil dampers. The restoring forces generated by these dampers are 

nominally proportional to the velocity of the response (i.e., Equation (3.2)), meaning 

that these dampers only indirectly control displacements. Viscous damping is 

effective in controlling displacement when the product of the maximum displacement 
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response and the natural frequency of the structure (i.e., pseudo-velocity) match well 

with the actual maximum velocity response. When the actual maximum velocity 

exceeds the pseudo-velocity, viscous damping will produce excessive damping forces 

and subsequently high accelerations in the structure [1]. The energy dissipated by 

viscous damping in one cycle of harmonic vibration for steady state response is equal 

to: 

𝑓𝐷,𝑣𝑖𝑠(𝑡) = 𝑐𝑥̇(𝑡)                                                 (3.2) 

𝐸𝑣𝑖𝑠𝑐 = 2𝜋𝜉
𝜔

𝜔𝑛
𝑘𝑢0

2                                              (3.3) 

where u0 is the amplitude of motion, ξ is the viscous damping ratio equal to 

𝑐 (2𝑚𝜔𝑛)⁄ , and ωn is natural frequency of the system. The energy dissipated is 

proportional to the square of the amplitude of motion u0 and proportional to angular 

frequency of excitation ω. 

An expression for RILD is more challenging because it is noncausal. Inaudi 

and Kelly [39] note that in the time domain, RILD is often incorrectly expressed 

using the following: 

𝑓𝐷(𝑡) = 𝑘𝑖𝜂𝑥(𝑡)                                                (3.4) 

𝑓𝐷(𝑡) =
𝑘𝜂

𝜔
𝑥̇(𝑡)                                                (3.5) 

where   represents angular frequency and η is the ratio between loss and storage 

modulus (i.e., the loss factor). Both expressions are incorrect: Equation (3.4) because 

it implies that a complex-valued force results from a real-valued displacement and 

Equation (3.5) because the frequency ω is not defined in the case of a non-harmonic 

velocity.  
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Because RILD is both noncausal and linear, it is best derived in the frequency 

domain.  If the damping in Equation (3.1) is assumed to be proportional to the 

stiffness divided by the absolute value of the response frequency, the damping force 

becomes rate-independent and proportional to the preceded displacement (i.e., the 

displacement with a π/2 radians phase lead). Equation (3.1) incorporating RILD can 

be expressed in the frequency domain as: 

 (−𝑚𝜔2 + 𝜂𝑘 𝑖 𝑠𝑖𝑔𝑛(𝜔) + 𝑘)𝑋(𝜔) = −𝑚𝑋̈𝑔(𝜔)   (3.6) 

And the frequency domain representation of RILD is: 

𝐹𝐷,𝑅𝐼𝐿𝐷(𝜔) = 𝜂𝑘 𝑖 𝑠𝑖𝑔𝑛(𝜔)𝑋(𝜔)                               (3.7) 

The operation of Equation (3.7) (setting aside the scalar value ηk) is equivalent to the 

convolution of ‒1/πt and  𝑥(𝑡) in the time domain, also known as the Hilbert 

transform: 

𝑖 𝑠𝑖𝑔𝑛(𝜔)𝑋(𝜔) = ℑ[−1 𝜋𝑡⁄ ]𝑋(𝜔) = 𝑋̂(𝜔) = ℑ[𝑥̂(𝑡)]                  (3.8) 

where ℑ  represents Fourier transform and )(ˆ tx  is Hilbert transform of )(tx . Thus, in 

the time domain, Equation (3.7) can be written as: 

𝑓𝐷,𝑅𝐼𝐿𝐷(𝑡) = 𝑘𝜂𝑥̂(𝑡)                                            (3.9) 

where Hilbert transform can also be expressed using the Cauchy principal value p.v. 

as represented in Equation (3.10).  

𝑥̂(𝑡) =
1

𝜋
𝑝. 𝑣. ∫

𝑥(𝑡)

𝑡−𝜏

∞

−∞
𝑑𝜏                                      (3.10) 
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Equation (3.9) provides insight into the behavior of RILD and its relationship 

with the Hilbert transform, however, it is clear that a causal method is needed to 

approximate the ideal damping force for practical implementation.  

The energy dissipated by RILD (i.e., Equation (3.11)) in one cycle of 

harmonic vibration for steady state response is equal to:  

𝐸𝑅𝐼𝐿𝐷 = 𝜋𝜂𝑘𝑢0
2                                                   (3.11) 

It is clear that the energy dissipated is independent of forcing frequency ω. Fig. 1.2 

illustrates the energy dissipated versus forcing frequency for both RILD and viscous 

damping. 

3.2 RILD MDOF Representation 

The numerical analysis of RILD will now be extended to MDOF systems. Consider a 

MDOF system with the following equation of motion:  

                                            𝐌𝐱̈ + 𝐂𝐱̇ + 𝐊𝐱 + 𝐄𝐱̂ = −𝐌𝚪𝑥̈𝑔                                (3.12) 

where 𝐌, 𝐂, and 𝐊 are mass, viscous damping, and stiffness matrix and 𝐄 is linear 

rate-independent damping matrix of a MDOF system. 𝑥̈𝑔 is an input ground motion 

excitation and 𝚪 distributes the input excitation to the correct masses. For this study, 

𝐄 can be calculated as follows: 

                                   (3.13) 
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where 𝜂𝑖 is the loss ratio and 𝑘𝑖 is the stiffness of the ith floor. Equation (3.13) gives 

the RILD coefficient matrix for an N DOF structure with a discrete RILD device 

installed at an isolation layer between (i-1)th and ith story. Taking the Laplace 

transform of both sides of the Equation (3.12) results in: 

                          𝐌𝑠2𝐗(𝑠) + 𝐂𝑠𝐗(𝑠) + 𝐊𝐗(𝑠) ± 𝑖𝐄𝐗(𝑠) = −𝐌𝚪𝑋̈𝑔(𝑠)             (3.14) 

where the “ + ” sign is for positive frequencies and “ −” sign is used for negative 

frequencies. Rewriting Equation (3.14) in state space form leads to following 

equations in frequency domain: 

{ 𝑠𝐗(𝑠)

𝑠2𝐗(𝑠)
} = [

𝟎𝑁×𝑁 𝐈𝑁×𝑁

𝐌−1(𝐊 ± 𝑖𝐄) −𝐌−1𝐂
]

2𝑁×2𝑁

{
𝐗(𝑠)

𝑠𝐗(𝑠)
} + [

𝟎𝑁×1

𝚪
]

2𝑁×1
𝐗̈𝐠(𝑠)  (3.15) 

{

𝐗(𝑠)
𝑠𝐗(𝑠)

𝑠2𝐗(𝑠)
} = [

𝐈𝑁×𝑁 𝟎𝑁×𝑁

𝟎𝑁×𝑁 𝐈𝑁×𝑁

𝐌−1(𝐊 ± 𝑖𝐄) −𝐌−1𝐂
]

3𝑁×2𝑁

{
𝐗(𝑠)

𝑠𝐗(𝑠)
} + [

𝟎𝑁×1

𝟎𝑁×1

𝟎𝑁×1

]

3𝑁×1

𝐗̈𝐠(𝑠)  (3.16) 

In this form, the output )(sY  has 3N outputs for the structure which includes 

relative displacement and velocity and absolute acceleration of all the floors. The 

response transfer function can be computed from state space matrices from Equations 

(3.15) and (3.16). Note that the frequency domain response must be calculated 

separately for positive and negative frequencies to accommodate the “  ” sign of 

Equations (3.14) to (3.16). The responses must then be appended to create the 

response over the entire frequency range before taking the inverse Laplace transform. 

The time domain response displacement, velocity, and absolute acceleration can be 

calculated using the inverse Laplace transform as follows: 

𝐲(𝑡) = {

𝐱(t)
𝐱̇(t)

𝐱̈𝐚𝐛𝐬(t)
} = ℒ−1[𝐇(𝑠) 𝐗̈𝐠(𝑠)]

3𝑁×1
                        (3.17) 
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where 
1−L represents the inverse Laplace transform, ( )sH  is the input-output transfer 

function created Equations (3.15) and (3.16), and )(ty is all the time domain output 

responses. This state space frequency domain method is used herein to provide the 

noncausal ideal RILD responses for comparison with proposed causal approaches. 

3.3 Numerical Analysis of RILD 

Two methods are commonly used for the analysis of RILD: non-causal time domain 

analysis and frequency domain analysis. Inaudi and Kelly [39] developed a time 

domain analysis procedure which iterates on a forcing function until convergence of 

the time domain solution is achieved. The forcing function is determined using the 

Hilbert transform through convolution in the time domain or through frequency 

domain techniques. Inaudi and Makris [40] proposed a time domain analysis 

procedure which splits the non-causal system into stable and unstable poles. The 

stable poles are integrated forward in time while the unstable poles are integrated 

backward in time. The solutions are combined to determine the total system response. 

Spanos and Tsavachidis [41] proposed two-time domain methods to solve the Biot 

model for RILD [6]; one recursive algorithm to solve the time-dependent integral in 

the equations of motion and one digital filter approach designed in the frequency 

domain. Muscolino, et al. [42] also focuses on the time domain solution of the Biot 

model, applying the Laguerre polynomial approximation method to turn the integro-

differential equations of motion into a set of differential equations with parameters 

that can be determined from closed-form expressions. These time domain techniques 
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are well-suited for analyzing nonlinear systems, a shortcoming of frequency domain 

techniques.  

For a linear system, frequency domain analysis is the most straightforward 

method to solve a noncausal system [43]. The following demonstrates the analysis of 

an SDOF system. Based on Equation (3.6), the displacement, velocity, absolute 

acceleration, and restoring force transfer functions can be computed as follows: 

𝐻𝑑,𝑅𝐼𝐿𝐷(𝜔) =
−𝑚

−𝑚𝜔2+𝜂𝑘 𝑖 𝑠𝑖𝑔𝑛(𝜔)+𝑘
                                  (3.18) 

𝐻𝑣,𝑅𝐼𝐿𝐷(𝜔) =
−𝑚𝑖𝜔

−𝑚𝜔2+𝜂𝑘 𝑖 𝑠𝑖𝑔𝑛(𝜔)+𝑘
                                  (3.19) 

𝐻𝑎,𝑅𝐼𝐿𝐷(𝜔) =
𝑚𝜔2

−𝑚𝜔2+𝜂𝑘 𝑖 𝑠𝑖𝑔𝑛(𝜔)+𝑘
+ 1                            (3.20) 

𝐻𝑓,𝑅𝐼𝐿𝐷(𝜔) = 𝜂𝑘 𝑖 𝑠𝑖𝑔𝑛(𝜔)𝐻𝑑,𝑅𝐼𝐿𝐷(𝜔)                           (3.21) 

The displacement, velocity, absolute acceleration, and restoring force 

response can be calculated in the time domain using the inverse Fourier transform as 

follows: 

𝑥(𝑡) = ℑ−1[𝐻𝑑,𝑅𝐼𝐿𝐷(𝜔)𝑋̈𝑔(𝜔)]                               (3.22) 

𝑥̇(𝑡) = ℑ−1[𝐻𝑣,𝑅𝐼𝐿𝐷(𝜔)𝑋̈𝑔(𝜔)]                               (3.23) 

 𝑥̈𝑎𝑏𝑠(𝑡) = ℑ−1[𝐻𝑎,𝑅𝐼𝐿𝐷(𝜔)𝑋̈𝑔(𝜔)]                             (3.24) 

 𝑓𝐷,𝑅𝐼𝐿𝐷(𝑡) = ℑ−1[𝐻𝑓,𝑅𝐼𝐿𝐷(𝜔)𝑋̈𝑔(𝜔)]                           (3.25) 

Note that the frequency domain response must be calculated separately for positive 

and negative frequencies to accommodate the sign function of Equations (3.18) 

through (3.24).  The responses must then be appended to include the response over 
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the entire frequency range before taking the inverse Fourier transform. This method is 

applicable for MDOF structures if the m, k, and η scalars are replaced with 

corresponding matrices and the ground motion acceleration input is distributed to the 

appropriate masses.  

3.4 Experimental Techniques 

In this section various experimental testing techniques used in this dissertation are 

discussed as follows. 

3.4.1 Shake table testing 

 

Shake table testing is an attractive experimental testing technique for seismic studies. 

In shake table testing the entire structure is modeled and subjected to ground 

excitations applied by the shake table. Shake table testing captures the entire dynamic 

performance of the specimen due to a given earthquake.  

Due to the cost, size limitations, and payload capacity of the shake table, 

reduced-scale structural models are often required for shake table testing. For 

accurate representation of the small-scaled specimen as compared to the target 

building, similitude laws should be followed. However, many local effects, such as 

fatigue, local buckling in steel, crack propagation, and welds, may affect the accuracy 

of the shake table testing. In this research study, shake table testing was used for all 

experimental tests conducted on the base-isolated specimen as presented in Chapter 6. 

The scaled building specimen is designed to remain linear, placing focus instead on 

the nonlinear supplemental control device. 



 

 19 

 

3.4.2 Hybrid Simulation 

 

Hybrid simulation is an alternative type of dynamic testing that combines numerical 

simulations with experimental testing. In hybrid simulation, the structural 

components for which the response is well-understood are modeled numerically, 

while the complex (usually nonlinear) members that are hard to simulate are 

experimentally tested which enormously reduces the required laboratory space and 

equipment. A loop of action and reaction connects experimental and numerical 

components using actuators and sensors. In this way, even small laboratories can 

conduct accurate experiments of complex structures. However, hybrid simulation 

cannot be used for experimental testing of rate-dependent components. This is due to 

the fact that all dynamics are modeled numerically and the experimental specimens 

are loaded on an extended time-scale (quasi-static).  

3.4.3 Real-time Hybrid Simulation 

Real-time hybrid simulation (RTHS) is an effective approach to validate the 

performance structural control devices. The complex (usually nonlinear) structural 

components that are hard to simulate numerically are physically built and evaluated. 

The remaining parts of the structural system that are easy to analyze are numerically 

modeled. In RTHS, the experiment is conducted in real time, enabling the evaluation 

of rate-dependent specimens such as damping devices [44-46]. 

Shake tables present an opportunity in the area of RTHS because the 

equipment is widely available and the creation of substructure boundary conditions is 

straightforward. The shake table base plate can serve as the interface between 

numerical and experimental substructures. This configuration is useful when the 
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lower portion of the structure is numerically modeled, facilitating studies on inter-

story isolation. Additionally, if the experimental (upper) structure includes the 

isolation layer, the specimen will largely respond in the first mode, allowing 

simplified specimens to represent the dynamics of the superstructure (and isolation 

layer).  

In both RTHS and shake table RTHS, there are time delays and time lags from 

the command to the response of the actuator or shake table. Additionally, control-

structure interaction leads to a dynamic coupling between the actuator or shake table 

and the specimen. Time delays, time lags, and control-structure interaction must be 

compensated to ensure an accurate and stable test. Model-based control strategies are 

used for both RTHS and shake table RTHS in this dissertation [57]. The goal of these 

strategies are to cancel out the modeled dynamics of the actuator / shake table through 

feedforward control and provide robustness to changes in specimen dynamics, shake 

table nonlinearies, and uncertainties through feedback control. 

In this dissertation, RTHS was used for the base-isolated structure and inter-

story isolated structure in Chapter 9 and shake table RTHS was used for the inter-story 

isolated structure in Chapter 7. 

3.4.4 Shake Table Real-time Hybrid Simulation and Dynamic Substructuring 

 

In this dissertation, shake table RTHS was used to experimentally capture structural 

responses of inter-story isolated building as presented in Chapter 7 using dynamic 

substructuring. In dynamic substructuring, the experimental substructure is under-

actuated, i.e., there is significant vibrating mass in the specimen. A dynamic 

substructuring approach based on Shing [47], is applied to this study. Fig. 3.1 
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illustrates the substructuring used for the inter-story isolated structure. In RTHS, the 

numerical substructure is excited by a ground acceleration and the numerical and 

interface DOF responses are determined through numerical integration. The absolute 

acceleration of the interface DOF is then used as the excitation to the shake table. 

Hence, a special class of shake table control strategies are required that can track 

accelerations determined online [48]. The base shear of the experimental substructure 

is then returned to the numerical substructure as the contribution from superstructure. 

This loop of action and reaction is carried out in real time until the entire time history 

response has been evaluated. 

 

Fig. 3.1. RTHS configuration using a shake table with dynamic substructuring. 

3.5 Historic Ground Motions 

Six well-studied earthquake ground motion records with different magnitudes and 

frequency content are selected for analysis in this study: (1) Hachinohe: The N-S 

component recorded at Hachinohe Harbor during the Tokachi-oki earthquake of May 

16, 1968;  (2) Northridge: the N-S component of the Sylmar County Hospital parking 
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lot in Sylmar, California during the Northridge earthquake of January 17, 1994; (3) 

Kobe: the N-S component of the Japanese Meteorological Agency station during the 

Kobe earthquake of January 17, 1995; (4) Sakishima: the Sakishima site record of the 

2011 Great East Japan Earthquake recorded in Sakishima, Osaka during the 2011 

Tohoku earthquake, about 500 miles away from the epicenter; (5) TohokuNS: the N-S 

component of the Tsukidate - MYG004 record of the 2011 Great East Japan 

Earthquake, and (6) TohokuEW: the E-W component of the Tsukidate - MYG004 

record of the 2011 Great East Japan Earthquake. The Hachinohe, Northridge, and 

Kobe records are documented in Ohtori, et al. [49] and the Sakishima record is 

credited in the acknowledgements, and the TohokuNS and TohokuEW records were 

accessed from the USGS Strong Motion Dataset (USGS, 2018).  

Fig. 3.2 shows time history plots of the first four ground motions. It is 

worthwhile to mention that nature of a ground motion depends on several factors 

including source mechanism (e.g., epicenter and depth, rupture area and duration, 

magnitude, focal mechanism), travel path, local soil effects, and soil-structure 

interaction. For instance, the intensity of the earthquake nominally reduces with 

increases in distance from the epicenter. Additionally, as the distance increases, the 

duration of the ground motion is commonly extended while at the same time it will 

result in lower predominant frequency content. At the same time, soil acts like a 

dynamic oscillator that filters out high frequency components (in ground motion) and 

amplifies low frequency components. Softer, deeper, or weaker soil will have lower 

predominant frequency content. This fact also holds true for Sakishima record from 

2011 Great East Japan Earthquake which was recorded hundreds of miles away from 
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the epic center and therefore is a long duration low frequency content ground motion 

as shown in Fig. 3.2. In structural engineering, the fundamental natural frequency of a 

structure can vary from 0.1 Hz (typical of long-span suspension bridges) to 10 Hz 

(typical of one-story fixed base buildings). The terms low and high frequency as used 

in this dissertation are relative to the fundamental natural frequency of the structure 

considered.   
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Fig. 3.2. Time history plots of ground motions used in this study. 
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3.6 Input Road Profile 

For the application of vehicle suspension systems, two types of road profiles were 

considered. First type was a band-limited white noise signal with frequency content 

from 0 to 20 Hz. For this type of input road profile transmissibility plots as well as 

time history plots are provided. Transmissibility is defined as the ratio of response to 

the input displacement in frequency domain. Fig. 3.3 shows one sided power spectral 

density and the time history plot of the band-limited white noise road input with 226 

seconds of data. 

