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ABSTRACT

This paper presents a methodology for kinematic synthesis of tendon-
driven manipulators with isotropic transmission characteristics. The force
transmission characteristics, from the end-effector space to the actuator
space, has been investigated. It is shown that tendon forces required to
act against externally applied forces are functions of the structure matrix,
its null vector, and the manipulator Jacobian matrix. Design equations for
synthesizing a manipulator to possess isotropic transmission characteristics
are derived. An isotropic transmission is defined as one for which the product
of the structure matrix and Jacobian matrix has a unity condition number,
and the direction of the null vector points in the [1,1,...,1]7 direction.
Two examples are used to demonstrate the methodology. It is shown that
manipulators which possess isotropic transmission characteristics do have

much better force distribution among their tendons.

INTRODUCTION

The advantage of using tendons for transmitting power in robot
manipulators is that it permits actuators to be installed on or somewhere
close to the fixed frame. Thus, the size and inertia of the manipulating
system can be reduced. Several tendon-driven manipulators can be found
in the literature. Okada (1977) used endless type tendons (belts) in the
design of the transmission system of a three fingered hand. Though only n
actuators are needed to actuate an n-dof manipulator, pretension is required

to prevent belts from slacking. For high speed operations, pretension causes



an excessive amount of friction and, therefore, degrades the efficiency of the
transmission system. Rovetta (1977) and, Sugano and Kato (1987) developed

similar transmission devices using springs for pretension of tendons.

To avoid high pretension, Jacobsen, et al. (1985) used two tendons (two
actuators), antagonistically pulled against each other, to drive each joint of
the Utah/MIT dexterous hand. The device inevitably increases the numbers
of tendons, actuators, pulleys, and the complexity of controllers. On the
other hand, Morecki, et al. (1980) employed seven tendons to actuate a
six-dof manipulator. They showed that n + 1 is the minimum number of
tendons required to achieve full control of an n-dof manipulator. Salisbury
(1982) designed a three-fingered Stanford/JPL hand in which each finger has
three degrees of freedom, and is actuated by four tendons. Both Morecki
and Salisbury’s designs require no pretension and, therefore, result in lower
tendon forces. The number of actuators needed outnumber that used in belt

driven devices by one only.

In order to better design tendon-driven manipulators, Lee and Tsai
(1991) developed a methodology for the synthesis of kinematic structures
with pseudo-triangular structure matrices. However, they only focused on
those types of structures in which pulleys mounted on one common joint axis
are all of the same size. In this study, we allow the pulleys to assume different
sizes, and seek for the design equations for synthesizing manipulators with

isotropic transmission characteristics.

The condition number is known as a measure of error-amplifying factor
in a linear transformation system. For a manipulator system, it refers to

the amplification of error from the actuator space to the end-effector space.



A point in the workspace of a manipulator where the condition number is
equal to one is called an isotropic point. At an isotropic point, output error
in the end-effector space due to input error in the actuator space has a
minimum upper bound. The property of kinematic isotropy is, therefore,

very important in achieving accurate control of robot manipulators.

Many researchers defined the condition number as the ratio of the
maximal singular value to the minimal singular value of the Jacobian matrix
J (Salisbury and Craig, 1982; Yoshikawa, 1984; Asada, et al., 1985; Gosselin
and Angeles, 1988). The Jacobian matrix is the matrix which transforms the
joint rates into the end-effector velocity. The transformation between the
end-effector space and the joint space is said to be isotropic, if the condition
number of the Jacobian matrix is equal to one. This definition of isotropic
transformation does not take the effect of transmission mechanisms into

consideration. Strictly speaking, it is only valid for direct-drive manipulators.

Lee (1991) defined the condition number of a tendon transmission
structure as the ratio of the maximal singular value to the minimal
singular value of the structure matrix. The structure matrix is the matrix
which transforms the joint angles into tendon/actuator displacements. The
transformation between the joint space and the actuator/tendon space is
said to be isotropic, if the condition number of the structure matrix is equal
to one. When the condition number of the Jacobian matrix and that of
the structure matrix are both equal to one, an isotropic transformation is

obtained for the overall system.



The above two approaches can only achieve partial or limited results.
To make the theory complete, Chen and Tsai (1992) first introduced the
concept of overall transformation matrix between the actuator space and the
end-effector space for gear-coupled manipulators. They defined the isotropic
transformation as one which has the unity condition number for the overall
transformation matrix. It does not require both the condition numbers of
the Jacobian matrix and the structure matrix to be equal to one. Therefore,
it gives more flexibility for the synthesis of manipulators. However, their

results are not directly applicable to tendon-driven manipulators.

In this paper, we study the overall transformation between the actuator
space and the end-effector space of tendon-driven manipulators. First, the
necessary conditions for a manipulator to possess isotropic transmission
characteristics will be derived. Then, the results will be applied to those types
of tendon-driven manipulators with pseudo-triangular structure matrices.
Finally, it will be shown that isotropic transmission structures of the general
form can be derived from that of the pseudo-triangular form. Two design

examples will be used to demonstrate the effects on their performance.

