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ABSTRACT

VLIW architecture based DSPs have become widespread due to the
combined benefits of simple hardware and compiler-extracted
instruction-level parallelism. However, the VLIW instruction set
architecture and its hardware implementation are tightly coupled,
especially so for Non-Unit Assumed Latency (NUAL) VLIWs. The
problem of object code compatibility across processors having dif-
ferent numbers of functional units or hardware latencies has been
the Achilles' heel of this otherwise powerful architecture. In this
paper, we propose eXtended Split-Issue (XSI), a novel mechanism
that breaks the instruction packet syntax of an NUAL VLIW compiler
without violating the dataflow dependences. XSI provides a designer
the freedom of disassociating the hardware implementation of the
NUAL VLIW processor from the instruction set architecture. Further,
we investigate fairly radical (in the context of VLIW) changes to the
hardware—like removing an adder, adding a multiplier, and incor-
porating simultaneous multithreading (SMT)—to show that our
technique works for a variety of hardware configurations without
compromising on performance. The technique can be used in both
single-threaded and multi-threaded architectures to achieve a level
of flexibility heretofore unavailable in the VLIW arena.

1 INTRODUCTION

VLIW processors have prevailed in the DSP market because of their
simplicity and ability to execute multiple operations per cycle [1].
The regular algorithmic structure and dataflow properties of DSP
applications make them ideal for VLIW architectures and compiler
targets [2]. This has enabled developers to move from using hand-
written assembly code to high-level languages like C, thereby lower-
ing development time and effort. The lower time-to-market and cost
overheads are considered to largely outweigh the potential perfor-
mance disadvantages of compiled code compared to the hand-opti-
mized code. VLIW architectures, however, have been plagued by
object-code compatibility issues for a long time. Specifically, an
application compiled for one class of processor cannot be executed
on another processor with differing latencies or functional units
without recompiling. This poses a problem, as it provides a manu-
facturer only limited flexibility in offering multiple processors at dif-
ferent cost points that can all execute the same object code. Hence,
our primary goal is to decouple the underlying ISA from the hard-

ware implementation. In its broadest sense, our technique enables
(almost) any VLIW code to be run on (almost) any VLIW processor.
The main contribution of this paper is a novel scheme designed to
enhance portability and flexibility in VLIW architectures without
degrading performance.

1.1 Motivation and Background

In VLIW processors with operations having non-unit latencies, the
ISA can be defined in two different ways [3]:

Unit Assumed Latencies (UAL):  UAL programs require that 
all operations in one instruction packet are completed before 
the next is issued. Thus the actual latencies of the operations are 
not exposed to the compiler or the programmer. 

Non-Unit Assumed Latencies (NUAL):  In NUAL programs, 
for an operation with latency L, the next L-1 instruction packets 
are issued before the given operation completes. The latency of 
each operation is exposed to the compiler or the programmer, 
and the NUAL architecture is thus said to be a latency-
cognizant ISA [3].

Scheduling instructions for a UAL ISA is a simple task for the com-
piler or programmer. If the actual latency of all operations is a single
cycle, then the hardware can issue instruction packets every cycle.
However, if even a few operations have latencies longer than one
cycle, the hardware would be unable to issue instruction packets
every cycle unless it has interlock/dependency-check capabilities.
For example, the StarCore SC140 is a UAL VLIW, where an instruc-
tion packet is issued for execution only after all operations belonging
to the previous instruction packet have completed execution [4].
Another commercially available UAL VLIW, Analog Devices’ Tig-
erSharc, employs interlocking register files which stall a program
when a dependency is detected, until the required data becomes
available [5]. For VLIW architectures, in which an instruction packet
comprises multiple independent operations, such dependency-check
mechanisms could be expensive. Also, deeper pipelines would result
in large penalties due to such stalls. This may be one of the contrib-
uting factors for UAL VLIWs like TigerSharc and SC140 to have
shorter 1- or 2-stage execution units.

The advantage of a NUAL ISA is that the functional unit latencies
are exposed to the compiler, thereby allowing the dependency check
and latency-cognizant instruction-scheduling to be done entirely at
compile time. Since there would be no hardware-enforced stalls, the
pipeline depth can be increased, leading to faster clock speeds. Thus,
NUAL VLIWs can provide better throughput without the hardware
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mechanisms as complex as in UAL VLIWs. The Texas Instruments’
TMS320C6000 series VLIW DSPs are examples of commercially
available NUAL VLIWs [6].

However, exposing the operational latencies to the compiler
enforces a tight coupling between the NUAL ISA and the hardware
implementation. Any change in the ISA, or in the hardware, in terms
of the assumed latencies or number or arrangement of functional
units, would render them incompatible. Thus object-code compati-
bility across processors with different hardware configurations
becomes a problem. To achieve object-code compatibility, the hard-
ware should be able to break the instruction packets and issue opera-
tions depending upon the availability of functional units. Note that
this breaking of the instruction packet is quite the opposite of what a
VLIW ISA expects. The TMS320C6000 compiler schedules
instructions with the assumption that all operations in a VLIW
instruction packet will be issued for execution simultaneously [7].
The VLIW compiler’s data-dependency assumptions could be
potentially sabotaged by not issuing all the instructions in an instruc-
tion packet in the same cycle. Hence, some mechanism would have
to be provided to overcome this violation.