 
Fig. 3.3. (a) One-sided power spectral density and (b) time history plot of the white 

noise road input. 

 

 The second type of road input is a random road profile generated based on 

ISO 8608 [50] considering different damage levels or road qualities [51]. Based on 

ISO 8608 random road profile is calculated as a function of distance traveled by the 

vehicle. A travel distance of 250 meters is considered for this study. That function is 

then divided by the vehicle velocity to obtain a random function of time to be used in 

numerical simulations. Different velocities of 140, 120, 100, 80 and 50 km/hr are 

considered. Fig. 3.4 shows the random road profile generated for road quality of A-B 
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based on ISO 8608. For a fairer comparison across velocities, the same generated 

profile is used for all velocities. 

 
Fig. 3.4. Random road profile for the road quality of A-B. 
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Chapter 4: RILD Performance 

In this Chapter, RILD is compared to other well-known damping devices. In Section 

4.1 various damping models are compared together where they all have similar 

harmonic displacement input with no structures involved. Section 4.2 compares 

seismic performance of these damping devices implemented in a base-isolated 

structure. Finally, Section 4.3 illustrates both time and frequency domain comparison 

of RILD and viscous damping elements subjected to both low and high-frequency 

ground motions. 

4.1 Comparison of Damping Types  

Three supplemental damping types will be investigated herein, including viscous 

damping, Coulomb damping, and RILD. Alternatives will be explored using a 

second-order SDOF system subject to a ground acceleration: 

 𝑚𝑥̈(𝑡) + 𝑓𝑑(𝑡) + 𝑘𝑥(𝑡) = −𝑚𝑥̈𝑔(𝑡)         (4.1) 

where: 

            Viscous:   𝑓𝑑(𝑡) = 𝑐𝑥̇(𝑡) (4.2) 

            Coulomb:   𝑓𝑑(𝑡) = 𝜇𝑁𝑠𝑖𝑔𝑛(𝑥̇) (4.3) 

              RILD:   𝑓𝑑(𝑡) = 𝜂𝑘𝑥̂(𝑡)    (4.4) 

 

As discussed earlier, generated force of viscous damping is proportional to the 

velocity of response and is most effective in displacement control when pseudo-
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velocity matches well with the actual maximum velocity response. However, if the 

actual maximum velocity exceeds the pseudo-velocity, viscous damping will produce 

excessive damping forces and subsequently high accelerations in the structure [1].  

Coulomb damping is commonly used to represent sliding friction. As with 

viscous damping, the restoring force is in phase with velocity. In traditional Coulomb 

damping the magnitude of the force is constant, equal to the product of the coefficient 

of friction μ and a constant contact normal force N. Due to a constant slip force, 

Coulomb damping only dissipates energy when the response is large enough to 

induce slippage between the surfaces.  

Fig. 4.1 shows magnitude and phase of a transfer function with input 

displacement and output force for RILD and viscous damping. For reference, the 

transfer function of a stiffness element is also shown. Coulomb damping is nonlinear 

and will be studied in the time domain instead. The viscous damper has a damping 

coefficient of c = 3134 Ns/m, the RILD damping element has a value of ηk = 4910 

N/m, and the spring has a stiffness k = 4910 N/m. As illustrated in Fig. 4.1, the spring 

and RILD elements have the same constant magnitude response, but a 90° difference 

in phase. On the other hand, RILD and the viscous element have identical phase 

response but a different magnitude response. The viscous damping coefficient was 

calibrated to have an identical magnitude response as RILD element at natural 

frequency of the structure (vertical dotted line). 
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Fig. 4.1. Magnitude and phase of force transfer function for RILD, viscous, and 

spring elements. 

 

To compare the three damping types of Equations (4.2) to (4.4) in the time 

domain, a set of harmonic excitations are input to the damping models. The damping 

parameters for RILD and viscous damping are consistent with those used to develop 

Fig. 4.1; Coulomb damping constant force was selected as μN = 981 N. These 

parameters achieve identical energy dissipation per cycle under a 0.25 m 0.25 Hz sine 

wave displacement input as shown in the hysteresis plots of Fig. 4.2. The hysteresis 

response under sine waves of increasing frequency and amplitude are also shown.  

As illustrated in Fig. 4.2, as the frequency of the vibration increases, viscous 

damping generates significantly larger damping forces which if applied to a structure 

results in larger base shears and accelerations. On the other hand, Coulomb friction 

damping generates constant damping force regardless of input frequency and 

amplitude, leading to poor energy dissipation higher amplitude excitations. RILD is 

frequency independent and more effective than Coulomb friction in dissipating 

energy under varying amplitude inputs. For a harmonic signal of amplitude u0 and 

circular frequency ω, the energy dissipated per cycle for viscous damping, and RILD 
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is given in Equations (3.3) and (3.10), respectively; and for Coulomb damping is 

presented as follows: 

  𝐸𝐷,𝐶𝑜𝑢𝑙. = 4𝜇𝑁𝑢0                                             (4.5) 

 

Fig. 4.2. Steady state hysteresis plots of Coulomb friction, RILD and viscous damping 

elements. 

4.2 Comparison of Damping Types in an SDOF structure 

In this section, the performance of different damping types will be investigated for an 

SDOF system. Coulomb damping will be replaced with a modulated Coulomb 

damping model. To improve upon traditional Coulomb damping, semi-active control 

algorithms have been introduced to vary N(t) with time. Inaudi [52] proposed a 

Modulated Homogeneous Friction (MHF) algorithm where the force is proportional 
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to the previous local peak of the displacement, updated after each velocity zero-

crossing. The MHF system is rate-independent and works well for semi-active 

friction type dampers. 

Fig. 4.3 compares three SDOF systems: one with viscous damping, one with 

MHF (semi-active Coulomb damping), and one with RILD. The natural frequency of 

all structures is chosen as 0.25 Hz (1.6 rad/s), typical of a base-isolated structure. The 

viscous damping coefficient c is chosen to achieve a 20% damping ratio, the MHF 

coefficient is adjusted to get a similar level of displacement performance, and the 

RILD loss factor is chosen as η = 0.4. 

A time-domain analysis was performed on the three structures subject to the 

1995 Kobe Earthquake, with results shown in Fig. 4.3. Displacements and velocities 

match well (this was the basis for parameter selection across models). Viscous 

damping generates significantly larger damping forces due to the high-frequency 

components of the earthquake excitation, resulting in larger base shears and 

accelerations. Both MHF and RILD show reduced acceleration and restoring forces 

compared to viscous damping. MHF works well for friction type dampers; however, 

the updates on the controllable damping are based on previous displacement peaks 

and the square-shaped hysteresis can make it impossible to reduce acceleration below 

a certain level. Additionally, because viscous damping and RILD are linear, the 

design can be predictably adjusted. If the design criteria were instead to limit the 

acceleration or force, RILD would be able to do so at a much lower displacement than 

viscous damping. For MHF, it was not possible to noticeably reduce the acceleration 

beyond the levels in Fig. 4.3, regardless of changes to the parameters. That is to say, 
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increasing MHF damping will increase the severity of the force jump, making it 

challenging to effectively mitigate acceleration responses. 

 

 

Fig. 4.3. Time-domain response for three damping types with parameters scaled to 

achieve a similar maximum displacement. 
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4.3 Detailed RILD and Viscous Comparison in an SDOF structure 

This section illustrates effectiveness of RILD compared to viscous damping for low-

frequency structures subjected to both low- and high-frequency ground motions 

relative to the fundamental natural frequency of the structure. Fig. 4.4 and Fig. 4.5 

compare displacement, velocity, absolute acceleration, and the damping force 

coefficient transfer functions for two SDOF systems with a mass of 5 metric tons, 

natural frequency of 0.25 Hz, and subject to an input ground motion. The damping 

force coefficient is defined as the damping force divided by the weight of the SDOF 

system, resulting in a dimensionless parameter. The RILD system has a loss factor   

of 0.4 and the viscous damping system has a critical damping ratio ξ of 0.2. These 

designs achieve identical displacement response at the structure’s natural frequency. 

The vertical dashed line in Fig. 4.4 and Fig. 4.5 identifies the natural frequency of the 

SDOF system. 

 

Fig. 4.4.  Displacement and velocity transfer function magnitude for RILD and 

viscous damping. 
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Fig. 4.5. Absolute acceleration and damping force coefficient transfer function 

magnitude for RILD and viscous damping. 
 

As shown in Fig. 4.4 and Fig. 4.5, displacement and velocity transfer 

functions for both systems are almost identical for any frequency. This is the result of 

the selection of the loss factor and critical damping ratio of the respective systems to 

match maximum displacements in the time domain. However, for damping force 

transfer function in frequency range larger than the natural frequency of the structure, 

the viscous damping force is larger than RILD force. This is also true for absolute 

acceleration transfer function. To maintain a similar displacement reduction as RILD, 

viscous damping generates a higher damping force at frequencies larger than the 

structure’s natural frequency, which may result in higher acceleration response of the 

system [1]. RILD can provide a similar level of displacement reduction using smaller 

forces. 

To better illustrate this behavior, the same SDOF system was evaluated 

through numerical simulation subject to the JMA Kobe 1995 NS record. Fig. 4.6 and 

Fig. 4.7 show time history responses and hysteresis plot for both systems. As it is 

shown, both systems have almost identical displacement and velocity. However, 

viscous damping force is substantially higher than rate independent linear damping 
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force as expected. Hence, higher acceleration response is observed for the system 

with viscous damping. For this application, where a low-frequency structure is 

subjected to a ground motion dominated by high-frequency component, the 

effectiveness of RILD over viscous damping is clearly shown. 

  

Fig. 4.6. Time history responses for RILD and viscous damping for the JMA Kobe 

1995 NS record. 
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Fig. 4.7. Damping force coefficient plots for RILD and viscous damping for the JMA 

Kobe 1995 NS record. 
 

To further investigate the performance of RILD over a broad range of ground 

motions, a predominantly low-frequency ground motion was applied to the same 

SDOF system. The ground motion was recorded in Sakishima, Osaka in Japan during 

the 2011 Tohoku earthquake, about 500 miles away from the epicenter. Fig. 4.8 

shows pseudo velocity response spectrum of this record which has a peak of 41.8 

cm/s at a period of 6.6 s (0.15 Hz). The spectrum shows the dominant low frequency 

content of the earthquake record. Fig. 4.9 and Fig. 4.10 show the time history 

responses and hysteresis plots for this earthquake, respectively.  

 

Fig. 4.8. Pseudo-velocity response spectrum of Sakishima site record of 2011 Great 

East Japan Earthquake. 
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Fig. 4.9. Time history responses for RILD and viscous damping for the Sakishima 

2011 record. 

 

 
 

Fig. 4.10. Damping force coefficient plots for RILD and viscous damping for the 

Sakishima 2011 record. 
 

 

As Fig. 4.9 and Fig. 4.10 show, for this case of low frequency earthquake 

RILD has slightly larger peaks of damping force and slightly lower displacement 
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response. However, the difference is very small, consistent with Fig. 4.4 and Fig. 4.5 

for frequencies below the natural frequency of the structure.  

In summary, when RILD and viscous damping are designed to restrict 

displacement at the natural frequency of the structure, both damping types perform 

nearly identically for predominantly low-frequency earthquakes. For high-frequency 

earthquakes, RILD is superior in reducing acceleration and restoring force. 
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Chapter 5:  Causal Approximation of RILD 

This chapter focuses on causal numerical approximations of RILD. A simple filter-

based approach is proposed to approximate the ideal RILD force in real time. This 

approach is compared to other available causal methods in both time and frequency 

domains.  

5.1 Causal Approximations 

The first successful model representing causal RILD was proposed by Biot [6]. This 

model is essentially a spring with the stiffness k in parallel with a large number of 

Maxwell elements (spring-dashpot links) with stiffness and viscous damping values 

of 𝑘𝑖 and 𝑐𝑖. Assuming there are an infinite number of spring-dashpot links, the 

resulting damping force is calculated as: 

                         (5.1) 

where    is a small positive constant. Note that )(D tr  indicates the sum of stiffness 

force and modeled RILD force, while the previously presented )(D tf only contains 

the RILD force. The Biot model restoring force is shown in the frequency domain in 

Equation (5.2), which includes the complex stiffness term shown in Equation (5.3). 

Equations (5.4) and (5.5) separate the complex stiffness term into the storage modulus 

and loss modulus, respectively.  
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                                   (5.2) 

                       (5.3) 

                                (5.4) 

                                        (5.5) 

 For a system without viscous damping (only mass, stiffness, and Biot’s 

representation of RILD) and with input earthquake ground motion, the displacement 

transfer function is computed from Equation (5.6). Velocity, absolute acceleration, 

and restoring force transfer functions can be derived from Equation (5.6).  

                (5.6) 

 Makris [9] proposed a causal hysteretic element directly derived from the 

dynamic stiffness of the noncausal complex stiffness element (including both linear 

stiffness and RILD):  

                                       (5.7) 
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imaginary part (loss-modulus) remains frequency independent. The causal stiffness 

element is given by: 

                               (5.8) 

 The arbitrary constant   does not depend on the physics of the problem and 

can be set as small as desired so that the real part of )(K  matches a realistic 

stiffness value measured at any finite frequency. Also, the term introduced in 

Equation (5.8) produces a singularity as 0→ , therefore the model is not defined at 

the static limit. The storage and loss modulus are given by: 

                                   (5.9) 

                                   (5.10) 

For an input ground motion, the displacement transfer function can be computed as 

follows: 

                    (5.11) 

Velocity, absolute acceleration, and restoring force transfer functions can be derived 

from Equation (5.11). The results of these two causal models will be compared to the 

proposed causal model.  
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5.2 Proposed Causal Model 

Equation (3.7) correctly represents the RILD force in the frequency domain. The 

force can be broken into two components, the constant kη and the transfer function:  

                                            (5.12) 

Passing the response displacement for a particular device through the transfer 

function of Equation (5.12) and then multiplying by kη will produce the ideal RILD 

force. Thus, Equation (5.12) is taken as the target filter for causal realization. The 

target filter has unity magnitude and phase advance of π/2 rad over all positive 

frequencies. The target filter is not implementable; however it can be approximated 

over a specified frequency range using a first-order all-pass filter [53]. Most 

structures will predominately respond at their fundamental natural frequency. 

Therefore, the all-pass filter should best match the target filter at the fundamental 

natural frequency of the structure. The all-pass filter will take the form:  

                                          (5.13) 

where 
n  is the fundamental natural frequency of the structure in rad/s. In general, 

n  can be replaced with the dominant frequency of vibration, as will be explored in 

Chapter 9. 

Fig. 5.1 compares the magnitude and phase of the target filter with the first-

order all-pass filter. At and around the fundamental natural frequency of the structure, 

the proposed filter design matches the phase of the target filter. At all frequencies, the 

proposed filter design matches the magnitude of the target filter. 
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Fig. 5.1. Magnitude and phase of target and all-pass filters. 

Passing a displacement through the target filter is equivalent to taking its 

Hilbert transform, a necessary step in the time domain realization of RILD. Since this 

filter cannot be implemented, an all-pass filter is proposed to accurately approximate 

the Hilbert transform at the natural frequency of the structure. Hence the filter creates 

π/2 phase lead at the natural frequency of the structure. This approach is applicable 

to SDOF systems as well as MDOF systems where the filter can be tuned to the first 

natural frequency of the structure. Base-isolated systems are heavily dominated by 

first mode response, making this approach particularly attractive. 

The proposed filter is used to determine the preceded displacement in a causal 

manner. The preceded displacement is then multiplied by kη to determine the 

corresponding RILD force. The only measurement needed to implement this method 

is the displacement of the device. For example, the displacement of the base-isolation 

layer can be used to determine the corresponding RILD force in a hybrid isolation 

system. The force can then be tracked by an active or semi-active control device. This 

simplicity is a great benefit for practical implementation. The RILD force is 

approximated by Equation (5.14) without the linear stiffness term or Equations (5.15) 
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and (5.16) with the linear stiffness term. The all-pass filter of Equation (5.13) can be 

solved in the time domain using standard discretization and numerical integration 

techniques.  

                                  (5.14) 

                                     (5.15) 

                                         (5.16) 

The displacement transfer function is shown in Equation (5.17). Velocity, 

absolute acceleration, and restoring force transfer function can be derived from 

Equation (5.14). 

                            (5.17) 

When the structure vibrates at its natural frequency, the force calculated from 

Equation (5.14) will match well with ideal RILD. At frequencies lower than the 

natural frequency, the restoring force hysteresis loop will have a negative skew. The 

increased phase lead produces negative stiffness which will reduce accelerations 

while increasing displacements. At frequencies higher than the natural frequency, the 

restoring force hysteresis loop will have a positive skew. Here, a decrease in phase 

lead produces positive stiffness which increases accelerations while decreasing 

displacement. However, as it is shown in this study, the proposed approach works 

well even for the slight drifts in response frequency away from the natural frequency 

of the structure. The Biot model and Makris model also have tunable parameters that 
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affects their performance across different frequencies, a feature that will be explored 

in the next section. 

Fig. 5.2 shows preceded displacement calculated using the proposed all-pass 

filter compared to the actual Hilbert transform computed from a noncausal analysis. 

Errors in the approximation of the Hilbert transform as shown in Fig. 5.2 will 

manifest as slightly reduced effectiveness from of ideal RILD. The plot corresponds 

to an SDOF system with mass of 5 metric tons, natural frequency of 0.25 Hz, loss 

factor η of 0.6, and no viscous damping subjected to 50% Hachinohe 1968 NS record. 

Both analyses are performed in the frequency domain.  

Fig. 5.2. Hilbert transform of displacement and preceded displacement obtained by 

proposed causal filter. 

