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   A novel approach based on using neural network (NN) techniques for 

approximation of physical components of complex environmental systems has been 

applied and further developed in this dissertation. A new type of a numerical model, a 

complex hybrid environmental model, based on a combination of deterministic and 

statistical learning model components, has been explored. Conceptual and practical 

aspects of developing hybrid models have been formalized as a methodology for 

applications to climate modeling and numerical weather prediction. The approach 

uses NN as a machine or statistical learning technique to develop highly accurate and 

fast emulations for model physics components/parameterizations. The NN emulations 

of the most time consuming model physics components, short and long wave 



  

radiation (LWR and SWR) parameterizations have been combined with the remaining 

deterministic components of a general circulation model (GCM) to constitute a hybrid 

GCM (HGCM). The parallel GCM and HGCM simulations produce very similar 

results but HGCM is significantly faster. The high accuracy, which is of a paramount 

importance for the approach, and a speed-up of model calculations when using NN 

emulations, open the opportunity for model improvement. It includes using extended 

NN ensembles and/or more frequent calculations of full model radiation resulting in 

an improvement of radiation-cloud interaction, a better consistency with model 

dynamics and other model physics components. 

First, the approach was successfully applied to a moderate resolution (T42L26) 

uncoupled NCAR Community Atmospheric Model driven by climatological SST for 

a decadal climate simulation mode. Then it has been further developed and 

subsequently implemented into a coupled GCM, the NCEP Climate Forecast System 

with significantly higher resolution (T126L64) and time dependent CO2 and tested for 

decadal climate simulations, seasonal prediction, and short- to medium term 

forecasts.  

The developed highly accurate NN emulations of radiation parameterizations are on 

average one to two orders of magnitude faster than the original radiation 

parameterizations. The NN approach was extended by introduction of NN ensembles 

and a compound parameterization with quality control of larger errors. 

Applicability of other statistical learning techniques, such as approximate nearest 

neighbor approximation and random trees, to emulation of model physics has also 

been explored.   
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Chapter 1: Introduction 

1.1 Motivation. 
 
One of the main problems of development and implementation of high-quality high-

resolution environmental models is the complexity of physical (chemical and 

biological) processes involved. For example, calculation of model physics in a GCM 

(General Circulation Model) usually takes a very significant part of the total model 

computations.  Evidently, this percentage is model dependent but full model radiation 

is the most time-consuming component of GCMs (e.g., Morcrette et al. 2007, 2008, 

Manners et al. 2009).   In both climate modeling and NWP (Numerical Weather 

Prediction), the calculation of radiative transfer is necessarily a trade-off between 

accuracy and computational efficiency.  Very accurate methods exist, such as line-by-

line procedures that could be employed ideally to calculate radiative fluxes for every 

grid-point at every time-step.  If the radiation transfer were to be computed for every 

grid point and at all time steps, it would generally require as much CPU time or more 

than the rest of the model components, i.e., model dynamics and other physical 

parameterizations (Morcrette et al. 2008).  Therefore a number of simplifications are 

usually made to reduce this cost to manageable levels. 

For example, in the majority of modern radiative schemes, the correlated-k method 

(Lacis and Oinas 1991) is typically used to reduce the integration over wavelength by 

effectively binning wavelengths with similar absorption coefficients (k-terms).  This 

simplification reduces greatly the number of monochromatic radiative transfer 

calculations required.  The number of k-terms can be adjusted, which provides a 

trade-off between the accuracy and efficiency required for a given application.  
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However, the correlated-k methods cannot be made sufficiently computationally 

efficient to allow calculations for every grid-point at every time-step.   

Such a situation is an important motivation for developing new alternative numerical 

algorithms that provide faster calculations of model physics while carefully 

preserving their accuracy.  Two techniques have been proposed to improve temporal 

and spatial resolution of radiation calculations: (1) the technique that improves 

interpolation of the radiative calculations from the coarse grid to the fine one 

(Morcrette et al. 2008) or improve radiative calculations between the time steps for 

which full radiative calculations are performed (Venema 2007, Manners et al. 2008), 

and (2) the technique that introduces either new fast radiation parameterizations 

(Chevallier et al. 1998, 2000) or accurate and fast emulations of existing radiation 

schemes and parameterizations (Krasnopolsky 1997, Krasnopolsky et al. 2005a, 

2008a) that can be used in a model at each grid point and at each time step instead of 

original slow radiative calculations. 

 

To reduce the cost further, calculations are usually made at lower temporal and/or 

spatial resolutions.  Quite drastic reductions in temporal resolution are often made 

(e.g., radiation calculations are made every three hours for the climate and global 

forecast models at NCEP and UKMO (Manners et al. 2008)).  Between radiative 

transfer calculations major changes may occur in the radiative profiles (caused 

primarily by two factors: changes in clouds and changes in the angle of incident solar 

radiation) that are not represented.  A reduced horizontal resolution approach (the 

radiative calculations are performed on a coarser grid with a following interpolation 
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of the results to an original finer grid) is used to speed up radiation calculations at 

ECMWF (Morcrette et al. 2007, 2008).  A reduced vertical resolution approach (the 

full radiation is calculated at every other vertical level and interpolated on the 

intermediate levels) is used in the Canadian operational Global Environmental 

Multiscale model (e. g. Cote et al. 1998a, 1998b).  Such approaches reduce horizontal 

or vertical variability of radiation fields.  Thus, these approaches may reduce the 

accuracy of a model’s radiation calculation and its spatial or/and temporal 

consistency with other parts of model physics and with model dynamics, which may, 

in turn, affect negatively the accuracy of climate simulations and weather predictions.   

 

 

 

 

A fast neural network (NN) based long wave radiation parameterization NeuroFlux 

(Chevallier et al. 1998, 2000) has been developed and tested in the ECMWF model.  

The NeuroFlux approach has a limited application (as discussed in Krasnopolsky et 

al. 2005b) because it has been developed for a particular formulation (Washington 

and Williamson 1977) of the long wave radiation physics only.  Also, because of 

NeuroFlux’s suboptimal design (as discussed in Krasnopolsky et al. 2005b), at 

vertical resolution of 60 layers and more, both accuracy and rapidity of NeuroFlux 

cannot be achieved simultaneously (Morcrette et al. 2008). Consequently, the 

NeuroFlux is used only for the 4D-Var linearized physics (Janiskova et al., 2002) 

where the accuracy requirements are less stringent.   
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The NN based approach introduced in Krasnopolsky (1997), Krasnopolsky et al. 

(2005a, 2008a) will be discussed in substantial detail further in this dissertation.  

 

1.2 Neural Networks Overview 
 
The neural network (NN) approach is a relatively new, diverse, and powerful 

statistical learning technique (also known as machine learning, learning from data, 

predictive learning, or the data-driven approach) that started developing rapidly in the 

mid-1980s after several major basic types of NNs were introduced in the works of 

Kohonen (1982), Hopfield (1982) Rumelhart et al. (1986), and Lippmann (1989) In 

the 1990s this technique matured; several well written and fundamental textbooks 

have been published (Beale and Jackson, 1990; Bishop, 1995; Haykin, 1994; Ripley, 

1996; Vapnik, 1995; Cherkassky and Mulier, 1998) that introduced NNs as a new 

powerful statistical learning approach capable of providing a diverse family of 

flexible nonlinear data driven models for various applications. This approach became 

appealing to a broad community of professionals, including scientists working in 

different fields of geosciences like satellite remote sensing, meteorology, 

oceanography, and geophysical numerical modeling. Since then a significant number 

of NN applications have been developed in these fields. Selected atmospheric and 

oceanic applications have been reviewed for the atmospheric and oceanic community 

by Gardner and Dorling (1998), Hsieh and Tang (1998), and Krasnopolsky (2007a) 

and for the NN community by Krasnopolsky and Chevallier (2003) and Krasnopolsky 

and Fox-Rabinovitz (2006b). Selected remote sensing applications have been 

reviewed for remote sensing experts by Atkinson and Tatnall (1997) and for the NN 
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community by Krasnopolsky and Schiller (2003). Applications of the NN technique 

for developing nonlinear generalizations of multivariate statistical analysis have been 

reviewed by Hsieh (2004). 

1.3 Hybrid Environmental Modeling 
A new notion of hybrid environmental numerical models (ENM) has been introduced 

in Krasnopolsky (1997), and Krasnopolsky et al. (2005a, 2008a), which combines 

deterministic (e.g. model dynamics) and statistical or machine learning (e.g. NN 

emulations of model physics) components to perform calculations more effectively 

than original completely deterministic ENM.  

A NN emulation of a model physics parameterization is a functional imitation of this 

parameterization so that the results of model calculations with the original 

parameterization and with its NN emulation are physically (and climatologically) 

identical. High quality of NN emulations is achieved due to the high accuracy of 

approximation of the original components. 

Due to the capability of modern Statistical or Machine Learning Techniques (SLTs 

and MLTs), such as NN and the tree approximation used in our research, to provide 

an unprecedented accuracy for approximation of complex systems like model 

physics, our NN emulations of model physics parameterizations are practically 

identical to original physical parameterizations. As a result, HEM using this 

emulation produces results, which are physically identical to those of the original 

ENM. In other words, the underlying idea of the approach is not developing a new 

parameterization but rather emulating a parameterization already very carefully tested 

and validated by its developers off-line and then on-line through experimentation 
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with the entire model. It is achieved by using for NN training data simulated by 

running an original model (i.e. ENM) with the original parameterization. Using 

model-simulated data for NN training allows us to achieve a very high accuracy for 

approximation because simulated data are free of the problems typical for empirical 

data (problems like high level of observational noise, sparse spatial and temporal 

coverage, poor representation of extreme events, etc.). In the context of this approach, 

the accuracy and improved computational performance of HEM and NN emulations 

is always measured against the ENM using the original parameterization. It is 

noteworthy that the developed NN emulation has the same inputs and outputs as the 

original parameterization and is used as its functional substitute in the model. 

 

1.4 Other Approaches to Emulation of Model Physics 
 
While artificial neural networks can be considered the current state-of-the-art black 

box methodology for a wide range of high-dimensional approximation problems, and 

justifiably so, they may not necessarily be the best solution for the application 

considered in this dissertation. While the application of neural networks to the 

problem of learning parameterizations has produced excellent results, it is not without 

limitations. Foremost among these is that the neurons have large support (a half space 

in ) and their superposition is a complex nonorthogonal expansion. This makes 

capturing of local or multiscale phenomena difficult. This brings into question 

whether NNs are the ultimate statistical learning technique (SLT) solution to 

numerically emulating parameterizations. Therefore we will explore an alternative to 

neural networks within the class of non-parametric approximation methods. We will 

nℜ
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restrict ourselves to basic design decisions and discuss the features of two common 

statistical learning paradigms, approximate nearest neighbors and regression trees. 

 

1.5 Quality Control of Larger Errors in an NN Emulation of Model Physics 
 
Tremendous complexity, multidimensionality, and nonlinearity of the 

climate/weather system and numerical models describing this system lead to 

complexity and multidimensionality of our NN emulations and data sets that are used 

for their development and validation. The development of NN emulations of model 

physics and their accuracy depends significantly on our ability to generate a 

representative training set to avoid using NNs for extrapolation beyond the domain 

covered by the training set. Owing to the high dimensionality of the input domain 

(i.e., dimensionality of the NN input vector) which is of the order of several hundreds 

or more, it is difficult if not impossible to cover the entire domain, especially its “far 

corners” associated with rare or extreme events, even when we use model simulated 

data for the NN training. Also, the domain may change with time as in the case of 

climate change. In such situations the emulating NN may be forced to extrapolate 

beyond its generalization ability which may lead to larger errors in NN outputs and, 

as a result, to errors in the numerical models in which they are used. Therefore, we 

will explore a quality control  (QC) procedure, which can predict and eliminate larger 

errors of NN emulations during the integration of highly nonlinear numerical models, 

not just relying upon the robustness of the model that can vary significantly for 

different models. Such a mechanism would make our NN emulation approach more 

reliable, robust, and generic.  
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1.6 Ensemble of Neural Network Emulations for Climate Model Physics 
 

During the last decade, the ensemble approach demonstrated a significant success in 

numerical weather prediction (NWP) modeling (Palmer, 2007; Buizza, 2005) and in 

climate modeling (Broccoli, 2003; Murphy, 2004; Staniforth, 2005).  The traditional 

ensemble approach widely used in NWP is based on introducing perturbations into 

initial conditions because NWP forecasts (specifically, for short- to medium-term or 1 

to 10 day weather predictions) are the initial condition problems.  Hereafter, we will 

call this kind of ensembles the perturbed initial condition ensemble (PICE).   

It was also found that, for both the NWP and especially for climate applications, the 

spread of PICE forecasts is insufficient to systematically capture the natural climate 

and weather variability (both spatial and temporal). Another approach to ensemble 

modeling based on perturbing model physics developed and implemented for 

ensemble forecast systems (Buizza, 2005; Buizza, 1999).  Climate simulations which 

are from months to decades (and sometimes centuries) long are not initial condition 

but rather boundary condition problems. In other words, climate simulations “forget” 

the initial conditions after two-three weeks of model integrations, and are driven by 

the right hand side (r.h.s.) or model physics forcing..  For this kind of problems, an 

ensemble approach based on perturbation of model physics (or perturbation of model 

forcing) seems to be appropriate.  The perturbed physics ensembles are expected to be 

more suitable for climate model simulations and projections (Staniforth, 2005).   

In this chapter we investigate different possibilities of using the neural network (NN) 

emulation technique, introduced in the earlier chapters, in combination with ensemble 
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approaches.  We discuss two types of perturbed physics ensembles: a long term 

perturbed physics ensemble (PPE) and a short-term perturbed physics ensemble 

(STPPE). 

We also show that the NN emulation technique can be efficiently used to create PPE 

and STPPE.  We demonstrate that all three aforementioned types of ensembles (PICE, 

PPE, and STPPE) can significantly benefit, in terms of their numerical performance, 

from using accurate NN emulations of model physics; however, STPPE becomes 

especially efficient (orders of magnitude faster than PICE and PPE) when the NN 

technique is used to produce the ensemble of perturbed realizations of model physics. 
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Chapter 2: Neural Networks Approach to Emulation of Model Physics 
Components 

2.1 Mappings 

2.1.1 Definition of Mapping 
 
A mapping M between two vectors X (input vector) and Y (output vector) can be 

symbolically written as 

  (1) 

A large number of important practical geophysical applications may be considered 

mathematically as a mapping like (1). Keeping in mind that a NN technique will be 

used to approximate this mapping, we will call it a target mapping, using a common 

term from nonlinear approximation theory (DeVore, 1998). The target mapping may 

be given to us explicitly or implicitly. It can be given explicitly as a set of equations 

based on first principles and/or empirical dependencies (e.g., radiative transfer or heat 

transfer equations) or as a computer code. Observational records represent an implicit 

target mapping. In this case the target mapping is assumed to be hidden in or behind 

observed data and to generate these data. 

Multidimensional, nonlinear mappings (1) are complicated mathematical objects that 

are not very well studied. There are many different interesting properties of these 

mappings that could be discussed. However it will be easier for us to focus on some 

generic properties of the mapping (1) that are typical and important for the 

applications presented in this dissertation, keeping in mind that our goal is to develop 

a NN emulation for the target mapping (1). 

Y =M (X);X !"n,Y !"n



 

 
 

11 
 

2.1.2 Some Generic Properties of Mappings 
 
The first essential property of the target mapping is its mapping dimensionalities. A 

mapping is characterized by two dimensionalities: dimensionality n of the input space 

 and dimensionality m of the output space . The second property of the 

mapping (1) is the mapping domain. If all components of the input vector X are 

scaled to [-1.,1], the volume of the input space  is equal to 2n and therefore grows 

exponentially with n. Once the space is discretized, e.g., by K values per dimension, 

then the problem size grows even faster, as Kn. This is usually called the curse of 

dimensionality (Bishop, 1995; Vapnik, 2006). Fortunately, the components of the 

input vector X are usually interrelated or multicollinear (Aires et al., 2004b) because 

of the physical or statistical reasons, which leads to both positive and negative 

consequences. These correlations effectively reduce the size, and sometimes 

dimensionality, of the part of the input space  spanned by the input vectors X 

(Bishop, 1995). This part is called the mapping domain D and is determined by a 

particular application. Understanding the configuration of the mapping domain and its 

properties is very important for a proper NN training and application. The 

components of the output vector Y are usually also interrelated. As a result, the output 

vectors also span only a fraction of the output space . This part of the output 

space is called the range R. Understanding the properties of the range is very 

important for the proper testing and application of the developed NN approximations 

of a target mapping (1). 

Another property of the mapping (1) that is important in the context of the 

applications reviewed in this dissertation is the mapping complexity. Mapping 

!n !m

!n

!n

!m
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complexity is an intuitively clear notion. The mapping M performs some 

transformation of the input vector X to produce the output vector Y, and this 

transformation may be more or less complex. However, no formal definition of 

complexity is available.  Nevertheless we can talk about the physical complexity of 

the mapping (1) that corresponds to the complexity of the physical processes 

represented mathematically by this mapping. Correspondingly, we can introduce 

semi-quantitative characteristics of physical complexity, the number of equations 

describing the physics, the type of these equations, the dimensionality of the 

equations, etc. This “measure” of complexity is obviously ambiguous due to, for 

example, existence of alternative mathematical formalisms. The second type of 

complexity that can be introduced is mapping’s numerical or computational 

complexity. For this type of complexity a quantitative measure, like the number of 

elementary numerical operations required for calculating Y given X, can be 

introduced. However, this measure is also ambiguous because different numerical 

schemes can be applied to the same set of equations. The third definition of mapping 

complexity is the functional complexity. It describes the complexity of the functional 

dependency of the outputs Y versus inputs X or the ‘‘smoothness’’ of this 

dependency. For example, for a function of one variable an approximation procedure 

can be used for measuring functional complexity. If n is the minimal order of a 

polynomial that approximates the function with the desired accuracy, the function 

may be considered to have polynomial complexity of the order n. The direct 

generalization of this approach for the case of a multidimensional mapping (1) is 

hardly possible. 



 

 
 

13 
 

2.2 Approximation of Nonlinear Mappings Using Neural Networks 
 

2.2.1 Neural Networks in Terms of Approximation Theory 
 
 
The simplest NN, a multi layer perceptron (MLP), which in traditional NN terms, 

corresponds to an NN with one “hidden” “layer” and a linear output “layer”, is a 

generic analytical nonlinear approximation or model for a mapping like the target 

mapping (1). The MLP NN uses for the approximation a family of functions like 

         (2) 

                        (3) 

where xi and yq are components of the input and output vectors, respectively, a and b 

are fitting parameters or NN weights,  is a so-called activation or ‘‘squashing’’ 

function (a nonlinear function, often a hyperbolic tangent), n and m are the numbers 

of inputs and outputs, respectively, and k is the number of the highly nonlinear basis 

function zj (see equation (3)) in the expansion (2). The expansion (2) is a linear 

expansion (a linear combination of the basis functions zj (eq. (3))), and the 

coefficients  (q = 1, . . ., m and j = 1, . . ., k) are linear coefficients in this 

expansion. It is essential that the basis functions zj are nonlinear with respect to inputs 

xi (i = 1, . . ., n) and to the fitting parameters or coefficients  ( j = 1, . . ., k). As a 

result of the nonlinear dependence of the basis functions on multiple fitting 

parameters  the basis {zj}, j=1,. . .,k turns into a very flexible set of non-orthogonal 

basis functions that have a great potential to adjust to the functional complexity of the 

yq = NN(X,a,b) = aq0 + aqjz j,q =1,2,...,m
j=1

k

!

zj = ! bj0 + bjixi
i=1

n

!
"

#
$

%

&
'

!

aqj

bji

bji



 

 
 

14 
 

mapping (1). It has been shown by many authors in different contexts that the family 

of functions (2) and (3) can approximate any continuous or almost continuous (with a 

finite number of finite discontinuities such as  a step function) mapping (Cybenko, 

1989; Funahashi, 1989; Hornik, 1991; Chen and Chen, 1995a, 1995b). The accuracy 

of the NN approximation or the ability of the NN to resolve details of the target 

mapping (1) is proportional to the number of basis functions (hidden neurons) k 

(Attali and Pages, 1997). 

The numerical complexity of NN (2) can be well approximated by the number of NN 

weights, a’s and b’s, in (2-3)  (Krasnopolsky 2007a): 

NC = k · (n + m + 1) + m 

The time, TNN, required for estimating the NN (1) is directly proportional to the NN 

numerical complexity NC, 

    TNN  = c · NC  

with the coefficient of proportionality c depending mainly on a hardware and 

software environment of the computer used. 

Obviously, the numerical complexity, NC, increases linearly with the increase of 

vertical resolution of a model (the number of the vertical layers, L) because both n 

and m depend linearly on L.  Thus, as a result, the time required for estimating NN, 

TNN, increases linearly with the increase of the vertical resolution of the model.  The 

time required for estimating the original parameterization, TO, also increases with the 

increase of vertical resolution.  For the original parameterization, the dependence of 

the calculation time on vertical resolution is strongly conditioned by the numerical 

scheme implemented.  
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Thus, the dependence of the speedup, η, provided by an NN emulation, on vertical 

resolution is determined by the ratio of the two aforementioned calculation times:  

 

the time required for estimating the original parameterization, TO, and the time 

required for estimating the NN emulation, TNN.   Therefore, the change of the speedup 

η with the increase of model vertical resolution will strongly depend on the physical 

complexity of the original parameterization and on the numerical scheme 

implemented. 

2.2.2 Training Set 
 
In practical applications the target mapping (1) is usually represented and presented to 

the NN by a data set (training set) that consists of N pairs or records of input and 

output vectors X and Y, 

                                      (4) 

where ,  is an error of observation or calculation with the 

probability density function , and  and . The training set is all 

that the NN “knows” about the target mapping that it is supposed to approximate. 

This is the reason why the MLP NN belongs to a class of data-driven methods 

(Cherkassky and Mulier, 1998). 