1.2 Our Approach 

In this paper, we propose a limited dynamic scheduling technique
using a set of delay-buffers that store results temporarily and commit
them to the architectural register files at the appropriate cycles. For
the rest of this paper, we shall use the term VLIW to refer to NUAL
VLIWs unless explicitly stated otherwise. The dynamic scheduling
technique proposed here is an extension of the split-issue technique
proposed by Rau [3], which was intended to provide object code
compatibility across VLIW processors with similar arrangements of
functional units but different assumed latencies. The split-issue
mechanism proposed by Rau essentially allocates a temporary buffer
to store an instruction’s result, which is committed to the architec-
tural register N cycles later, where (N+1) is the compiler-assumed
latency of the given instruction. This mechanism, therefore, permits
correct execution of a program even when the actual latencies do not
agree with the compiler-assumed latencies. Rau’s mechanism
requires the compiler-assumed latencies for a program to be con-
veyed to the hardware in some form—e.g., a field in each operation
specifying the assumed latency [8].

We make a key observation that the latencies of operations are
with respect to instruction packets and not to machine cycles in a
VLIW architecture. We use this observation to extend Rau’s split-
issue mechanism so that it commits a result from the temporary
buffer to the architectural register after N instruction packets (not
cycles), where (N+1) is the compiler-assumed latency of the given
instruction. This allows the issue hardware to split instruction pack-
ets and issue individual operations within an instruction packet sepa-
rately and in any order. The issue hardware would also have to signal
to the commit logic each time it finishes issuing all instructions in an
instruction packet. Note that the hardware schedules operations only
within an instruction packet and does not perform out-of-order
scheduling across different instruction packets. This extended split-
issue (XSI) mechanism enables the issue of subsets of instructions
from instruction packets for execution.

An interesting feature of the hardware design proposed here is the
flexibility to vary the number of hardware functional units of any
given type. Note that, in the case of a clustered VLIW architecture,
reducing the number of functional units could also require appropri-
ate multiplexed connectivity to the register files. The issue hardware,
which is capable of splitting the instruction packet, would issue
operations based on the availability of functional units. This allows
the hardware designer to customize the number of functional units
based on the target applications, thereby leading to improved utilisa-
tion efficiency, and possibly energy and die-area savings as well.

Thus this approach achieves decoupling of the hardware and instruc-
tion set architecture in a VLIW architecture. Compatibility across
processors with different functional unit latencies is another impor-
tant feature that can be directly derived from Rau’s split-issue tech-
nique. To illustrate the strengths of the XSI mechanism, we
implemented radical hardware configurations of VLIW to highlight
the levels of flexibility that are possible, such as incorporating simul-
taneous multithreading (SMT). Our performance results confirm
that XSI provides flexibility without compromising on performance.

1.3 Related Work

SMT improves the processor throughput, extracting maximum par-
allelism by issuing as many instructions as possible from multiple
threads in any given cycle [9][10]. These improvements have been
seen previously with workloads that consist of mutually independent
applications or applications that can be parallelized into independent
threads by the programmer [11][12] or the compiler.

Incorporating SMT capability involves replicating processor con-
text (register files, program counter, etc.) for each thread but retain-
ing the set of functional units and sharing them between the threads.
Keckler and Dally [13] have proposed an architecture called Proces-
sor Coupling where instructions from multiple VLIW threads are
scheduled simultaneously to the functional units. The compiler and
architecture assume that the operations scheduled in a single VLIW
instruction packet need not be executed simultaneously. The hard-
ware employs a scoreboard check mechanism to stall a given opera-
tion until all its source register operands are available. Thus, the
hardware performs dependency check and resolves conflicts by stall-
ing the processor, unlike a typical VLIW architecture. Later, Kaxiras
et al. [14] studied SMT on the StarCore (SC140) VLIW DSP,
wherein the issue logic selects VLIW instruction packets from ready
threads—as many as it can accommodate, without splitting the
VLIW instruction packets—and assigns them to functional units.
We shall refer to this model as the Kaxiras model in later sections.
Özer, Conte and Sharma [15] also propose a SMT VLIW architec-
ture named Weld. The Weld architecture selects VLIW instruction
packets from ready threads and issues them to available functional
units. The compiler embeds a separability bit in the opcode for each
operation, which the hardware uses to decide if it can issue that oper-
ation separately, thereby splitting the VLIW instruction packet. The
Weld architecture is aimed at increasing ILP using compiler-directed
(speculative) threads in a multithreaded VLIW architecture. We note
here that none of these studies have attempted SMT in a NUAL
VLIW architecture.

We extend the idea of SMT VLIW to the next logical step of issu-
ing a subset of instructions from a VLIW instruction packet based on
the availability of functional units without any explicit permission
from the compiler. Thus, by combining the extended split-issue
mechanism and SMT, the hardware schedules more operations to
the execution units every cycle, thereby improving throughput, the
system’s multi-threaded performance.

The remainder of this paper is organized as follows. We describe
the dynamic scheduling algorithm used to issue a subset of instruc-
tions from a VLIW instruction packet in section 2. Section 3 pre-
sents the details of the base TMS320C6201 VLIW architecture. In
section 4, we discuss the level of flexibility provided by decoupling
the hardware from the instruction set architecture. Section 5
describes the simulation methodology and presents performance
results. We conclude in section 6 with an outline of our proposed
future work.

2 EXTENDED SPLIT-ISSUE MECHANISM

VLIW architecture, when viewed as a contractual interface between
the class of programs and the set of processor implementations, is



                                                                             
basically an Independence Architecture [16]. It specifies a set of
operations that are guaranteed to be mutually independent and can
be issued simultaneously by the issue hardware without any checks.
We shall use the term execute packet (EP), as defined by Texas
Instruments [17], to represent such an independent set of operations.
These operations could have non-unit latencies. In a NUAL VLIW,
the input operands for an operation may not depend on the opera-
tions that are in the execute pipeline at the time of issue. The com-
piler uses this assumption to aggressively reuse registers allocated to
long-latency operations, possibly introducing output dependences.
Thus any processor implementation would have to respect the flow
dependences/independences in both directions: horizontal (within a
single EP) and vertical (across different EPs). Breaking the EP
semantics of the compiler and issuing operations from an EP over
different cycles would disturb these dependences. In this section, we
shall address the question of how to do limited dynamic scheduling
in hardware while maintaining the aforementioned flow depen-
dences. The extent of dynamic scheduling would be limited by the
ability to issue operations from a single EP over multiple clock
cycles. However, in any given cycle, operations that might be issued
simultaneously would always belong to the same EP.

