
To appear in IEEE Transactions on Knowledge and Data Engineering (with a different title by referees’ suggestion).

CS-TR-3590 and UMIACS-TR-96-5. Available at URL http://www.cs.umd.edu/TR/UMCP-CSD:CS-TR-3590


Scalability Analysis of Declustering Methods
for Cartesian Product Files �

Bongki Moon Joel H. Saltz

Institute for Advanced Computer Studies and
Department of Computer Science

University of Maryland
College Park, MD 20742fbkmoon, saltzg@cs.umd.edu

Abstract

Efficient storage and retrieval of multi-attributedatasets have become one of the essential requirements for
many data-intensive applications. The Cartesian product file has been known as an effective multi-attribute
file structure for partial-match and best-match queries. Several heuristic methods have been developed to
decluster Cartesian product files across multiple disks to obtain high performance for disk accesses. Though
the scalability of the declustering methods becomes increasingly important for systems equipped with a large
number of disks, no analytic studies have been done so far. In this paper we derive formulas describing the
scalability of two popular declustering methods Disk Modulo and Fieldwise Xor for range queries, which are
the most common type of queries. These formulas disclose the limited scalability of the declustering methods
and are corroborated by extensive simulation experiments. From the practical point of view, the formulas
given in this paper provide a simple measure which can be used to predict the response time of a given range
query and to guide the selection of a declustering method under various conditions.

Index Terms: multi-attribute access methods, range query, file declustering, scalability, Disk Modulo, Field-
wise Xor, Hilbert curve allocation method.

1 Introduction

A variety of complex data management requirements have arisen in many large-scale data-intensive applications
which often need support for multidimensional objects and sophisticated access methods. Typical examples
are scientific data [21, 45], cartography and census data [36], the Earth Observing System (EOS) and remotely
sensed image [7], and geographic information systems [43]. Frequent operations on these datasets include volume
visualization, transient detection, computation of trends and compositions, and accessing spatio-temporal subset
of images. For data retrieval, all of these operations translate to requests for multidimensional subspaces from
the dataset, that is, to multidimensional range queries. Thus efficient support for these types of queries is of
paramount importance.

During the past few years, much research effort has focused on developing high performance database man-
agement systems. One approach is to build multiprocessor database machines, which have become increasingly
popular (for example, Bubba [4], Gamma [12], Teradata [5, 13], Tandem [25], Oracle parallel server [14], DB2�This work was supported in part by the National Science Foundation under contract No. NSF ASC9318183 and the Advanced
Research Projects Agency under contract No. DABT63-94-C-0049. The authors assume all responsibility for the contents of the paper.



parallel edition [2]). In such systems, database relations are generally partitioned horizontally and distributed
across multiple processors. Another approach is to employ disk arrays [6, 22] or parallel file systems [10, 28].
In both approaches, the key motivation is to exploit parallelism (especially in I/O) by distributing database files
across multiple processors and/or disks aiming at closing the gap between processor and I/O performance, and
thereby minimizing the response time of queries. The problem of distributing files across multiple disks is called
file declustering.

Most of the research cited above focuses on declustering database files using the values of a single attribute
or a set of attributes so that disk accesses can be performed efficiently through the partitioning attributes. Under
such schemes, however, queries based on non-partitioning attributes would not be processed efficiently because
there is no guarantee that the answer set to such a query is well distributed across disks. Several heuristic methods
have been developed to decluster a Cartesian product file [34], which has been known as a multi-attribute file
structure effective for partial-match and best-match queries [42]. There are a few well-known multidimensional
declustering methods for Cartesian product files: Disk Modulo (DM) [15], Fieldwise Xor (FX) [31], Error
Correcting Codes (ECC) [18], Hilbert Curve Allocation Method (HCAM) [17] and Vector-based declustering
method [8].

Although ample analytic studies have been done for partial match queries [1, 15, 31, 46], relatively little
attention has been given to range queries [32, 33]. To the best of authors’ knowledge, no analytic results have
been provided so far for the scalability of multidimensional declustering methods with varying number of disks.
The scalability of declustering methods becomes increasingly important as system configurations with large
numbers of disks become more common.1

In this paper, we present the scalability analysis of some existing declustering methods using the response
time of hypercubic range queries as a metric to make the analysis tractable. In the performance model, we do
not include the computational cost for mapping range values into data block addresses, because it is negligible
compared with the cost of accessing disk blocks. Our work includes the first analysis of the Fieldwise Xor
method for hypercubic range queries. Specifically,

1. Analytic formulas are derived to disclose the limited scalability of Disk Modulo and Fieldwise Xor
declustering methods. We shall show that as the number of disks increases beyond a certain threshold, the
response time either no longer improves or improves by far less than ideal.

2. Optimal conditions for Disk Modulo and Fieldwise Xor methods are described.
3. Other declustering methods (for example, HCAM) are compared to show that declustering methods may

have disparate performance behavior under various conditions.

The analytic results are corroborated by simulation experiments. For non-hypercubic range queries, however,
the behaviors of the declustering methods are drifted from the formulas depending on the shapes of queries. This
is also demonstrated by simulation experiments.

The analytic results presented in this paper could be used to predict the performance of the declustering
methods when they are applied to more general multidimensional data structures. In [37], we have evaluated
techniques which allow the declustering methods developed for Cartesian product files to be used to decluster
grid files [39], which can handle non-uniformly distributed datasets in a more space-efficient manner.

The rest of the paper is organized as follows. Section 2 defines terminology for Cartesian product files and
types of queries of our interest, and also surveys previous work. Section 3 derives the formulas of scalability and
some optimal conditions of Disk Modulo method. Section 4 presents some optimal conditions for Fieldwise Xor
method and derives a simple formula describing its scalability. In Section 5 we present experimental results to

1For examples, the IBM SP-2 at University of Maryland is equipped with 112 SCSI disks. And a 5.5 terabyte data warehouse was
recently reported to be built on an enterprise server with 540 disks each 9 gigabytes controlled by Veritas Volume Manager. Sybase
MPP (previously called Sybase Navigation Server) has demonstrated scalable performance on the 128-node IBM SP-2 at the Maui High
Performance Computing Center.

2



demonstrate the correctness of the analytic formulas given in this paper and their applicability to more general
cases. Finally, in Section 6 we discuss the contributions of this paper and suggest future work.

2 Background and Survey

Symbol Definitiond Dimensionality of a given Cartesian product fileM Number of available diskss Side length of a given hypercubic range query[i1; :::; id] A bucket of a d-dimensional Cartesian product fileRf(s;M) Response time of an M -disk declustering method f for
a hypercubic query of side length sx[i] The i-th least significant bit of an integer x

Table 1: Definition of Symbols

In this section, we define the terminology for Cartesian product files and types of queries of our interest. For
the purpose of analysis, we also define query response time and strict optimality. The symbols commonly used
in this paper are summarized in Table 1. We then survey declustering methods that have been reported in the
literature.

2.1 Cartesian product files and Range queries

A d-attribute file is a set of records, where each record r is an ordered d-tuple (r1; r2; : : : ; rd) of values. (Most of
the definitions in this section are similar to those in [15].) Let Di denote the domain of the i-th attribute. Thus ad-attribute file is a subset of D1�D2�: : :�Dd. In order to store a file on disk, the records are partitioned into
buckets (or pages), containing mutually disjoint sets of records. A file F is called a Cartesian product file if it
satisfies the following definition:

DEFINITION 1 Let Di be partitioned into mi disjoint subsets Di1; Di2; : : : ; Dimi. A d-attribute file F is a
Cartesian product file if all the records in D1j1�D2j2�: : :�Ddjd are stored in a single bucket, where each Diji
is one of the subsets Di1; Di2; : : : ; Dimi . The bucket b � D1j1�D2j2�: : :�Ddjd is denoted by [j1; j2; : : : ; jd].

As an example, let D1 = D2 = fa; b; c; dg;D11 = D21 = fa; bg and D12 = D22 = fc; dg. Then the
following is a Cartesian product file:Bucket[1; 1] = D11�D21 = f(a; a); (a; b); (b; a); (b; b)gBucket[1; 2] = D11�D22 = f(a; c); (a; d); (b; c); (b; d)gBucket[2; 1] = D12�D21 = f(c; a); (c; b); (d; a); (d; b)gBucket[2; 2] = D12�D22 = f(c; c); (c; d); (d; c); (d; d)g

A range query q is a d-tuple < I1; I2; : : : ; Id >, where Ii is an interval [li; ui] � Di. The answer set of the
query q is f(a1; : : : ; ad) j l1 � a1 � u1 ^ � � � ^ ld � ad � udg. Given a range query, the buckets containing
records qualified by the query are retrieved from disks and are searched for the records. Since we are more
concerned about the number of disk buckets accessed rather than the number of qualified records, in this paper
we only consider the problem of retrieving the buckets from multiple disks. We therefore define the size of a
query and then define the query response time using the number of buckets fetched from individual disks.