5.3 Comparison of Causal Approximations 

In this section, the proposed filter-based causal method is compared to two Biot 

model designs and one Makris model design by looking at transfer functions and 

time-history analyses. All causal approaches explored have a tunable parameter 

which affects the frequency range of favorable performance. This paper provides 

insight into the selection of the proposed, Biot, and Makris model parameters as 

applied to the problem of low-frequency structures.  
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For the first Biot model, designated Biot 1,   is chosen as 0.611 rad/sec. This 

selection produces the same magnitude damping force as the ideal noncausal case at 

the natural frequency of the structure (see Fig. 5.4). For the second Biot model, 

designated Biot 2,   is chosen as 1.6 rad/sec. This selection comes from ad-hoc 

tuning to improve the forced vibration response of the model. Unlike the other 

models, the Biot model showed significant tradeoff in design performance during free 

and forced vibrations. Biot 1 achieves good performance under free vibration and 

Biot 2 is tuned to achieve good performance under forced vibration (for the input 

ground motion explored). For the Makris model, Makris [9] suggests that the arbitrary 

constant   can be chosen such that the storage modulus matches a realistic stiffness 

value at any finite frequency. Here,  is chosen as 1.57 rad/sec (i.e., n ). This 

selection produces the same storage modulus and loss modulus (Fig. 5.3) and the 

same magnitude and phase (Fig. 5.4) as the ideal noncausal case at the natural 

frequency of the structure. The design of the Makris model also results in the closest 

time domain performance match to the noncausal case considering both forced and 

free vibration. An SDOF system is considered with mass of 5 metric tons, natural 

frequency of 0.25 Hz (1.57 rad/sec), loss factor η of 0.4, and no inherent damping. 

Five realizations of RILD are considered: (1) ideal noncausal, (2) Biot 1, (3) Biot 2, 

(4) Makris model, and (5) the proposed model. 

Fig. 5.3 shows storage modulus and loss modulus for all the models. Note that 

the storage modulus and loss modulus include both the linear stiffness term and the 

model for RILD. For the storage modulus, the Makris model and the proposed model 

achieves the same value as the noncausal approach at the natural frequency of the 
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structure. The storage modulus of the proposed model is always positive and defined, 

while in the Makris model it becomes negative for 𝜔 < 𝑒𝑥𝑝(1.57 𝜂⁄ )𝜀 and is 

undefined as 0→ .  Both Biot models diverge from the noncausal storage modulus 

beyond 0= . For the loss modulus, the Makris model exhibits the exact same 

response as the noncausal method since both have the same imaginary component in 

the stiffness element. Both Biot models converges to noncausal response at higher 

frequencies. Both the proposed model and the Makris model have the same value as 

the noncausal case at the natural frequency of the structure.   

 

Fig. 5.3. Storage and loss modulus transfer function for causal and non-causal 

models. 

 

5.3.1 Frequency Domain Comparison 

In this section, different response transfer functions are compared for the three causal 

models and the noncausal model. Fig. 5.4 presents magnitude and phase of damping 

force transfer function from input displacement to output damping force. These plots 

only show the RILD term and do not include the linear spring force for any of the 

models. 
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Fig. 5.4. RILD model transfer functions (damping only, no stiffness term). 

 

As mentioned earlier, the Biot 1 model and the Makris model were tuned so 

that they have the same restoring force as the noncausal method at the natural 

frequency of the structure. The magnitude of the restoring force for these models 

diverges at lower and higher frequencies. The proposed model exhibits the exact 

restoring force as the noncausal model (in magnitude) over all range of frequencies.    

Phase plot of the stiffness element depicts that both the Makris and proposed model 

have 90 phase shift at the natural frequency of the structure, matching the noncausal 

model. The Makris model has a more accurate phase response than the proposed 

model considering a broad range of frequencies. Both Biot models give superior 

phase performance in the low frequency range.  

In summary, each model has its own benefits. The Biot model gives the best 

phase property in the low frequency range, the Makris model gives better phase 

property than that of proposed causal filter in the overall frequency range but at the 

expense of distorted magnitude, and the proposed causal filter gives a perfect match 

with the ideal noncausal filter in the magnitude but at the expense of distorted phase.  
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Fig. 5.5, Fig. 5.6, and Fig. 5.7 present the transfer functions of the SDOF 

system from input ground motion to outputs of displacement, absolute acceleration, 

and damping force, respectively. Dashed line in all the figures shows natural 

frequency of the SDOF system. The Makris and the proposed model show similar 

behavior, matching well with the noncausal case in all transfer function plots. As per 

design, all causal models (except for Biot 2) match the noncausal model well at the 

natural frequency of the structure in both magnitude and phase. The two Biot models 

exhibit higher peaks when compared to other two causal approaches. Overall, the 

Makris model and the proposed model demonstrate the closest match with noncausal 

(ideal) model over a broad frequency range.  

 

Fig. 5.5. Displacement response transfer function for causal and noncausal models. 
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Fig. 5.6. Absolute acceleration response transfer function for causal and noncausal 

models. 

 

Fig. 5.7. Damping force response transfer function for causal and noncausal models. 

 

5.3.2 Time History Responses Comparison 

In this section, time history responses of all models are calculated in the frequency 

domain and compared. Fig. 5.8 and Fig. 5.9 compare the results of the causal and 

noncausal models when the structure is subject to the full-scale Hachinohe record. 

Fig. 5.8 shows displacement and absolute acceleration response time histories on the 

left and a zoomed-in view of the same plot on the right. Fig. 5.9 shows the time 

history of damping force and damping force hysteresis. As it is expected from transfer 

function plots, both the Makris and proposed causal approaches show similar seismic 
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response and can better track the noncausal responses when compared to the Biot 

models. The Makris and the proposed models have the exact 90 phase shift at the 

natural frequency of the structure and therefore able to better track the noncausal 

responses for this structure and ground motion. The Biot models clearly have a large 

peak magnitude in Fig. 5.5, Fig. 5.6, and Fig. 5.7 which can detract from the 

performance. The Hachinohe record has significant frequency content larger than the 

natural frequency of the structure, leading to poor performance for the Biot 1 model 

when compared to the Biot 2 model. Because of ad-hoc tuning to this earthquake 

record, the Biot 2 model shows a better transfer function match with the noncausal 

model at higher frequencies than the natural frequency of the structure.  

The greatest difference between the proposed method and noncausal method 

can be seen in the absolute acceleration and damping force time histories, both 

showing slightly larger peaks for the causal model. This is also true for the Makris 

model. A major benefit of RILD is that the acceleration and damping force in a low-

frequency structure are reduced. Deviations from ideal noncausal RILD to satisfy 

causality will hinder the reduction in acceleration and damping force. 
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Fig. 5.8. Causal and noncausal displacement and absolute acceleration for the 

Hachinohe record. 
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Fig. 5.9. Causal and noncausal damping force for the Hachinohe record. 

As noted earlier, each model has its own benefits. Overall, the proposed 

model and the Makris model perform the best when compared to the noncausal 

responses. The advantage of the proposed model over the other two causal methods is 

its simplicity leading toward practical applications.  The model itself can be 

implemented using an analog all-pass filter or as a digital all-pass filter using standard 

discretization in time and standard numerical integration techniques. The only 

measurement needed to implement this method is the displacement of the device and 

can easily be measured by an LVDT sensor. The filter parameter is based on the 
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fundamental natural frequency of the structure and can be adjusted in real-time using 

adaptive control. Additionally, the proposed model has a positive storage modulus 

over all frequencies and is defined for 0= . 

5.4 Behavior of CFB Model 

For the proposed CFB model for RILD, if the response frequency exceeds the filter 

frequency, the hysteresis will exhibit a positive skew; if the response frequency is less 

than the filter frequency, the hysteresis will exhibit a negative skew. This can be 

clearly seen in Fig. 5.10. The noncausal RILD element is shown along with the CFB 

element where the filter frequency is set as 0.25 Hz (1.57 rad/s). As depicted in Fig. 

5.10, if the input frequency of a displacement sine wave exactly matches the 

frequency of the CFB element (0.25 Hz), then the CFB element will exactly match 

the noncausal RILD element. However, an input frequency of 0.4 Hz leads to a 

positively skewed hysteresis and an input frequency of 0.1 Hz leads to a negatively 

skewed hysteresis. Fig. 5.10, clearly shows a need for an adaptive CFB algorithm in 

which the filter frequency can be adjusted in real time based on the actual response 

frequency of the structure. 
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Fig. 5.10. Steady states hysteresis plots of RILD and CFB damping elements with 

variable harmonic frequencies. 

5.5 Semi-active and Passive Control to Achieve RILD 

To realize RILD in a practical system, the force calculated using the proposed CFB 

approach can then tracked by a control device, such as a magnetorheological (MR) 

damper as used in this dissertation. The use of visco-plastic dampers (such as MR 

dampers) to protect base-isolated structures has been explored in the literature [54, 

55]. Considering the natural phase match between RILD and the restoring force of 

damping devices, semi-active dampers are simpler and more suitable for mimicking 

RILD than active devices. Both numerical simulations and shake table tests are 

conducted to demonstrate the performance of the proposed causal approach applied to 

semi-active devices in Chapters 6 and 7.  

Furthermore, passive implementation of RILD is investigated in Chapter 10 

where a combination of passive mechanisms is proposed to approximate ideal RILD 

performance in base-isolated structures. 
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Chapter 6:  Base Isolation 

This chapter presents the application of causal RILD to a base-isolated structure. 

Results for a SDOF base-isolated specimen incorporating proposed causal RILD is 

compared to that of noncausal numerical analysis for a same structure. 

6.1 Experimental Setup 

Experimental studies are needed to ensure that the desired forces can be physically 

and practically realized and furthermore match the ideal noncausal RILD case. Shake 

table testing offers a simple means to experimentally evaluate the performance of a 

structure subject to a ground motion. Tohoku University has a 3m × 3m bi-directional 

shake table and a steel frame specimen that is well-suited for this study. The structure 

of interest is a base-isolated specimen with supplemental damping at the isolation 

layer. Through the proposed algorithm, the supplemental damper will behave as a 

RILD device.  

6.1.1 Base-isolated Specimen 

The specimen is a single-story structure mounted on an isolation system. The 

isolation system consists of four linear bearing blocks that can slide on two linear 

guide rails with very low friction and four steel coil springs to provide restoring 

forces. The stiffness of the isolated specimen is 12.3 kN/m. Steel weights are 

mounted on the top and the base of the specimen. The roof mass including the mass 

of the steel frame members is 2.08 metric tons, and the base mass including the mass 
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of the steel base frame is 2.92 metric tons. When the braces of the specimen are 

locked, the specimen acts as an SDOF system with a mass of 5 tons and natural 

frequency of 0.25 Hz. Fig. 6.1 shows an image of the base isolated specimen with 

braces locked.  

 

Fig. 6.1. Base-isolated specimen with braces locked. 

 

6.1.2 MR Damper Specimen 

Semi-active devices provide a straightforward means to physically deliver RILD. MR 

dampers are well-studied semi-active devices and an excellent alternative for this 

application. The response of the damper is naturally in phase with the velocity of 

response and the magnitude of the response can be adjusted online through a control 

algorithm. The controllable properties of MR dampers are derived from the internal 

MR fluid. In the presence of a magnetic field, the fluid changes from a linear viscous 

fluid to a semi-solid with controllable yield strength [56]. The source of the magnetic 

field is an electromagnet, excited by an external current which can vary as required 

by a control algorithm. 
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To explore causal RILD, a long stroke MR damper is placed at the isolation 

level. A schematic of the long stroke damper is shown in Fig. 6.2. The length of the 

damper in neutral position is 2,305 mm and the stroke is ± 400 mm. 

 

Fig. 6.2. Long-stroke MR damper. 

Many semi-active control algorithms are available to track a desired force for 

the control of an MR damper. In this case, the proposed all-pass filter will produce a 

desired force within the range of forces achievable by the MR damper. The MR 

damper of this study responds very quickly to changes in current. Using a traditional 

bang-bang type controller to track this desired force was found to produce severe 

oscillations in the measured force. Hence, a feedforward-only control algorithm was 

used to track the desired force without oscillation.  

To derive the MR damper control algorithm, a simple Bingham model is 

employed to represent the mechanical properties of the damper. The total restoring 

force of the MR damper MRf  is obtained from the sum of a viscous force generated 

by a dashpot element and a controllable resistance force generated by a friction slider 

element. Both the dashpot element and friction element parameters are assumed to 

vary with input voltage V to the electromagnets coils in the damper. Based on sine 

wave characterization tests for a set of displacements, velocities, and voltages, a 

simplified and approximate relationship was developed between the total damping 

force and input voltage: 
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𝑓𝑀𝑅 = 0.0001 𝑉2 + 0.0072 𝑉 + 0.0489                            (6.1) 

where 𝑓𝑀𝑅 is the damping force in kN and V is the input voltage in Volts. Equation 

(6.1) shows that the restoring force nominally depends only on the input voltage. For 

the MR damper studied, the restoring force was found to be nominally independent of 

the displacement and velocity of the damper.  Force-displacement and force-velocity 

hysteresis loops for multiple input voltage levels confirm that the behavior is most 

heavily dominated by the controllable input voltage.  

Solving Equation (6.1) for the input voltage V required to achieve a desired 

force, the equation can be rewritten as:  

𝑉 = 5√400 |𝑓𝑀𝑅| + 32.28 − 36                               (6.2) 

Equation (6.2) determines the command voltage for the MR damper based on the 

desired damping force. In this controller, if the measured and desired force have the 

same sign, the input voltage to the MR damper is computed using Equation (6.2); 

however, if they have opposite signs, the input voltage to the MR damper is set to 

zero. Furthermore, a saturation block also considered in the controller to keep the 

applied voltage to the damper in a range of 0 to 50 Volts. Fig. 6.3 illustrates an 

experimental example of the tracking of the desired force by the measured force using 

this algorithm. The results correspond to an SDOF system with mass of 5 metric tons, 

natural frequency of 0.25 Hz, loss factor η of 0.6, and no viscous damping subjected 

to 50% Hachinohe earthquake ground motion. The desired force is determined using 

the proposed all-pass filter. It is worth mentioning that the passive-off (constant 0 V) 



 

 60 

 

limitation of the damper is about 0.1 kN; therefore, the damper force cannot generally 

decrease beyond this limit except under very small velocities. 

 

Fig. 6.3. Desired and measured damping force using force tracking control algorithm. 

 

6.2 Experimental Results and Discussion 

A series of shake table tests were conducted at Tohoku University to examine the 

performance of the proposed causal realization of RILD. Load cells, accelerometers, 

and displacement transducers were used to capture damping force, acceleration, and 

displacement of the system respectively. In the experiments, the specimen is taken as 

the base-isolated specimen with MR damper installed in the isolation layer. The loss 

factor η may be freely selected, influencing the magnitude of the causal RILD force 

to be tracked by the MR damper. Unless otherwise noted, η is selected as 0.6. The 

noncausal analyses are performed in the frequency domain using identified structural 

parameters and an ideal RILD device in place of the MR damper. 

To avoid significant shake table drift, the reference earthquakes are passed 

through a 2-pole Butterworth high-pass filter with a cutoff frequency of 0.25 Hz. 

Because the earthquakes used in the experimental tests have a majority of their 
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frequency content above the filter cutoff frequency, the effect of pre-filtering on the 

earthquake frequency content is minimal.  

6.2.1 Comparison of Causal and Non-causal Approaches 

In this section, the ability of the proposed causal approach to achieve RILD is 

evaluated. Results are compared to ideal RILD determined through a frequency 

domain analysis. Fig. 6.4 illustrates displacement, acceleration and damping force 

time histories in both experiment (causal) and frequency domain (noncausal) when 

the structure is subject to the Hachinohe earthquake with 50% intensity. Fig. 6.4 also 

includes the MR damper hysteresis in comparison to noncausal hysteresis from 

frequency domain analysis. 

As it is shown in Fig. 6.4, the experimental causal displacement has a very 

good match with noncausal displacement from frequency domain analysis. However, 

the experimental acceleration has larger peaks than those of the frequency domain 

analysis. This observation is consistent with numerical simulation results presented 

previously and is due to an inability to exactly reproduce the greatly reduced 

accelerations of true RILD. Fig. 6.4 also depicts the experimental causal damping 

force recorded during the test as compared to the analytical noncausal damping force. 

There is a very good agreement in both time history and hysteresis, illustrating that 

both the calculation of the desired causal force and tracking of the desired causal 

force using the MR damper perform very well. 
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Fig. 6.4. Causal and noncausal displacement, velocity, absolute acceleration, and 

hysteresis for the Hachinohe record at 50% amplitude scaling. 

 
 

To illustrate the proposed control approach under an earthquake with different 

frequency content, 30% intensity of the Kobe earthquake was applied to the structure 

in both experiment and numerical analysis. Fig. 6.5 illustrates displacement, absolute 

acceleration, damping force, and hysteresis of the experimental tests versus the same 

quantities from non-causal analysis. 

For the case of Kobe earthquake, again there is a close resemblance between 

numerical simulation and experimental test for displacement time history as well as 

damping force time history as it is depicted in Fig. 6.5. Larger peaks of experimental 

acceleration are seen for this case, similar to the Hachinohe earthquake. The peaks are 

more pronounced for the Kobe earthquake, due to larger forced vibration away from 
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the natural frequency of the structure. Fig. 6.5 also shows experimental and analytical 

hysteresis loops. For the case of Kobe earthquake, the experimental hysteresis does 

not match the analytical hysteresis as well as for the Hachinohe earthquake. The Kobe 

earthquake caused the structure to respond at both its natural frequency and with a 

forced vibration of about twice its natural frequency. Using the proposed filter-based 

method, response at a frequency larger than the natural frequency of the structure will 

introduce a phase lag to the desired force. This produces a positively skewed force 

hysteresis and larger acceleration response. Aside from a slightly degraded 

performance, the proposed approach works well even when the response drifts away 

from the natural frequency of the structure. 