The training set is all the NN “knows” about  the mapping (1), and therefore it has to 

be representative. It means that the training set has to have a sufficient complexity 

corresponding to the complexity of the target mapping, allowing the NN to 

NN

O

T
T

=η

CT = {Xp,Yp}p=1,...,N

Yp =M (Xp )+! p ! p

!(" ) Xp ! D Yp ! R
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approximate the target mapping with a desired accuracy. The set should have a 

sufficient number N of properly distributed data records that adequately resolve the 

functional complexity of the target mapping (1). The set should have finer resolution 

where the target mapping is not very smooth and coarser resolution where it is 

smoother. In other word, the domain D should be properly sampled. It may be 

oversampled but not under sampled. The paramount question remains, however, as to 

just how we should estimate this target mapping smoothness in order to obtain 

desired representativeness of the training set (DeVore, 1998). As we discussed above, 

the interrelations between inputs simplify the sampling task for cases of high input 

dimensionality, reducing the size and the effective dimensionality of the domain. 

For applications considered in this dissertation an explicit theoretical (based on first 

principles) or an empirical model for the target mapping (1) is available, it can be 

used to simulate the data set (equation (4)). With simulated data we have significantly 

more control over the sampling of the target mapping domain (the number and 

distribution of the data points) and, as a result, over the NN accuracy and the ability 

of the emulating NN to resolve the target mapping. The level of noise in the simulated 

data is usually lower than that in the observed data. The simulated and observed data 

can, in principle, be fused together in an integrated data set using an appropriate 

technique that is able to account for the different error statistics and statistical 

properties of these two data types. One example of fused data is the analyzed data 

produced by a data assimilation system. 

2.2.3 Selection of NN Architecture 
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To approximate a particular target mapping (1) with the MLP NN (2) and (3), we 

should first select the NN architecture or “topology”. That is, we must select the 

number of the inputs n, the number of the outputs m, and the number of neurons k in 

the hidden layer. For each particular problem, n and m are determined by the input 

and output dimensionalities of the target mapping (the dimensions of the input and 

output vectors X and Y). Practical implementation of this approach allows for 

multiple solutions in terms of the number of NN designs that can be used for an 

approximation. The MLP NN presented by equations (2) and (3) can be implemented 

as a single NN with m outputs, m single-output NNs, or several multiple output NNs 

with the total number of outputs equal to m. 

The possible choices among many topological solutions, from a single NN with m 

outputs to m single output NNs, demonstrate an important flexibility of the NN 

technique that offers a speed versus accuracy trade-off. This additional flexibility can 

be effectively used for various applications. Another degree of flexibility is provided 

by the availability of different normalizations for NN inputs and outputs. This topic is 

discussed in detail in Krasnopolsky and Fox-Rabinovitz (2006b). 

The number of hidden neurons k that determines the complexity of the approximating 

NN in each particular case should be determined when taking into account the 

complexity of the target mapping to be approximated. The more complicated the 

mapping, the more hidden neurons k is required (Attali and Pages, 1997) (or the 

higher the required complexity Nc of the approximating NN) to approximate this 

mapping with the desired accuracy or resolution. There is always a trade-off between 

the desired resolution of the target mapping and the complexity of the NN emulation. 
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However, from our experience the complexity k of the approximating NN should be 

carefully controlled and kept to the minimum level sufficient for the desired accuracy 

of the approximation to avoid over-fitting and to allow for a smooth and accurate 

interpolation. Unfortunately, there are no universal rules or recommendations to be 

given here. Usually, k is determined using experience and experiments. 

2.2.4 NN Training 
 
 After NN topological parameters are defined, the weights (a and b) can be found 

using the training set CT and the maximum likelihood method (Vapnik, 1995) by 

maximizing the functional 

    (5) 

with the respect to free parameters (NN weights) a and b. Here  is the 

probability density function for errors . If the errors  are normally distributed, 

equation leads to the minimization of the least squares error, loss, risk, or cost 

function with respect to the NN weights a and b, 

  (6) 

This procedure is usually called NN training. It is noteworthy that for a probability 

density function  other than the normal one the error function should be derived 

from the maximum likelihood functional (5). The error function may be significantly 

different than the least squares error or loss function (6). However, in the majority of 

applications the least squares error function (6) is applied. 
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Optimal values for weights are obtained by minimizing the error function (5) or (6); 

this task is a nonlinear minimization problem. A number of methods have been 

developed for solving this problem (Bishop, 1995; Haykin, 1994). Here we briefly 

outline one of them, a simplified version of the steepest (or gradient) descent method 

known as the back propagation training algorithm (Rumelhart et al., 1986). 

The back propagation training algorithm is based on the simple idea that searching for 

a minimum of the error function (6) can be performed step by step in iterations and 

that at each step we should increment or decrement the weights in such a way as to 

decrease the error function. This can be done using, for example, a simple steepest 

descent rule 

    (7) 

where  is a so-called learning constant and W is either one of two weights (a or b). 

Using (6), (2), and (3), the derivative in (7) can be expressed analytically through the 

derivative of the activation function ϕ and through the weight values at the previous 

iteration step. At the first step where we do not have weights from a previous training 

iteration, a weight initialization problem arises that is familiar to those who use 

various kinds of iterative schemes. Many publications have been devoted to weight 

initialization (e.g., Nguyen and Widrow, 1990; Wessels and Bernard, 1992). 

 A nonlinear error function (6) has multiple local minima. The back propagation 

algorithm converges to a local minimum, as does almost any algorithm available for 

solving the nonlinear optimization problem (NN training). Usually, multiple 
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initialization procedures are applied to avoid shallow local minima and to choose a 

local minimum with a sufficiently small error. 

On the other hand, these local minima, which may have approximation error, give 

different solutions in terms of NN weights. These different NNs provide different 

interpolations and different derivatives. Thus, in such cases the approximation error 

may be not instrumental without using additional criteria for selecting solutions with 

good interpolation properties and derivatives. 

2.3 Multiple NN Emulations for the Same Target Mapping and the NN Ensemble 
Approach  
 
 
The existence of multiple solutions is a property of nonlinear models and nonlinear 

approximations. These models have many nonlinear parameters that could change in 

the process of generating solutions. These multiple solutions may be close in terms of 

a particular criterion used for obtaining the solutions. At the same time these models 

(NNs) may be different in terms of other criteria that provide complementary 

information about the target mapping. The availability of multiple solutions may lead 

to some inconveniences and uncertainties, e.g., the necessity of introducing an 

additional step to use additional criteria to select a single model. On the other hand, 

the availability of multiple models (NN emulations) providing complementary 

information about the target mapping opens the opportunity to use an ensemble 

approach that allows integration of the complementary information contained in the 

ensemble members into an ensemble that ‘‘knows’’ more about the target mapping 

than does any of the ensemble members (particular NN emulations). 
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The idea that an ensemble of learning models consisting of many members is capable 

of providing a better description of the system than any particular member model can 

be traced back to as early as the late 1950s and early to middle 1960s (Selfridge, 

1958; Nilsson, 1965). Since the early 1990s, many different algorithms based on 

similar ideas have been developed for NN ensembles (Hansen and Salamon, 1990; 

Sharkey, 1996; Naftaly et al., 1997; Opitz and Maclin, 1999; Hsieh, 2001) 

An ensemble of NNs consists of a set of members, i.e., individually trained NNs. 

They are combined when applied to new data to improve the generalization 

(interpolation) ability because previous research showed that an ensemble is often 

more accurate than any single ensemble member. Previous research also suggests that 

any mechanism that causes some randomness in the formation of NN members can be 

used to form a NN ensemble (Opitz and Maclin, 1999). For example, ensemble 

members can be created by training different members on different subsets of the 

training set (Opitz and Maclin, 1999), by training different members on different 

subdomains of the training domain, by training different members using NNs with 

different architectures (different numbers of hidden neurons) (Hashem, 1997), or by 

training different members using NNs with the same architecture but different initial 

conditions for the NN weights (Maclin and Shavlik, 1995; Hsieh, 2001). 

In the context of our application, an approximation of a complex mapping (1), the 

members of the ensemble are separately trained approximating NNs, which provide 

different accuracies of approximation for the target mapping and different 

interpolation accuracies. We can expect that the ensemble average will provide a 

better approximation and interpolation than the individual members. Krasnopolsky 
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(2007) also applied the NN ensemble technique to reduce the uncertainty of the NN 

Jacobian. Most of the previous work with NN ensembles has been done in the context 

of solving the classification (Hansen and Salamon, 1990; Sharkey, 1996; Opitz and 

Maclin, 1999) or the prediction of time series problems (Naftaly et al., 1997; Hsieh, 

2001). The NN ensembles will be explored further in the Chapter 7 of this 

dissertation.   

2.4 Application of NN Emulations to Development of Hybrid Atmospheric Models 

    

A new concept of a complex HEM has been formulated and developed by 

Krasnopolsky et al. (2000b, 2002, 2005a) and Krasnopolsky and Fox-Rabinovitz 

(2006a, 2006b). The hybrid modeling approach considers the whole GCM or ENM as 

a system. Dynamics and parameterizations of physics, chemistry, etc., are considered 

to be the components of the system. Hybridization in this case is introduced at the 

level of components inside the system (ENM). For example, the entire LWR (or 

SWR) parameterization is emulated by a single NN as a single/elementary object or 

block. The NN emulation approach is based on the general fact that any 

parameterization of model physics can be considered as a continuous or almost 

continuous mapping (1). 

Krasnopolsky and Fox-Rabinovitz (2006a, 2006b) formulated a developmental 

framework and test criteria that can be recommended for developing and testing the 

statistical learning components of HGCM, i.e., NN emulations of model physics 

components. The developmental process consists of three major steps. 
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 The first step is problem analysis or analysis of the model component (target 

mapping (1), i.e., the original parameterization) to be approximated to determine the 

optimal structure and configuration of the NN emulations, the number of inputs and 

outputs, and the first guess of the functional complexity of the original 

parameterization that determines an initial number of hidden neurons k in one hidden 

layer of (2) and (3).  

The second step is generation of representative data sets for training, validation, and 

testing. This is achieved by using for NN training the data that is simulated by 

running the original GCM, or in other words, a GCM with the original unmodified 

parameterization. When creating a representative data set, the original GCM must be 

run long enough to produce all possible atmospheric model simulated states, 

phenomena, etc. Here, because of the use of simulated data it is not a problem to 

generate the sufficiently representative (and even redundant) data sets required to 

create high-quality NN emulations. Using model-simulated data for NN training 

allows a high accuracy of emulation to be achieved because simulated data are almost 

free of the problems typical in empirical data (like a high level of observational noise, 

sparse spatial and temporal coverage, and poor representation of extreme events). 

The third step is training the NN. Several different versions of NNs with different 

architectures, initialization, and training algorithms should be trained and validated. 

As for the NN architecture the number of hidden neurons k should be kept to the 

minimum number that provides a sufficient emulation accuracy to create the high-

quality NN emulations required. 
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Testing the HGCM that uses the trained NN emulation consists of two major steps. 

The first step is testing the accuracy of the NN approximation against the original 

parameterization using the independent test data set. In the context of the hybrid 

approach the accuracy and improved computational performance of NN emulations 

and eventually the HGCM are always measured against the corresponding controls, 

namely, the original parameterization and its original GCM. Both the original 

parameterization and its NN emulation are complicated multidimensional mappings. 

Many different statistical metrics of the emulation accuracy should be calculated to 

assure that a sufficiently complete evaluation of the emulation accuracy is obtained. 

For example, total, level, and profile statistics have to be evaluated (see section 

3.3.1). The second test step consists of a comprehensive comparison and analysis of 

parallel HGCM and GCM runs. For the parallel model simulations, all relevant model 

prognostic (i.e., time-dependent model variables) and diagnostic fields should be 

analyzed and carefully compared to assure that the integrity of the original GCM and 

its parameterization, with all its details and characteristic features, is precisely 

preserved when using a HGCM with NN emulation. This test step involving model 

simulations is crucially important. GCMs are essentially nonlinear complex systems; 

in such systems, small systematic and even random approximation errors can 

accumulate over time and produce a significant impact on the quality of the model 

results. Therefore the development and application framework of the new hybrid 

approach should be focused on obtaining a high accuracy in both NN emulations and 

HGCM simulations.   
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Chapter 3: Neural Network Emulation of Full Model Radiation: Decadal 
Simulations and Seasonal Predictions.  

 

3.1 Brief Descriptions of GCMs 
 
Two general circulations models of different levels of complexity were used in this 
study.  

3.1.1 NCAR CAM 
 
The NCAR (National Center for Atmospheric Research) CAM (Community 

Atmospheric Model) Version 2 is described in detail in the special issue of Journal of 

Climate, 1998, vol. 11, no. 6. We used the NCAR CAM v. 2 with the T42 (~3 degree) 

horizontal resolution and 26 vertical levels (T42L26) and  with the climatological sea 

surface temperature forcing. 

The calculation of model physics in this configuration of NCAR CAM takes about 

70% of the total model computations.  Evidently, this percentage is model and 

configuration dependent but full model radiation in general is the most time-

consuming component of GCMs (e.g., Morcrette et al. 2007a, b).  Such a situation is 

an important motivation for looking for new alternative numerical algorithms that 

provide faster calculations of model physics while carefully preserving their 

accuracy.   

3.1.2 NCEP CFS and GFS 
 
The operational NCEP CFS (Climate Forecasting System) is described in detail in 

Saha et al. (2006) and the references therein.  The coupled NCEP CFS version used in 

our study incorporates: the NCEP GFS (Global Forecast System) 64-level 
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atmospheric model, the 40-level interactive MOM4 ocean model, the interactive 

Noah land model with four soil levels with improved treatment of snow and frozen 

soil, an interactive sea ice model with fractional ice cover and depth allowed, a sub-

grid scale mountain blocking, a new seasonal climatological aerosol treatment, a 

historical CO2 database from global observations collected by the World 

Meteorological Organization, a variable solar constant database, and historical 

stratospheric volcanic aerosol distributions (Sato et al., 1993).   

 

The NCEP GFS model is a mature, state-of-the-art spectral atmospheric GCM 

(AGCM) used in operational medium-range weather forecasts.  The operational GFS 

version has a variable horizontal spectral resolution of up to T574 or ~25 km.  The 

hybrid sigma-pressure coordinate and a conservative finite-difference scheme are 

used in the vertical domain. The operational model is run with 64-layer vertical 

resolution between the surface and 0.27 hPa (about 60 km).  

 

3.2 Long- and Short- Wave Radiation Parameterizations in GCMs 

3.2.1 NCAR CAM 
 
The function of the LWR parameterization in atmospheric GCMs is to calculate 

heating fluxes and rates produced by LWR processes. The complete description of 

NCAR CAM atmospheric LWR and SWR parameterizations is presented in Collins 

(2001, 2002).  

The input vectors for the NCAR CAM-2 LWR parameterization include ten profiles 

(atmospheric temperature, humidity, ozone, CO2, N2O, CH4, two CFC mixing ratios 

(the annual mean atmospheric mole fractions for the halocarbons), pressure, cloud 



 

 
 

27 
 

emissivity, and cloud cover) and one relevant surface characteristic (the upward LWR 

flux at the surface).  The LWR parameterization output vectors consist of the profile 

of heating rates (HRs) and several radiation fluxes, including the outgoing LW 

radiation flux from the top layer of the model atmosphere (the outgoing LWR or 

OLR).   

 

The input vectors for the SWR parameterization include twenty one vertical profiles 

(specific humidity, ozone concentration, pressure, cloud cover, layer liquid water 

path, liquid effective drop size, ice effective drop size, fractional ice content within 

cloud., aerosol mass mixing ratios, etc.), solar zenith angle and surface albedo for 

four different bands. The SWR parameterization output vectors consist of a vertical 

profile of heating rates (HRs) and several radiation fluxes.  The NN emulations of the 

SWR parameterization have 173 inputs and 33 outputs.   

 

It is noteworthy that the number of NN inputs is less then the number of input profiles 

multiplied by the number of the vertical layers plus the number of relevant single 

level characteristics.  Many input variables (e.g., all gases) have zero or constant 

values in upper vertical layers.  These constant values are not included as NN inputs 

because NN does not need constants inputs.   

3.2.2 NCEP CFS and GFS 
 
NCEP CFS’s and GFS’s radiation components contain a GCM version (v2.3) of the 

Rapid Radiative Transfer Model (RRTM) for LWR (hereafter referred to as RRTMG-

LW) developed at AER Inc. (e.g. Mlawer et al., 1997; Iacono et al., 2000), and a 
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SWR based on Chou’s parameterization scheme (Hou et al., 2002; Chou and Suarez, 

1999).  In the coupled CFS and standalone GFS used in this study the SWR of the 

operational versions of the models has been replaced by a GCM version (v2.3) of the 

AER’s RRTM SWR (hereafter referred to as RRTMG-SW) (e.g. Clough et al., 2005) 

to improve the accuracy of SWR calculation.   

The RRTMG-LW in the  CFS model employs a computationally efficient correlated-

k method for radiative transfer calculations.  It contains 16 spectral bands with 

various number of quadrature points (g-points) in each of the bands that sums up to a 

total of 140 g-points (e.g., Mlawer et al., 1997, Iacono et al., 2000).  Active gas 

absorbers include H2O, O3, CO2, CH4, N2O, O2, and four types of halocarbons 

(CFCs).  A maximum-random cloud overlapping scheme is used for cloudy sky 

radiative transfer, and a climatological aerosol scheme provides the global 

distribution of aerosol optical depth.   In this study, a one-hour frequency of radiation 

calculation is applied to both SWR and LWR. In the current version of the LWR 

parameterization the level of atmospheric CO2 and its time dependence is presented 

by its global mean value that increased from 350 to 380 ppmv during the period of 

model integration used in this study (1990 to 2006).   

 

Beside the RRTMG-LW, which is a faster member of the RRTM LWR family, we 

have also experimented with another version of the RRTM LWR (hereafter as 

RRTMF-LW) in this study.  The RRTMF-LW is based on AER’s RRTM-LW v3.0.  

It uses a full 16 g-points in each of the 16 spectral bands that add to a total of 256 vs. 

the reduced total of 140 in the faster RRTMG-LW.  Unlike the diffusivity approach 
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(one zenith angle of about 53°) in the faster RRTMG-LW, the RRTMF-LW uses 

multi-angle radiance integration over a hemisphere to yield better accuracy (we set it 

at 3 angles in the study).  As a result, the RRTMF-LW is about five times slower than 

the RRTMG-LW in exchange for improved accuracy (Mlawer et al., 1997). 

 

The SWR parameterization used in the CFS is a modified version of AER’s RRTMG-

SW (v2.3) (Clough et al., 2005).  It contains 14 spectral bands with various numbers 

of g-points in each of the bands to a total of 112.  RRTMG-SW uses a fast two-stream 

radiative transfer scheme, and supports sophisticated absorption and scattering 

processes by clouds, aerosols, and absorbing gases (H2O, O3, CO2, CH4, N2O, O2).  

Thus, in the current version of the SWR parameterization the level of atmospheric 

CO2 and its time dependence is presented by the entire 3-D CO2 field that changes 

with time in accordance with the change of the mean CO2 level that increased from 

350 to 380 ppmv during the period of model integration used in this study (1990 to 

2006). 

Although both RRTMG-LW and RRTMG-SW are built with fast computation 

schemes designed for GCM applications, they still represent the most time-

consuming physics in the NCEP CFS model.  The percentage of the total model 

computation time used by model physics and by radiation (LWR and SWR) vary 

depending largely on the model horizontal and vertical resolution, the time step, the 

frequency of radiative calculations, and the computing environment (e.g. the number 

of processors and threads).  For example, in the CFS configuration at the T126L64 

resolution, with the new RRTMG-LW and RRTMG-SW both called every hour, the 
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portion of the radiation computation time is about 57% of the total AGCM model 

computation time.  

3.3 NN Emulations for Full Model Radiation 

 3.3.1 Bulk Approximation Error Statistics 
 
To ensure a high quality of representation of the LWR and SWR radiation processes, 

the accuracy of the NN emulations has been carefully investigated.  Our NN 

emulations have been validated against the original NCAR CAM and NCEP CFS 

LWR and SWR parameterizations.  To calculate the error statistics presented in the 

following figures and tables of this section, the original parameterizations and their 

NN emulations have been applied to a validation data set. Two sets of the 

corresponding HR profiles have been generated for both LWR and SWR.  Total and 

level bias (or mean error), total and level RMSE, profile RMSE or PRMSE, and 

σPRMSE have been calculated. Some of these statistics presented in tables of this 

section have been calculated as follows.  The outputs of the original parameterization 

and the NN emulations can be represented as: Y(i,j) and YNN(i,j), respectively, where i 

= (lat, lon), i=1,…,N  is the horizontal location of a vertical profile, N is the number 

of horizontal grid points, and j = 1,…, L is the vertical index where L is the number of 

vertical levels. 

 The mean difference, B (bias or a systematic error of approximation), between 

the original parameterization and its NN emulation, is calculated as follows: 

                                                  (8) 

The root mean square error has been calculated for each ith profile: 
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                                                   (9) 

This error can be used to calculate mean profile root mean square error, PRMSE, and 

its standard deviation, σPRMSE : 

    (10) 

 

3.3.2 NCAR CAM 
 
The NCAR CAM-2 (T42L26) was run for two years to generate representative data 

sets.    The representative data set adequately samples the atmospheric state 

variability.  The first year of simulation was divided into two independent parts, each 

containing input/output vector combinations.  The first part was used for training and 

the second for tests (control of overfitting, control of NN architecture, etc.).  The 

second year of simulation was used to create a validation data set completely 

independent of both the training and test data sets.  The third part or the validation set 

was used for validations only.  All approximation statistics presented in this section 

are calculated using this independent validation data set.  The accuracy of the NN run, 

i.e., biases and rmse, are calculated against the control run.  

 

Table 1 shows bulk validation statistics for the accuracy of approximation and 

computational performance for the best (in terms of accuracy and performance) 
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developed NN emulations: NN 50 (k = 50 hidden neurons in eq. (2)) for the LWR 

emulation and NN 55 (k = 55 hidden neurons in eq.(2)) for the SWR emulation.   

The NN emulations developed for LWR and SWR are highly accurate. They have 

practically zero bias and a quite small PRMSE.   Zonal mean differences between the 

NN emulation and the original parameterization for radiative fluxes at the top of the 

atmosphere and at the surface have also been produced.  The differences appear to be 

uniformly small for all latitudes, mostly within ±0.5 W/m2 and do not exceed ±1 

W/m2.   