3



DEFINITION 2 The size of a d-attribute (or d-dimensional) range query is defined by its d side lengths one for
each attribute. For a given query q =< I1; I2; : : : ; Id >, the i-th side length si is the number of subsets Dijk ’s
overlapped by the interval Ii. That is, si = jfDijk � Di j Dijk \ Ii 6= ;gj . The number of buckets to be fetched
by the query q is given by s1�s2�� � ��sd. The query q is called hypercubic if s1 = s2 = � � � = sd.

In the above example, if a query q is < [a; b]; [b; c]>, then s1 = 1 and s2 = 2, and two buckets Bucket[1; 1] andBucket[1; 2] are fetched by the query.

DEFINITION 3 The response time of a query q is defined as maxMi=1fNi(q)g, where M is the number of disks used
and Ni(q) is the number of buckets fetched from disk i to answer the query q. Let Rf(s;M) denote the response
time of an M -disk declustering method f for a hypercubic range query of side length s.

Since the disks are assumed to be independently accessible, this definition implies that the time required to respond
to the query q is maxMi=1fNi(q)g units, with each unit being the time required for one disk seek and/or access to
retrieve a bucket. For example, in scientific workload such as matrix multiplications and FFT, where the load is
uniformly distributed, the I/O performance appears to be directly proportional to the available parallelism [41].
Therefore, we conjecture that the maximum number of buckets fetched from the same disk (i.e., maxMi=1fNi(q)g)
is the best measure of the actual response time.

Finally, we define the strict optimality of declustering methods.

DEFINITION 4 An M -disk declustering method is said to be strictly optimal if for any query q the response time
is
lPMi=1 Ni(q)=Mm

.

Note that this definition does not make any assumptions about the probability distribution of either queries or
data. Evidently it is not guaranteed that a strictly optimal declustering can be achieved for every Cartesian
product file.

2.2 Survey of declustering methods

Early prototypes of parallel database systems such as Gamma [12] and Bubba [4] are based on the shared-
nothing architecture model [44] and employ partitioning strategies to distribute database relations across multiple
processing nodes. In addition to round-robin, range and hash partitioning [11], Gamma provides a hybrid-range
partitioning scheme. The hybrid-range partitioning [23] is a combination of fragmentations of relations (sorted
on a partitioning attribute) and round-robin partitioning. Bubba also provides both hash and range partitioning
mechanism. One of the interesting features of Bubba is a partitioning mechanism based on the heat and
temperature of relations. Bubba considers the access frequency (heat) of each tuple when creating partitions of a
relation; the goal is to balance the frequency with which each partition is accessed (temperature) rather than the
actual number of tuples on each disk [9]. In addition Bubba provides partitioning based on multiple attributes
by declustering inverted indexes of declustered relations [4].

Staggered striping [3] has been proposed in multimedia information systems environment. The goal of the
staggered striping is to provide continuous (i.e., hiccup-free) display of multimedia objects. The approach for
resolving the I/O bandwidth limitations is to decluster contiguous multimedia sub-objects (say, Xi and Xi+1)
across multiple disks such that the disk containing the first fragment of Xi+1 is k disks (termed stride) apart from
the disk containing the first fragment of Xi. Under this method, bandwidth fragmentation can be relieved with
additional memory for buffer space and additional network capacity.

Ghandeharizadeh et al. have proposed a declustering method called MAGIC to partition relations based
on multiple attributes [24]. MAGIC partitions relations by constructing a grid directory on a relation where
each entry in the grid represents a fragment of the relation. The goal of MAGIC is to maximize throughput
for relatively small queries in multi-use environments. To determine the desired degree of declustering and the
relative frequencies of splits per each dimension, MAGIC utilizes the frequencies of queries containing individual

4



attributes in the selection predicates and the average resource requirements (i.e., cpu time, disk accesses, network
bandwidth and so on).

A number of methods have been proposed to decluster Cartesian product files: Disk Modulo (DM), Fieldwise
Xor (FX), Error Correcting Codes (ECC), Hilbert curve allocation method (HCAM) and vector-based declustering
method. These declustering methods exploit the property of Cartesian product files that each subspace is stored
in a separate bucket and is uniquely identified by its d-dimensional coordinates. Among these methods, DM, FX
and ECC have been originally invented for partial-match queries and the other two for range queries.

It has been shown in [15] that DM is strictly optimal for many cases of partial-match queries including all
partial-match queries with only one unspecified attribute. Kim et al. have shown that when both the number
of disks and the size of each field (i.e., domain of an attribute) are a power of two, the set of partial-match
queries which are optimal for the FX is a superset of that for the DM [31]. They have also investigated the
strict optimality of the FX for range queries [32]. Faloutsos et al. have empirically shown that ECC outperforms
DM and FX for partial-match queries, but ECC works only for Cartesian product files of all side lengths power
of two [18]. HCAM uses Hilbert space-filling curve to impose a linear ordering on the buckets in a Cartesian
product file. Then it traverses the buckets in the order assigning each bucket to a disk unit in round-robin way.
In [17], it has been empirically shown that HCAM outperforms DM, FX and ECC for small range queries and
large number of disks.

Abdel-Ghaffar et al. [1] have provided a coding-theoretic analysis of declustering Cartesian product files
for partial-match queries. Both necessary and sufficient conditions are provided for the existence of a strictly
optimal disk allocation method. Sung [46] has conducted a performance analysis of Disk Modulo and derived
explicit expressions of response time for partial-match queries using Fourier transform. It can be easily shown
that the closed form of response time for range queries can also be derived using the same technique. 2 Whereas
these explicit expressions give simple and neat proofs for a few theorems related to strict optimality of DM for
partial-match queries, it seldom gives an intuition as to the efficiency and scalability of Disk Modulo for either
partial-match queries or range queries.

A vector-based declustering method has been proposed in [8]. This declustering method is particularly
suitable for 2-dimensional image and cartographic databases. Queries of interest are fixed-radius circles, and the
goal of this method is to guarantee “one-block-access-per-disk”. For the given number of available disks, this
method generates the best feasible pair of integer vectors so that the response time can be minimized by aligning
all the buckets with the vectors. No procedure has yet been developed to generate such vectors for three or higher
dimensional Cartesian product files. In 2-dimensional cases, by their notion of optimality, the performance of
this method is less than 7 percent off from optimum.

Several similarity-based graph-theoretic declustering methods have been developed. Fang et al. [20] have
proposed declustering methods using Minimal Spanning Tree (MST) and Short Spanning Path (SSP). They have
made an attempt to place similar buckets (i.e., buckets close to each other) on different disks. An iterative
declustering algorithm based on similarity has been proposed by Liu et al. [35]. They used Kernighan-Lin
partitioning algorithm [30] to find an initial partition. We have recently developed an improved algorithm with
the goal being to minimize both the response time and the data imbalance among multiple disks [37]. The
advantage of the similarity-based declustering methods is that they can handle more general data structures
such as grid files [39] and R-trees [26] as well as Cartesian product files and hence are particularly suitable
for non-uniform datasets with hot spots or correlation between attributes. However, the complexities of these
methods are at least quadratic while all the previously mentioned methods (i.e., DM, FX, HCAM etc.) are linear.
The declustering methods surveyed in this paper are summarized in Table 2.

2By replacing the complex number terms of Equation 1 in [46] with the ones corresponding to the subdomains overlapped by a range
predicate for each attribute, the same technique can derive a formula representing all possible buckets that need to be fetched by a range
query and thereby a closed-form formula of response time.

5



Types Declustering methods
Single-attribute round-robin, range, hash [11], hybrid-range [23],

heat/temperature locality[9]
grid-based Disk Modulo [15], Fieldwise Xor [31], ECC [18],

Multi-attribute HCAM [17], Vector-based [8], MAGIC [24]
graph-theoretic MST/SSP [20], Iterative [35], Minimax [37]

Table 2: Classification of Declustering methods

3 Scalability of Disk Modulo declustering

Du and Sobolewski have shown in [15] that the Disk Modulo (DM) is strictly optimal for a large class of
partial match queries including partial match queries with only one unspecified attribute. Li et al. have done
extensive performance analysis for arbitrary range queries and concluded that Disk Modulo (or CMD by their
own terminology) method is nearly optimal for any range query [33]. In contrast to their conclusion, however,
we shall show that Disk Modulo allocation method has severely limited scalability under certain conditions.