 

Fig. 6.5. Causal and noncausal displacement, velocity, absolute acceleration, and 

hysteresis for the Kobe record at 30% amplitude scaling. 
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6.2.2 Control Device Limitation to Consider 

To further investigate the proposed causal RILD method, different η values were 

evaluated for the Hachinohe earthquake ground motion. Fig. 6.6 illustrates 

experimental hysteresis for the structure with applied 50% Hachinohe earthquake for 

η values of 0.4, 0.6, together with passive-off (constant 0 V) and passive-on (constant 

30 V) cases applied to the MR Damper. 

As it is clear from Fig. 6.6, causal hysteresis for η values of 0.4 and 0.6 fall 

between the lower limit of passive-off case and upper limit of passive-on case. Thus, 

by selecting η in this range, the desired force throughout the time history is nominally 

achievable by the MR damper. A very large η value may lead to saturation of the MR 

damper force at the passive-on performance and likewise a very low for η value may 

lead to a force that cannot decrease beyond the passive-off performance. Furthermore, 

during very low velocity excitations, the passive-off limit may lead to a nominal level 

minimum force for any value of η. This phenomenon is a limitation of the MR 

damper, meaning that the MR damper must be designed with a controllable range of 

forces that overlap with the desired range of RILD force. This is not a strict 

requirement, since large displacements or large values of η that may produce an 

unachievable RILD force would cause the MR damper to function in the passive-on 

state, which still dissipates a large amount of energy and is in phase with the velocity. 
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Fig. 6.6. Experimental hysteresis for different η values, passive-off, and passive-on 

cases for the Hachinohe record at 50% amplitude scaling. 
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Chapter 7:  Inter-Story Isolation 

This chapter explores the application of RILD to inter-story isolation. The goal is to 

reduce isolation layer displacements without compromising the benefits of isolation 

including low isolation layer forces and low accelerations of the superstructure. 

Substructure RTHS is used to evaluate the inter-story isolated structure. Here, the 

superstructure is experimentally represented by a base-isolated specimen while the 

substructure is numerically represented through a numerical model. The experimental 

and numerical substructures are linked in a loop of action and reaction to capture the 

dynamic response of the total structure. Results for a MDOF inter-isolation structure 

incorporating proposed causal RILD is compared to that of noncausal numerical 

analysis for a same structure. Additional performance comparisons are made to the 

MR damper in both passive-on and passive-off control modes and a numerical 

simulation of linear viscous damping in the isolation layer. 

For an inter-story isolation system, there are two obvious choices for n  in 

Equation (5.13) based on the dynamics of the structure. Stories above the isolation 

layer will freely vibrate at their own natural frequency, making the fundamental 

natural frequency of the superstructure a good choice. Also, the stories below the 

isolation layer will act as a filter to the ground motion, effectively causing forced 

vibration to the superstructure at the fundamental natural frequency of the 

substructure. Considering forced vibration, the fundamental natural frequency of the 
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substructure is also a good choice. Both options for 
n  are evaluated and results are 

discussed in this research.  

7.1 Structural Model 

In this study, a real 14-story high rise building (IFB) where the isolation layer is 

installed between 9th and 10th story is used for investigations. This structure is 

idealized as a 15-DOF lumped mass model which is shown in Fig. 7.1.  

             

Fig. 7.1. Structural system of the IFB and related shear model. 

The structure is divided into two parts. The first 9 stories below the isolation 

layer are classified as the substructure and 6 stories above the isolation layer as the 

superstructure. In this study, the RILD is proposed as supplemental damping in the 

isolation layer. The superstructure will be idealized as a SDOF system such that a 

base-isolated SDOF experimental specimen can represent their dynamics. The 

substructure will be simulated numerically. The dynamic response of the total 

structure will be evaluated through shake table RTHS. With the SDOF assumption for 
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the superstructure, a 10-DOF model is created with matching dominant natural 

frequencies and mode shapes as the full model shown in Fig. 7.1.  

7.1.1 Experimental Specimen and MR damper Specimen 

The isolation layer causes the superstructure to response mainly in its first mode of 

vibration. A base isolated specimen will be used to represent the isolation layer and 

superstructure. The same 3m × 3m bi-directional shake table specimen and MR 

damper from Tohoku University that has been used for SDOF testing, was also used 

here. The IFB building contains supplemental dampers in the isolation layer. To 

replicate the supplemental dampers, the same physical MR damper is added to the 

isolation layer of the test specimen. Similarly, same feedforward-based control 

algorithm was found to provide adequate tracking of the desired MR damper force. 

7.1.2 Prototype Structure Properties 

Prototype structural properties (10-DOF model) are selected to match the scale of the 

experimental specimen while maintaining similar natural frequencies and mode 

shapes as the original structure (15-DOF model). The original model mass is scaled 

by 1/2940, resulting in a match between the original superstructure mass and the 

SDOF experimental specimen.  The stiffness of the isolation layer in the prototype 

structure is selected to create a superstructure with identical natural frequency as the 

experimental specimen, 0.25 Hz. Likewise, stiffness values of floors 1 through 9 are 

uniformly scaled such that the prototype structure has similar dominant natural 

frequencies and mode shapes as that of the original model of the IFB. Mass and 

stiffness values are reported in Table 7.1. The natural frequencies of the prototype 
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structure are 0.24 Hz, 0.83 Hz, 2.32 Hz, 3.88 Hz, 5.49 Hz, which compare well to the 

natural frequencies of the original model as 0.29 Hz, 1.04 Hz, 2.93 Hz, 4.89 Hz, and 

6.89 Hz. Fig. 7.2 represents the first three mode shapes of both of these models. Note 

that the prototype structure’s 10th floor displacement is repeated for all superstructure 

floors for comparison with the original structure. The prototype structure can well 

represent the dynamics of the simplified original model of IFB. 

The base isolated specimen has 2.4% damping without considering 

supplemental damping and hence the damping coefficient of the 10th story in the 

prototype structure is chosen as 0.376 kNs/m to be compatible with the experimental 

specimen. For the substructure, damping coefficients are chosen as 20.0 kNs/m for 

each floor which results in damping ratios of the total structure to be 2.23%, 2.80%, 

7.74%, 12.9%, and 18.1% in the first five modes. 

 

Fig. 7.2. First three mode shapes of the prototype structure and target structure. 
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Table 7.1. Parameters of the 10-story prototype structure. 

Floor/Story 
Floor Mass 

(kg) 

Story Stiffness 

(kN/m) 

Story Damping 

(kNs/m) 

1 1,847 2,642 20.0 

2 1,880 2,752 20.0 

3 1,770 2,354 20.0 

4 1,763 2,109 20.0 

5 1,760 1,959 20.0 

6 1,730 1,836 20.0 

7 1,670 1,710 20.0 

8 1,670 1,602 20.0 

9 4,317 1,539 20.0 

10 5,000 12.30 0.376 

 

7.2 Preliminary numerical study of RILD for inter-story isolation 

In this section, the seismic performance of the scaled 10-DOF IFB building model is 

evaluated under six ground motion records with different dominant frequency 

content. Three models are considered for the supplemental damping in the isolation 

layer: discrete RILD and discrete viscous damping elements.  In this section, the 

intensities of the ground motions are scaled so that the isolation layer drift of the 

structure with the RILD element is 0.3 m for an η value of 0.4. Same η value of 0.4 is 

used for CFB controller and the viscous damping coefficient then is selected to 

achieve an average of 0.3 m drift in the isolation layer for all records except 

Sakishima. In this way, both damping models restrict the isolation layer drift to 

similar levels and damping coefficients are consistent across all records. It is 

worthwhile to mention that due to low frequency content of the Sakishima record, a 

very high value of damping coefficient is needed for viscous damping to achieve 0.3 
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m drift at the isolation layer. Therefore; to have a fair comparison, viscous damping 

coefficient is calibrated only based on the remaining five earthquake records to reach 

an average 0.3 m drift at the isolation layer. Fig. 7.3 shows numerical simulation peak 

responses for the scaled model with both damping types. The ground motion records 

are ordered in Fig. 7.3 from left to right based on relative low to high frequency 

content. 

 

Fig. 7.3. Peak response comparison of RILD and viscous damping. 
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As it is shown in Fig. 7.3, while RILD and viscous are set to have similar 

isolation layer drifts for Hachinohe, Kobe, Northridge, TohokuNS, and TohokuEW 

records, viscous damping results in much higher damping forces leading to higher 

superstructure absolute accelerations. These five earthquakes have medium to high 

frequency content excitations relative to the IFB’s superstructure fundamental natural 

frequency, resulting in larger generated damping forces for the discrete viscous 

damper as compared to RILD. On the other hand, for Sakishima ground motion, 

larger isolation layer drift and superstructure absolute acceleration (10th DOF absolute 

acceleration) is observed for the structure equipped with discrete viscous damper as 

compared to RILD. As discussed earlier, this is because of the low frequency content 

of this record, leading to smaller viscous damping forces as compared to RILD 

element. However, for the rest of the records vibrations at higher frequencies than the 

natural frequency of the substructure will result in similar isolation layer drift as ideal 

RILD while at the same time leading to lower superstructure absolute accelerations. 

Moreover, both damping models result in similar 9th DOF absolute acceleration 

across all ground motions. In conclusion, the results shown in Fig. 7.3 highlight the 

advantages of RILD controller over viscous damping for inter-story isolated 

structures. The advantages stem from the frequency-independent RILD force, leading 

to good performance for both low frequency and more common high frequency 

content earthquakes. 
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7.3 Experimental Analysis through RTHS 

7.3.1 Shake Table RTHS 

In this research, shake table RTHS was used to evaluate structural responses of the 

inter-story isolated structure. A dynamic substructure approach based on Shing [47], 

is applied to inter-story isolation. The 10-DOF prototype structure is partitioned into 

experimental and numerical substructures. In this study, the isolation layer and 

superstructure form the experimental substructure (specimen) and the substructure 

forms the numerical substructure (see Fig. 3.1). Details of this approach are discussed 

in Section 3.4.3.  

 

7.4 RTHS Experimental Results and Discussion 

A series of shake table RTHS tests were conducted at Tohoku University to examine 

the performance of the proposed causal realization of RILD incorporated into inter-

story isolated structures. The setup consists of a large-scale shake table, a base-

isolated single-story specimen as the experimental substructure, and a dSPACE 

DS1103 control and data acquisition system. A load cell, accelerometer, and 

displacement transducer were used to capture damper force, structural acceleration, 

and isolation layer relative displacement, respectively. Numerical integration of the 

numerical substructure and interface with sensors and actuators was performed by the 

dSPACE digital signal processing board. 

 The isolation layer displacement, as measured by the displacement transducer, 

was used as input to the causal RILD model given in Equation (5.14). The causal 

RILD force is taken as the desired force to be tracked by the MR damper using 
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Equation (6.2). In all experiments, the loss ratio η is taken as 0.6. Initially, the 

fundamental natural frequency of the substructure (i.e., numerical substructure) is 

used for 𝜔𝑛 in Equation (5.13). This is later contrasted with selecting the fundamental 

natural frequency of the superstructure (i.e., experimental substructure) for 𝜔𝑛. 

7.4.1 Causal versus Non-causal RILD 

First, the ability to mimic ideal RILD in a practical design will be assessed. Ideal 

RILD is evaluated using a fully numerical model of the prototype structure with ideal 

RILD (instead of MR damper) in the isolation layer.  This numerical model is 

noncausal and therefore evaluated in the frequency domain. The causal realization of 

RILD is evaluated through shake table RTHS of the prototype structure using an MR 

damper to track the causal RILD force. Herein, 𝜔𝑛 is chosen as the natural frequency 

of the substructure (numerical substructure). 

 Fig. 7.4 compares structural responses of the 10th floor (isolation layer) for the 

noncausal analysis and the RTHS with an applied 20% amplitude Kobe earthquake. 

Fig. 7.5 illustrates same responses for an applied 10% amplitude Northridge 

earthquake. RTHS test results have a very good match with noncausal responses 

achieved from state space frequency domain analysis. The earthquake records 

considered have different frequency content; however, a good physical replication of 

ideal RILD is achieved in both cases. This good match is achieved through the 

selection of 𝜔𝑛 as the fundamental natural frequency of the substructure. The stories 

below the isolation layer filter the input ground motion before it reaches the isolation 

layer. The isolation layer is then excited by a narrow-banded input close to the 

fundamental natural frequency of the substructure. Forced vibration at this frequency 
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(around 1 Hz) can be seen to dominant the inter-story isolation displacement 

responses in Fig. 7.4 and Fig. 7.5. For all input ground motions considered, the causal 

realization RILD works well because the input ground motion is filtered by the 

substructure before reaching the isolation layer. Robust performance under a wide 

range of input ground motion types is important for practical applications where 

future inputs are unknown.  

 

Fig. 7.4. Noncausal RILD vs RTHS responses for 10th floor with applied 20% Kobe 

earthquake. 
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Fig. 7.5. Non-causal RILD vs RTHS responses for 10th floor with applied 10% 

Northridge earthquake. 

7.4.2 Influence of CFB Model Design on Seismic Performance 

To further examine the performance of the casual approximation of RILD, the 

fundamental natural frequency of the superstructure (experimental substructure) was 

used for 𝜔𝑛 and the prototype structures was excited with 20% amplitude of the Kobe 

earthquake in RTHS. The results are compared with noncausal responses computed 

numerically in frequency domain. Fig. 7.6 depicts RTHS and noncausal results for 

10th floor of the structure. As can be seen from Fig. 7.6, the hysteresis plot for the 

causal approximation is more skewed when compared to causal hysteresis plot in Fig. 

7.4. The skewed shape of Fig. 7.6 is due to the use of the fundamental natural 

frequency of the superstructure for 𝜔𝑛. The frequency of the forced vibration from 
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the substructure dominates the response of the isolation layer. Because this frequency 

is larger than 𝜔𝑛, a positively skewed hysteresis is created by the model of Equation 

(5.13). Although the phase of the restoring force in Fig. 7.6 does not match the non-

causal simulation, overall the displacement suppression is similar. The causal 

approach to achieve RILD is robust to cases where the dominant response frequency 

and 𝜔𝑛 do not exactly match.  

 
Fig. 7.6. Non-causal RILD vs RTHS responses for 10th floor with applied 20% Kobe 

earthquake and natural frequency of the superstructure as an input for the all-pass 

filter. 

 

 

 



 

 78 

 

7.4.3 Comparison to Passive-on and off Controllers 

This section explores the advantages of causal RILD versus other control algorithms 

when incorporated into inter-story isolated structures using a semi-active damper. 

Passive-on (constant 30 V) and passive-off (constant 0 V) cases are chosen as control 

alternatives for the MR damper. RTHS tests were conducted for the same prototype 

structure with MR damper controlled using passive-on and passive-off algorithms. 

The results are compared to that of causal RILD tests. Fig. 7.7 through Fig. 7.8 show 

seismic responses of 10th story for all three different control algorithms with applied 

20% amplitude Kobe record and 10% Northridge amplitude record, respectively. 

 

Fig. 7.7. CFB responses vs passive-on and passive-off for 10th floor with applied 

20% Kobe earthquake. 
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Fig. 7.8. CFB responses vs passive-on and passive-off for 10th floor with applied 

10% Northridge earthquake. 

 

  As shown in damping force time histories of the two earthquakes, causal 

RILD force has slightly larger peaks than passive-on case in strong ground motion 

part of the earthquake. This is because voltage saturation limit for semi-active 

controller was set to be larger than passive-on constant 30 V. However, passive-on 

controller generates larger damping forces in remaining cycles. Comparing 

displacement and acceleration responses we can make the following conclusions: 

Causal RILD suppresses the displacement more effectively than both passive-on and 

off controller. Despite having identical or slightly larger damping force peaks, causal 

RILD also generates lower acceleration responses in comparison to passive-on 

controller for all earthquakes. This demonstrates that using a semi-active control 
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algorithm to track a causal realization of RILD can produce better seismic 

performance for inter-story isolated structures in comparison to both passive-on and 

off controllers.  

7.4.4 Comparison to Viscous Damping 

Results from RTHS tests with CFB are compared to the numerically simulated 

prototype structure with a discrete viscous damper installed in the isolation layer as a 

supplemental damping device. The viscous damping coefficient is chosen so that both 

of the systems have the same maximum 10th story drift. This comparison is illustrated 

in Fig. 7.9 and Fig. 7.10 for 10th floor using the two previously studied earthquake 

records. 
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Fig. 7.9. CFB vs viscous damping responses for 10th floor with applied 20% Kobe 

earthquak. 
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Fig. 7.10. CFB vs viscous damping responses for 10th floor with applied 10% 

Northridge earthquake. 

 

For all the cases with the same maximum isolation layer drift, viscous damper 

generates higher damping forces which leads to also higher acceleration responses. In 

other words, CFB incorporated into inter-story isolated structure can suppress the 

displacement response as much as ordinary viscous dampers but with induced lower 

damping force which also results in lower acceleration response of the superstructure. 

This shows that using this semi-active controller clearly improves dynamic behavior 

of inter-story isolated structures when compares to traditionally discrete viscous 

dampers such as oil dampers that are currently being used in existing structures. 

These plots are also in agreement with a previous noncausal numerical study 

conducted by Ikago and Inoue [1]. 
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Chapter 8:  Vehicle Suspension Systems 

In this chapter, a modal filter-based RILD control law is proposed for a quarter car 

model. This is a new type of damping that is proposed to have promising vibrational 

performances in vehicles that has not been used and studied before. The proposed 

causal filter-based approach is modified and improved by using modal coordinates for 

a quarter car model. The performance of the proposed control policy is then compared 

to skyhook and groundhook control algorithms. Results indicate that the modal causal 

filter-based approach (MCFB) can improve both sprung and unsprung mass responses 

at the same time and therefore there is no compromise for this approach unlike 

skyhook or groundhook controllers.  

8.1 Quarter Car Semi-active Suspension System 

In this section, the equations of motion of a quarter car model are presented. Then 

skyhook and groundhook controllers are described and damping force equations for 

each control law is presented. 

8.1.1 Quarter Car Model 

Fig. 8.1 shows a quarter car model of a vehicle. The sprung mass and unsprung mass 

are defined here as 𝑚𝑠 and 𝑚𝑢, respectively. Suspension inherent damping is denoted 

as 𝑐𝑠 and suspension spring as 𝑘𝑠 and tire stiffness as 𝑘𝑡. Road profile is defined as 𝑧𝑟 

and sprung and unsprung mass displacements are defined as 𝑧𝑠 and 𝑧𝑢, respectively. 

All displacements are absolute (relative to a ground not shown). Dots represent 
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derivatives with respect to time. 𝐹𝑑 is the damping force from a semi-active device 

such as a MR damper. 

 

Fig. 8.1. Quarter car model with desired semi-active force 𝐹𝑑. 