ADMISSIBLE TRANSMISSION STRUCTURES

Figure 1 shows the planar schematic of a general n-dof tendon-driven
manipulator with m tendons. See Lee and Tsai (1991) for the definition of
the planar representation of a spatial mechanism. The relationship between

tendon/actuator displacements and joint angles for such a tendon-driven



manipulator can be expressed as (Lee and Tsai, 1991)
S=A14 (1)

Similarly, the relationship between tendon forces and joint torques can be

expressed as

r=A"¢ (2)

where S = [S},S2,+,Sm]¥ denotes an m x 1 linear displacement vector
for the m tendons, 8 = [0;,0;,---,0,]7 denotes an n x 1 joint angular
displacement vector, T = [y, 7, -+, 7a|T denotes an n x 1 joint torque vector,
£ =1[4,6,,€m]T denotes an m x 1 tendon force vector, and A = [a;j] is
an m X n structure matrix. Note that the links and joints are numbered
sequentially from the distal end of the manipulator as shown in Fig. 1 for
the convenience of matrix operations. The absolute value of a;; is equal to
the radius of the pulley mounted on the jth joint and routed by the :th
tendon. And the sign of a;; is positive if a positive displacement of tendon
1 produces a positive rotation of the pulley mounted on joint j, otherwise it
is negative. The value of a;; is equal to zero if tendon ¢ is not routed about
joint j. Figure 2 shows the definition of a;; where the positive axis of rotation

points out of the paper.

As pointed out by early researchers (Morecki, et al., 1980; Salisbury
and Craig, 1982), a minimum of n + 1 tendons is necessary for the control of
an n-dof manipulator. Since using more than n + 1 tendons would result in
more complex transmission structure, it is appropriate to keep the number
of tendons to the minimum. In what follows, we shall focus only on those
transmission structures which use the minimum number of tendons, that is,

(n+1) X n transmission structure matrices. A feasible (n+ 1) X n transmission



structure matrix has to satisfy the following conditions (Morecki, et al., 1980;

Lee and Tsai, 1991)

Cl. The rank of matrix A must be equal to n.

C2. Each element in the null vector of AT must be of the same sign and

not equal to zero.

C3. Tendons must be routed from joint to joint in a continuous manner,

i.e. non-zero elements in each column of AT must be consecutive.

Conditions C1 and C2 ensure all tendons can maintain positive tensions,
and condition C3 results from the physical limitation of tendon routing in

an articulated mechanism.

Equation (2) transforms tendon forces into joint torques. Given a
set of tendon forces, the resultant joint torques are uniquely determined.
However, the determination of tendon forces to achieve a set of desired joint
torques is an indeterminant problem. From conditions C1 and C2, the inverse

transformation of eq. (2) can be written as:
E=AMr4A¢, 3)

where A1T is the pseudoinverse of AT (Ben-Israel and Greville, 1974; Strang,
1980), £, is a one-dimensional null vector of AT and X is an arbitrary

constant.

The first term in eq. (3) is known as the particular solution, and the

second term is called the homogeneous solution. The homogeneous solution

6



or the null vector satisfies
AT §h =0 (4)

Condition C2 can be interpreted as requiring all elements of £, to be positive.

Using Cramer’s rule, the null vector can be written as

£, = [~ day o, (<1)diy o, (1) o] (5)

where d; is the determinant of the matrix formed by deleting the ¢th column
of AT. Since d; £ 0, fori = 1,---,n 4 1, implies that matrix A is of rank n,

conditions C1 and C2 can be combined into a single condition as
(=1)id; >0, for i=1,..,n+1 (6)

Using eq. (6) and condition C3 as the constraints, all admissible tendon
routings can be enumerated. Note that we have allowed pulleys to assume
different sizes in this study. Since Lee and Tsai (1991) assumed that all
pulleys mounted on the same joint axis are of the same size, their result is a

subset of what can be enumerated by using condition C3 and eq. (6).

ISOTROPIC TRANSMISSION STRUCTURES

In this section, necessary and sufficient conditions for a tendon-driven
manipulator to possess isotropic transmission characteristics will be derived.
We shall assume that dimensions of the links such as the offset distances
and twist angles of a manipulator are known. Thus, once the posture
of a manipulator is specified, the Jacobian matrix is completely known.

Our objective is to find appropriate tendon routings and pulley sizes which



yield isotropic transmission characteristics for the manipulator at a specified

posture.

Unity Condition Number

The kinematic relationship between external forces acting on the end-

effector and the resultant joint torques can be written as
r=J'f (7)

where J7 is the transpose of the n X n Jacobian matrix and f is an n x 1

general force vector acting on the end-effector.