A-C D-F G-I J-L M-O P-R S-U V-Z

0-10

11-20

21-30

31-40

41-50

51-60

61-70

71-80

I

R

C

E

P

STOCK   NAME

0 1 2 3 0 1 2 3

1 2 3 0 1 2 3 0

2 3 0 1 2 3 0 1

3 0 1 2 3 0 1 2

0 1 2 3 0 1 2 3

0

0

0

0

0

0

3

3

3

3

3

3

1 1

1

1

1

1

2

2

2

2

2 2

Figure 1: Disk allocation by Disk Modulo declustering method (M = 4)

The Disk Modulo (DM) method assigns each bucket [i1; i2; : : : ; id] in a Cartesian product file to a disk unit(i1 + i2 + : : :+ id) mod M
where M is the number of available disks. For example, consider a stock database stored in a 2-dimensional
Cartesian product file with stock name and stock price as its partitioning attributes. Figure 1 illustrates the
Cartesian product file each of whose two attribute domains are partitioned into 8 intervals, and whose buckets
are distributed across 4 disks by the Disk Modulo declustering method. Each bucket is annotated by a disk unit
number to which the bucket is assigned.

To get an intuition to the scalability of DM, consider a square range query given to a 2-dimensional Cartesian
product file. The buckets mapped on the diagonal of the square range query are assigned to the same disk. Thus
the maximum number of buckets read from the same disk is no less than the number of buckets on the diagonal
of the query, which is equal to the side length of the query. In the above example of the stock database, if a
square query of side length 3 is given by < [N; T ]; [21; 43] >, then three buckets are retrieved from disk unit
0, and two buckets from each of disk units 1,2 and 3, which implies the response time of the query is three. In

6



general, for d-dimensional Cartesian product files, the following lemma provides an intuition to the distribution
of buckets in the answer set of a given query across multiple disks.

NOTATION 1 Let C(n; r) denote the number of selections with repetition of n objects chosen from r types of
objects.

Lemma 3.1 For a given d-dimensional hypercubic subspace of side length s, let Sk be the set of buckets whose
Manhattan distance from the origin of the subspace is equal to k. Then the cardinality of Sk isjSkj = bk=scXi=0

 di ! d+ k � i� s� 1d� 1

!(�1)i: (1)

Proof. By definition Sk is isomorphic to an integer vector set S0k = f(x1; : : : ; xd) j x1 + � � �+ xd = k; 0 �xi < sg. Consider another integer vector set Tk = f(x1; : : : ; xd) j x1 + � � �+ xd = k; xi � 0g, which is a
superset of S 0k. Then, let fk and gk be the cardinality of S 0k and Tk, respectively. Since jSkj = jS0kj = fk andjTkj = gk = C(k; d) =  d+ k � 1d� 1

!
, all we have to do is to showfk = bk=scXi=0

 di !gk�is(�1)i: (2)

We shall show this by induction on k.
(i) Basis. If 0 � k < s (i.e., bk=sc = 0), S 0k and Tk are identical. Thus,fk = gk = bk=scXi=0

 di !gk�is(�1)i:
(ii) Induction. Suppose n > 0, and assume the Equation (2) holds when 0 � k < ns (i.e., bk=sc < n). Now,

if ns � k < (n+ 1)s (i.e., bk=sc = n),S0k = Tk � f(x1; : : : ; xd) 2 Tk j one or more x`’s � sg= Tk � n[i=1

f(x1; : : : ; xd) 2 Tk j is � Xx`�s x` < (i+ 1)sg= Tk � n[i=1

i[j=1

f(x1; : : : ; xd) 2 Tk j is � Xx`�s x` < (i+ 1)s; jfx` j x` � sgj = jg
For given i and j, letTk;i;j = f(x1; : : : ; xd) 2 Tk j is � Xx`�s x` < (i+ 1)s; jfx` j x` � sgj = jg
and Bk;i;j = f(y1; : : : ; yd) j y` = bx`=sc ; (x1; : : : ; xd) 2 Tk;i;jg:
Then, for each element (y1; : : : ; yd) 2 Bk;i;j ,dX̀=1

y` = i and
Xy`�1

1 = j and y` � 0:
7



Thus, jBk;i;jj =  dj !C(i� j; j) =  dj ! i� 1j � 1

!
.

Now note that the set Tk;i;j can be split into mutually disjoint subsets each of which corresponds to an
element in Bk;i;j. In other words,Tk;i;j = [(y1;:::;yd)2Bk;i;jf(x1; : : : ; xd) 2 Tk;i;j j bx`=sc = y`g:
Since each of the subsets is isomorphic to S0k�is,jTk;i;jj = jBk;i;jj � jS 0k�isj = jBk;i;jj fk�is:
Therefore, fk = jTkj � nXi=1

iXj=1

jTk;i;jj= gk � nXi=1

iXj=1

 dj ! i� 1j � 1

!fk�is= gk � nXi=1

 d+ i� 1i !fk�is
From induction, fk�is =Pbk=sc�ij=0

 dj !gk�js(�1)j . Thus, it follows thatfk = gk � nXi=1

 d+ i� 1i ! n�iXj=0

 dj !gk�js(�1)j= gk + nXi=1

iXj=1

 d+ i� 1j ! di� j !gk�is(�1)i= bk=scXi=0

 di !gk�is(�1)i:
The proof is now complete.

Theorem 1 If a given query is d-dimensional hypercubic of side length s, then for any M ,RDM(s;M) � d(s�1)
maxk=0

jSkj : (3)

Proof. Let x be a bucket at the corner of the subspace retrieved by the query each of whose coordinates is
minimal in the corresponding dimension. Then, by the Disk Modulo scheme, all the buckets which have the
same Manhattan distance from the bucket x are assigned to the same disk. Since the set Sk is not empty (i.e.,jSkj > 0) only for k such that 0 � k � d(s� 1), the maximum number of buckets fetched from a disk cannot
be less than the largest value of jSkj for 0 � k � d(s� 1). The proof is now complete.

Although the closed-form expression of jSkj in Equation (1) is not available as yet, it is relatively easy to
derive upper bounds of jSkj for two and three dimensions. In 2-dimensional space, jSkj is bounded by s; in
3-dimensional space, it is bounded by 3s2

4 for even s and by 3s2+1
4 for odd s. In general, we conjecture that the

8



0

10

20

30

40

50

60

70

80

0 5 10 15 20 25

M
ax

. n
um

be
r 

of
 p

oi
nt

s 
at

 th
e 

sa
m

e 
di

st
an

ce

Manhattan distance from the origin (k)

Distribution of points at various distance (3D; s=10)

s=10

0

50

100

150

200

250

0 5 10 15 20 25

M
ax

. n
um

be
r 

of
 p

oi
nt

s 
at

 th
e 

sa
m

e 
di

st
an

ce

Manhattan distance from the origin (k)

Distribution of points at various distance (4D; s=7)

s=7

(a) jSkj in a 3-dimensional space (b) jSkj in a 4-dimensional space

Figure 2: Manhattan distance vs. the cardinality of SkjSkj becomes maximal when k is an integer closest to d(s�1)
2 . See Figures 2(a) and 2(b) for the distribution

of jSkj in 3-dimensional and 4-dimensional cases. Therefore, coupled with this conjecture, we claim that Disk

Modulo does not improve response time at all by increasing the number of disks beyond M = jd(s�1)
2

k+ 1.

Corollary 1 For square or cubic range queries of side length s,RDM(s;M) = 8<:s if M � s when the dimensionality is two,j
3s2+1

4

k
if M � j3(s�1)

2

k+ 1 when the dimensionality is three.

Note that Li et al. [33] have reached the conclusion that Disk Modulo is optimal for range queries on Cartesian
product files for almost all cases. While this might be true in the past when system configurations with large
number of disks were not usual, it is no longer true. From Theorem 1 and Corollary 1, it is apparent that the
performance of Disk Modulo saturates and adding more disks provides no benefit. The position of the threshold
depends on the size of the query. This is corroborated by simulation results given later in this paper.

Theorem 2 For a given 2-dimensional square range query of side length s, let � = bs=Mc and � = s mod M .
Then the following properties are satisfied:

(i) RDM(s;M) = (2� + 1)s � �(� + 1)M for any s and M . That is, when M is fixed, RDM(s;M) is a
piece-wise linear function of s.