The equations of motion for sprung and unsprung mass of the quarter car 

model represented in Fig. 8.1 are as follows, respectively: 

𝑚𝑠𝑧̈𝑠(𝑡) + 𝑐𝑠[𝑧̇𝑠(𝑡) − 𝑧̇𝑢(𝑡)] + 𝑘𝑠[𝑧𝑠(𝑡) − 𝑧𝑢(𝑡)] + 𝐹𝑑(𝑡) = 0            (8.1) 

𝑚𝑢𝑧̈𝑢(𝑡) + 𝑐𝑠[𝑧̇𝑢(𝑡) − 𝑧̇𝑠(𝑡)] + 𝑘𝑠[𝑧𝑢(𝑡) − 𝑧𝑠(𝑡)] + 𝑘𝑡[𝑧𝑢(𝑡) − 𝑧𝑟(𝑡)] = 𝐹𝑑(𝑡) (8.2)                                                                                    

As mentioned earlier 𝐹𝑑(𝑡) is a force achieved from a semi-active control 

algorithm. These equations are used in this study to form the state space matrices 

required for numerical simulations in later sections.  

Table 8.1 show properties of the quarter car model used in this chapter for all 

the numerical simulations. 
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Table 8.1. Parameters of the 2-DOF Quarter Car Model. 

 

 

It is worthwhile to mention that reducing sprung mass responses will result in 

better ride quality of the vehicle while reducing unsprung mass responses leads to a 

better road holding ability [38]. 

8.1.2 Skyhook Control 

In ideal skyhook control, the sprung mass of the quarter car model is linked to some 

fictional fixed point in sky via a damper as shown in Fig. 8.2. The goal of skyhook 

controller is to isolate vibrations of the sprung mass. The equations describing a 

common implementation of skyhook control for semi-active dampers (e.g., Fig. 8.1) 

are as follows: 

{
𝐹𝐷,𝑠𝑘𝑦 = 𝑐𝑠𝑘𝑦𝑧̇𝑠   𝑧̇𝑠(𝑧̇𝑠 − 𝑧̇𝑢) ≥ 0

𝐹𝐷,𝑠𝑘𝑦 = 0            𝑧̇𝑠(𝑧̇𝑠 − 𝑧̇𝑢) < 0
                              (8.3)                                                      

where (𝑧̇𝑠 − 𝑧̇𝑢) is the relative velocity of the sprung mass with respect to the 

unsprung mass. As discussed earlier, according to Equation (8.3), skyhook control 

law is designed to mitigate sprung mass responses at the expense of increase in 

unsprung mass responses. 

Quarter Car Model Properties 

𝑚𝑠 373.5 kg 

𝑚𝑢 40 kg 

𝑐𝑠 570 Ns/m 

𝑘𝑠 27358 N/m 

𝑘𝑡 211625 N/m 
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Fig. 8.2. Ideal Skyhook control. 

8.1.3 Groundhook Control 

In a common implementation of groundhook control for semi-active dampers (e.g., 

Fig. 8.1), the desired damping force is defined as: 

{
𝐹𝐷,𝑔𝑛𝑑 = 𝑐𝑔𝑛𝑑𝑧̇𝑢    − 𝑧̇𝑢(𝑧̇𝑠 − 𝑧̇𝑢) ≥ 0

𝐹𝐷,𝑔𝑛𝑑 = 0              − 𝑧̇𝑢(𝑧̇𝑠 − 𝑧̇𝑢) < 0
                           (8.4) 

Equation (8.4) is based on ideal groundhook controller in which a the damper is 

linked to the unsprung mass at one end and connected to ground at the other end 

which results in a reduction in unsprung mass responses at the expense of sprung 

mass responses. Fig. 8.3 represents ideal groundhook control in quarter car model. 

 

Fig. 8.3. Ideal Groundhook control. 
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8.2 Proposed Modal Causal Filter-based Approach (MCFB) 

In MCFB method, first mode shapes and corresponding modal frequencies of a 

vehicle are computed through eigenvalue analysis.  Using achieved mode shapes, 

modal coordinates of the corresponding vehicle are obtained as following: 

{𝑝1(𝑡)
𝑝2(𝑡)

} = [Φ]2×2
𝑇 {𝑧𝑠(𝑡)−𝑧𝑟(𝑡)

𝑧𝑢(𝑡)−𝑧𝑟(𝑡)
}                                                 (8.5) 

where 𝑝1(𝑡) and 𝑝2(𝑡) are modal coordinates for first and second modes. In practice, 

both sprung and unsprung relative displacement can be estimated accurately using a 

Kalman filter algorithm. The only measurement required is the sprung mass absolute 

acceleration which can be measured using an accelerometer and therefore is a great 

benefit for practical applications. Similar applications of Kalman filters in vehicle 

suspension system can be found in [57, 58]. Matrix [Φ]2×2 is the eigenvector matrix 

whose first column is the first mode shape and second column is the second mode 

shape. After obtaining  𝑃1(𝜔) and 𝑃2(𝜔) using Fourier transform, the next step is to 

calculate modal causal RILD force in frequency domain as follows: 

𝐹𝐷,1(𝜔) = 𝑘𝑠𝜂(𝜑11 − 𝜑21)𝑃1(𝜔)
𝑖𝜔−𝜔1

𝑖𝜔+𝜔1
                                       (8.6) 

𝐹𝐷,2(𝜔) = 𝑘𝑠𝜂(𝜑12 − 𝜑22)𝑃2(𝜔)
𝑖𝜔−𝜔2

𝑖𝜔+𝜔2
                                       (8.7)                                                                                                              

in which 𝐹𝐷,1(𝜔) and 𝐹𝐷,2(𝜔) are modal causal RILD force for first and second 

modes, respectively. 
1 and

2 are first and second modal frequencies and 𝜑𝑖𝑗 is the ith 

DOF of the jth mode of the mode shape vector. The total MCFB damping force is the 

summation of the modal forces shown here as [59]: 

𝐹𝐷,𝑀𝐶𝐹𝐵(𝜔) = 𝛼𝐹𝐷,1(𝜔) + 𝛽𝐹𝐷,2(𝜔)                               (8.8)                                                       
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where 𝛼 and 𝛽 are the weight factors for first and second modes, respectively. If 

mode shapes are mass normalized, then 𝛼 = 𝑚𝑠 and 𝛽 = 𝑚𝑢. The procedure from 

Equation (8.5) through Equation (8.8) is conducted in real time in a feedback loop 

with the sprung and unsprung response displacement as the input measurements and 

MCFB damping force as the output desired force. Then an active or semi-active 

control device such as MR damper can be used to track that desired force. Please 

note, although whole process is conducted in time domain in a numerical simulation, 

Equation (8.6) through Equation (8.8) are presented here in frequency domain for 

better understanding of the control force. 

8.3 Numerical Comparison of MCFB, CFB, and RILD models 

In this section, the two causal approximations of RILD (CFB and MCFB) are 

compared to RILD for a quarter car model. The purpose of this section is to 

demonstrate the ability to match (non-causal) RILD with causal algorithms. A 

comparison to other control methods will follow in the next section. The properties of 

the model are presented in Table 8.1 [60].  

Non-causal numerical analysis can be conducted in both time and frequency 

domains [39, 40]. For linear MDOF systems frequency domain analysis is the most 

straightforward approach to solve for noncausal responses [43]. Hence, in this 

dissertation, RILD responses are calculated through frequency domain method. Both 

CFB and MCFB algorithms were analyzed in the time domain using MATLAB’s 

SIMULINK environment. 
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8.3.1 Band-limited White Noise Road Profile 

Fig. 8.4 shows time history responses of the quarter car model to the input white 

noise. To clearly show the different performances of CFB and MCFB approaches in 

comparison to (non-causal) RILD responses, zoomed view of the time history results 

are presented, since the comparative performance of the three models is the same for 

different time periods. The abscissa for sprung displacement is scaled differently than 

the other plots in this figure due to the lower frequency nature of this signal as 

compared to other time history plots. As a result, a portion of one second is chosen in 

𝑧𝑠 plot (by vertical dashed line), where other time history responses are plotted for 

that range as shown in Fig. 8.4. The   value is chosen to be 0.6 for all models.  

Moreover, please note that sprung and unsprung accelerations (𝑧̈𝑠 𝑎𝑛𝑑 𝑧̈𝑢), are 

shown as 𝐴𝑠 and 𝐴𝑢 in all the time history plots throughout the paper. As also noted 

earlier, all sprung and unsprung displacements are absolute values relative to the 

ground.  
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Fig. 8.4. Time history comparison of noncausal (RILD), CFB, and MCFB models 

with white noise input: (a) 𝑧𝑠, (b) 𝑧𝑢, (c) 𝐴𝑠, (d) 𝐴𝑢, (e) Damping Force, and (f) 

Hysteresis. 

 

As shown in Fig. 8.4, MCFB method can clearly better track the noncausal 

responses when compared to CFB approach. From the time history plot of sprung 

mass displacement, 𝑧𝑠, it can be drawn that the two methods are almost overlapping 

and have a same behavior. However, when it comes to the other responses of 
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unsprung displacement (𝑧𝑢), sprung and unsprung accelerations (𝐴𝑠 and 𝐴𝑢), it is 

evident that MCFB control does a better job than CFB algorithm in matching the 

RILD responses. Moreover, considering the time history and hysteresis plots of 

damping force, it is perfectly shown that MCFB approach is almost completely in 

phase with RILD, whereas, the CFB control is clearly out of phase, resulting in a 

positively skewed hysteresis. 

It is worthwhile to mention that unsprung mass displacement of the vehicle 

suspension system for all the models is relatively large while applying a white noise 

input as shown in Fig. 8.4. This is due to the fact that, white noise input excites both 

modes of the suspension system equally and leads to resonance at the second mode 

which will results in an amplified unsprung mass displacement for all the models as 

compared to the white noise input. This is also clearly shown in transmissibility plots 

of the suspension system later in section 8.4.1. Responses are more realistic for the 

ISO random road profile investigated next. 

8.3.2 ISO Road Profile 

To further investigate the effectiveness of the MCFB control law, the quarter car 

model is subjected to a random road profile as discussed in section 3.6. Fig. 8.5 

represents simulation results comparing RILD, CFB and MCFB models for the 

random road profile shown in Fig. 8.5 for the vehicle speed of 120 km/hr. Similar to 

white noise responses, both acceleration responses and damping force time history 

signal are plotted here in zoomed view due to their high frequency vibrations. So that 

the reader can clearly see the different vibration performance of all the models. 

Similarly, a small portion is chosen in 𝑍𝑠 and 𝑍𝑢 plots (by vertical dashed line), 
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where other time history responses are plotted for that range as shown in Fig. 8.5. The 

zoomed view represents general performance of the three models in all time ranges. 

As shown in Fig. 8.5, both causal approaches have almost identical 

performances in tracking RILD model for sprung and unsprung mass displacements 

(𝑍𝑠 and 𝑍𝑢), and sprung acceleration, 𝐴𝑠. However, CFB method resulted in higher 

unsprung acceleration than both MCFB approach and RILD model. Furthermore, 

damping force time history signal and also hysteresis plot clearly show the advantage 

of MCFB model over CFB control in matching RILD. It is drawn from the hysteresis 

plot that the MCFB control algorithm is very much in phase with RILD in that both 

have the oval shape hysteresis with little skew, whereas the CFB model generates a 

positively skewed hysteresis. 

Fig. 8.6 illustrates the hysteresis plots for four different random road profiles 

with the vehicle speed of 50, 80, 100, and 140 km/hr. Similarly, same conclusions can 

be made as in Fig. 8.5 for both low and high vehicle speeds. CFB algorithm creates a 

positively skewed hysteresis which results in higher unsprung mass acceleration as 

compared to RILD model and MCFB controller.. To summarize, it can be concluded 

that MCFB control law can better track RILD responses and is very much in phase 

with RILD model than the CFB approach.  
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Fig. 8.5. Time history comparison of noncausal, CFB and MCFB models with random 

road profile input. 
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Fig. 8.6. Hysteresis plots for the vehicle speed of 50, 80, 100 and 140 km/hr. 

 

8.4 Numerical Comparison of MCFB, Skyhook, and Groundhook 

models 

 

In this section, the merits of using MCFB control in comparison to skyhook and 

groundhook controllers are discussed. Similar to section 8.3, both white noise and 

random road profile are considered here as an input to the quarter car model. For 

MCFB controller value is chosen to be 0.6 for all simulations. For this comparison, 

it is worth noting that force-velocity relationship of the MCFB algorithm (Equation 

(8.8)) was not restricted to the first and third quadrants in Cartesian coordinates. This 

restriction was imposed on the skyhook and groundhook controllers as per their 

classical definitions (Equation (8.3) and (8.4)). For the MCFB controller, this 
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restriction had a negligible influence on the results, i.e., results were nearly identical 

with or without it.  

8.4.1 Band-limited White Noise Road Profile 

As noted earlier, skyhook control policy is to mitigate sprung mass responses while 

groundhook control policy is designed to decrease unsprung mass responses. 

Therefore, skyhook and groundhook damping coefficients (i.e. 𝑐𝑠𝑘𝑦 and 𝑐𝑔𝑛𝑑) are 

computed so that both MCFB and skyhook models have the same maximum sprung 

mass displacement,  𝑧𝑠 and MCFB and groundhook controllers have the same 

maximum unsprung mass displacement,  𝑧𝑢, respectively. The controller designs are η 

= 0.6, 𝑐𝑠𝑘𝑦 = 1650 Ns/m, and 𝑐𝑔𝑛𝑑 = 300 Ns/m for the MCFB, skyhook, and 

groundhook controllers, respectively. 

As discussed in Section 3.6, transmissibility is defined as the ratio of the 

sprung or unsprung mass responses to input road profile. Fig. 8.7 compares 

transmissibility plots of a quarter car model with the three different controllers as well 

as to an uncontrolled system.  
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Fig. 8.7. Transmissibility plots of uncontrolled, MCFB, skyhook and groundhook 

controllers for: (a) 𝑧𝑠, (b) 𝑧𝑢, (c) 𝐴𝑠, and (d) 𝐴𝑢. 

 

The vertical dashed lines in Fig. 8.7 represents first and second modal 

frequencies of the vehicle. As it is shown in Fig. 8.7, while MCFB and skyhook 

models are set to have identical maximum sprung mass displacement, skyhook 

controller has higher peak in unsprung mass displacement transmissibility. 

Furthermore, skyhook control has slightly smaller first mode sprung acceleration 

transmissibility than MCFB algorithm while both have almost a same second mode 

peak. Finally, MCFB has lower unsprung mass acceleration transmissibility peak than 

skyhook algorithm. To summarize, the MCFB controller attenuates unsprung mass 

transmissibility curves much better than skyhook controller, while at the same time it 
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can improve vibrational responses of the sprung mass almost as good as skyhook 

controller.  

On the other hand, groundhook algorithm has much higher sprung mass 

displacement and acceleration transmissibility peaks than MCFB model and slightly 

smaller unsprung mass acceleration and displacement peaks. Again, this shows that 

MCFB control is able to mitigate sprung mass responses much better than 

groundhook control law, while delivering almost identical unsprung mass responses 

as groundhook controller. Fig. 8.7 also shows transmissibility plots of an uncontrolled 

quarter car model. It is clearly shown that the MCFB controller improve performance 

of the system for both sprung and unsprung masses, while the skyhook and 

groundhook controllers can only improve performance of sprung and unsprung mass, 

respectively. It is worthwhile to mention that the fluctuation in unsprung mass 

displacement for groundhook controller is due to the presence of a complex-conjugate 

pair of zeros in the groundhook transfer function, close to fundamental natural 

frequency of the system.  

In conclusion, while skyhook and groundhook controllers are designed to 

attenuate sprung and unsprung mass responses at the expense of increase in responses 

of the other mass, MCFB control algorithm can nearly improve vibrational 

performances of both masses at the same time. Hence, unlike skyhook and ground 

hook controllers there is no compromise for this approach.  

Fig. 8.8 depicts bar plots of maximum and Root Mean Square (RMS) values 

of the time history responses for the quarter car model subjected to a white noise road 
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profile. 

 

Fig. 8.8. Maximum and RMS comparison of MCFB, skyhook and groundhook 

controllers for white noise input: (a) 𝑧𝑠 − 𝑧𝑢, (b) 𝑧𝑢, (c) 𝐴𝑠, and (d) 𝐴𝑢. 

 

Fig. 8.8 confirms the conclusions made earlier in this section. As noted earlier, 

MCFB and skyhook control are set to have identical maximum sprung displacement 

and MCFB and groundhook to have identical maximum unsprung displacement. 

However, MCFB approach has the lowest peak suspension deflection, (𝑧𝑠 − 𝑧𝑢) (i.e. 

the sprung mass displacement relative to the unsprung mass). This will contribute to 

better road ride quality. Skyhook model results in the lowest sprung acceleration as 

expected; while, MCFB and groundhook lead to similar maximum and RMS sprung 

acceleration. Groundhook control causes lowest unsprung mass acceleration and 
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MCFB algorithm also mitigate unsprung mass acceleration almost as much as 

groundhook controller which is in agreement with the transmissibility curve data. 

8.4.2 ISO Road Profile 

Same criteria is used here to calculate damping coefficients of skyhook and 

groundhook controllers as in section 8.4.1. Fig. 8.9 shows time history responses of 

quarter car model with applied random road profile and vehicle speed of 120 km/hr 

(See Fig. 3.4). Similar scaling procedure is done to clearly demonstrate high 

frequency vibrations of accelerations and damping force time history plots. 
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Fig. 8.9. Time history comparison of MCFB, skyhook and groundhook controllers for 

random road profile input: (a) 𝑧𝑠, (b) 𝑧𝑢, (c) 𝐴𝑠, (d) 𝐴𝑢, (e) Damping Force, and (f) 

Hysteresis. 

 

As illustrated in Fig. 8.9, skyhook and MCFB control law results in almost 

identical sprung displacement, which is lower than groundhook algorithm. For this 

road profile, all controllers have similar unsprung mass displacement. Moreover, as 

expected, skyhook and groundhook controllers cause highest peak in unsprung and 
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sprung mass accelerations, respectively. Similar to white noise responses, MCFB 

method attenuates both sprung and unsprung mass accelerations nearly as much as 

skyhook and groundhook algorithm, respectively.    

Maximum and RMS values of the time history responses for the quarter car 

model subjected to a random road profile presented in Fig. 3.4 is shown in Fig. 8.10 

for the vehicle speed of 50 km/hr.  

 

Fig. 8.10. Maximum and RMS comparison of MCFB, skyhook and groundhook 

controllers for random road profile input with speed of 50 km/hr: (a) 𝑧𝑠 − 𝑧𝑢, (b) 𝑧𝑢, 

(c) 𝐴𝑠, and (d) 𝐴𝑢. 

 

Likewise, same conclusions can be made here as from Fig. 8.8. MCFB has the 

lowest suspension deflection, (𝑧𝑠 − 𝑧𝑢). While skyhook and groundhook algorithm 

can only mitigate responses of one of the masses at the expense of the other mass, 
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MCFB approach is able to improve vibrational performance of both sprung and 

unsprung masses at the same time.  