 

Table 1. Statistics estimating the accuracy of HRs (in K/day) calculations, and 

computational performance for NCAR CAM-2 LWR and SWR using NN emulation vs. 

the original parameterization.   

 
Bias 

(K/day) 

PRMSE 

(K/day) 

σPRMSE 

(K/day) 

Performance 

(times faster) 

LWR NN 50 3. · 10-4 0.28 0.20 150 

SWR NN 55 -4. · 10-3 0.15 0.12 20 

 

The NN emulations using 50 neurons in the hidden layer provide, if run separately at 

every model physics time step (1 hour), a speed-up of roughly 150 times for LWR 

and 20 times for SWR as compared with the original LWR and SWR, respectively. It 

is noteworthy that the main reason for the smaller performance gain for NN SWR vs. 

NN LWR is that the original CAM SWR parameterization is simpler and about 10 

times faster than the original CAM LWR. 
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Using NN emulations simultaneously for LWR and SWR or for the full model 

radiation, results in an overall significant, 13-fold acceleration of calculations for the 

entire/full model radiation block.  It is worth clarifying, for a better understanding of 

the overall speed-up, that for the usual control run the original LWR (including time-

consuming optical properties calculations) is calculated less frequently, only every 12 

hours or twice a day, and only computationally inexpensive heating rates and 

radiative fluxes are calculated every hour. Notice that all other inputs, including cloud 

cover, which is represented by a vertical profile of cloud fraction, are updated hourly. 

For the model run using NN emulations, LWR (including both optical properties and 

heating rates and radiative fluxes) is calculated more frequently, every hour, 

consistent with SWR and other model physics calculations.  We also performed an 

additional costly control run with the original LWR calculated every hour, as it is 

done in the LWR NN run, for a limited period (10 years).  The results of the two 

control runs appeared to be very close.  The difference between them is significantly 

less than the difference between each of them and the LWR NN run.  Because of that 

we decided to validate the 40 year full radiation NN run against the usual control run. 

3.3.3 NCEP CFS 
 
The NCEP CFS (T126L64) has been run for seventeen years to generate 

representative training data sets.  The representative data set samples the atmospheric 

state variability adequately, i.e., it represents all possible states produced by the 

model as fully as possible (including the states introduced due to time dependent CO2 

concentration).  All inputs and outputs of original LWR and SWR parameterizations 
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have been saved for two days per month, i.e., for one day at the beginning and one 

day in the middle of the month, every three hours (eight times per day) to cover the 

annual and diurnal cycles.  From the three-hour global data set three hundred events 

(the set of input and output profiles) have been randomly selected.  The obtained data 

set was divided into three independent parts, each containing about 200,000 

input/output vector combinations.  The first part has been used for training, the 

second one for tests (control of overfitting, control of NN architecture, etc.), and the 

third part (an independent validation data set) was used for validation of trained NN 

only.  All approximation statistics presented in this section are calculated using the 

independent validation data set.  The accuracy of the NN emulation, i.e., biases, rmse, 

etc. are calculated against the control (the original parameterization). 

 

Table 2. Statistics estimating the accuracy of HRs (in K/day) calculations and the 

computational performance for NCEP CFS (T126L64) LWR and SWR using NN 

emulation vs. the original parameterization.  For comparison, NCAR CAM (T42L26) 

LWR and SWR statistics are also shown.  Total statistics show the bias, RMSE, 

PRMSE, and σPRMSE for the entire 3-D HR fields.  Layer (for the top and bottom 

layers) statistics show the bias and RMSE for one horizontal layer (the top or bottom 

layer).  Also, the changes in statistics due to applying the balancing procedure (see 

Appendix1) are shown for RRTWG LWR and SWR NN emulations.  The NN 

complexity NC and speedup η (how many times NN emulation is faster than the 

original parameterization) are shown.  RRTMG and RRTMF are different versions of 

the radiation code developed by AER Inc. 
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Statistics 
Types 

Statisti
cs 

LWR SWR 
NCAR 
CAM 

NCEP CFS NCAR 
CAM 

NCEP CFS  
RRTM

G 
Change 
due to  

Balancin
g 

RRTM
F 

RRTM
G 

Change 
due to 

Balancin
g 

Total 
Error 

Statistics 

Bias 3. · 

10-4 

2.·10-3 6. · 10-4 7. · 

10-4 

-4. · 

10-3 

5. · 10-

3 

-3  · 10-

3 

RMSE 0.34 0.49 1. · 10-4                       0.42 0.19 0.20 -5. · 10-

3 

PRMSE 0.28 0.39 3. · 10-4                       0.30 0.15 0.16 -5. · 10-

3 

σPRMSE 0.2 0.31 1. · 10-4 0.30 0.12 0.12 1. · 10-3 

Bottom 
Layer 
Error 

Statistics 

Bias -2. 

10-3 

-1.·10-

2 

-6. · 10-

4 

6. · 

10-3 

-5. · 

10-3 

9. · 10-

3 

-8. · 10-

3 

RMSE 0.86 0.64 1. · 10-5 0.67 0.43 0.22 -0.01 

Top 
Layer  
Error 

Statistics 

Bias -1. · 

10-3 

-9.·10-

3 

6. · 10-4 2. · 

10-3 

2. · 

10-3 

1.3 · 

10-2 

4. · 10-3 

RMSE 0.06 0.1782 4. · 10-3 0.09 0.17 0.21 1. · 10-3 

NN 
Complexi

ty 

NC 
See eq. 

(2) 

12,73
3 
 

33,294 
 

- 93,96
9 
 

11,41
8 
 

45,173 
 

- 

Speedup, 
η 

Times 150 12 - 21 20 45 - 

 

 

Table 2 shows bulk validation statistics for the accuracy of approximation of heating 

rates (HR) and the computational performance for the best (in terms of both the 

accuracy and performance) developed NN emulations for the NCEP CFS LWR and 
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the SWR.  Total statistics show the bias, RMSE, PRMSE, and σPRMSE (for definitions 

see section 3.3.1) for the entire 3-D HR fields.  Also, layer statistics for the top and 

bottom atmospheric layers are included to illustrate the accuracy of NN emulations in 

the areas of the increased non-linearity (Morcrette et al. 2008).  Although the two 

models (as well as their embedded radiation parameterizations) are different, 

comparisons between NCAR CAM (with 26 vertical layers) and NCEP CFS (with 64 

vertical layers) allow us to observe a general dependence of the NN accuracy on the 

model vertical resolution (see also error profiles shown in Fig.1).   

 
 

Fig.1 Vertical distributions of NN emulation errors for two models: NCAR CAM (26 

vertical layers) and NCEP CFS (64 vertical layers).  Solid line corresponds to LWR 
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and dashed line to SWR.  The errors and their vertical distributions are similar, i.e. in 

the same bulk part, for both models. 

 

As can be concluded from Table 1 and Fig.1, NN emulations for both LWR and SWR 

handle very well the nonlinearity at the top of the atmosphere where biases and 

RMSEs are very small with RMSEs being even smaller than the total RMSE.  At the 

bottom layer, the non-linearity does not cause significant increases in biases; the 

RMSEs increase about two times, and as compared with the total RMSE, remain 

sufficiently small.  It is noteworthy that in the context of our discussion “sufficiently 

small errors” means that the errors of such a magnitude have almost negligible 

impacts on model behavior.  Only validation of NN emulations in parallel model runs 

allows us to make final conclusion about the sufficient smallness of the 

approximation errors.  

 

It terms of presented statistics, there are practically no differences between NCAR 

CAM with 26 vertical layers and NCEP CFS with 64 vertical layers.  As shown in 

Fig.1, the entire vertical distributions of errors (for both LWR and SWR) are similar 

for these two models.  Thus, the accuracy of our NN emulation approach does not 

depend significantly on vertical resolution of the model.  It does depend on the 

vertical location of the atmospheric layer.  The layer RMSE increases near the surface 

for both models.    

 



 

 
 

38 
 

Also, the NN complexity NC and speedup η (how many times NN emulation is faster 

than the original parameterization) are shown in Table 2.  These characteristics 

complement our discussion on the dependence of the speedup on vertical resolution 

(see the end of the section 2.2.1) For the LWR parameterization, we see a significant 

decrease of the speedup for NCEP CFS with 64 vertical layers vs. NCAR CAM with 

26 vertical layers although the LWR NN emulation for NCEP CFS is still 12 times 

faster than the original parameterization.  For the SWR parameterization the opposite 

tendency is observed; that is, the speedup for NCEP CFS SWR NN is more than two 

times higher than that of NCAR CAM SWR NN.  

 

These seemingly contradictory speedups for LWR and SWR emulations can be 

explained by the interplay of the two main contributing factors: the physical 

complexity of the radiation calculation itself (the number of treated species, spectral 

bands, parameterization schemes, etc.), and the dependence of the particular 

numerical scheme implemented in the radiative transfer on the number of vertical 

model layers.  The results presented in Table 2 illustrate the fact that the numerical 

scheme implemented in the NCEP CFS RRTMG-LW parameterization is 

significantly more efficient (linear with respect to the number of vertical levels L) 

than that of the original NCAR CAM LWR parameterization (quadratic with respect 

to L).  Thus a smaller speedup factor is produced by the NN emulation for NCEP 

LWR than that for NCAR CAM. The NCEP CFS’s RRTMG-SW includes more 

spectral bands and g-points and uses more complex treatment for a larger variety of 

absorbing/scattering species; thus NN shows a larger speedup value η than that of 
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NCAR CAM.   In any case, our NN emulation approach is significantly less 

dependent (in terms of both the accuracy and speed-up) on the increase of vertical 

resolution than the NN based LWR parameterization NeuroFlux for which at vertical 

resolution of 60 layers and more, both accuracy and speed-up could not be achieved 

simultaneously (Morcrette et al. 2008).  For our NN emulation approach, for the 

model with 64 vertical layers, the desired accuracy of the NN emulation could be 

achieved simultaneously with a significant speed up of 12 times for the LWR and of 

45 times for the SWR parameterizations.   

 

Using NN emulations simultaneously for LWR and SWR or for the full model 

radiation results in an overall significant, about 20 – 25% speedup of NCEP CFS 

climate simulations when both LWR and SWR are calculated every hour.  The 

speedup η provided by NN emulations (see Table 2) can be also used for more 

frequent calculations of model radiation.   

 

3.4 Validation of Parallel Decadal Model Simulations 

3.4.1 NCAR CAM 
 
.  The results of multi-decadal climate simulations performed with NN emulations for 

both LWR and SWR, i.e., for the full model radiation, have been validated against the 

parallel control NCAR CAM simulation using the original LWR and SWR.  Below 

we estimate closeness of the results for these parallel 50-year climate simulations.  

Note that the first 10 years of simulations are not included in the validation to avoid 

the impact of spin-up effects, so that years 11-50 are used for the validation. The 
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spin-up is done for the original NCAR CAM; it is not related to the use of NN 

emulations.  We will analyze below the differences between the parallel runs in terms 

of time and spatial (global) means as well as temporal characteristics.  

Table 3 presents comparisons between the parallel control and NN emulation runs in 

terms of the time (40-year) and global mean characteristics and the differences 

between the results of the parallel runs. Basically, the differences, in terms of mean, 

rms, minimum and maximum characteristics, between the parallel runs, are small. 

More specifically, there are negligible mean differences (bias), 0.02 hPa and -0.1 K, 

in sea level pressure and 2-meter temperature, respectively, between the NN and 

control runs.  For these fields, rmse, minimum and maximum differences are also 

small.  Other time and global mean differences presented in Table 3, including such 

sensitive fields as total precipitation, total cloud amount, cloud amounts for high, low, 

and mid clouds, total grid-box cloud liquid and ice water paths, top of model net 

long-wave flux and cloud forcing, also show a close similarity, in terms of all 

presented difference characteristics, between the parallel simulations for these fields. 

These differences are within typical observational and reanalysis errors/uncertainties. 

Note that minimum and maximum differences in Table 3 are not averaged in space 

and time but rather are instantaneous grid point values obtained for the entire 40-year 

simulation.   

Let us discuss the differences between the parallel simulations in terms of spatial and 

temporal characteristics.  Zonal and time mean heating (or cooling) rates for LWR 

and SWR are presented in Figs. 2 and 3, respectively. 
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Table 3.  Time (40-year) and global means for model diagnostics from NCAR CAM-2 

control climate simulations with the original LWR and SWR, simulation with NN 

emulations for the full radiation using NN 50 (LWR) and NN 55 (SWR), and their 

differences.  SLP – sea level pressure;  T2M – temperature at 2 m ;  U-200 - 200 hPa 

zonal wind;  TPR - total precipitation rate;  TCA - total cloud amount;  HLCA - high-

level cloud amount; LLCA - low-level cloud amount; MLCA - mid-level cloud 

amount; TGCLWP - total grid-box cloud liquid water path; TGCIWP - total grid-box 

cloud ice water path; TOMNLW - top of model net long-wave flux; TOMLWC - top of 

model long-wave cloud forcing. 

Field Control NN Full 
Radiation 

Mean 
Difference 

RMS 
Difference 

Min 
Difference 

Max 
Difference 

SLP (hPa) 1011.48 1011.50 0.02 0.52 -2.04 1.57 
T2M (K) 287.37 287.27 - 0.1 0.26 -1.64 0.78 

   U-200    
    (m/s) 

16.21 16.29 0.08 0.86 -2.31 3.95 

TPR 
(mm/day) 

2.86 2.89 0.03 0.2 -1.84 1.19 

TCA (%) 60.71 61.12 0.41 1.42 -7.50 5.76 
HLCA(%) 43.05 43.29 0.24 1.63 -7.52 8.01 
LLCA(%) 31.67 31.93 0.26 1.06 -5.20 4.78 
MLCA(%) 19.11 19.14 0.03 0.81 -4.86 4.39 
TGCLWP 

(g/m2) 
60.23 60.59 0.36 3.02 -19.43 14.95 

TGCIWP 
(g/m2) 

8.82 8.83 0.01 0.39 -1.69 1.45 

TOMNLW
(W/m2) 

234.48 234.54 0.06 2.32 -8.37 11.56 

TOMLWC
(W/m2) 

29.33 29.07 -0.26 2.45 -15.59 7.64 
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The HR patterns (the upper panels) are practically indistinguishable and their 

differences (the bottom panels) are small.  It confirms that the NN emulations for 

LWR and SWR are very close to their original parameterizations throughout the 

model simulations. It is noteworthy that the HR differences in SWR and especially in 

LWR are a bit larger at the surface because HRs are larger there (Figs. 2 and 3).  For 

the zonal means it is not easy to distinguish between the ocean and land. However, 

the differences seem to be larger over the mountainous Antarctica region (60º S to 90º 

S) as well as over the Northern Hemisphere mid-latitudes where the major mountains 

are located (such as those in Europe, Asia and North America).  

Fig. 4 shows a very close similarity in zonal and time mean 2-meter temperature for 

the parallel simulations (the upper panel) where their differences are within the -0.6 K 

to 0.3 K range (the bottom panel). 
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Fig. 2 Zonal and time mean LWR Heating Rates, in K/day, for the NN LWR run (the 

upper left panel), the control run (the upper right panel) and their difference (the 

bottom panel).   
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Fig. 3 Same as in Fig. 2 but for the SWR. 
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Fig. 4 Zonal and time mean 2-meter temperature, in K, for the full radiation NN and 

control runs (the upper panel) and their difference (the bottom panel). 
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Fig. 5 Zonal mean vertical distribution of time mean temperature, in K, for the full 

radiation NN run (the upper left panel), the control run (the upper right panel), and 

their difference or bias (the bottom panel). 
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The zonal and time mean vertical distributions of temperature for the parallel runs 

(Fig. 4) are close to each other and their difference or mean bias is practically zero, 

with minimum and maximal biases within ~ 2-2.5 K by magnitude. This larger zonal 

bias occurs in the stratosphere mostly over the Southern polar domain. However, it is 

comparable with typical observational and/or reanalysis errors/uncertainties (just as a 

reference) and also comparable with the differences between the NCEP and ECMWF 

reanalysis. 

Close similarities have also been obtained for the results of parallel runs in terms of 

time mean spatial fields such as 850 hPa temperature presented in Fig. 5. The 

horizontal fields presented in the upper and middle panels are close to each other.  For 

the difference field (the bottom panel), bias is negligible (-0.06 K), RMSE is small 

(0.34 K), and minimum and maximum values (~-1.6 K and ~0.9 K) are well within 

observational or reanalysis errors/uncertainties. 

In addition to global distributions such as shown in Fig. 5 it is important to assess the 

differences between the parallel simulations at a local (station) level, an example of 

which is presented in Fig. 6. The vertical distributions of time mean temperature are 

very close for both runs at the local level as well (Fig. 7). 

Now we compare the results of the parallel simulations in terms of temporal 

characteristics.  Fig. 8 shows the winter-summer differences for time mean 

temperature at 850 hPa.  Their patterns are practically indistinguishable and the 

minimum and maximum values are very close.  The global mean time series for time 

mean temperature at 850 hPa presented in Fig. 9 are very similar throughout the 

entire decadal simulations for the parallel runs, with only occasional small differences 
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(within 0.5 K) that are well below the observation and reanalysis errors.  The annual 

cycle for global mean temperature at 850 hPa is presented in Fig. 10.  It shows very 

small differences between the runs, with the maximum within 0.2 K for January.  The 

precipitation annual cycles shown on Fig. 11 are very close for both runs (the upper 

panels) and their differences or bias (the bottom panel) is quite small.   Close 

similarity has also been obtained for other model prognostic and diagnostic fields in 

term of their spatial and temporal characteristics.  

The results obtained confirm the profound similarity in parallel climate simulations, 

which justifies the possibility of using efficient neural network emulations of full 

model radiation for decadal and longer climate simulations as well as for weather 

prediction models.  The methodology developed can be applied to other LWR and 

SWR schemes used in a variety of models, process studies, and other applications.  
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Fig. 6 Time mean temperature at 850 hPa, in K, for the full radiation NN run (the 

upper panel), the control run (the middle panel), and their difference (the bottom 

panel). 
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Fig. 7 Vertical profile of time mean temperature, in K, at the Resolute, Canada 

station for the full radiation NN run (the dashed line), the control run (the solid line), 

and observations (the dotted line). 
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Fig. 8 Winter-summer difference for time mean temperature at 850 hPa, in K, for the 

full radiation NN run (the upper panel), and the control run (the bottom panel).   

  



 

 
 

52 
 

 

Fig. 9 Global mean time series for time mean temperature at 850 hPa, in K, for the 

full radiation NN run (the dotted line), and the control run (the  solid line). 
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Fig. 10 Annual cycle for global mean temperature at 850 hPa, in K, for the full 

radiation NN run (the dashed line), and the control run (the solid line). 
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Fig. 11 Annual cycle for precipitation, in mm/day, for the full radiation NN run (the 

upper left panel), the control run (the upper right panel), and their difference or bias 

(the bottom panel). 
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3.4.2 NCEP CFS 
 
As in the previous section 3.4.1 on the results of decadal NCAR CAM climate 

simulations we show in this section the differences between the decadal and seasonal 

parallel runs for NCEP CFS. To evaluate the NN induced changes, we compare them 

with such commonly used measures as observation errors or uncertainties of 

reanalysis.  We show that the differences are smaller than these quantitative 

measures.   

In order to emphasize how small the changes introduced by the use of NN emulations 

are, we also find it appropriate to use a measure derived from the model itself, 

namely, the model’s internal variability.  Because a GCM is an essentially nonlinear 

system, it may produce something like a “butterfly effect”, that is a significant 

reaction/response even to small perturbations in the model or in the model 

computational environment (e.g. routine changes in computer hardware, operational 

system, compilers, libraries, etc.). Any, even infinitesimal change in model 

formulation, initial conditions or computational environment makes two model 

integrations diverge, with the effect that after the deterministic predictability is lost 

(which takes just weeks for the atmosphere, although longer for the ocean), the timing 

and location of weather patterns becomes essentially independent for the two 

integrations. Hence the two runs provide, in essence, two independent samples of the 

model's climatology, and their difference represents the model's internal variability. 

Thus, we can state that the approximation error of NN emulation is negligible and, 

therefore, NN’s accuracy is sufficient for the use in the model if the 
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differences/changes introduced in the model results by using the NN emulation are of 

the same order of magnitude as the aforementioned model’s internal variability.   

To estimate the model’s internal variability, we ran two control runs with the original 

NCEP CFS model configuration, i.e., without NNs.  The first run was performed 

before and the second run after the routine changes (introduced quasi-regularly by 

system administrators) of the version of the FORTRAN compiler and libraries.  Small 

differences between these two runs (which are similar to those due to changes in a 

computer operation system and/or in hardware (Moorthi 2009)) are shown below 

together with the differences between the parallel NN and control runs for 

comparison purposes, as an additional measure of the NN emulation accuracy.  

Presenting model’s internal variability helps us to better evaluate the differences in 

climate simulations caused by using NN emulations for model radiation and to 

emphasize how small these differences are.   

 

3.4.2.1 Climate Simulations 
 

The results of 17-year (1990-2006) climate simulations performed with NN 

emulations for both LWR and SWR, i.e., for the full model radiation, have been 

validated against the parallel control NCEP CFS simulation using the original LWR 

and SWR.  We analyze the differences between the parallel runs in terms of spatial 

(global) means as well as temporal characteristics.  

 

Let us discuss first the differences between the parallel simulations in terms of spatial 

and temporal radiation characteristics.  The differences between the NN radiation and 
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control runs and the differences between two control runs for zonal and time mean 

LWR and SWR fluxes are presented in Fig. 12.  The upper row of Fig. 12 shows the 

differences for zonal and time mean top of atmosphere upward long (left panel) and 

short (right panel) wave fluxes (in W/m2) for winter.  The lower row of Fig. 12 shows 

the differences for zonal and time mean downward (left panel) and upward (right 

panel) surface long wave fluxes (in W/m2). For the fluxes presented in Fig. 12, both 

the differences between the NN radiation and control runs and the differences 

between two control runs are small and similar by magnitude. They do not exceed 2-3 

W/m2, i.e., they are within observational errors and uncertainties of reanalysis (e.g. 

Kalnay et al. 1996, Kistler et al. 2001).  The similarity of the differences by 

magnitude means that both the differences between the NN radiation and control runs 

are comparable with the model’s internal variability.  The HR differences are also 

very close in magnitude to (and do not exceed) the model’s internal variability.  