Substituting eq. (7) into (3), we obtain the force relation between the

tendon space and the end-effector space as

E=ATT 40, (8)

From eq. (8), we see that tendon forces can be decomposed into two
mutually perpendicular components: the homogeneous solution ¢, and the
particular solution _f_p = AtTJT f. The homogeneous solution has no effect
on the resultant joint torques, while the particular solution depends on the
externally applied forces, and the product of the matrices A*T and JZ. Thus,
for tendon-driven manipulators, both the homogeneous solution £, and the

matrix product A+TJT play important roles in tendon force distribution.

In this paper, we define the condition number as the ratio of the
maximal singular value to the minimal singular value of A*TJ?. When

the condition number is equal to one, the columns of A*7JT are orthogonal,



that is (Strang, 1980),
JATATTIT = %1,

(9)

where p is an arbitrary constant and I, is the n X n identity matrix. Using
AT = (ATA)'AT and (ATA)T = (ATA)™?, eq. (9) can be simplified as

JATA)TATAATA) T = 41,

or

JATA)IT = 41,
Pre-multiplying J to both sides of eq. (11), we obtain
JTIATA)IT = 237
Since eq. (12) is valid for any matrix J7, we conclude that
JTIATA) = 47T,

Post-multiplying eq. (13) by (AT A), we obtain

1
ATA =373
1

(10)

(11)

(12)

(13)

(14)

Equation (14) is the necessary and sufficient condition for the condition

number of AtTJT to be equal to one. Since A is a matrix of rank n, eq.

(14) can only be satisfied at those positions where the Jacobian matrix J is

of rank n. Since the Jacobian matrix is position dependent, the condition

number is also position dependent. Therefore, the unity condition number

can be achieved only at a specified manipulator posture.



Isotropic Vector

The homogeneous solution, ¢,, when multiplied by A, allows us to
adjust tendon forces such that positive tensions can be maintained in all
tendons (Salisbury, 1982; Lee and Tsai, 1991). Hence, the direction of the null
vector has a significant effect on the distribution of tendon forces. It is highly
desirable to have the tendons routed in such a way that its homogeneous
solution points in the [1,1,..,1]T direction. We call vector [1,1,..,1]T the
isotropic vector. For the null vector of AT to be pointing in the isotropic

direction, the following condition must be satisfied.

AT [1,1,.,1)]T =0 (15)

Isotropic Transmission

A manipulator is said to possess isotropic transmission characteristics
if its overall transform matrix At?7J? has a unity condition number and if

the null vector of AT points in the isotropic direction.

Equation (14) assures that A is a matrix of rank n and eq. (15)
indicates that the null vector points in the isotropic direction. We call
a structure matrix which satisfies eqs. (14), (15), and condition C3 an
isotropic transmission structure. Equation (14) contains n(n+1)/2 quadratic
equations while eq. (15) contains n linear equations as functions of the
matrix elements, a;;. Thus, there are a total of n(n + 3)/2 equations
of constraint imposed on the elements of matrix A. It turns out that
the number of constraint equations is equal to the minimum number of

pulleys needed for the routing of an n-dof manipulator with n+1 tendons.

10



Since eq. (14) contains an arbitrary constant g, we conclude that once a
kinematically isotropic transmission arrangement is found, the pulley sizes
can be proportionally increased (or decreased) without affecting its isotropic
transmission characteristics. The proportional constant, however, does have
an effect on the pulley sizes and, therefore, on the resulting tensions in

tendons.

In what follows, we will apply egs. (14) and (15) to the structure
synthesis of tendon-driven manipulators. Two types of structure matrices
will be studied. The first is that of pseudo-triangular form and the second is

of the general form.

MANIPULATORS WITH PSEUDO-TRIANGULAR
STRUCTURE MATRICES

For an n-dof tendon-driven manipulator constructed with the minimum
number of tendons and pulleys, the structure matrix can be arranged in a

pseudo-triangular form as shown below: (Morecki, et al., 1980):

ai an 0
a12 Q22 az; 0 cet 0
AT = (16)
Ad1pn-1 Qp—-1 " = Qupp 0
a1,n A trrootte Apon Qnit1,n

where a;; # 0.

11



In what follows, we shall identify those pseudo-triangular structure
matrices which satisfy eqs. (14) and (15). First, we will investigate a
special manipulator whose Jacobian matrix has a unity condition number
at a specific posture. For this special manipulator to possess isotropic
transmission, the condition number of its structure matrix is also equal to
one. Thus, both condition numbers of AT and J are equal to one at the given
posture. We will show that there exists only one such structure matrix. Then,
we will investigate the case of a general manipulator for which the condition
number of its Jacobian matrix is not necessarily equal to one, and show that
the structure matrix for such a manipulator can be derived from that of the

special manipulator.

Special Manipulator

We first consider a particular manipulator for which the condition
number of its Jacobian matrix is equal to one at a specific manipulator

posture, that is
JTy =1, (17)

where ¢ is an arbitrary constant. We seek for the conditions which lead to

isotropic transmission at this given posture.

Substituting eq. (17) into (14), yields
ATA =41, (18)

where & = ¢/pu.