Fig. 8.11 shows Maximum and RMS values of the quarter car model subjected 

to a random road profile presented in Fig. 3.4 for the vehicle speed of 120 km/hr. 

 

Fig. 8.11. Maximum and RMS comparison of MCFB, skyhook and groundhook 

controllers for random road profile input with speed of 120 km/hr: (a) 𝑧𝑠 − 𝑧𝑢, (b) 𝑧𝑢, 

(c) 𝐴𝑠, and (d) 𝐴𝑢. 

 

The same behavior is observed for vehicle speed of 120 km/hr. This demonstrates that 

MCFB algorithm works well at both low and high velocities.  

In conclusion, unlike skyhook and groundhook controllers, there is no 

comprise for MCFB approach. Therefore, this semi-active model can enhance both 

sprung and unsprung responses of the vehicle simultaneously. Moreover, as discussed 
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earlier the only measurement needed to implement the MCFB algorithm is the sprung 

mass absolute acceleration which can be easily measured using local sensors and thus 

is a great benefit for practical applications. It is worthwhile to mention that since 

skyhook and groundhook control forces are proportional to absolute velocity of 

sprung and unsprung mass respectively, practical implementation of these controllers 

is more challenging in a sense that it requires more measurements for accurate 

estimation and therefore more sensors. 

8.4.3 Controller robustness study under ISO road profile 

  

To investigate the robustness of the MCFB, skyhook, and groundhook controllers, 

their performances are evaluated for changes in the sprung mass 𝑚𝑠, simulating the 

condition where the occupancy or payload of the vehicle changes. The controller 

parameters for all three controllers are identical to section 8.4.1 and 8.4.2, i.e., they 

are not updated to accommodate the change in 𝑚𝑠. Fig. 8.12 and Fig. 8.13 compare 

the maximum and RMS vehicle responses, respectively, for these three controllers as 

𝑚𝑠 is varied. Each point represents a simulation with the ISO road profile and vehicle 

speed of 120 km/hr. The vertical dashed lines indicate the original 𝑚𝑠 value from 

Table 8.1. A range of 0.25𝑚𝑠 to 2𝑚𝑠 is investigated in this study. 
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Fig. 8.12. Peak response comparison of MCFB, skyhook and groundhook controllers 

for various 𝑚𝑠 values with vehicle speed of 120 km/hr: (a) 𝑧𝑠, (b) 𝑧𝑢, (c) 𝐴𝑠, (d) 𝐴𝑢, 

(e) 𝑧𝑠 − 𝑧𝑢, and (f) damping force. 
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Fig. 8.13. RMS response comparison of MCFB, skyhook and groundhook controllers 

for various 𝑚𝑠 values with vehicle speed of 120 km/hr: (a) 𝑧𝑠, (b) 𝑧𝑢, (c) 𝐴𝑠, (d) 𝐴𝑢, 

(e) 𝑧𝑠 − 𝑧𝑢, and (f) damping force. 

 

Looking at Fig. 8.12 and Fig. 8.13, the MCFB is the most effective at 

reducing displacement and acceleration responses of both sprung and unsprung 

masses, even as the sprung mass 𝑚𝑠 varies. For the road profile and speed considered, 

the MCFB is arguably the most robust of the three controllers. The tradeoffs in 
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mitigating sprung and unsprung mass responses are clear in the skyhook and 

groundhook controllers. However, even as 𝑚𝑠 varies, the MCFB controller mitigates 

sprung mass and unsprung mass responses as effectively as skyhook and groundhook 

controllers, respectively. Suspension deflection is also maintained at its lowest levels 

through the MCFB controller. The robust performance of the MCFB controller comes 

at the expense of larger damping forces with increasing 𝑚𝑠. To summarize, as the 

occupancy or payload of the vehicle changes, the MCFB controller has a clear 

advantage over both skyhook and groundhook controllers.    
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Chapter 9:  Adaptive Causal Realization of RILD 

The proposed CFB approach (as presented in Chapter 5) to approximate ideal RILD 

is accurate at a prescribed frequency, set as the fundamental natural frequency of the 

structure. The CFB approach is well-suited as a basis for an adaptive algorithm 

whereby the filter frequency can be updated in real-time based on the actual structural 

responses.  

In this chapter, two adaptive controllers are proposed to approximate ideal 

RILD based on the dominant response frequency estimated in real-time and to the 

CFB model. By estimating the response frequency, the displacement phase advance 

of π/2 radians is more accurately applied. The desired damping force is then tracked 

by a semi-active damper, which is naturally in phase with velocity and has a 

controllable magnitude. 

The adaptive control approaches are demonstrated through RTHS of a 5-story 

base-isolated structure and a 14-story inter-story isolated building. A 

magnetorheological (MR) damper is added to the isolation layer of each structure to 

provide supplemental control mimicking ideal RILD. The MR damper is 

experimentally represented while the remainder of the structure is numerically 

simulated in the RTHS loop. The desired damping force is tracked by the semi-active 

damper. The results compare well to noncausal numerical simulations in both 

damping forces and structural responses. Results also show clear improved seismic 

performance of the adaptive algorithms as compared to non-adaptive causal 
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approximations and passive-on and off damper controllers (e.g., nonlinear hysteretic 

damping).  

9.1 Need for an Adaptive Algorithm 

As discussed in Chapters 6 and 7, an all-pass filter can be used to approximate the 

target filter of Equation (5.12), as a causal approach to mimic ideal RILD. The all-

pass filter of CFB controller can take the form of: 

  𝐻𝐶𝐹𝐵(𝜔) = 𝜂𝑘
𝑖𝜔−𝜔𝑓

𝑖𝜔+𝜔𝑓
                                            (9.1) 

where 𝜔𝑓 is the frequency in which 𝐻CFB(𝜔) has an exact π/2 radian (90°) phase 

advance.  

The CFB approach requires the selection of a frequency 𝜔𝑓, which should 

match the response frequency of the structure under earthquake excitation. The CFB 

approach is applied in this chapter to both base-isolated and inter-story isolated 

structures.  For a base-isolated structure, the best estimate of the response frequency 

is the fundamental natural frequency of the structure. As concluded from Chapter 7, 

for an inter-story isolated structure, there are two obvious choices: the fundamental 

natural frequency of (1) the substructure and (2) the superstructure including the 

isolation layer. The former results in better strong-motion responses because the 

substructure essentially filters the ground motion and provide a narrow band 

excitation to the superstructure. The latter leads to better free vibration responses 

once the excitation has passed. Since the strong ground motion part of the earthquake 

is more important for design, the fundamental natural frequency of the substructure is 
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chosen for fixed-frequency (non-adaptive) CFB models for inter-story isolated 

structures. 

As mentioned in Section 5.4, if the response of a structure is dominated by a 

different frequency, e.g., under forced vibration from an earthquake with concentrated 

frequency content, a better match with ideal RILD can be achieved by selecting the 

response frequency for 𝜔𝑓 in the CFB model. The response frequency, however, is 

not known prior to the ground motion event. This uncertainty is the primary 

motivation to design adaptive controllers that can estimate the dominant response 

frequency of the system in real time.  

9.2 Proposed Adaptive Controllers 

In this section, two adaptive control algorithm are proposed to estimate the dominant 

response frequency of a structure in real time. The estimated frequency is then 

updated in the all-pass filter (CFB model) to achieve desired causal RILD. By 

estimating the frequency of vibration, the true phase advance of the noncausal model 

is more accurately applied. The desired damping force is then tracked by a semi-

active damper. The two adaptive controllers are discussed as follows [61]. 

9.2.1 Adaptive V-D Controller 

The first proposed approach to approximate the dominant response frequency is to 

consider relative displacement and relative velocity measurements of the isolation 

layer. The dominant frequency of vibration can be approximated by dividing root 

mean square (RMS) of velocity signal by RMS value of displacement signal. By 

calculating a moving RMS of the velocity and displacement, the dominant frequency 



 

 110 

 

can be updated in real time. This idea stems from displacement and velocity being out 

of phase by π/2 radians and with an amplitude ratio of 1:ω for a harmonic excitation 

of ω. At time ti, the response frequency ωf,i can be estimated from a moving RMS of 

velocity divided by the moving RMS of displacement as shown in Equation (9.2):  

                                           (9.2) 

where n is the number of samples for the moving RMS. If the sample length for the 

moving RMS is taken as the fundamental natural frequency of the structure Tn and 

data is sampled at Δt, then n = Tn / Δt + 1. Displacements and velocities can be 

directly measured by sensors or estimated from other sensors using discrete 

derivatives, integrals, or a Kalman filter.  

9.2.2 Adaptive A-D Controller 

The second proposed algorithm to approximate the dominant response frequency is to 

consider relative displacement and relative acceleration measurements of the isolation 

layer. A linear-least squares fit of the relative acceleration versus relative 

displacement represented in Cartesian coordinates will produce both a slope and 

intercept. The dominant response frequency is approximated as the square root of the 

negative slope of the linear fit. To avoid producing imaginary numbers, the negative 

sign is replaced with an absolute value operator. This idea stems from displacement 

and acceleration being out of phase by π radians and with an amplitude ratio of 1:ω2 

for a harmonic excitation of ω. Equation (9.3) depicts the Adaptive A-D approach, 

using a linear least-squares calculation for the slope with n sample points.  At time ti, 

the response frequency ωf,i can be estimated as: 
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                                              (9.3) 

where n is the number of samples and 𝑥̅ and 𝑥̅̈ are the sample means of displacement 

and acceleration signals, respectively. Displacements and accelerations can be 

directly measured by sensors or estimated from other sensors using discrete 

derivatives, integrals, or a Kalman filter. To better illustrate this approach, a SDOF 

system with natural period of 4 seconds (typical of a base-isolated structure) is 

subjected to Kobe ground motion and displacement and relative acceleration 

responses of the structure is used in Adaptive A-D algorithm to estimate response 

frequency as shown in Figure 6. In this example, the RILD loss factor is chosen as 

𝜂 = 0.4.  The frequency estimate at 15 seconds is shown, which uses data collected 

from 11 to 15 seconds. Relative acceleration versus relative displacement is 

represented in Cartesian coordinates and a linear-least squares fit of the data points 

are calculated as depicted in Fig. 9.1.  

 

Fig. 9.1. Estimated response frequency in Adaptive A-D algorithm. 
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9.3 Numerical Study of the Adaptive Controllers 

To illustrate the robustness of the adaptive algorithm in estimating dominant 

frequency of vibration, predetermined time history responses from a 5-story base-

isolated structure are chosen as inputs for both algorithms. The structure has 

fundamental natural frequency of 0.25 Hz. Detailed properties of the structure will be 

presented in the next section (Section 9.4). The 5-story base-isolated building is 

subjected to the Hachinohe record (The N-S component recorded at Hachinohe 

Harbor during the Tokachi-oki earthquake of May 16, 1968). Responses are 

calculated using the Runge-Kutta numerical integration scheme and a sample rate of 

2000 Hz.  

Fig. 9.2 presents time history of input ground motion and response of the 

isolation layer. Displacement, velocity, and relative acceleration responses of the 

isolation layer are chosen as inputs to Adaptive V-D and Adaptive A-D controllers. 

For this study, there is no supplemental control in the isolation layer, i.e., the adaptive 

controllers only predict the response frequency but do not act on it. The performance 

of both adaptive control laws is dependent upon two important factors. First is the 

sampling range (in seconds) considered in the moving calculation windows. Second is 

the sampling rate of that data. These two factors are investigated herein.  
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Fig. 9.2. Hachinohe ground motion and isolation layer responses of an uncontrolled 

5-story structure. 

9.3.1 Effects of Sampling Rate 

To study the effects of sampling rate, the sampling range is first fixed at Tn seconds 

where Tn is the fundamental natural period of the structure. For this structure, Tn is 4 

seconds. Therefore, both algorithms will consider data from the previous 4 seconds. 

For this fixed sampling range, the sampling rate is varied from 250 Hz to 1000 Hz. 

Fig. 9.3 illustrates the estimated frequency in time achieved from Adaptive V-D and 

Adaptive A-D controllers for 250 Hz and 1000 Hz. Fig. 9.3 also shows continuous 

wavelet transform plot of the isolation layer response displacement calculated using 
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MATLAB. In the wavelet transform, the lighter shade indicates a higher 

concentration of energy at a particular frequency.  

 

Fig. 9.3. Estimated response frequency for the sampling rate of 250 Hz and 1000 Hz. 

As shown in Fig. 9.3, Adaptive V-D and Adaptive A-D controllers result in 

very similar estimated response frequency. Moreover, the sampling rates chosen do 

not have a noticeable influence on the results. In fact, simulation results show that the 

estimated frequency is similar for sampling rates of above 30 Hz for the structure 

chosen. As an additional validation, the estimated response frequency using the 

continuous wavelet transform analysis overlaps very closely with that of adaptive 

algorithm. This confirms the accuracy of Adaptive V-D and Adaptive A-D controllers 

in the real-time estimation of the response frequency of the structure. Choosing the 

fundamental natural frequency of the structure (also shown in Fig. 9.3) as an estimate 

of the response frequency is demonstrably less accurate. Fig. 9.4 shows same plot for 

the sampling rate of 1 Hz and 50 Hz. 
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Fig. 9.4. Estimated response frequency for the sampling rate of 1 Hz and 50 Hz. 

As depicted in Fig. 9.4, sampling data at 1 Hz resulted in poor response 

frequency estimation as compared to 50 Hz. Additionally, the estimated frequency 

from Adaptive V-D and Adaptive A-D no longer match each other or the wavelet 

transform for a 1 Hz sample rate. When designing the adaptive controller, the 

sampling rate should be small enough so that it is not computationally burdensome 

while large enough to maintain an accurate estimation of the response frequency. 

Note that in this study, the sampling rate of the numerical integration is not altered 

(fixed at 2000 Hz). The data is down-sampled to the desired rate before being used in 

the adaptive algorithm. 

9.3.2 Effects of Sampling Range 

Next, the effects of sampling range on the accuracy of the estimated frequency are 

studied. The sampling rate is fixed at 250 Hz. Fig. 9.5 shows estimated frequency of 

both algorithms for sampling ranges of Tn and Tn/4. 



 

 116 

 

 

Fig. 9.5. Estimated response frequency for sampling range of Tn and Tn/4. 

 

Selecting the sampling range as Tn allows approximately one cycle of response to 

enter into the calculations. A sampling range significantly lower than Tn will bias the 

algorithms, resulting in poor estimations of RMS for the V-D approach and a limited 

displacement and acceleration range for calculating the slope in the A-D approach. 

On the other hand, choosing a very long sampling range will make the algorithms less 

responsive to short-term changes in the structural response. A sampling range of Tn 

was found to consistently matches the frequencies predicted by the wavelet transform.  

9.3.3 Summary of Adaptive Controller Design Parameters 

The data sampling rate and range of the adaptive controllers should be designed in a 

way that is both accurate and efficient. For the remainder of this study, the sampling 

rate is selected as at least 250 Hz. This sampling rate is much larger than the Nyquist 

frequency of the structure and provides sufficient data points for smooth changes in 

the estimated frequency. The sampling range is selected as the fundamental natural 

period Tn of the structure. It is worthwhile to mention that although both adaptive 

algorithms update estimated response frequency after a Tn seconds time delay, they 

do not affect stability of the system due to inherent stability of semi-active damper. 
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Additionally, a saturation block is added to restrict the estimated response frequency 

to a range of 0.1 and 5 Hz. This saturation limit avoids unrealistic drifts in frequency 

estimations when the responses are low in amplitude and measurements may be 

dominated by sensor noise (i.e., before and after significant structural responses). 

9.4 Structural Models 

In this study, two low-frequency structural models are considered. The first structure 

is a 5-story base-isolated building with a large-scale MR damper (200 kN) that is 

installed at the isolation layer. The first three natural frequencies are 0.25 Hz, 3.16 

Hz, and 5.94 Hz. Without the effects of MR damper, the structure has damping ratios 

of 4.97%, 3.17%, and 5.07% at the first, second, and third modes of vibration which 

is typical of a steel frame building with a low-damping isolation system. In RTHS, 

parts of a structure that are difficult to simulate numerically are represented as a 

physical substructure, while the rest are modeled numerically in simulation.  Hence, 

for this study, MR damper is physically tested while the rest of the structure are 

numerically represented in RTHS loop. Table 9.1 shows dynamic properties of the 

structure. 
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Table 9.1. Parameters of the 5-story base-isolated structure. 

Floor/Story 
Floor Mass 

(kg) 

Story Stiffness 

(kN/m) 

Story Damping 

(kNs/m) 

0 

1 

244,800 

212,300 

3287 

404,800 

69.9 

348.1 

2 212,300 349,100 301.4 

3 212,300 343,400 296.2 

4 212,300 299,400 259.8 

5 212,300 228,700 197.5 

 

For the second structure, a 14-story high rise building (Iidabashi First 

Building or IFB) is selected [23] which was also previously used as a reference target 

building in Chapter 7. This structure has an inter-story isolation layer installed 

between 9th and 10th story. While in Chapter 7, 10 DOF scaled-down model was used 

for shake table RTHS testing, in this chapter the full-scale 15 DOF model is used for 

RTHS experiments. Moreover, in Chapter 7 the stories below the isolation layer were 

simulated numerically and superstructure was tested physically using the shake table 

RTHS, whereas; in this chapter 15 DOF model is tested numerically and MR damper 

is considered as the experimental substructure. Considering the scale of this structure, 

20 large-scale (200 kN) MR dampers are assumed in the isolation layer as 

supplemental dampers. This structure is idealized as a 15-DOF lumped mass model 

which is shown in Fig. 7.1. Assuming the superstructure is a fixed-base building, the 

stories above the isolation layer have a fundamental natural frequency of 4.81 Hz and 

damping values are selected to provide 3% damping in this mode. Including the 

isolation layer, the superstructure has a fundamental natural frequency of 0.3 Hz and 
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the viscous damping of the isolation layer is selected to provide 5% damping in this 

mode. For the substructure (i.e. stories below the isolation layer), the structure has a 

fundamental natural frequency of 1.02 Hz and damping values are selected to provide 

3% damping in this mode. Without considering the effects of supplemental isolation-

layer damping, the total IFB building has natural frequencies of 0.29 Hz, 1.05 Hz, 

2.93 Hz, 4.95 Hz, 6.92 Hz, and 7.26 Hz in its first six modes corresponding to 

damping ratios of 5%, 3.9%, 9.64%, 16%, 5.63%, and 22.4%. The fifth mode of 

vibration has significant motion in the inter-story isolation layer, leading to the 

notably low damping ratios when not including the supplemental damping device. 