 

Let us discuss now prognostic and diagnostic characteristics such as SST, 

precipitation, different types of clouds, and time series that are potentially sensitive to 

changes in the model resulting from using NN emulations.  Close similarities have 

also been obtained for these results of parallel runs in terms of time mean spatial 

fields, which are presented in Figs. 13 to 17. These figures contain two columns: the 

left column shows results for winter (December-January-February) and the right 

column for summer (June-July-August). The upper raw panels (a) and (d) show fields 

produced by the full radiation NN run, the middle row panels (b) and (e) show mean 

errors/bias or the difference between the full radiation NN run and the control run 
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(CTL), NN-CTL, and the lower row panels (c) and (f) show the differences between 

two control runs (i.e., model’s internal variability), CTL1-CTL, presented for 

comparison. Notice that spatial (global) and time mean errors/biases and RSMEs are 

shown in the panel titles for NN-CTL and CTL1-CTL.   

The 17-year (1990-2006) time-mean SST distributions and bias/differences for the 

full radiation NN run vs. the control run and the differences between two control runs 

(model’s internal variability) are presented for summer and winter in Fig. 13.  The 

SST bias and RMSE for NN-CTL are very small; they are not larger than those of the 

model’s internal variability, CTL1-CTL. The time and global mean errors/biases are 

near zero and RMSEs are just a small fraction of K. The results for other two seasons 

(spring and fall) are similar. 

Fig. 14 shows the 17-year (1990-2006) time-mean distributions and bias/differences 

for total precipitation (PRATE) for the parallel full radiation NN and control runs for 

summer and winter, respectively.  The PRATE bias is quite limited and occurs mostly 

in the tropics; it is also very close in magnitude (as well as RMSE) and pattern to the 

model’s internal variability.  The results for other seasons are similar. 

 Figs. 15 to 17 show comparisons for the parallel full radiation NN and control runs 

for different types of clouds.  They present the 17-year (1990-2006) time-mean 

distributions and bias/differences of total clouds (Fig. 15), convective precipitation 

clouds (Fig. 16), and boundary layer clouds (Fig. 17) for summer and for winter. 

Clouds are very sensitive to any changes in the model and, therefore, provide a 

suitable and sensitive estimate of the accuracy of NN emulations.   
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For all types of clouds shown in Figs. 15 through 17, the cloud patterns and 

bias/differences for parallel total radiation NN and control runs are very close for 

both seasons presented.  The situation is similar for other seasons and types of clouds 

(such as low, mid, and upper level clouds).  The bias is very small and occurs mostly 

in the tropics.  It has the same magnitude (as well as RMSE) and pattern as the 

differences between two control runs or model’s internal variability shown for 

comparison. For all presented clouds the time and global mean errors/biases are near 

zero, just ~ 0 - 1%, and RMSEs are just ~1 – 2.5 %. 

 

Let us compare now the results of the parallel NN and control runs in terms of 

temporal characteristics.  The global mean time series for monthly means of the total 

precipitable water (PWAT), with the seasonal cycle subtracted, are presented in Fig. 

18.  The figure shows the 17-year (1990-2006) time series for the parallel full 

radiation NN run (the dash-dotted line) and for two control runs (the solid line for 

CTL and the dotted line for CTL1).  The time series for PWAT presented in Fig. 18 

for the parallel full radiation NN and the control run, CTL, show an overall similarity 

for the entire 17-year (1990-2006) period.  The differences between two control runs 

are similar but marginally larger. The total global and time means for PWAT are very 

close for the parallel runs: 25.48 mm/day for the control (CTL) run, 25.62 for another 

control (CTL1) run, and 25.64 mm/day for the NN run.   

 

Fig. 19 shows the 17-year (1990-2006) time series for the Nino3.4 index for the 

parallel full radiation NN and the two control runs.  The Nino3.4 index is calculated 
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over the small area in the equatorial Pacific Ocean shown by the black rectangle in 

Figs. 13 – 17.  The upper panel shows the Nino3.4 index calculated from reanalysis 

(CDAS), the control runs (the old control  – the second panel from the top, and the 

new control – the second panel from the bottom) and the full radiation NN run (the 

bottom panel). The time series for the Nino3.4 index are affected by a quite limited 

SST anomaly sampling for the relatively small area and are very sensitive to any 

changes in the model or in its computational environment as can be seen from Fig. 

19. The explanation for the different details of the Nino3.4 time series is that timing 

and magnitude of ENSO events is “chaotic” and subject to different phases of internal 

variability in the different runs. As can be seen from the standard deviation values 

included in Fig. 19, the model overestimates the ENSO variability compared with 

CDAS reanalysis.  The overall dissimilarity of the indexes or their deviation from 

CDAS is not larger than that of the two control runs from CDAS and from each other.  

 

Fig. 20 shows the 17-year (1990-2006) time series for global mean temperature at 850 

hPa for the parallel full radiation NN and the two control runs.  All three time series 

are close to each other; the differences do not exceed 0.5 K.  The small differences 

between the full radiation NN and control runs are of the same magnitude as those of 

between two control runs. 

The time-mean simulated products presented in Figs. 13-17 as well as other model 

simulated products show that biases and RMSE for the full radiation NN run are 

small, i.e., are overall within the observational errors or uncertainties of reanalysis, 

and are of a similar magnitude as the model’s internal variability.   



 

 
 

61 
 

 

Close similarity has also been obtained for other model prognostic and diagnostic 

fields in term of their spatial and temporal characteristics.   Summarizing, from the 

obtained validation results, we can conclude that the differences between decadal 

climate simulations produced by the parallel full radiation NN and control runs are 

overall within or less than the observation errors and uncertainties of reanalysis (e.g. 

Kalnay et al., 1996).  Moreover, these differences (both in terms of bias and RMSE) 

are of a similar magnitude as the model’s internal variability or the differences 

between two control runs, which are regularly introduced in climate models by 

routine changes in computer environment (like changes in hardware, operational 

system, and/or compilers).    
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Fig. 12  The upper row: zonal and time mean Top of Atmosphere Upward Long (left 

panel) and Short (right panel) Wave Fluxes (in W per m2) for the winter.  The solid 

line – the difference (the full radiation NN run – the control (CTL)), the dash line – 

the differences between two control runs presented for comparison. The lower row: 

zonal and time annual mean downward (left panel) and upward (right panel) Surface 

Long Wave Flux (in W/m2).  The fluxes’ differences are multiplied by cos (lat) to 

equalize the areas.   
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Fig. 13 The 17-year  (1990-2006) time-mean (NN run) SST distributions and 

bias/differences for winter (DJF: December-January-February, left column) and for 

summer (JJA: June-July-August, right column) for the full radiation NN run vs. the 

control run. The upper row panels show full radiation NN runs.  The middle row 

panels show bias or the difference (full radiation NN run – CTL). The lower row 

panels show the differences between two control runs shown for comparison.  The 

contour intervals for the SST fields are 5º K and for the SST bias and difference are 

0.3º K.  Numbers above the figures in the middle and lower rows show the global bias 

and RMSE.    
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Fig. 14. The same as in Fig. 13 but for total precipitation (PRATE).  The contour 

levels for the PRATE fields are 2, 4, 8, 16 and 32 mm/day. The contour intervals for 

the PRATE differences (the bottom panels) are 1 mm/day with 0 mm/day contour 

skipped for clarity. 
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Fig. 15 The same as in Fig. 14 but for total clouds. The contour intervals for the 

cloud fields are 20% and for the differences – 4% with 0 % contour skipped for 

clarity.  
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Fig. 16 The same as in Fig. 15 but for convective precipitation clouds. The contour 

intervals for the cloud fields are 10% and for the differences – 4%.  
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Fig. 17 The same as in Fig. 15 but for boundary layer clouds.  The contour levels for 

the cloud fields are 10, 20, 40, 60, 80 and 100 % and for the differences – 4%. 
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Fig. 18  The 17-year  (1990-2006) time series of the total precipitable water anomaly 

(PWAT), with the seasonal cycle subtracted, for the full radiation NN run (dash-

dotted line) and for two control runs, CTL (solid line) and CTL1 (dotted line). The 

mean PWAT anomaly is 25.48 mm/day for the control run (CTL), 25.62 for another 

control run (CTL1), and 25.64 mm/day for the NN run. 
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Fig. 19 The 17-year  (1990-2006) time series for the Nino3.4 index for the reanalysis 

(CDAS) (the upper panel), and for the parallel full radiation NN (the bottom panel) 

and two control runs (the middle panels) described.  The Nino3.4 index is calculated 

over the area in the Pacific Ocean shown by a rectangle in Figs. 13 – 17. 
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Fig. 20 The 17-year  (1990-2006) time series for global mean temperature at 850 

hPa (in K) for the parallel full radiation NN (solid line) and the old control 

(large-dashed line) and new control (short-dashed line) runs.  

  
 
3.4.2.2 Seasonal predictions 
 

We performed similar validation for seasonal predictions for 1990.  Basically, the 

results are similar to those presented above.  Fig. 21 shows biases or differences 

between the NN and control runs (NN-CTL) and differences between two control 

runs (CTL1-CTL) for seasonal predictions of SST, total clouds (clm CLD), total 

precipitation (PRATE), and convective clouds (cvl CLD).  
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Fig. 21   Biases or differences between the NN and control runs (NN-CTL) and 

differences between two control runs (CTL1-CTL) for seasonal predictions of 1990 

for: winter (DJF) SST - (a) and (b) panels, summer (JJA) total clouds (clm CLD) – 
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(c)  and (d) panels, total precipitation (PRATE) – (e) and (f) panels, and convective 

clouds (cvl CLD) – (g) and (h) panels. The contour intervals for the SST fields are 1º 

K, for PRATE – 2 mm/day, for total clouds – 10%, and for convective precipitation 

clouds – 5%.  

 

 

All the patterns for the control and NN runs (not shown) are quite close to each other.  

The differences between seasonal predictions produced by the parallel full radiation 

NN and control runs are slightly larger than the differences for climate simulations 

shown above in section 3.4.2.1.  It is partly due to a smaller sample used for seasonal 

predictions.  However, the differences/biases are still comparable with the 

observation errors and uncertainties of reanalysis.  The differences do not increase 

significantly from season one to season four.  For the seasonal predictions, biases or 

differences between the NN and control runs (NN-CTL) are close by magnitude and 

do not exceed the differences between the two control runs (CTL1-CTL) or model’s 

internal variability.  The time and global mean biases and RMSEs (shown in panel 

titles) are also quite small for NN-CTL and comparable with those of CTL1-CTL.  

 

The examples of seasonal predictions show overall reasonable results. We realize that 

for practical implementation seasonal predictions should be produced in an ensemble 

mode (typically, including several tens of ensemble members), to reduce the impacts 

of internal variability and to estimate forecast uncertainty. However, this kind of 
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testing is supposed to be done by the NCEP/EMC implementation group and goes 

beyond the scope of this study. 

 

 

3.5 Discussion 
 
The study has shown the practical possibility of using highly efficient NN emulations 

for the full model radiation block for decadal and seasonal climate simulations. A 

very high accuracy and increased speed of NN emulations for the NCAR CAM and 

NCEP CFS full radiation (LWR and SWR) has been achieved.  The systematic errors 

introduced by NN emulations of full model radiation are negligible and do not 

accumulate during the decadal model simulation.  The random errors of NN 

emulations are also small. Almost identical results have been obtained for the parallel 

climate and seasonal simulations.  These results show the potential of developing 

efficient NN emulations for model physics components and the entire model physics.  

 

Comparison of the results obtained for NCAR CAM and NCEP CFS show that our 

NN emulation approach works for the high resolution (T126L64) NCEP CFS as well 

as for the lower resolution (T42L26) NCAR CAM.  The NN emulation approach has 

already been applied to both LWR and SWR parameterizations and tested in different 

models with different dynamical cores and with different resolutions.   It is 

significantly less dependent (in terms of both the accuracy and speed-up of 

calculations) on the increase of vertical resolution than the NN approach introduced 

by Chevallier et al. (1998) for developing a NN based LWR parameterization 
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NeuroFlux.  At vertical resolution of 60 layers and more, both accuracy and rapidity 

of NeuroFlux cannot be achieved simultaneously (Morcrette et al. 2008).   As we 

demonstrated in this study, our NN emulation approach can achieve simultaneously 

both the desired high accuracy and significant speed-up at vertical resolution of 60 

layers and more.   

 

Applying the NN emulation approach, which allows us to achieve such a significant 

speed-up with preservation of the accuracy and functional integrity of model physics, 

may create some challenges that can be resolved using the tremendous flexibility of 

statistical learning techniques and of the NN technique in particular.  Because NN 

emulations are statistical approximations, there exists a small probability of larger 

approximation errors or outliers.  The major reason for obtaining larger errors is high 

dimensionality n of the input space of the mapping (1), which reaches several 

hundreds for NCEP CFS and may reach thousands for future models with 

significantly higher vertical resolution.  It is difficult to sample uniformly a domain in 

such a high dimensional space.  Far corners of the domain may remain 

underrepresented in the training set.  During the NN run, if input vectors belonging to 

these underrepresented far corners of the domain are encountered, they may cause 

larger errors in the NN outputs.  These larger errors can be successfully controlled 

using a compound parameterization technique with a quality control procedure for 

removing larger errors and/or using the NN ensemble approach with NN emulations 

which will be discussed in Chapters 6 and 7 of this dissertation respectively. 

 



 

 
 

75 
 

Because model vertical resolution determines the NN emulation architecture, i.e., the 

number of inputs and outputs, every time the vertical resolution of the model is 

changed (which is usually done quite rarely), the NN emulation needs to be retrained.  

It is noteworthy that NN retraining can be done routinely and takes a limited time and 

effort once the practical framework for a specific model is developed.   

 

In some applications of the developed NN emulation (in a data assimilation system or 

for an error and sensitivity analysis) not only NN emulation but also its first 

derivatives (NN Jacobian) are used.  High accuracy of NN emulation does not 

automatically guarantee the accuracy of the NN Jacobian.  An approach that allows to 

calculate accurately the NN Jacobian was developed by Krasnopolsky (2007b).  
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Chapter 4: Neural Network Emulation of Full Model Radiation: Short-to-
Medium Range Eight Days Forecasts with NCEP GFS. 
 
In this chapter we will explore the applicability of the NN emulation approach to 

short- to-medium range forecasts.  

4.1 Brief Description of the High Resolution Version of NCEP GFS 
 
In the in new set up the NCEP GFS configuration is run at the T574L64 resolution, 

uses prescribed time variable CO2, prescribed time variable aerosols and a new set of 

radiation parameterizations. The RRTMG-LW is used in the GFS and CFS model as a 

LWR parameterization.  It is based on the AER’s RRTM-LW v2.3 (Mlawer et al., 

1997, Iacono et al., 2000).  The SWR parameterization used in GFS and CFS is a 

modified version of AER’s RRTMG-SW (v2.3) (Clough et al., 2005).  Although both 

RRTMG-LW and RRTMG-SW are built with fast computation schemes designed for 

GCM applications, they still represent the most time-consuming part of model 

physics in the NCEP GFS model.  The percentage of the total model computation 

time used by model physics and by radiation (LWR and SWR) vary largely 

depending on the model horizontal and vertical resolution, the time step, the 

frequency of radiative calculations, and the computing environment (e.g. the number 

of processors and threads).  In our set up the portion of the radiation computation time 

is about 15-18% of the total model computation time. 
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4.2 NN Emulations for Full Model Radiation 
 
In the previous chapter when developing NN emulations for the radiation 

parameterizations of NCAR CAM, we followed a straightforward approach in 

selecting the emulating NN architecture.  Inputs and outputs of the emulating NN 

have been selected to be identical to the inputs and outputs of the radiation 

parameterization to be emulated.  For CAM, which has 26 vertical layers, the LWR 

emulating NN has 220 inputs and 33 outputs and the SWR emulating NN has 451 

inputs and 33 outputs.  If we followed this procedure for the NCEP model, which has 

64 vertical layers, the LWR emulating NN would have 585 inputs (7 profiles of 64 

components each + 2 profiles of 65 components each + 6 scalar variables), and the 

SWR emulating NN would have 3,277 inputs (49 profiles of 64 components each + 2 

profiles of 65 components each + 10 scalar variables).  However, even for this 

straightforward approach, the number of NN inputs is less than the number of input 

profiles multiplied by the number of vertical layers plus the number of relevant single 

level characteristics.  Many input variables have zero or constant values for the upper 

(e.g., water vapor) or lower (e.g., ozone) vertical layers, and for some gases the entire 

volume mixing ratio profile is a constant (obtained from climatological data).  To 

improve the accuracy of the approximation, these constant inputs should not be used 

for NN training.  Constant inputs (zero or nonzero) do not contribute to the functional 

input/output relationship and should not be used as inputs and/or outputs for NN 

emulations.  Moreover, if they were used, they would introduce an additional noise 
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(an approximation error).   Thus, 92 such constant inputs have been removed (see 

Table 4), which, in addition, significantly reduced the emulating NN dimensionalities.   

In terms of reducing the number of NN inputs, some input profiles contain a lot of 

redundancy that, if properly identified, can be used to reduce the input dimensionality 

(Krasnopolsky et al. 2009).  Some profiles depend on the vertical coordinate very 

smoothly.  Autocorrelation functions (ACF) for vertical profiles of some model 

variables are shown in Fig. 22.  ACF of a profile shows the correlation between 

adjacent components of the profile (between values of the corresponding variables at 

the adjacent model levels).  Slowly decreasing ACF (like those for pressure and 

temperature shown in black and red in Fig. 22) shows that the adjacent components of 

the profile are highly correlated and that redundant information is introduced if all of 

them are used as inputs for the emulating NN.  For such profiles a sampling can be 

applied to reduce the redundancy and dimensionality of the NN input vector.  For 

these profiles every other or even every third level can be selected as NN input.  For 

some other profiles (e.g., cloud fraction and cloud liquid path shown in pink and 

brown in Fig. 22) the corresponding ACFs decrease very quickly, which means that 

the redundancy for these variables is insignificant and the sampling should not be 

applied.  In the case of LWR and SWR NN emulation, for the pressure and 

temperature profiles we applied samplings shown in Table 4.  This procedure allowed 

us to eliminate 50 redundant NN inputs without any significant reduction in the 

approximation accuracy (see Table 5). 
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Table 4.  Inputs and outputs of LWR and SWR NNs developed for GFS 

LWR NN Inputs SWR NN Inputs 
NN input  NN input ## Levels NN input ## Levels 

 
1 - 1 - 

 
2 - 2 - 

 3 - 3 - 
 4 - 4 - 

Lat 5 - 5 - 
Interface pressure 6:28 1,2:2:42,43 6:28 1,2:2:42,43 

Interface temperature 29:64 1,2,3:2:61,62:65 29:64 1,2,3:2:61,62:65 
Layer H2O mixing ratio 65:104 1:40 65:104 1:40 

Layer O3 mixing ratio 105:138 31:64 105:138 31:64 
Layer total cloud 

fraction 
139:186 1:48 139:185 1:47 

Surface emissivity 187 - - - 
Cos of zenith angle - - 186 - 

Surface albedo - - 187:190 1:4 
Total Inputs 187  190  

LWR NN Outputs SWR NN Outputs 
NN output  NN output 

## 
Levels NN output 

## 
Levels 

Layer Heating Rates 1:64 1:64 1:64 1:64 
Total sky upward flux at 

toa 
65 - 65 - 

Clear sky upward flux at 
toa 

66 - 66 - 

Total sky downward flux 
at toa 

  67 - 

Total sky upward flux at 
sfc 

67 - 68 - 

Clear sky upward flux at 
sfc 

68 - 69 - 

Total sky downward flux 
at sfc 

69 - 70 - 

Clear sky downward flux 
at sfc 

70 - 71 - 

Total sky downward uv-b 
flux at sfc 

- - 72 - 

Clear sky downward uv-b 
flux at sfc 

- - 73 - 

Total Outputs 70  73  
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Fig. 22 Autocorrelation function for several NN input profiles. The horizontal axis 

shows the correlation and the vertical axis – the lag in vertical levels. Curves have 

different length for different input parameter profiles because the profiles have 

different number of nonzero components. 

 
Also, for SWR, 2688 inputs describing the optical depth, single scattering albedo, and 

asymmetry parameters of 14 aerosol species were substituted by five inputs: cos(τ), 
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sin(τ), cos(lon), sin(lon), and lat, where lon is the longitude, lat is the latitude, and 

, where q is the month of the year, and T = 12. Such a substitution is 

possible because in NCEP CFS and GFS aerosol model aerosols are calculated using 

the specific humidity profiles and 3-D lookup tables composed of climatological 

monthly data, different for different months of the year.  It means that in terms of 

functional input/output dependences, the aerosol characteristics are the functions of 

lat, lon, τ, and the specific humidity only. Since the profile of the specific humidity 

has been already included in NN SWR inputs, only the five aforementioned 

additional variables have to be included to allow NN to completely emulate the 

contribution of aerosols into SWR.  Thus, the SWR emulating NN emulates both the 

aerosol model and SWR.  

In this work we generalized this approach to reduce even more the size of the SWR 

and LWR emulating NNs.  Both SWR and LWR use, in addition to the cloud fraction 

profile, four other cloud characteristic profiles: layer cloud liquid water path 

(LCLWP), layer mean effective radius for liquid droplet (LMERLD), layer cloud ice 

water path (LCIWP), and mean effective radius for ice cloud (MERIC).  These four 

profiles are calculated in microphysics block using models (equations) that use the 

specific humidity and atmospheric temperature profiles (Moorthi et al. 2001).  Since 

the profiles of the specific humidity and atmospheric temperature have been already 

included as inputs in NNs emulating SWR and LWR, and the four aforementioned 

profiles are correlated with the cloud fraction profile, the emulating NNs are capable 

of emulating the part of microphysics that calculate these four additional profiles also.  

Thus, we excluded these four profiles from SWR and LWR NN inputs (totally 256 
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inputs have been eliminated).  As a result, the developed LWR emulating NN 

emulates actually, in addition to LWR parameterization, the cloud microphysics 

calculations of LCLWP, LMERLD, LCIWP, and MERIC. The developed SWR NN 

emulation emulates actually SWR parameterization, cloud microphysics, and aerosol 

model. 