12



Expanding eq. (18), we obtain
ai, + a3, = £’

ajraiz + anag =0

a11013 + ag1ag3 =0

ay + ag, + a3y = K2
12013 + G203 + a32a33 = 0
afs + ag3 + a3y + ajy = K

ete.

Substituting eq. (16) into (15), yields
aj; +az =0

ajz+az +azx =0
a13 + a3+ asz + a3 =0
ete.
Solving eqgs. (19.a) and (20.a), yields

K
ay; = :t“‘“

)

and

K
azy = 3:'\/—5

13

(19.a)

(19.h)
(19.¢)
(19.d)
(19.¢)

(19.1)

(20.«)

(20.5)

(20.c)



Substituting eqs. (21) and (22) into eq. (19.b), yields
aio = 429 (23)

Substituting eq. (23) into egs. (19.d) and (20.b) and solving the resulting

equations for ajz, ays and as,, yields

a12 = a2 = ﬂ:% (24)

2K
agy = ¢—\/_—é

Following the same procedure, all the other variables in matrix (16) can

be found. After factoring out the common factor, x/v/2, and letting the

(25)

first column of the matrix A7 to assume the positive sign without loosing

generality (see Lee and Tsai, 1991), we obtain

1 -1 0 0
1/V3 1/v3 —2/¥/3 0 0
1/vV6 1/v6 1/v6 -3/v6 0-- 0 (26)

2 L 2 _ 2n2
| (n?+n) (n?4n) V (n2+n) ]

AT= 2
V2

Note that there are 2" — 1 isomorphic structure matrices (Lee, 1991)
which can be formed by multiplying “-1” to any row or combination of rows
of matrix AT in eq. (26). The structure matrix shown in eq. (26) satisfies
condition C3 automatically. Therefore, if we choose the design position at the
special posture where the condition number of the Jacobian matrix is equal

to one, eq. (26) is the only admissible pseudo-triangular structure matrix

14



which yields isotropic transmission characteristics. For this special case, the
condition number of A7 is also equal to one. Hence, the condition number of
A*TIT varies as that of JT as the end-effector moves away from the design

position.

From eq. (26), we see that, starting from the nth joint, the pulleys
in each transmission line (each column) become progressive larger as they
move away from the base. This is due to the fact that the number of tendons
routed over a distal joint is fewer than that routed over a proximal joint.
To generate equal amount of joint torque with equal tendon force, pulleys
mounted at a distal joint must be larger than that mounted at a proximal

joint.

The « in matrix (26) represents a global amplification factor for sizing
the pulleys. The value of ¥ doesn’t change the condition number nor the
ratios of tendon forces, however it does have the effect on the magnitude of

tendon forces.

General Manipulator

We now consider a general manipulator for which the condition number
of its Jacobian matrix J may not be equal to one anywhere within its

workspace. The desired structure matrix can be derived as follows.

Let A be a pseudo-triangular structure matrix which satisfies eqs. (14)
and (15); then A has independent columns. Using QR factorization, we can

express A as
A=QR (27)

where Q is an (n + 1) X n real unitary matrix having the form of an upper

15



pseudo-triangular matrix and R is an n xn invertible upper-triangular matrix
with positive diagonal entries so that the factorization is unique (Golub and

Van Loan, 1983). Since A satisfies eq. (14), we can write

1

ATA = FJTJ (28)

Substituting eq. (27) into eq. (28), yields
RTQTQR = —373 (20)
I

or

~ 5o 1
R'R =—=J"J (30)

o
Let J = QR, where R is an n x n upper-triangular matrix with positive
diagonal entries and Q is an n X n real unitary matrix. Then, eq. (30) can
be simplified as )
—R'R (31)
@
Since both sides of eq. (31) are in the form of Cholesky factorization for

R'R =

the positive definite symmetric matrix J7J (Golub and Van Loan, 1983), we
conclude

R=-R (32)

= |~

Substituting eq. (27) into eq. (15), we obtain
RTQT-[1,1,-,1]" =0 (33)
Since R is non-singular and its null space is zero, we conclude

QT'[1717""1]T

0 (34)

16



Since Q is a unitary matrix, we have
Q'Q =1, (35)

Let A; be the matrix given by eq. (26); then A, satisfies eqs. (15) and (18).
Comparing eqs. (34) and (35) with (15) and (18), we conclude that the upper

pseudo-triangular unitary matrix Q is given by

1
7 = a7 (36)
K
Substituting eqs. (32) and (36) into eq. (27), we obtain
T_lor,r
c
Equation (37) provides a mean of finding the structure matrix AT for

a general manipulator to yield isotropic transmission characteristics at a

specified manipulator posture.