(ii) RDM(s;M) = ROpt(s;M)+�� ��2=M�
if M � s, where ROpt(s;M) is the response time of a strictly

optimal declustering method.
(iii) Disk Modulo is strictly optimal if and only if M � s ^ �2 �M� +M > 0.

Proof. Property (i): If M > s, then � = 0 and RDM(s;M) = s by Corollary 1. Thus, the property (i) holds.
If M � s, split the square query region into four disjoint subregions, whose sizes are M��M�;M���; ��M�
and ���. Then, since the first three subregions have at least one side of length multiple of M , the buckets in
these subregions are uniformly distributed across the Mdisk units. (See Theorem 3.2 in [15].) Specifically, the
number of buckets accessed from each disk is M�2 + 2��. However, the buckets in the fourth subregion (i.e.,��� subregion) are not uniformly distributed, and the maximum number of buckets from the same disk is � by
Corollary 1. Therefore, since � = s� �M , the response time of the s�s query is given byRDM(s;M) = M�2 + 2�� + � = (2�+ 1)s� �(�+ 1)M:

9



Properties (ii) and (iii): Since ROpt(s;M) = �s2=M� = M�2 + 2�� + ��2=M�
, we obtainRDM(s;M) = ROpt(s;M) + � � l�2=Mm :

By Corollary 1, it is clear that M � s is the necessary condition for the strict optimality because RDM(s;M) =s > �s2=M� = ROpt(s;M) if M > s. Thus, the necessary and sufficient condition for the strict optimality isM � s ^ � = ��2=M�
, which is equivalent to M � s ^ �2 �M� +M > 0.

Theorem 2 gives the closed form expressions of response time as well as the necessary and sufficient condition
for the strict optimality of Disk Modulo declustering method. The implications of this theorem are (1) DM can
be strictly optimal only when the number of disks is small and the query size is relatively large, and (2) for some
range queries (s < M ), increasing the number of disks does not improve the response time at all. In addition,
for any M � 3, this theorem gives a tighter upper bound on the response time than ROpt(s;M) +M � 2 given
in [33] when the dimensionality is two.

4 Scalability of Fieldwise Xor declustering

Kim and Pramanik [31] have shown that when both the number of disks and the size of each field are power
of two, the set of partial match queries which are optimal under Fieldwise Xor (FX) declustering method is a
superset of that for Disk Modulo declustering method. Based on similar assumptions, in this section we shall
present a sufficient condition for the strict optimality of the Fieldwise Xor declustering method for hypercubic
range queries. Further, we shall show that while the performance of the Fieldwise Xor tends to improve as the
number of disks increases, its scalability is still significantly limited under certain conditions.

A-C D-F G-I J-L M-O P-R S-U V-Z

0-10

11-20

21-30

31-40

41-50

51-60

61-70

71-80

I

R

C

E

P

STOCK   NAME

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

33

3

3

3

3

3

3

3

Figure 3: Disk allocation by Fieldwise Xor declustering method (M = 4)

The Fieldwise Xor method replaces the summation operation in the Disk Modulo disk assignment formula
with a bitwise exclusive-or operation (�) on the binary values of bucket coordinates. This scheme assigns a
bucket [i1; i2; : : : ; id] to a disk unit number(i1 � i2 � : : :� id) mod M:
Figure 3 illustrates the same Cartesian product file used in Section 3 whose buckets are distributed across 4 disks
by the Fieldwise Xor declustering method. Each bucket is annotated by a disk unit number to which the bucket
is assigned.

10



The basic approach to the scalability analysis of Fieldwise Xor is to show that the response time of a given
query depends on the location of its answer set within the corresponding Cartesian product file and increasing
the number of disks does not improve the response time of the query under certain conditions. For the purpose
of the analysis, we make the following assumptions:

1. The number of disks is a power of two (i.e., M = 2k).
2. Queries are hypercubic of side length a power of two (i.e., s = 2m).

It is also assumed that the sizes of Cartesian product files are sufficiently large. Thus, it is not necessary to use
the field transformation functions proposed in [32], which are injective mappings for the attributes in a given
Cartesian product file the number of subdomains of which are less than the number of disks.

Recall that in a given d-dimensional Cartesian product file, a hypercubic range query retrieves a set of buckets
which belong to a subspace delimited by the query and hence the answer set can be uniquely identified by its side
length and the coordinate of its origin. By origin we mean a bucket at the corner of the subspace each of whose
coordinates is minimal in the corresponding dimension. We begin the analysis with a notation about query sizes
and locations within a Cartesian product file.

NOTATION 2 Let qI(2m) denote a hypercubic range query whose side length is 2m and whose origin is located
at I = [i1; i2; : : : ; id].

Since the Fieldwise Xor uses xor (�) and mod operations to determine the disk unit number for each bucket
in a Cartesian product file, we give a notation for the binary representation of integers. Then, in the following
lemmas, we present some fundamental properties related to such operations on binary representation of bucket
coordinates, which are useful in deriving the formula of FX scalability.

NOTATION 3 x[i] denotes the i-th least significant bit of an integer x. x[1] and x[n] represent the least and the
most significant bits of an n-bit integer x, respectively.

Lemma 4.1 For non-negative integers a, b and m such that ja� bj < 2m, the following properties are satisfied
for any integer k > m:

(i) If a[k] = b[k], then a[k + 1] = b[k+ 1].
(ii) If a[k] = 0 ^ b[k] = 1 ^ a < b, then a[k + 1] = b[k+ 1].

(iii) If a[k] = 0 ^ b[k] = 1 ^ a > b, then a[k + 1] = b[k+ 1].
Proof. We shall prove the first property by contradiction. The other proofs are similar. Suppose a[k + 1] 6=b[k+ 1]. Then, without loss of generality, we can assume a[k + 1] = 0 and b[k+ 1] = 1. First, if a > b, then
the minimal value of a which is greater than b is 2k+1 + a[k]� 2k�1, and the maximal value of b which is less
than a is 2k + b[k]� 2k�1 + 2k�1 � 1. Since a[k] = b[k],ja � bj � (2k+1 + a[k]� 2k�1)� (2k + b[k]� 2k�1 + 2k�1 � 1)= 2k+1 � 2k � 2k�1 + 1 = 2k�1 + 1:
Second, if a < b, then the maximal value of a which is less than b is a[k]� 2k�1 + 2k�1 � 1, and the minimal
value of b which is larger than a is 2k + b[k]� 2k�1. Likewise, since a[k] = b[k],ja� bj � (2k + b[k]� 2k�1)� (a[k]� 2k�1 + 2k�1 � 1)= 2k � 2k�1 + 1 = 2k�1 + 1:
Therefore, since k > m, in both the cases,ja� bj � 2k�1 + 1 > 2m:
This is a contradiction to the assumption that ja � bj < 2m. The proof of the first property is now complete. The
other proofs are omitted.

11



Lemma 4.2 For non-negative integers a; b; i;m and k such that i � a; b � i+ 2m � 1 and k > m,a[k] = i[k] ^ b[k] 6= i[k] =) a < b:
Proof. Let a = i+ � for 0 � � � 2m � 1. Then, a = (i� i mod 2k�1) + (i mod 2k�1 + �), and it follows
that (i� i mod 2k�1)[k] = i[k] and 0 � (i mod 2k�1 + �) � 2k�1 + 2m � 2 < 2k � 1. Thus, the following
properties are satisfied:a[k] = i[k] if and only if 0 � i mod 2k�1 + � � 2k�1 � 1;a[k] = i[k] if and only if 2k�1 � i mod 2k�1 + � � 2k�1 + 2m � 2:
From these, we obtain a[k] = i[k] =) a � i � 2k�1 � i mod 2k�1 � 1b[k] 6= i[k] =) b� i � 2k�1 � i mod 2k�1:
Therefore, if a[k] = i[k] ^ b[k] 6= i[k], then a is always less than b.

The following lemma presents an interesting relationship between two buckets in the answer set of a given
hypercubic range query whose side length is less than the number of disks. This lemma shall provide key leverage
for deriving Theorem 3.