Table 5. Statistics estimating the accuracy of HRs (in K/day) calculations and the 

computational performance for NCEP GFS (T574L64) LWR and SWR using NN 

emulation vs. the original parameterization.  For comparison, NCEP CFS (T126L64) 

LWR and SWR statistics are also shown.  Total statistics show the mean error or bias, 

RMSE , PRMSE, and σPRMSE for the entire 3-D HR fields.  Layer (for the top and 

bottom layers) statistics show the mean error and RMSE  for one horizontal layer (the 

top or bottom layer).  The NN complexity NC and average speedup η are shown.   

 Statistics GFS 
RRTMG-LW 

CFS 
RRTMG-LW 

GFS 
RRTMG-SW 

CFS 
RRTMG-SW 

Total 

Error 

Statistics 

Bias, eq. (A1) 8. · 10-3 2. · 10-3 -7. · 10-3 5. · 10-3 

RMSE, eq. (A1) 0.52 0.49 0.26 0.20 

PRMSE, eq. (A1) 0.38 0.39 0.18 0.16 

σPRMSE, eq. (1) 0.36 0.31 0.19 0.12 

Bottom 

Layer 

Error 

Statistics 

Bias, eq. (1) 2. · 10-2 -1. · 10-2 -3.· 10-2 9.· 10-3 

RMSE, eq. (1) 0.55 0.64 0.20 0.22 

Top Layer 

Error 

Statistics 

Bias, eq. (1) 5. · 10-2 -9 · 10-3 -1. · 10-3 1. · 10-2 

RMSE, eq. (1) 0.13 0.18 0.13 0.21 

NN 
Complexity 

NC 
See eq. (1) 

25,870 
 

33,294 
 

26,473 
 

45,173 
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Speedup, η Times 20 16 100  80 

 

The GFS model with the original LWR and SWR parameterizations have been used 

to simulate data for NN training and test. The data set was composed of 24 ten day 

forecasts started each first and fifteenth day of the month during one year (2010).  All 

inputs and outputs of the original LWR and SWR parameterization have been saved 

over the globe eight times per day (every three hours) during each day of each ten day 

forecast.  Thus 1920 global data sets have been generated for NCEP GFS.    About 

300 data records have been randomly selected from each global data set.  The 

collected set of about 600,000 input/output radiation vectors was divided into three 

independent parts, each containing about 200,000 input/output vector combinations 

(records).  The first part was used for training, the second – for validation (control of 

overfitting, control of a NN architecture, etc.), and the third part – for testing the 

approximation quality only.   

A number of NNs has been trained using the training set described above.  The 

developed NN emulations use from 60 to 150 neurons in one hidden layer and have 

the same inputs and outputs presented in Table 4.  Then bulk validation statistics for 

the accuracy of approximation and computational performance for the developed NNs 

emulations have been estimated on independent data set.  LWR and SWR NNs with 

100 hidden neurons have been selected for testing in GFS.  The accuracy of the 

selected NN emulations has been estimated against the original GFS radiation 

parameterizations; the statistics are presented in Table 5. For these NN emulations, 

bias is negligible (about 10-3 K/day) and RMSE is limited (about 0.3 – 0.5 K/day).  
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Obtaining very small NN emulation biases is important to ensure non-accumulating 

errors in the course of model integrations using NN emulations.  The NN emulations 

developed for GFS are smaller and faster than those developed previously for CFS 

(see Chapter 3 for description).  However, as seen in Table 5, they are as accurate as 

CFS LWR and SWR NNs.  The developed highly accurate NN emulations for LWR 

and SWR, in terms of code-by-code comparison at each model time step when LWR 

and SWR are calculated, are about 20 and 100 times faster than the original/control 

NCEP GFS LWR and SWR respectively.  

4.3 Validation of Parallel Eight Day Model Forecasts 
 
 
As the next step, the developed LWR and SWR NN emulations were validated in 

GFS model integrations.  The LWR and SWR emulations with 100 neurons have 

been selected for an initial validation because they seem to be acceptable in terms of 

both their accuracy and minimal complexity (see the previous section).  Several 8-day 

forecasts have been run using the GFS model (T574L64, 2011 version).  Here we 

present results for three runs performed from August 1 to August 8, 2010.  This 

period was selected for a validation run because there were several atmospheric 

events during this time: 

1. Tropical storm Colin moved through the western Atlantic to Bermuda from 

August 2 to 8, 2010. 

2. In the Eastern Pacific tropical storm Estelle moved from the coast of 

Mexico to about 400 miles southwest of Baja California from Aug 6 to 10, 2010. 

3. Tropical storm Domeng occurred in the Western Pacific to the north east of 
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the Philippines from August 3 to 5, 2010. 

 

Three parallel runs have been performed:  

1. Control run labeled as PRNNCTL (black) in the figures, which uses the 

original radiation codes;  

2. Run labeled as PRNNFULLGFS (red) that uses LWR NN and SWR NN 

developed for GFS using GFS (T574L64) simulated data (see above); and  

3.  Run labeled as PRNNFULLCFS (green) that uses LWR NN and SWR NN 

developed for CFS (see Chapter 3) using CFS data simulated by an old 

(T126L64) version of atmospheric model (see below).   

It is noteworthy that NCEP CFS used for development and validation of CFS NN 

radiation (see Chapter 3) incorporated: the NCEP GFS (model version from 2006) 

atmospheric model with 126 spectral components and 64 vertical levels (T126L64) 

coupled with the 40-level interactive MOM4 ocean model, the interactive Noah land 

model with four soil levels with improved treatment of snow and frozen soil, an 

interactive sea ice model with fractional ice cover and depth allowed, a sub-grid scale 

mountain blocking, and a seasonal climatological aerosol treatment.  The CFS NN 

radiation has been developed based on data set accumulated during 17 years of 

continuous CFS run.  The GFS NN radiation presented in this chapter  has been 

developed based on 24 ten day forecasts produced by high resolution T574L64 

(model version from 2011) GFS (uncoupled atmospheric part of CFS), which, in 

addition to much higher spectral resolution, incorporates many changes in physics 

and other model components as compared with the version of CFS, for which the 
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CFS NN radiation has been developed.  Thus, the CFS NN radiation has not been 

trained and validated for a significantly different model environment of the current 

version of GFS.  In one of the GFS runs presented below we use this old CFS NN 

radiation in the new T574L64 GFS.  Comparing results of this run with the control 

run and with the GFS run using new GFS NN radiation developed for the current 

version of GFS allows us to evaluate robustness of the NN emulation approach with 

respect to the changes in the model.   

 

Figures 23 to 31 present various statistics (anomaly correlations, biases, and RMS 

errors) routinely used for evaluation and comparison of GFS runs. The comparisons 

of anomaly correlations, biases, and RMS errors have been performed for 

instantaneous model prognostic and diagnostic fields produced at each day of the 8-

day forecasts.  The NN radiation and control runs are very close in terms of calculated 

statistics.  

For example, Fig. 23 shows the anomaly correlation calculated at 850 mb and 500 mb 

(left and right column respectively) for the temperature field.  The upper and lower 

rows show results for the northern and southern hemispheres correspondingly.  The 

middle row shows results for the tropics.   Fig. 24 shows the anomaly correlation 

calculated for the geopotential height field for the 500 mb level and Fig. 25 shows the 

anomaly correlation calculated for the surface pressure field for the northern 

hemisphere (upper row), tropics (medium row), and southern hemisphere (lower row) 

correspondingly.   
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Fig. 23 Anomaly correlation at 850 mb (left column) and 500 mb (right column) for 

the northern hemisphere (upper row), tropics (medium row), and southern 

hemisphere (lower row) calculated for temperature fields.  Black line – control run 

with the original LWR and SWR (PRNNCTL); green line – run with NN SWR and 

LWR developed for CFS (PRNNCFS); and red line – run with NN SWR and LWR 

developed for the current version of GFS (PRNNGFS). 
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Fig. 24 Anomaly correlation at 500 mb for the northern hemisphere (upper row), 

tropics (medium row), and southern hemisphere (lower row) calculated for 

geopotential height fields.  Black line – control run with the original LWR and SWR 

(PRNNCTL); green line – run with NN SWR and LWR developed for CFS 
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(PRNNCFS); and red line – run with NN SWR and LWR developed for the current 

version of GFS (PRNNGFS). 

 

Fig. 25 Anomaly correlation calculated for the surface layer pressure fields.  See 

caption to Fig. 24. 
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Fig.26 Temperature bias calculated for the northern hemisphere as a function of the 

forecast time (horizontal axis) and height in mb (vertical axis) for the control run, 

PRNNCTL (upper left), for PRNNCFS (upper right), and for PRNNGFS (lower left).  

Lower right shows the bias at 200 mb level: black line – control run (PRNNCTL); 

green line – PRNNCFS run; and red line – PRNNGFS run. 
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Fig.27 The same as in Fig. 26 calculated for the tropics.  
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Fig.28 The same as in Fig. 26 calculated for the southern hemisphere. 
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The differences between NN runs and control run increase from day one to day eight 

but are remaining small.  As could be expected, the PRNNGFS run (red) closer 

follows the control run (black) than the PRNNCFS run (green).   

The CFS LWR and SWR NNs have been transplanted into new significantly different 

version of GFS.  Relatively small difference between the PRNNGFS (red) and 

PRNNCFS (green) runs demonstrates the robustness of the NN emulation approach 

with respect to changes in the model environment. 

Figs. 26 to 28 show the temperature bias calculated for the northern hemisphere (Fig. 

26), for the tropics (Fig. 27), and the northern hemisphere (Fig. 28) as functions of the 

forecast time (horizontal axis) and height in mb (vertical axis).  The upper left panel 

shows bias for the control run, the upper right – for PRNNCFS run, and the lower left 

– for PRNNGFS run.  The lower right panel shows the cross-section of the three other 

panels at 200 mb.   

 

Figs. 29 to 31 show the vector wind RMS errors and differences calculated for the 

northern hemisphere (Fig. 29), for the tropics (Fig 30), and the southern hemisphere 

(Fig. 31) as functions of the forecast time (horizontal axis) and height in mb (vertical 

axis).  The upper left panel shows the RMS error for the control run, the upper right – 

the RMS differences for (PRNNCFS – control) run, and the lower left – for 

(PRNNGFS – control) run.  The lower right panel shows the cross-section of the RMS 

errors for the three runs at 200 mb.   
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Fig.29 Vector wind RMSE calculated for the northern hemisphere as a function of the 

forecast time (horizontal axis) and height in mb (vertical axis) for the control run, 

PRNNCTL (upper left), for (PRNNCFS  – PRNNCTL) (upper right), and for 

(PRNNGFS – PRNNCTL) (lower left).  Lower right shows the RMSE at 200 mb level: 

black line – control run (PRNNCTL); green line – PRNNCFS run; and red line – 

PRNNGFS run. 
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Fig.30 The same as in Fig. 29 calculated for the tropics.  
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Fig.31 The same as in Fig. 29 calculated for the southern hemisphere. 
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4.4 Discussion 
 
The results presented in this section show that the developed NN radiation is very 

accurate; the PRNNGFS run closely follows the control run, PRNNCTL.   The 

differences between the PRNNGFS and control forecasts increase slowly with the 

forecast time (Figs. 23 to 31); however, in many cases PRNNGFS demonstrates 

slightly better results (higher anomaly correlation, lower bias and RMSE) at longer 

forecast times.   

 

The additional PRNNCFS run allowed us to evaluate the robustness of the NN 

radiation and the NN emulation approach in general with respect to the changes in the 

model. The comparison of three runs (control, PRNNGFS, and PRNNCFS) 

demonstrated small differences between them, which shows high level of robustness 

of the developed NN radiation with respect to changes in the model environment.  It 

shows that the developed NN radiation (CFS NN radiation) survived the 

transplantation from an old version of coupled model (CFS) to the newest version of 

uncoupled GFS.  It also survived about 5 years of constant model evolution resulted 

in many changes in other than radiation physics parts of the model.  After all these 

changes were made for the model, PRNNCFS still produces reasonable results 

comparable with those of PRNNGFS.  This is a very important practical result, which 

shows that the NN radiation does not require frequent updates and may work in the 

model, if it is not changed very significantly, for many years without retraining.  Of 

course, when the original radiation parameterization or the vertical resolution of the 
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model is changed, the NN radiation has to be retrained. 

 

In addition to high accuracy, the developed NN GFS radiation is very fast.  The high 

speed of NN radiation calculations can be used in several different ways: 

1. The original radiation LW and SW parameterization can be simply substituted 

by the NN radiation and the NN radiation can be calculated in the model at the 

same frequency (once per hour).  This is the least efficient use of the NN 

radiation, which provides a significant speedup of the total model integration 

of about 15-18%. 

2. The GFS NN LWR is 20 times faster and NN SWR is 100 times faster than 

the original parameterization.  This very significant speed up can be used to 

calculate radiation more frequently than once per hour (actually it can be 

calculated at each integration time step).  Such a run will take as much time as 

the current run (with once per hour frequency of radiation calculations).  In 

this case, the model run with the NN radiation would be many times faster 

than that with original parameterization calculated with the same frequency.  

Also in this case, in addition to a significant speedup, improvements in the 

quality of the forecast could be expected due to improvements in the 

radiation-cloud interaction. 

3. The developed NN emulation approach can be used to emulate more advanced 

and time consuming radiation parameterization, which currently cannot be 

afforded in GFS.  For example, NN emulation could be developed for the 

newest RRTM-McICA (Monte Carlo independent column approximation) 
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radiation, the most sophisticated but slowest version of RRTM radiation.  In 

this case, use of the NN emulation approach could lead to improvements in 

model radiation physics and in the quality of the forecast.    

    

It is noteworthy that in addition to the speedup of radiation calculations, the use of the 

NN radiation provides an additional significant advantage as compared to the use of 

the original parameterizations, namely it helps to achieve a significantly better load 

balance (Krasnopolsky et al 2010).  The radiative transfer calculations take different 

time under different cloud conditions because of the different complexity of cloud-

radiation interaction.  For a more complex cloud-radiation interaction (deep 

convection) the calculation of the original LWR and SWR parameterizations takes 

~22% and ~57% more time respectively than for clear sky conditions. Obviously, the 

time of the NN radiation calculations does not depend on the cloud conditions.   

 

Thus the results presented in this section demonstrate the first successful step in 

evaluating NN radiation in GFS.  Building upon these initial results, the further steps 

(by NCEP/EMC) may include:   

1. More comprehensive tests in a longer series of 10-day forecasts.   

2. Evaluation of the NN radiation in parallel runs with more frequent radiation 

calculations.  

 

Also refinement of NN emulations for the GFS model based on longer training set, 

implementation of the concept of a compound parameterization including a quality 



 

 
 

100 
 

control procedure, and the NN ensemble approach (see chapters 6 and 7) will be 

introduced.   
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Chapter 5: Investigation of Other Approaches to Emulation of Model Physics: 
Tree Approximation of the Long Wave Radiation Parameterization in the 
NCAR CAM 

 

5.1. Motivation 
 
While artificial neural networks can be considered the current state-of-the-art black 

box methodology for a wide range of high-dimensional approximation problems, and 

justifiably so, they may not necessarily be the best solution for the application 

considered in this dissertation. The accuracy of neural network emulations depends 

on the number of layers and hidden neurons employed. While it is known that neural 

networks are universal approximators, i.e., they can approximate any continuous 

functions to any predetermined accuracy (see for instance Hornik (1989) and DeVore 

et al (1997)), this is achieved only by allowing the number of neurons to increase 

arbitrarily. Also, the learning of the network parameters (weights) requires the 

solution of a large, non-linear optimization problem, which is prone to deliver sub-

optimal solutions. 

While the application of neural networks to the problem of learning parameterizations 

has produced excellent results, it is not without limitations. Foremost among these is 

that the neurons have large support (a half space in ) and their superposition is a 

complex nonorthogonal expansion. This makes capturing of local or multiscale 

phenomena difficult. In our use of NN emulations in parameterization computation, 

we also notice that NNs can sometimes exhibit larger errors (with small probability) 

even for a good sampling. Thus, although both the systematic and the random errors 

are very small, there exists a very small probability of larger errors which needs to be 

nℜ
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avoided (an approach to solution of this problem in terms of neural networks is 

described in the Chapter 6). 

Additionally, the approximation is trained by a data set that consists of evaluations of 

the original parameterization gained during a reference run of the climate model. The 

inputs of this training data set, therefore, cover the physical states observed during a 

certain time period of climate history. However, the domain in which the 

parameterization is to be evaluated may change with time as in the case of climate 

change. In such situations the approximation may be forced to extrapolate beyond its 

generalization ability, which may lead to large errors. In this case it could become 

necessary to re-train the emulation in order to adapt it to the new environment. 

This brings into question whether NNs are the ultimate SLT solution to numerically 

emulating parameterizations. Indeed, since our goal is to capture subtle multiscale 

phenomena, a more application oriented, responsive, and adaptive learning method 

could be useful. Working against us is the fact that our learning problems lie in high 

space dimension where computational issues are compelling. 

High dimensional problems occur in many other learning settings and much attention 

has been given to the area. The main approaches are kernel methods, support vector 

machines (a special case being NN), and nearest neighbor algorithms (see 

Shakhnarovich et al., 2006 for general references). Each approach has tradeoffs. The 

advantage of NNs and kernel methods is that they can be implemented in high 

dimensions without meshing or splitting up of the domain of the approximated 

mapping into sub-domains.  Their disadvantage is twofold. Firstly, they are not local 

by which we mean the building blocks are not locally supported functions. This 
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means that local features are reflected in many or all terms of the function 

expansions. This is analogous to Fourier methods. (One of the great advances of the 

last decades in image processing has been to replace Fourier methods by the more 

local wavelet methods.) A second disadvantage is that they do not include adaptivity. 

For example, if the function F to be learned is known to have regions of smoothness 

and regions of singularities then the methods do not adapt to such features. Nearest 

neighbor methods have a local flavor but they are typically not implemented 

adaptively. In other words, the rules for identifying nearest neighbors do not take into 

account the variability in the underlying function (which will be reflected in the data). 

Nevertheless this approach would be closest to the methods we wish to employ. The 

severe obstructions encountered when dealing with problems in high spatial 

dimensions is often called the curse of dimensionality. 

In this chapter we will use an alternative to neural networks within the class of non-

parametric approximation methods. We restrict ourselves to basic design decisions 

and discuss the features of two common statistical learning paradigms, (approximate) 

nearest neighbors and regression trees. 

5.2 Description of Algorithms 
 

In order to keep this chapter self-contained we give a concise description of the non- 

parametric algorithms that will be used in the following numerical experiments.  

5.2.1 Approximate Nearest Neighbors 
 
Non-parametric learning methods typically try to partition the input space and then 

use simple local models like piecewise constants to approximate the data. In the case 
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of nearest neighbor methods, the input space is implicitly partitioned by the way the 

training data is distributed: the approximation is constant for query points that have 

the same set of nearest neighbors. Unfortunately in high dimensions there are no fast 

algorithms which could answer the question “what are the nearest neighbors to a 

given query point x?” Therefore one must be content with approximate answers to 

this question.  Here, assuming that all the training data is available beforehand, the 

input domain is recursively partitioned depending on the distribution of the input 

points. 

The k-nearest neighbor method works as follows: one defines a metric ∥·∥ on the 

input space and given a query point x finds a permutation i → in in of the training data 

such that 

                           

for all p > k.  Then, one averages the function values corresponding to these nearest 

neighbors 

 

to define an approximation of f(x). Unfortunately, it is well known that in very high 

dimensions it is not possible to design fast algorithms that provide the permutation 

sought. Instead one relaxes the search and is content with an algorithm that returns 

points x
in such that 

 

are that they might become computationally more expensive and can potentially re-
turn unrealistic profiles, because they may not properly represent the correlations be-
tween components of the profile vector. These correlations are naturally represented
by vector-wise approximation.

3 Description of Algorithms

In order to keep this paper self-contained we give a concise description of the non-
parametric algorithms that we will consider in the following numerical experiments.
Thereby, we discuss the nearest neighbor and regression trees only very briefly, because
they are well established and comprehensively discussed in the literature. We give a
more comprehensive account of the sparse occupancy trees, because, as explained in the
introduction, they are new and have been developed specifically for this application.

3.1 (Approximate) Nearest Neighbors

3.1.1 Basic Concepts

The k-nearest neighbor method works as follows: one defines a metric � ·� on the input
space and given a query point x finds a permutation i → in of the training data such
that

�xi1 − x� ≤ �xi2 − x� ≤ . . . ≤ �xik − x� ≤ �xip − x�

for all p > k. Then, one averages the function values corresponding to these nearest
neighbors

f̃(x) =
k�

n=1

yin .

to define an approximation of f(x). Unfortunately, it is well known that in very high
dimensions it is not possible to design fast algorithms that provide the permutation
sought. Instead one relaxes the search and is content with an algorithm that returns
points x̄in such that

�x̄in − x� < (1 + ε)�xin − x�.

There are algorithms based on kd-trees or bd-trees that provide a fast answer to this
relaxed problem, if ε is chosen large enough. An introduction to this topics can be
found in [Wen05].

3.1.2 Data Scaling

The central point in the above description is, of course, how to define the metric � · �
on the input space. This is a non-trivial task because the input vectors include several
physical quantities measured in different units and are varying over several orders of
magnitude. A trivial method to equilibrate the various input quantities is to compute
the maximum and minimum of each parameter in the training data set and to then
scale this each component of the input vector individually to the interval [0, 1]. Then,
one uses the standard Euclidian norm on [0, 1]d to measure the distances. Another
self-evident idea is to scale the variables belonging to the same profile with the same
factors. Numerical experiments showed that the second type of scaling yields better
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points x̄in such that

�x̄in − x� < (1 + ε)�xin − x�.

There are algorithms based on kd-trees or bd-trees that provide a fast answer to this
relaxed problem, if ε is chosen large enough. An introduction to this topics can be
found in [Wen05].