As with the 5-story building, the IFB structure is divided into two parts. The 

MR dampers are experimentally represented while the remainder of the structures is 

numerically simulated in the RTHS loop. A single MR damper specimen is used to 

represent all dampers because they will experience the same displacement inputs. 

Detailed properties of the IFB building can be found in Table 9.2.  
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Table 9.2. Parameters of the 14-story IFB building. 

 

Floor/Story 
Floor Mass 

(kg× 103) 

Story Stiffness 

(kN/m× 105) 

Story Damping 

(kNs/m× 105) 

1 5435 123.0 915 

2 5533 128.1   915 

3 5209 109.6   915 

4 5189 98.21   915 

5 5180 91.24   915 

6 5091 85.48   915 

7 4915 79.61   915 

8 4915 74.60   915 

9 12,704 71.67   915 

10 4022 0.530    30.4 

11 2315 344.3   415 

12 2315 228.8   415 

13 2305 201.1   415 

14 2305 165.9   415 

15 1658 94.31   415 

9.4.1 MR Damper Specimen 

Both structures are assumed to contain supplemental dampers in the isolation layer. 

To represent the supplemental dampers, a physical MR damper is evaluated in the 

laboratory through RTHS. This study uses a 200 kN MR damper (Fig. 9.6) developed 

by the Lord Corporation. The damper is 1.47 m in length, weighs approximately 2.5 

kN, and has an available stroke of 584 mm [62]. 
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Fig. 9.6. Large-scale MR damper [62]. 

An over-driven back-driven semi-active clipped optimal controller is used for 

the large-scale MR damper to determine the current for the MR damper required to 

achieve the desired force [63]. Fig. 9.7 illustrates an experimental RTHS example of 

the tracking of the desired force by the measured force using this algorithm. The 

results correspond to the 5-story base-isolated structure. The structure is subject to 

30% amplitude scaling of the Kobe record (the N-S component of the Japanese 

Meteorological Agency station during the Kobe earthquake of January 17, 1995). The 

desired force is determined using the CFB model in Equation (56) with ωf equal to 

1.57 rad/sec (0.25 Hz) and η of 0.6. The physical tracking of the desired force is very 

good. The residual force limitation [64] of the damper is about 18 kN; therefore, the 

damper force cannot generally decrease beyond that limit except under very small 

velocities.  
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Fig. 9.7. Desired and measured damping force using the force tracking control 

algorithm. 

9.5 RTHS Experimental Results and Discussion 

A series of RTHS tests were conducted to examine the performance of the proposed 

adaptive controllers incorporated into base-isolated and inter-story isolated buildings. 

The test consists of an MTS servo-hydraulic actuator, a 200 kN MR damper, and a 

dSPACE DS1103 digital signal processing board. A load cell and linear variable 

displacement transducer (LVDT) were used to capture damper force and 

displacement, respectively. Fig. 9.8 shows an image of the RTHS test setup. 

 

Fig. 9.8. Experimental test setup for RTHS. 
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  Numerical integration of the numerical substructure and interface with sensors 

and actuators was performed by the dSPACE digital signal processing board. In all 

experiments, the loss factor η is taken as 0.6. First, the performances of the adaptive 

controllers are compared to fixed-frequency CFB approach and to noncausal 

simulations. The goal is to improve upon the fixed-frequency CFB approach by better 

matching non-casual simulations. Second, the seismic performance of all causal 

approaches are compared to passive on and passive off semi-active control laws.  

For this study, the sampling rate of the RTHS loop and numerical integration 

is set to be 2000 Hz. In RTHS, the earthquake ground motion is applied to the 

numerical substructure (either of the 5-story structure or IFB). The displacement of 

the isolation layer is then applied to the MR damper specimen using the servo-

hydraulic actuator. A model-based feedforward controller is used to compensate for 

the actuator dynamics [23]. The restoring force measured from the actuator load cell 

is returned to the numerical substructure to complete the RTHS loop. 

9.5.1 Adaptive versus fixed-frequency CFB models 

In this section, the ability of adaptive controllers to mimic ideal RILD in a practical 

design will be assessed and compared to fixed-frequency CFB model. Ideal RILD is 

evaluated using a numerical model of the structure with ideal RILD (instead of MR 

damper) in the isolation layer. This numerical model is noncausal and therefore 

evaluated in the frequency domain.  

9.5.1.1 Base-isolated structure 

At first, the 5-story base isolated structure is subjected to 50% amplitude 

scaling of the Hachinohe record. Adaptive controllers are designed with a sampling 
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rate of 250 Hz and sampling range 4 seconds. Fig. 9.9 shows RTHS experimental 

responses of this structure for CFB (fixed-frequency), Adaptive V-D, Adaptive A-D, 

and noncausal models.  

As shown in Fig. 9.9, CFB model has slightly higher displacement and 

acceleration peaks when compared to both adaptive controllers.  Looking at the 

hysteresis, the CFB approach resulted in a positively skewed hysteresis when 

compared to noncausal hysteresis. That leads to a slight increase in stiffness which 

results in acceleration increase for CFB model. On the other hand, Adaptive A-D and 

Adaptive V-D controllers are more in phase with noncausal RILD.  

This behavior can be further studied by comparing estimated response 

frequency from the adaptive controllers to the fundamental natural frequency of the 

structure. As it is shown in Fig. 9.10, both Adaptive A-D and Adaptive V-D 

controllers estimate the response frequency very well when compared to the 

continuous wavelet transform. Note that the wavelet transform is calculated from the 

noncausal model’s isolation layer drift. 

The Hachinohe earthquake causes the structure to respond at a frequency 

larger than the natural frequency of the structure. Using the fixed-frequency CFB 

approach, the damping force will have a phase advance of less than 90° with respect 

to displacement, producing a positively skewed hysteresis. On the other hand, by 

using adaptive controllers, the true response frequency is being used in the all-pass 

filter which is estimated and updated in real time. Hence, resulted damping force 

maintains the 𝜋/2 phase advance with displacement, better approximating the 

noncausal ideal RILD behavior. 
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Fig. 9.9. 5-story structure isolation layer responses with applied 50% Hachinohe 

earthquake. 

 
Fig. 9.10. 5-story structure estimated response frequency with applied 50% 

Hachinohe earthquake. 

 

The benefits of the adaptive controllers are even clearer when looking at 

earthquakes that produce response frequencies much further from the fundamental 

natural frequency of the structure. The base-isolated structure is subjected to 30% 
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amplitude scaling of the Kobe earthquake. Fig. 9.11 and Fig. 9.12 show structural 

responses and frequency tracking for this record. 

 

Fig. 9.11. 5-story structure isolation layer responses with applied 30% Kobe 

earthquake. 

 
Fig. 9.12. 5-story structure estimated response frequency with applied 30% Kobe 

earthquake. 
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Kobe earthquake has high frequency components, leading to a dominant 

response frequency higher than Hachinohe record. Therefore, the hysteresis loop for 

CFB model is even more skewed, leading to high acceleration peaks as shown in Fig. 

9.11 when compared to adaptive controllers and noncausal simulation. Moreover, 

from Fig. 9.12 it is evident that both adaptive algorithms estimated higher response 

frequencies when compared to Hachinohe record. Fig. 9.12 also depicts the estimated 

response frequency obtained from wavelet transform analysis of the noncausal model 

isolation layer drift. Like the Hachinohe record, estimated frequency from adaptive 

control laws are almost equal to that of obtained from wavelet analysis, in particular 

during the strong ground motion part of the earthquake. Therefore, this figure also 

validates the accuracy of adaptive controllers in calculating the response frequency of 

the structure in real time. 

In summary, while the CFB model only uses one frequency (i.e. the 

fundamental natural frequency of the structure) for all type of excitations, both 

adaptive control laws estimate the response frequency in real time. As a result, using 

Adaptive V-D or Adaptive A-D controllers enhances structural performance by better 

mimicking ideal RILD as compared to a fixed-frequency CFB approach. 

9.5.1.2 Inter-story isolated structure 

To investigate performance of adaptive algorithm under a different structure, 

the IFB inter-story isolated structure is subjected to 20% amplitude scaling of the 

Hachinohe record. As discussed in previous sections, the fundamental natural 

frequency of the inter-story isolated building’s substructure is used in CFB model. 

This selection results in better forced-vibration responses. For this structure, the 
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adaptive controllers are designed with a sampling rate of 500 Hz and a sampling 

range of 3.4 seconds. Fig. 9.13 and Fig. 9.14 show structural responses and estimated 

response frequency for inter-story isolation layer when IFB structure is subjected to 

the Hachinohe record. 

 

Fig. 9.13. IFB isolation layer responses with applied 20% Hachinohe earthquake. 
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Fig. 9.14. IFB estimated response frequency with applied 20% Hachinohe 

earthquake. 

 

As it is clear from Fig. 9.13, both adaptive and fixed-frequency approaches 

resulted in similar seismic performance when compared to the noncausal model. Fig. 

9.14 shows estimated response frequency in time from wavelet analysis using the 

noncausal isolation layer displacement. Two major frequency ranges have the highest 

concentration of energy as indicated by the wavelet analysis. The first one is around 

the fundamental natural frequency of the structure (around 0.3 Hz) and the second 

one is at the substructure fundamental natural frequency (around 1 Hz). Both adaptive 

algorithm predict similar dominant response frequencies over time, matching well 

with the wavelet transform. For the fixed CFB model, the substructure fundamental 

natural frequency is used. The isolation layer response contains significant frequency 

content at this forced frequency, resulting in a good match with adaptive and 

noncausal controllers. The addition of some frequency content at the fundamental 

natural frequency of the superstructure leads to a slightly negatively skewed 

hysteresis as compared to noncausal and adaptive algorithms (see Fig. 9.13).  

To further investigate robustness of adaptive algorithm over a broad range of 

excitations, the IFB inter-story isolated structure was subjected to 75% amplitude 
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scaling of the Sakishima record. This record is a predominantly low-frequency 

earthquake. Fig. 9.15 and Fig. 9.16 depict structural responses and estimated response 

frequency for inter-story isolation layer. Because the entire Sakishima ground motion 

is a 500 second record, time history responses of Fig. 9.15 are shown between 150 to 

300 seconds, the main strong ground motion portion of the earthquake. 

 

Fig. 9.15. IFB isolation layer responses with applied 75% Sakishima earthquake. 



 

 131 

 

 

Fig. 9.16. IFB estimated response frequency with applied 75% Sakishima earthquake. 

 

In contrast to the Hachinohe or Kobe earthquakes, for the case of the 

Sakishima earthquake, the CFB model results in slightly higher acceleration peaks 

and much higher displacement responses as compared to adaptive controllers and 

noncausal simulation results. The CFB approach produces a negatively skewed 

hysteresis, leading to decrease in structural stiffness and increase in displacement 

responses. On the other hand, both adaptive controllers resulted in in-phase hysteresis 

plots matching ideal RILD and therefore better displacement and acceleration 

responses. Fig. 9.16 shows estimated response frequency by Adaptive V-D and 

Adaptive A-D algorithm. As expected for this low-frequency ground motion, the 

estimated response frequency is below the fundamental natural frequency of the 

substructure used in CFB controller. Therefore, the CFB model provides a phase 

advance larger than 90° with respect to displacement (see Fig. 5.1) and that resulted 

in a negatively skewed hysteresis and increased displacement responses. For this 

earthquake, better performance would be achieved by selecting the natural frequency 

of the superstructure for the CFB model. This can also be confirmed by comparing 

looking at the estimated response frequency obtained from wavelet analysis which 



 

 132 

 

overlaps with both adaptive controllers and is close to fundamental natural frequency 

of the superstructure. As clearly shown here, this compromise between low and high 

frequency content earthquakes does not exist for adaptive controllers. Therefore, 

similar to other records with different frequency content, both adaptive controllers 

enhance structural performance by better applying the correct phase advance of 

noncausal model and therefore better mimicking the ideal RILD responses.  

9.5.2 Comparison to passive-on and off controllers 

In this section, the performances of adaptive and fixed-frequency controllers are 

compared to traditional passive-on and passive-off semi-active algorithms. For this 

purpose, the 5-story base isolated building is subjected to 30% amplitude scaling of 

the Kobe earthquake in RTHS. Passive-on current is set to be 0.7 Amps so that the 

semi-active controllers and passive-on controller have similar level of damping force 

for the applied ground motion. Passive-off current is set as 0 Amps. Fig. 9.17 

illustrates time history response comparison of these models.  
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Fig. 9.17. Semi active control responses vs passive-on and off for isolation layer with 

applied 10% Kobe earthquake. 

 

  It can be concluded from Fig. 9.17 that both semi-active adaptive controllers 

suppress the displacement as effectively as passive-on, while generating much lower 

acceleration responses in comparison to passive-on controller. This demonstrates that 

using a semi-active adaptive control algorithm to mimic a causal realization of RILD 

can produce better seismic performance in comparison to both passive-on and 

passive-off controllers.  
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Chapter 10:  Passive Realization of RILD 

Passive control devices are the most practical and common device found in civil 

engineering applications. They are more accepted by the industry than their semi-

active or active counterparts. In this chapter passive implementation of RILD is 

explored. First equations are derived, and next practical passive implementation is 

discussed through proposed mechanical devices.   

10.1 Methodology 

Consider a Maxwell element having a stiffness of kM and a damping coefficient of cM 

as shown in Fig. 10.1, the transfer function from the measured displacement Xm to the 

control force FM is as follows: 

    
𝐹𝑃(𝑖𝜔)

𝑋𝑚(𝑖𝜔)
=

𝑖𝜔

𝑖𝜔+
𝑘𝑀
𝑐𝑀

𝑘𝑀                                            (10.1) 

 

                                                         

Fig. 10.1. Maxwell Element. 

Now consider two SDOF structures, one with stiffness of k (model A) and the 

other one with the stiffness of 𝑘̂ (model B). Equip model A with a CFB algorithm and 

M F 
M F 

M k M c 

m X 
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model B with a Maxwell element with stiffness of 𝑘𝑀 = 𝑘̂𝜂̂ and a damping 

coefficient of 𝑐𝑀 =
𝑘̂𝜂̂

𝜔𝑛
.   

The equations of motion of the two models subjected to earthquake ground 

motion can be written in frequency domain as: 

(−𝜔2𝑚 +
𝑖𝜔−𝜔𝑛

𝑖𝜔+𝜔𝑛
𝑘𝜂 + 𝑘)𝑋(𝜔) = −𝜔2𝑚𝑋̈𝑔(𝜔)                 (10.2) 

(−𝜔2𝑚 +
𝑖𝜔

𝑖𝜔+𝜔𝑛
𝑘̂𝜂̂ + 𝑘̂)𝑋(𝜔) = −𝜔2𝑚𝑋̈𝑔(𝜔)                 (10.3)                

Equation (10.2) represents model A and Equation (10.3) shows model B. Equating 

the two equations will result in: 

 𝑘̂ = 𝑘(1 − 𝜂)                                            (10.4) 

𝜂̂ =
2𝜂

1−𝜂
                                                (10.5) 

In other words, by increasing the Maxwell element loss factor and decreasing the 

structural stiffness, the CFB model can be achieved through a passive mechanical 

system. However, decreasing structural stiffness is not a viable alternative for existing 

structural systems. Additionally, decreasing stiffness through conventional means 

(e.g., the structural members), may result in failure under strength limits. 

10.2 Proposed Mechanical System 

Adding a negative stiffness in parallel with the Maxwell element as shown in Fig. 

10.2 shifts the zero to a positive real value to passively implement the first-order all 

pass filter (i.e. CFB model) as shown in Fig. 10.3(b) and Equation (5.14). 
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Fig. 10.2. Mechanical model of the proposed passive system. 

 

 

Fig. 10.3. Pole-zero map. 

where 𝑘𝑁 in Fig. 10.2 is the required negative stiffness generated by the negative 

stiffness element and can be calculated as follows: 

𝑘𝑁 = 𝑘̂ − 𝑘 = −𝑘𝜂                                           (10.6) 

The combination of a Maxwell element and an ideal negative stiffness will be 

able to physically match the CFB model, providing a passive alternative for RILD. 

The resultant force of the negative stiffness and Maxwell elements, 𝐹𝑃(𝑖𝜔), can be 

expressed in frequency domain, as represented in Equation (10.7): 

𝐹𝑃(𝑖𝜔) = (𝑘𝑁 +
𝑖𝜔𝑘𝑀

𝑖𝜔+
𝑘𝑀
𝑐𝑀

)𝑋𝑚                                 (10.7) 

By substituting 𝑘𝑁 = −𝑘𝜂, 𝑘𝑀 = 𝑘̂𝜂̂ and a damping coefficient of 𝑐𝑀 =
𝑘̂𝜂̂

𝜔𝑛
  in 

Equation (10.7), the resultant force of a Maxwell element and negative stiffness 

device will be as: 

Negative stiffness element 

N 
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M 
k 

M 
c 
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𝐹𝑃(𝑖𝜔) = 𝜂𝑘
𝑖𝜔−𝜔𝑛

𝑖𝜔+𝜔𝑛
𝑋𝑚                                          (10.8) 

From Equation. (10.8), it can easily be found that the control force provided by the 

proposed model is expressed exactly the same as that in Equation. (5.14), implying 

that the CFB algorithm can be physically realized by using the proposed passive 

model. 

10.3 Proposed Negative Stiffness Device 

A Negative Stiffness Device (NSD) can be used in parallel with Maxwell element 

where negative stiffness can be achieved through “apparent yielding” [65]. More 

recently, Sun et al. [66] proposed a NSD device to be used in base-isolated structures 

which consists of a highly compressed spring, a wheel and a sinusoidal curved 

template that the wheel can roll on. The proposed NSD device generates nonlinear 

negative stiffness emulating “apparent yielding” without permeant deformation.  

Fig. 10.4 shows basic mechanism of the NSD installed in an isolation layer as 

presented in [66]. As stated in [66], the force generated by NSD as a function of the 

imposed displacement is given by the equation: 

𝐹𝑁𝑆𝐷 = 𝑘 [𝛥𝐿 −
𝐴

2
+ 𝑓(𝑥)]

𝑓′(𝑥)

1+(𝑓′(𝑥))
2 + 𝑠𝑖𝑔𝑛(𝑥̇)𝜇𝑁(𝑐𝑜𝑠 𝛼)2         (10.9) 

where 𝑓(𝑥) is the curved template function, 𝐴 is the amplitude of the 𝑓(𝑥), 𝛥𝐿 is the 

pre-compression length of the spring and 𝑘 is the stiffness of the spring. 𝛼 is the 

angle between tangent line at the contact point and x axis. 𝜇 is friction coefficient 

between the roller and the curve template and from Fig. 10.4, 𝑁 = 𝑘 [𝛥𝐿 −
𝐴

2
+

𝑓(𝑥)].  