Lemma 4.3 For any pair of buckets X = [x1; : : : ; xd] and Y = [y1; : : : ; yd] in the answer set of a given qI(2m),
the following property is satisfied for any integer k > m:(i1 � i2 � : : :� id)[k] = 0 =) (x1 � x2 � : : :� xd)[k + 1] = (y1 � y2 � : : :� yd)[k + 1] (4)

where the coordinates of I are given by [i1; : : : ; id].
Proof. To prove this lemma, we have to show that there always exist an even number of (xj ; yj) pairs such
that xj [k + 1] 6= yj [k + 1] if (i1 � i2 � : : :� id)[k] = 0 holds. Consider xj [k] and yj [k] of X and Y for somej (1 � j � d). Since the bucketsX and Y are in the answer set of the qI(2m), the following property is satisfied:ij � xj ; yj � ij + 2m � 1

Consequently, if xj [k] = yj [k], then xj [k + 1] = yj [k + 1] from the first property of Lemma 4.1. Otherwise,
either xj [k] = ij [k] ^ yj [k] = ij [k] or xj [k] = ij [k] ^ yj [k] = ij [k] holds. Thus, it follows from Lemma 4.2
that if xj [k] 6= yj [k] thenxj [k] = ij [k] ^ yj [k] = ij [k] ^ xj < yj or xj [k] = ij[k] ^ yj [k] = ij [k] ^ xj > yj :
In both the cases, from the second and third properties of Lemma 4.1, the followings are satisfied:ij [k] = 0 =) xj [k + 1] = yj [k + 1];ij [k] = 1 =) xj [k + 1] 6= yj [k + 1]:
These imply that the number of (xj ; yj) pairs such that xj [k+ 1] 6= yj [k + 1] is equal to the number of ij’s such
that ij [k] = 1, which is always even from the condition (i1 � i2 � : : :� id)[k] = 0. The proof is now complete.

Before giving a theorem which formulates the scalability of the Fieldwise Xor declustering method, we
present the following lemma to give an intuition to the response time distribution and optimal conditions.

12



Lemma 4.4 When M = 2k, for a d-dimensional hypercubic range query q = qI (2m), the following properties
are satisfied:

(i) If 2k � 2m, then RFX(2m; 2k) = 2md�k and FX is strictly optimal.
(ii) If 2k > 2m, then 2md�k � RFX(2m; 2k) � 2m(d�1).

(iii) RFX(2m; 2k+1) � lRFX(2m; 2k)=2
m
.

Proof. Suppose two distinct buckets X = [x1; : : : ; xd] and Y = [y1; : : : ; yd] are in the same line which is
parallel with the j-th dimensional axis in the d-dimensional space. Then, xj 6= yj and x` = y` for any ` such
that 1 � ` � d and ` 6= j. Thus, it is the case that

(i) For any k � m, at most 2m�k buckets in the same line have the same (mod2k) value.
(ii) For any k > m, each bucket in the same line has a unique (mod2k) value.

First, if k � m, then in the worst case the same (mod2k) value appears in each of 2m�(d�1) line segments withinq. Therefore, RFX(2m; 2k) � 2m�(d�1) � 2m�k = 2md�k :
From the fact that RFX(2m; 2k) � ROpt(2m; 2k) = 2md=2k = 2md�k , we obtainRFX(2m; 2k) = 2md�k :
Second, if k > m, then RFX(2m; 2k) � 2m�(d�1)
because in the worst case the same (mod2k) value appears in every line of qI(2m). Therefore,

2md�k � RFX(2m; 2k) � 2md�m:
Finally, the third property of this lemma is satisfied because when the number of disks is increased from 2k to
2k+1, at best the buckets previously assigned to the same disk g are evenly distributed across two disks g andg + 2k.

From Lemma 4.4 (i), it is evident that the inequality k � m is the sufficient condition for the strict optimality
of the Fieldwise Xor method. However, the condition is not a necessary condition due to the left inequality
2md�k � RFX(2m; 2k) of Lemma 4.4 (ii). The Fieldwise Xor can be indeed optimal for some queries even whenk > m. For example, consider the Cartesian product file given in Figure 3. The buckets in this file are distributed
across 4 disks (M = 22, i.e., k = 2) by the Fieldwise Xor method. If a query q is given by < [T; Y ]; [52; 65]>,
then the q is square and the side length s = 21 (i.e., m = 1). This particular query q requires exactly one bucket
from each of the 4 disks and the response time of the q is optimal.

Now in the following theorem we show that the scalability of the Fieldwise Xor method for hypercubic range
queries is severely limited.

Theorem 3 Let RFX(2m; 2k) be the expected response time of the 2k-disk Fieldwise Xor declustering method
for a d-dimensional hypercubic range query of side length 2m. Then for any integer k > m,RFX(2m; 2k+1) � 3

4
RFX(2m; 2k): (5)

Proof. For any pair of buckets X = [x1; : : : ; xd] and Y = [y1; : : : ; yd] in the answer set of a given qI (2m)
where I = [i1; : : : ; id], it follows from Lemma 4.3 that(i1 � i2 � : : :� id)[k] = 0 ^ (x1 � x2 � : : :� xd) mod 2k = (y1 � y2 � : : :� yd) mod 2k

13



implies (x1 � x2 � : : :� xd) mod 2k+1 = (y1 � y2 � : : :� yd) mod 2k+1:
In other words, for a given query qI(2m), if (i1 � i2 � : : :� id)[k] = 0 holds, then the response time of the query
is not improved at all even when the number of disks is doubled up (i.e.,RFX(2m; 2k+1) = RFX(2m; 2k)). From
the fact that (i1 � i2 � : : :� id)[k] = 0 holds for the half of the entire query population and Lemma 4.4 (iii), we
obtain RFX(2m; 2k+1) � 3

4RFX(2m; 2k).
If there exists a declustering algorithm with ideal scalability, then it must be the case that ROpt(s; 2k+1) =

1
2ROpt(s; 2k) for any integer k. In other words, by doubling up the number of disks, an ideal declustering
algorithm must be able to cut the half of the response time for any query. In contrast, from the above theorem,
the Fieldwise Xor can improve the average response time of such queries at best only by 25 percent by doubling
up the number of disks. This means that the scalability of the Fieldwise Xor is far from ideal when the number
of disks is larger than the side length of a hypercubic query. Through simulation experiments, we shall show that
the actual scalability of Fieldwise Xor is even worse than Theorem 3 suggests.

5 Experimental results

In this section, we validate the correctness of the analytic formulas presented in the previous sections and
show their applicability to more general cases through simulation experiments. We carried out experiments for
multidimensional range queries of various sizes and shapes and various numbers of disks. In addition to the
Disk Modulo (DM) and the Fieldwise Xor (FX), we compared Hilbert Curve Allocation Method (HCAM) and
vector-based method to show the limited scalability of the Disk Modulo and the Fieldwise Xor methods. The
results from the vector-based method are available only for 2-dimensional Cartesian product files because the
vector generation procedure for higher dimensional Cartesian product files has not been developed yet [8].

Descriptions of the HCAM and the vector-based method

A-C D-F G-I J-L M-O P-R S-U V-Z

0-10

11-20

21-30

31-40

41-50

51-60

61-70

71-80

I

R

C

E

P

STOCK   NAME

0 0 0

0

0

0

0 0

0 0

0

00

0

00

1

1

1 1

111

1

11

1 1

1 1 1 1

2

2 2 2

2 2 2

2

2 2

2 2

2 2 2 2

3 3 3

3

3

3 3 3

3 3

3 3

3 3 3 3

Figure 4: Disk allocation by the HCAM (M = 4)

Before we present the experimental results, we describe the Hilbert curve allocation method (HCAM) [17] and
the vector-based declustering method [8] for comparison. The HCAM uses the Hilbert space-filling curve to
impose a linear ordering on the buckets in a Cartesian product file. Figure 4 shows such an ordering that starts
from a bucket at the lower-left corner (i.e., bucket [0; 0]) of the same Cartesian product file used in Section 3.

14



Then it traverses the buckets in the order assigning each bucket to a disk unit in round-robin way. Figure 4
illustrates the buckets distributed across 4 disks by the HCAM.