Firstly, we shall look at the problems that would arise from issu-
ing operations from a single EP over multiple cycles. Consider the
fragment of a VLIW program, shown in Code Listing 1, with opera-
tion latencies being 1 cycle for add and sub, 2 cycles for mul, and 5
cycles for load. The cycle column in the table represents the cycle at
which the current EP is issued for execution to the functional units.
In EP1, we see that all operations write their results to the register
A5. This causes no problem because each of these operations would
write their results to A5 in different cycles. The mul operation in EP1
should not get its input operand in register A5 from the add instruc-
tion in the same EP. Also, the mul operation in EP2 should get its
input operand in register A5 from the add operation in EP1 and not
from the mul or the load operations in EP1. Subsequently, the sub
operation in EP3 should get its input operand in A5 from the mul in
EP1 and not from the add or the load in EP1. Also, its input operand
in A1 should not be from the mul in EP2. The data dependences for
register A5 are shown in Figure 1.

The data dependences are respected by the VLIW architecture, in
particular by its issuing all operations of an EP simultaneously.
However, the same does not hold true if the EPs are broken up: if we
issue each of the operations in a different cycle, as shown in Code

Listing 2, then the above flow dependences would not hold anymore.
Figure 2 shows that the mul in EP1 would get the output produced
by the add operation in register A5. The mul in EP2 would get its
input from the mul in EP1 instead of the add in EP1. 

To break up the execution packets and yet still maintain the flow
dependences, we extend the dynamic scheduling technique pro-
posed by Rau [3]. Rau’s technique uses a set of buffers called delay-
buffers to store results temporarily. These results are then committed
to the architectural registers at the appropriate cycles. Being trans-
parent to both the programmer and the compiler, Rau’s technique
was originally proposed to guarantee object-code compatibility
across VLIW processors with the same ISA but different hardware
latencies. It is important to note that Rau’s mechanism requires that
all operations in an EP be issued in the same cycle. We first illustrate
this technique and then describe how it can be extended to handle
the problems that would arise from issuing operations from a single
EP over different cycles.

In Code Listing 3, the original code fragment is shown augmented
with a new set of operations called phase-2 operations. These opera-
tions are not generated by the compiler; they represent the action of
committing the data values from the delay-buffers to the architec-
tural registers and are performed by the hardware at the appropriate
cycles. The phase-2 operations specified along with each EP are car-
ried out at the end of the given cycle. In Code Listing 3 and in the
rest of this paper, the commit operation from src to dest is shown as
“dest <= src”. The outputs of all operations are stored in dynami-
cally allocated delay buffers. In the example, the output of the add
instruction in EP1 is stored in the delay-buffer LA1. The correspond-
ing phase-2 operation, i.e., committing the data in LA1 to A5, is
scheduled at the end of the same cycle because an ADD is a 1-cycle
operation. Similarly, the output of the mul in EP1 is stored in delay-
buffer MA1 and then committed to A5 at the end of cycle 2 because a
MUL is a 2-cycle operation. There are two phase-2 operations
scheduled at the end of cycle 3: the output of sub (from EP3) to be
committed from LA1 to A6, and the output of mul (from EP2) to be
committed from MA2 to A1. Thus for every program operation, the
corresponding phase-2 operations are scheduled after N cycles,

Cycle EP Operations

1 1 A5=add(A1,A2), A5=mul(A5,4), A5=load(A1)

2 2 A1=mul(A5,A5)

3 3 A6=sub(A1,A5), A7=load(A8)

4 4 …

Code Listing 1: A VLIW Code Segment

A5=Add(A1,A2)

A1=Mul(A5,A5)

A6=Sub(A1,A5)

A5=Load(A1)A5=Mul(A5,4)

A7=Load(A8)

Figure 1: Dataflow Dependences for Register A5

Cycle EP Operations

1 1 A5=add(A1,A2)

2 1 A5=mul(A5,4)

3 1 A5=load(A1)

4 2 A1=mul(A5,A5)

5 3 A6=sub(A1,A5)

6 3 A7=load(A8)

7 4 …

Code Listing 2: VLIW Code Segment With Each Operation 
Issued Separately

A5=Add(A1,A2)

A1=Mul(A5,A5)

A6=Sub(A1,A5)

A5=Load(A1)A5=Mul(A5,4)

A7=Load(A8)

Figure 2: Incorrect Dataflow for Register A5



                                             
where (N + 1) is the latency of the given operation. Note that the
program operations access the register file for their source operands
but write their results in the allocated delay-buffers. Conversely, the
phase-2 operations read from the delay buffers and copy the data
into the appropriate architectural register.

Now we show that by extending the above technique, we can split
the operations in an EP and issue them over different cycles without
disturbing the flow dependences. To guarantee correct program
functionality, we schedule the phase-2 operations only with respect
to the final operation(s) issued from an EP—i.e., at EP-boundaries.
Hence, for every program operation, the corresponding phase-2
operations will be scheduled after N EP-boundaries, where (N+1) is
the latency of the given operation. This is because the flow depen-
dences, horizontal and vertical, are really with respect to EPs and not
with clock cycles in VLIW architectures.