 

 138 

 

 

Fig. 10.4. Basic mechanism of the negative stiffness device [66]. 

To achieve passive RILD behavior as proposed herein, a linear negative 

stiffness device is needed. One possibility to create such a device is to use a template 

designed such that the slope change of the template is nearly linear. The desired 

magnitude of linear negative stiffness then can be obtained by adjusting the stiffness 

of the pre-compressed spring. If successful, the passive device will be able to 

reproduce the CFB model responses. 

Fig. 10.5 shows a schematic plan view of the proposed template for this study 

which is anticipated to generates linear negative stiffness where it can be installed at 

the isolation layer of base-isolated structures. The template is a curved cosine or 

parabolic function with no gap and has to be designed such that it starts at maximum 

level at the origin and decrease to a level where both the template slope and induced 

NSD force remain linear. Moreover, it is critical to keep the friction coefficient, 𝜇, as 

small as possible and close to zero. 
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Fig. 10.5. Schematic plan view of the proposed template for x-directional earthquake. 

In this regard, the use of a mechanical device as developed in Fig. 10.5 may 

be a suitable mean to implement the negative stiffness. Otherwise, the most 

straightforward means to create effective negative stiffness is by simply reducing the 

horizontal stiffness of the isolators. 

10.4 Numerical Analysis of Passive Model 

To investigate the performance of the passive RILD model proposed in this study, the 

seismic responses of a base-isolated SDOF structure (as described in Section 4.2) 

incorporated with the proposed NSD is analyzed by conducting time history analysis.  

In this study, 𝛥𝐿 = 0.6 (𝑚), 𝐴 = 0.6, 𝑘 = 8 (𝑘𝑁/𝑚) and template curved function, 

𝑓(𝑥), is presented in as follows: 

𝑓(𝑥)  = 0.3cos(4𝜋
6⁄ )                                         (10.10) 

x
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Numerical analysis was conducted on the SDOF base isolated structures 

incorporated with: (1) ideal noncausal RILD where η = 0.4, (2) CFB model where ωn 

= 1.57 rad/s or equivalently a Maxwell element where kM = 9.82 kN/m and cM = 6.27 

kNs/m in parallel with ideal NSD where kN = −4.91 kN/m, and (3) Maxwell element 

where kM = 9.82 kN/m and cM = 6.27 kNs/m  in parallel with proposed NSD given by 

Equation 10.9 and 10.10. All structures are subjected to full Hachinohe record. Fig. 

10.6 shows time history responses and Fig. 10.7 illustrates hysteresis plots of all the 

models with applied Hachinohe record. 

 

Fig. 10.6. Structural responses with applied full Hachinohe earthquake. 
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Fig. 10.7. Hysteresis plots with applied full Hachinohe earthquake. 

As it is represented in Fig. 10.6, both CFB model and Maxwell element in 

parallel with ideal NSD result in completely identical responses. Moreover, the 

practical combination of Maxwell element in parallel with a proposed NSD leads to a 

very close match with that of CFB algorithm, proving to be a suitable mean for 

passive realization of RILD. Fig. 10.7 compares damping force time history and 

hysteresis plots of all the models as well as hysteresis plots for individual NSD and 

Maxwell elements for both ideal and proposed devices. Again, it is observed that 

Maxwell element in parallel with the proposed passive device closely matches with 

that of CFB algorithm. Moreover, Fig. 10.7 also shows the ability of the proposed 

NSD to generate a linear negative stiffness hysteresis which match closely to that of 
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the ideal NSD element. Same conclusion can be made for comparison of the Maxwell 

elements hysteresis of the two cases.  

To investigate the performance of the proposed passive device under different 

earthquakes, all base-isolated structures are excited by Kobe and Northridge ground 

motions. Fig. 10.8 and Fig. 10.9 show damping force time history and hysteresis plots 

with applied Kobe and Northridge earthquakes, respectively.  

Fig. 10.8. Hysteresis plots with applied full Kobe earthquake. 
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Fig. 10.9. Hysteresis plots with applied full Northridge earthquake. 

Same conclusions can be made for the case of applied Kobe earthquake as for 

the Hachinohe record as shown in Fig. 10.8. It can be asserted that for the case of 

Kobe earthquake, the proposed NSD can also generate a linear negative stiffness 

hysteresis which closely match with that of ideal NSD element. Therefore, similar 

time history responses is also obsereved.  However, for the case of Northride ground 

motion, the generated hysteresis by the proposed NSD results in slightly nonlinear 

behaviour for larger displacement values as shown in Fig. 10.9. This is due to the fact 

that the recorded Northride earthquake contains a large spike which leads to a larger 

displacement values for the strong ground motion part of the record. As the roller 

installed at the proposed NSD goes through large displacements, it generates 

nonlinear forces due to the nonlinear nature of the template slope function at higher 
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displacement values. Nevertheless, the combination of the Maxwell element in 

parallel with the proposed NSD has an acceptable match with that of CFB model 

when comparing time history responses of the SDOF structures even for the 

Northridge ground motion. 

It is worthwhile to mention that the proposed NSD has to be designed based 

on the maximum allowable drift of the isolators for each base-isolated structure. The 

generated force by the NSD can be adjusted to produce linear negative stiffness for 

that range by adjusting the pre-compression length of the spring, stiffness of the 

spring and the shape of the curved template surface. 
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Chapter 11:  Conclusions and Future Studies 

This dissertation demonstrates the benefit of RILD in low frequency dynamic systems 

such as base-isolated structures, inter-story isolated buildings, and vehicle suspension 

system. The benefits are achieved through causal approximations, overcoming the 

non-causality of RILD.  

This study presents a causal model to mimic RILD for the protection of low-

frequency structures. In this model, an all-pass filter is designed with constant 

magnitude and a π/2 radians phase advance at a prescribed frequency, selected for 

most applications as the fundamental natural frequency of the dynamic system. The 

device-level response displacement of the structure is passed through the filter to 

determine the preceded displacement, approximating the Hilbert transform. 

Therefore, the only measurement needed is the displacement of the device. For 

example, in hybrid isolation, the displacement at the isolation level can be used to 

determine the desired force to be tracked by a semi-active (or active) device. The 

causal force is calculated using either an analog or digital all-pass filter. This 

simplicity and need for only local sensors is a great benefit for practical 

implementation. The followings present main conclusions of this research study as 

categorized by the subject. 

11.1 Base-isolated Structures 

Numerical analyses and experimental tests were conducted to demonstrate the 

performance and robustness of the proposed CFB method across a broad range of 
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input ground motions. Experimental tests used an MR damper in the isolation layer of 

a base-isolation system, all evaluated through shake table testing. 

The desired causal RILD force was computed at each time step and a feed-

forward control algorithm was used to track the desired force with the MR damper. 

For comparison, the response of the structure with an ideal RILD device in place of 

the MR damper was calculated in the frequency domain. Experimental results were 

shown to accurately reproduce noncausal analysis, achieving nominal RILD behavior 

for multiple input ground motions. The proposed CFB controller can also readily be 

applied in active control systems due to its robust design and smooth control force. 

Overall, the proposed CFB controller is able to achieve damping with direct 

displacement control, a great benefit for limiting the displacement response of low-

frequency structures through low control forces (and thus low accelerations) when 

compared than with traditional approaches (e.g., viscous and hysteretic damping). 

RILD can protect a low-frequency structure from low-frequency ground motion 

without compromising performance under high-frequency ground motions. 

11.2 Inter-story Isolated Buildings 

This dissertation also explored the benefits of incorporating RILD in inter-story 

isolated structures. As with a base-isolated structure, the device-level response 

displacement of the structure is passed through an all-pass filter to determine the 

preceded displacement, approximating the Hilbert transform at a specified frequency. 

Therefore, the only measurement needed is the displacement of the device. 

An existing building (IFB) in Japan was modeled for the purpose of this study. 

The structure is divided into two substructures using dynamic substructuring for 
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evaluation in shake table RTHS. The substructure below the isolation layer was 

modeled numerically while the superstructure was tested experimentally. The base 

isolated specimen representing the superstructure has an MR damper in the isolation 

layer. The desired force was computed at each time step from the measured 

displacement and a semi-active control algorithm was used to track the desired force 

with the MR damper. For comparison, a state space frequency domain approach was 

presented to determine the noncausal response of the structure with ideal RILD in 

place of the MR damper. 

Experimental results were shown to accurately reproduce the noncausal 

analysis, achieving RILD behavior for multiple input ground motions. The results 

show that the performance of the causal method is robust to multiple input ground 

motions because the substructure below the isolation layer filters the input ground 

motion. The isolation layer displacement response is therefore dominated by a narrow 

band of frequencies, useful for tuning the causal RILD approximation. Because of the 

narrow band response, the CFB model can greatly enhance the seismic performance 

of the inter-story isolation structure. 

The CFB approach was compared to passive-on and passive-off controllers, 

all using the physical MR damper. Results show that the semi-active CFB controller 

produces same magnitude of displacement but with lower acceleration responses for 

the superstructure when compared to passive-on algorithm. In addition, results from 

RTHS tests using the semi-active CFB controller are compared to a numerically 

simulated prototype structure with discrete viscous damper installed in the isolation 

layer in place of the MR damper. The viscous damping coefficient is chosen so that 
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both of the systems have the same maximum 10th story drift. This comparison 

revealed that causal RILD incorporated into inter-story isolated structure can suppress 

the displacement response as much as ordinary viscous dampers but with lower 

damping force generated which also results in lower acceleration response of the 

superstructure. 

Overall, the approach to achieve causal RILD is shown to greatly improve the 

seismic behavior of inter-story isolated structure by achieving damping with direct 

displacement control, a great benefit for limiting the displacement response through 

low control forces (and thus low accelerations) when compared to traditional 

approaches. 

11.3 Vehicle Suspension System 

The concept of RILD is then extended to vehicle suspension systems. As with base-

isolated and inter-story-isolated structures, vehicles are subject to excitation 

frequencies higher than their own fundamental natural frequency. The previously 

proposed CFB approach was modified for application in vehicle suspension systems. 

A modal causal filter-based (MCFB) model is proposed, where modal coordinates of 

the quarter car model are computed at each time step. The modal coordinates are 

passed through corresponding all pass-filters which are tuned for the first and second 

modal frequencies of the system. The summation of the two modal forces results in 

the desired causal force which then can be tracked by any semi-active devices such as 

MR damper.  

Numerical simulations were conducted to investigate the robustness of the 

MCFB algorithm across a wide range of inputs and vehicle speeds. The advantages of 
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the MCFB algorithm over the CFB algorithm are clearly shown. The effectiveness in 

mimicking the RILD response is illustrated through numerical simulations.  

Finally, vibration performance of the MCFB algorithm is compared to that of 

skyhook and groundhook control policies. It is concluded that unlike skyhook and 

groundhook controllers that can mitigate sprung or unsprung mass responses at the 

expense of other mass results, proposed MCFB algorithm is able to attenuate both 

sprung and unsprung mass responses simultaneously and nearly as effective as 

skyhook and groundhook controllers at the same time. It is further shown that MCFB 

controller works well at both low and high velocities of the vehicle and is robust to 

changes in the occupancy or payload of the vehicle. Moreover, to implement 

proposed MCFB algorithm only sprung mass absolute acceleration is needed which 

can be measured using an accelerometer. Using that measurement, a Kalman filter 

can then estimate all the necessary states. This simplicity is a great benefit for 

practical implementations.  

Overall the proposed controller is able to enhance the vibrational performance 

of the vehicle with direct control over displacement. This feature is a great benefit for 

dynamic systems such as vehicles that are subject to higher frequency vibrations than 

their own natural frequency. 

11.4 Adaptive Causal RILD 

To improve the performance of causal approximations of RILD, two adaptive 

algorithms are proposed to estimate the dominant structural response frequency and 

thereby accurately apply the displacement phase advance. This adaptation is added to 

a CFB controller to adaptively approximate ideal RILD.  
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In the proposed Adaptive V-D controller, the dominant frequency of vibration 

is calculated by dividing the moving RMS of the relative velocity by the moving 

RMS of the relative displacement. In the proposed Adaptive A-D controller, the 

dominant frequency of vibration is calculated using the slope of a linear-least square 

fit of the relative acceleration versus relative displacement represented in Cartesian 

coordinates. Two factors impact the performance of these adaptive controllers: the 

sampling rate and sampling range. The sampling rate should be chosen small enough 

so that it is not computationally burdensome while large enough to maintain an 

accurate estimation of the response frequency. By selecting the sampling range as the 

fundamental period of the structure allows approximately one cycle of response to 

enter into the calculations, avoiding bias but allowing for sufficiently fast adaptation. 

To evaluate the performance of the adaptive algorithm, RTHS is conducted on 

a 5-story base-isolated building and a 14-story inter-story isolated building. 

Supplemental isolation-layer semi-active damping is used to track the desired causal 

RILD force. Experimental results show clear improvement of adaptive algorithm over 

the fixed-frequency CFB model in mimicking ideal RILD behavior. The hysteresis 

better matches the ideal noncausal model and displacement and acceleration 

responses are suppressed more effectively. The accuracy of the estimated response 

frequencies is confirmed by continuous wavelet transform analysis. In addition, the 

performances of the adaptive algorithm are compared to passive-on and passive-off 

semi-active controllers. Both adaptive methods can suppress displacement as 

effectively as the passive-on controller while keeping acceleration responses lower 

than the passive-on controller.  
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Overall, both Adaptive V-D and Adaptive A-D controllers are able to improve 

seismic performance of low-frequency structures by accurately implementing causal 

RILD over a broad range of response frequencies when compared to alternative 

causal methods. The selection of one adaptive method versus the other depends 

largely on available sensor measurements. 

11.5 Passive Realization of RILD 

Recognizing the popularity of passive devices in practical civil engineering 

applications, a passive model may be key to broader implementation of RILD. 

Passive control does not rely on external power, requires less maintenance in general, 

and is more readily accepted by the design industry. 

It is shown in this dissertation that by increasing the Maxwell element loss 

factor and decreasing the structural stiffness, the CFB model can be achieved through 

a passive mechanical system. However, decreasing structural stiffness is not a viable 

alternative for existing structural systems. Additionally, decreasing stiffness through 

conventional means (e.g., the structural members), may result in failure under 

strength limits. Therefore, the combination of a Maxwell element and an ideal 

negative stiffness is shown to be able to physically match the CFB model, providing a 

passive alternative for RILD. 

Furthermore, a linear negative stiffness device is developed to achieve passive 

RILD behavior in practical applications. As one possibility to create such a device a 

template is designed such that the slope change of the template is nearly linear for the 

maximum allowable drift of the isolators. The desired magnitude of linear negative 

stiffness then can be obtained by adjusting the stiffness of the pre-compressed spring. 
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For the SDOF base-isolated structure of this study, the designed template was a 

curved cosine function with no gap starting at maximum level at the origin and 

decrease to a level where both the template slope and induced NSD force remain 

linear.  

Numerical analysis was conducted on SDOF base-isolated structures with 

various applied ground motions. Numerical responses of structures incorporated with 

noncausal RILD, CFB model, and combination of Maxwell element in parallel with 

the proposed NSD design are compared. It is shown that the proposed passive devices 

can closely track CFB algorithm for almost all of the input ground motions and that 

the proposed NSD can generate almost linear negative stiffness for the designed 

allowable maximum displacement of the isolators. The generated force by the NSD 

can be adjusted to produce linear negative stiffness for that range by adjusting the 

pre-compression length of the spring, stiffness of the spring, and the shape of the 

curved template surface. 

11.6 Future Studies 

This dissertation investigates incorporating RILD as an effective vibration mitigation 

damping strategy for low-frequency dynamic systems. The study proposes causal 

models appropriate for semi-active control and passive mechanical systems for fully 

passive control. Numerical simulations, shake table tests, RTHS, and shake table 

RTHS are conducted to demonstrate the performance of the proposed causal 

approaches for different dynamic systems. The results compare well to non-causal 

simulations in both the achieved forces and system responses. RILD is demonstrated 
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to be an attractive alternative for vibration mitigation of low-frequency structures. 

The followings represent some exciting future study avenues: 

11.6.1 Inerter-based Passive Devices 

This dissertation proposed a parallel passive combination of Maxwell element and 

negative stiffness device to realize RILD specifically for base-isolated structures. As 

an alternative to the proposed passive system, inerter-based passive devices can be 

used to mimic RILD behavior. Inerter is a passive device where its generated force is 

proportional to the relative acceleration of its terminals. A smart combination of 

inerter, springs, and passive viscous damper is shown to have promising seismic 

performance trying to approximate ideal RILD for low frequency dynamic system. 

Further research in this area can lead to a more practical passive system to incorporate 

RILD.  

11.6.2 Nonlinear Analysis of Structures Incorporated with RILD 

This dissertation explores the incorporation of RILD in vibration control engineering. 

The structures studies herein are linear, meaning that the control system is expected to 

maintain nominally linear performance of the structure. Future studies will focus on 

nonlinear analysis of the low-frequency dynamic systems equipped with RILD. More 

specifically, the proposed adaptive semi-active controllers seem to be a promising 

damping algorithm for nonlinear analysis due to their adaptability to response 

frequency of the structure. If a structure become damaged under extreme vibrations, 

as is allowed under performance-based design in earthquake engineering, adaptive 

damping strategies may be beneficial.  
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11.6.3 Adaptive RILD for Vehicle Suspension System 

This dissertation clearly shows the advantages of incorporating the MCFB controller 

in vibration mitigation of vehicles suspension system. Future study in this subject will 

further focus on using the proposed adaptive controllers in vehicle suspension system. 

The controller can be adapted for different speeds or performance goals. For instance, 

adaptive controller can be designed/adapted for off road high speed, or stop and go 

(high traffic) driving.  

11.6.4 Application of RILD in Outrigger System of Tall Buildings 

Tall buildings are also low frequency dynamic systems which can benefit from RILD. 

The inter-story displacement is small, therefore RILD would not be effective in a 

traditional braced lateral system. To maximize the effectiveness of RILD, a damped 

outrigger system may work to amplify the device-level displacement while targeting 

the first vibrational mode. One possible future research avenue is to incorporate 

passive or semi-active RILD in outrigger system to protect the structure against 

earthquake or wind loading.  
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