MANIPULATORS WITH GENERAL STRUCTURE MATRICES

In this section, the synthesis of structure matrices of the general form
will be discussed. For a general structure matrix, Q in eq. (27) takes the
form of a general unitary matrix. Following the procedure outlined from eq.
(27) to (35), it can be shown that a general unitary matrix Q satisfying eqgs.
(34) and (35) is given by

Q' =-UTA! (3)

where U is an arbitrary real n X n unitary matrix. Substituting eqs. (32)

17



and (38) into (27) and taking its transpose, yields

1
AT = —RTUTAT (39)
C
or
AT = —l—JTfJTA,.T (40)

where U = UQY is also a real unitary matrix.

Note that the matrix AT obtained by using eq. (39) or (40) may not
necessarily satisfy condition C3, that is non-zero elements in the columns of

AT may not necessarily be consecutive.

If isotropic transmission is to be achieved at the special manipulator
posture, where the condition number of the Jacobian matrix J is equal to
one, then eq. (39) or (40) can be reduced to the following form:

1
AT = —UTAT (41)
c
Equations (39), (40), and (41) provide a method for generating a general

structure matrix with isotropic transmission characteristics.

As mentioned earlier, the Jacobian matrix of a manipulator is position
dependent. Therefore, the condition number of matrix ATTIT will change
as the end-effector moves away from the reference posture. In what follows,
we prove that the condition number of a general isotropic structure matrix

follows that of the pseudo-triangular isotropic structure matrix.

Substituting eq. (39) into the matrix A*7JT and simplifying it, we

18



obtain . .
A*TIT = (=A,OR)*J" = — A, UR(R"R) "I (42)

c c
Since multiplying a real unitary matrix to a matrix does not change the

condition number of the matrix, we can write

cond(AYTIT) = cond(——l—zA,’fJR(RTR)_lJT) =
cp

cond(c—leiR(RTR)‘lJT) = cond((lAiR)JfTJT) (43)
1 c

where cond() denotes the condition number of the matrix in the parenthesis.
Equation (43) states that the two matrices, A*TJT and (A;R)*7J7, share
the same condition number. We conclude that if two manipulators, one has a
structure matrix of the general form while the other has a pseudo-triangular
matrix, are designed to possess isotropic transmission characteristics at the
same manipulator posture, then the two manipulators will have identical

condition numbers everywhere within their workspaces.

EXAMPLES

Example 1: Two-dof Manipulator

A two-dof planar manipulator, with its link lengths proportional to
1/ V2 : 1 as shown in Fig. 3, is selected for the purpose of demonstration.

The Jacobian matrix for this manipulator is given by

—512/\/5 —Sy — 512/\/5

J=1
Cra/V2 Oyt Cra/V2

(44)

where C2 = 603(02), SQ = Sm(ﬁz), 012 = 005(01 +02), Sl2 - Sln(01+02) and

19



¢ is the second link length. Note that the link lengths has been proportioned
in such a way that its Jacobian matrix, J, has a unity condition number
when the manipulator assumes the §; = 225° posture. Also note that the

links and joints are numbered from the distal end.

Three different 2 x 3 pseudo-triangular structure matrices as shown in
Table 1 are synthesized for the purpose of comparison. All three structures
matrices share the same tendon routing as shown in Fig. 4. However, their
pulley sizes are different from one another. Structure (a) is a structure
matrix derived from eq. (26). Hence, structure (a) will possess isotropic
transmission characteristics when its end-effector is positioned at x = ¢/v/2,
and y = 0. Structure (b) uses equal size pulleys. It does not possess isotropic
transmission characteristics. Structure (¢) is calculated from eq. (37) based
on the condition that the manipulator will possess isotropic transmission
characteristics when the end-effector is positioned at the x = £,y = 0. At x

= { and y = 0, the Jacobian matrix becomes

0.6614 0
J= (45)
0.2500 1

Using QR factorization, we obtain

(46)

0.3536  0.9354

0.9354 —0.3536
0 0.9354

[ 0.7071 0.3536 ]

where R is calculated so that its diagonal terms are both positive.
Substituting R from eq. (46) and the structure matrix (a) from Table 1
into eq. (37) and after rescaling, yields the structure matrix (¢) as shown
in Table 1. The homogeneous solutions and the condition numbers of the

structure matrices, AT, are also listed in Table 1. We note that the null

20



vectors of structures (a) and (c) both point in the isotropic direction.

For these two-dof systems, if we confine the externally applied force,
f, to be bounded on a unit circle, then the particular solution ¢, lies on an
ellipse as shown in Fig. 5. To achieve a fair comparison, the values of & in
Table 1 are chosen so that the areas bounded by the ellipses in {,-space are

all equal to 7.

Figure 6 shows the variation of condition numbers of ATTIT as
functions of the end-effector position. Structure («) has an unity condition
number at the x = £/v/2 and y = 0 (or §; = 225°) position. The condition
number of structure (b) is fairly close to that of structure (a) due to the fact
that the two structure matrices differ from each other by a small amount.
Structure (c¢) has a unity condition number at the x = £ and y = 0 (or
9, = 249.3°) position. Comparing structure (a) with (c), structure (c) seems

to be better than structure (a).