3.1.2 Data Scaling

The central point in the above description is, of course, how to define the metric � · �
on the input space. This is a non-trivial task because the input vectors include several
physical quantities measured in different units and are varying over several orders of
magnitude. A trivial method to equilibrate the various input quantities is to compute
the maximum and minimum of each parameter in the training data set and to then
scale this each component of the input vector individually to the interval [0, 1]. Then,
one uses the standard Euclidian norm on [0, 1]d to measure the distances. Another
self-evident idea is to scale the variables belonging to the same profile with the same
factors. Numerical experiments showed that the second type of scaling yields better
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physical quantities measured in different units and are varying over several orders of
magnitude. A trivial method to equilibrate the various input quantities is to compute
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scale this each component of the input vector individually to the interval [0, 1]. Then,
one uses the standard Euclidian norm on [0, 1]d to measure the distances. Another
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There are algorithms based on kd-trees or bd-trees that provide a fast answer to this 

relaxed problem, if ε is chosen large enough. An introduction to this topics can be 

found in Wendland (2005). 

The central point in the above description is, of course, how to define the metric ∥ · ∥ 

on the input space. This is a non-trivial task because the input vectors include several 

physical quantities measured in different units and are varying over several orders of 

magnitude. A trivial method to equilibrate the various input quantities is to compute 

the maximum and minimum of each parameter in the training data set and to then 

scale this each component of the input vector individually to the interval [0, 1]. Then, 

one uses the standard Euclidian norm on [0,1]d to measure the distances. Another 

self-evident idea is to scale the variables belonging to the same profile with the same 

factors. Numerical experiments showed that the second type of scaling yields better 

results. Therefore, we use this scaling in the following experiments. Adaptive nearest 

neighbor methods try to learn a problem dependent metric from the data, but we have 

not pursued this approach any further, because the data seems to be too sparse to 

define local metrics reliably for this application. 

 

5.2.2 Regression Trees 
 
Regression trees follow a more adaptive approach and also use the y-values in order 

to define the domain partition. Here, starting with the entire input domain, the cells in 

the partition are recursively subdivided such that the residual of the resulting 

approximation is minimized in each step. Obviously, due to their recursive definition, 

none of these techniques is available for incremental learning without modification: a 
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new data point could theoretically change the decision how to perform the first split 

in the tree, which would require relearning the tree from the very beginning.  

 
The most basic algorithm for the generation of regression trees is the Classification 

and Regression Tree (CART) algorithm intensively analyzed in Breiman et al (1984). 

It can be summarized as follows: we initialize the partition P = {Ω} where 

! = [ai,bi ]
i=1

d

"  is a hyper-rectangle that contains all the training points and d is the 

dimension of the input space. Then, each hyper-rectangle in the partition that contains 

more than a given number m of data points is recursively subdivided along a 

hyperplane xi = c, where i ∈ {1,...,d} and c ∈ [ai,bi] is chosen such that the RMSE of 

the best piecewise constant approximation on the refined partition is minimized. That 

is, the regression function assumes the average value of all the points in a given 

hyper-rectangle of the partition. This is a reasonably efficient algorithm that can be 

used for a wide range of classification and regression problems. It also has the 

advantage that it is independent of the scaling of the data. 

The Random Forests algorithm by Breiman (2001) averages the response of a given 

number T of CART trees. Hereby, before each subdivision step in the generation of 

the CART trees, the algorithm chooses a random subset of size P of the input 

parameters (typically about one third of all input parameters) along which the cell is 

allowed to be subdivided. This ensures that each single CART trees generates 

different partitions of the domain. Random Forest approximations are relatively 

smooth due to the averaging process. Random Forests are generally considered to be 

one of the best available black-box non-parametric regression methods. 
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5.3 Numerical Experiments 
 

In this section we present the results of three groups of numerical experiments. In the 

first two subsections, the sets of training data and test data each contain 196,608 data 

samples collected during a reference climate simulation for the years 1961–1962 

using the original parameterization. In the first subsection we compare the regression 

trees with the benchmark neural network approximation. Note that this comparison 

tends to overestimate the advantages of the neural network. First of all, it does not 

reflect the training time, which is about a week for the neural network, but only 

between a few seconds and less than a few hours for the tree-based methods. Second, 

whereas the neural network would profit only slightly from taking more training data 

(its accuracy is basically limited by the number of neurons), the non-parametric 

methods benefits significantly from allowing more data, and limiting the training data 

size is artificial and unnecessary. Nevertheless, we perform the comparison in this 

form, because it’s the same training data we will use for the experiment in the 

subsection 5.4 where we have to comply with memory limitations. As it turns out, 

nearest neighbor methods and sparse occupancy trees do not deliver competitive 

accuracy, if applied naively, but their performance can be enhanced by dimension 

reduction.  

In Figure 32 we see the RMSE profiles (left) and the bias profiles (right) for the 

following methods: 

1. The benchmark neural network emulation (blue line) 
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2. The approximate nearest neighbor approximation (ANN, with k = 5, ε = 1, red 

line), where we used the profile-wise input scaling. 

3. A single vector-valued regression tree (CARTV, cyan line). 

4. One regression tree for each output component individually (CARTC, 

magenta line). 

5. A vector-valued Random Forest approximation (RFV, T = 20, P = 80, green 

line), and 

6. An approximation where we compute a Random Forest (RFC, T = 20, P = 80, 

black line) for each component individually. 

In Table 6 we also give the total RMSEs and bias for all these methods.  

 

Table 6: Total RMSE and absolute value of total bias for emulation with neural 

network, approximate nearest neighbors, CART and Random Forests applied to the 

whole vector or component-wise. Training and test data each consist of 196,608 

evaluations of the original parameterization. 

Method RMSE (J/kg/s) Bias (J/ks/s)

Neural Net 3.94836 · 10−3 3.11643 · 10−6

ANN 7.26535 · 10−3 2.70421 · 10−5

CARTV 8.17753 · 10−3 1.27022 · 10−5

CARTC 5.54573 · 10−3 1.26559 · 10−6

RFV(20,80) 4.75692 · 10−3 6.08371 · 10−6

RFC(20,80) 3.27711 · 10−3 3.99269 · 10−7

Table 1: Total RMSE and absolute value of total bias for emulation with neural network,
approximate nearest neighbors, CART and Random Forests applied to the whole vector or
componentwise. Training and test data each consist of 196,608 evaluations of the original
parameterization.

AMD-Opteron processor) on a standard PC. However, due to its storage require-
ments (26·20 = 520 trees have to be computed) this result is not of great practical
interest. The two practical competitors are the CARTC and the RFV emulations,
which use 26 trees (one for each component) or 20 trees, respectively. RFV seems
to be a little bit more accurate, but CARTC has a lower bias, for the reasons
we already exposed in Section 2.4. To demonstrate the latter point we show in
Figure 3 scatterplots for both emulations. The component-wise CART approx-
imation clearly has a higher variance in layer 26, but delivers good, unbiased
approximation in layer 9.

3. Notice that except for the somewhat inaccurate nearest neighbor approximation,
the neural network approximation exhibits the most biased approximation.

Finally, in Figure 4 we show the emulated heating rates for three representative
profiles in order to compare the vector-valued random forest and the componentwise
CART approximation. In general CART very accurately follows the profile of the
original parameterization. However, in extraordinary cases it can overshoot, which is
most noticeable in the third graph. The random forest approximation has the tendency
to flatten out the original profiles but does not produce extreme outliers.

4.2 Performance of the Sparse Occupancy Trees

In the previous section we have shown that the nearest neighbor method is not as
accurate as the benchmark neural network. This result is inherited by the sparse
occupancy schemes which, as explained in Section 3, are conceptually similar and do
not improve on the nearest neighbor approximation, but rather try to mimic it with
data structures that allow faster processing of large, incrementally growing data sets.
This is confirmed by the numbers given in Table 2, which, in particular, shows how
increasing the number of random shifts converges towards the quality of the original
nearest neighbor approximation.

The reason for the unsatisfactory results of both the piecewise constant simplex
and the piecewise linear vertex algorithm is revealed in Table 3, which shows the level
of resolution at which the test queries are evaluated. In the case of the simplex scheme
almost all the evaluations take place on level 0, which indeed means that most of
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Figure 32: Comparison of neural network, approximate nearest neighbor, and 

several regression tree emulations. Left: layer-wise root mean square errors. Right: 

layer-wise absolute values of Bias. 

 

Some major observations to be taken from Figure 32 and Table 6 can be summarized 

as follows: 

1. Nearest Neighbors do not deliver competitive accuracy, if applied directly to 

the 220-dimensional input data. It is however surprising that the vector-valued 

CART does not yield a better result, even though it generates an adaptive 

partition of the input domain. One needs to use ensembles of regression trees 

to achieve good approximation accuracy. 

2. It is possible to improve on the neural network emulation with moderate 

computational effort. The generation of regression trees is cheap, so even the 

generation of the 520 trees for RFC(20,80) takes only a few hours (7h on a 

4. One regression tree for each output component individually (CARTC, m = 5,

magenta line).

5. a vector-valued Random Forest approximation (RFV, T = 20, P = 80, green

line), and

6. an approximation where we compute a Random Forest (RFC, T = 20, P = 80,

black line) for each component individually.

In Table 1 we also give the total RMSEs and bias for all these methods.
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Figure 2: Comparison of neural network, approximate nearest neighbor, and several regres-
sion tree emulations. Left: layer-wise root mean square errors. Right: layer-wise absolute
values of Bias.

Some major observations to be taken from this Figure and Table can be summarized

as follows:

1. Nearest Neighbors do not deliver competitive accuracy, if applied directly to the

220-dimensional input data. It is however surprising that the vector-valued CART

does not yield a better result, even though it generates an adaptive partition of

the input domain. One needs to use ensembles of regression trees to achieve good

approximation accuracy.

2. It is possible to improve on the neural network emulation with moderate compu-

tational effort. The generation of regression trees is cheap, so even the generation

of the 520 trees for RFC(20,80) takes only a few hours (7h on a single 2.2 Ghz
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single 2.2 Ghz AMD-Opteron processor) on a standard PC. However, due to 

its storage requirements (26·20 = 520 trees have to be computed) this result is 

not of great practical interest. The two practical competitors are the CARTC 

and the RFV emulations, which use 26 trees (one for each component) or 20 

trees, respectively. RFV seems to be a little bit more accurate, but CARTC has 

a lower bias. To demonstrate the latter point we show in Figure 33 scatterplots 

for both emulations. The component-wise CART approximation clearly has a 

higher variance in layer 26, but delivers good, unbiased approximation in 

layer 9. 

3. Notice that except for the somewhat inaccurate nearest neighbor 

approximation, the neural network approximation exhibits the most biased 

approximation. 

Finally, in Figure 34 we show the emulated heating rates for three representative 

profiles in order to compare the vector-valued random forest and the component-wise 

CART approximation. In general CART very accurately follows the profile of the 

original parameterization. However, in extraordinary cases it can overshoot, which is 

most noticeable in the third graph. The random forest approximation has the tendency 

to flatten out the original profiles but does not produce extreme outliers. 



 

 
 

111 
 

 

Figure 33: Scatterplots for the approximation of the heating rates in the 26th and 9th 

vertical layer with component-wise CART (RPRC) and the vector-valued Random 

Forest (RFV) approximation. 

  

Figure 3: Scatterplots for the approximation of the heating rates in the 26th and 9th vertical

layer with componentwise CART (RPRC) and the vector-valued Random Forest (RFV)

approximation.

Single Trees

Dyadic cubes Binary cubes Dyadic simplices Vertex method

RMSE 0.0147266 0.0132963 0.0200573 0.014531

Random Shifts with Dyadic Cubes

Shifts 1 10 100 1000

RMSE 0.0147266 0.00937559 0.00835964 0.00806051

Table 2: RMSE of Sparse Occupancy Methods

the evaluations just return the global average. The reason for this is, that simplex

subdivision does not exploit the properties of the input data. The input variables are

highly correlated. Hence, if within one of the cube-subdivion schemes a split along one

variable does not separate two data points, with high probability the subsequent split

along the next input variable will also not separate the points. However, in a simplex

grid the split lines are oblique to the coordinate lines and therefore every split will
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Figure 34: Approximation of three representative heating rate profiles. Black line 

with markers: original parameterization. Magenta: Component-wise emulation. 

Green: vector-valued Random-Forest emulation. Heating rates units are J/kg/s. 

5.4 Results of a 10-Year Climate Simulation 
 
Finally, we try to assess the impact of using a tree approximation of the LWR 

parameterization in a climate simulation. Therefore, we run the NCAR CAM v 2.0 for 

10 years using the original parameterization, the neural network emulation and the 

component-wise CART emulation. As discussed above, this choice of tree design is 

debatable, since we could have achieved a more stable and more accurate (in terms of 

the RMSE) approximation using a vector-valued random forest design. However, the 

CART-design was the best available method at the time the experiment was set up 

The relatively small training data set with its 196,608 samples was used because the 

parallel simulation was performed on a distributed memory systems, where each 

processor could only address 4GB of memory, the emulation had to be stored on each 

processor, and on each processor most of the memory had to be reserved for other 

parts of the simulation. Therefore, we do not give any numbers about the achieved 
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Figure 4: Approximation of three representative heating rate profiles. Black line with mark-

ers: original parameterization. Magenta: Component-wise emulation. Green: vector-valued

Random-Forest emulation. Heating rates units are J/kg/s.

separate points with high probability. It is an open question whether this issue can

be resolved by transforming the data in a suitable way before starting the subdivision

process.

Level Simplices Cubes-1 Cubes-10 Cubes-100 Cubes-1000

0 97.998 44.0552 2.13725 0.208537 0.00203451

1 1.68864 33.4686 35.9996 25.6978 18.8019

2 0.217692 14.7217 22.8271 25.5249 26.9145

3 0.0701904 5.57658 17.9555 18.5211 19.5536

4 0.0203451 1.5350 12.4695 14.7339 15.3971

5 0.00406901 0.455729 5.87667 9.75138 10.0141

6 0.00101725 0.142415 1.88293 3.90828 5.88277

7 0.0386556 0.581868 1.10779 1.74052

8 0.00508626 0.18514 0.37028 0.519816

9 0.00101725 0.0640869 0.127157 0.18514

10 0.0203451 0.0457764 0.0742594

11 0.00305176 0.142415

Table 3: Relative frequencies (in percent) of the evaluation at a given dyadic level for the

sparse occupancy trees and the random shift method.

However, the situation is not as bleak as it might look like from this result. As has

become clear in the previous subsection, even regression trees do not yield very good

results singly, but rather one needs ensembles of them to achieve high accuracy. We

need a different mechanism for the generation of nearest-neighbor ensembles, though.
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speed-up of the GCM, although even under these imperfect conditions, the speed up 

was still considerable. 

One of the most desirable properties of emulation is the preservation of the time 

means of the prognostic and diagnostic fields. As it has been shown in the previous 

chapters, that neural network emulations reliably achieve this aim. The CART 

emulation in general produces good agreements, too, but it also seems to be more 

prone to produce local instabilities. As an example we consider the annual zonal 

means of the LW radiation heating rates (QRL) in Figure 35. Whereas the plots in the 

left column seem to be in very good agreement, the difference plots in the right 

column reveal that the CART approximation causes significant differences in the 

forecast in the lower atmospheric layers near the polar regions. 

The same observation can be made, if we look at the annual means of the two-meter 

air temperature in Figure 36. The agreement of the control run with the tree-emulation 

run is satisfactory, but a comparison of the difference plots in the right column 

reveals that the neural network run is closer to the original parameterization. Again, 

we see that the largest differences occur in the polar regions. 

For this reason we checked the approximation accuracy for all test data samples 

stemming from these regions separately. It turned out that the RMSE’s were much 

worse for these points than for other regions of the earth, and the CART emulation 

was biased towards predicting higher heating rates than the original parameterization. 

The reason for this seems to be that the extreme weather conditions at the poles are 

represented only by a small fraction of all training samples. As remedy for this 

problem one can train separate approximation modules for different regions on the 



 

 
 

114 
 

earth, or balance the distribution of the training such that the statistical approximation 

error is equally distributed over the whole globe. The neural network approximation 

seems to be more reliable with regard to the generalization to rare states. The vector-

valued random forest approximation also seems to be stable in this sense. 

5.5 Discussion 
 
In this chapter we investigated the possibility of substituting physical 

parameterizations in global climate models with non-parametric emulations 

(Belochitski et al., 2011). The results are positive in the sense that they show that both 

nearest neighbor type methods and regression trees are in principle able to achieve 

statistical approximation quality on par with neural networks, even if trained with a 

relatively moderate amount of data. It has been demonstrated that the NCAR CAM 

with a tree-based LWR emulation gave results in good agreement with the calculation 

using the original parameterization, except in the polar regions, which could have 

been expected from the statistical properties of the approximation. The main obstacle 

for the practical use of non-parametric methods is less a mathematical one, but rather 

one of implementation. Non-parametric approximation methods are memory-based, 

i.e., they need to store all the training data permanently. This makes its use in a 

parallel environment more difficult than is the case for the relatively compact neural 

network representation.. Therefore, the ideas and results presented in the current 

section can only be considered as a preliminary step towards a new emulation 

paradigm.  
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Figure 35: Comparison of the predicted annual zonal means of the LWR heating 

rates computed with the original parameterization (top row), a tree based emulation 

(center row) and a neural network emulation (bottom row). The right column plots 

the difference between the simulation and the control. 

 

Figure 5: Comparison of the predicted annual zonal means of the LWR heating rates com-
puted with the original parameterization (top row), a tree based emulation (center row) and
a neural network emulation (bottom row). The right column plots the difference between
the simulation and the control.
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Figure 36: Comparison of the predicted annual means of the two meter air 

temperatures computed with the original parameterization (top row), a tree-based 

emulation (center row) and a neural network emulation (bottom row). The right 

column plots the difference between the simulation and the control. 

  

Figure 6: Comparison of the predicted annual means of the two meter air temperatures
computed with the original parameterization (top row), a tree-based emulation (center row)
and a neural network emulation (bottom row). The right column plots the difference between
the simulation and the control.

Basically, the same observation can be made, if we look at the annular means of
the two-meter air temperature in Figure 6. The agreement of the control run with the
tree-emulation run is satisfactory, but a comparison of the difference plots in the right
column reveals that the neural network run is closer to the original parameterization.
Again, we see that the largest differences occur in the polar regions.

For this reason we checked the approximation accuracy for all test data samples
stemming from these regions separately. It turned out that the RMSE’s were much
worse for these points than for other regions of the earth, and the CART emulation
was biased towards predicting higher heating rates than the original parameterization.
The reason for this seems to be that the extreme weather conditions at the poles are
represented only by a small fraction of all training samples. As remedy for this problem
one can train separate approximation modules for different regions on the earth, or
balance the distribution of the training such that the statistical approximation error
is equally distributed over the whole globe. The neural network approximation seems
to be more reliable with regard to the generalization to rare states. The vector-valued
random forest approximation also seems to be stable in this sense.
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Chapter 6:  Compound Parameterization of Full Radiation with a Quality 
Control of Larger Errors in NCAR CAM. 
 

6.1 Accuracy and quality control of NN emulations 
 
Tremendous complexity, multidimensionality, and nonlinearity of the 

climate/weather system and numerical models describing this system lead to 

complexity and multidimensionality of our NN emulations and data sets that are used 

for their development and validation. Also, the validation procedure for developed 

NN emulations becomes more complicated because, after their development, they are 

supposed to work in a complex and essentially nonlinear numerical model. The 

development of NN emulations of model physics and their accuracy depends 

significantly on our ability to generate a representative training set to avoid using 

NNs for extrapolation beyond the domain covered by the training set. Owing to the 

high dimensionality of the input domain (i.e., dimensionality of the NN input vector) 

which is of the order of several hundreds or more, it is difficult if not impossible to 

cover the entire domain, especially its “far corners” associated with rare or extreme 

events, even when we use model simulated data for the NN training. Also, the domain 

may change with time as in the case of climate change. In such situations the 

emulating NN may be forced to extrapolate beyond its generalization ability which 

may lead to larger errors in NN outputs and, as a result, to errors in the numerical 

models in which they are used. 
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Fig. 37. Compound parameterization design for the NCAR CAM SWR.  For each 

SWR NN emulation (NN55, in this case), additional NNs (Error NN) is trained 

specifically for predicting, for a particular input, X, the errors, Yε, in the NN 

emulation output YNN.  If these errors do not exceed a predefined threshold (in this 

case, the mean value plus two standard deviations), the SWR NN emulation (NN55) is 

used; otherwise, the original SWR parameterization is used instead of the NN 

emulation.  ATS stands for the auxiliary training set that is updated each time when 

QC requires using the original parameterization instead of NN emulation.  ATS is 

used for the follow-up dynamical adjustment of the NN emulation. 
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The developed NN emulations are very accurate. Larger errors and outliers (a few 

extreme errors) in NN emulation outputs occur only when NN emulations are 

exposed to inputs not represented sufficiently in the training set. These errors have a 

very low probability (see Fig. 39) and are distributed randomly in space and time. 

However, when long multi-decadal climate simulations are performed and NN 

emulations are used in a very complex and essentially nonlinear climate model for 

such a long integration time, the probability for occurrence of larger errors and the 

probability of their undesirable impact on the model simulations increase. As we 

learned from our experiments with NCAR CAM, the model was in many but not in 

all cases (shown, for example, in Fig. 41) robust enough to overcome such randomly 

distributed errors without their accumulation in time. However, for these few cases, it 

is still essential to develop and use for NN emulations an internal quality control (QC) 

procedure capable of controlling their larger errors. 

Therefore, it is essential to introduce a QC procedure, which can predict and 

eliminate larger errors of NN emulations during the integration of highly nonlinear 

numerical models, not just relying upon the robustness of the model that can vary 

significantly for different models. Such a mechanism would make our NN emulation 

approach more reliable, robust, and generic. In this chapter we introduce a compound 

parameterization (CP), which combines NN emulation with a QC technique. 
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Fig. 38. The correlation (binned scatter plot, the error bar shows the standard 

deviation inside the bin) between the actual error (prmse of the NN emulation NN55) 

and the error predicted by the error NN calculated vs. the original parameterization 

on an independent test data set.  The correlation coefficient between the two errors is 

0.87. 
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6.2 Compound Parameterization Designs and Their Validation on Independent Data 
Sets. 
 