We see from Code Listing 4 that the mul operation in EP1 does
not get its input operand in register A5 from the add operation
belonging to the same EP, though the mul was issued a full cycle
later. The mul operation in EP2 gets its input operand in register A5
from the add operation in EP1 (committed from LA1) and not from
the mul or the load operations in EP1. Moreover, the sub operation
in EP3 gets its input operand in A5 from the mul in EP1 (committed
from MA1) and not from the add or the load in EP1. The input oper-
and in A1 is not from the mul in EP2.

To summarize, we dynamically schedule phase-2 operations for
every operation issued at the appropriate EP-boundary determined
by the latency of the issued operation. This maintains the flow
dependences even if all the operations in an EP are not issued in a
given cycle.

The total number of delay-buffers required to support this tech-
nique is a function of the number of execution units and the maxi-
mum latencies of these units. In any given cycle, the number of
instructions in the various stages of execution would determine the
number of delay buffers required for that unit. In our scheme, the
number of buffers corresponds to the hardware latencies, irrespec-
tive of the compiler’s assumptions; in Rau’s scheme, the number of

buffers corresponds to the compiler’s assumed latencies, irrespective
of the hardware latencies. Figure 3 shows the execute stages of the
TMS320C6201 pipeline, wherein we see that the multiplier has 2
stages in its execute pipeline, viz., E1 and E2. Therefore in any given
cycle, there would be only 2 instructions being executed in the mul-
tiplier. This means that there would be at most two outstanding
phase-2 operations corresponding to the two instructions in the mul-
tiplier. The number of functional units and associated latencies in the
TMS320C6201 are given in Table 1. Thus, the total number of
delay-buffers required to support limited dynamic scheduling on the
TMS320C6201 is (2x1) + (2x1) + (2x2) + (2x5) = 18.

The delay buffers are implemented as circular buffers with a head
and a tail pointer. The head pointer points to the buffer where the
information about the operation issued for execution in the current
cycle is stored, and the tail pointer points to the buffer from which
the data is committed to the appropriate architectural register. The
pointers are incremented on EP boundaries, not cycle boundaries. To
understand this let us look at the delay buffers used by the 5-stage
load/store (D1) unit. Figure 4 depicts the circular buffer implementa-
tion for the delay buffers of the D1 unit and its behaviour for the
code fragment shown in Code Listing 4. The D1 unit has a latency of
5, i.e., the results of an operation issued to this unit will be available
to operations in the 5th EP relative to the given operation and later. In
Figures 4(a) and 4(b), corresponding to cycles 1 and 2 respectively,
we see that the head pointer and tail pointer remain unaltered. The
head pointer points to the delay buffer (DA1) allocated to the D1
operation in the current EP (i.e. EP 1), and the tail pointer points to
the delay buffer whose data is to be committed at the end of the cur-
rent EP. In cycle 3, when the load instruction in EP 1 is issued for
execution, its destination register is stored in a field of DA1. At the

Cycle EP Operations Phase-2

1 1 LA1=add(A1,A2), MA1=mul(A5,4), DA1=load(A1) - A5<=LA1

2 2 MA2=mul(A5,A5) - A5<=MA1

3 3 LA1=sub(A1,A5) DA3=load(A8) - A6<=LA1, A1<=MA2

4 4 … -

5 5 … - A5<=DA1

Code Listing 3: VLIW Code Segment With Phase-2 Operations

Cycle EP Operations Phase-2

1 1 LA1=add(A1,A2)

2 1 MA1=mul(A5,4)

3 1 DA1=load(A1) - A5<=LA1

4 2 MA2=mul(A5,A5) - A5<=MA1

5 3 LA1=sub(A1,A5)

6 3 DA3=load(A8) - A6<=LA1, A1<=MA2

7 4 … -

8 5 …

9 5 … - A5<=DA1

Code Listing 4: VLIW Code Segment With Each Operation Issued 
Separately Augmented By Phase-2 Operations

E1 E1 E1 E1

E2

E3

E4

E5

E2

ALU (L) Shifter (S) Multiplier (M) Load/Store (D)

Figure 3: Functional Unit Latencies in the TMS320C6201

Functional 
Unit Description Number 

of Units Latency

L ALU 2 1

S ALU/Shifter 2 1

M Multiply 2 2

D Load/Store 2 5

Table 1: TMS320C6201 Functional Units and Their Latencies



DA5

DA4

DA3

DA2

DA1

Load/Store (D1)

tail

head
Issued for execution in current cycle

Result committed at end of current EP

DA5

DA4

DA3

DA2

DA1 [A5]

Load/Store (D1)

tail

head
Issued for execution in current cycle

Result committed at end of current EP

DA5

DA4

DA3

DA2 [NULL]

DA1[A5]

Load/Store (D1)

tail

head
Issued for execution in current cycle

Result committed at end of current EP

DA5

DA4

DA3

DA2

DA1

Load/Store (D1)

tail

head
Issued for execution in current cycle

Result committed at end of current EP

DA5

DA4

DA3

DA2

Load/Store (D1)

tail

head
Issued for execution in current cycle

Result committed at end of current EP

DA1[A5] 

DA5

DA4

DA3 [A7]

DA2 [NULL]

DA1 [A5]

Load/Store (D1)

tail

head
Issued for execution in current cycle

Result committed at end of current EP

DA5 [...]

DA4 [...]