Two manipulator postures are chosen for evaluation. Position 1 is at
x = £,y = 0, and position 2 is at x = £/1/2, y = 0. Let a unity force f be
applied at the end-effector as shown in Fig. 3. Using eq. (8), the required
tensions for each structure are calculated for every given direction, ¢, of the
applied force. For the purpose of comparison, we adjust the value of A in
eq. (8) such that one of the tendons will have zero tension while the other
two have nonnegative tensions. As ¢ varies from 0 to 27, each tendon force

forms a closed curve.

Figures 7, 8, and 9 are polar plots of the three tendon forces for

transmission structures (a), (), and (c), respectively. In a polar plot, the
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radial distance represents the magnitude of tendon force while the phase
angle represents the direction of applied force. From Fig. 7-2, we note that
the shapes of the three tendon forces are identical except for a shift in the
phase angle. When the external force is applied along the ¢ = 30°, 150° and
270° directions, only one tendon is under tension. Under these situations,
the resultant torques produced by one tendon is sufficient to work against the

external force. We call these directions the “solo directions.”

At any other
directions, other than the solo directions, only one tendon will have zero
tension. Since structure (a) is designed to possess isotropic transmission
characteristics at the second position, the distribution of tensions becomes
distorted as the end-effector moves to position 1 as shown in Fig. 7-1. The
corresponding solo directions as shown in Fig. 7-1 also change their locations

and they become unevenly spaced.

Although the condition number of structure (b) is fairly close to that of
structure (a), tension distribution of structure (b) is quite different from that
of structure (@) as shown in Fig. 8. We note that tension exerted on the third
tendon is much larger than that on the other two. This is due to the fact that
its null vector, {1,1,2]%, points away from the isotropic direction. Structure
(¢) has isotropic transmission characteristics at position 1 as shown in Fig.
9-1. Again, at the isotropic point, position 1, the solo directions are evenly
spaced. Both structures (a) and (c¢) are equally good in tension distribution.
The only difference seems to be that structure (¢) has higher tendon forces
than that of structure (a). However, this difference can be corrected by

adjusting the value of &, i.e. the pulley sizes.

Table 2 lists the maximum value of each tendon force plotted in Figs. 7

to 9 and their ratios. The corresponding condition numbers of A*7J7 for the
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manipulator at the two specified positions are also listed. It can be seen that
structure (c) has the best distribution of tensions. It has a nearly 1 :1: 1

maximum tendon force ratios between positions 1 and 2.

Example 2: Three-dof Manipulator

A spatial three-dof manipulator as shown in Fig. 10 is used to compare
the effect of different transmission structures. The joint axes are arranged
such that, starting from the distal joint (first joint), the second joint axis
is parallel to the first while the third is perpendicular to the second. The
link lengths are proportional to 1//2: 1 : 1/4/2. To compare the influence
of different pulley sizes, the same tendon routing as shown in Fig. 11 is
adapted. A unity force acting on the end-effector as shown in Fig. 10 is
assumed, where ¢ is the angle the external force made with the z-axis and
1 is the angle the projected vector of the external force in x-y plane made

with the x-axis. The unity force can be expressed as

[ = [sin(¢)cos(v), sin(p)sin(v)), cos(qS)]T (47)

where ¢ varies from 0 to = and 1 varies from 0 to 2x. By letting 05 = 90°,
without loosing generality, the Jacobian matrix for the manipulator shown

in Fig. 10 is given by

0 0 Cy + (1 + Cr2)/V2
J=1 *512/\/5 —52 - 512/\/5 0 (48)
Cl?/ﬂ Oy + 012/\/§ 0

where CZ = 008(02),52 - Sin(@z),Clg = 008(01 + 92), 512 = Szn(@l + 02),
and 7/ is the length of the second link. For this manipulator, it can be shown

that the condition number of the Jacobian matrix is equal to one when
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9:=135° and 0,=45°, and that (x = 0, y = z = £/1/2) is one such point

on the locus.

Table 3 lists two different transmission structures, their corresponding
homogeneous solutions, and the condition number of AT. Structure (a) has
its null vector pointed in the isotropic direction. Structure (b) has its null
vector pointed 31.4° away from the isotropic direction. Structure (a) is a
transmission structure derived from eq. (26) while structure (b) is designed
with equal size pulleys. Similar to that of two-dof manipulator, with f
bounded on a unit sphere, the values of x in Table 3 are calculated by
equating the volume enclosed by ép in the particular solution space to 47 /3.

Two positions are chosen for evaluation. At position1: x =0,y =z = /2,

and at position 2: x =0,y = £+ £/y/2,z = 0.