The final goal of our developments is a stable functioning of the NN emulation in the 

complex nonlinear numerical model for a sufficiently long time and the similarity of 

the model results produced with the original component (the control run) and with the 

NN emulation of this component. For such a situation, the high accuracy of a NN 

emulation obtained on an independent test set does not guarantee its stable 

performance in a numerical model. Thus, in our case, a reasonably good accuracy of 

NN emulation on a test set is a necessary but not sufficient condition for the 

satisfactory validation of NN emulation. This is only the first step of the two-step 

validation procedure used for the validation of the developed NN emulations in the 

previous chapters, and also used for validation of CPs developed in this study. The 

second and the most important step of the validation procedure is the validation of the 

model run with NN emulation vs. the control run with the original parameterization. 

During this second validation step, the run with the NN emulation (or with CP) 

should demonstrate, in addition to its stable performance, a close similarity of all 

simulated results to those of the control run. 

CP consists of the following three components: the original parameterization, its NN 

emulation, and a quality control (QC) block (see Figs. 37 and 40). During a routine 

numerical model simulation with CP, the QC block determines (based on some 

criteria presented below, at each time step of model integration and at each grid point) 

whether either the NN emulation or the original parameterization has to be used to 
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generate physical parameters (i.e. parameterization outputs). Namely, when the NN 

emulation errors are large (i.e., they exceed an error threshold) for a particular grid 

point and time step, the original parameterization is used instead of NN emulation. 

When the original parameterization is used instead of the NN emulation, its inputs 

and outputs are saved to further adjust the NN emulation. Although it goes beyond 

the scope of this study, it is worth mentioning that after accumulating a sufficient 

number of these records, an adjustment of the NN emulation can be produced by a 

short retraining using the accumulated input/output records. Thus, CP can be used for 

the development of NN emulations that become dynamically adjusted to the changes 

and/or new events/states produced by a complex environmental or climate system. 

There are different possible QC designs considered for CP. The first and simplest QC 

design is based on a set of regular physical and statistical tests similar to those used 

for QC of meteorological observations (e.g., Dee et al (2001) and Gandin (1988)). 

Such approaches can be used to check the consistency of NN outputs. These are the 

simplest, most generic but not sufficiently flexible approaches. Statistical tests that 

are usually based on linear statistical correlations between inputs and/or outputs and 

errors in outputs, work not so well for larger and extreme errors, which are usually 

caused by nonlinear correlations (e.g., see Fig. 38). Statistical criteria are usually 

global and based on past data. They may not be sensitive enough to local 

perturbations and also to new situations emerging in the course of integration of a 

complex environmental or climate system due to the change of its simulated 

environment, such as an evolving climate change. When applied to NN emulation 

outputs, such criteria give a significant amount of false alarms. In the context of our 
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complex system application, which includes also a trade-off between the accuracy of 

an NN emulation and its computational performance, such a significant amount of 

false alarms leads to a significant reduction in the computational performance of CP. 

Namely, each false alarm leads to a rejection of an accurate (but falsely suspected) 

and fast NN emulation and to its unnecessary replacement by the time consuming 

original parameterization. Owing to these significant problems important for our CP 

application, the above simple statistical QC design was not used in this study. 

The second and more sophisticated, nonlinear, and effective QC design is based on 

training an additional NN to specifically predict the errors of the NN emulation 

outputs for a particular input (Krasnopolsky and Fox-Rabinovitz, 2006). The error 

NN has the same inputs as the NN emulation and one or several outputs — errors of 

outputs generated by the emulation NN for these inputs. In this work, we used an 

error metric that produces one error for all outputs (given by eq. (9)); thus our error 

NN has one output. During the model integration, if this error does not exceed a 

predefined threshold, the NN emulation is used; otherwise, the original 

parameterization is used instead. An example of application of this CP design (see 

Fig. 37) is presented below for the NCAR CAM SWR. 

Fig. 38 shows the results of the calculations performed with the data set containing 

more than 100,000 records, each of which consists of the error predicted by the error 

NN and the actual error of the NN emulation. The actual errors of the NN emulation 

were binned and for each bin a corresponding mean errors predicted by the error NN 

and its standard deviations were calculated and plotted as a curve with error bars. The 

plot with only six bins is presented in Fig. 38 for simplicity and convenience of 



 

 
 

124 
 

presentation. Increasing the number of bins does not change the dependence 

significantly. Fig. 38 shows a very strong correlation between the error predicted by 

the error NN and the actual error of the NN emulation (SWR NN55) calculated vs. 

the SWR original parameterization on an independent test data set. The dependence, 

linear for small errors, becomes nonlinear for larger errors. The high, 0.87, correlation 

coefficient is obtained between these two errors calculated on the entire 100,000 

records long test set. 

 

Fig. 39. Probability density distributions of emulation errors for the SWR NN 

emulation NN55 (solid line) and for the compound SWR parameterization shown in 

Fig. 37.   The vertical axis is logarithmic and shows the error probability; the 

horizontal axis shows the NN emulation errors in K/Day.  In both cases errors are 

calculated vs. the original SWR parameterization.  The CP reduces the probability of 

medium and large errors by an order of magnitude.   
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Fig. 39 shows the comparison of two error probability density functions. One curve 

(solid line) corresponds to the NN55 emulation errors, another (dashed line) 

corresponds to the CP emulation errors shown in Fig. 37 (both errors are calculated 

vs. the original parameterization on the independent test set; the vertical axis is 

logarithmic). Fig. 39 demonstrates the effectiveness of CP; the application of CP 

reduces medium and large errors by about an order of magnitude. This is presented by 

the differences between the solid and dashed lines for NN emulation errors exceeding 

5–10 or more K/day. 

Fig. 40 demonstrates the effectiveness of CP in removing outliers, and Table 7 shows 

improvements in other statistical measures. The use of CP: (a) does not increase the 

systematic error (bias) which is almost zero; and (b) significantly reduces the random 

error. Especially significant is the reduction of extreme errors or outliers. It is 

noteworthy that for this CP and for this validation data set, less than 1% of the SWR 

NN55 emulation outputs are rejected by QC and calculated using the original SWR 

parameterization. Further refinement of the criteria used in the QC may result in a 

further significant reduction in the already small percentage of outliers as it will be 

shown below. 
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Fig. 40.  Scatter plot for HRs (heating rates) calculated using the SWR NN emulation 

NN55 (the left panel) vs. the original SWR parameterization (left and right horizontal 

axes) and for HRs calculated using the SWR compound parameterization (the right 

panel) vs. the original SWR parameterization.  Gray crosses (the left panel) show 

outliers that are eliminated by the compound parameterization (the right panel).  

 

Table 7.  Error Statistics for SWR NN Emulation NN55 and SWR Compound 

Parameterization: Bias and total RMSE, RMSE26 at the lower model level, and 

Extreme Outliers (Min Error & Max Error).  These statistics have been calculated on 

independent one year long test set. 

 Bias RMSE RMSE26 Min Error Max Error 

SWR NN55 4. 10-3 0.19 0.43 -46.1 13.6 

SWR CP 4. 10-3 0.17 0.30 -9.2 9.5 

   

 

All Level HRs
Gray – prmse NN ≥ 0.4 K/day (4,230 or 2.1%)
Black – prmse 0. < NN < 0.4 k/day (203,108)
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6.3 Validation of Compound Parameterization in NCAR CAM 
 

The second CP design outlined above has been implemented into NCAR CAM using 

the SWR NN55 emulation. A number of 50-year model simulations have been 

performed with the QC procedure using different thresholds. An appropriate 

threshold of 0.5 K/day has been determined experimentally. In this context, choosing 

an appropriate threshold means that the selected threshold (which is approximately 

equal to µ + 2σ) does not allow for even limited accumulation of errors (see the light 

gray line in Fig. 41) during the CAM simulation and, at the same time, does not 

practically reduce the computational speed-up gained by using the fast NN emulation. 

Thus, at each integration time step and at each grid point of the model with CP, the 

error NN, that predicts the error of the NN emulation, was estimated, and if the 

predicted error did not exceed 0.5 K/day, the NN emulation outputs were calculated 

and used in the model; otherwise the original parameterization was calculated and its 

outputs were used in the model. 

The example shown in Fig. 41 illustrates the effectiveness of CP in eliminating any 

accumulation of errors in the course of the model integration. When the model is 

integrated without QC, the SWR NN emulation NN55 produces moderately increased 

errors (errors increase from 0.07 K/day to 0.14 K/day) during the period between 24th 

and 25th years of the integration (the gray curve in Fig. 41). The error NN predicts 

this increase of the errors very well (the black curve in Fig. 41). After the QC was 

turned on, that is the model was integrated with the CP, the level of errors dropped 

significantly in general and, what is even more important, the bump between 24th and 

25th years disappeared completely (the light gray curve in Fig. 41). 
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Using CP provides a stable and reduced error environment for model simulations 

compared to the model simulations performed without QC. It is noteworthy that, at 

each time step, the NN emulation outputs were rejected by the QC and the original 

parameterization was used instead mostly only for 0.05%–0.1% but below 0.4%–

0.6% of model grid points, throughout the entire 50-year model simulation. 

Therefore, the computational performance of the model with NN emulation was 

practically not reduced and CP is still about 20 times faster than the original SWR 

parameterization. 

 

Fig. 41.  Errors (vs. the original SWR parameterization) produced by the SWR NN 

emulation during the model run (gray line), errors predicted by the error NN (black 

line), and errors produced after introducing CP instead of the SWR NN emulation 

(light gray line). 
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6.4 Discussion 
 
A new improved NN emulation approach called a compound parameterization, which 

incorporates NN-based quality control techniques for controlling larger errors of NN 

emulations, has been developed. One design of a compound parameterization 

presented in this 

 chapter uses a special NN trained to predict errors in outputs of NN emulation of a 

climate model physics component. It is shown that the accurate representation of a 

model physics component using a compound parameterization with a quality control 

of larger errors is essential for successful climate simulations. 

The CP approach can be considered as an engineering solution that does not 

investigate the problem (why on some rare occasions a NN emulation does not 

perform well) but bypasses it allowing using this NN emulation safely in the 

essentially nonlinear and complex environment of a numerical model. If a second 

error NN can be trained to reliably predict errors of the NN emulation, then it looks 

like these errors can be investigated, explained, and eliminated by correction of the 

NN emulation itself. Theoretically speaking, this is correct. However, practically 

speaking, it is hardly possible. As we have mentioned before, the main reason for 

such larger errors to occur is our inability to generate a completely representative 

training set, that is, to get each far corner of the domain of the mapping (1) 

represented. For modern climate and weather models this domain has dimensionality 

of the order of 103 and higher. A systematic investigation of such an object is a 

formidable task that requires significant special efforts. Using CP allows us to flag 
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and to bypass these questionable far corners of the domain leaving their investigation 

for the future research. 

There is also another important aspect of this problem: some larger NN emulation 

errors are ignored by the numerical model where this NN emulation is introduced; 

whereas some other larger NN emulation errors cause a significant reaction of the 

model like the one presented in Fig. 41 (the bump between 24th and 25th years). 

Currently, we can only speculate why such larger differences between the NN 

emulation and the original parameterization happen and why the reaction of the 

model is so different. It is worth noting that the original parameterization is an 

approximate physical model that itself may have discontinuities and inconsistencies. 

Actually, some of the larger NN emulation errors can be caused by such 

inconsistencies and discontinuities; in these cases the NN emulation “errors” may 

lead to smoother physics and a better performance of the model. Further investigation 

of these problems is very important and illuminating; it can also provide a valuable 

feedback to developers of model physics parameterizations. 
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Chapter 7:  Ensemble of Neural Network Emulations for Climate Model 
Physics: The Impact on Climate Simulations. 

 

During the last decade, the ensemble approach demonstrated a significant success in 

numerical weather prediction (NWP) modeling (Palmer, 2007; Buizza, 2005) and in 

climate modeling (Broccoli, 2003; Murphy, 2004; Staniforth, 2005).  The traditional 

ensemble approach widely used in NWP is based on introducing perturbations into 

initial conditions because NWP forecasts (specifically, for short- to medium-term or 1 

to 10 day weather predictions) are the initial condition problems.  Hereafter, we will 

call this kind of ensembles the perturbed initial condition ensemble (PICE).   

It was also found that, for both the NWP and especially for climate applications, the 

spread of PICE forecasts is insufficient to systematically capture the natural climate 

and weather variability (both spatial and temporal). Another approach to ensemble 

modeling based on perturbing model physics developed and implemented for 

ensemble forecast systems (Buizza, 2005; Buizza, 1999).  Climate simulations which 

are from months to decades (and sometimes centuries) long are not initial condition 

but rather boundary condition problems. In other words, climate simulations “forget” 

the initial conditions after two-three weeks of model integrations, and are driven by 

the right hand side (r.h.s.) or model physics forcing..  For this kind of problems, an 

ensemble approach based on perturbation of model physics (or perturbation of model 

forcing) seems to be appropriate.  The perturbed physics ensembles are expected to be 

more suitable for climate model simulations and projections (Staniforth, 2005).   
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In this chapter we investigate different possibilities of using the neural network (NN) 

emulation technique, introduced in the earlier chapters, in combination with ensemble 

approaches.  We discuss two types of perturbed physics ensembles: a long term 

perturbed physics ensemble (PPE) and a short-term perturbed physics ensemble 

(STPPE). 

We also show that the NN emulation technique can be efficiently used to create PPE 

and STPPE.  We demonstrate that all three aforementioned types of ensembles (PICE, 

PPE, and STPPE) can significantly benefit, in terms of their numerical performance, 

from using accurate NN emulations of model physics; however, STPPE becomes 

especially efficient (orders of magnitude faster than PICE and PPE) when the NN 

technique is used to produce the ensemble of perturbed realizations of model physics. 

7.1 Ensemble Approaches for NWP and Climate Simulations  
 
General circulation models (GCMs) used for numerical climate simulations and NWP 

are complex nonlinear systems composed of many elements: initial conditions, , 

model dynamics, , model physics,  (pk are 

parameterizations of physical processes), etc.  Here  is the atmospheric state vector.  

Each of these elements as well as boundary conditions can be considered as a specific 

component that has its own internal (natural) uncertainty. Each of these components 

may be perturbed within its natural uncertainty to produce an ensemble of model 

realizations.  Each of these ensemble realizations produces a prediction, which 

constitutes an ensemble member. 
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Formally, an ensemble forecast system may be represented as a set of numerical 

integrations, 

     (11) 

where j = 1,…, N is the number of an ensemble member.  All ensemble members 

represent rather close but different simulated states.  The ensemble approach allows 

for integrating the specific information contained in the individual ensemble members 

into an ensemble mean that has more information about or represents the predicted 

climate or weather presumably better than each of the individual ensemble members. 

where j = 1,…, N is the number of an ensemble member.  All ensemble members 

represent rather close but different simulated states.  The ensemble approach allows 

for integrating the specific information contained in the individual ensemble members 

into an ensemble mean that has more information about or represents the predicted 

climate or weather presumably better than each of the individual ensemble members. 

7.1.1 Ensembles with Perturbed Initial Conditions 
 
Because NWP model integrations (specifically, for short- to medium-term or 1 to 10 

day weather forecasts) are based on solving the initial condition problems, the 

traditional ensemble approach, PICE, widely used in NWP, consists of introducing 

perturbations into initial conditions; model physics is not perturbed and Pj are the 

same in eq. (11) for all ensemble members. Within this approach, each ensemble 

member run starts from uniquely perturbed initial condition ψj(0).  After running 

independently for some prescribed time T, the results of the individual ensemble runs 

dttDtPT j

T

jjjj )],(),([)()( ψψψψ ∫ ++=
0

0



 

 
 

134 
 

(i.e., the individual ensemble members) are compared with each other and with 

observations and eventually averaged to produce the ensemble mean (see Fig. 42).   

 
 

 

Fig. 42 The PICE and PPE scenario 

 

Usually, the ensemble mean describes better an actual state of weather or climate at t 

= T then an individual ensemble member.   PICEs allow us to observe how small 

uncertainties in initial conditions develop over model integration time into 

significant/measurable differences in predicted atmospheric states.  For PICEs, only 

initial perturbations are introduced into a deterministic NWP model integration.  

PICE proved to be an effective tool for NWP; however, it was also concluded that the 

spread of PICE forecast is often insufficient for providing systematic improvements 

of NWP (Palmer, 2007; Buizza, 2005).   
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7.1.2 Ensembles with Perturbed Physics 
 
 
For the NWP and climate problems it was also shown that, a perturbed physics 

ensemble may provide a larger spread and better results (Buizza, 2005; Murphy, 

2004); Stensrud, 2000).  For example, ECMWF (European Center for Medium-term 

Weather Prediction) operational ensemble forecast system has been already 

augmented by including perturbed physics ensembles (Buizza , 2005; Buizza. 1999). 

For climate models, which are not initial condition problems but rather boundary 

condition and r.h.s forcing problems, an ensemble generation approach based on 

perturbation of model physics (or perturbation of model forcing) is appears to be 

appropriate.  Uncertainties in model physics that arise from the fact that the sub-grid 

effects are taken into account only approximately in model physics parameterizations, 

which include many uncertain parameters and approximations, have a different nature 

and spatial and temporal scales than uncertainties in initial conditions.  In a sense, 

model physics parameterizations produce perturbations at each GCM grid point at 

each time step of its integration.  The perturbed physics ensembles (PPE) are shown 

to be very effective for climate simulations and projections (Broccoli, 2003; Murphy, 

2004; Staniforth, 2005; Stensrud, 2000; Kharin, 2000).  Within this approach, each 

ensemble member uses a uniquely perturbed version of model physics Pj.  PPE can 

also be used in combination with PICE as it is shown in eq. (11). 

Several different approaches have been used for perturbing model physics: 
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• Model random errors associated with physical parameterizations are simulated 

by multiplying the total parameterized tendencies of P by a random number rj 

sampled from a uniform distribution between 0.5 and 1.5 ( ).   

• One or several model physics parameters controlling key physical 

characteristics of sub-grid scale atmospheric and surface processes can be 

perturbed at a time, within the scope of their natural uncertainty (Murphy, 2004;  

Staniforth, 2005).   

• Different model physics parameterization schemes can be used to create various 

versions of perturbed model physics; the different versions are used in different 

ensemble members (Stensrud, 2000).     

In section 7.2 of this chapter, a new method of generating ensemble of perturbed 

model physics is introduced that uses NN emulations of model physics as a tool to 

create different realizations of model physics. 

The traditional perturbed physics ensemble (PPE) follows the same scenario, as that 

of depicted in Fig. 42 for the PICE with perturbed initial conditions.  A particular 

GCM ensemble member uses a particular version of the perturbed physics, Pj, 

throughout the entire GCM run, for a long integration time T.    Thus, in PPE different 

versions of perturbed physics (different realizations of the sub-grid physics) are used 

for different ensemble members, and each ensemble member exists and evolves over 

the entire GCM integration period T that is much longer than a characteristic time 

scale of sub-grid physical processes.   

PrP jj ×=
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7.1.3 Short Term Ensembles with Perturbed Physics 
 
Using the perturbed physics approach for generating ensembles offers an opportunity 

to introduce an alternative ensemble approach, namely a new type of ensemble – a 

short term perturbed physics ensemble (STPPE) that is not possible in the framework 

of the traditional PICE approach.  In the STPPE mode, the ensemble of different 

realizations or perturbed model physics versions is introduced for a short time interval 

comparable with the time scales of the sub-grid processes, namely during one time 

step (or for some parameterizations for a few to several time steps) of the model 

integration.  Symbolically, STPPE can be written as, 

                                                   (12)                                 

At each time step, an ensemble of different realizations of model physics is generated 

and averaged.  The ensemble average is used to integrate the model for producing the 

next time step.  The STPPE scenario is shown in Fig. 43.   
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Fig. 43 The STPPE scenario. 
 
 

The major differences between a PICE or PPE approaches (Fig. 42) and STPPE (Fig. 

43) are as follows: 

• PICE and PPE consist of N independent model runs; STPPE consists of a 

single model run. 

•  In the PICE and PPE approaches, the ensemble averages for climate or 

weather fields are calculated at the end of all N model integrations, by 

averaging climate or weather fields for all individual ensemble member runs; 

within STPPE, the ensemble average is calculated at each integration time 

step, Δt, for the outputs of the ensemble members composed of perturbed 

versions of model physics components.  The weather or climate fields 

obtained at the end of model integration are the results of this single STPPE 

run.  There is no additional averaging of weather or climate fields in this 

approach. 
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• SLPPE may be significantly faster then PICE or PPE; if calculations of a 

perturbed version (or a component) of model physics take about  , 

where 1/m < 1 is a fraction of  T required for calculation of the model 

physics (or a particular component/parameterization of model physics that is 

perturbed), and T is the total time required for integration of one PICE 

member, so that the STPPE run takes time                          

                                                                                  (13) 

whereas PICE or PPE runs take a longer time 

                                             TPICE = N · T                     (14)                                                    

The major technical difficulty in realization of all three ensemble approaches 

discussed above (PICE, PPE, and STPPE) is their time consumption.  Both PICE and 

PPE cost N (N – is the number of ensemble members) times more than a single model 

run; that is N · T, where T is the time required for one GCM run.  STPPE needs 

significantly less time because only model physics is calculated N times.  For 

example, if the calculation of model physics takes 50% of the total model calculation 

time, STPPE will be about 2 times faster than PICE or PPE runs, assuming that the 

number of ensemble members is the same, N.  If model physics calculation time is 

reduced the STPPE becomes even more computationally efficient.  In the next 

section, we show that STPPE becomes very efficient (orders of magnitude faster than 

PICE and PPE) when the neural network (NN) technique is used to produce the 

ensemble of perturbed realizations of model physics.    
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7.2 Neural Network Ensembles with Perturbed Physics  
 
If we produce N perturbed versions of model physics adding some perturbations to 

the entire model physics or to one of its components (parameterizations), we can use 

these N perturbed versions to create PPE members following a traditional scenario of 

PICE (Fig. 42).  These N versions can also be used as members of STPPE following 

an alternative scenario presented in Fig. 43. 

The jth perturbed version of the unperturbed model physics, P, can be written as, 

                                                                                    (15)                                                                   

where  is a NN emulation number j of the original model physics, P, and εj is an 

emulation error for the NN emulation number j. As we have shown in the previous 

chapters, εj can be controlled and changed significantly by varying k (the number of 

hidden neurons).  Not only the value but also the statistical properties of εj can be 

controlled.  For example, the systematic components of the emulation errors (biases) 

can be made negligible (therefore, εj are purely random in this case).  Thus, εj can be 

made of the order of magnitude of a natural uncertainty of the model physics (or of a 

particular parameterization) due to an unaccounted variability of sub-grid processes.   