A-C D-F G-I J-L M-O P-R S-U V-Z

0-10

11-20

21-30

31-40

41-50

51-60

61-70

71-80

I

R

C

E

P

STOCK   NAME

0 1

2 3

0 1 0 0

0 0 0 0 1111

1 1

2 2

2 2 2 2 3333

333 2

1 1 1 1

1111 0 0 0 0

0000

3 3 3 3

3333 2 2 2 2

2222

Figure 5: Disk allocation by the vector-based method (M = 4)

The vector-based declustering method generates a pair of integer vectors for a given number of disks and
aligns the buckets in a Cartesian product file with the vectors. Specifically, given a pair of such vectors u = (a; b)
and v = (c; d), all the buckets with coordinates of the form [x +ma + nc; y +mb + nd] for any integers m
and n are assigned to the same disk with a bucket [x; y]. For example, the vector-based method generates two
vectors u = (0; 2) and v = (�2; 1) for 4 disks. If a bucket [0; 0] is assigned to the disk unit 0, thenbucket [0; 2] is assigned to disk unit 0 (m = 1 and n = 0);bucket [0; 4] is assigned to disk unit 0 (m = 2 and n = 0);bucket [1; 2] is assigned to disk unit 0 (m = 1 and n = �1);
and so on. Figure 5 illustrates the buckets distributed across 4 disks by this method.

Arrangements of experiments

The purpose of our experiments is to validate and provide a better understanding of the analytic results given
for the Disk Modulo and the Fieldwise Xor. Since there are various parameters such as the number of available
disks, the sizes and shapes of range queries and the dimensionality of a given Cartesian product file, which affect
the performance of the declustering methods, our experiments were designed to show:� How closely DM and FX methods scale and follow the formulas given in Theorems 1, 2 and 3 as the

number of disks increases in two or higher dimensional cases.� How closely the performance of FX matches the formula given in Theorem 3 when the side lengths of
queries and Cartesian product files are not power of two.� How much the sizes and shapes of range queries affect the performance of DM and FX methods emphasizing
the cases with large number of disks.

In our experiments, we used d-dimensional hypercubic Cartesian product files with a side length N . To
compute the expected response time of a given type of d-dimensional range queries, we generated a set of distinct
queries of the same size and shape at all possible positions within a given Cartesian product file. This was based
on an assumption that every bucket of a Cartesian product file is equally likely to be requested by queries (i.e.,

15



the uniform distribution of queries). For each declustering method with a varying number of disks and for a
given type of d-dimensional range queries, we averaged the response times over the set of queries. By definition,
the response time of a query is the maximum number of buckets accessed from the same disk.

Since the number of all possible queries is exponential on the dimensionality, for a large Cartesian product
file and high dimensionality, each simulation run may require processing an excessively large number of queries,
making the simulation take too long. Thus, in our experiments, we limited the dimensionality to two, three and
four. The side length N of the hypercubic Cartesian product file was 64 except for a 4-dimensional case whereN was 32.

Results

The first set of experiments were carried out to examine the scalability of DM and FX declustering methods
with respect to the increasing number of disks. In these experiments, the shape of queries was fixed to be square
and the number of disks was varied from 4 to 32. Figure 6(a) and 6(b) illustrate the average response time
of square range queries of two different sizes in a 2-dimensional Cartesian product file. Figure 6(c) and 6(d)
show the results from the similar experiments done on 3-dimensional and 4-dimensional Cartesian product files,
respectively. In addition to the plots for the four declustering methods (i.e., DM, FX, HCAM and vector-based),
optimal response times are also presented as a lower bound, which may not always be achieved.

With only a few exceptional cases, the response time of DM was very close to optimal before the number
of disks grows beyond certain threshold values, which were 7, 15, 10 and 7 in Figure 6(a)-(d), respectively.
However, when the number of disks becomes larger than those threshold values, the response time of DM
does not improve and remains constant. For example, RDM(s;M) = s = 7 when M � s in Figure 6(a),RDM(s;M) = j

3s2+1
4

k = 37 when M � j
3(s�1)

2

k + 1 = 10 in Figure 6(c), and RDM(s;M) = 44 whenM � j
4(s�1)

2

k + 1 = 7 in Figure 6(d). These results match the formulas given in Theorem 1 and Corollary 1,

and also confirm our early conjecture given in Section 3 that jSkj becomes maximal when s is an integer closest
to d(s�1)

2 .
The behavior of FX is a little more involved than that of DM. Under most circumstances, the response time

of FX is optimal or close to optimal only when the number of disks is a power of two and is no greater than
the side lengths of square range queries. These results corroborate the formulas given in Lemma 4.4. Other
than these situations, the response time of FX is far from being optimal, though FX tends to outperform DM
when the number of disks becomes larger than the threshold values described above for DM. More importantly,
the response time of FX shows quasi-periodic patterns. When the number of disks is greater than the side
lengths of square range queries, noticeable improvements in its performance were observed only when the
number of disks was increased from 2k � 1 to 2k, and the response time remained almost constant in between
2k and 2k+1 � 1. We also observed that the formula given in Theorem 3 was satisfied in all the cases. For
example, RFX(7; 16)=RFX(7; 8) = 5:73=7:0 = 0:82 > 3

4 in Figure 6(a), RFX(15; 32)=RFX(15; 16) =
12:31=15:0 = 0:82 > 3

4 in Figure 6(b), RFX(7; 32)=RFX(7; 16) = 26:43=29:52 = 0:90 > 3
4 in Figure 6(c),

and RFX(4; 16)=RFX(4; 8) = 28:99=36:25 = 0:80 > 3
4 in Figure 6(d).

In this set of experiments, both vector-based methods and HCAM scaled much better than DM and FX. In the
2-dimensional cases, the response time of the vector-based method was very close to optimal. This is due mainly
to the fact that the vector-based method uses a unique pair of integer vectors best fit for the specific number of
disks. HCAM was the second best in the 2-dimensional cases with only a few exceptions when M is small,
and reasonably close to optimal in higher dimensional cases. For example, in Figure 6(d), the performance of
HCAM was less than 38 percent off from optimum.

Another set of experiments were carried out to investigate the effects of increasing sizes of queries for a
2-dimensional Cartesian product file. In these experiments, the shape of queries was fixed to be square and the
side length of the square queries was varied from 2 to 32. Figure 7(a)-(d) show the average response time of

16



0

2

4

6

8

10

12

14

4 8 12 16 20 24 28 32

R
es

po
ns

e 
tim

e

Number of disks (M)

Declustering of 2D Cartesian product files (Q:s=7;F:N=64)

DM
FX

HCAM
Vec2d

OPT

0

10

20

30

40

50

60

4 8 12 16 20 24 28 32

R
es

po
ns

e 
tim

e

Number of disks (M)

Declustering of 2D Cartesian product files (Q:s=15;F:N=64)

DM
FX

HCAM
Vec2d

OPT

(a) 2-dimensional case : query=7�7 (b) 2-dimensional case : query=15�15

0

10

20

30

40

50

60

70

80

90

4 8 12 16 20 24 28 32

R
es

po
ns

e 
tim

e

Number of disks (M)

Declustering of 3D Cartesian product files (Q:s=7;F:N=64)

DM
FX

HCAM
OPT

0

10

20

30

40

50

60

70

4 8 12 16 20 24 28 32

R
es

po
ns

e 
tim

e

Number of disks (M)

Declustering of 4D Cartesian product files (Q:s=4;F:N=32)

DM
FX

HCAM
OPT

(c) 3-dimensional case : query=7�7�7 (d) 4-dimensional case : query=4�4�4�4

Figure 6: Effects of increasing numbers of disks

square range queries when the number of disks M = 16; 32; 48 and 64, respectively.
When M = 16, as shown in Figure 7(a), the relative performance of the DM, FX and HCAM declustering

methods was identical to the result given by Himatsingka et al. in [27]. For small queries (where s � M ),
the performance of the vector-based and HCAM was the best, followed by those of FX and DM. On the other
hand, for large queries (where s > M ), the performance of all the methods becomes closer to each other with
the exception of HCAM with s � 30. Note that the DM curve in Figure 7(a) changes its slopes at s = 16
(i.e., s = M ) from 1 to 3. Specifically, the function of DM curve was s when 1 � s < M and 3s�32 whenM � s < 2M � 1. This matches the formula given in Theorem 2(i).

However, when the number of disks grows larger, as shown in Figure 7(b)-(d), the performance gap between
the clustering methods becomes more striking. For example, in Figure 7(d), the vector-based was the best and the
HCAM was the second best. Whereas the vector-based and HCAM are fairly close to optimal, both DM and FX
are far from optimal. Evidently this is because small queries become a dominant portion of the query population
as M grows. FX outperforms DM at all times when the number of disks is a power of two (i.e., M = 32 andM = 64 in Figure 7(b) and 7(d), respectively). The performance of FX, however, deteriorates rapidly as the
size of queries grows when the number of disks is not a power of two (i.e., M = 48 in Figure 7(c)) and actually
becomes worse than that of the case when a smaller power-of-two number of disks are used. For example, we
have observed RFX(s; 48) > RFX(s; 32) when s � 19 in Figure 7(b) and 7(c). This is evidently an anomaly
of the FX declustering method.