DA3 [A7]

DA2 [NULL]

DA1 [A5]

Load/Store (D1)

tail

head
Issued for execution in current cycle

Result committed at end of current EP

(a) Cycle 1 (EP 1)

(b) Cycle 2 (EP 1)

(c) Cycle 3 (EP 1)

(d) Cycle 4 (EP 2)

(e) Cycle 5 (EP 3)

(f) Cycle 6 (EP 3)

(g) … Cycle 9 (EP 5)

Figure 4: Circular Buffer Implementation of the Delay Buffers for the Load/Store(D1) unit



end of EP 1, data, if any, from the tail (i.e. DA2) is committed to the
corresponding architectural register file, and the head and tail point-
ers shift by one position. This can be seen in Figure 4(d), where the
head pointer now points to DA2 and the tail to DA3, for the next
cycle. Since there is no D1 operation in EP 2, the destination field in
DA2 contains a NULL entry. Figures 4(e) and 4(f) depict the behav-
iour for EP 3. We see that as a load instruction is issued for execu-
tion to the D1 unit in cycle 6, the destination field in DA3 stores the
destination architectural register, i.e. A7. Finally, we can see the data
being committed from DA1 to the architectural register A5 corre-
sponding to the load in EP 1 in Figure 4(g). This corresponds to the
EP 5 boundary at cycle 9 as in Code Listing 4.

The delay buffers for any unit can be implemented similarly with
a simple circular buffer structure of appropriate size. Functional
units with unit latencies like the L and S units would have only one
delay-buffer associated with each to hold the data until the end of the
EP. Note that the delay buffers are simple circular buffers which are
not in the processor’s critical path. Also, access to the delay buffers
can be pipelined. Hence, they do not degrade the processor’s cycle
time, one of the chief components of processor performance.

3 TEXAS INSTRUMENTS ’C6201 ARCHITECTURE

We chose Texas Instruments’ TMS320C6201 [6][17] for our study
as it is a good representative of commercially available NUAL
VLIWs. In this section we shall describe its architecture.

The TMS320C6201 is an 8-wide VLIW DSP with an 11-stage
pipeline. It has a clustered architecture; i.e., the 8 functional units are
divided into 2 sets of 4 each. Two register files A and B, with 16 reg-
isters each, are connected to one set of functional units each. Cross-
overs allow limited use of the A-registers by the B-side functional
units and vice versa. Figure 5 depicts the CPU pipeline. The pipeline
phases are divided into three stages, viz. fetch, decode and execute.
The fetch phase comprises 4 stages: program address generate (PG),
program address send (PS), program access ready wait (PW) and

program fetch packet receive (PR). A fetch packet (FP) comprises 8
operations (also referred to as instructions) packed together. How-
ever, all 8 operations in the same fetch packet need not constitute a
single EP. An EP could be made up of any number of operations
ranging from 1 to 8, and therefore an FP could comprise of a single
EP or up to 8 EPs. The structure of a typical FP is shown in Figure 6.

The decode phase comprises 2 stages: instruction dispatch (DP)
and instruction decode (DC). During the DP stage, operations in an
EP are extracted from the FP and assigned to the appropriate func-
tional units. Note that if an FP contains more than one EP, the fetch
stages stall until all EPs in that FP are dispatched. In the DC stage,
the source registers, destination registers, and associated paths are
decoded for the execution of the operations in the functional units. 

Finally, the execute phase involves a varying number of stages
depending on the functional unit. The 4 functional units on each side
are a matched set. Each side contains a 40-bit integer ALU (L-unit),
40-bit shifter (S-unit), a 16-bit multiplier (M-unit) and a 32-bit
adder, which is also used as an address generator for loads and stores
(D-unit). As we can see from Figure 5, the L-units and S-units have
an execution latency of 1 cycle, the M-units have a latency of 2
cycles, and the D-units have a latency of 5 cycles. Branches are
resolved in the S-units and take effect as delayed-branches with 5
delay slots, i.e., the branch target begins execution (E1 stage) in the
sixth cycle after the branch instruction. The branch instruction is
executed in the E1 stage of an S-unit, and the target program counter
(PC) is fed back to the PG stage. The branch can be said to be a sin-
gle-cycle latency operation, the output of which is not stored in any
register file but in the program counter of the PG stage.

Figure 5: TMS320C201 Base Architecture

Figure 6: A Fetch Packet in the ’C6000 Architecture



4 DECOUPLING IMPLEMENTATION FROM ISA

Recall that a key feature of the XSI dynamic scheduling technique
described in Section 2 is that it provides the leverage to decouple the
hardware implementation of the VLIW processor from its instruc-
tion set architecture. The compiler schedules instructions based on
the ISA, but the hardware need not conform exactly to the com-
piler’s assumptions. We noted earlier that the dataflow dependences
in the VLIW architecture are with respect to the EPs and not clock
cycles. We have shown that the delay-buffer and copyback logic
schedules phase-2 operations so that the results of instructions are
committed based only on the EP-boundary signal. Hence, the issue
logic can afford to break the EPs without disturbing the compiler’s
intended semantics. In this section we demonstrate the flexibility
offered by the technique by showing several possible hardware
schemes that can be implemented using XSI.

4.1 SMT VLIW Architecture

Our SMT-VLIW architecture is depicted in Figure 7, which shows
an architecture supporting up to 4 threads. The processor context—
i.e., register files, program counter, etc.—is replicated appropriately
to accommodate 4 threads. It resembles the base architecture in most
aspects. It retains the same functional units in both number and type.
The functional units get their input operands from the register files,
and they store their output in the delay-buffers. The copyback-unit
schedules the phase-2 operations to copy the data from the delay-
buffers to the appropriate registers upon receiving the EP-boundary
signal. The DC unit generates a thread-specific EP-boundary signal
when it decodes the last set of operations from an EP.