Using NN emulations will speed up calculations of all three kinds (PICE, PPE, and 

STPPE) of ensembles.  One PICE or PPE run with N ensemble members using N 

different NN emulations, each of which is n times faster than the original model 

physics, as perturbed versions of model physics will take time, 

                                                                           (16)                                                
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Thus, in the case of NCAR CAM, where m ≈ 3/2 to 2 and n ≈ 10 to 100, using NNs 

for PICE or LTPPE will speed up its calculations about two to three times. 

The speed-up of calculations of PICE and PPE due to the use of NN emulations of 

model physics is significant.  However, the speed-up is even much more significant 

for SLPPE.  When we use N NN emulations each of which are n times faster than the 

original model physics, the STPPE run takes time  

                                                                                       (17)                                              

It means that STPPE with N = n ensemble members (N different NN emulations of 

model physics taken as ensemble members) can be run as fast as a single ensemble 

member of PICE or PPE (see eq. (14)).   

Here, the legitimate question to ask is how efficient is the STPPE approach.  In other 

words, does it improve the accuracy of climate simulations to a degree at least 

comparable with improvements provided by the PICE and LTPPE approaches?   This 

point is discussed in the next section. 

7.3 Comparisons of Different Ensembles using Perturbed NCAR CAM LWR 
 

For validation of our experiments, we use the NCAR CAM run using the original 

model physics and the original NCAR CAM initial conditions as a control against 

which all ensemble members and ensembles means for all three considered types of 

the ensembles are validated.  In other terms, the climate obtained from the 15-year 

run of NCAR CAM with the original model physics (including the original LWR 

parameterization) and original initial conditions is used below as a “true” or control 

climate. All ensemble members and ensemble means for different ensembles (PICE, 
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PPE and STPPE) are compared with these synthetic “observations”.  Then to create 

an ensemble of perturbed physics, we emulated the original LWR parameterization 

(Collins, 2002) with six different NNs which approximate the original LWR 

parameterization with different limited approximation errors.   

The perturbed LWR parameterizations can be written as, 

                                                                                     (18)                                                                

where LWR is the original NCAR CAM LWR,  LWRj
NN is a NN emulation number j 

of the original NCAR CAM LWR, and εj is an emulation error for the NN emulation 

number j.  Thus, the model physics that includes LWR NN emulation, LWRj
NN, can be 

considered as perturbed versions of model physics, Pj.   

There are many different approaches to creating different NN emulations of the same 

original parameterization (or different perturbed versions of model physics).  We 

have selected a sufficiently diverse group of six NN emulations mixing two different 

approaches to create a set of NN emulations (perturbed versions of model physics).  

Five of these six NN emulations or realizations of LWR have the same architecture 

that is the same number of neurons (k = 150); however, these NNs are different 

because different initializations for the NN weights have been used to start the NN 

training; the NNs have different weights (coefficients) and give close but different 

approximations of LWR (i.e. realizations of LWR).  The sixth NN emulation has a 

different architecture (k = 90 neurons).  In terms of the accuracy of the 

approximation, there is a significant spread between the members of this NN 

emulation set.  The approximation rms errors vary from 0.28 to 0.40 K/day for the six 

NN emulations.  It means that by using NN emulations instead of the original LWR 
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parameterization, we introduced on average such a level of perturbation into the LWR 

model physics.   

The distribution of approximation errors (perturbations) is shown in Fig. 44.   It is 

obviously not normal.  For the normal distribution with the same mean value and 

standard deviation, the perturbation values would be very limited; however, because 

the distribution of εj is not normal, there is a small but finite probability of larger 

perturbations.  If we compare these perturbations with mean value, µ, and standard 

deviation, σ, of LWR itself (µ = -1.4 K/day and σ = 1.9 K/day), we will see that the 

majority of perturbations belong to the interval µ ± σ; however, a very small amount 

of perturbations reaches the magnitude of about µ ± 3σ.  Such a distribution of 

perturbations is in a good agreement with the fact that the parameterizations of model 

physics on average describe the parameterized processes well enough and the level of 

errors introduced due to parameterization of sub-grid effects is rather moderate; 

however, in some cases (e.g. for rare or extreme events) the errors may be significant.      

In the case of NCAR CAM LWR the NN emulations are about n = 100 times faster 

than the original LWR parameterization.  Since the calculation of the original NCAR 

CAM LWR takes about 30% of the total model integration time T (m =3 in eqs. (13), 

(14), (16), and (17)), using LWR NN emulations in PICE and PPE results in speeding 

up the model calculations by about 30%, by reducing the time required for calculating 

NCAR CAM LWR by n · m times.  For SHPPE the use of NN emulations provides a 

much more significant speed up of calculations.  Just as an example, a STPPE with N 

= 100 ensemble members (eq. (16)) runs as fast as a single ensemble member of PICE 

or PPE (eq. (14)).   
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Also, to run a PICE that is used mostly for comprehensive comparison purposes, we 

created six randomly perturbed initial conditions members by perturbing original 

initial conditions for temperature fields used for the control run.  Then we performed 

a PICE run (see Fig. 42); six climate simulations have been run with NCAR CAM for 

15 years, each with one of these six perturbed initial conditions.   

Next we performed a PPE run (see Fig. 42); six climate simulations have been run 

with NCAR CAM for 15 years, each with one of the aforementioned six NN 

emulations (also used as the perturbed versions of model physics for STPPE). 

The results (climate fields and diagnostics) of each simulation (an ensemble member) 

were compared with the control climate run of NCAR CAM performed with the 

original LWR and original initial conditions. The climate simulation errors - 

systematic (bias), rmse, maximum (an extreme positive outlier), and minimum (an 

extreme negative outlier) - have been calculated for simulated prognostic and 

diagnostic fields for each ensemble member vs. the control climate.  These errors are 

shown by diamonds (for PICE) and crosses (for PPE) in Figs. 45-50. Then the PICE 

and PPE averages were calculated (shown by thick large diamonds and thick large 

crosses respectively in Figs. 45-50). 
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Fig. 44.  Probability density function for εj.  Mean εj = 3. 10-4 K/day and the standard 

deviation of εj is 0.35 K/day.  The dashed line shows a normal distribution with the 

same mean and standard deviation for comparison. 

 

Next, one 15-year STPPE climate run has been performed. For this run, six 

aforementioned NN emulations were applied and the LWR outputs are calculated as 

the mean of these six NN emulation outputs, at each time step and at each grid point 

throughout the entire model integration.  The errors for mean climate fields and 

diagnostics of this model simulation (the SLPPE mean) are calculated against the 

control run and are shown by thick large stars in Figs. 45-50.  
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Fig. 45.  Mean error (bias) and RMSE, in W/m², for the mean winter DJF (December 

through February) surface net LWR flux (FLNS).  Diamonds show PICE members, 

thick large diamond – PICE average; crosses show LTPPE members, thick large 

cross – LTPPE average; the thick large star shows the STPPE error. 

 

In Figs. 45-50 we present the ensemble member and ensemble mean errors for two 

major NCAR CAM LWR diagnostics and for one of the major NCAR CAM 

prognostic fields, pressure at the sea level (PSL). We show global mean and 
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minimum and maximum errors for the relevant 15-year NCAR CAM climate 

simulations for all ensemble members and ensemble means. 

 

 

Fig. 46.  Min and max errors, in W/m², for the mean winter DJF FLNS.  Symbols as 
in Fig. 45. 
 
Figs. 45 and 46 show the winter DJF (December through February) surface net LWR 

flux (FLNS) errors, in W/m², as deviations from the control climate.  It is noteworthy 

that global min and max errors shown in Figs. 46, 48 and 50 are extreme outliers 

obtained for the entire 15-year NCAR CAM integrations.  Similarly, Figs. 47 and 48 

show another major radiation diagnostic, the DJF TOM (top of the model) net LWR 

flux (FLNT), a.k.a. the outgoing long-wave radiation (OLR), and errors as deviations 
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from the control climate (in W/m²).  Figs. 47 and 50 show DJF PSL errors as 

deviations from the control (in hPa).  

 

Fig. 47.  Mean error (bias) and RMSE, in W/m², for the winter DJF (December 

through February) top of the model net LWR flux (FLNT).  Symbols as in Fig. 45. 

 

The results presented in Figs. 45-50 clearly demonstrate that all three considered 

ensemble approaches show the similar overall improvement of the accuracy (or 

reduction of uncertainty) of climate simulations for their corresponding ensemble 

means. They also show that PPE generates an overall larger spread of the ensemble 

members than PICE with random perturbation of initial conditions.  Insufficient 

spreads are typical for PICE; however in our case the spreads are even smaller due to 

a simplified technique used for introducing random perturbation, which under-
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represents the natural uncertainty of initial conditions.  It leads to limitations of the 

comparisons of the PPE and PICE spreads. More representative perturbations of 

initial conditions for PICE will be used for our future ensemble experiments. 

 

Fig. 48.  Min and max errors, in W/m², for FLNT climate.  Symbols as in Fig. 45. 

 

More specifically, the PPE and STPPE biases for the radiation diagnostics, FLNS and 

FLNT, (Figs. 45 and 47), are small and close to each other whereas the STPPE RMSE 

is smaller than that of PPE. For PSL (Fig. 49), the STPPE and PICE show close near-

zero biases and close RMSEs; the PPE bias is only slightly larger but its RMSE is 

smaller. 
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Fig. 49.  Mean error (bias) and RMSE, in hPa, for the pressure at the surface level 

(PSL).  Symbols as in Fig. 45. 

 

The PPE and STPPE minimum errors for FLNS are close to each other but the 

maximum error for STPPE is smaller than that of LTPPE (Fig. 47). The PICE 

minimum error is larger than that of STPPE but smaller than that of PPE. For FLNT, 

STPPE and PICE have close maximum and minimum errors, which are smaller than 

those of PPE (Fig. 49). The STPPE and PICE minimum errors for PSL are close and 
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smaller than that of PPE (Fig. 50) whereas the STPPE and PPE maximum errors are 

close to each other and larger than that of PICE.  

Overall, biases for all three types of ensembles are small and RMSEs are limited. 

STPPE RMSEs are slightly smaller than those of PPE.  

 

Fig. 50.  Min and max errors, in hPa, for PSL climate.  Symbols as in Fig. 45. 

 

7.4 Discussion 
 

The results presented here show that all three ensemble approaches, the perturbed 

initial conditions ensemble (PICE), the traditional perturbed physics ensemble (PPE), 

and STPPE, produce similar results: the use of any of these ensembles for climate 

simulation reduces significantly the systematic error (bias); it also reduces the random 
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error making it close to that of the best individual ensemble member.  The same is 

true for the extreme (min and max) errors.   

All three considered ensembles demonstrate similar improvements of the climate 

simulation accuracy.  Using NN emulations of model physics significantly improve 

the computational performance of any of investigated ensemble techniques.  

However, it is important to emphasize that STPPE is significantly faster than PICE 

and PPE.  It is 2N times (12 times for the case of N = 6 ensemble members considered 

in our study) faster than PICE and N times (6 times in our study) faster than PPE.  

Also, our results indicate that PPE and STPPE using NN perturbed physics provides a 

significantly larger spread of ensemble members than PICE with randomly perturbed 

initial conditions.   

This study is actually a pilot or proof of concept study that introduces and 

preliminary evaluates NNs as a tool for perturbing model physics and for using it in 

perturbed model physics ensembles.  This study also introduces STPPE as a new kind 

of the ensemble approach.  Some additional issues should be (and will be) 

investigated to obtain a better understanding of advantages and limitations of this 

approach: 

• In this work we evaluated aforementioned ensemble techniques using the 

basic statistical metrics like bias, rmse, min and max errors.  Various 

statistical metrics specifically designed for evaluation of ensemble prediction 

systems (EPS) should be applied to perform enhanced quantitative 

comparison between PICE, LTPPE, and STPPE. 
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• It was shown that the perturbation εj introduced by the NN emulation 

technique can be controlled and changed not only in terms of its value but also 

in terms of its statistical properties.  A broader sample of NN emulations with 

a broader spread of error statistics should be considered and evaluated. 

• In this study we used an unperturbed NCAR CAM run with the original 

parameterizations of physics as a control run or “synthetic observations”.  

Similar evaluation should be performed with real observations. 

• A climate model, NCAR CAM, was used to evaluate aforementioned 

ensemble techniques in the climate simulation environment.  Similar 

evaluation should be performed in the framework of a numerical weather 

prediction EPS to evaluate these techniques for NWP models. 

• More realistic perturbation technique like those of used in Palmer (2007) or 

Buizza (2005) should be applied to create a better PICE with a more realistic 

and larger spread for a better comparison with LTPPE and STPPE.   

• Some parts of the climate/weather numerical models like convection physics, 

or full model physics (containing boundary layer, land, and ice models), or 

model chemistry are not as well defined as the model radiation that we 

perturbed in this study; they introduce larger uncertainties in model 

calculations.  These components may be even better candidates for using the 

NN emulation technique for producing their perturbed versions for creating 

model ensembles. 
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Chapter 8: Summary  
 
Our work covered five application areas of Statistical Learning Techniques to 

atmospheric numerical modeling. 

 

8.1 NN Emulations of Full Model Radiation: Climate Runs 

We presented an approach based on a synergetic combination of deterministic 

modeling based on physical (first principle) equations and statistical learning (NN 

emulation) components within an atmospheric model.  The statistical learning 

approach was used to develop highly accurate and fast NN emulations for model 

physics components.  Here we presented a NN emulation of the full atmospheric 

radiation, i.e. for long- and short-wave radiation parameterizations used in numerical 

climate and weather prediction models.   

This study has shown the practical possibility of using highly efficient NN emulations 

for the full model radiation block for decadal climate simulations in an uncoupled 

medium resolution atmospheric model driven by climatological SSTs (NCAR CAM) 

and a coupled high resolution climate model with prescribed time dependent CO2 and 

aerosols (NCEP CFS). A very high accuracy and increased speed of NN emulations 

for the both NCAR CAM and NCEP CFS full radiation (LWR and SWR) has been 

achieved.  The systematic errors introduced by NN emulations of full model radiation 

are negligible and do not accumulate during the decadal model simulation.  The 

random errors of NN emulations are also small.  Almost identical results have been 

obtained for the parallel multi-year climate runs.  These results show the potential of 
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developing efficient NN emulations for model physics components and the entire 

model physics.  

Because model vertical resolution determines the NN emulation architecture, i.e., the 

number of inputs and outputs, every time the vertical resolution of the model is 

changed (which is usually done quite rarely), the NN emulation needs to be retrained.  

It is noteworthy that NN retraining can be done routinely and takes a limited time and 

effort once the practical framework for a specific model is developed.   

 

8.2 NN Emulations of Full Model Radiation: Short- To Medium- Range Forecasts 

We also studied the applicability of the NN emulation technique of the full model 

radiation to the short- to medium- range forecasting in a very high resolution 

atmospheric model (NCEP GFS). We found that the developed NN radiation is very 

accurate; the NN run closely follows the control run. The differences between NN 

and control runs increase slowly with the forecast time; however, in many cases NN 

run demonstrates slightly better results (higher anomaly correlation, lower bias and 

RMSE) at larger forecast times.   

In addition we investigated level of robustness of the developed NN radiation with 

respect to changes in the model environment. It shows that the developed NN 

radiation (CFS NN radiation) survived the transplantation from an old version of 

coupled model (CFS) to the newest version of uncoupled GFS.  It also survived about 

5 years of constant model evolution resulted in many changes in other than radiation 

physics parts of the model.  After all these changes it still produces reasonable results.  

This is a very important practical result, which shows that the NN radiation does not 



 

 
 

156 
 

require frequent updates and may work in the model for many years without 

retraining.  Of course, when the original radiation parameterization or the vertical 

resolution of the model is changed, the NN radiation has to be retrained. 

 

8.3 Application of Non-Parametric Learning Methods to Emulation of Model 

Components. 

We conducted numerical experiments investigating the possibility of substituting 

physical parameterizations in global climate models with non-parametric emulations. 

The results are positive in the sense that they show that both nearest neighbor type 

methods and regression trees are in principle able to achieve statistical approximation 

quality on par with neural networks, even if trained with a relatively moderate amount 

of data. It has been demonstrated that the NCAR CAM with a tree-based LWR 

emulation gave results in good agreement with the calculation using the original 

parameterization, except in the polar regions, which could have been expected from 

the statistical properties of the approximation. The main obstacle for the practical use 

of non-parametric methods is less a mathematical one, but rather one of 

implementation. Non-parametric approximation methods are memory-based, i.e., they 

need to store all the training data permanently. This makes its use in a parallel 

environment more difficult than is the case for the relatively compact neural network 

representation. Of course, for huge, complex projects like climate simulation 

software, implementation issues are a major concern. Therefore, the ideas and results 

presented in the current paper can only be considered as preliminary step towards a 

new emulation paradigm. 
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8.4 Compound Parameterization of Full Radiation with a Quality Control of Larger 

Errors in NCAR CAM 

Applying the NN emulation approach, which allows us to achieve such a significant 

speed-up with preservation of the accuracy and functional integrity of model physics, 

may create some challenges that can be resolved using the tremendous flexibility of 

statistical learning techniques and of the NN technique in particular.  Because NN 

emulations are statistical approximations, there exists a small probability of larger 

approximation errors or outliers.  The major reason for obtaining larger errors is high 

dimensionality n of the input space of the approximated mapping, which reaches 

several hundreds for NCEP CFS and may reach thousands for future models with 

significantly higher vertical resolution.  It is difficult to sample uniformly a domain in 

such a high dimensional space.  Far corners of the domain may remain 

underrepresented in the training set.  During the NN run, if input vectors belonging to 

these underrepresented far corners of the domain are encountered, they may cause 

larger errors in the NN outputs.   

To alleviate this problem a new improved NN emulation approach called a compound 

parameterization, which incorporates NN-based quality control techniques for 

controlling larger errors of NN emulations, has been developed.  One design of a 

compound parameterization presented in the paper uses a special NN trained to 

predict errors in outputs of NN emulation of a climate model physics component.  It 

is shown that the accurate representation of a model physics component using a 

compound parameterization with a quality control of larger errors is essential for 

successful climate simulations.  
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The CP approach can be considered as an engineering solution that does not 

investigate the problem (why on some rare occasions a NN emulation does not 

perform well) but bypasses it allowing to use this NN emulation safely in the 

essentially nonlinear and complex environment of a numerical model.  If a second 

error NN can be trained to reliably predict errors of the NN emulation, then it looks 

like these errors can be investigated, explained, and eliminated by correction of the 

NN emulation itself.  Theoretically speaking, this is correct.  However, practically 

speaking, it is hardly possible.  As we have mentioned before, the main reason for 

such larger errors to occur is our inability to generate a completely representative 

training set, that is to get represented each far corner of the domain of the 

approximated mapping.  For modern climate and weather models this domain has 

dimensionality of order of 103 and higher.  A systematic investigation of such an 

object is a formidable task that requires significant special efforts.  Using CP allows 

us to flag and to bypass these questionable far corners of the domain leaving their 

investigation for the future research. 

 

8.5 Ensemble of Neural Network Emulations for Climate Model Physics 

We also introduced a new type of perturbed physics ensemble (STPPE) approach. 

STPPE uses the ensemble mean of different versions of perturbed physics.  These 

versions are represented by different NN emulations used for calculating model 

physics (LWR in our case) at each time step and at every grid point throughout the 

entire model integration. The neural network emulation technique allows us: (1) to 

speed up significantly (up to 2 -3 times) ensemble model calculations by introducing 
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fast neural network emulations of model physics components; (2) to introduce 

consistent perturbations into model physics and develop its fast versions, and (3) to 

introduce a new short term perturbed physics ensemble for which computation time is 

comparable with the computation time that of needed just for a single model run. 

Preliminary results presented here show that all three ensemble approaches, the 

perturbed initial conditions ensemble (PICE), the traditional perturbed physics 

ensemble (PPE), and STPPE, produce similar results: the use of any of these 

ensembles for climate simulation reduces significantly the systematic error (bias); it 

also reduces the random error making it close to that of the best individual ensemble 

member.  The same is true for the extreme (min and max) errors.   

 
 
The five application areas of Statistical Learning Techniques to atmospheric 

numerical modeling with hybrid models, i.e. comprised of deterministic and statistical 

learning components, presented in this dissertation have shown the advantages of the 

approach for application to model radiation and its potential for applications to other 

model physics. We believe that the concept of hybrid modeling deserves a closer 

attention of the modeling community.  

  



 

 
 

160 
 

Glossary of Acronyms 
 

ACF:  Autocorrelation Function 

AGCM: Atmospheric GCM 

CAM: Community Atmospheric Model 

CART: Classification and Regression Tree 

CARTC:  Component Classification and Regression Tree 

CDAS: Coordinated Data Analysis System 

CFS: Climate Forecasting System 

CP: Compound Parameterization 

CTL: Control 

DJF: December-January-February 

ECMWF: European Center for Medium Range Weather Forecasting 

ENM: Environmental Numerical Model 

ENSO: El Niño-Southern Oscillation 

GCM: General Circulation Model 

GFS: Global Forecast System 

HEM: Hybrid Environmental Model 

HGCM: Hybrid General Circulation Model 

JJA: June-July-August 

LTPPE: Long-term Perturbed Physics Ensemble 

LWR: Long Wave Radiation 

MLP: Multilayer Perceptron 

MLT: Machine Learning Technique 



 

 
 

161 
 

NCAR: National Center for Atmospheric Research 

NCEP: National Centers for Environmental Prediction 

NN: Neural Network 

NWP: Numerical Weather Prediction 

PICE: Perturbed Initial Conditions Ensemble 

PRATE: Total Precipitation Rate 

PRMSE: Profile RMSE 

PPE: Perturbed Physics Ensemble 

QC: Quality Control 

RMSE: Root Mean Square Error 

RFV: Vector Valued Random Forest 

SLT: Statistical Learning Technique 

SST: Sea Surface Temperature 

STPPE: Short-term Perturbed Physics Ensemble 

SWR: Short Wave Radiation 

UKMO: United Kingdom’s Meterological Office 
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