Figures 12-1 through 12-4 show the spherical plots of tensions in
tendons 1, 2, 3, and 4, respectively, of structure (a) with the end-effector
located at position 1. In a spherical plot, the radial distance represents the
tension, and the direction represents the direction of applied force. Since
position 1 is an isotropic point for structure (a), the four figures are identical
in shape with one another, i.e. Figs. 12-2 through 12-4 will look like
Fig. 12-1 when they are viewed from some appropriate angles. The solo
directions for the four tendons are evenly distributed, and are given by (¢=
35.3°, Y= 305.3°), (¢= 144.7°, = 305.3°), (= 90°, ¢= 70.5°), and (¢=
90°, ¥= 180°), respectively. The separation angle between every two solo
directions is 109.5°. Figures (13-1)-(13-4) are the corresponding spherical
plots of tensions for structure (b) when the end-effector is located at position
1. Note that these four figures are different from one another since structure

(b) doesn’t possess isotropic transmission characteristics. Figures (14-1)-(14-
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4) and (15-1)-(15-4) are the spherical plots of tensions for structures (a) and
(b), respectively, when the end-effector is located at position 2. Table 4 lists
the maximum tensions, their ratios, and the condition numbers of A*TJ7 of

the manipulator at the two specified positions.

The overall condition number depends on kinematic structure and
transmission structure of a manipulator. It is strongly position dependent.
Yet, it can be seen from Table 4 that, even the condition number of structure
(a) is worse than that of structure (b) at position 2, structure (a) still has
better maximum tension ratios than that of structure (b), i.e. 1.034 : 1
: 1.051 : 1.051 as compared with 1 : 1 : 1.992 : 3.714. Also the largest
maximum tension in structure (@) is far less than that of structure (b). This
is because the null vector of structure (a) points in the isotropic direction

while that of structure (b) points in the [1,1,2,4]7 direction.

CONCLUSIONS

A  methodology for the kinematic synthesis of tendon-driven
manipulators has been developed. Design equations for synthesizing
a manipulator with isotropic transmission characteristics at a given
manipulator posture are derived. These equations are then applied to two
different types of kinematic structures. The first type has pseudo-triangular
structure matrices and the second type has structure matrices of the general
form. The structure matrices of the first type can be obtained by post-
multiplying the isotropic structure matrix, A;, by the R matrix, where R 1s
obtained by performing a QR factorization of the Jacobian matrix. Structure

matrices of the second type can be derived by post-multiplying A; by UR,
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where U is an arbitrary unitary matrix. Two examples, one two-dof planar
manipulator and one three-dof spatial manipulator, are used to demonstrate
the methodology. It is shown that manipulators which possess isotropic
transmission characteristics do have more even force distribution among their
tendons. It is also shown that the direction of homogeneous solution plays a

very important role in tendon force distribution.

ACKNOWLEDGMENT

This work was supported in part by the U.S. Department of Energy
under Grant DEF05-88ER13977, and in part by the NSF Engineering
Research Centers Program NSFD CDR 8803012. Such support does not
constitute an endorsement by the supporting agencies of the views expressed

in the paper.

REFERENCES
Asada, H. and Cro Granito, J. A., 1985, “Kinematic and Static
Characterization of Wrist Joints and Their Optimal Design,” Proc. of IEEE

Int’l. Conf. on Robotics and Automation, pp. 244-250.

Ben-Israel, A. and Greville, T. N. E., 1974, “Generalized Inverses:
Theory and Applications.” Wiley, New York.

Chen, D. Z. and Tsai, L. W., 1990, “Kinematic and Dynamic Synthesis

26



of Geared Robotic Mechanisms,” ASME DE-Vol. 26, Cams, Gears, Robot
and Mechanism Design, pp. 397-404.

Golub, G. H. and Van Loan, C. F., 1983 “Matriz Computations.” The
John Hopkins University Press, Baltimore, Maryland.

Gosselin, C. and Angeles, J., 1988, “A New Performance Index for
the Kinematic Optimization of Robotic Manipulators,” ASME Trends and
Developments in Mechanisms, Machines and Robotics, DE-Vol. 15-3, pp.
441-447.

Jacobsen, S. C., Wood, J. E., Knutti, D. F., and Biggers, K. B.,
1985, “The Utah/MIT Dexterous Hand: Work in Progress,” The Int’l. J. of
Robotics Research, Vol. 3, No. 4, pp. 21-50.

Lee, J. J. and Tsai, L. W., 1991, “On the Structural Synthesis of
Tendon-Driven Manipulators Having Pseudo-Triangular Matrix,” The Int’l.
J. of Robotics Research, Vol. 10, No. 3., pp. 255-262.

Lee, J. J., 1991, “Tendon-Driven Manipulators: Analysis, Synthesis,
and Control,” Ph.D. Dissertation, Dept. of Mech. Eng., The University of
Maryland, College Park, MD.

Morecki, A., Busko, Z., Gasztold, H., and Jaworek, K., 1980, “Synthesis
and Control of the Anthropomorphic Two-Handed Manipulator,” Proc. 10th

Int’l. Symposium on Industrial Robots, Milan, Italy, pp. 461-474.

Okada, T., 1977, “On a Versatile Finger System,” Proc. 7th Int’l.

27



Symposium on Industrial Robots, Tokyo, Japan, pp. 345-352.