17



0

10

20

30

40

50

60

70

4 8 12 16 20 24 28 32

R
es

po
ns

e 
tim

e

Size of queries (s)

Declustering of 2D Cartesian product files (M=16;F:N=64)

DM
FX

HCAM
Vect2d

OPT

0

5

10

15

20

25

30

35

4 8 12 16 20 24 28 32

R
es

po
ns

e 
tim

e

Size of queries (s)

Declustering of 2D Cartesian product files (M=32;F:N=64)

DM
FX

HCAM
Vect2d

OPT

(a) square queries with M = 16 (b) square queries with M = 32

0

5

10

15

20

25

30

35

40

4 8 12 16 20 24 28 32

R
es

po
ns

e 
tim

e

Size of queries (s)

Declustering of 2D Cartesian product files (M=48;F:N=64)

DM
FX

HCAM
Vect2d

OPT

0

5

10

15

20

25

30

35

4 8 12 16 20 24 28 32

R
es

po
ns

e 
tim

e

Size of queries (s)

Declustering of 2D Cartesian product files (M=64;F:N=64)

DM
FX

HCAM
Vect2d

OPT

(c) square queries with M = 48 (d) square queries with M = 64

Figure 7: Effects of increasing query sizes

To examine the effects of query shapes, we measured the average response time of non-square range queries.
In these experiments, the number of disks was varied from 4 to 32. Figure 8(a) and (b) show the results
of rectangular queries of size 4�12 and 3�15, respectively. Under most circumstances, the vector-based
method was the best closely followed by DM, and FX was the worst among the DM, FX, HCAM and vector-
based declustering methods. HCAM was better than DM only when M � 23 in Figure 8(a) and M � 31 in
Figure 8(b). The performance of DM tends to improve as the aspect ratio (i.e., the ratio of the two side lengths)
of queries increases, where the range queries become quite similar to partial-match queries.

The main conclusions from our experiments are:� For large queries and small number of disks, the performance of various declustering methods was quite
close to each other and not very far from optimal.� As Li et al. concluded in [33], the Disk Modulo is a reasonable choice for declustering Cartesian product
files under various circumstances. However, if the prevailing type of queries is hypercubic or near-
hypercubic of side length s, then the Disk Modulo does not improve response time by increasing the
number of disks beyond

jd(s�1)
2

k+ 1.� Other than a few cases with small number of disks, the performance of the Fieldwise Xor showed quasi-
periodic patterns. In other words, when M > s, RFX(s;M) for 2k � M < 2k+1 was almost equal to or
slightly worse than RFX(s; 2k), and most noticeable improvements were observed only when the number
of disks was increased from 2k � 1 to 2k. Moreover, the performance of the Fieldwise Xor tends to be

18



0

2

4

6

8

10

12

14

4 8 12 16 20 24 28 32

R
es

po
ns

e 
tim

e

Number of disks (M)

Declustering of 2D Cartesian product files (Q:4x12;F:N=64)

DM
FX

HCAM
Vec2d

OPT

0

2

4

6

8

10

12

14

16

4 8 12 16 20 24 28 32

R
es

po
ns

e 
tim

e

Number of disks (M)

Declustering of 2D Cartesian product files (Q:3x15;F:N=64)

DM
FX

HCAM
Vec2d

OPT

(a) non-square query (4�12) (b) non-square query (3�15)

Figure 8: Effects of query shapes

worse than that of the Disk Modulo if the number of disks is not a power of two and the size of queries
becomes large. Therefore, by replacing the Disk Modulo with the Fieldwise Xor, we expect performance
improvement only when the number of disks is a power of two.� HCAM scaled well and was fairly close to optimal in all our experiments. This result coincides with
the observation made in [17]. Under most circumstances, the vector-based method was the best for
declustering 2-dimensional Cartesian product files. However, since the vector generation procedure for
higher dimensional Cartesian product files has not been developed as yet, HCAM appears to be an effective
declustering method of most general applicability.

6 Conclusion and Future Work

We have studied the problem of declustering Cartesian product files focusing on the scalability of Disk Modulo
and Fieldwise Xor methods. Using the response time of hypercubic range queries as a metric, we have
derived a few formulas which state the limited scalability and the optimal conditions for both the declustering
methods. Through simulation experiments we have validated the correctness of the formulas, and elaborated
some recommendations for choosing declustering methods under various situations. The main contributions of
this paper are:� The analytic formulas given in Theorem 1, Theorem 2 and Corollary 1 provide upper bounds of the

performance improvements for Disk Modulo declustering method with increasing number of disks.� Through algebraic analysis summarized in Theorem 3 and simulation experiments, we have shown that
the scalability of Fieldwise Xor is severely limited and its performance deteriorates rapidly as the size of
queries grows when the number of disks is not a power of two. This is the first analytic and empirical
result of the Fieldwise Xor declustering method for hypercubic range queries.� Through simulation experiments, we have shown that the Hilbert curve allocation method (HCAM) scales
well and is fairly close to optimal in all our experiments.

From the simulation experiments, we have observed that the average response time of non-square range
queries does not follow the analytic formulas, and the performance behaviors of the declustering methods may
depend significantly on the shapes of queries. For example, the performance of Disk Modulo improved as the

19



aspect ratio (i.e., the ratio of the side lengths) of queries increased and outperformed the HCAM in many cases.
To complete the scalability study of declustering methods, we plan to extend the analysis for Disk Modulo and
Fieldwise Xor to non-hypercubic range queries.

It is widely believed that the Hilbert space-filling curve achieves the best clustering among reported linear
mapping schemes [19, 29]. In [38], we have recently derived closed-form formulas of the number of clusters
required by a given query region of an arbitrary shape for the Hilbert curve, and have shown that the Hilbert
curve achieves far better clustering than z-curve, which is also called Morton curve. This means that when a d-
dimensional space is mapped onto a linear space by Hilbert curve, the locality between objects in thed-dimensional
space is expected to be well preserved in the linear space. Since HCAM exploits such a clustering property of
Hilbert curve, it can achieve better declustering than other linearization methods such as z-ordering [40] and
Gray coding with bit-interleaving [16]. Since the analysis of the declustering properties of the HCAM is not
available yet, we propose the scalability analysis of the HCAM as our future research.

The assumption made in this paper and most of the literature was that queries are uniformly distributed in
a given d-dimensional space. However, this assumption may not hold in many real-world applications. Even
though the systems studied by many scientific applications are spread over a Euclidean space, the measurements
are not uniformly distributed over the space. The system properties are often measured in the regions where an
interesting phenomenon takes place. For example, in a 3-dimensional aircraft simulation, the region close to
airfoil and other control surfaces will be paid more attention than others because the main physical phenomena
of interest happen in the region. More interestingly, in some adaptive applications, the region of interest may
change between different time units. Thus, it may be desirable to know the customized access patterns of such
applications where the distribution of queries is not uniform.

One possible way is to let users specify a set of points or regions of interest in the problem domain which may
have different priorities or access frequencies. Then the problem domain may be divided into a finite number of
equivalence classes so that a declustering method can be applied to each equivalence class separately. An issue
that arises here is under what criterion the problem domain will be divided into multiple disjoint classes. We
plan to develop parametric metrics which consider the expected access patterns for given regions of interest and
spatial distance from those regions.

References

[1] Khaled A. S. Abdel-Ghaffar and Amr El Abbadi. Optimal disk allocation for partial match queries. ACM
Transactions on Database Systems, 18(1):132–156, March 1993.

[2] Chaitanya K. Baru et al. DB2 parallel edition. IBM Systems Journal, 34(2):292–322, April 1995.

[3] Steven Berson, Shahram Ghandeharizadeh, Richard Muntz, and Xiangyu Ju. Staggered striping in multime-
dia information systems. In Proceedings of the 1994 ACM-SIGMOD Conference, pages 79–90, Minneapolis,
Minnesota, May 1994.

[4] Haran Boral et al. Prototyping Bubba, a highly parallel database system. IEEE Transactions on Knowledge
and Data Engineering, 2(1):4–24, March 1990.

[5] Felipe Carino and Pekka Kostamaa. Exegesis of DBC/1012 and P-90 – industrial supercomputer database
machines. Teradata Advanced Concepts Laboratory.

[6] Vincenzo Catania, Antonio Puliafito, Salvatore Riccobene, and Lorenzo Vita. Design and performance
analysis of a disk array system. IEEE Transactions on Computers, 44(10):1236–1247, October 1995.