To understand the decode phase, let us assume that the PR stage

of the fetch phase provides fetch packets from all 4 threads. The DP
stage is replicated to provide the ability to dispatch EPs from all 4
threads. The EP-combine stage, an additional stage depicted in Fig-
ure 7, represents the dynamic scheduling hardware that issues
instructions from the EPs of different threads. The dynamic schedul-
ing technique described in Section 2 is used to issue instructions
from an EP for a given thread based on the availability of the func-
tional units. The issue policy determines the priority of the threads,
and thereby the sequence in which they are to be chosen for issuing
instructions. We shall refer to the highest priority thread as thread-1,
the thread with the next priority as thread-2, and so on. Thus the DC
stage receives up to 8 instructions, possibly from different threads,
each tagged with its thread identifier. For the instructions issued, the
DC stage then decodes the source registers, destination registers, and
associated paths and sends them to the execution units. Each source
operand is read from the register file corresponding to the thread to
which the instruction belongs. When the DC stage decodes and
issues an instruction which is at an EP boundary, it triggers an EP-
boundary signal for that thread. The copyback unit keeps track of all
the EP-boundary signals it receives and schedules the phase-2 oper-
ations for appropriate instructions based on their latencies in terms
of EPs. Again, this is because the flow dependences are with respect
to the EPs and not with clock cycles in VLIW architecture.

The functional units store the results in the allocated delay-buffers
after executing the instructions. As all instructions are issued and
executed in-order, the allocation of delay-buffers is simple and fol-
lows the in-order issue of instructions. Therefore, the phase-2 opera-
tions corresponding to the instructions are also scheduled in-order
by the copy-back unit.

In the PR stage, the FPs are stored in separate sets of buffers cor-
responding to the thread number. We could extend this procedure to

Figure 7: TMS320C6201 VLIW Architecture Extended to Handle SMT



accommodate any number of threads. For simplicity (and to aid pre-
dictability, which is important in many embedded and DSP sys-
tems), we implement a static-priority scheme for fetching from
threads. That is, thread-1 is unaffected, and the remaining functional
units are filled with instructions taken from thread-2, thread-3, etc.
Consequently, fetch stalls behave exactly as in the base architecture
for the highest priority thread, and SMT happens transparently with
respect to the highest priority thread. However, for the lower priority
threads this is not the only condition when they cannot fetch an FP.
A low priority thread would be unable to fetch and dispatch in the
DP stage when the EP-combine stage is unable to issue a complete
EP from that thread.

In the base architecture, we saw that the fetch phase stalls when
an FP containing multiple EPs is being serviced by the DP stage. We
can exploit these stall cycles to fetch FPs from other threads. A clear
advantage of this is that we can fetch FPs from different threads
without requiring additional fetch bandwidth and using only a mini-
mal addition of logic. The fetch stages in the SMT VLIW processor
maintain instruction buffers for each thread and fetch the instruc-
tions in a multiplexed fashion, fetching an FP from the next available
highest priority thread in a cycle. We omit describing the implemen-
tation of fetch stages in greater detail due to space constraints. More-
over, given that in any cycle the fetch stages would fetch only an FP
from among the different threads, the performance of the processor
would not be affected significantly by different implementations.

Finally, we enumerate the expenses incurred in hardware to incor-
porate SMT over the base VLIW architecture. The pipeline requires
a new EP-combine stage, and for every additional context we require
a set of register files and their datapaths, a set of delay-buffers, pipe-
line latches for the fetch and decode stages, dispatch logic to extract
an EP from an FP, program counter, a set of multiplexers at the EP-
combine stage to issue operations from different threads, and copy-
back logic that commits data from the delay-buffers to the register
files on the trigger provided by the EP-boundary signal.

We note here that the SMT model proposed by Kaxiras, et al. [14]
would also need a similar delay-buffer and copy-back mechanism, if
it were implemented on an NUAL VLIW, to maintain the vertical
dataflow dependence assumptions of the compiler’s schedule. In the
Kaxiras model, where the instructions are issued without splitting
the EPs, the secondary threads may or may not be able to issue EPs
every cycle based on the functional unit availability. Such lack of
predictability can disturb the vertical data dependences for instruc-
tions in those threads, which would have to be handled with some
buffering mechanism. However, since the EPs are issued without
splitting, the copy-back logic would not require the DC stage to pro-
vide an EP-boundary signal and, therefore, would be simpler.

4.2 Different Hardware Configurations

To illustrate how XSI allows different hardware configurations, we
consider the ’C6201 VLIW DSP again. Figure 8 shows the average
functional unit utilisation statistics for various DSP benchmarks exe-
cuted on the original architecture. We observe that both the proces-
sor’s multipliers (M1 and M2) have very low utilisation. Moreover,
it is rare that both multipliers are used simultaneously. Thus, one
could design an implementation of the ’C6201 with only one multi-
plier. In any given cycle, this multiplier could function as M1 or M2
as required. However, if any EP has instructions scheduled for both
the multipliers, then the issue logic would split the EP and issue one
of them in the following cycle. Thus, the program would behave as if
one of the multipliers is always being used by a (imaginary) higher
priority thread. Such a design requires that this multiplier has datap-
aths multiplexed to both the register files, thereby allowing it to
behave like M1 or M2 as required in a given cycle.

Figure 10 shows that the L and S units are heavily utilised—espe-
cially so as the number of threads being executed increases. Given

the freedom, a hardware designer could choose to increase the num-
ber of such functional units to improve the performance throughput.
For example, if there were an additional pair of L units in the proces-
sor, the issue logic could accommodate 2 more ALU instructions
from the lower priority threads. The hardware could also have just
one additional L unit behaving as L1 or L2 as required in a given
cycle. As mentioned before, this would require the datapaths to be
multiplexed between the 2 register files. It is also important to note
that the issue logic would never issue instructions from multiple EPs
for a given thread; thus performance enhancements from additional
functional units can be exploited only by multithreading. On the
other hand, removing a functional unit represents a potentially sig-
nificant cost-performance trade-off even for a single thread.