Rovetta, A., 1977, “On Specific Problems of Design of Multipurpose
of Mechanical Hands in Industrial Robots,” Proc. 7th Int’l. Symposium on
Industrial Robots, Tokyo, Japan, pp. 337-341.

Salisbury, J. K. and Craig, J. J., 1982, “Articulated Hands: Force
Control and Kinematic Issues,” The Int’l. J. of Robotics Research, Vol. 1,
No. 1, pp. 4-17.

Salisbury, J. K., 1982, “Kinematic and Force Analysis of Articulated
Hands,” Ph.D. Dissertation, Mech. Eng. Dept., Stanford University,
Stanford, CA.

Strang, G., 1980, “Linear Algebra and Its Applications,” 2nd ed.,

Academic Press, New York.

Sugano, S. and Kato, 1., 1987, “WABOT-2: Autonomous Robot with
Dexterous Finger-Arm,” Proc. of IEEE Int’l. Conf. on Robotics and
Automation, Raleigh, North Carolina, pp. 90-97.

Yoshikawa, T., 1985, “Manipulability of Robotic Mechanisms,” Int’l.
J. of Robotics Research, Vol. 4, No. 2, pp. 3-9.

28



Ist joint 7 01,7

2nd joint 7 0,,7,

n-th joint

¢

~
P
<57

A VAN

Sl S2 Sm
E.»l 5_»2 Em
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Transmission
Structure AT p §_h Cond (AT)
1 =1 0 1
@ £ 1 1 =2 0.500 1 1
V3 V3 V3 1
1 -1 0 1
b k [ l 0.4082 1 1.2247
1 1 -1
2
1 -1 0 1
¢ ”[1.2638 0.2637 —1.5275] 0.3780 1 1.6684

Table 1: Three transmission structures and their kinematic properities
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Structure a c
2.089 1.731 1.869
position | max. tensions 1.623 1.731 1.869
2.089 3.462 1.869
1 ratio 1.287:1:1.287 { 1:1:2.001 1:1:1
Cond(A"‘TJT) 1.6684 1.4884 1
1.414 1.732 1.871
position | max. tensions 1.414 1.732 1.972
1.414 2.446 1.972
2 ratio 1:1:1 1:1:1.412 | 1:1.054:1.054
Cond(A+TJT) 1 1.2247 1.6684

Table 2: List of max. tensions, corresponding ratio and condition number
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Transmission
Structure AT K ¢, | Cond(AT)
1 -1 0 0 1
11 =2 1
a K \{?; \{3* \{5 ) 0.3536 1 1
AR ARVIRY 1
1 -1 0 0 i
b k{1 1 -1 0 0.2132 1.5195
2
1 1 1 -1 4

Table 3: Two transmission structures and their kinematic properities




Solo direction: ¢ = 35.3°, b = 305.3°

Fig. 12-1 Tension variation in tendon | of structure («),
evaluated at position |



Solo direction: ¢ = 144.7°, ¢b) = 305.3°

Fig. 12-2 Tension variation in tendon 2 of structure (a),
evaluated at position |



Solo direction: ¢ = 90°, ¢ = 70.5°

Fig. 12-3 Tension variation in tendon 3 of structure («),
evaluated at position |
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Solo direction: ¢ = 54.7°, ¢ = 315°

Fig. 13-1 Tension variation in tendon 1 of structure (1),
evaluated at position 1



Solo direction: ¢ = 125.3°, «» = 315°

Fig. 13-2 Tension variation in tendon 2 of structure (),
evaluated at position |
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Fig. 13-4 Tension variation in tendon 4 of structure (b),
evaluated at position 1
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Solo direction: ¢ = 156.7°, +» = (G1.3°

Fig. 14-3 Tension variation i tendon 3 of structure («),
evaluated at position 2



Solo direction: ¢ = 90°, ¢» = 180°

Fig. 14-4 Tension variation in tendon 4 of structure («),
evaluated al position 2
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Solo direction: ¢ = 63.2°, 1» = 287.2°

Fig. 15-2 Tension variation in tendon 2 of structure (1),
evaluated at position 2



Solo direction: ¢ = 145.1°, 4 = 32.8°

Fig. 15-3 Tension variation in tendon 3 of structure (b),
evaluated at position 2



Solo direction: ¢ = 90°, b = 180°

Fig. 15-4 Tension variation in tendon 4 of structure (b),
evaluated at position 2



Structure a b

2 3.317
it tensi 2 3.317
position | max. tensions 9 4690
2 8.121

1 ratio 1:1:1:1 1:1:1.414:2.449
Cond(A+TJT) 1 1.520
4.2 3.315
ositi tensi 4.062 3.315
position | max. tensions 4967 6.604
4.267 12.310

2 ratio 1.034:1:1.051:1.051 | 1:1:1.992:3.714
Cond(A*TJT) 2.7112 2.1727

Table 4: List of max. tensions, corresponding ratio and condition number