[7] Chialin Chang, Bongki Moon, Anurag Acharya, Carter Shock, Alan Sussman, and Joel Saltz. Titan: a high-
performance remote-sensing database. Technical Report CS-TR-3689 and UMIACS-TR-96-67, University

20



of Maryland, College Park, MD, September 1996. Submitted to the Thirteenth International Conference on
Data Engineering (ICDE’97).

[8] Ling Tony Chen and Doron Rotem. Declustering objects for visualization. In Proceedings of the 19th
VLDB Conference, pages 85–96, Dublin, Ireland, 1993.

[9] George Copeland, William Alexander, Ellen Boughter, and Tom Keller. Data placement in Bubba. In
Proceedings of the 1988 ACM-SIGMOD Conference, pages 99–108, Chicago, IL, June 1988.

[10] Peter F. Corbett and Dror G. Feitelson. Design and implementation of the Vesta parallel file system.
In Proceedings of the Scalable High Performance Computing Conference (SHPCC-94), pages 63–70,
Knoxville, TN, May 1994.

[11] David DeWitt and Jim Gray. Parallel database systems: The future of high performance database systems.
Communications of the ACM, 35(6):85–98, June 1992.

[12] David J. DeWitt, Shahram Ghandeharizadeh, Donovan A. Schneider, Allan Bricker, Hui-I Hsiao, and
Rick Rasmussen. The Gamma database machine project. IEEE Transactions on Knowledge and Data
Engineering, 2(1):44–62, March 1990.

[13] David J. DeWitt, Marc Smith, and Hanan Boral. A single-user performance evaluation of the Teradata
database machine. In the Second Workshop on High Performance Transaction Systems, pages 245–176,
Pacific Grove, CA, September 1987.

[14] Oracle & Digital. Oracle parallel server in the Digital environment. Technical report, Oracle, June 1994.

[15] H. C. Du and J. S. Sobolewski. Disk allocation for Cartesian product files on multiple-disk systems. ACM
Transactions on Database Systems, 7(1):82–101, March 1982.

[16] Christos Faloutsos. Multi-attribute hashing using Gray codes. In Proceedings of the 1986 ACM-SIGMOD
Conference, pages 227–238, Washington D.C, May 1986.

[17] Christos Faloutsos and Pravin Bhagwat. Declustering using fractals. In the 2nd International Conference
on Parallel and Distributed Information Systems, pages 18–25, San Diego, CA, January 1993.

[18] Christos Faloutsos and Dimitrios Metaxas. Disk allocation methods using error correcting codes. IEEE
Transactions on Computers, 40(8):907–914, August 1991.

[19] Christos Faloutsos and Shari Roseman. Fractals for secondary key retrieval. In the 8th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pages 247–252, Philadelphia, PA, March
1989.

[20] M. T. Fang, R. C. T. Lee, and C. C. Chang. The idea of de-clustering and its applications. In Proceedings
of the 12th VLDB Conference, pages 181–188, Kyoto, Japan, 1986.

[21] J. C. French, A. K. Jones, and J. L. Pfaltz. Summary of the final report of the NSF workshop on scientific
database management. SIGMOD Record, 19(4):32–40, December 1990.

[22] Gregory R. Ganger, Bruce L. Worthington, Robert Y. Hou, and Yale N. Patt. Disk arrays: High-performance,
high-reliability storage subsystems. IEEE Computer, 27(3):30–36, March 1994.

[23] Shahram Ghandeharizadeh and David J. DeWitt. Hybrid-range partitioning strategy : A new declustering
strategy for multiprocessor database machines. In Proceedings of the 16th VLDB Conference, pages
481–492, Brisbane, Australia, 1990.

21



[24] Shahram Ghandeharizadeh, David J. DeWitt, and Waheed Qureshi. A performance analysis of alternative
multi-attribute declustering strategies. In Proceedings of the 1992 ACM-SIGMOD Conference, pages
195–204, San Diego, CA, June 1992.

[25] The Tandem Performance Group. A benchmark of Nonstop SQL on the debit credit transaction. In
Proceedings of the 1988 ACM-SIGMOD Conference, pages 337–341, Chicago, IL, June 1988.

[26] Antonin Guttman. R-Trees: A dynamic index structure for spatial searching. In Proceedings of the 1984
ACM-SIGMOD Conference, pages 47–57, Boston, MA, June 1984.

[27] Bhaskar Himatsingka and Jaideep Srivastava. Performance evaluation of grid based multi-attribute record
declustering methods. In the 10th Inter. Conference on Data Engineering, pages 356–365, Houston, TX,
February 1994. IEEE Computer Society Press.

[28] James V. Huber, Christopher L. Elford, Daniel A. Reed, Andrew A. Chien, and David S. Blumenthal.
PPFS: a high performance portable parallel file system. In the 9th ACM International Conference on
Supercomputing, pages 385–394, Barcelona, Spain, July 1995.

[29] H. V. Jagadish. Linear clustering of objects with multiple attributes. In Proceedings of the 1990 ACM-
SIGMOD Conference, pages 332–342, Atlantic City, NJ, May 1990.

[30] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell System Technical
Journal, 49(2):291–307, February 1970.

[31] Myoung Ho Kim and Sakti Pramanik. Optimal file distribution for partial match retrieval. In Proceedings
of the 1988 ACM-SIGMOD Conference, pages 173–182, Chicago, IL, June 1988.

[32] Myoung Ho Kim and Sakti Pramanik. On the data distribution problems for range queries. In Proceedings
of the 1989 International Conference on Parallel Processing, pages I–91 – I–94, August 1989.

[33] Jianzhong Li, Jaideep Srivastava, and Doron Rotem. CMD: A multidimensional declustering method for
parallel database systems. In Proceedings of the 18th VLDB Conference, pages 3–14, Vancouver, British
Columbia, Canada, 1992.

[34] W. C. Lin, R. C. T. Lee, and H. C. Du. Common properties of some multi-attribute file systems. IEEE
Transactions on Software Engineering, SE-5(2):160–174, March 1979.

[35] Duen-Ren Liu and Shashi Shekhar. A similarity graph-based approach to declustering problems and its
application towards parallelizing grid files. In the 11th Inter. Conference on Data Engineering, pages
373–381, Taipei, Taiwan, March 1995.

[36] Robert W. Marx. The TIGER system: Yesterday, today, and tomorrow. Cartography and Geographic
Information Systems, 17(1):89–97, 1990.

[37] Bongki Moon, Anurag Acharya, and Joel Saltz. Study of scalable declustering algorithms for parallel grid
files. In Proceedings of the Tenth International Parallel Processing Symposium, pages 434–440, Honolulu,
Hawaii, April 1996.

[38] Bongki Moon, H.V. Jagadish, Christos Faloutsos, and Joel H. Saltz. Analysis of the clustering properties
of Hilbert space-filling curve. Technical Report CS-TR-3611 and UMIACS-TR-96-20, University of
Maryland, College Park, MD, March 1996. Submitted to IEEE Transactions on Knowledge and Data
Engineering.

22



[39] J. Nievergelt and H. Hinterberger. The Grid File: An adaptive, symmetric multikey file structure. ACM
Transactions on Database Systems, 9(1):38–71, March 1984.

[40] J. A. Orenstein and T. H. Merrett. A class of data structures for associative searching. In the 3rd ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems, pages 181–190, Waterloo, Canada, April
1984.

[41] A. L. Narasimha Reddy and Prithviraj Banerjee. An evaluation of multiple-disk I/O systems. IEEE
Transactions on Computers, 38(12):1680–1690, December 1989.

[42] R. L. Rivest. Partial match retrieval algorithms. SIAM Journal of Computing, 5(1):19–50, March 1976.

[43] C. A. Shaffer, H. Samet, and R. C. Nelson. QUILT:a geographic information system based on quadtrees.
International Journal on Geographical Information Systems, 4(2):103–131, 1990.

[44] Michael Stonebraker. The case for shared nothing. A Quarterly bulletin of the IEEE Computer Society
Technical Committee on Database Engineering, 9(1), March 1986.

[45] Michael Stonebraker. Sequoia 2000 : A reflection on the first three years. IEEE Computational Science
and Engineering, pages 63–72, Winter 1994.

[46] Yuan Y. Sung. Performance analysis of disk modulo allocation method for Cartesian product files. IEEE
Transactions on Software Engineering, 13(9):1018–1026, September 1987.

23