We also investigated schemes of substituting the multipliers with
(high latency) alternate functional units. We studied mechanisms
wherein multipliers were replaced with a single adder/shifter combi-
nation [18]. Here, this adder/shifter combinational unit alone is mul-
tiplexed between the 2 register files like the additional functional
units mentioned above. This combinational unit is used to execute
multiply instructions whenever there is one in the instruction packet
and for adder/shifter operations otherwise. 

5 EXPERIMENTAL METHODOLOGY & RESULTS

In this section, we describe the experimental setup and present the
performance evaluations. Our choice of benchmarks spans three
suites, viz. MediaBench [19], MiBench [20] and the UTDSP bench-
mark suite [21] and is based on the availability of appropriately
ported versions. The chosen benchmarks (ADPCM, G723, Pegwit,
MPEG decode, FFT, FIR, Matrix Multiply, etc.) do encompass the
general behaviour of DSP applications. Due to lack of space, we
present only the averaged behaviour of these benchmarks (full
results are shown in the Appendix). We compiled the benchmarks
using the Texas Instruments ’C6000 C compiler [7] with important
optimisations like loop unrolling, software pipelining, loop optimi-
zations, and loop rotation enabled.

For our base DSP architecture, we used an in-house cycle-accu-
rate TI TMS320C6201 [22] simulator. We extended this simulator to
incorporate the XSI mechanism and SMT capability as described in
Sections 2 and 4. The benchmarks were executed for 50M cycles at
200MHz representing a workload of 0.25sec [23]. We assume a per-
fect memory model for these studies as we focus on the flexibility of
the XSI mechanism.

5.1 Base Architecture Performance

We first present the utilisation statistics of the TMS320C6201. Fig-
ure 8 shows a stacked chart representing the proportion of time each
functional unit is utilised on average. The lower portion of each
stacked bar indicates the utilisation of a functional unit of each given
type (unit 1), the top portion indicates the utilisation of its comple-
mentary functional unit (unit 2), and the intermediate portion indi-
cates the simultaneous utilisation of both the units. Please note that
the sum of both units’ utilisation numbers can total 200%, not 100%
(i.e., if both units are completely utilised). We observe that the utili-
sation of the functional units is so low that each functional unit is
idle for nearly 75% of the time on average. Figure 9 shows the statis-
tics corresponding to the number of parallel or independent opera-
tions scheduled by the compiler every cycle. It shows the proportion
of time for which 0 operations (NOPS) are scheduled, the proportion
of time only 1 operation is scheduled, the proportion of time only 2
operations are being scheduled, and so on. These statistics show that
the compiler does make an attempt to extract parallelism and, at
times, is able to schedule up to 6 parallel operations in a given cycle.
However, this does not happen very often, and the functional units
remain under-utilised for most of the cycles.



5.2 SMT and Hardware-ISA Decoupling

We now examine the effect of SMT on the performance of the
TMS320C6201. As mentioned, for our SMT results we have used a
fixed-priority issue policy, whereby each thread is assigned a priority
for the entire period of its execution. Thus, after issuing the EP from
thread 1, based on functional unit availability, operations from the
EPs of thread 2, 3, and 4 (in that order) are chosen and issued. For
the experiments, multiple instances of the same program are exe-
cuted as separate threads.

Figure 10 shows the average functional unit utilisation for the
benchmarks with an increasing number of threads. We see that as the
number of threads increases to 4, the utilisation of the L, S, and D
units increase significantly, and the proportion of time for which the
pairs of L, S, and D units are simultaneously utilised increases as
well. Figure 11 shows the proportion of time taken for a given num-
ber of parallel operations issued for execution every cycle on an
average. For a single thread (Base), for about 75% of the time, we
see that at most 1 operation is issued in a single cycle. This distribu-
tion changes, and more operations are issued every cycle, as the
number of threads are increased—this is expected. For 4 threads, we

see that for 75% of the cycles, at least 2 operations are issued every
cycle, making much better use of the available functional units.

Figure 12 shows the average processor throughput (IPC) for our
model of SMT VLIW for 2, 3, and 4 threads in comparison with the
Kaxiras model (labeled 2 Threads-K, 3 Threads-K, and 4 Threads-K)
where the instructions are issued without splitting the instruction
packets. (The detailed graphs for all benchmarks are presented in
Figures A1 and A2 of the appendix). The lowest part of each stacked
bar represents the IPC of thread 1, the part above indicating the IPC
of thread 2, and so on. We observe that our model performs at least
as well as the Kaxiras model and on average 2%, 4%, and 5% better
for 2, 3, and 4 threads respectively. More importantly, compared to
the base architecture, both the SMT configurations show substantial
gains in IPC. The average gains in IPC for our SMT model are about
60%, 100% and 120% for 2, 3, and 4 threads, respectively. 

Next, we present in Figure 13 the average behaviour of the bench-
marks for different hardware configurations, viz. base and SMT
(referred to as normal), removing a multiplier (-M), removing a mul-
tiplier and adding an ALU (-M+L) and removing a multiplier and
adding an ALU and Shifter (-M+L+S). No cycle time penalties were
assumed in multiplexing the datapaths to the register files. (Figures
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A3 and A4 in the appendix show detailed results over all bench-
marks.) We chose to add additional L and S units, as we observed
from Figure 10 that the L and S units were highly utilised—espe-
cially so as the number of threads was increased. We see that for a
single thread the decrease in performance by removing a multiplier
is insignificant. However, as the number of threads increases, though
removing a multiplier has no significant impact on the performance,
one can replace that multiplier with other things (an additional adder
and/or shifter). Adding an ALU in place of a multiplier (-M+L) com-
pensates well and boosts the throughput. Further gains in throughput
are seen in the -M+L+S hardware configuration. Interestingly, for a
few benchmarks, namely ADPCM_decode and GSM_Decode (see
Figure A4), the -M+L+S configuration produces slightly greater
throughput for 3 threads as compared to executing 4 threads in the
baseline configuration of the processor. This is due to the fact that
the parallelism in these applications is limited in a multithreaded
scenario by the number of specific functional units (L&S in this situ-
ation). Increasing the number of threads does not result in improved
performance. Therefore, the second and third threads in these appli-
cations efficiently utilise the additional units and give a better
throughput than the normal configuration with four threads.

Figure 14 shows the average behaviour of the benchmarks for
multipliers replaced by adder/shifter combinations of different laten-
cies, taking advantage of the fact that the adder/shifter combination
need not be as fast as the original multiplier unit. The compiler-
assumed latency for multiply operations is 2 cycles, and we vary the
hardware latency from 2–16 cycles. This demonstrates that the XSI
mechanism can handle situations where the compiler-assumed
latency is less than the actual latency. This is done by latency stalling
as suggested by Rau, wherein a thread is stalled after the lapse of N
cycles of multiply operation where N is the compiler assumed
latency. Alternate mechanisms for dependence checking such as
scoreboarding, Tomasulo, etc. are expensive in this scenario as the
hardware logic becomes more complex.

We carried out some experiments on the real-time behaviour of
the DSP workloads. Figure 15a shows the arrangement of bench-
marks GSM_Encoder, Decrypt (Pegwit), GSM_Decoder, and
MPEG_Decoder. Figure 15b shows the behaviour of these bench-
marks with GSM_Encoder, Decrypt and GSM_Decoder working at
the rate of 50 frames per second and the MPEG_Decoder at 3 frames
per second. In the base architecture, for every period of 20ms (4M
cycles), the workload is arranged in such a manner that the bench-
marks are executed in a serial fashion in the following sequence:

1: GSM_Encoder
2: Decrypt
3: GSM_Decoder
4: MPEG_Decoder (consumes any remaining available cycles)

For the SMT version, for every period of 20ms (4M cycles), the
applications are run in the same order as above, but with each appli-
cation executing as an independent thread. As soon as
GSM_Encoder (thread 1) completes producing 1 frame of output,
the thread re-schedules itself for the next frame and exits, the priori-
ties are reassigned (promoting each remaining thread one priority
level), and another instance of MPEG_Decoder is spawned as
thread-4. After Decrypt completes producing 1 frame of output, the
thread re-schedules itself and exits, GSM_Decoder and the two
instances of MPEG_Decoder are promoted, and another instance of
MPEG_Decoder is spawned as thread-4. After GSM_Decoder com-
pletes 1 frame, four simultaneous threads of MPEG_Decoder are
left to consume the remaining cycles. We can see from Figure 15b
that there is a significant increase in the processing throughput in the
SMT version (4 threads) as compared to the base processor. Also,
we ran these simulations for different configurations of the hardware

Figure 12: Processor Throughput (IPC) of SMT VLIW Figure 13: Processor Throughput (IPC) of SMT VLIW
(Comparison of Our Model Vs. Kaxiras) for Different H/W Configurations 
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(-M, -M+L, and -M+L+S), shown as the stacked bars on top of the
4-thread histogram. These results show that the throughput gains in
the various design configurations of the SMT VLIW architecture
hold their promise for workloads comprising of a combination of
DSP applications as well. 

6 CONCLUSIONS

We present an eXtended Split-Issue (XSI) mechanism which pro-
vides NUAL VLIW architectures with flexibility in choosing any
desired hardware configuration by decoupling the hardware–ISA
association. Through a wide range of experiments, we have shown
that our scheme enables incorporating SMT in VLIW processors
and thus can potentially increase the throughput. We have also
shown that the actual underlying hardware can be totally indepen-
dent of the compiler assumptions in terms of number and configura-
tion, availability, or latency of functional units.

Thus the XSI mechanism expands the hardware design space
along two dimensions. The first allows VLIW architectures to sup-
port SMT, and the second allows varying the number of functional
units depending on utilisation.

Using a commercial NUAL VLIW DSP architecture, the Texas
Instruments TMS320C6201, we show that incorporating SMT can
yield rich benefits in terms of processing throughput. The average
gain in IPC over the base processor was seen to be 120% for our
SMT VLIW processor supporting 4 threads. This can be traded off
for reduction in energy consumption by scaling the operating fre-
quency/voltage accordingly in DSPs, where embedded-systems
requirements typically make minimization of energy consumption
more important than gains in throughput.

We have also shown that the efficiency of the VLIW DSP can be
increased by a processor architect choosing the number of functional
units of each type based on their utilisation statistics. For example,
removing a multiplier yields no significant performance degrada-
tion, yet the elimination of multiplier can have significant impact on
die area and power consumption. This gives the hardware designer a
wider variety of choices to build an efficient NUAL VLIW processor
without modifying the compiler or ISA.

As part of future work, we will explore the design space with pre-
cise interrupt considerations. The behaviour of real-time applica-
tions is another aspect that needs detailed investigation.
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APPENDIX 

In this section we present the results of all the benchmarks for both
the SMT and variable hardware configurations.

1 Base
Thread 2
Thread 3
Thread 4

Processor Throughput (IPC) of SMT VLIW. Our Model vs. Kaxiras for Various Benchmarks

Figure A4Figure A3

Processor Throughput (IPC) of SMT VLIW for Different Hardware Configurations
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